geodiversitas 2020-42-17

Ecometrics and Neogene faunal turnover: the roles of cats and hindlimb morphology in the assembly of carnivoran communities in the New World

P. David POLLY

Carnii

eigné

PUBLCATIONS SCIENTIFIQUES

DIRECTEUR DE LA PUBLICATION / *PUBLICATION DIRECTOR* : Bruno David, Président du Muséum national d'Histoire naturelle

RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle

ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez (geodiv@mnhn.fr)

MISE EN PAGE / PAGE LAYOUT: Emmanuel Côtez

COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD: Christine Argot (Muséum national d'Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d'Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d'Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d'Histoire naturelle, Paris) Sevket Sen (Muséum national d'Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité)

COUVERTURE / COVER: Réalisée à partir des Figures de l'article/Made from the Figures of the article.

Geodiversitas est indexé dans / Geodiversitas is indexed in:

- Science Citation Index Expanded (SciSearch®)
- ISI Alerting Services®
- Current Contents® / Physical, Chemical, and Earth Sciences®
- Scopus®

Geodiversitas est distribué en version électronique par / Geodiversitas is distributed electronically by: – BioOne® (http://www.bioone.org)

Les articles ainsi que les nouveautés nomenclaturales publiés dans *Geodiversitas* sont référencés par / Articles and nomenclatural novelties published in Geodiversitas are referenced by: – ZooBank® (http://zoobank.org)

Geodiversitas est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Geodiversitas is a fast track journal published by the Museum Science Press, Paris

Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish:

Adansonia, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d'Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France)

Tél.: 33 (0)1 40 79 48 05 / Fax: 33 (0)1 40 79 38 40 diff.pub@mnhn.fr / http://sciencepress.mnhn.fr

am.pub@mnnn.tr / nttp://sciencepress.mnnn.tr

© Publications scientifiques du Muséum national d'Histoire naturelle, Paris, 2020 ISSN (imprimé / print): 1280-9659/ ISSN (électronique / electronic): 1638-9395 Ecometrics and Neogene faunal turnover: the roles of cats and hindlimb morphology in the assembly of carnivoran communities in the New World

P. David POLLY

Earth and Atmospheric Sciences, Indiana University 1001 E. 10th Street, Bloomington, Indiana (United States) pdpolly@indiana.edu

Submitted on 17 February 2019 | accepted on 20 April 2020 | published on 2 July 2020

urn:lsid:zoobank.org:pub:FE4A6D79-2153-44C6-9711-CF71061E6768

Polly P. D. 2020. — Ecometrics and Neogene faunal turnover: the roles of cats and hindlimb morphology in the assembly of carnivoran communities in the New World, *in* Bonis L. de & Werdelin L. (eds), Memorial to Stéphane Peigné: Carnivores (Hyaenodonta and Carnivora) of the Cenozoic. *Geodiversitas* 42 (17): 257-304. https://doi.org/10.5252/geodiversitas2020v42a17. https://geodiversitas.com/42/17

ABSTRACT

Cats possess some of the highest ankle gear ratios of any extant carnivorans, a feature that facilitates leaping and sprinting involved in ambush predation and scansorial lifestyles. In today's North American carnivoran communities, the high gear ratio of cats contributes to an overall high ecometric average for this trait and contributes strongly to measures of ecometric disparity at the community level. But cats were late additions to North American communities, arriving from Eurasia about 17 Ma at the end of the "cat gap". This paper uses ecometric analysis to document changes in hindlimb functional diversity in North American carnivoran communities over the last 19 million years in order to better understand the roles of trait evolution, clade turnover, and environmental change in community assembly. To accomplish this, I look at the phylogenetic history of ankle gear ratios of cats and other carnivorans, and the history of their occupation of high gear ratio niches in North American communities. The primary focus is on the Great Plains, which experienced profound changes in vegetation and climate through this period. Across all Carnivoramorpha, including a variety of extinct clades, it was found that gear ratios range from 1.08 (with extant ursids and viverrids and extinct miacids and barbourofelids, one of the three cat groups considered in this paper, having the lowest values) to 1.46 (with extant felids, herpestids, and canids having the highest values). Using the fossil record combined with phylogenetic ancestor reconstruction, it is shown that stem carnivorans and early felids had gear ratios about halfway between these extremes, consistent with a semidigitigrade or mildly digitigrade stance that was not overly specialized for either leaping or sprinting. Barbourofelids and some machairodontines evolved lower gear ratios that emphasized mechanical efficiency over advantage. When cats first entered North American communities in the Miocene they did not occupy high gear ratio niches and, in fact, occupied some of the lowest gear ratio niches during the Barstovian, Clarendonian, and Hemphillian. A major restructuring of gear ratio distributions in North American carnivoran communities occurred during the Blancan that appears to have resulted from clade sorting processes involving the selective loss of low gear ratio groups, as well as the evolution of increased gear ratios in felids and canids.

KEY WORDS Carnivora, Felidae, ecometrics, functional trait ecology, locomotor morphology.

RÉSUMÉ

L'assemblage des communautés félines du Nouveau Monde : écométrie et changements fauniques du Néogène. Les félins possèdent une cheville avec un indice calcanéal parmi les plus élevés chez les carnivores actuels, un caractère qui facilite le saut et le sprint impliqués dans la prédation par ambuscade et dans un mode de vie de grimpeur. Cet article pose des questions sur l'origine phylétique de cet indice et sur l'histoire de l'occupation par les félins de niches nécessitant un indice élevé. Parmi tous les carnivoramorphes, on a trouvé que l'indice varie de 1.08 (ursidés ou viverridés actuels, miacidés et barbourofelidés ayant les plus faibles valeurs) jusqu'à 1.46 (félidés, herpestidés et canidés ayant les plus hautes valeurs). En utilisant la reconstruction d'un ancêtre phylogénétique, on a montré que le Carnivora ancestral et le félidé ancestral avaient des indices à mi-chemin entre les extrêmes, correspondant à des attitudes digitigrades ou semi-digitigrades qui n'étaient pas complètement spécialisées pour la course ou le saut. Les bardourofélidés et quelques machairodontes possédaient des indices très bas mettant l'accent sur l'efficacité mécanique plutôt que sur les autres avantages. Les félidés du Miocène d'Amérique du Nord n'occupaient pas des niches nécessitant un indice élevé et, de fait, occupaient des niches avec indices faibles pendant le Barstovien, le Clarendonien et l'Hemphillien. Une restructuration majeure de la distribution des indices dans les communautés de Carnivora en Amérique du Nord s'est produite durant le Blancan avec des processus de tri des clades en fonction de la perte sélective des groupes possédant des indices faibles.

MOTS CLÉS Carnivora, Felidae, écométrie, écologie des traits fonctionnels, morphologie locomotrice.

INTRODUCTION

Cats make a unique contribution to the locomotor diversity of extant carnivoran communities. Predominantly leapers and springers, cats are among the most digitigrade of living carnivores and have higher ankle gear ratios than most other carnivorans, including their cursorial canid cousins (Fig. 1). While canids and felids share a pronounced digitigrade stance, the function of felid limbs is more strongly differentiated between fore and hind than in canids (Meachen-Samuels & Van Valkenburgh 2009; Kitchener et al. 2010). The felid forelimb is less suited for parasagittal cursorial locomotion and more suited for grappling with prey (Gonyea 1976a). Unlike dogs and foxes, most felids retain five full-length manus digits, retractile claws, and the ability to supinate their forearms and are thus able to grasp prey or negotiate steep or vertical surfaces in ways that canids cannot (Gonyea & Ashworth 1975; Gonyea 1978; Walmsley et al. 2012). The extant felid hindlimb, in contrast, has strongly hinged joints, long distal elements, and tightly bound metatarsals that provide cats with substantial leverage for leaping or sprinting (Harris & Steudel 1997, 2002; Kitchener et al. 2010). Combined with a flexible vertebral column (Hildebrand 1961; MacPherson & Fung 1998; Boszczyk et al. 2001), the high ankle gear ratio facilitates the bounding, leaping, and climbing behaviors that differentiate felid locomotion from the almost fully terrestrial cursoriality of canids in terms of form, function, and energetics (English 1978; Van Valkenburgh 1987; Taylor 1989; Van Valkenburgh et al. 2004; Kitchener et al. 2010; Morales & Giannini 2010, 2013; Williams et al. 2014). The hindlimb of cats can therefore be thought of as specialized for saltatory or "pseudocursorial" manoeuvres in contrast to canids whose similarly high gear ratios are associated with cursoriality.

Community assembly processes involve the filtering effects of form-function relationships between the species that make up

a community and the environment in which the community is situated (Ricklefs & Travis 1980; Poff 1997; McGill et al. 2006). Ecometrics is an evolutionary ecological approach to the study of community assembly that breaks the specializations of its species down into quantitative functional traits, whose distributions and evolution can be studied across space and through time (Polly et al. 2011; Polly & Head 2015). By focusing on distributions of individual traits instead of species, ecometrics recognizes that species are composites of traits, often with unique combinations that collectively differentiate it from other taxa, as in felids and canids, which have similar hind limb gear ratios but different combinations of forelimb and vertebral column traits and correspondingly different locomotor and ecological niches. This amalgam of traits can make it difficult to assess how any one of them contributes to community assembly. Instead, ecometrics measures the commonalities and differences of a single trait among the members of a community to characterize the full range of capacity the community has for the associated function. By comparing the distribution of that trait among communities in different environments or over time, the contribution of the associated function to community assembly processes can be assessed.

Extant North American carnivoran communities have higher mean gear ratios in open or heterogeneous habitats, whereas it is typically lower in communities inhabiting extensively forested regions where there are more species with lower gear ratios associated with ambulatory locomotion and plantigrade climbing (Polly 2010; Polly & Sarwar 2014). Ankle gear ratio is an ecometric trait that measures the mechanical efficiency of hindfoot extension as the ratio of the length of the calcaneum to the length between the distal edge of the sustentacular process to the end of the calcaneal tuber (Fig. 1). This ratio is an easy-to-measure proxy of the in-lever for hindfoot extension, which in practice is the distance between the centre of the astragalar trochlea to the insertion of the gastrocnemius and

Fig. 1. — Ankle gear ratio in Carnivoramorpha: **A**, plantarflexion in the carnivoran ankle joint (medial view). Black dot marks the approximate centre of rotation. Distance between dot and insertion of gastrocnemius is the approximate out-lever for plantarflexion. Scans of astragalus and calcaneum from *Puma concolor* (WRAZL 0210086); **B**, calcaneal anatomy and gear ratio (dorsal view); **C**, ecometric distribution of ankle gear ratio (y-axis) for 215 carnivormorphan species in rank order (x-axis). Felid and barbourofelid ratios are highlighted with **black circles** and **stem lines**. **Horizontal broken line**, mean value; **grey band**, 1 standard deviation. Colour coding matches Figure 2.

soleus muscles. Because the sustentacular process supports the base of the neck of the astragalus just below the distal edge of the trochlea, its position relative to the long axis of the calcaneum captures much of the relationship between the upper ankle joint's in-lever and the out-lever of the foot (Polly 2008). Ankle gear ratio is correlated with stance (digitigrade, semidigitigrade, or plantigrade) and metatarsal-to-femur ratio (Polly 2010). It is not strictly the same thing as metatarsal-tofemur ratio or digitigrady, however. Metatarsal-to-femur ratio is an index that captures the gear ratio of hindlimb extension because the in-lever consists of muscle attachment points on the femur and the out-lever is the contact point between foot and substrate and is the classic measure of digitigrady in mammals (e.g., Gambaryan 1974). Metatarsal-to-femur ratio essentially measures stride length relative to the power put into hindlimb extension. Ankle gear ratio is specifically associated with foot extension, with high ratios achieving a greater degree of extension for a given contraction length of the calf muscles (mechanical efficiency) and low ratios achieving greater mechanical efficiency (or "strength") for the same amount of muscle contraction. Extant felids and canids, for example, both have high ankle gear ratios despite their different locomotor repertoires. In felids, hindlimb mechanics are important determinants of performance in leaping (Harris & Steudel 2002).

Despite the trait-environment focus of ecometrics, the association between taxa and traits is not easily untangled. In living carnivorans, ankle gear ratio is strongly sorted by phylogeny, with canids and felids as possessing high ratios as clades and ursids sharing very low ones (Polly 2010; Polly et al. 2017). Consequently, the sorting process of gear ratios appears to act at the clade level rather than the species level because entire familylevel clades are overrepresented in habitats that favour high or low gear ratios (Polly et al. 2017). Felids are overrepresented in forested and topographically heterogeneous environments where ambush behaviors or scansoriality may be more important, whereas canids predominate in comparatively open environments where long-distance travel or pursuit predation may be more common, even though the two clades have similarly high gear ratios. Furthermore, the phylogenetic distribution of high gear ratios, which evolved convergently in crown felids and canids (Polly et al. 2017), and the long-term succession of climates and environments in North America (Graham 1999; Zachos et al. 2001; Figueirido et al. 2012) both suggest that the relationship between trait, clade, community, and environment is likely to have been different in the geological past.

This paper assesses the contribution of cats to hind limb gear ratio diversity in North American carnivoran communities through the Neogene. True cats were relative newcomers to these communities. The first true felid to immigrate to North America was Pseudaelurus, which arrived about 17 Ma during the Hemingfordian NALMA, thus ending the "cat gap" that followed the extinction of the last cat-like nimravid at the end of the Oligocene around 23 Ma (Van Valkenburgh 1991, 1999; Hunt 1996). Furthermore, barbourofelids and machairodontines were key members of Neogene carnivore communities, but had locomotion and lifestyles that were substantially different from living felines (Gonyea 1976b; Anyonge 1996; Van Valkenburgh 1999; Meachen-Samuels & Van Valkenburgh 2010; Meachen-Samuels 2012; Martín-Serra et al. 2017; DeSantis 2018; Lewis 2018). In fact, the extant feline crown group shared a last common ancestor less than 11 million years ago (Johnson et al. 2006). The locomotor diversity of the modern North American carnivore community - and the unique locomotor morphology of its felids - is therefore a geologically recent phenomenon. For the purposes of this paper, "cat" is used in the inclusive sense of all the clades with cat-like morphologies whose absence was used to define the "cat gap" - nimravids, barbourofelids, machairodontines, and felines. I follow Morales et al. (2001), Morlo et al. (2004), and Werdelin et al. (2010) in recognizing barbourofelids as the sibling-clade to Felidae (Felinae plus Machairodontinae) and distinct from nimravids, which are here treated as lying outside the carnivoran crown-group (Flynn et al. 2010; Spaulding & Flynn 2012). However, I use the term felid in a colloquial and broad sense for both Felidae sensu stricto and Barbourofelidae and feline for Felinae. I use carnivoran for members of the crown-clade Carnivora and Carnivoramorpha for the crown plus stem groups following Flynn & Wesley-Hunt (2005).

The question of how the ecometrics of communities has changed over this period involves trait evolution as well as community composition. Janis & Wilhelm (1993) argued that the origin of wolf-like pursuit hunting, and high limb gear ratios, in canids was linked to the expansion of cooler, more arid environments of the Pliocene and Quaternary, and that canids in the earlier warmer, more open habitats of the Miocene had different locomotor ecologies. They argued that pursuit hunting did not co-evolve with increasing limb lengths in their ungulate prey from the Oligocene onward, but that elongation of the distal limbs in canids first occurred later in the Clarendonian about 10 million years ago. The origin of migratory behaviours in ungulates in the colder, drier, and more seasonal habitats of the Pliocene, they argued, made pursuit hunting a viable strategy for canids (Janis & Wilhelm 1993; Figueirido et al. 2015). Today's canids are second only to felids in having high ankle gear ratios. Did felids undergo a similar shift in locomotor behaviour such that they acquired their high ankle gear ratios after the end of the Miocene? Some evidence suggests this could be the case. Proportions of the fore- and hindlimbs differ in felids, and they distinguish later Felinae from Machairodontinae and Barbourofelidae along with other limb features (Anyonge 1996; Lewis 2018). Analysis by Panciroli and colleagues (2016) of calcaneal shape in extant and fossil carnivores, aspects of which are directly related to gear-ratio metrics, found striking differences between the three cat groups, as well as heterogeneity within machairodontines and felines of the sort that would be required for the late Neogene turnover in locomotor specializations.

In this paper, I analyse the phylogenetic evolution of felid ankle gear ratios and how they contributed to turnover in carnivore locomotor diversity in the Neogene of North America. First, I assess whether the ancestral felid had a low or high gear ratio and how they differ as a clade from other carnivoramorphs, present and past. I then assess the extent to which barbourofelids and machairodontines differ from felines in the strict sense. Was the putatively ambulatory locomotion of barbourofelids and many machairodontines characteristic of the felid component of Miocene carnivore locomotor diversity? Where phylogenetically did the high felid gear ratio originate? Are felines derived in having high ratios or are barbourofelines and machairodontines derived in having lower ones? Then I measure how felid ankle gear ratio changed on average through the Neogene and Quaternary in North America. Finally, I assess how the appearance of felids on the Great Plains changed carnivoran locomotor diversity and how hindlimb locomotor traits were reorganized in the (re)assembly of modern North American carnivoran communities. Is the high gear ratio contribution of extant felines to modern North American communities also the role they played in Miocene communities or is that role peculiar to post-Miocene communities like pursuit predation in canids?

MATERIAL AND METHODS

ANKLE GEAR RATIO

A total of 1076 calcanea were measured representing a total of 213 carnivoramorph species, 132 of them extant and the other 81 extinct (see Appendices for raw measurements and specimen metadata). Of the latter, priority was placed on obtaining data for species from the North American Miocene. Data were analysed at the species level, so a mean ratio was calculated for each species. Within species variation is comparatively small compared to the full range of differences between species, but nevertheless there is considerable overlap in the individual ranges of variation between taxa with similar gear ratios. The standard error on the species' means is considered to be negligible for purposes of these analyses, but readers should be aware that small between-species differences in mean gear ratio may be illusory for taxa represented by sample sizes less than five. A full evaluation of within species variation, including geographic patterns, is presented elsewhere (Polly 2010; Polly et al. 2017).

Phylogenetic tree

A composite, time-scaled, species-level phylogenetic tree was assembled from the literature for the 213 species for which I had ankle gear ratios. Relationships of the extant species were extracted from the maximum likelihood tree built by Humphreys & Barraclough (2014) for 285 carnivoran species using cytochrome b sequences. For some family-level clades, the topology agrees surprisingly well with some phylogenies built from more heterogeneous sequence data (e.g., Johnson et al. 2006 for Felidae), but is at odds with others (e.g., Sato et al. 2012 for Mustelidae). Where necessary, genus names were altered to match Wilson & Reeder (2005). Four extant species were inserted into this tree as siblings to their known nearest relatives with an arbitrary but reasonable divergence time of 10 ka (Canis familiaris and C. f. dingo inserted as siblings to C. lupus, Urocyon littoralis to U. cinereoargenteus, and Felis catus to F. sylvestris). The original scaling of this tree, which was based on molecular clock estimates, was retained for most nodes, but some of the deeper nodes were adjusted to match minimum divergence times in the fossil record to be consistent with the fossil clades. The resulting tree of extant Carnivora, with branch lengths, is presented in Newick format in Appendix 4.

Trees of extinct clades were drawn from the following works and grafted onto the extant base tree following the overarching phylogenetic and temporal framework of Polly et al. (2006), Flynn et al. (2010), Spaulding & Flynn (2012): Amphicyonidae (Hunt 1998a, 2002, 2009); Canidae (Wang 1994; Wang et al. 1999; Tedford et al. 2009); Felidae (Werdelin 1981; Morlo et al. 2004; Christiansen & Harris 2009; Werdelin et al. 2010; Christiansen 2013; Robles et al. 2013; Werdelin & Flink 2018); Mustelidae (Berta & Morgan 1985; Baskin 1998; Qiu & Schmidt-Kittler 1982; Wang et al. 2004a, 2005; Finarelli 2008; Sato et al. 2012; Valenciano et al. 2016); Nimravidae (Barrett 2016); Ursidae (Trajano & Ferrarezzi 1995; Hunt 1998b; Loreille et al. 2001; Salesa et al. 2006; Mitchell et al. 2016; Wang et al. 2017). The resulting tree, with branch lengths, is presented in Newick format in Appendix 5. Note that some studies have placed amphicyonids, nimravines, and barbourofelines in different phylogenetic positions than adopted here (e.g., Spaulding & Flynn 2012; Sole et al. 2014); this uncertainty is taken into account when drawing conclusions in this paper, especially with regard to reconstruction of ancestral conditions.

GEOGRAPHIC AND STRATIGRAPHIC OCCURRENCES

The MioMap and FaunMap databases were used as authorities for geographic and stratigraphic occurrences (FaunMap Working Group 1994; Carrasco *et al.* 2005; Graham & Lundelius 2010). Species identifications were also updated from relevant literature for a few key sites that served as sources for calcaneum measurements (Webb 1981; Webb *et al.* 1981; Becker 1985; Baskin 1998; Baskin 2005; Hochstein 2007; Tedford *et al.* 2009). Where necessary, taxonomy of extant species was updated for consistency with Wilson & Reeder (2005). Measurement data was linked to these occurrences based on species identity.

ANALYSES

Trait changes were mapped onto the phylogenetic tree using Brownian-motion based ancestor reconstruction (Maddison 1991; Martins & Hansen 1997; Schluter *et al.* 1997). Note that ancestor reconstructions are the same for all single-rate models of evolution, including Brownian-motion and Ornstein-Uhlenbeck, because they all imply the same proportional change in the trait along each branch. Note also that the model of evolution is less important for ancestor reconstructions if empirical measurements of the trait value from fossil taxa near the time of splitting are available, which is the case for most nodes in this study.

Blomberg's K (kappa) was used to measure how much of a trait's variance can be explained by closeness of phylogenetic relationship (Blomberg *et al.* 2003). K takes on a value of 1.0 when the trait's covariance among taxa is equal to what is expected under Brownian motion and 0.0 when there is no covariance with phylogeny. K can be larger than 1.0 if the phylogenetic pattern is stronger than expected under Brownian motion. The extent to which K departs from 1.0 is a measure of the extent to which the evolutionary process departs from Brownian motion.

