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Topics

• Practical Extensions to the Theory:

– Real Sensors

– Finite bandwidth

– Rotating reference frames (source motion)

– Finite time averaging

– Local Oscillators and Frequency Downconversion

• Coordinate systems

– Direction cosines

– 2-D (‘planar’) interferometers

– 3-D (‘volume’) interferometers

• U-V Coverage, Visibilities, and Simple Structures.
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Review

• In the previous lecture, I set down the principles of Fourier 

synthesis imaging.  

• I showed:

Where the intensity In is a real function, and the visibility 

V(b) is complex and Hermitian.

• The model used for the derivation was idealistic – not met in 

practice:

– Idealized Sensors

– Monochromatic

– Stationary reference frame.  

– RF throughout

• We now relax, in turn, these restrictions.



Real Sensors
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• I developed the integral relationship presuming idealized sensors –

uniform sensitivity in all directions.  

• Such a device doesn’t exist.  

• Real sensors (antennas) have a directional voltage gain pattern A(s, s0), 

where s is a general direction, and s0 is a pointing direction.  

• The gain pattern is (nominally) easily incorporated into the formalism, 

once we realize that it attenuates the actual sky brightness.  We can 

write:

• Here,  A1and A2 are the normalized complex voltage attenuation 

functions for the two antennas.  

• Note that if the antennas are identical, and pointing in the same 

direction, then A1A2 = P, the normalized power response.  



Effect of Finite Bandwidth
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• A baseline has a fixed physical length, B.   But the fringe pattern depends on 

its length in wavelengths.  

• Each slice of wavelength has a pattern with angular separation of ~ l/B .

• Each component has a maximum at the n=0 fringe (meridional plane).

• They get increasingly out of step as n gets larger.  

• A simple illustration – three 

wavelength components from 

the same physical baseline.  

• The net result is the sum 

over all components.

• Here, this is shown in the 

thick blue line.  



Bandwidth Effect (cont.)

• With more components (nine equal ones in this case), the summed 

response begins to look like a ‘wave packet’.  
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The Effect of Bandwidth -- Analysis.

• To find the finite-bandwidth response, we integrate our fundamental 

response over a frequency response G(n), of width Dn, centered at n0:

• If the source intensity does not vary over the bandwidth, and the 

instrumental gain parameters G1 and G2 are square and identical, then

where the fringe attenuation function, sinc(x), is defined as:
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Bandwidth Effect Example

• For a square bandpass, the bandwidth attenuation reaches a null when     

tgDn = 1, or 

• For the old VLA, and its 50 MHz bandwidth,  and for the ‘A’ configuration, 
the null was only ~ 35 arcseconds away.

• For the  JanskyVLA, Dn = 1 MHz, and B = 35 km, then the null occurs at 

about 30 arcminutes off the meridian.  
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Observations off the Meridian 

• In our basic scenario -- stationary source, stationary 
interferometer -- the effect of finite bandwidth will 
strongly attenuate the fringe amplitudes from sources far 
from the meridional plane.  

• Since each baseline has its own plane, the only point on the 
sky free of attenuation for all baselines is a small angle 
around the zenith (presuming all baselines are coplanar).  

• Suppose we wish to observe an object far from the zenith?

• Best way is to shift the entire ‘fringe packet’ to the position 
of interest by adding time delay to the antenna closer to 
the source.  



Adding Time Delay
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Illustrating Delay Tracking

• Top Panel:

Delay has been added 

and subtracted to move 

the delay pattern to the 

source location.

• Bottom Panel:

A cosinusoidal sensor 

pattern is added, to 

illustrate losses from a 

fixed sensor.  



Observations from a Rotating Platform 

• Real interferometers are built on the surface of the earth – a 
rotating platform.  From the observer’s perspective, sources 
move across the sky.  

• Since we know how to adjust the interferometer timing to 
move its coherence pattern to the direction of interest, it is 
a simple step to continuously move the pattern to follow a 
moving source.  