To characterize ecometric change in ankle gear ratio, fossil taxa were grouped into communities by region and North American Land Mammal Age (NALMA), from which ecometric means and disparities were calculated. Grouping by region was done to avoid combining species that live allopatrically in radically different habitats so that geographically independent turnovers in traits and environment were not conflated. Grouping by NALMA was done in order to maximize representation of the species that make up the regional fauna. Carnivores are rare and thus have a low probability of being represented at a given site. Furthermore, the number of sites in a given region that belong to the same sub-NALMA temporal interval is usually small. Only when binned by NALMA did the carnivore faunas appear to be representative of the kind of diversity one would expect (e.g., in terms of range of body mass and taxonomic diversity). This means that temporal averaging is present in the analysis. Binning is probably of little consequence for trait-environment relationships in the Miocene and Pliocene because changes in climate, environment, and faunas were comparatively slow and linear. However, in the Quaternary the Irvingtonian and Rancholabrean faunas undoubtedly contain a mixture of glacial and interglacial species that can be expected to increase trait variance (e.g., Bush et al. 2002). Focus was placed on Nebraskan faunas because all NALMA's from Miocene to present are represented there and because calcaneal measurements were available for most of the species on the high planes.

Phylogenetic patterns of community change were measured using median pairwise phylogenetic distances (MPD) between species making up each community. Here community refers simply to taxa that are found in a spatial area and temporal interval of interest, with no assumptions of whether they interacted with one another directly (e.g., Rosenzweig 1985). MPD is the median value of all the pairwise patristic distances between members of the community of interest measured in millions of years (Ma). This metric is similar to the mean pairwise phylogenetic distance measure (Webb 2000; Kraft & Ackerly 2010) except that the median is used because pairwise patristic distances tend to have a skewed distribution driven by pairs of taxa whose last common ancestor is at the root of the tree that tend to make mean values overly similar between communities.

Ecometric diversity of ankle gear ratios within communities is displayed using rank-ordered scree plots that show the trait's mean and standard deviation as well as the differences in trait value between species (Polly 2010). Ecometric disparity within communities was measured as either the standard deviation or the variance of gear ratios among the constituent species (*c.f.* Foote 1997). Standard deviation is an intuitive measure of disparity with units in the same scale as the trait itself. Variance is less intuitive because its units are squared, but the variance of a trait scales linearly with time since common ancestry under a Brownian motion model of evolution (e.g., Felsenstein 1988) and thus has a more intuitive relationship to phylogenetic history than does the standard deviation.

One-way ANOVA was used to test for differences in gear ratio between clades. Tukey's test for honestly significant differences was used for post-hoc pairwise comparisons.

ABBREVIATIONS

Non-institut	ional
KA	(kilo annum), thousands of years ago;
MA	(mega annum), millions of years ago;
NALMA	North American Land Mammal Age;
PGLS	phylogenetic generalized least squares (Martins &
	Hansen 1997).

Institutional

AMNH-FM	American Museum of Natural History, Fossil Mam-
	mal Collection, New York;
AMNH-M	American Museum of Natural History, Mammalogy
	Collection, New York;
CENIEH	Centro National de Investigatión sobre la Evolución
	Humana, Burgos;
DMNH	Denver Museum of Science and Nature, Denver;
FLMNH	Florida Museum of Natural History, Gainesville;
FMNH	Field Museum of Natural History, Chicago;
INSM	Indiana State Museum, Indianapolis;
KU-M	University of Kansas, Mammalogy, Lawrence;
MNCN	Museo Nacional de Ciencias Naturales, Madrid;
MSB	Museum of Southwestern Biology;
MUZA	University of Missouri Zooarchaeology, Columbia;
MVZ	Museum of Vertebrate Zoology, University of Cali-
	fornia, Berkeley;
NCSM	North Carolina State Museum, Raleigh;
NMW	Naturhistorisches Museum Wien, Geologisch-Paläon-
	tologische Abteilung, Vienna;
NRM	Naturhistoriska Riksmuseet, Stockholm;
OMNH-VP	Sam Noble Museum, Paleontology Collection, Nor-
	man;
OMNH-M	Sam Noble Museum, Mammalogy Collection, Nor-
	man;
UCMP	University of California Museum of Paleontology,
	Berkeley;
UMMZ	University of Michigan Museum of Zoology, Ann
	Arbor;
UNIVA	Universidad de Valladolid, Museo Anatómico, Val-
	ladolid;
UNSM	University of Nebraska State Museum of Natural
	History, Lincoln;
USNHM	US Natural History Museum, Smithsonian Institu-
	tion, Washington;

- UTVPL University of Texas Vertebrate Paleontology Lab, Austin:
- WRAZL William R. Adams Zooarchaeology Lab, Indiana University;
- YPM-VZ Yale Peabody Museum, Vertebrate Zoology, New Haven.

RESULTS AND DISCUSSION

ANKLE GEAR RATIO IN CARNIVORAMORPHA

Among extant carnivorans for which calcaneum measurements are available, ankle gear ratio ranged from a low of 1.08 in the sloth bear, Melursus ursinus, to high of 1.46 in the white-tailed mongoose, Ichneumia albicauda (Appendix 6). This sample contains 138 out of the 251 non-pinniped species recognized by Wilson & Reeder (2005). The unmeasured species are unlikely to extend the lower end of this range, but it is feasible that some of the unmeasured felids or herpestids have marginally higher gear ratios than I. albicauda. Extant felids are dominantly at the high end of this range (Fig. 1C). Based on ANOVA, the extant subfamily Felinae had significantly higher gear ratios than all other extant carnivoran groups (Appendix 7). Six of the 10 highest ratios are possessed by felids, with the other four being herpestids and canids. Only four extant felids have gear ratios below the carnivoramorph mean (1.25): Felis margarita (1.21), Panthera tigris (1.21), Panthera pardus (1.21), and Panthera leo (1.19). F. margarita, the sand cat, is a small burrow-dwelling species that inhabits desert environments in northern Africa, the Arabian Peninsula, and Central Asia, often ones that are nearly devoid of vegetation, and hunts its gerbil prey by digging into their burrows (Jackson & Nowell 1996; Huang et al. 2002). The other three species all have comparatively large body size that requires a greater compromise in hind limb structure between springing and weight bearing (Gonyea 1976a). The African lion, Panthera leo, which has the lowest gear ratio of any felid, is also one of the few highly social feline cooperative hunters and is also perhaps the only extant cat species with proportionally shorter distal limb elements in the hind limb than fore limb (Gonyea 1976a).

Gear ratios of extinct carnivoramorphs fall within the range of extant species (Appendix 6). The lowest is found in the short-faced bear Arctodus simus at 1.08, equal to the lowest extant gear ratio. But the highest is 1.36 in Lynx issiodorensis, the putative ancestor of the extant Lynx clade (Werdelin 1981), much lower than the highest extant species. In fact, 17 of 133 extant species (12.8%) have gear ratios equal or greater than the highest gear ratio in extinct carnivorans. This fossil sample only contains 99 extinct species, which represents an unknown but probably small proportion of extinct carnivoramorphs dominated by Miocene taxa from North America. Nevertheless, the sample contains members of most family-level clades, including two members of the carnivoramorphs stem group (Miacis parvivorus and Vulpavus *palustris*), and is probably broadly representative of the range of gear ratios. Most fossil felids are included, including key Eurasian species, so it is unlikely that other extinct cats would

FIG. 2. — The evolution of calcaneal gear ratio in Carnivoromorpha. Gear ratio is mapped onto a time-scaled phylogenetic tree with 214 tip taxa using PGLS. The value at the root node (1.19) is represented by yellow; values less than the ancestor are scaled in a yellow to blue colour spectrum, values higher than the ancestor in a yellow to red spectrum. A large-scale version of this tree with tip species labels can be found in the supplemental files (Appendix 1).

have higher gear ratios than *L. issiodorensis*. Note, however, that this sample does not include extinct herpestids, which would be the prime candidates for having higher gear ratios than *L. issiodorensis*.

Despite having systematically lower gear ratios than extant carnivorans, eight out of 10 of the highest gear ratios in extinct carnivoramorphs are felids (Appendix 6). The two extinct non-felid species in the top 10 are the cursorial Eucyon davisi, a member of the canine crown group (Tedford et al. 2009), and the amphicyonid Cynelos caroniavorus. That Eucyon has a high gear ratio is unsurprising because it is part of the origin of cursorial, potentially pursuit-hunting specializations in crowngroup Canini (Janis & Wilhelm 1993; Wang et al. 2004b). But the high gear ratio of Cynelos (1.32) is unexpected. Its congener C. lemanensis, like most amphicyonines, has generally been interpreted as having ursid-like, and presumably plantigrade, postcranial specializations (Ginsburg 1977). However, its ankle gear ratio is higher than all other amphicyonids (Appendices 1, 6), including those like Daphoenodon that have been interpreted as digitigrade cursorial, den-dwelling scavengers (Hunt et al. 1983; Hunt 2003, 2009). The high ankle gear ratio in Cynelos suggests the need for reinvestigation of its locomotor morphology. Based on morphometrics it was previously concluded that the shape of the calcaneum of C. lemanensis was like those of digitigrade, terrestrial species (Polly & MacLeod 2008) and that C. sinapius was like arboreal ones (Panciroli et al. 2017). However, Ginsberg's data show that C. lemanensis had a small metatarsal/femur ratio (0.23) more like a plantigrade bear such Ursus arctos (0.22) than a digitigrade cursor like Lynx rufus (0.46) or Canis lupus (0.44) (Janis & Wilhelm 1993). Presuming that C. lemanensis and C. caroniavorus were similar, the combination of high gear ratio and low metatarsal/femur ratio would be unusual for carnivorans, outside the range found in living species but most similar to the honey badger (Mellivora capensis), hog-nosed skunk (Conepatus chinga), and coatimundi (Nasua nasua) (Appendix 2; Polly 2010). Regardless of the unexpected state of Cynelos, felids dominate the high end of the range of ankle gear ratios in extinct carnivoramorphs as they do today, but their ratios are substantially lower than most living felids.

Ankle gear ratio evolution in felids

Based on node reconstructions, the ancestral felid (last common ancestor of Felidae and Barbourofelidae) had a comparatively high ankle gear ratio of 1.25 (Fig. 2). This value is the same as the extant coyote (*Canis latrans*) or Pallas's cat (*Otocolobus manul*) and ranks higher than 45% of living carnivorans, although it is somewhat lower than the mean value of 1.33 in extant felids (Appendix 6). Ancestor reconstructions should be treated with some caution since they assume that the phylogeny is known correctly and that the trait in question has evolved under a Brownian motion model of evolution, which means that the reconstruction will always lie within the range of its descendant tips and may have a large standard error due to the inherent variability of Brownian motion processes (Felsenstein 1985; Garland & Ives 2000; Polly 2001). However, much of this uncertainty is alleviated when the nodes are estimated from data that include fossil taxa near the nodes, which have substantially shorter branch lengths and thus pull the estimate close to taxa that lie close to the ancestry of the clade in question (Finarelli & Flynn 2006; Slater *et al.* 2012; Gómez-Robles *et al.* 2013). The estimates of ankle gear ratio presented here include data fossil species both inside and outside the felid clade and the standard error of the estimate of the ancestral felid gear ratio is ± 0.13 (Appendix 10).

The ancestral felid already had an ankle gear ratio that was associated with a semidigitigrade or digitigrade stance and capable of scansorial or springing behaviours, even though it was not as derived as many extant felids. The ancestor's gear ratio (1.25) was considerably higher than the ancestral carnivoramorphan value of 1.19, the latter of which is equal to the spectacled bear (Tremarctos ornatus), which is the only extant short-faced bear, the badger (Meles meles), and the African lion (Panthera leo). This reconstruction is strongly influenced by the stem taxon Vulpavus palustris. Vulpavus *palustris* was a small to medium sized (3.5 kg) animal that was if anything more arboreal, perhaps like a coatimundi (Nasua nasua) (Heinrich & Rose 1997). The last common ancestor of crown-group Carnivora had a somewhat higher gear ratio (1.22) that was equal to the extant striped skunk (Mephitis mephitis) and the Ringtail (Bassariscus astutus) (Appendix 6). The ancestral felid condition appears to be derived relative to the ancestral carnivorans, but in practice it is almost identical to the stem carnivoramorphan Miacis parvivorus. M. parvivorus, a small (1.2 kg) Bridgerian carnivoramorph, has an intermediate gear ratio (1.25) equal to the extant gray fox (Urocyon cinereoargenteus), aardwolf (Proteles cristata), or American marten (Martes americana) and has been interpreted as being scansorial or arboreal (Matthew 1909; Heinrich & Rose 1995).

Contrary to some accounts of a transition from plantigrade to digitigrade in felid evolution, low gear ratios are independently derived conditions found in both Barbourofelidae and Machairodontinae (Figs 2, 3; Appendix 6). Barbourofelids have an average gear ratio of only 1.18, lower than even the ancestral carnivoramorphan, much less their last common ancestor with felids sensu stricto. Barbourofelids also had considerably lower gear ratios than nimravids, the two of which were long presumed to have an ancestor-descendant relationship. Barbourofelid gear ratios are significantly lower than in any extant felid (see ANOVA post-hoc test results in Appendix 7). Machairodontines have a quite high ancestral gear ratio (1.30) equivalent to the extant fennec (Vulpes zerda) or Indian civet (Viverra zibetha), both of which are markedly digitigrade. Some machairodontines, notably Machairodus alberdiae evolved even higher gear ratios (1.35) equivalent to spotted hyenas (Crocuta crocuta) but others evolved lower gear ratios, the most extreme in Smilodon gracilis (1.20), which approached the low values seen in barbourofelids. ANOVA post-hoc tests indicate that machairodontines, like barbourofelids, have lower gear ratios than extant felines, but the two groups are not significantly different from one another. Barbourofelids and at least some machairodontines

Fig. 3. – Ecometric comparison of ankle gear ratio in four felid subgroups: **A**, extant and extinct crown-group Felinae; **B**, stem felids that are considered to be more closely related to the crown group than to machairodontines (sensu Werdelin et al. 2010); **C**, Machairodontinae; **D**, Barbourofelidae and Nimravidae. Colour coding matches Figure 2.

have shorter hind limbs than fore limbs with proportionally short distal elements (Anyonge 1996; Lewis & Lague 2010). The Miocene taxa most closely related to crown-group felids had similar gear ratios to the ancestral machairodontines, but with a considerable range of variation. Several, such as *Nimravides galiani* and *Pseudaelurus quadridentatus* had gear ratios of 1.34-1.35, but others such as *Pseudaelurus stouti* had bear-like ratios of 1.15. Crown group felids evolved in the opposite trajectory. Starting from an ancestor with a gear ratio of 1.32, more than half of those sampled achieved a ratio greater than or equal to 1.35, with the highest, up to 1.44, in the jungle cat (*Felis chaus*).

The functional differences between these groups can be seen in features of their calcanea (Fig. 4). *Pardofelis marmorata*, a small, highly scansorial extant cat, is typical of Felinae with mid-range ankle gear ratios. The sustentacular process is proximally positioned, the sustentacular facet is oriented distally rather than dorsally (a feature associated with distribution of weight onto the digitigrade foot), the peroneal process is robust (and somewhat atypically elongate in this species), and the astragalo-calcaneal facet is smoothly curved with a long proximal extension along the calcaneum body. The stem felid Nimravides galiani shares most of those features, despite its much larger body size, except that neither the peroneal process nor the astragalo-calcaneal facet are as elongated. The calcanea of Smilodon gracilis and Barbourofelis loveorum stand in stark contrast to these felids and to one another. Both Smilodon and Barbourofelis have sustentacular processes that are positioned more distally (giving them their smaller gear ratios) and sustentacular facets that are oriented more dorsally than distally. This latter feature suggests these two taxa were less digitigrade than the other two felids. Smilodon differs from both the first two felines and Barbourofelis in having a strongly convex astragalo-calcaneal facet with what could almost be considered a ridge running transversely between the distal and proximal portions. This feature is similar to canids and is associated with an astragalus that is tightly locked into a single position. In canids it provides a stable ankle joint associated with cursoriality, but the locking in Smilodon was likely associated with other functions since these animals have no cursorial features. The calcaneal process of Smilodon is proportionally thicker than the other three species, sug-

Fig. 4. — Calcanea (dorsal view) representing four major felid clades: **A**, crown-group Felinae, *Pardofelis marmorata* (AMNH-FM 35399); **B**, stem-group Felinae, *Nimravides galiani* (UF 25171); **C**, Machairodontinae, *Smilodon gracilis* (AMNH-FM 95534); **D**, Barbourofelidae, *Barbourofelis loveorum* (UF 25189). Scale bars: 10 mm.

gesting that more force was transmitted by the extensors of the ankle. The calcaneum of *Barbourofelis* has several unique features, most notable of which is the extension of the sustentacular facet all the way to the distal end of the calcaneum to the margin of the cuboid facet. The distal portion of the astragalo-calcaneal facet is also extended toward the distal end of the calcaneum literally parallel to the sustentacular facet. The proportions of the proximal and distal portions of the astragalo-calcaneal facet are nearly opposite of *P. marmorata*. The elongate parallel facets suggest that the astragalus could slide along them. *Barbourofelis* also has an elongate peroneal process. Exactly what *Barbourofelis* did with its hind foot cannot be determined from these features alone, but it was very different from the movements that the other three taxa would have made.

Anyonge (1996) concluded that *Barbourofelis morrisi* and *Smilodon fatalis* had ursid-like ambulatory locomotor proportions (a finding consistent with their low ankle gear ratios), that *Nimravides galiani and Panthera atrox* had ambush predator proportions (consistent with their medium to high gear ratios), and that *Machairodus coloradensis* and *Homotherium serum* were cursorial (the former is consistent with gear ratios, but the latter is highly inconsistent, perhaps in keeping with the low p-values that Anyonge reported for the latter classification based on his discriminant function analysis).

ECOMETRIC TURNOVER IN ANKLE GEAR RATIO IN THE NEOGENE OF NORTH AMERICA *Trait turnover in felids*

Felids arrived in North America in the early Miocene around 18 Ma during the mid Hemingfordian, ending the "cat gap" that began with the extinction of the nimravids at the end of the Oligocene (Hunt 1996; Qiu 2003). North American felid diversity changed through the remainder of the Cenozoic via a combination of in situ evolution and new immigration events, which are summarized in Figure 5 based on first and last appearances recorded in the FaunMap and MioMap databases (FaunMap Working Group 1994; Carrasco *et al.* 2005). The approximate times of key immigration events are shown with horizontal arrows (based on summaries by Tedford *et al.* 1987; Hunt 1996; Qiu 2003) and standing species diversity is shown as a grey silhouette graph.

The history of ankle gear ratio in North American carnivorans started with a mean value of 1.23, approximately the same as the ancestral value of felids, and increased to 1.25 by the Clarendonian (c. 11 Ma) with the diversification of Pseudaelurus and Nimravides (Fig. 5). There was considerable variation among species, however, with P. stouti having a gear ratio of 1.15, slightly lower than the extant African lion (1.19), and P. intrepidus having a gear ratio of 1.33 like extant jaguarundis (Puma yagouarundi) and margays (Leopardus wiedii) and only slightly lower than the cheetah (Acinonyx jubatus; 1.35) (Appendix 6). Even though gear ratios in this mid Miocene cat assemblage overlapped with modern felids, the range of locomotor performance was much different than modern communities. The mean gear ratio in extant North American felids is 1.35 and the lowest mean for any extant North American carnivoran community as a whole, not just felids, is only slightly lower at 1.19 (Polly 2010; Polly & Head 2015). This suggests that while these early felid communities were probably composed of digitigrade animals, they were not, on whole, specialized for leaping or sprinting like today. Janis & Wilhelm (1993) suggested that Miocene ungulates may have evolved digitigrady for efficiency in long distance locomotion rather than for outpacing fast prey. The mid-level gear ratios of the earlier Miocene felid community may have been associated with similar long-distance movements, something that is compatible with the comparatively large body size of Pseudaelurus and Nimravides species.

Average gear ratio had declined somewhat by the Hemphillian (*c*. 7 Ma) due to the immigration and subsequent diversification of barbourofelids and the loss of diversity among pseudailu-

Fig. 5. — Changes in North American felid diversity and ankle gear ratio over the last 24 million years. Stratigraphic ranges of species are based on first and last appearances in the MioMap and FaunMap databases and standing diversity is recorded from them. Approximate ages of immigration events are indicated with horizontal arrows. Cenozoic climate is represented by the δ180 curve from Zachos *et al.* (2001). Mean and range of ankle gear ratio in felids is shown at the right (calcaneum measurements from taxa in grey were not available).

rines and *Nimravides* (Fig. 5). North American felid diversity as a whole was low in the early Hemphillian, dominated by barbourofelids, and increased again in the late Hemphillian with the immigration of machairodontines and strict-sense felids. Whatever kind of locomotor and prey capture strategy barbourofelids may have had, it was unlikely to be long distance travel, as discussed above. They had the lowest of felid gear ratios, which indicate foot extension performance that emphasized strength over speed.

Turnover in felid locomotor traits accelerated in the Blancan (Pliocene and earliest Pleistocene) and Irvingtonian after the last of the barbourofelids became extinct and there was a wave of immigration by crown-felid lineages, including *Felis*, *Puma*, and *Panthera* (Fig. 5). By the Rancholabrean (late Pleistocene) mean ankle gear ratio had increased to 1.31 in felids. The loss of barbourofelids narrowed the range of variation in gear ratio. With the end-Pleistocene extinction of the machairodontines, which have lower gear ratios than felines, the average gear ratio in North American felids jumped even higher to its current value of 1.35.

The turnover in felid clades and gear ratios may have been facilitated by trait-based habitat filtering. Grasslands, especially tall grass habitats became increasingly widespread in North America during the Hemphillian, replacing earlier non-analogue woodlands in regions like the Great Plains (Janis et al. 2002, 2004; Fox & Koch 2003; Edwards et al. 2010). Tectonic processes also accelerated changes in the topography of the western half of the continent through this time. Extension of the Great Basin accelerated between 10 and 3 Ma (Surpless et al. 2002; Horton et al. 2004), increasing relief of the Pacific coastal ranges had a more pronounced effect on environmental diversity by 7 Ma (Wolfe et al. 1997; Kohn et al. 2002; Retallack 2004), tundra and alpine biomes became established at high latitudes and high elevations around the same time (Graham 1999, 2011), and aridity and seasonality increased at low elevations across much of the west (Retallack et al. 2002). By the late Pliocene grasslands were partially on the wane, replaced by expanding deciduous and boreal forests and true deserts (Graham 1999, 2011). These transitions impacted mammalian species diversity (Davis 2005; Finarelli & Badgley 2010; Badgley et al. 2017). The turnover between barbourofelid-dominated felid communities to ones dominated by machairodontines and felids sensu stricto may have been favoured by the addition of these new biome types and the habitat fragmentation caused by increasing topographic relief in the west. While felids are present in nearly all North American habitats, they are a significantly larger component of the carnivoran community than expected by chance in the rugged areas of western Mexico and in the Central American tropics (Polly et al. 2017). Some biomes that support several felid species, such as desert scrub, basin and range, and boreal forest increased their areal extent from the mid Miocene to present. Was this because high gear ratio leaping, sprinting, and ambush hunting are favoured in the open grasslands, closed forests, and rugged terrains of the Late Miocene and Quaternary? This question is arguably too complex to test directly in the fossil record, but the pattern of trait turnover is compatible with such an interpretation.

Ecometric trait turnover in carnivoran communities

How did the ecometric turnover in gear ratio within the felid clade change the locomotor diversity of North American carnivoran communities as a whole? To address this question, it is necessary to filter out the cross-continent habitat variation that was ignored in the previous discussion by focusing on change in communities and traits in a single region that it environmentally similar at any given time. Because of its comparatively rich late Cenozoic fossil record, I looked at the fossil record of the Great Plains of Nebraska.

Figure 6 shows the diversity of ankle gear ratios in Great Plains carnivoran communities from the Arikareean (c. 21 Ma) to the present. In the Arikareean, prior to the "cat gap" ankle gear ratio diversity was low with a standard deviation that was half what it is today. Interestingly, Nimravus brachyops, a cat avatar of sorts, had the highest ratio, analogous with true cats later in the Miocene. Borophagine and hesperocyonine canids otherwise possess the highest gear ratios, analogous to their crown-group canine cousins later in the Cenozoic. None of these taxa, nimravid or canid, had gear ratios as high as canids or felids in the Quaternary. Hind limb diversity remained low in the Hemingfordian, despite the arrival of the first felid Pseudaelurus validus, which had an ankle gear ratio very similar to the borophagine canids in its community. Trait disparity increased considerably in the later Miocene NALMAs. Remarkably, the high and low Barstovian gear ratios were both possessed by felids (Pseudaelurus intrepidus and P. stouti respectively). The high end of the gear ratio spectrum continued to be co-occupied by borophagine canids, but the low end was increasingly disparate with amphicyonids, hemicyonine bears, and, in the Clarendonian, barbourofelids and leptarctid mustelids, followed by the addition of true ursids in the Hemphillian. Even though the ecometric disparity of gear ratios was markedly higher in the Hemphillian than in the Arikareen, the average gear ratio did not change much. Through most of the later Miocene, felids possessed the highest gear ratios, but they were surpassed in the Hemphillian by the crown-group canine *Eucyon*, despite the felids having earlier overtaken the borophagine canids. Canids and felids continue to vie for the highest gear ratios in Carnivora (Figs 1; 2). In the early Plio-Pleistocene gear ratio diversity dropped substantially, as did species diversity, even as phylogenetic diversity appeared to increase with the entry of procyonids and mephitids in the Blancan. Smilodon fatalis and Ischyrosmilus ischyrus were the only felids on the Nebraska Great Plains in the Blancan, the latter of which has no available calcaneum measurements. Smilodon is in the middle of the range of Blancan gear ratio values and Ischyrosmilus was also likely to have had a middling ratio given its putatively close relationship to Homotherium serum (Churcher 1984; Martin et al. 1988).

As members of top trophic levels, carnivores are rare in biological communities and even rarer in fossil assemblages. No one fossil site is likely to record all the carnivorans that were present so I binned sites by North American Land Mammal age (NALMA) because only at that level of amalgamation did species-level diversity seem to be reasonably represented. This

Fig. 6. – Ecometric plots of ankle gear ratio in carnivoran assemblages from the Arikareean (latest Oligocene and earliest Miocene) through the present. The mean and standard deviation of each assemblage is indicated by the broken line and grey bands respectively. Family-level classification of each species can be found in Appendix 6.

binning inevitably causes some temporal mixing to taxa that did not overlap in time, but NALMAs are nevertheless short enough that the amount of mixing is unlikely to distort the basic pattern of faunal turnover presented here. Perhaps of greater concern for considering the distribution of traits in a community is incomplete sampling of its constituent species. Even with binning sites by region and NALMA, some taxa are not represented in this sample because postcrania are unavailable. The interpretations drawn here assume that sampling is random with respect to ankle gear ratio. This assumption is likely to be reasonable because the factor that is most frequently biased in the fossil record – body size – is uncorrelated with ankle gear ratio (Appendix 3; Polly 2010), which is consistent with lack of correlation between limb posture and joint angles with respect to body size in felids (Day & Jayne 2007) and the pattern of body-mass scaling in other felid calcaneal traits (Gálvez-López & Casinos 2012). Nevertheless, one should be suspicious of the Hemingford-

Fig. 7. – Relationship between phylogenetic diversity (median pairwise patristic distance in Ma) and ecometric trait disparity (variance of ankle gear ratio) in the Nebraskan Great Plains carnivoran communities from Figure 6.

ian and Blancan samples reported here, both of which have notably fewer species than other intervals. In the Blancan, machairodonts (now represented by Smilodon, Ischyrosmilus, Homotherium, and Dinofelis) were joined on the Great Plains by the true feline Felis lacustris, for which measurements are also unavailable. Based on its congeners, F. lacustris is likely to have been on the high end of gear ratio diversity in the Irvingtonian. Werdelin (1985) said that its postcranial proportions may have approached those of *Lynx issiodorensis*, which has a gear ratio of 1.36, much higher than any of the other Irvingtonian taxa in this sample. By the Late Pleistocene (Rancholabrean), several large cats with markedly higher gear ratios had invaded the Great Plains, as had true bears at the low end, restoring gear ratio diversity to what it had been in the Hemphillian at the close of the Miocene and bringing it to its modern configuration.

Phylogenetic components of trait turnover

Even though each sub-clade of felids had some diversity in ankle gear ratio, the overall pattern of trait turnover in felids and in Great Plains communities involved turnover in subclades. This pattern of correlated change in trait composition and phylogenetic diversity suggests that trait-based clade sorting may have been an important process in the assembly of modern carnivoran communities (Polly *et al.* 2017). What is clade sorting? *Species sorting* in community ecology refers to the effects of environmental filters that permit a subset of species to aggregate into a community based on performance of functional traits (Poff 1997; McGill *et al.* 2006; Webb *et al.* 2010). Clade sorting is essentially the same process but one in which species that share traits due to recent common ancestry are sorted together by the filtering process (Stanley 1975; Jablonski 2008; Polly *et al.* 2017). One way of detecting clade sorting is to monitor change in trait disparity as a function of phylogenetic diversity (Webb 2000; Kraft *et al.* 2007; Kraft & Ackerly 2010).

While phylogenetic community assembly processes have usually been studied between spatially disparate but contemporaneous communities, the same principles can be applied to a temporal series of communities in the same location. Phylogenetic disparity is measured as the median value of the pairwise patristic distances (the sum of branch lengths connecting each pair of taxa) scaled in millions of years. Two contemporaneous taxa with a last common ancestor 40 million years ago would have a patristic distance of 80 Ma. If a clade evolves by random processes (e.g., a constant birth Yule process), we would expect median patristic distance to increase as a linear function of the time elapsed since the last common ancestor of the clade (Yule 1924; Raup 1985). Selective extinction of subclades, immigration events, or other factors could cause departures from this expectation. Trait disparity is measured as the variance of ankle gear ratio in each assemblage. Under a Brownian motion model of evolution, variance in trait values among tips is expected to increase linearly as time since common ancestry increases (e.g., Felsenstein 1985, 1988). Thus, random cladogenesis and trait evolution should produce a linear relationship between phylogenetic diversity and trait disparity.

Figure 7 shows the relationship between trait disparity and phylogenetic disparity in carnivoran communities of the Great Plains of Nebraska from the Arikareean to present. From the Arikareen through Hemphillian phylogenetic diversity increases in fairly regular steps of about 6 Ma per NALMA, which is approximately equal to the time elapsed from one NALMA to the next (compare with Fig. 5). Trait variance also increases fairly regularly through that period, albeit in

a bursty pattern that puts most of the increase in the Hemingfordian to Barstovian and Clarendonian to Hemphillian intervals. Overall the Miocene trend meets the expectations for stochastically constant divergence in both traits and phylogenetic distance, despite immigration events. No major subclades became extinct during this interval except hesperocyonine canids, oligobunine mustelids, and daphoenine amphicyonids (see Fig. 2). Drastic change occurred between the Hemphillian and Blancan, however, coinciding with the start of the climatic downturn that culminated in Quaternary glacial-interglacial cycles. Median phylogenetic distance increased by almost twice as much as between previous intervals, despite the actual time elapsed being roughly the same. The increase in phylogenetic distance was driven by the culling of clades like the amphicyonids, hemicyonines, barbourofelids, and especially borophagines that contributed many shorter pairwise distances, leaving behind species from clades with deep phylogenetic ancestries. The phylogenetic diversity has remained almost constant from the Blancan to the present. At the same time trait disparity plummeted in the Blancan to a value lower than the Arikareean. The Blancan Great Plains carnivore community thus consisted of a phylogenetically diverse set of species with unusually homogeneous ankle gear ratios. The Great Plains appear to have been significantly colder, moister, and more completely covered in open C4 grasslands in the latest Hemphillian and Blancan than they were before and the geographic ranges of large herbivore species increased (Passey et al. 2002; Maguire & Stigall 2009). The reduction in locomotor disparity in the Blancan could have been a consequence of changed, more homogeneous habitats with prey species that had less patchy distribution. One must be somewhat cautious with this interpretation because the Blancan sample is so small. The Great Plains were also home to the last of the borophagines, Borophagus hilli, four extinct mustelids (Buisnictis burrowsi, Sahatherium piscinarium, Trigonictis cooki, and T. macrodon), and the machairodontine Ischyrosmilus ischyrus for which calcaneum measurements are unavailable. Based on their closest relatives, these taxa were unlikely to have ankle gear ratios that were substantially different from the ones sampled here, but nevertheless they may have increased Blancan disparity. The quick recovery of disparity in the Irvingtonian and Rancholabrean has been discussed above.

The linear increase in phylogenetic diversity and trait disparity in the Miocene seems to be driven by the stepwise addition of clades to the Great Plains carnivore fauna and the absence of any major clade extinctions. Borophagines, felines, hemicyonines, barbourofelids, ursines, and canines appear sequentially through this period, each with a characteristically different ankle gear ratio. The drop in both metrics in the Blancan appears to be from the selective loss of clades with low gear ratios, notably the barbourfelines, ursines, and borophagines, consistent with the hypothesis of clade sorting. Gear-ratio based clade sorting has already been demonstrated in assembly of modern North American communities based on analyses of extant carnivorans (Polly *et al.* 2017). The pool of extant North American carnivorans has a somewhat stronger phylogenetic pattern to gear ratio (Blomberg's K = 0.58; Polly *et al.* 2017) than do carnivorans as a whole (K = 0.29 for the global extant taxa and K = 0.33 for the combined extinct and extant taxa in Fig. 2) largely because the extant North American carnivorans consist of only a few families (Felidae, Canidae, Ursidae, Mephitidae, Mustlidae, and Procyonidae) each represented by only a few species and each separated from the other by very deep ancestry. The data presented here suggest that pattern originated by sorting at the end of the Miocene that resulted in the selective extinction or extirpation of clades with low ankle gear ratios. This reorganization of North American carnivoran communities appears to parallel reorganizations in South America and Africa (Werdelin & Lewis 2005; Morales & Giannini 2010, 2013).

CONCLUSIONS

Extant felids have some of the highest ankle gear ratios of any carnivorans, with only a few canids and herpestids rivalling them. High ankle gear ratios provide high mechanical advantage ("speed") but low mechanical efficiency ("strength") for plantar flexion of the hind foot. While high advantage for this action can facilitate many locomotor actions, including running, in cats it is most closely associated with springing and sprinting, actions that are important for ambush hunting tactics and scansorial habits.

However, the high gear ratios of extant felids are a Quaternary phenomenon. Ancestral felids had gear ratios more like foxes, viverrids, or semidigitigrade mustelids. And many Miocene felids, especially barbourofelids and some machairodontines, had substantially lower gear ratios that offered high efficiency but low advantage, more like those found in extant bears, otters, or weasels. These felids are unlikely to have been leapers like their modern relatives, although some, like the pseudaelurines, could have been long distance cursors.

The appearance of felids in North America following the "cat gap" did not at first increase the ecometric disparity of ankle gear ratios, but as they diversified they came to occupy both high and low gear ratio niches by the Barstovian and Clarendonian. The extinction of low gear ratio clades at the end of the Miocene resulted in a correlated phylogenetic and trait turnover that left crown-clade felines and canines, occupying new high gear ratio niches, considerably higher than any in the Miocene. The canines typically utilize their high mechanical advantage for pursuit or pounce style hunting (Janis & Wilhelm 1993), whereas felines tend to utilize it for jumping while negotiating rugged territory (e.g., forest vegetation or high-relief topography) or ambushing prey. These results suggest that, like with the pre-Quaternary absence of pursuit predation in canids (Janis & Wilhelm 1993), pre-Quaternary felids may have had markedly different locomotor and hunting repertoires than do extant cats. The differences in barbourofelids and machairodontines in this respect have long been evident, but even taxa that are most closely related to crown-clade felids had substantially lower gear ratios in the Miocene.

The immigration of cats into North America changed the disparity of gear ratios in carnivoran communities, but did not have a pronounced effect on the mean. The first taxa after the "cat gap" occupied both high (*Nimravides*) and low (*Barbourofelis*) gear ratio niches. In the later Miocene the highest gear ratio niches were taken by borophagine canids and the lowest by ursids after barbourofelids became extinct. Only in the Quaternary did crown group felids come to dominate the high gear ratio niches of North American carnivoran communities, increasing their ecometric means and adding to their overall disparity.

Acknowledgements

This paper is dedicated to the memory of Stephane Peigné, who contributed to the study of all fossil carnivorans, but especially to our knowledge about the origins of felids. I would very much like to have written this paper with him. Thanks to Lars Werdelin and Louis de Bonis for inviting me to join the volume. Lars Werdelin, Carlo Meloro, and Julie Meachen provided constructive reviews that improved the manuscript, and Louis de Bonis and Emmanuel Côtez improved it with their editorial suggestions. Also thanks to Fred Szalay and Eric Sargis who inspired my investigation of evolution of carnivore ankle structures. Liam Revell discussed the effects of very shallow nodes on Blomberg's K and Pagel's lambda, John Flynn gave me advice about bears, Danny Rhoda helped assemble phylogenies, Allison Bormet, Blaire Hensley-Marschand, and Spencer Hellert helped collect measurements, and Jason Head shared ideas, cultivated enthusiasm about the Miocene, and co-PIed one of the grants that supported this research. Curators and collection managers at the institutions listed in the abbreviation section above all generously provided their support for data collection. This work was supported by grants from the US National Science Foundation (EAR-1338298 and EAR-0843935) and by an Edward P. Bass Distinguished Visiting Environmental Scholarship from the Yale Institute for Biospheric Studies.

REFERENCES

- ANDERSSON K. & WERDELIN L. 2003. The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. *Proceedings of the Royal Society of London, B (Suppl.)* 270: S163-S165. https://doi.org/10.1098/rsbl.2003.0070
- ANYONGE W. 1996. Locomotor behaviour in Plio-Pleistocene sabre-tooth cats: a biomechanical analysis. *Journal of Zoology* 238: 395-413. https://doi.org/10.1111/j.1469-7998.1996.tb05402.x
- BADGLEY C., SMILEY T. M., TERRY K., DAVIS E. B., DESANTIS L. R. G., FOX D. L., HOPKINS S. B., JEZKOVA T., MATOCQ M. D., MATZKE N., MCGUIRE J. L., MULCH A., RIDDLE B. R., ROTH V. L., SAMUELS J. X., STRÖMBERG C. A. E. & YANITES B. J. 2017. — Biodiversity and topographic complexity: modern and geohistorical perspectives. *Trends in Ecology and Evolution* 32: 211-226. https://doi.org/10.1016/j.tree.2016.12.010
- BARRETT P. Z. 2016. Taxonomic and systematic revisions to the North American Nimravidae (Mammalia, Carnivora). *PeerJ* 4: e1658. https://doi.org/10.7717/peerj.1658

- BASKIN J. A. 1982. Tertiary Procyoninae (Mammalia: Carnivora) of North America. *Journal of Vertebrate Paleontology* 2: 71-93. https://doi.org/10.1080/02724634.1982.10011919
- BASKIN J. A. 1998. Mustelidae, in JANIS C. M., SCOTT K. M. & JACOBS L. L. (eds), Evolution of Tertiary Mammals in North America, Volume 1 Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambdrige: 152-173.
- BASKIN J. A. 2005. Carnivora from the Late Miocene Love Bone Bed of Florida. Bulletin of the Florida Museum of Natural History 45: 413-434.
- BECKER J. J. 1985. Fossil herons (Aves, Ardeidae) of the Late Miocene and Early Pliocene of Florida. *Journal of Vertebrate Paleontology* 5: 24-31. https://doi.org/10.1080/02724634.19 85.10011844
- BERTA A. & MORGAN G. S. 1985. A new sea otter (Carnivora, Mustelidae) from the Late Miocene and Early Pliocene (Hemphillian) of North America. *Journal of Paleontology* 59: 809-819. https://www.jstor.org/stable/1304931
- BLOMBERG S. P., GARLAND T. & IVES A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717-745. https://doi. org/10.1111/j.0014-3820.2003.tb00285.x
- BOSZCZYK B. M., BOSZCZYK A. A. & PUTZ R. 2001. Comparative and functional anatomy of the mammalian spine. *Anatomical Record* 264: 157-168. https://doi.org/10.1002/ar.1156
- BUSH A. M., POWELL M. G., ARNOLD W. S., BERT T. M. & DALEY
 G. M. 2002. Time averaging, evolution, and morphological variation. *Paleobiology* 28: 9-25. http://doi.org/fgnwp5
 CARRASCO M. A., KRAATZ B. P., DAVIS E. B. & BARNOSKY A. D.
- CARRASCO M. A., KRAATZ B. P., DAVIS E. B. & BARNOSKY A. D. 2005. — Miocene Mammal Mapping Project (MIOMAP). University of California Museum of Paleontology. http://www. ucmp.berkeley.edu/miomap/
- CHRISTIANSEN P. 2013. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). *Cladistics* 29: 543-559. https://doi.org/10.1111/cla.12008
- CHRISTIANSEN P. & HARRIS J. M. 2009. Craniomandibular morphology and phylogenetic affinities of *Panthera atrox*: implications for the evolution and paleobiology of the lion lineage. *Journal of Vertebrate Paleontology* 29: 934-945. https://doi. org/10.1671/039.029.0314
- CHURCHER C. S. 1984. The status of *Smilodontopis* (Brown, 1908) and *Ischyrosmilus* (Merriam, 1918). *Contributions in Life Sciences from the Royal Ontario Museum* 140: 1-59. https://doi.org/10.5962/bhl.title.52222
- DAY L. M. & JAYNE B. C. 2007. Interspecific scaling of morphology and posture of the limbs during the locomotion of cats (Felidae). *Journal of Experimental Biology* 210: 642-654. https:// doi.org/10.1242/jeb.02703
- DAVIS E. B. 2005. Mammalian beta diversity in the Great Basin, western USA: palaeontological data suggest deep origin of modern macroecological structure. *Global Ecology and Biogeography* 14: 479-490. https://doi.org/10.1111/j.1466-822x.2005.00183.x
- DESANTIS L. R. G. 2018. Dietary ecology of *Smilodon, in* WERDELIN L., MCDONALD H. G. & SHAW C. A. (eds), *Smilodon: the Iconic Sabertooth.* Johns Hopkins University Press, Baltimore: 153-170.
- EDWARDS E. J., OSBORNE C. P., STRÖMBERG C. A. E., SMITH S. A. & THE C4 GRASSES CONSORTIUM. 2010. — The origins of C4 grasslands: integrating evolutionary and ecosystem science. *Science* 328: 587-591. https://doi.org/10.1126/science.1177216
- ENGLISH A. W. 1978. Functional analysis of the shoulder girdle of cats during locomotion. *Journal of Morphology* 156: 279-292. https://doi.org/10.1002/jmor.1051560209
- FAUNMAP WORKING GROUP. 1994. FaunMap: a database documenting late Quaternary distributions of mammal species in the United States. *Illinois State Museum Scientific Papers* 25: 1-690.
- FELSENSTEIN J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1-15. https://doi.org/10.1086/284325