• All that is necessary is to continuously add time delay, with 
an accuracy dt << 1/Dn to minimize bandwidth loss.  

• But there’s one more issue to keep in mind…



Phase Tracking …  

• Adding time delay will prevent bandwidth losses for 

observations off the baseline’s meridian.  

• But between delay settings, the source is moving through the 

interferometer pattern – a rapidly changing phase.  

• How fast?  

• The ‘natural fringe rate’ – due to earth’s rotation, is given by 

• Where u = B/l, the (E-W) baseline in wavelengths, and we 

=7.3x10-5 rad/s is the angular rotation rate of the earth.  

• For a million-wavelength baseline,   nf ~ 70 Hz – that’s fast.

• If we leave things this way, we have to sample the output at at
least twice this rate.  A lot of data!
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Following a Moving Object. 

• There is *no* useful information in this fringe rate – it’s 
simply a manifestation of the platform rotation.

• Tracking, or ‘stopping’ the fringes greatly slows down the 
*post-correlation* data processing/archiving needs.  

• To ‘stop’ the fringes, we must adjust the phase in one path.  

• How fast:

– Tracking delay: 

– Tracking phase: 

• The rates given are appropriate for 35 km baselines, 128 MHz 
bandwidth, and 3 cm wavelength.  

• For the ‘RF’ interferometer, delay insertion does both.  
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Emphasis:  
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Shown again is the fringe 

pattern of a real wide-

band baseline.  

To preserve the visibility 

amplitude, we must re-set 

delays  before source 

moves too far down the 

pattern.  

To maintain a stable 

phase, we must reset 

~n/dn times faster.  

Source moves this way



Time Averaging Loss

• So – we can track a moving source,  continuously adjusting 

the delay to move the fringe pattern with the source.  

• This does two good things:

– Slows down the data recording needs

– Prevents bandwidth delay losses.  

• From this, you might think that you can increase the time 

averaging for as long as you please.  

• But you can’t – because ‘stopping the fringes’ only works for 

the object ‘in the center’ – the point for which the delays and 

phases have been pre-set.  

• All other sources are moving w.r.t. the fringe pattern – and   

this is where the essential information lies…
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Time-Smearing Loss Timescale

Simple derivation of fringe period, 

from observation at the NCP.

l/D

Interferometer

Fringe Separation

l/B

we

• Turquoise area is antenna 

primary beam on the sky –

radius = l/D

• Interferometer coherence 

pattern has spacing = l/B

• Sources in sky rotate about 

NCP at angular rate:

we =7.3x10-5 rad/sec.

• Minimum time taken for a 

source to move by l/B at 

angular distance  is:   

• This is 10 seconds for a 35-

kilometer baseline and a



NCP

Primary Beam 

Half Power

Source

For sources at the 

primary beam null



Illustrating Time Averaging Loss

• An object located away from the fringe tracking center moves 

through the pattern as the earth rotates.  

• It makes one cycle around in 24 hours.  

• If we average the correlation products for too long a period, a loss in 

fringe amplitude will result.  
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Illustrating time average loss.  

Blue trace:  the fringe 

amplitude with no averaging.

Red trace:  Amplitude after 

averaging for 12 ‘samples’.  
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Time-Averaging Loss

• So, what kind of time-scales are we talking about now?

• How long can you integrate before the differential motion 

destroys the fringe amplitude?  

• Case A:  A 25-meter parabaloid,  and 35-km baseline:  

• t = D/(Bwe) = 10 seconds.  (independent of observing frequency).

• Case B:  Whole Hemisphere for a 35-km baseline:   

– t = l/(Bwe) sec = 83 msec at 21 cm.

• Averaging for durations longer than these will cause severe 

attenuation of the visibility amplitudes.  

• To prevent ‘delay losses’, your averaging time must be much 

less than this.

– Averaging time 1/10 of this value normally sufficient to prevent time 

loss.