- FELSENSTEIN J. 1988. Phylogenies and quantitative characters. Annual Review of Ecology and Systematics 19: 445-471. https:// doi.org/10.1146/annurev.es.19.110188.002305
- FIGUEIRIDO B., JANIS C. M., PÉREZ-CLAROS J. A., DE RENZI M. & PALMQVIST P. 2012. — Cenozoic climate change influences mammalian evolutionary dynamics. *Proceedings of the National Academy of Sciences* 109: 722-727. https://doi.org/10.1073/ pnas.1110246108
- FIGUEIRIDO B., MARTÍN-SERRA A., TSENG Z. J. & JANIS C. M. 2015. — Habitat changes and changing predatory habits in North American fossil canids. *Nature Communications* 6: 7976. https://doi.org/10.1038/ncomms8976
- FINARELLI J. A. 2008. A total evidence phylogeny of the Arctoidea (Carnivora, Mammalia): relationships among basal taxa. *Journal* of Mammalian Evolution 15: 231-259. https://doi.org/10.1007/ s10914-008-9074-x
- FINARELLI J. A. & BADGLEY C. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. *Proceedings of the Royal Society, B* 277: 2721-2726. https:// doi.org/10.1098/rspb.2010.0348
- FINARELLI J. A. & FLYNN J. J. 2006. Ancestral stat reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. *Systematic Biology* 55: 301-313. https://doi.org/10.1080/10635150500541698
- FLYNN J. J. & WESLEY-HUNT G. D. 2005. Carnivora, in ROSE K. D. & ARCHIBALD J. D. (eds), The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore: 175-198.
- FLYNN J. J., FINARELLI J. A. & SPAULDING M. 2010. Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations, *in* GOSWAMI A. & FRISCIA A. (eds), *Carnivoran Evolution: New Views on Phylogeny, Form, and Function.* Cambridge University Press, Cambridge: 25-63.
- FOOTE M. 1997. The evolution of morphological disparity. *Annual Review of Ecology and Systematics* 28: 129-152. https:// doi.org/10.1146/annurev.ecolsys.28.1.129
- FOX D. L. & KOCH P. L. 2003. Tertiary history of C4 biomass in the Great Plains, USA. *Geology* 31: 809-812. https://doi. org/10.1130/G19580.1
- GALVEZ-LÓPEZ E. & CASINOS A. 2012. Scaling and mechanics of the felid calcaneus: geometric similarity without differential allometric scaling. *Journal of Anatomy* 220: 555-563. https://doi. org/10.1111/j.1469-7580.2012.01502.x
- GAMBARYAN P. P. 1974. *How Mammals Run*. Halstead Press, New York, 367 p.
- GARLAND T. JR & IVES A. R. 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. *American Naturalist* 155: 346-364. https://doi.org/10.1086/303327
- GINSBURG L. 1977. Cynelos lemanensis (Pomel), carnivore ursidé de l'Aquitanien d'Europe. Annales de Paléontologie (Vertébrés) 63: 57-104.
- GÓMEZ-ROBLES A., BERMÚDEZ DE CASTRO J. M., ARSUAGA J.-L., CARBONELL E. & POLLY P. D. 2013. — No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. *Proceedings* of the National Academy of Sciences 110: 18196-18201. https:// doi.org/10.1073/pnas.1302653110
- GONYEA W. J. 1976a. Adaptive differences in the body proportions of large felids. *Acta Anatomica* 96: 81-96. https://doi. org/10.1159/000144663
- GONYEA W. J. 1976b. Behavioral implications of saber-toothed felid morphology. *Paleobiology* 2: 332-342. https://doi.org/10.1017/ S0094837300004966
- GONYEA W. J. 1978. Functional implications of felid forelimb anatomy. Acta Anatomica 102: 111-121. https://doi. org/10.1159/000145627

- GONYEA W. J. & ASHWORTH R. 1975. The form and function of retractile claws in the Felidae and other representative carnivorans. *Journal of Morphology* 145: 229-238. https://doi. org/10.1002/jmor.1051450208
- GRAHAM A. 1999. Late Cretaceous and Cenozoic History of North American Vegetation: North of Mexico. Oxford University Press, Oxford, 368 p.
- GRAHAM A. 2011. A Natural History of the New World: The Ecology and Evolution of Plants in the Americas. University of Chicago Press, Chicago, 404 p.
- GRAHAM R. W. & LUNDELIUS JR E. L. 2010. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0. http://www.ucmp.berkeley.edu/faunmap/
- HARRIS M. A. & STEUDEL K. 1997. Ecological correlates of hindlimb length in the Carnivora. *Journal of Zoology* 241: 381-408. https://doi.org/10.1111/j.1469-7998.1997.tb01966.x
- HARRIS M. A. & STEUDEL K. 2002. The relationship between maximum jumping performance and hindlimb morphology/ physiology in domestic cats (*Felis silvestris catus*). *Journal of Experimental Biology* 205: 3877-3889.
- HEINRICH R. E. & ROSE K. D. 1995. Partial skeleton of the primitive carnivoran *Miacis petilus* from the Early Eocene of Wyoming. *Journal of Mammalogy* 76: 148-162. https://doi. org/10.2307/1382324
- HEINRICH R. E. & ROSE K. D. 1997. Postcranial morphology and locomotor behavior of two Early Eocene miacoid carnivorans, *Vulpavus* and *Didymictis*. *Palaeontology* 40: 279-305.
- HILDEBRAND M. 1961. Further studies on the locomotion of the cheetah. *Journal of Mammalogy* 42: 84-91. https://doi. org/10.2307/1377246
- HOCHSTEIN J. L. 2007. A new species of *Zodiolestes* (Mammalia, Mustelidae) from the early Miocene of Florida. *Journal of Vertebrate Paleontology* 27: 532-534. http://doi.org/bxwjh4
- HORTON T. W., SJOSTROM D. J. ., ABRUZZESE M. J., POAGE M. A., WALDBAUER J. R., HREN M., WOODEN J. & CHAMBERLAIN C. P. 2004. — Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. *American Journal* of Science 304: 862-888. https://doi.org/10.2475/ajs.304.10.862
- HUANG G. T., ROSOWSKI J. J., RAVICZ M. E. & PEAKE W. T. 2002. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (*Felis margarita*). *Journal of Comparative Physiology* 188: 663-681. https://doi.org/10.1007/s00359-002-0332-8
- HUMPHREYS A. M. & BARRACLOUGH T. G. 2014. The evolutionary reality of higher taxa in mammals. *Proceedings of the Royal Society B* 281: 20132750. https://doi.org/10.1098/rspb.2013.2750
 HUNT R. M. JR 1996. — Biogeography of the Order Carnivora, *in*
- HUNT R. M. JR 1996. Biogeography of the Order Carnivora, *in* GITTLEMAN J. L. (ed.), *Carnivore Behavior, Ecology, and Evolution*. Vol. 2. Cornell University Press, Ithaca: 485-541.
- HUNT R. M. JR 1998a. Amphicyonidae, in JANIS C. M., SCOTT K. M. & JACOBS L. L. (eds), Evolution of Tertiary Mammals in North America, Volume 1 Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge: 196-221.
- HUNT R. M. JR 1998b. Ursidae, in JANIS C. M., SCOTT K. M. & JACOBS L. L. (eds), Evolution of Tertiary Mammals in North America, Volume 1 Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge: 174-195.
- HUNT R. M. JR 2002. New amphicyonid carnivorans (Mammalia, Daphoeninae) from the Early Miocene of southeastern Wyoming. *American Museum Novitates* 3385: 1-41. http://doi.org/brstp9
- HUNT R. M. JR 2003. Intercontinental migration of large mammalian carnivores: earliest occurrence of the Old World Beardog *Amphicyon* (Carnivora, Amphicyonidae) in North America. *Bulletin of the American Museum of Natural History* 279: 77-115. http://doi.org/cd347d

- HUNT R. M. JR 2009. Long-legged pursuit carnivorans (Amphicyonidae, Daphoeninae) from the Early Miocene of North America. *Bulletin of the American Museum of Natural History* 318: 1-95. https://doi.org/10.1206/593.1
- HUNT R. M. JR, XIANG-XU X. & KAUFMAN J. 1983. Miocene burrows of extinct bear dogs: indiciation of early denning behvior of large mammalian carnivores. *Science* 221: 364-366. https:// doi.org/10.1126/science.221.4608.364
- JABLONSKI D. 2008. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39: 501-524. https:// doi.org/10.1146/annurev.ecolsys.39.110707.173510
- doi.org/10.1146/annurev.ecolsys.39.110707.173510 JACKSON P. & NOWELL K. 1996. — Wild Cats: Status Survey and Conservation Action Plan. IUCN, Gland, 382 p.
- JANIS C. M. & WILHELM P. B. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. *Journal* of Mammalian Evolution 1: 103-128. https://doi.org/10.1007/ BF01041590
- JANIS C. M., DAMUTH J. & THEODOR J. M. 2002. The origins and evolution of the North American grassland biome: the story from the hoofed mammals. *Palaeogeography, Palaeoclimatology, Palaeoecology* 177: 183-198. https://doi.org/10.1016/S0031-0182(01)00359-5
- JANIS C. M., DAMUTH J. & THEODOR J. M. 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. *Palaeogeography, Palaeoclimatology, Palaeoecology* 207: 371-398. https://doi.org/10.1016/j.palaeo.2003.09.032
- JOHNSON W. E., EIZIRIK E., PECON-SLATTERY J., MURPHY W. J., ANTUNES A., TEELING E. & O'BRIEN S. J. 2006. — The Late Miocene radiation of modern Felidae: a genetic assessment. *Science* 311: 73-77. https://doi.org/10.1126/science.1122277
- KITCHENER A. C., VAN VALKENBURGH B. & YAMAGUCHI N. 2010. — Felid form and function, *in* MACDONALD D. W. & LOVERIDGE A. J. (eds), *Biology and Conservation of Wild Felids*. Oxford University Press, Oxford: 83-106.
- KOHN M. J., MISELIS J. L. & FREMD T. J. 2002. Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. *Earth and Planetary Science Letters* 204: 151-165. https://doi. org/10.1016/S0012-821X(02)00961-5
- KRAFT N. J. B. & ACKERLY D. D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. *Ecological Monographs* 80: 401-422. https://doi.org/10.1890/09-1672.1
- KRAFT N. J. B., ČORNWELL W. K., WEBB C. O. & ACKERLY D. D. 2007. — Trait evolution, community assembly, and the phylogenetic structure of ecological communities. *American Naturalist* 170: 271-283. https://doi.org/10.1086/519400
- 170: 271-283. https://doi.org/10.1086/519400 LEWIS M. E. 2018. — The postcranial morphology of *Smilodon*, *in* WERDELIN L., MCDONALD H. G. & SHAW C. A. (eds), *Smilodon: the Iconic Sabertooth*. Johns Hopkins University Press, Baltimore: 171-195.
- LEWIS M. E. & LAGUE M. R. 2010. Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids, *in* GOSWAMI A. & FRISCIA T. (eds), *Carnivoran Evolution: New Views on Phylogeny, Form, and Function.* Cambridge University Press, Cambridge: 411-465.
- LEWIS M. E. & WERDELIN L. 2007. Patterns of change in the Plio-Pleistocene carnivorans of eastern Africa: implications for human evolution, *in* BOBE R., ALEMSEGED Z. & BEHRENSMEYER A. K. (eds), *Hominin Environments in the East African Pliocene: an* Assessment of the Faunal Evidence. Springer, New York: 77-105. https://doi.org/10.1007/978-1-4020-3098-7_4
- LOREILLE O., ORLANDO L., PATOU-MATHIS M., PHILIPPE M., TABERLET P. & HÄNNI C. 2001. — Ancient DNA analysis reveals divergence of the cave bear, *Ursus spelaeus*, and brown bear, *Ursus arctos*, lineages. *Current Biology* 11: 200-203. https:// doi.org/10.1016/S0960-9822(01)00046-X

- MACPHERSON J. M. & FUNG J. 1998. Activity of thoracic and lumbar epaxial extensors during postural responses in the cat. *Experimental Brain Research* 119: 315-323. https://doi. org/10.1007/s002210050347
- MADDISON W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. *Systematic Zoology* 40: 304-314. https://doi.org/10.2307/2992324
- MAGUIRE K. C. & STIGALL A. L. 2009. Using ecological niche modelling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. *Paleobiol*ogy 35: 587-611. https://doi.org/10.1666/0094-8373-35.4.587
- MARTIN L. D., SCHULTZ C. B. & SCHULTZ M. R. 1988. Sabertoothed cats from the Plio-Pleistocene of Nebraska. *Transactions* of the Nebraska Academy of Sciences 16: 153-163.
- MARTÍN-SERRA A., FIGUEIRIDO B. & PALMQVIST P. 2017. Nondecoupled morphological evolution of the fore-and hindlimb of sabretooth predators. *Journal of Anatomy* 231: 532-542. https:// doi.org/10.1111/joa.12654
- MARTINS E. P. & HANSEN T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. *American Naturalist* 149: 646-667. https://doi.org/10.1086/286013
- MATTHEW W. D. 1909. Carnivora and Insectivora of the Bridger Basin, middle Eocene. *Memoirs of the American Museum of Natural History* 9: 289-576. http://hdl.handle.net/2246/5744
- MCGILL B. J., ENQUIST B. J., WEIHER E. & WESTOBY M. 2006. Rebuilding community ecology from functional traits. *Trends in Ecology and Evolution* 21: 178-186. https://doi.org/10.1016/j. tree.2006.02.002
- MEACHEN-SAMUELS J. A. 2012. Morphological convergence of the prey-killing arsenal of sabertooth predators. *Paleobiology* 38: 1-14. https://doi.org/10.1017/S0094837300000373
- MEACHEN-SAMUELS J. & VAN VALKENBURGH B. 2009. Forelimb indicators of prey-size preference in the Felidae. *Journal of Morphology* 270: 729-744. https://doi.org/10.1002/jmor.10712
- MEACHEN-SAMUELS J. A. & VAN VALKENBURGH B. 2010. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon *fatalis*. *PLoS One* 5: e11412 https://doi.org/10.1371/ journal.pone.0011412
- MITCHELL K. J., BRAY S. C., BOVER P., SOIBELZON L., SCHUBERT B. W., PREVOSTI F., PRIETO A., MARTIN F., AUSTIN J. J. & COOPER A. 2016. — Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. *Biology Letters* 12: 20160062. https://doi. org/10.1098/rsbl.2016.0062
- MORALES M. M. & GIANNINI N. P. 2010. Morphofunctional patterns in neotropical felids: species coexistence and historical assembly. *Biological Journal of the Linnean Society* 100: 711-724. https://doi.org/10.1111/j.1095-8312.2010.01461.x
- MORALES M. M. & GIANNINI N. P. 2013. Ecomorphology of the African felid ensemble: the role of the skull and postcranium in determining species segregation and assembling history. *Journal* of *Evolutionary Biology* 26: 980-992. https://doi.org/10.1111/ jeb.12108
- MORALES J., SALESA M. J., PICKFORD M. & SORIA D. 2001. A new trip, new genus and two new species of Barbourofelinae (Felidae, Carnivora, Mammalia) from the Early Miocene of East Africa and Spain. *Transactions of the Royal Society of Edinburgh: Earth Sci*ences 92: 97-102. https://doi.org/10.1017/S0263593300000067
- MORLO M., PEIGNE S. & NAGEL D. 2004. A new species of *Prosansanosmilus*: implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). *Zoological Journal of the Linnean Society* 140: 43-61. https://doi.org/10.1111/j.1096-3642.2004.00087.x
- PANCIROLI E., JANIS C. M., STOCKDALE M. & MARTÍN-SERRA A. 2017. — Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals. *Journal of Morphology* 278: 1333-1353. https://doi.org/10.1002/jmor.20716

- PASSEY B. H., CERLING T. E., PERKINS M. E., VOORHIES M. R., HARRIS J. M. & TUCKER S. T. 2002. — Environmental change in the Great Plains: an isotopic record from fossil horses. *Journal of Geology* 110: 123-140. https://doi.org/10.1086/338280
- POFF N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. *Journal of the North American Benthological Society* 15: 391-409. https://doi.org/10.2307/1468026
- POLLY P. D. 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. *American Naturalist* 157: 596-609. https://doi.org/10.1086/320622
- POLLY P. D. 2008. Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution, *in* SARGIS E. & DAGOSTO M. (eds), *Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay.* Springer, Dordrecht: 165-194. https://doi.org/10.1007/978-1-4020-6997-0_9
- POLLY P. D. 2010. Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment, *in* GOSWAMI A. & FRISCIA A. (eds), *Carnivoran Evolution: New Views on Phylogeny, Form, and Function.* Cambridge University Press, Cambridge: 347-410.
- POLLY P. D. & HEAD J. J. 2015. Measuring Earth-life transitions: ecometric analysis of functional traits from late Cenozoic vertebrates. *The Paleontological Society Papers* 21: 21-46. https:// doi.org/10.1017/S1089332600002953
- POLLY P. D. & MACLEOD N. 2008. Locomotion in fossil Carnivora: an application of Eigensurface analysis for morphometric comparisons of 3D surfaces. *Palaeontologia Electronica* 11 (2): 10A.
- POLLY P. D. & SARWAR S. 2014. Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. *Annales Zoologici Fennici* 51: 209-226. https://doi.org/10.5735/086.051.0221
- POLLY P. D., WESLEY-HUNT G. D., HEINRICH R. E., DAVIS G. & HOUDE P. 2006. — Earliest known carnivoran auditory bulla and support for a recent origin of crown-group Carnivora (Eutheria, Mammalia). *Palaeontology* 49: 1019-1027. https:// doi.org/10.1111/j.1475-4983.2006.00586.x
- POLLY P. D., ERONEN J. T., FRED M., DIETL G. P., MOSBRUGGER V., SCHIEDEGGER C., FRANK D. C., DAMUTH J., STENSETH N. C. & FORTELIUS M. 2011. — History matters: ecometrics and integrative climate change biology. *Proceedings of the Royal Society* of London, Series B 278: 1131-1140. https://doi.org/10.1098/ rspb.2010.2233
- POLLY P. D., FUENTES-GONZALES J., LAWING A. M., BORMET A. K. & DUNDAS R. G. 2017. — Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora. *Evolutionary Ecology Research* 18: 61-95.
- QIU Z. 2003. Dispersals of Neogene carnivorans between Asia and North America. Bulletin of the American Museum of Natural History 279: 18-31. http://doi.org/dvrjfj
- QIU Z. & SCHMIDT-KITTLER N. 1982. On the phylogeny and zoogeography of the leptarctines (Carnivora, Mammalia). *Paläontologica Zeitschrift* 56: 131-145. https://doi.org/10.1007/BF02988792
- RANDAU M., CUFF A. R., HUTCHINSON J. R., PIERCE S. E. & GOSWAMI A. 2017. Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories. *Organisms Diversity & Evolution* 17: 305-319. https://doi.org/10.1007/s13127-016-0304-4
- RAUP D. M. 1985. Mathematical models of cladogenesis. *Paleobiology* 11: 42-52. https://doi.org/10.1017/S0094837300011386
- RETALLACK G. J. 2004. Late Miocene climate and life on land in Oregon within a context of Neogene global change. *Palaeogeography, Palaeoclimatology, Palaeoecology* 214: 97-123. https://doi.org/10.1016/S0031-0182(04)00394-3
- RETALLACK G. J., TANAKA S. & TATE T. 2002. Late Miocene advent of tall grassland paleosols in Oregon. *Palaeogeography, Palaeoclimatology, Palaeoecology* 183: 329-354. https://doi.org/10.1016/ S0031-0182(02)00250-X

- RICKLEFS R. E. & TRAVIS J. 1980. A morphological approach to the study of avian community organization. *Auk* 97: 321-338. https://www.jstor.org/stable/4085704
- ROBLES J. M., MADURELL-MALAPEIRA J., ABELLA J., ROTGERS C., CARMONA R., ALMÉCIJA S., BALAGUER J. & ALBA D. M. 2013. — New *Pseudaelurus* and *Styriofelis* remains (Carnivora: Felidae) from the Middle Miocene of Abocador de Can Mata (Vallès-Penedès Basin). *Comptes Rendus Palevol* 12: 101-113. https://doi.org/10.1016/j.crpv.2013.02.001
- ROSENZWEIG M. L. 1985. Ŝome theoretical aspects of habitat selection, *in* CODY M. L. (ed.), *Habitat Selection in Birds*. Academic Press, Orlando: 517-540.
- SALESA M. J., ANTÓN M., PEIGNÉ S. & MORALES J. 2006. Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas. *Proceedings of the National Academy of Scienes* 103: 379-382. https://doi.org/10.1073/pnas.0504899102
- SATO J. J., WOLSAN M., PREVOSTI F. J., D'ELÍA G., BEGG C., BEGG K., HOSODA T., CAMPBELL K. L. & SUZUKI H. 2012. — Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). *Molecular Phylogenetics and Evolution* 63: 745-757. https://doi.org/10.1016/j.ympev.2012.02.025
- SCHLUTER D., PRICE T., MOOERS A. O. & LUDWIG D. 1997. Likelihood of ancestor states in adaptive radiation. *Evolution* 51: 1699-1711. https://doi.org/10.1111/j.1558-5646.1997.tb05095.x
- SLATER G. J., HARMON L. J. & ALFARÓ M. E. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. *Evolution* 66: 3931-3944. https://doi.org/10.1111/ j.1558-5646.2012.01723.x
- SOLE F., SMITH R., COILLOT T., BAST E. DE & SMITH T. 2014. Dental and tarsal anatomy of '*Miacis' latouri* and a phylogenetic analysis of the earliest carnivoraformes (Mammalia, Carnivoramorpha). *Journal of Vertebrate Paleontology* 34 (1): 1-21. https://doi. org/10.1080/02724634.2013.793195
- SPAULDING M. & FLYNN J. J. 2012. Phylogeny of the Carnivoramorpha: the impact of postcranial characters. *Journal of Systematic Palaeontology* 10: 653-677. https://doi.org/10.1080/ 14772019.2011.630681
- STANLEY S. M. 1975. A theory of evolution above the species level. *Proceedings of the National Academy of Science* 72: 646-650. https://doi.org/10.1073/pnas.72.2.646
- SURPLESS B. E., ŠTOCKLI D. F., DUMITRU T. A. & MILLER E. L. 2002. Two-phase westward encroachment of Basin and Range extension into the northern Sierra Nevada. *Tectonics* 21: 1-10. https://doi.org/10.1029/2000TC001257
- TAYLOR M. E. 1989. Locomotor adaptations by carnivores, in GITTLEMAN J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Springer, Boston: 382-409. https://doi.org/10.1007/978-1-4757-4716-4_15
- TEDFORD R. H., GALUSHA T., SKINNER M. F., TAYLOR B. E., FIELDS R.
 W., MACDONALD J. R., RENSBERGER J. M., WEBB S. D. & WHISTLER D. P. 1987. Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs) in North America, *in* WOODBURNE M.
 O. (ed.), *Cenozoic Mammals of North America: Geochronology and Biostratigraphy*. University of California Press, Berkeley: 153-210.
- TEDFORD R. H., WANG X. & TAYLOR B. E. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora, Canidae). Bulletin of the American Museum of Natural History 325: 1-218. https://doi.org/10.1206/574.1
- TRAJANO E. & FERRAREZZI H. 1995. A fossil bear from northeastern Brazil, with a phylogenetic analysis of the South American extinct Tremarctinae (Ursidae). *Journal of Vertebrate Paleontology* 14: 552-561. https://doi.org/10.1080/02724634.1995.10011577
- VALENCIANO A., BASKIN J. A., ABELLA J., PÉREZ A. -RAMOS, ÁLVAREZ-SIERRA M. Á., MORALES J. & HARTSTONE-ROSE A. 2016. — Megalictis, the bone-crushing giant mustelid (Carnivora, Mustelidae, Oligobuninae) from the Early Miocene of North America. PloS One 11: e0152430. https://doi.org/10.1371/journal.pone.0152430