The Heterodyne Interferometer:  

LOs, IFs, and Downcoversion

• This would be the end of the story (so far as the fundamentals 
are concerned) if all the internal electronics of an 
interferometer would work at the observing frequency (often 
called the ‘radio frequency’, or RF).

• Unfortunately, this cannot be done in general, as high frequency 
components are much more expensive, and generally perform 
more poorly than low frequency components.  

• Thus, most radio interferometers use ‘down-conversion’ to 
translate the radio frequency information from the ‘RF’ to a 
lower frequency band, called the ‘IF’ in the jargon of our trade.  

• For signals in the radio-frequency part of the spectrum, this can 
be done with almost no loss of information.  

• But there is an important side-effect from this operation in 
interferometry which we now review.    



Downconversion
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At radio frequencies, the spectral content within a passband can be 

shifted – with almost no loss in information, to a lower frequency 

through multiplication by a ‘LO’ signal.  
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This operation preserves the amplitude and phase relations.



Signal Relations, with LO Downconversion

wLO
fLOX X

t0

X

tg

E cos(wRFt)

E cos(wIFt-fLO)

(wRF=wLO+wIF)

E cos(wIFt-wIFt0-fLO)E cos(wIFt-wRFtg)

Local

Oscillator
Phase

Shifter

Multiplier

Complex Correlator

Not the same phase 

as the RF 

interferometer!

• The RF signals are multiplied by a pure sinusoid, at frequency nLO

• We can add arbitrary phase fLO on one side.
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Recovering the Correct Visibility Phase

• The correct phase (RF interferometer) is:

• The observed phase (with frequency downconversion) is: 

• These will be the same when the LO phase is set to:

• This is necessary because the delay, t0, has been added in the IF portion 

of the signal path, rather than at the frequency at which the delay actually 

occurs. 

• The phase adjustment of the LO compensates for the delay having been 

inserted at the IF , rather than at the RF.  

 
0

ttw -
gRF

LOIFgRF
ftwtw --
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The Three ‘Centers’ in Interferometry

• You are forgiven if you’re confused by all these ‘centers’.  

• So let’s review:

1. Beam Tracking (Pointing) Center:   Where the antennas 

are pointing to.  (Or, for phased arrays, the phased array 

center position). 

2. Delay Tracking Center:  The location for which the 

delays are being set for maximum wide-band coherence.  

3. Phase Tracking Center:  The location for which the LO 

phase is slipping in order to track the coherence pattern.  

• Note:  Generally, we make all three the same.  #2 and #3 are 

the same for an ‘RF’ interferometer.  They are separable in a 

LO downconversion system.  
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Interferometer Geometry

• We have not defined any geometric system for our relations.  

• The response functions we defined were generalized in terms 

of the scalar product between two fundamental vectors:

• The baseline ‘B’, defining the direction and separation of the 

antennas, and

• The unit vector ‘s’, specifying the direction of the source.  

• At this time, we define the geometric coordinate frame for 

the interferometer.  

• We begin with a special case:  An interferometer whose 

antennas all lie on a single plane.  
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The 2-Dimensional Interferometer

To give better understanding, we now specify the geometry.

Case A:    A 2-dimensional measurement plane.

• Let us imagine the measurements of  Vn(b) to be taken entirely on a 

plane.

• Then a considerable simplification occurs if we arrange the coordinate 

system so one axis is normal to this plane.  

• Let (u,v,w) be the coordinate axes, with w normal to this plane.  Then:

u, v, and w are always measured in wavelengths.

• The components of the unit direction vector, s, are:



The (u,v,w) Coordinate System.  

The baseline vector b is specified 

by its coordinates (u,v,w) 

(measured in wavelengths).  

In the case shown, w = 0, and

)0,v,u( llb

u

v

w

b


b

• Pick a coordinate system (u,v,w) 

to describe the antenna 

positions and baselines.