- VAN VALKENBURGH B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. *Paleobiology* 11: 406-428. https://doi.org/10.1017/S0094837300011702
- VAN VALKENBURGH B. 1987. Skeletal indicators of locomotor behaviour in living and extinct carnivores. *Journal of Vertebrate Paleontology* 7: 162-182. https://doi.org/10.1080/02724634.1 987.10011651
- VAN VALKENBURGH B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia, Canidae): evolutionary interactions among sympatric predators. *Paleobiology* 17: 340-362. https:// doi.org/10.1017/S0094837300010691
- VAN VALKENBURGH B. 1999. Major patterns in the history of carnivorous mammals. Annual Reviews of Earth and Planetary Science 27: 463-493. https://doi.org/10.1146/annurev.earth.27.1.463
- VAN VALKENBURGH B., THEODOR J., FRISCIA A., POLLACK A. & ROWE T. 2004. — Respiratory turbinates of canids and felids: a quantitative comparison. *Journal of Zoology* 264: 281-293. https://doi.org/10.1017/S0952836904005771
- WALLACE S. C. & HULBERT R. C. JR 2013. A new machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with comments on the origin of the Smilodontini (Mammalia, Carnivora, Felidae). *PLoS One* 8: 356173. https://doi.org/10.1371/journal.pone.0056173
- WALMSLEY A., ELTON S., LOUYS J., BISHOP L. C. & MELORO C. 2012. — Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. *Journal of Morphology* 273: 1424-1438. https://doi.org/10.1002/jmor.20084
- WANG X. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the American Museum of Natural History 221: 1-207. http://hdl.handle.net/2246/829
- WANG X., TEDFORD R. H. & TAYLOR B. E. 1999. Phylogenetic systematics of the Borophaginae (Carnivora, Canidae). Bulletin of the American Museum of Natural History 243: 1-391. http:// hdl.handle.net/2246/1588
- WANG X., QIU Z. & WANG B. 2004a. A new leptarctine (Carnivora: Mustelidae) from the early Miocene of the northern Tibetan Plateau: implications for the phylogeny and zoogeography of basal mustelids. *Zoological Journal of the Linnean Society* 142: 405-421. https://doi.org/10.1111/j.1096-3642.2004.00135.x
- WANG X., TEDFORD R. H., VAN VALKENBURGH B. & WAYNE R. K. 2004b. — Evolutionary history, molecular systematics, and evolutionary ecology of the Canidae, *in* MACDONALD D. W. & SILLRO-ZUBIRI C. (eds), *Biology and Conservation of Wild Canids*. Oxford University Press, Oxford: 37-52.
- WANG X., MCKENNA M. C. & DASHZEVEG D. 2005. Amphicitceps and Amphicynodon (Arctoidea, Carnivora) from the Hsanda Gol Formation, central Mongolia and phylogeny of basal arctoids with comments on zoogeography. American Museum Novitates 3483: 1-57. http://doi.org/dvjtk9
- WANG X., RYBCZYNSKI N., HARRINGTON C. R., WHITE S. C. & TEDFORD R. H. 2017. — A basal ursine bear (*Protarctos abstru*sus) from the Pliocene High Arctic reveals Eurasian affinities and a diet rich in fermentable sugars. *Scientific Reports* 7: 17722. https://doi.org/10.1038/s41598-017-17657-8

- WEBB S. D. 1969. The Pliocene Canidae of Florida. Bulletin of the Florida State Museum, Biological Sciences 14: 273-308.
- WEBB S. D. 1981. The Thomas Farm Fossil Site. The Plaster Jacket 37: 6-25.
- WEBB C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. *American Naturalist* 156: 145-155. https://doi.org/10.1086/303378
- WEBB S. D., MACFADDEN B. J. & BASKIN J. A. 1981. Geology and paleontology of the Love Bone Bed from the Late Miocene of Florida. *American Journal of Science* 281: 513-544. https:// doi.org/10.2475/ajs.281.5.513
- WEBB C. T., HOETING J. A., AMES G. M., PYNE M. I. & POFF N. L. 2010. — A structured and dynamic framework to advance traits-based theory and prediction in ecology. *Ecology Letters* 13: 267-283. https://doi.org/10.1111/j.1461-0248.2010.01444.x
- WERDELIN L. 1981. The evolution of lynxes. Annales Zoologici Fennici 18: 37-71.
- WERDELIN L. 1985. Small Pleistocene felines of North America. Journal of Vertebrate Paleontology 5: 194-210. https://doi.org/10 .1080/02724634.1985.10011858
- WERDELIN L. & FLINK T. 2018. The phylogenetic context of Smilodon, in WERDELIN L. & MCDONALD H. G., SHAW C. A. (eds), Smilodon: the Iconic Sabertooth. Johns Hopkins University Press, Baltimore: 14-29.
- WERDELIN L. & LEWIS M. E. 2005. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zoological Journal of the Linnean Society 144: 121-144. https://doi. org/10.1111/j.1096-3642.2005.00165.x
- WERDELIN L., YAMAGUCHI N., JOHNSON W. E. & O'BRIEN S. J. 2010. — Phylogeny and evolution of cats (Felidae), *in* MACDON-ALD D. & LOVERIDGE A. (eds), *Biology and Conservation of Wild Felids*. Oxford University Press, Oxford: 60-82.
- WESLEY G. D. & FLYNN J. J. 2003. A revision of *Tapocyon* (Carnivoramorpha), including analysis of the first cranial specimens and identification of a new species. *Journal of Paleontology* 77: 796-783. https://doi.org/10.1017/S0022336000044486
- WILLIAMS T. M., WOLFE L., DAVIS T., KENDALL T., RICHTER B., WANG Y., BRYCE C., ELKAIM G. H. & WILMERS C. C. 2014. — Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. *Science* 346: 81-85. https://doi.org/10.1126/science.1254885
- WILSON D. E. & REEDER D. M. (eds) 2005. Mammal Species of the World: a Taxonomic and Geographic Reference (3rd Edition). Johns Hopkins University Press, Baltimore, 2142 p.
- WOLFE J. A., SCHORN H. E., FOREST C. E. & MOLNAR P. 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. *Science* 276: 1672-1675. https://doi.org/10.1126/ science.276.5319.1672
- YULE G. U. 1924. A mathematical theory of evolution based on the conclusions of Dr. Willis J. C., F. R. S. *Philosophical Transactions of the Royal Society B* 213: 21-87. https://doi.org/10.1098/rstb.1925.0002
- ZACHOS J., PAGANI M., SLOAN L., THOMAS E. & BILLUPS K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science* 292: 686-693. https://doi.org/10.1126/science.1059412

Submitted on 17 February 2019; accepted on 20 April 2020; published on 2 July 2020.

APPENDICES

APPENDIX 1. — The evolution of calcaneal gear ratio in Carnivoromorpha. Gear ratio is mapped onto a time-scaled phylogenetic tree with 214 tip taxa using PGLS. The value at the root node (1.19) is represented by yellow; values less than the ancestor are scaled in a yellow to blue colour spectrum, values higher than the ancestor in a yellow to red spectrum. This document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix1-the_evolution_of_calcaneal_gear_ratio_in_carnivoromorpha.pdf

APPENDIX 2. — Relationship between metatarsal/femur ratio and ankle gear ratio in extant carnivorans. The hypothetical position of *Cynelos* based on metatarsal/femur ratio in *C. lemanensis* and ankle gear ratio in *C. caroniavorus* is shown in red for comparison. Dashed line is the reduced major axis regression.

APPENDIX 3. — Relationship between ankle gear ratio and size: A, Gear ratio regressed onto calcaneum length; B, Gear ratio regressed onto the natural log of calcaneum length.

APPENDIX 4. — Phylogenetic tree of extant carnivorans from Humphreys & Barraclough (2014) in Newick format. This tree was used as the scaffolding for the timescaled tree of extant and extinct carnivorans. This document (zipped PLY file) is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/ documents/en/appendix4-humphryandbarraclough2018tree.zip

APPENDIX 5. — Time-scaled phylogenetic tree of extant and extinct carnivorans in Newick format. See text for details. This document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix5-extantandextinctcarnivoratree.zip

APPENDIX 6. — Mean ankle gear ratio for 214 extant and fossil species of Carnivormorpha. The Excel version of this document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix6-species_gear_ratios.xlsx

Taxon ID	Species	N	Gear Ratio	Extant ?
Ailuridae 6532	Ailurus fulgens	3	1.22	Y
Amphicvor	nidae			
30036	Adilophontes brachvkolos	1	1.14	Ν
30104	Amphicyon ingens	5	1.17	N
30105	Amphicyon longiramus	2	1.15	Ν
30280	Cynelos caroniavorus	2	1.32	Ν
30282	Cynelos idoneus	5	1.17	Ν
32871	Daphoenodon niobrarensis	2	1.23	N
30310	Daphoenodon superbus	1	1.21	N
30317	Dapnoenus vetus	2	1.21	IN N
50504		2	1.2	11
Barbourote	Bildae Derhaurafalia friaki	-	1 10	NI
20164	Barbourofelis Incki	1	1.13	IN NI
30104	Barbourofelis morrisi	23	1.21	N
30167	Barbourofelis whitfordi	1	1.19	N
Capidaa			1110	
20020	Aeluradan sethenastulus	2	10	N
30039	Aelurodon ferox	3	1.2	N
30044	Aelurodon taxoides	1	1.24	N
30121	Archaeocvon leptodus	2	1.23	N
30122	Archaeocyon pavidus	1	1.22	Ν
6299	Atelocynus microtis	3	1.27	Y
30187	Borophagus pugnator	2	1.19	Ν
30018	Borophagus secundus	4	1.19	Ν
6301	Canis adustus	2	1.32	Y
10843	Canis arensis/mosbachensis	3	1.25	N
6302	Canis aureus	2	1.27	Y
7003	Canis Girus	20	1.20	
7055	Canis familiaris dingo	2	1.23	Y
6303	Canis latrans	106	1.26	Ý
6304	Canis lupus	18	1.25	Ŷ
6305	Canis mesomelas	4	1.26	Y
10842	Canis mosbachensis	1	1.31	Ν
7061	Canis rufus	2	1.26	Y
6306	Canis simensis	1	1.23	Y
30235	Carpocyon compressus	1	1.23	IN N
30237	Carpocyon vebbi	1	1.23	IN N
6308	Cerdocyon thous	2	1.21	Y
6310	Chrvsocvon brachvurus	2	1.38	Ý
6312	Cuon alpinus	1	1.21	Ŷ
30277	Cynarctus saxatilis	1	1.17	Ν
30324	Desmocyon thomsoni	2	1.19	Ν
30379	Enhydrocyon pahinsintewakpa	1	1.24	N
30388	Epicyon haydeni	2	1.2	N
30389	Epicyon saevus	3	1.2	N
30393	Eucyon davisi	1	1.30	IN N
30534	Leptocyon vafer	3	1.22	N
30535	Leptocyon vulpinus	1	1.21	N
6316	Lycalopex culpaeus	2	1.19	Y
6318	Lycalopex griseus	2	1.29	Y
6319	Lycalopex gymnocercus	2	1.29	Y
6320	Lycalopex sechurae	1	1.17	Y
6321	Lycalopex vetulus	2	1.24	Y
6323	Lycaon pictus	3	1.28	Y
30032 6325	Nuctoreutos procupoidos	10	1.23	
30765	Osbornodon iamonensis	0	1.27	N
6327	Otocvon megalotis	2	1.34	Y
30823	Paraenhydrocvon iosephi	3	1.23	Ň
30841	Paratomarctus euthos	1	1.29	Ň
30842	Paratomarctus temerarius	1	1.21	Ν
30866	Phlaocyon leucosteus	1	1.24	Ν
31050	Psalidocyon marianae	1	1.23	N

Taxon ID	Species	N	Gear Batio	Extant
Capidao (a			Hado	•
6320	Speathos venatious	2	1 17	V
31200	Tomarctus brevirostris	1	1 18	N
6331	Urocvon cinereoargenteus	136	1.25	Y
6332	Urocvon littoralis	2	1.22	Ý
6286	Vulpes lagopus	9	1.32	Y
6287	Vulpes macrotis	2	1.29	Y
6295	Vulpes velox	2	1.23	Y
6296	Vulpes vulpes	34	1.27	Y
6297	Vulpes zerda	5	1.3	Y
Eupleridae				
6209	Cryptoprocta ferox	3	1.21	Y
6213	Fossa tossana	2	1.28	Y
6223	Salanola concolor	2	1.17	Y
Felidae	Acinonyy jubatus	6	1 35	\mathbf{v}
6105	Folis catus	1	1.00	v
6106	Felis chaus	1	1 44	Ý
6108	Felis margarita	1	1 21	Ý
6109	Felis nigripes	1	1.36	Ý
30405	Felis rexroadensis	3	1.33	Ň
6110	Felis silvestris	5	1.37	Y
7069	Homotherium serum	4	1.22	Ν
6114	Leopardus geoffroyi	3	1.34	Υ
6118	Leopardus pardalis	2	1.39	Y
6119	Leopardus tigrinus	2	1.34	Y
6120	Leopardus wiedii	2	1.33	Y
6122	Leptailurus serval	3	1.41	Y
6124	Lynx canadensis	3	1.36	Y
10844	Lynx issiodorensis	1	1.36	N
6125	Lynx lynx	(1.38	Y
6126	Lynx parainus	2	1.34	Y
10957	Lynx rufus Machairedua albardiaa	47	1.37	Y NI
10007	Machairodus alberdiae	2	1.00	IN NI
61/3	Neofelis pebulosa	2	1.22	
30732	Nimravides galiani	2	1.34	N
30734	Nimravides pedionomus	3	1.3	N
30735	Nimravides thinobates	3	1.3	N
6107	Otocolobus manul	1	1.26	Y
30011	Panthera atrox	11	1.31	Ν
6145	Panthera leo	1	1.19	Y
6146	Panthera onca	7	1.28	Y
6147	Panthera pardus	1	1.21	Y
6148	Panthera tigris	1	1.21	Y
6129	Pardofelis marmorata	1	1.34	Y
6102	Pardofelis temminckii	1	1.4	Y
6131	Prionailurus bengalensis	1	1.36	Y
31055	Pseudaelurus intrepidus	6	1.33	N
31057	Pseudaelurus marshi	9	1.26	N
10856	Pseudaelurus quadridentatus	1	1.35	IN N
31000	rseudaelurus stouti	1	1.15	IN N
S1002	Fseudaeiurus välidus Puma concolor	10	1.23	
61/0	Fuma concolor Puma vagouaroundi	13	1.30	1 V
7070	smilodon fatalis	ן פ	1.00	r N
31139	Smilodon gracilis	2	1.22	N
31148	Stenogale	2 1	1.33	N
6150	Uncia uncia	1	1.29	Y

Taxon ID	Species	N	Gear Batio	Extant ?
Herpestida			matte	· ·
6229	Atilax paludinosus	2	13	Y
6233	Rdeogale nigripes	1	1.32	Ý
6235	Crossarchus alexandri	1	1.02	Ý
6240	Cvnictis penicillata	2	1.34	Ŷ
6247	Galerella sanguinea	2	1.29	Ý
6253	Herpestes edwardsi	2	1.31	Ŷ
6255	Herpestes ichneumon	1	1.29	Ý
6256	Herpestes iavanicus	2	1.25	Ý
6257	Herpestes naso	1	1.38	Y
6263	Ichneumia albicauda	2	1.46	Y
6274	Suricata suricatta	3	1.36	Y
Hyaenidae				
6277	Crocuta crocuta	1	1.35	Y
6279	Hyaena brunnea	1	1.27	Y
6280	Hyaena hyaena	1	1.21	Y
6282	Proteles cristata	1	1.25	Y
Mephitidae				
6493	Conepatus chinga	1	1.26	Y
6498	Mephitis macroura	2	1.28	Y
6499	Mephitis mephitis	5	1.22	Y
6506	Spilogale gracilis	5	1.23	Y
6507	Spilogale putorius	3	1.22	Y
Miacidae				
30648	Miacis parvivorus	1	1.25	N
31278	Vulpavus palustris	1	1.12	N
Mustelidae				
6390	Arctonyx collaris	1	1.14	Y
30196	Bracnypsalls matutinus	2	1.15	N
6392	Elra Darbara	2	1.22	ř V
0437	Ennyara lutris	1	1.21	Y N
SUS75	Caliatia auia	4	1.14	
6395	Galictis vittata	2	1.11	V
6397	Gulo gulo	4	1.17	v
6399	Ictory libyca	2	1 14	v
6400	Ictonyx striatus	1	1.14	Ý
30524	Leptarctus ancipidens	2	12	Ň
31748	Leptarctus webbi	1	1.18	N
30531	Leptarctus wortmani	3	1.18	N
6441	Lontra canadensis	2	1.25	Y
6443	Lontra longicaudis	2	1.22	Ý
6404	Martes americana	3	1.25	Y
6406	Martes foina	1	1.22	Y
6408	Martes martes	1	1.19	Y
6410	Martes pennanti	2	1.24	Y
30594	Megalictis ferox	2	1.2	Ν
6415	Meles meles	1	1.19	Y
6417	Mellivora capensis	1	1.29	Y
6422	Melogale personata	1	1.24	Y
30665	Miomustela madisonae	1	1.29	Ν
6372	Mustela erminea	3	1.15	Y
6373	Mustela eversmanii	1	1.2	Y
6377	Mustela frenata	60	1.21	Y
6382	Mustela nigripes	2	1.15	Y
6383	Mustela nivalis	2	1.22	Y
6425	Neovison vison	23	1.17	Y
6427	Poecilogale albinucha	2	1.36	Y
30999	Promartes lepidus	2	1.16	N
01158 C100		1	1.23	N N
10054	raxidea taxus	0 1	1.23	Y N
10004	mochenon albanense	I	1.19	IN