• Orient this frame so the plane 

containing the antennas lies on 

w = 0.   



Direction Cosines – describing the source 

The unit direction vector s is 

defined by its projections (l,m,n) 

on the (u,v,w) axes.  These 

components are called the 

Direction Cosines.

u
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The angles, a, b, and  are between the direction vector 

and the three axes.



The 2-d Fourier Transform Relation

Then, nb.s/c = ul + vm + wn = ul + vm,   from which we find,

which is a 2-dimensional Fourier transform between the brightness 

and the spatial coherence function (visibility):

And we can now rely on two centuries of effort by mathematicians on how 

to invert this equation, and how much information we need to obtain an 

image of sufficient quality.  

Formally,

In physical optics, this is known as the ‘Van Cittert-ZernickeTheorem’.  



• Which interferometers can use this special geometry?

a) Those whose baselines, over time, lie on a plane (any plane).  

All E-W interferometers are in this group.  For these, the w-coordinate points to 

the NCP.  

– WSRT (Westerbork Synthesis Radio Telescope)

– ATCA (Australia Telescope Compact Array) (before the third arm)

– Cambridge 5km (Ryle) telescope (almost).  

b) Any coplanar 2-dimensional array, at a single instance of time.  

In this case, the ‘w’ coordinate points to the zenith.  

– VLA or GMRT in snapshot (single short observation) mode.    

• What's the ‘downside’ of 2-d (u,v) coverage?

– Resolution degrades for observations that are not in the w-direction. 

• E-W interferometers have no N-S resolution for observations at the celestial 

equator.

• A VLA snapshot of a source will have no ‘vertical’ resolution for objects on the 

horizon.

Interferometers with 2-d Geometry



Generalized Baseline Geometry 
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• Coplanar arrays (like the VLA) 

cannot use the 2-d geometry, 

since the plane of the array is 

rotating w.r.t. the source.  

• In this case, we adopt a more 

general geometry, where all 

three baseline components 

are to be considered.   



General Coordinate System

• This is the coordinate system in most general use for synthesis imaging.

• w points to, and follows the source, u towards the east, and v towards 

the north celestial pole.  The direction cosines l and m then increase to 

the east and north, respectively.

b
s0

s0

w

v

‘Projected 

Baseline’

u-v plane – always perpendicular 

to direction to the source.

22

vu 



3-d Interferometers 
Case B:  A 3-dimensional measurement volume:

• What if the interferometer does not measure the coherence function 
on a plane, but rather does it through a volume?  In this case, we adopt a 
different coordinate system.  First we write out the full expression:  

(Note that this is not a 3-D Fourier Transform).

• We orient the w-axis of the coordinate system to point to the region of 
interest.  The u-axis point east, and the v-axis to the north celestial pole.

• We introduce phase tracking, so the fringes are ‘stopped’ for the 
direction l=m=0.  This means we adjust the phases by 

• Then, remembering that                         we get: 222
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3-d to 2-d

• The expression is still not a proper Fourier transform.   

• We can get a 2-d FT if the third term in the phase factor is 

sufficient small.

• The third term in the phase can be neglected if it is much less 

than unity:  

• This condition holds when:                                                                          

(angles in radians!)

• If this condition is met, then the relation between the 

Intensity and the Visibility again becomes a 2-dimensional 

Fourier transform:



The Problem with Non-coplanar Baselines

• Use of the 2-D transform for non-coplanar interferometer 

arrays (like the VLA, when used over time) always results in 

an error in the images.  

• The ‘Clark Condition’ for trouble is:

• Hence, the problem is most acute for small-diameter 

antennas (D small) long baselines (B large), and long 

wavelengths (l large)

• The problems are not in the principles, but in the cost of the 

solutions.  Full 3-D imaging works, but isn’t cheap.

• Implemented solutions include faceted imaging, and ‘W-

Projection’.  
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Coverage of the U-V Plane

• Obtaining a good image of a source requires adequate sampling 
(‘coverage’) of the (u,v) plane.

• Adopt an earth-based coordinate grid to describe the antenna 
positions:

– X points to H=0, d=0 (intersection of meridian and celestial equator)

– Y points to H = -6, d = 0 (to east, on celestial equator)

– Z points to d = 90 (to NCP). 

Equator R
o

ta
ti
o
n
 A

x
is

X

Z
NP • Thus, Bx, By are the baseline 

components in the Equatorial 

plane,

• Bz is the baseline component 

along the earth’s rotation axis.  

• All components in wavelengths.  

• d0 and H0 are the declination and 

right ascension of the phase 

center.
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(u,v,w) Coordinates

• Then, it can be shown that 

• The u and v coordinates describe E-W and N-S components of the 

projected interferometer baseline.  

• The w coordinate is the delay distance in wavelengths between the 

two antennas.    The geometric delay, tg is given by 

• Its derivative, called the fringe frequency nF is



E-W Array Coverage and Beams
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• The simplest case is for E-W arrays, which give coplanar coverage.  

• Then, Bx = Bz = 0

• Consider a ‘minimum redundancy array’, with eight antennas located at

0, 1, 2, 11, 15, 18, 21 and 23 km along an E-W arm.  

o o o o o o o o

• Of the 28 simultaneous spacings, 23 are of a unique separation.  

• The U-V coverage (over 12 hours) at d = 90, and the synthesized beam 

are shown below, for a wavelength of 1m.



E-W Arrays and Low-Dec sources.  

• But the trouble with E-W arrays is that they are not suited for 

low-declination observing.  

• At d=0, coverage degenerates to a line.  
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Baseline Locus – the General Case

• Each baseline, over 24 hours, traces out an ellipse in the (u,v) plane:

• Because brightness is real, each observation provides us a second point, 

where:  V(-u,-v) = V*(u,v)

• E-W baselines (Bx = Bz = 0) have no ‘v’ offset in the ellipses.

U

V

0
cosd

Z
B

22
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Good UV Coverage 

requires many 

simultaneous baselines 

amongst many antennas, 

or many sequential 

baselines from a few 

antennas.

A single Visibility:  V(u,v)

Its Complex Conjugate 

V(-u,-v)



Getting Good Coverage near d = 0

• The only means of getting good 2-d angular resolution at 

all declinations is to build an array with N-S spacings.  

• Many more antennas are needed to provide good 

coverage for such geometries.

• The VLA was designed to do this, using 9 antennas on 

each of three equiangular arms.  

• Built in the 1970s, commissioned in 1980, the VLA vastly 

improved radio synthesis imaging at all declinations. 

• Each of the 351 spacings traces an elliptical locus on the 

(u,v) plane.  

• Every baseline has some (N-S) component, so none of 

the ellipses is centered on the origin.  
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Sample VLA (U,V) plots for 3C147 (d = 50)
• Snapshot (u,v) coverage for HA = -2, 0, +2  (with 26 antennas).  

Coverage over 

all four hours.  

HA = -2h HA = 2hHA = 0h



VLA Coverage and Beams
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d=90                 d=60 d=30 d=0                  d=-30

• Good coverage at all declinations, but troubles near d=0 remain.  



UV Coverage and Imaging Fidelity

• Although the VLA represented a huge advance over what came before, 

its UV coverage (and imaging fidelity) is far from optimal.

• The high density of samplings along the arms (the 6-armed star in 

snapshot coverage) results in ‘rays’ in the images due to small errors.

• A better design is to ‘randomize’ the location of antennas within the 

span of the array, to better distribute the errors.

• Of course, more antennas would really help!  :) .  

• The VLA’s wye design was dictated by its 220 ton antennas, and the 

need to move them.  Railway tracks were the only answer.

• Future major arrays will utilize smaller, lighter elements which must not 

be positioned with any regularity.  
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