Nandiniidae 2 1.17 Y Silo78 Nimravus brachyops 4 1.29 N Procyonidae 30150 Arctonasua floridana 2 1.2 N 6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus sututus 13 1.22 Y 6518 Bassariscus sututus 13 1.22 Y 6517 Bassariscus sututus 13 1.22 Y 6518 Bassariscus sututus 13 1.22 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 Y 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y Ursidae 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 <t< th=""><th>Taxon ID</th><th>Species</th><th>N</th><th>Gear Ratio</th><th>Extant ?</th></t<>	Taxon ID	Species	N	Gear Ratio	Extant ?
6226 Nandinia binotata 2 1.17 Y Nimravidae 31678 Nimravus brachyops 4 1.29 N Procyonidae 30150 Arctonasua floridana 2 1.25 Y 6513 Bassaricy astutus 13 1.22 Y 6518 Bassariscus astutus 13 1.22 Y 6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon lotor 134 1.21 Y Ursidae 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1	Nandiniida	le			
Nimravidae 31678 Nimravus brachyops 4 1.29 N Procyonidae 30150 Arctonasua floridana 2 1.2 N 6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 Y 6527 Procyon cancrivorus 4 1.18 Y 6528 Procyon lotor 134 1.21 Y Ursidae	6226	Nandinia binotata	2	1.17	Y
31678 Nimravus brachyops 4 1.29 N Procyonidae 30150 Arctonasua floridana 2 1.2 N 6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 Y 6527 Procyon cancrivorus 4 1.18 Y 6528 Procyon lotor 134 1.21 Y Ursidae 30020 Agriotherium gregoryi 2 1.15 N 300204 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30000 Agriotherium schneideri 2 1.15 N 30496 Indarctos o	Nimravida	e			
Procyonidae 30150 Arctonasua floridana 2 1.2 N 6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus astutus 13 1.22 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y Ursidae 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 2 1.11 Y 30496 Indarctos oregonensis 2 1.08	31678	Nimravus brachyops	4	1.29	N
30150 Arctonasua floridana 2 1.2 N 6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus astutus 13 1.22 Y 6510 Nasua narica 5 1.23 Y 6520 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6527 Procyon cancrivorus 4 1.18 Y 6528 Procyon lotor 134 1.21 Y Ursidae 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos oregonensis 2 1.16 N 6459 Melursus ursinus 2 1.08 Y 6461	Procyonida	ae			
6513 Bassaricyon gabbii 2 1.25 Y 6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 3 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 30096 Indarctos oregonensis 2 1.16 N 6457 Helarctos ornatus 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N	30150	Arctonasua floridana	2	1.2	Ν
6517 Bassariscus astutus 13 1.22 Y 6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6527 Procyon cancrivorus 4 1.18 Y 6528 Procyon cancrivorus 4 1.21 Y 0528 Procyon lotor 134 1.21 Y Ursidae 1.18 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 2 1.11 Y 30206 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 6461 Tremarctos ornatus 2 1.19 Y 6465 </td <td>6513</td> <td>Bassaricyon gabbii</td> <td>2</td> <td>1.25</td> <td>Y</td>	6513	Bassaricyon gabbii	2	1.25	Y
6518 Bassariscus sumichrasti 2 1.33 Y 6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 2 1.11 Y 30496 Indarctos oregonensis 2 1.16 N 6457 Helarctos ornatus 2 1.08 Y 30496 Indarctos ornatus 2 1.08 Y 6451 Tremarctos ornatus 2 1.08 Y 6463	6517	Bassariscus astutus	13	1.22	Y
6520 Nasua narica 5 1.23 Y 6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Actodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 30496 Indarctos oregonensis 2 1.16 N 6459 Melursus ursinus 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6463 Ursus americanus 5 1.14 Y 6464 Ursus americanus 1 1.16 Y<	6518	Bassariscus sumichrasti	2	1.33	Y
6521 Nasua nasua 2 1.27 Y 30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 3 2 1.15 N 30020 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 300496 Indarctos oregonensis 2 1.16 N 6459 Melursus ursinus 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6463 Ursus arctos 4 1.08 Y 6464 Ursus maritimus 2 1.09 Y	6520	Nasua narica	5	1.23	Y
30835 Paranasua biradica 2 1.21 N 6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 326835 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30000 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 300496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6463 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6164	6521	Nasua nasua	2	1.27	Y
6525 Potos flavus 4 1.18 Y 6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 300496 Indarctos oregonensis 2 1.16 N 6459 Melursus ursinus 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.09 Y 6465 Ursus americanus 5 1.14 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6166 Genetta maculata 2 1.23 Y	30835	Paranasua biradica	2	1.21	Ν
6527 Procyon cancrivorus 4 1.21 Y 6528 Procyon lotor 134 1.21 Y Ursidae 32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 30026 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.16 N 6457 Helarctos ornatus 2 1.08 Y 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.09 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae <td< td=""> 2 1.23</td<>	6525	Potos flavus	4	1.18	Y
6528 Procyon lotor 134 1.21 Y Ursidae 32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 30026 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.08 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus maritimus 2 1.09 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y </td <td>6527</td> <td>Procyon cancrivorus</td> <td>4</td> <td>1.21</td> <td>Y</td>	6527	Procyon cancrivorus	4	1.21	Y
Ursidae 32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 32026 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.19 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6186 Arctictis binturong 2 1.21 Y 6166 Genetta maculata 2 1.22 <t< td=""><td>6528</td><td>Procyon lotor</td><td>134</td><td>1.21</td><td>Y</td></t<>	6528	Procyon lotor	134	1.21	Y
32685 Agriotherium gregoryi 2 1.15 N 30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 32026 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.19 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6186 Arctictis binturong 2 1.21 Y 6164 Genetta maculata 2 1.26 Y 6170	Ursidae				
30020 Agriotherium schneideri 2 1.18 N 6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 32026 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.14 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6186 Arctictis binturong 2 1.21 Y 6166 Genetta maculata 2 1.26 Y 6170 Genetta servalina 2 1.25 Y 6173	32685	Agriotherium gregoryi	2	1.15	Ν
6455 Ailuropoda melanoleuca 1 1.14 Y 30009 Arctodus simus 4 1.08 N 6457 Helarctos malayanus 2 1.11 Y 30206 Hemicyon barbouri 1 1.19 N 30496 Indarctos oregonensis 2 1.08 Y 30496 Indarctos oregonensis 2 1.08 Y 30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.19 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.26 Y 6186 Arctictis binturong 2 1.21 Y 6158 Civettictis civetta 1 1.26 Y 6166 Genetta servalina 2 1.26 Y 6170 <td>30020</td> <td>Aariotherium schneideri</td> <td>2</td> <td>1.18</td> <td>Ν</td>	30020	Aariotherium schneideri	2	1.18	Ν
30009Arctodus simus41.08N6457Helarctos malayanus21.11Y32026Hemicyon barbouri11.19N30496Indarctos oregonensis21.16N6459Melursus ursinus21.08Y30877Phoberocyon johnhenryi31.24N6461Tremarctos ornatus21.19Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.23Y6164Genetta genetta21.26Y6170Genetta servalina21.26Y6173Genetta victoriae11.25Y6174Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6455	Ailuropoda melanoleuca	1	1.14	Y
6457Helarctos malayanus21.11Y32026Hemicyon barbouri11.19N30496Indarctos oregonensis21.16N6459Melursus ursinus21.08Y30877Phoberocyon johnhenryi31.24N6461Tremarctos ornatus21.11Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6164Genetta genetta21.23Y6166Genetta maculata21.24Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y6182Viverra zibetha21.3Y	30009	Arctodus simus	4	1.08	Ň
32026Hemicyon barbouri11.19N30496Indarctos oregonensis21.16N6459Melursus ursinus21.08Y30877Phoberocyon johnhenryi31.24N6461Tremarctos ornatus21.19Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6164Genetta genetta21.23Y6166Genetta maculata21.24Y6170Genetta victoriae11.25Y6173Genetta victoriae11.25Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6457	Helarctos malavanus	2	1.11	Y
30496Indarctos oregonensis21.16N6459Melursus ursinus21.08Y30877Phoberocyon johnhenryi31.24N6461Tremarctos ornatus21.19Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta victoriae11.25Y6173Genetta victoriae11.25Y6174Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	32026	Hemicvon barbouri	1	1.19	Ň
6459Melursus ursinus21.08Y30877Phoberocyon johnhenryi31.24N6461Tremarctos ornatus21.19Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6166Genetta genetta21.23Y6166Genetta maculata21.24Y6170Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	30496	Indarctos oregonensis	2	1.16	Ν
30877 Phoberocyon johnhenryi 3 1.24 N 6461 Tremarctos ornatus 2 1.19 Y 6463 Ursus americanus 5 1.14 Y 6464 Ursus americanus 5 1.14 Y 6464 Ursus arctos 4 1.08 Y 6465 Ursus maritimus 2 1.09 Y 6466 Ursus thibetanus 1 1.16 Y Viverridae 1 1.16 Y 6186 Arctictis binturong 2 1.11 Y 6158 Civettictis civetta 1 1.26 Y 6164 Genetta genetta 2 1.23 Y 6166 Genetta maculata 2 1.26 Y 6170 Genetta servalina 2 1.24 Y 6173 Genetta victoriae 1 1.25 Y 6205 Hemigalus derbyanus 2 1.23 Y 6176 Poiana richardsonii 1 1.27 Y 6180 Vive	6459	Melursus ursinus	2	1.08	Y
6461Tremarctos ornatus21.19Y6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.24Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	30877	Phoberocvon iohnhenrvi	3	1.24	Ň
6463Ursus americanus51.14Y6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6170Genetta servalina21.26Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6461	Tremarctos ornatus	2	1.19	Y
6464Ursus arctos41.08Y6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6463	Ursus americanus	5	1.14	Y
6465Ursus maritimus21.09Y6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6464	Ursus arctos	4	1.08	Ŷ
6466Ursus thibetanus11.16YViverridae6186Arctictis binturong21.11Y6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6465	Ursus maritimus	2	1.09	Ŷ
Viverridae6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6466	Ursus thibetanus	1	1.16	Ŷ
6186Arctictis binturong21.11Y6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	Viverridae				
6158Civettictis civetta11.26Y6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6186	Arctictis binturona	2	1.11	Y
6164Genetta genetta21.23Y6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6158	Civettictis civetta	1	1.26	Ŷ
6166Genetta maculata21.26Y6170Genetta servalina21.24Y6173Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6164	Genetta genetta	2	1.23	Ŷ
6170Genetta servalina21.24Y6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6166	Genetta maculata	2	1.26	Ŷ
6173Genetta victoriae11.25Y6205Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6170	Genetta servalina	2	1 24	Ŷ
6100Hemigalus derbyanus21.23Y6194Paradoxurus hermaphroditus21.18Y6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y6182Viverra cibetha21.3Y	6173	Genetta victoriae	1	1.25	Ŷ
6194Paradoxurus hermaphroditus21.2016176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6205	Hemigalus derbyanus	2	1 23	Ŷ
6176Poiana richardsonii11.27Y6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6194	Paradoxurus hermanhroditus	2	1 18	Ŷ
6180Viverra tangalunga21.32Y6181Viverra zibetha21.3Y	6176	Poiana richardsonii	1	1 27	Ŷ
6181Viverra zibetha21.3Y6182Viverra zibetha21.3Y	6180	Viverra tangalunga	2	1.32	Ŷ
6100 Vivorrioulo indico 0.10 V	6181	Viverra zibetha	2	1.3	Ý
	6183	Viverricula indica	2	1.3	Ŷ

APPENDIX 7. — ANOVA results: One-way analysis of variance was used to test for differences between clades of living and extinct carnivorans in ankle gear ratio. Overall results were significant at P < 0.001. Post-hoc pairwise tests were performed using Tukey's honestly significant difference test. The Word version of this document is available at the address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix7-anova_test.docx

ANOVA TABLE

	DF	SS	MSS	F-Ratio	P-Value
Model	15	0.6621	0.0441	16.9977	< 0.001
Error	196	0.5090	0.0026	-	-
Total	211	1.1711	-	-	-

PAIRWISE TEST RESULTS

Significant pairwise test	s (Tukey)
Amphicyonidae	Caninae
Amphicyonidae	Herpestidae
Barbourofelidae	Herpestidae
Borophaginae	Herpestidae
Borophaginae	Ursidae
Caninae	Mustelidae
Caninae	Mustelinae
Caninae	Ursidae
Felinae	Amphicyonidae
Felinae	Barbourofelidae
Felinae	Borophaginae
Felinae	Caninae
Felinae	Machairodontinae
Felinae	Mephitidae
Felinae	Mustelidae
Felinae	Mustelinae
Felinae	Pantherinae
Felinae	Procyonidae
Felinae	Ursidae
Felinae	Viverrinae
Herpestidae	Mephitidae
Herpestidae	Mustelidae
Herpestidae	Mustelinae
Herpestidae	Procyonidae
Herpestidae	Ursidae
Hyaenidae	Ursidae
Machairodontinae	Mustelidae
Machairodontinae	Mustelinae
Machairodontinae	Ursidae
Pantherinae	Ursidae
Procyonidae	Ursidae
Ursidae	Viverrinae

APPENDIX 8. — Original measurements from 867 extant carnivoran specimens. The Excel version of this document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix8-extant_specimen_measurements.xlsx

ID	Species	Inst	Specimen No	l ocality	Calc Len	Sust Pos	Gear Ratio
Ailuria		mot		Locality	2011		
164	Ailurus fulgens	EMNH	65803	Zoo: Brookfield Zoo, Chicago	26.05	20.11	1 30
165	Ailurus fulgens	FMNH	104950	Zoo: Lincoln Park Zoo, Chicago	27.66	22.81	1.00
1	Ailurus fulgens	WRAZI	8910070	Indianpolis Zoo	24 70	21 28	1 16
			0010010		21110	21120	
Canid	ae Atologynus migrotis		60674	Zoo: Brookfield Zoo, Chicago	24.05	26.67	1 22
10	Atelocynus microtis		110040	Zoo: Brookfield Zoo, Chicago	20.61	20.07	1.20
12	Atelocynus microtis	EMNIH	121286	Zoo: Brookfield Zoo, Chicago	32.01	25.00	1.27
13	Canis adustus	EMNIH	95933	Zimbabwe, East Mashonaland, Salishuny, Calgany Farm	38 35	20.00	1.27
14	Canis adustus	FMNH	95999	Zimbabwe, East Mashonaland, Salisbury, Calgary Farm	36.09	26.82	1.35
16	Canis aureus	FMNH	57264	Iraq. Baqhdad	40.16	31.42	1.28
15	Canis aureus	FMNH	92898	Iran, Khuzistan, near Gutuand Village, Karun River.	33.29	26.19	1.27
				breaks onto Khuzistan Plains. N. of Shustar			
448	Canis familiaris	UTVPL	M-3383	Texas, Menard Co.	47.32	36.73	1.29
18	Canis familiaris dingo	FMNH	57807	Australia, Queensland	49.73	38.52	1.29
19	Canis familiaris dingo	FMNH	57808	Australia, Queensland	47.01	36.76	1.28
536	Canis latrans	DMNH	8503	Colorado, Arapaho Co., Aurora, Alameda and Buckley	38.98	30.87	1.26
535	Canis latrans	DMNH	9455	Colorado, Arapahoe Co., Mexico & Helena Sts.	40.72	33.34	1.22
538	Canis latrans	DMNH	9811	Colorado, Arapahoe Co., Aurora, Blackhawk & Alameda	40.74	32.62	1.25
537	Canis latrans	DMNH	10295	Colorado, Arapahoe Co., Hwy 83 at Douglas-Arapahoe	38.70	30.58	1.27
				County Line			
20	Canis latrans	FMNH	135222	Kansas, Leavenworth Co., 3 mi N, 3.5 mi E. of Douglas	39.46	31.97	1.23
01	Operate laterana		100015	Co. Courtnouse	40.05	00.00	1.05
21	Canis latrans	FIVINH	138815	Alaska, Game Mangement Unit 20B, Saicha River	42.35	33.80	1.25
023 500	Carlis latrans	KU-IVI	2124	Kapaga Dauglas Co.	39.57	00.00	1.20
509 627	Carlis latrans	KU-IVI	2125	Nalisas, Douglas CO. Minnosota, Marshall Co.	34.99 12.86	20.20	1.24
591	Canis latrans	KU-M	4357	Kansas Douglas Co	42.00	33.88	1.27
593	Canis latrans	KU-M	4363	Kansas, Douglas Co	43.22	34.30	1.26
615	Canis latrans	KU-M	5440	Kansas, Morton Co.	40.40	32.70	1.24
613	Canis latrans	KU-M	5442	Kansas, Morton Co.	41.45	32.13	1.29
619	Canis latrans	KU-M	5444	Kansas, Morton Co.	41.43	33.20	1.25
618	Canis latrans	KU-M	5446	Kansas, Morton Co.	41.55	33.24	1.25
616	Canis latrans	KU-M	6683	Kansas, Morton Co.	37.88	30.16	1.26
622	Canis latrans	KU-M	7035	Texas, Hemphill Co.	39.93	31.14	1.28
625	Canis latrans	KU-M	7036	Idaho, Bannock Co.	43.16	33.91	1.27
595	Canis latrans	KU-M	8270	Kansas, Douglas Co.	41.55	34.32	1.21
602	Canis latrans	KU-M	11092	Kansas, Greenwood Co.	42.81	34.82	1.23
596	Canis latrans	KU-M	12106	Kansas, Douglas Co.	37.58	30.08	1.25
614	Canis latrans	KU-M	12224	Kansas, Morton Co.	38.53	31.05	1.24
590	Canis latrans	KU-M	12225	Kansas, Douglas Co.	40.38	33.22	1.22
592 601	Canis latrans	KU-IVI	12723	Kansas, Douglas Co.	40.91	33.01	1.22
610	Carlis latrans	KU-IVI	13272	Kanaga Namaha Ca	44.13	22.06	1.20
626	Carlis latrans	KU-W	13599	North Dakota, Cavaliar Co	40.75	32.00	1.27
594	Canis latrans	KU-M	13601	Kansas Douglas Co	30 55	31 68	1.25
606	Canis latrans	KU-M	14372	Kansas, Bodgias eo. Kansas, Wilson Co., W of Cowville	43.31	33.22	1.20
599	Canis latrans	KU-M	14620	Kansas, Greenwood Co., 3 mi S, 2 mi W of Toronto	40.24	31.38	1.28
597	Canis latrans	KU-M	14621	Kansas, Greenwood Co., 8 mi SW of Toronto (Sec 4,	40.30	32.85	1.23
				T27S, R13E)			
604	Canis latrans	KU-M	14622	Kansas, Greenwood Co., 6 mi SW Toronto	43.02	33.57	1.28
609	Canis latrans	KU-M	16087	Kansas, Nemaha Co, Sabetha	40.74	33.86	1.20
607	Canis latrans	KU-M	16088	Kansas, Nemaha Co, Sabetha	41.80	33.09	1.26
624	Canis latrans	KU-M	18771	North Dakota, Burleigh Co., Near Bismark	42.07	34.48	1.22
603	Canis latrans	KU-M	143228	Kansas, Franklin Co., Ottawa, 2.75 Mi S, 7 Mi W of	46.66	35.12	1.33
605	Canis latrans	KU-M	145193	Kansas, Leavenworth Co., Lawrence, 3 Mi N, 4 Mi E of Courthouse	42.40	33.66	1.26
601	Canis latrans	KU-M	145342	Kansas, Jackson Co., Dennison, 2 Mi S of	39.32	31.96	1.23
598	Canis latrans	KU-M	145357	Kansas, Jefferson Co., Winchester, 5 mi south of	40.68	31.27	1.30
612	Canis latrans	KU-M	145358	Kansas, Jefferson Co.	40.06	31.16	1.29
611	Canis latrans	KU-M	145984	Kansas, Jefferson Co.	40.14	32.14	1.25
600	Canis latrans	KU-M	146470	Kansas, Jackson Co., Potawatomie Indian Reservation	42.04	33.92	1.24
608	Canis latrans	KU-M	163744	kansas, Jetterson Co., Lawrence, 14.5 KM NE of, Nelson Environmental Study Area	44.37	36.04	1.23
505	Canis latrans	MSB	5953	New Mexico, Sierra Co., Elephant Butte Reservoir State	42.33	35.19	1.20
503	Canis latrans	MSB	21263	New Mexico, Sandoval, Between Lajara and Bear Springs Canyon	44.31	35.85	1.24

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Canid	lae (continuation)						
507	Canis latrans	MSB	41039	New Mexico, Socorro Co., 20 Mi. N Red Rock, Juct. 84 and Forest Road 225	37.24	29.46	1.26
496	Canis latrans	MSB	41460	New Mexico, Bernalillo Co., Albuquerque, Junct. Hwy 14 and I-40	43.32	34.27	1.26
506	Canis latrans	MSB	42349	New Mexico, Socorro Co., 20 Mi. N Red Rock, Juct. 84 and Forest Road 225	40.03	31.97	1.25
491	Canis latrans	MSB	42746	Mexico, Sonora, Isla Tiburon	40.41	30.40	1.33
499	Canis latrans	MSB	43424	New Mexico, Bernalillo Co., Albuquerque, Alameda Dr, Washington and Edith Ave., near balloon	39.59	31.47	1.26
509	Canis latrans	MSB	57683	Texas, Reeves Co., 8.3 Mi SW Pecos, Hwy 285	40.82	32.89	1.24
495	Canis latrans	MSB	58790	Missouri, Lincoln Co., 10 Mi. W of Springfield on Hwy 44	38.91	31.87	1.22
501	Canis latrans	MSB	87724	New Mexico, Lea Co., 6 mi S, 3 mi E Maljamar	39.58	30.84	1.28
502	Canis latrans	MSB	88902	New Mexico, Lincoln National Forest, Smokey Bear Dist., Capital Mt.	39.12	30.77	1.27
500	Canis latrans	MSB	89012	New Mexico, Hidalgo Co.	41.66	33.73	1.24
497	Canis latrans	MSB	92553	New Mexico, Bernalillo Co., Albuquerque, I-25 @ 0.25 mi N of Exit 215	43.86	35.22	1.25
492	Canis latrans	MSB	101278	Colorado, Weld Co., 18 mi E. of Greeley	42.37	32.68	1.30
494	Canis latrans	MSB	101279	Colorado, Weld Co. 18 Mi. E. of Greeley	38.58	30.26	1.27
493	Canis latrans	MSB	101280	Kansas, Morton Co.	40.51	32.40	1.25
508	Canis latrans	MSB	101281	Oklahoma, Wichita National Forest	42.49	34.89	1.22
511	Canis latrans	MSB	101282	Wyoming, Johnson Co., Buffalo	43.01	33.37	1.29
510	Canis latrans	MSB	101283	Wyoming, Johnson Co., Buffalo	40.64	32.50	1.25
498	Canis latrans	MSB	103152	New Mexico, Bernalillo Co., Albuquerque, Indiana School Road and Harvard N of Golf Course	39.03	30.37	1.29
504	Canis latrans	MSB	140076	New Mexico, Sandoval Co., Corrales	40.58	32.39	1.25
700	Canis latrans	MUZA	329	Oregon, Columbia Co.	41.22	33.19	1.24
685	Canis latrans	MUZA	32 (P-6)	Oklahoma, Holdenville	44.36	34.90	1.27
686	Canis latrans	MUZA	743 (P-8)	Arizona, Prescott, vicinity of Prescott College	36.51	30.39	1.20
2054	Canis latrans	NCSM	2450	mi SW of CR 1341	42.73	32.82	1.30
2066	Canis latrans	NCSM	5281	North Carolina, Burke Co., Morganton, S of, South Mountain Area	44.87	34.17	1.31
2053	Canis latrans	NCSM	5282	North Carolina, Duplin County, Cedar Grove near Onslow Co. Line	43.55	35.64	1.22
2067	Canis latrans	NCSM	5285	North Carolina, Tyrell Co.	43.73	34.39	1.27
2064	Canis latrans	NCSM	5564	North Carolina, Iredell Co.,	41.63	33.67	1.24
2065	Canis latrans	NCSM	7116	North Carolina, Columbus Co.	41.43	33.39	1.24
2061	Canis latrans	NCSM	8187	North Carolina, Bertle/Washington Co., SR 99/45 and SR 32, 3 mi SE JCT	40.88	32.54	1.26
2062	Canis latrans	NCSM	8205	North Carolina	43.70	35.89	1.22
2063	Canis latrans	NCSM	8207	North Carolina, Hyde Co., SR 99/45 and SR 32, 7 mi S of JCT.	44.11	35.54	1.24
2069	Canis latrans	NCSM	8326	North Carolina, Haywood Co., Crabtree Bald	45.35	37.27	1.22
2072	Canis latrans	NCSM	8388	Arizona, Pima Co., Tuscon, Campbell Ave., N of River Road.	41.40	33.92	1.22
2071	Canis latrans	NCSM	8517	North Carolina	40.13	30.48	1.32
070	Canis latrans	NCSM	8963	North Carolina, Macon Co., Franklin, Runaway Knob	42.29	34.46	1.23
2047	Canis latrans	OMNH-N	116558	Oklahoma, Canadian County	43.80	34.23	1.28
793	Canis latrans	USNHM	261745	Ouichita Mountains, Oklahoma	43.23	34.71	1.25
803	Canis latrans	USNHM	263786	Nextern Occurrent Nextern Column	46.07	37.10	1.24
799	Canis latrans	USNHM	291937	Iviorton County, North Dakota	42.30	33.13	1.28
800 700	Canis latrans	USNHM	291938	Norton County, North Dakota	40.87	32.08	1.27
801 801	Canis latrans	USNHM	533111	29 Mi SW Delta, Smokehouse Campground, in woods,	44.84 40.95	33.82 33.22	1.33
702	Canis latrans		A01326	Fort Kearney Platte River	40 03	33 08	1 24
797	Canis latrans	USNHM	A21496	Nebraska	41 40	32 53	1.24
795	Canis latrans	USNHM	A22660	Porcupine Creek. Montana	38.45	29.12	1.32
794	Canis latrans	USNHM	A22661	Dawson County, Montana	37.91	29.93	1.27
796	Canis latrans	USNHM	A22662	Dawson County, Montana	39.94	31.98	1.25
802	Canis latrans	USNHM	A49899	near Burns, Oregon	41.84	33.39	1.25
437	Canis latrans	UTVPL	M-2090	Texas, Presido Co., Rooney Ranch	39.05	31.33	1.25
438	Canis latrans	UTVPL	M-2094	Texas, Travis Co., 12 miles S. Austin on I-35	40.33	32.79	1.23
436	Canis latrans	UTVPL	M-2121	Texas, Travis Co., 12 miles S. Austin, I-35	39.01	29.68	1.31
400	Cania latrana	I ITVPI	M-2275	Texas Presidio Co	41 61	31 78	1.31

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Canid	ae (continuation)						
	Canis latrans		M-2327	Texas Brewster Co	44 54	34 92	1 28
445	Canis latrans	UTVPI	M-2409	Texas, Elevette Co	40.24	31.55	1.28
446	Canis latrans	UTVPI	M-3357	Texas, Presidio Co	40.24	32.31	1.20
447	Canis latrans	UTVPI	M-3455	Texas, 10 Mi, North of Laredo	38 77	30.24	1.28
452	Canis latrans	UTVPI	M-3978	Texas, Bastrop Co. Bed Bock 2 mi. W on Highway	39.69	30.70	1 29
402	Garns latrans	OTVIL	10010	812 on Frank Carrol Banch	00.00	00.70	1.20
110	Canis latrans		M_3081	Texas Bastron Co. Red Bock 2 mi W on Highway	12 38	32.62	1 30
440	Garns latrans	OTVIL	101 0001	812 Frank Carrol Panch	42.00	02.02	1.00
451	Canis latrans		M 2083	Toyas Pastron Co. Red Pock	10.05	20.83	1 22
450	Canis latrans		M_4005	Texas, Bastrop Co., Red Rock	40.33	35.27	1.00
450	Canis latrans		M_4005	Colorado, Gunnison Co	37 30	30.07	1.01
22	Canis lunus	FMNH	147636	Minnesota Beltrami Co. Gany Loonbardt Farm T155N	62.07	48.03	1 29
~~	Carlis lapas	1 1011 111	147000	B30W Sec 27	02.07	40.00	1.20
23	Canis lunus	FMNH	153800	Minnesota St Louis Co. North of Cotton Hww 53	59 43	46 67	1 27
1962	Canis lupus	I INIVA	727	Quintanilla de Onâ Â@simo Spain	60.06	46.94	1.27
106/	Canis lupus		021	Vega-Sicilia Valbuena de Duero Spain	56 15	15 35	1.20
1050	Canis lupus		1/07	vega-olcilla, valbuella de Duelo, opalit	52 27	/3.01	1.24
1063	Canis lupus		1600	Bercero Valladolid Spain	51 55	40.57	1.22
1057	Canis lupus		2264	Cen Rec Aves Pollos Valladolid Spain	60.43	10.04	1.27
1052	Canis lupus		2580	La Muderra, Spain	57 70	45.25	1.20
1050	Canis lupus		2500	La Muderra, Spain Spoin	55.56	43.91	1.20
1060	Canis lupus		2027	Ouintanilla de Onceâî Âte Valladelid Spain	51.90	44.00 12.22	1.24
1900	Canis lupus		2000	Con Roc Avec Valladelid Spain	56.07	43.33	1.27
1056	Canis lupus		3562	Con Ros Aves Pollos Valladolid Spain	58 02	40.74	1.20
10/0	Canis lupus		3563	Valuo Parque de la Naturaleza (Valladolid)	57.02	47.02	1.21
1059	Canis lupus		3684	C_{22}° Å+izo Zamora (C R A) Valladolid Spain	61 11	50 50	1.27
10/8	Canis lupus		3692	Valuo Parque de la Naturaleza (Valladolid)	56.38	13.84	1.21
1053	Canis lupus		1589	Valwo Parque de la Naturaleza (Valladolid)	63.25	/0.12	1.20
1061	Canis lupus		4505	Ceinos de Campos Valladolid Spain	58 76	43.12	1.25
1501	Canis lupus		4045 M_6540	Alaska	61 52	10 01	1.20
24	Canis mesomelas	FMNH	127807	Tanzania Mara Prov. Serengeti Plains Seronera	34.82	26.80	1 30
24	Carlis mesomelas	EMNIH	127808	Tanzania, Mara Prov. Serengeti Plains, Seronera	35.57	20.00	1.00
1965	Canis mesomelas	ΙΙΝΙΙΛΔ	1618	Zoo de Madrid	32 59	26.07	1.27
1966	Canis mesomelas		1986	Zoo de Madrid	34 55	27.46	1.22
29	Canis rufus	FMNH	104662	700	50.83	40.20	1.20
28	Canis rufus	FMNH	104995	Texas Harris Co. Deer Park Near Besidence	48 58	38.80	1.20
30	Canis simensis	AMNH-N	/81001	Abyssinia Kaka Plateau 2900 ft	45.64	37 17	1.23
31	Cerdocyon thous	FMNH	70758	Colombia Antioquia Urrao	26 77	18 70	1.20
32	Cerdocyon thous	FMNH	70759	Colombia Huila Pitalito 1350 m	28.28	20.62	1.37
33	Chrysocyon brachyurus	FMNH	44534	Brazil, Mato Grosso, Descalvado, 142 m	56.17	40.37	1.39
34	Chrysocyon brachyurus	FMNH	127434	700	63.12	45.99	1.37
35	Cuon alpinus	FMNH	104389	Nepal, Nawakot Dist., Phulung Ghyang, 11200'	43.18	35.66	1.21
43	l vcalopex culpaeus	AMNH-N	1147547	NY Zoological Society	34 51	29.50	1 17
42	l vcalopex culpaeus	AMNH-N	1244656	Bolivia, Oruro, 8 km, No, of Oruro, 3700 m	32.38	26.76	1.21
45	l vcalopex griseus	FMNH	129839	Chile. Los Lagos, Osorno, ca 25 km w on road to San	27.22	21.22	1.28
	Ly calop on gliceae		120000	Juan			
44	l vcalopex griseus	FMNH	154639	Argentina Chubut Port Deseado	26.94	20.81	1 29
46	l vcalopex gymnocercus	AMNH-N	1205756	Uruguay, Dept. Cerro Largo, 20 km SF Melo Sierra de	34.24	26.04	1.31
	_jea.epen gj/////eee/eae			Vaz Bio Tacuari	0.12.1	2010 1	
47	l vcalopex avmnocercus		1205771	Uruguay Dept Rio Negro Arroyo Negro 15 km s	32.28	25 33	1 27
77	Lycalopex gynniocercus		1200111	Payeandu	02.20	20.00	1.21
18	l vcalonex sechurae		1/6525	Foundar Portovelo	2/ 32	20 70	1 17
50	Lycalopex sectulus		/140323	N.V. Zoological Society	24.52	20.73	1.17
/Q	Lycalopex vetulus		/1000001	N.Y. Zoological Society	24.70	20.22	1.22
36	Lycaon pictus	FMNH	127811	Tanzania Mara Prov. Serengeti Plains. Seronera	53 99	20.04 41 89	1 20
37	Lycaon pictus	EMNIH	127813	Tanzania, Mara Prov., Screngeti Plains, Scronera	53.86	12 03	1.20
1068	Lycaon pictus		1167	Zoo de Matanozuelos (Valladolid)	55.83	42.00	1.20
38	Nyctereutes procyonoides	FMNH	57837	Zoo: Brookfield Zoo. Chicago	24 37	19 77	1.20
30	Nyctereutes procyonoides	FMNH	59013	Zoo: Lincoln Park Zoo, Chicago	23.01	17 54	1.20
1972	Nyctereutes procyonoides		302	Zoo de Matapozuelos (Valladolid)	25.84	20.37	1.01
1071	Nuctoreutes procyonoides		992	Zoo de Matapozuelos (Valladolid)	25.04	20.07	1.22
1070	Nuctoreutes procyonoides		1641	Zoo de Madrid	20.04	20.22	1.20
1960	Nuctoreutes procyonoides		3530	Zoo de Madrid	21.02	18 /0	1 33
1909	Otocyon megalotis	EMNIH	12781/	Tanzania Mara Prov. Serengeti Plaine Seronera	24.07	18 07	1 37
40 ⊿1	Otocyon megalotis		127818	Tanzania, Iviaia i 10%, Selengeli Fidilis, Seluliela Tanzania Mara Provi Serengeti Diaine Serengera	25.55	10.97	1 32
+1 51	Specthos venatious		1215//	Zoo: Lincoln Park Zoo, Chicago	20.00	10.74	1 1 2
50	Speathos venaticus	FMNH	125402	Zoo: Lincoln Park Zoo, Chicago	28.10	24 15	1 16
52	opoorios vonaticus	I IVIINI I	120702	200. Entouint an 200, Onicayo	20.12	27.13	1.10

APPENDIX 8. - Continuation.

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gea Rati
anid	ae (continuation)			-			
539	Urocyon cinereoargenteus	DMNH	9634	Colorado, Jefferson Co., Hwy 72, WNW of intersection with Hwy 93	29.00	22.92	1.27
540	Urocvon cinereoargenteus	DMNH	11105	Colorado. La Plata Co., Durango area	29.85	23.50	1.27
261	Urocvon cinereoargenteus	FMNH	55708	Illinois, Lake Co., Highland Park, Near Cook Co. Line	28.03	22.06	1.27
260	Urocyon cinereoargenteus	FMNH	55734	Illinois Lake Co. Highland Park	29.93	22.96	1.30
270	Urocyon cinereoargenteus	FMNH	60658	Wisconsin Kenosha Co. 15 Mi W Kenosha	28.12	22.00	1.00
250	Urocyon cinereoargenteus	FMNH	73735	Illinois Cook Co. 17th Ave and Sauk Cr	29.81	22.20	1.2
200	Urocyon cinereoargenteus		20256	Arkansas, Stone Co., Marcella	20.01	20.02	1.20
200			110105	Missensin Kanasha Ca. 15 Mi W. Kanasha	23.04	22.04	1.0
269	Urocyon cinereoargenteus	FIVINH	113135	Wisconsin, Kenosna Co., 15 Ivii. VV. Kenosna	27.80	21.73	1.20
253	Urocyon cinereoargenteus	FMINH	121358	W. of George Williams College Campus	24.80	19.50	1.2
251	Urocyon cinereoargenteus	FMNH	121541	Illinois, Du Page Co., Downers Grove, Highland Ave., W. of George Williams College Campus	29.53	25.22	1.1
252	Urocyon cinereoargenteus	FMNH	121663	Illinois, Du Page Co., Downers Grove, Highland Ave., W. of George Williams College Campus	25.41	19.60	1.3
254	Urocyon cinereoargenteus	FMNH	124592	Illinois, Du Page Co., Hinsdale	27.65	21.42	1.2
271	Urocyon cinereoargenteus	FMNH	124593	Wisconsin, Milwaukee Co,, Milwaukee	31.14	24.60	1.2
72	Urocyon cinereoargenteus	FMNH	126807	Wisconsin, Racine Co., 5 Mi W. Rochester	27.50	22.13	1.2
59	Urocyon cinereoargenteus	FMNH	126808	Tennessee, Roane Co., 20 Mi SE of Rockwood	29.34	23.10	1.2
56	Urocyon cinereoargenteus	FMNH	129296	Illinois, Hardin Co., NE 1/2 of Sec 14. T125 R8E	27.93	21.50	1.3
57	Urocvon cinereoargenteus	FMNH	129297	Illinois, Hardin Co., NE 1/2 of Sec 14, T125 R8F	27.02	21.35	1.2
73	Lirocyon cinereoargenteus	FMNH	129298	Texas Brewster Co. S of Hwy 2627 N of Sue Peaks	25 75	19.81	1.3
58	Lirocyon cinereogramateus	FMNH	152094	Illinois Du Page Col Lombard	29 40	23.18	1.0
55	Urowon cincrocorrecteus		152034	Illinois, Du Lage Co., Lombalu Illinois, Du Page Co., Nanenvillo	20.40	20.10	1.4
SS	Uroovon cinereoargenteus		102090	Minnolo, Du Faye CO., Napel VIIIe	29.90	21.40	1.4
00	Urocyon cinereoargenteus		100111	Winnesota, Olmsted Co, Hwy 42, 2 ml. S Elgin	29.23	23.88	1.2
0/	Urocyon cinereoargenteus	FININH	10/18/	wisconsin, Brown Co., Suamico	30.01	24.50	1.2
63	Urocyon cinereoargenteus	FMNH	1/1143	Florida, Highlands Co., 5 mi W Okeechobee on SR 70	28.08	21.78	1.2
:62	Urocyon cinereoargenteus	FMNH	171145	Florida, Highlands Co., Placid View Drive and Washington	27.61	22.04	1.2
64	Urocyon cinereoargenteus	FMNH	175292	Minnesota, Olmsted Co, Hwy 42, 2 mi. S Elgin	27.60	21.26	1.3
66	Urocyon cinereoargenteus	FMNH	178038	Wisconsin, Brown Co., Green Bay	29.16	23.44	1.2
99	Urocvon cinereoargenteus	INSM	71.02.0254	Indiana	31.30	25.16	1.2
97	Urocvon cinereoargenteus	INSM	71.09.0070	Indiana, Madison Co., Lick Creek (1/2 mile east of SR 9)	26.84	21 46	12
98	Urocyon cinereoargenteus	INSM	71 00 0007	Indiana, Madison Co., near Alexandria	27.04	22.00	1.2
30	Urocyon cinereoargenteus		11086	Kansas Douglas Co	21.34	22.00	1.2
200			11000	Nau Vark, Tampking Co.	23.04	20.20	1.2
041	Urocyon cinereoargenteus		11007	New York, Tompkins Co.	27.95	23.10	1.2
940	Urocyon cinereoargenteus	KU-M	11088	New York, Tompkins Co.	28.50	23.91	1.1
532	Urocyon cinereoargenteus	KU-M	11907	Oklahoma, Adair Co.	26.75	21.86	1.2
542	Urocyon cinereoargenteus	KU-M	14355	Texas, Kerr Co.	26.76	21.35	1.2
639	Urocyon cinereoargenteus	KU-M	34889	Kansas, Cherokee Co., Hollowell, 2 mi S, 0.5 mi W	27.58	21.73	1.2
636	Urocyon cinereoargenteus	KU-M	39442	Kansas, Shawnee Co., Topeka, 8 mi E State House	26.55	21.89	1.2
633	Urocyon cinereoargenteus	KU-M	47984	California, San Bernadino Co., Colorado River, 29 mi S. Needles	26.21	20.32	1.2
30	Urocyon cinereoargenteus	KU-M	47986	California, San Bernadino Co., Colorado River, 5 mi North of Needles	24.31	18.36	1.3
331	Urocyon cinereoargenteus	KU-M	52480	California, Riverside Co., 35 mi N. Blythe	27.65	23.40	1.1
644	Urocyon cinereoargenteus	KU-M	79714	New Mexico, Eddy Co., Black River Village	30.61	24.10	1.2
37	Urocyon cinereoargenteus	KU-M	92630	Kansas, Jefferson Co., E. Williamstown, 1.5 mi S and 2 mi E	28.64	23.99	1.1
28	Urocvon cinereoargenteus	KU-M	143461	California, Marin Co., Point Reves National Seashore	28.61	22.96	1.2
29	Urocyon cinereoargenteus	KU-M	143462	California, Marin Co., Point Reves National Seashore	29.08	24.36	11
343	Lirocyon cinereogrammeus	KU-M	143463	California, Marin Co., Point Reves National Seashore	25.00	19.46	1.1
140	Uroovon oinereoargenteus		161050	Minopuri Adair Co. 6 mi north and 1 mi wast of	20.14	0/ 10	1.2
04	University of the recoargenteus		101052	Kirksville	05.00	24.10	1.2
35	Urocyon cinereoargenteus	KU-M	163745	Kirksville	25.89	22.01	1.1
12	Urocyon cinereoargenteus	MSB	37260	New Mexico, Bernalillo Co., Tijeras Canyon near Tijeras Creek	29.18	23.43	1.2
15	Urocyon cinereoargenteus	MSB	50573	New Mexico, Bernalillo Co., Cedar Crest	26.01	22.59	1.1
i1 4	Urocyon cinereoargenteus	MSB	50761	New Mexico, Bernalillo Co., Cedar Crest	28.14	23.53	1.2
16	Urocvon cinereoargenteus	MSB	54630	New Mexico, Bernalillo Co., Cedar Crest	28.58	22.59	1.2
517	Urocyon cinereoargenteus	MSB	54905	New Mexico, Bernalillo Co., Cedar Crest	26.79	22.22	1.2
19	Lirocyon cinereogramme	MSB	57639	New Mexico, Bernalillo Co, Cedar Crest	28 54	22 48	12
18	Lirocyon cinerecorgentous	MSB	60983	New Mexico, Bernalillo Co., Codar Crost	29.04	22.40	1 2
010	Uroovon cinereoargenteus	MOD	00303	New Mexico, Demaillo Co., Cedar Crest	29.24	22.42	1.3
020	Unocyon cinereoargenteus	IVISB	00980	New Mexico, Demaillo Co., Cedar Crest	30.19	24.33	1.2
21	Urocyon cinereoargenteus	MSB	00987	New Mexico, Bernallio Co., Cedar Crest	31.48	24.84	1.2
	Live even einere eerenteve	N/117A	25 (D_11)	Missouri St Clair Co	26 7 9	21 56	1 2

			Specimen		Calc	Sust	Gear
ID	Species	Inst	No	Locality	Len	Pos	Ratio
Canid	ae (continuation)						
691	Urocyon cinereoargenteus	MUZA	53 (P-11)	Missouri, Henry	28.19	21.66	1.30
692	Urocyon cinereoargenteus	MUZA	587 (Q-1)	Missouri, Benton Co., Rodgers Shelter	28.98	23.74	1.22
2077	Urocyon cinereoargenteus	NCSM	8374	North Carolina, Randolph Co., Ashboro, E. of; on US	29.83	23.62	1.26
				64, across from JCT SR 2706.			
2078	Urocyon cinereoargenteus	NCSM	15023	North Carolina, Wake Co., Raleigh, SW of Garner, SR	28.07	22.01	1.28
0040			1000	1006 (Old Stage Rd), 0.2 rdmi N of JCT SR 2/13	00.00	00.00	1.05
2046	Urocyon cinereoargenteus	OMINH-IN	/1629	Okianoma, Cleveland Cty, 3 ml E, 5 ml N Lexington,	26.20	20.90	1.25
0040			1000	I /N R1W Sec 24	07.00	01.00	1.04
2043	Urocyon cinereoargenteus		/1662	United States, US 52 Oldshama, Claudand Nabla, Etawah Dal & 04th	27.20	21.89	1.24
2044	Urocyon cinereoargenteus		/11/006	Oklahoma, Cleveland, Noble, Etowah Rd, & 84th	27.80	21.04	1.28
2042	Urocyon cinereoargemeus		/130230	Marahall Daad	29.01	24.13	1.24
20/5	l Irocvon cinereographeus		130276	Niarshall Rudu Oklahoma, Cleveland, Hwy 9 (between Chautauqua	25 02	21.08	1 23
2045	orocyon cinereoargemeus		103210	and lenking)	20.02	21.00	1.20
412	l Irocvon cinereoargenteus	LIMM7	61521	Mexico Tamaulinas Mulato	25 49	20.69	1 23
408			63186	Guatemala Peten Llaxactun	21.40	16.25	1.33
410	Urocyon cinereoargenteus	UMMZ	81033	Mexico Baia California Cape San Lucas	26.41	21 78	1.21
423			82484	New Mexico, Valencia Co., 1.5 mi, S. Grants	29.61	25.11	1 18
414	Lirocvon cinereoargenteus	UMMZ	83967	Alabama Lee Co. 5 mi N. Opelika	28.27	23.27	1.10
415	Urocvon cinereoargenteus	UMMZ	83969	Alabama, Lee Co., 5 mi, F. Auburn	28.27	22.63	1.25
413	Urocvon cinereoargenteus	UMMZ	93303	Mexico, Quintana Boo, Esmeralda	21.96	17.18	1.28
409	Urocvon cinereoargenteus	UMMZ	99412	Guatemala, Dept. Santa Bosa, Finca La Morena	25.86	21.12	1.22
411	Urocvon cinereoargenteus	UMMZ	100757	Mexico, Durango, 25 mi NNW El Salto, La Lagurra	26.39	20.56	1.28
421	Urocvon cinereoargenteus	UMMZ	101194	Michigan, Jackson Co., T15 R3W, betwee sec. 5 & 6	28.22	22.51	1.25
420	Urocvon cinereoargenteus	UMMZ	103536	Kansas, Meade Co., 14 mi SW Mead	27.86	22.60	1.23
419	Urocvon cinereoargenteus	UMMZ	103647	Illinois, Ogle Co., Leaf River	26.73	22.71	1.18
425	Urocvon cinereoargenteus	UMMZ	113307	Texas, Travis Co.	28.09	22.24	1.26
426	Urocyon cinereoargenteus	UMMZ	114346	Texas, Travis Co.	25.69	19.80	1.30
427	Urocyon cinereoargenteus	UMMZ	114347	Texas, Travis Co.	27.37	21.21	1.29
428	Urocyon cinereoargenteus	UMMZ	115491	Texas, Travis Co.	24.66	20.26	1.22
424	Urocyon cinereoargenteus	UMMZ	116350	New York, Warren Co., 6 mi. N. Glen Falls	28.33	21.94	1.29
422	Urocyon cinereoargenteus	UMMZ	123396	Michigan, Washtenaw Co., Ann Arbor	27.77	22.94	1.21
417	Urocyon cinereoargenteus	UMMZ	176146	California, Meno, Hwy 395 north by Bodie State	27.40	22.53	1.22
				Historic Park			
416	Urocyon cinereoargenteus	UMMZ	176207	California, Los Angles, Angeles National Forest,	24.18	19.46	1.24
				Angeles Crest Highway			
418	Urocyon cinereoargenteus	UMMZ	176266	California, Santa Barbara, Highway 1	26.31	21.05	1.25
971	Urocyon cinereoargenteus	USNHM	235486	Largo, Maryland	28.15	21.84	1.29
970	Urocyon cinereoargenteus	USNHM	236960	Camp Mead, Anne Arundel County, Maryland	29.45	22.34	1.32
973	Urocyon cinereoargenteus	USNHM	240402	Rock Point, Maryland	28.02	22.22	1.26
994	Urocyon cinereoargenteus	USNHM	244918	Chuntuqui, El Salvador (or Guatemala)	22.59	16.97	1.33
988	Urocyon cinereoargenteus	USNHM	244919	Libertad, Peten, Guatemala	20.58	16.21	1.27
990	Urocyon cinereoargenteus	USINHIVI	244921	Libertad, Peten, Guatemala	22.05	10.01	1.27
993	Urocyon cinereoargenteus	USINHIVI	244922	Libertad, Peten, Guatemala	24.10	19.21	1.20
989	Urocyon cinereoargenteus	USINHIVI	244923	Libertad, Peten, Guatemala	19.80	10.08	1.19
991	Urocyon cinereoargenteus		244920	Libertad, Peter, Guatemala	23.40	16.92	1.20
992	Urocyon cinereoargenteus		244927	Allendale County Elorida	21.00	2/ 27	1.30
976	Urocyon cincroorgontous		257652	Ovon Hill Mandand	27 25	24.27	1.24
970	Urocyon cinereoargenteus		258563	La Plata Maniland	28.70	21.77	1.20
995	Lirocyon cinereoargenteus	LISNHM	258568		26.73	21.88	1.24
975	Lirocyon cinereoargenteus	USNHM	282140	Silver Spring, 1 mi NW, Maryland	28.32	23.09	1.23
978	Lirocvon cinereoargenteus	USNHM	283642	Hagerstown Maryland	28.68	22.84	1.26
981		USNHM	284892	Shenandoah National Park Gooney Manor Virginia	26.24	20.95	1.25
980	Lirocvon cinereoargenteus	USNHM	311152	Whitetop Mt 5300 ft Smyth County Virginia	26.09	20.62	1.27
982	Urocvon cinereoargenteus	USNHM	521046	Lee Highway, Next to Arlington national cemetery.	27.43	22.70	1.21
002	ereeyen entereeuigenteue		02.010	Arlington County, Virginia	20		
983	Urocvon cinereoargenteus	USNHM	521047	Lincolnia Avenue, near intersection of 195 and Route	27.67	23.01	1.20
	,			236, Fairfax County, Virginia			
967	Urocyon cinereoargenteus	USNHM	564257	Petersham, Worcester County, Massachusetts	27.80	21.62	1.29
968	Urocyon cinereoargenteus	USNHM	564258	Petersham, Worcester County, Massachusetts	25.99	20.02	1.30
985	Urocyon cinereoargenteus	USNHM	568477	South of Snell, before Partlow, on rte 738 near public	25.69	20.33	1.26
				dump, Spotsylvania County, Virginia			
986	Urocyon cinereoargenteus	USNHM	568665	Partlow road rte 738, near Wallers church, Spotsylvania	26.16	20.93	1.25
-				County, Virginia			
972	Urocyon cinereoargenteus	USNHM	000064/	Washington DC	26.53	20.67	1.28
			A00968				

	Creation	Inct	Specimen	Lessity.	Calc	Sust	Gear
	Species	Inst	NO	Locality	Len	POS	Ratio
Canid	ae (continuation)						
969	Urocyon cinereoargenteus	USNHM	000065/	Washington DC	26.85	21.04	1.28
070			A00974	Dave County Donnoulyonia	07.05	01 00	1.07
979		USNHM	AUU771	Perry County, Pennsylvania	27.85	21.92	1.27
997	Urocyon cinereoargenteus		A21210	Shasta County, California	27.57	22.19	1.24
990	Urocyon cinereoargenteus	LISNHM	Δ21211	Shasta County, California	26.12	21.51	1.20
1000	Urocyon cinereoargenteus	USNHM	A21212	Shasta County, California	27 72	21.14	1.30
1001	Urocvon cinereoargenteus	USNHM	A21214	Shasta County, California	29.24	24.27	1.20
1002	Urocvon cinereoargenteus	USNHM	A21215	Shasta County, California	27.05	22.56	1.20
1003	Urocyon cinereoargenteus	USNHM	A21216	Shasta County, California	25.56	21.05	1.21
1004	Urocyon cinereoargenteus	USNHM	A21217	Shasta County, California	28.12	21.66	1.30
1005	Urocyon cinereoargenteus	USNHM	A21530	Shasta County, California	26.58	21.18	1.25
974	Urocyon cinereoargenteus	USNHM	A23115	Alexandria, Virginia	26.99	21.85	1.24
987	Urocyon cinereoargenteus	USNHM	A23117	Macon, Georgia	28.05	23.21	1.21
996	Urocyon cinereoargenteus	USNHM	A30618	Fort Davis, Texas	28.85	22.48	1.28
455	Urocyon cinereoargenteus	UTVPL	M-1120	Texas, Bastrop Co.	27.39	23.59	1.16
456	Urocyon cinereoargenteus	UTVPL	M-1874	Texas, Travis Co.	27.90	22.39	1.25
457	Urocyon cinereoargenteus	UTVPL	M-2063	Texas, Presidio Co., Rooney Ranch	28.56	22.41	1.27
458	Urocyon cinereoargenteus	UIVPL	M-2704	Texas, Travis Co., Austin, Gate of Balcones Research	29.05	23.20	1.25
450			M 0000	Center	07.00	01 00	1 00
459	Urocyon cinereoargenteus	UTVPL	M-3003	Texas, Travis Co., Austin, Balcones Trail near FM 2222	27.39	21.29	1.29
461	Urocyon cinereoargenteus	UIVPL	M-3979	Texas, Bastrop Co., Red Rock, 2 mi W. on Highway	27.93	21.97	1.27
400			M 0004	812 on Frank Carrol Ranch	05.00	00.40	1 0 1
462	Urocyon cinereoargenteus		IVI-3984	Texas, Bastrop Co., Red Rock	25.32	20.48	1.24
404	Urocyon cinereoargenteus		IVI-4003	Texas, Bastrop Co., Red Rock	20.49	20.00	1.27
400	Urocyon cinereoargenteus		IVI-4900	Texas, Travis Co. Austin	27.90	21.02	1.29
403	Urocyon cinereoargenteus	W/RA7I	10277	Indiana Monroe Co	27.00	22.01	1.23
2087	Lirocyon littoralis	MV7	38351	San Miquel Island, Santa Barbara, California, LISA	22.13	18 91	1.27
2086	Lirocyon littoralis	MVZ	38352	San Miguel Island, Santa Barbara County, California	21.63	17 49	1.20
2000	Sibeyon intorails	101 0 2	00002	LISA	21.00	17.40	1.24
578	Vulpes lagopus	DMNH	7452	00/1	29.78	21.88	1.36
3	Vulpes lagopus	FMNH	60053	Zoo: Lincoln Park Zoo. Chicago	27.64	20.31	1.36
4	Vulpes lagopus	FMNH	60377	Zoo: Lincoln Park Zoo. Chicago	29.34	22.05	1.33
5	Vulpes lagopus	FMNH	60405	Zoo: Lincoln Park Zoo, Chicago	29.27	21.92	1.34
6	Vulpes lagopus	FMNH	101870	Zoo: Lincoln Park Zoo, Chicago	28.98	21.40	1.35
7	Vulpes lagopus	FMNH	129290	Alaska, Point Barrow, Game Management Unit 26	26.65	20.49	1.30
8	Vulpes lagopus	FMNH	129291	Alaska, Point Barrow, Game Management Unit 26	27.73	21.29	1.30
1945	Vulpes lagopus	UNIVA	1399	Unknown	29.18	24.21	1.21
9	Vulpes lagopus	WRAZL	9510028	Alaska, Barrow; Shot on (Gas Field or East Field??),	25.70	19.55	1.31
				Gaswell Road, 1st Station			
227	Vulpes macrotis	FMNH	129299	Nevada, Clark Co.	21.66	15.90	1.36
226	Vulpes macrotis	FMNH	129300	Nevada, Clark Co.	23.32	19.13	1.22
55	Vulpes velox	AMNH-N	1100190	N.Y. Zoological Society	26.12	21.16	1.23
54	Vulpes velox		1100215	N.Y. Zoological Society	24.56	20.01	1.23
660	Vulpes vulpes		33 550	IVIISSUUTI, IVIOTITUE CU. Missouri, Ronton Co. Rodgers Shelter	29.81 20.02	∠3.48 22.01	1.27
688	Vulpes vulpes		552 (P 10)	Missouri, Bonton Co., Rodgers Shelter	29.02	22.01	1.01
687	Vulnes vulnes	MI IZA	586 (P-10)	Missouri, Benton Co. Rodgers Shelter	29.10	22.04	1.32
361	Vulnes vulnes	NRM	955021	Sweden Uppland Enkönings-Näs Brunnsholm	36 55	30.06	1.02
362	Vulpes vulpes	NRM	955158	Sweden, Uppland, Vassunda	34.59	27.89	1.24
363	Vulpes vulpes	NRM	965015	Sweden, Sö., Stockholm. Trangsund	29.27	25.76	1.14
359	Vulpes vulpes	NRM	2005316	Sweden, Lycksele lappmark, Sorsele, Biörkfiället:	32.53	26.86	1.21
				Gardenhyttan			
360	Vulpes vulpes	NRM	20035018	Sweden, Uppland, Stockholm, Ästra ryd, Säbyviken	36.43	30.08	1.21
336	Vulpes vulpes	NRM	58-0131	Sweden, Grillby	33.52	25.74	1.30
337	Vulpes vulpes	NRM	58-2840	Sweden,Roslagen	32.61	22.50	1.45
339	Vulpes vulpes	NRM	58-3635	Russia, Kamchatka, Petropavlovsk	29.59	23.31	1.27
338	Vulpes vulpes	NRM	58-5437	Sweden, Nacka,Nacka(s:n)	31.27	24.59	1.27
340	Vulpes vulpes	NRM	58-6662	Sweden, Stockholm, Freskati	32.31	26.29	1.23
341	Vulpes vulpes	NRM	58-6697	Sweden, Gotska Sandön	34.72	27.39	1.27
342	Vulpes vulpes	NRM	58-6725	Sweden, Lötskyrka, Mälaren	36.03	28.55	1.26
343	vulpes vulpes	NKM	58-6/26	Sweden, Gotska Sandön	31.63	25.22	1.25
345	vulpes vulpes		50-6727	Sweden, Gotska Sandon	32.34	25.47	1.27
346	vuipes vuipes		30-0/28	Sweden, Golska Sandon	31.74	23.69	1.34
341 210	vulpes vulpes		59-0025 50_0006	Sweden Grillby	34.90 32.00	20.1U	1.24
340 2/0	Vulpes vulpes		59-0020 59_0027	Sweden Lidingö: Elfvik	33.00	27.13	1.22
549	vuipes vuipes		33-0021	Sweden, Liuliyo, Liivik	33.35	21.00	1.27

		S	pecimen		Calc	Sust	Gear
ID	Species	Inst N	0	Locality	Len	Pos	Ratio
Canid	ae (continuation)						
350	Vulpes vulpes	NRM 59	9-0029	Sweden, Lidingö; Elfvik	34.23	27.51	1.24
351	Vulpes vulpes	NRM 59	9-0130	Sweden, Lidingö; Elfvik	33.03	26.72	1.24
352	Vulpes vulpes	NRM 68	8-0363	Sweden, Hasselby	33.28	26.45	1.26
353	Vulpes Vulpes	NRM 6	9-0166	Sweden, Nattavara, 12 km E	33.16	28.24	1.17
304	Vulpes vulpes		3-0001	Sweden, Veckholm	34.04	21.01	1.20
355	Vulpes vulpes		3-0002 1_5128	Sweden, Stelm Vallentung Grävelsta	36.03	20.02	1.20
356	Vulpes vulpes	NRM 9	8-5031	Sweden, Stillin, Valentulla, Gravelsta	35.28	27.00	1.02
358	Vulpes vulpes	NRM 98	8-5772	Sweden, Up., Knivsta: Vallby	31.82	25.81	1.23
1980	Vulpes vulpes	UNIVA 15	50	Valladolid	33.46	24.93	1.34
1979	Vulpes vulpes	UNIVA 2	138	Cen. Rec. Aves, Pollos, Valladolid, Spain	33.60	25.41	1.32
56	Vulpes vulpes	WRAZL 96	610431	Indiana, Greene Co.	28.20	20.72	1.36
58	Vulpes zerda	AMNH-M22	2881	N.Y. Zoological Society	18.19	14.20	1.28
57	Vulpes zerda	AMNH-M90	0319	N.Y. Zoological Society	18.76	14.57	1.29
1974	Vulpes zerda	UNIVA 4		Zoo de Barcelona	17.29	13.49	1.28
1973	Vulpes zerda	UNIVA 34	441	Faunia	18.02	13.60	1.33
1975	Vulpes zerda	UNIVA 47	790	Zoo de Madrid	22.45	16.70	1.34
Euple	ridae						
194	Cryptoprocta ferox	AMNH-M10	00463	Madagascar, Province de Betroka, 170 km E (Julear), Toliara	31.85	26.92	1.18
195	Cryptoprocta ferox	AMNH-M19	99544	Madagascar, Province de Toliara, 12 km NN Itampolo, Aven de Leilia, 90 m	37.08	30.46	1.22
2088	Cryptoprocta ferox	YPM-VZ Y	PM 6813	Madagascar (from Kny-Scheerer Co)	32.69	26.37	1.24
197	Fossa fossana	AMNH-M10	00454	Madagascar, Sianaka Forest (east of Toamasina, near	19.92	16.19	1.23
				Fito and Didy)			
196	Fossa fossana	AMNH-M18	88208	Madagascar, Province de Maroantsetra, Ambatondradama	19.54	14.61	1.34
117	Salanoia concolor	AMNH-M10	00476	Madagascar, Sianaka Forest (east of Toamasina, near Fito and Didu)	15.15	12.72	1.19
118	Salanoia concolor	AMNH-M10	00477	Madagascar, Sianaka Forest (east of Toamasina, near Fito and Didu)	14.59	12.76	1.14
-							
Felida	e Asiasawa intertur		440	Zee de Deveelere	74.07	F 4 00	1 00
1907	Acinonyx jubatus		440 100	Zoo de Barcelona Zoo de Medrid	74.07	50.04	1.30
1983	Acinonyx jubalus		400 656	Zoo de Barcelona	85.02	62.88	1.29
1981	Acinonyx jubatus	UNIVA 52	257	Zoo de Madrid	80.79	60.05	1.35
1982	Acinonyx jubatus	UNIVA 52	265	Selwo Aventura, Estepona, Spain	75.75	54.48	1.39
59	Acinonyx jubatus	WRAZL 96	610404		79.78	58.77	1.36
60	Caracal caracal	FMNH 5	7220	Zoo: Brookfield Zoo, Chicago	39.87	27.85	1.43
2011	Caracal caracal	UNIVA 1	518	Zoo de Matapozuelos (Valladolid)	42.14	29.86	1.41
64	Felis catus	WRAZL W	/56	Unknown	28.27	20.24	1.40
62	Felis chaus	WRAZL 98	810278		35.66	24.84	1.44
66	Felis margarita	FMNH 12	27295	Zoo:	24.84	20.50	1.21
67	Felis nigripes	AMNH-M2	14381	South Africa, Cape, Grahamstown	20.25	14.84	1.36
2008	Felis silvestris	UNIVA 28	879	Cen. Rec. Aves, Pollos, Valladolid, Spain	31.86	23.99	1.33
2007	Felis silvestris	UNIVA 52	206	Burgos, Spain	29.45	20.88	1.41
2009	Felis silvestris		210	Burgos, Spain	34.40	25.09	1.37
2005	Felis silvestris		229	Boa Afar, Lea a/ ∞ fill, Spain Boa Âfar Loa a% Yn Spain	20.79	22.47	1.30
2000	Leonardus geoffrovi		230	Uruguay Dept Carro Largo 6 km SE Melo	33 56	25.13	1.39
1989	Leopardus geoffroyi		166	Zoo de Euengirola (Malaga) spain	28.43	21.00	1.34
1988	Leopardus geoffrovi	UNIVA 1	172	Zoo de Fuengirola (Malaga) spain	25.51	18.86	1.35
69	Leopardus pardalis	AMNH-M1	33967	Brazil, Govas, Annapolis	40.05	28.68	1.40
563	l eopardus pardalis	DMNH 2	343	Brazil, Descalvos, Matto Grosso	37.63	27.28	1.38
333	Leopardus tigrinus	AMNH-M1	19599	No data	27.22	20.63	1.32
332	Leopardus tigrinus	AMNH-M14	43896	No data	22.68	16.70	1.36
331	Leopardus wiedii	AMNH-M2	12546	No data	28.83	23.20	1.24
403	Leopardus wiedii	UMMZ 12	26123	Paraguay, Itapua, 3.5 Km E. San Rafael	26.22	18.39	1.43
70	Leptailurus serval	FMNH 9	5997	Zimbabwe, East Mashonaland, Salisbury Dist., Komani Farm	48.45	33.65	1.44
2003	Leptailurus serval	UNIVA 27	71	Zoo de Matapozuelos (Valladolid)	43.38	31.41	1.38
2004	Leptailurus serval	UNIVA 1	547	Zoo de Matapozuelos (Valladolid)	45.96	32.67	1.41
71	Lynx canadensis	AMNH-M1	5662	Canada, Newfoundland, Humber River	50.35	35.76	1.41
366	Lynx canadensis	NRM 58	8-2286	USA, Michigan, Lake Superior	48.11	36.30	1.33
367	Lynx canadensis	NRM 58	8-2287	USA, Michigan, Lake Superior	44.87	33.42	1.34
368	Lynx lynx	NRM 58	8-2815	Sweden, Junsele	57.20	40.59	1.41
369	Lynx lynx	NRM 58	8-2825	Sweden, Vännäs, Jämtlandsby	55.22	39.96	1.38

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Folida	e (continuation)						
371	I vnx lvnx	NRM	58-3721	Sweden, Paiala, Saltaiärvi	56.06	43.12	1.30
2013		UNIVA	3555	Valwo Parque de la Naturaleza (Valladolid)	59.81	42 75	1 40
2014			3782	Valwo Parque de la Naturaleza (Valladolid)	56 17	39 /1	1.43
2014			4632	Valwo Parque de la Naturaleza (Valladolid)	50.75	12 15	1.40
2012			4032	Valwo Parque de la Naturaleza (Valladolid)	59.75 60.40	45.15	1.00
2015			4003	valwo Parque de la Naturaleza (valladolid)	02.42	45.51	1.37
12	Lynx pardinus	AMINH-N	1169492	Spain, Toledo, Robledo	45.00	33.26	1.35
2016	Lynx pardinus	UNIVA	4170	Huelva (EBD), Spain	45.34	34.13	1.33
557	Lynx rufus	DMNH	5200	Texas, Kleberg Co., Kingsville	43.28	31.62	1.37
555	Lynx rufus	DMNH	7729	Colorado, Larimer Co., Virginia Dale	41.11	31.02	1.33
556	Lynx rufus	DMNH	8279	Colorado, Park Co., 16 KM NW of Tarryall Reservoir, elevation 9000'	41.35	31.07	1.33
682	Lynx rufus	KU-M	1899	New Mexico, McKinley Co., Mt. Tohotehi S., S. slope	41.00	30.89	1.33
677	Lynx rufus	KU-M	2641	Kansas, Scott Co., Scott City	47.27	35.13	1.35
679	Lvnx rufus	KU-M	5321	Kansas, Logan Co., Elkader, 5 mi W	39.72	29.76	1.33
674	Lvnx rufus	KU-M	6676	New Mexico, McKinley Co., Mt. Tohotehi S., S. slope	40.82	30.52	1.34
673	l vnx rufus	KU-M	6680	New Mexico, McKinley Co, Mt Tohotehi S, S slope	41.02	31 24	1.31
680		KU-M	7037	Idaho, Bannock Co	43.91	34.05	1 29
681			7585	Oregon Lane Co	30.30	28.74	1.27
679			0642	Arizona Mariaana Ca. 7 mi NE Dhaaniy	20.00	20.14	1.07
676			9043	Arizona, Maricopa Co., 7 mi NE Phoenix	30.0Z	20.94	1.04
070	Lynx rufus	KU-IVI	9792	Arizona, Maricopa Co., 7 mi NE Prioenix	43.60	32.17	1.30
672	Lynx rufus	KU-M	48085	Arizona, Yuma Co., Gila Mits., Tinajas Atlas	41.05	30.75	1.33
675	Lynx rufus	KU-M	48086	Arizona, Yuma Co., Gila Mts., Tinajas Atlas	35.88	26.19	1.37
2074	Lynx rufus	NCSM	6263	New York, Yancey Co., 6 mi. S. of Burnsville	41.93	30.55	1.37
2075	Lynx rufus	NCSM	13383	New York, Ulster Co., New Paltz	36.39	26.48	1.37
2076	Lynx rufus	NCSM	15020	North Carolina, Johnston Co, Smithfield, Dickinson Rd. (=SR 1505) between Cleveland Rd. and Crantock Rd.	40.40	29.13	1.39
713	Lynx rufus	USNHM	173028	Lake Okeechobee, Florida	46.22	32.97	1.40
725	Lvnx rufus	USNHM	175012	South Dakota	42.83	30.82	1.39
706	l vnx rufus	USNHM	188754	Nicasio, California	41.40	30.48	1.36
717	l vnx rufus	USNHM	239931	Lexington Kentucky	37.96	27.89	1.36
715		LISNHM	249279	Maupin 7 miles from Oregon	46.43	35.44	1 31
716			240220	Maupin, Orogon	10.10	24.60	1 20
710			249200	Oven Hill 4 Miles & Brings Coorges County Mandand	40.10	24.00	1.00
710		USINHIVI	270202	Vion Hill, 4 Miles S, Prince Georges County, Maryland	40.09	20.00	1.39
727	Lynx rufus	USINHIM	271310	King Ranch (near Corpus Christi) Texas	44.04	32.05	1.39
722	Lynx rufus	USNHM	276360	2 Miles N Pierre, South Dakota	46.64	33.74	1.38
707	Lynx rufus	USNHM	282369	Santa Catalina Mts (Coronado Forest, Arizona)	46.45	35.08	1.32
719	Lynx rufus	USNHM	292037	Burleigh County, North Dakota	44.92	32.02	1.40
720	Lynx rufus	USNHM	292038	Burleigh County, North Dakota	43.40	31.08	1.40
723	Lynx rufus	USNHM	306264	Hardy County, West Virginia	38.04	27.45	1.39
711	Lynx rufus	USNHM	398557	Ardath Road, 1/4 mile W US 5 between Claiemont and La Jolla, San Diego County, California	41.34	29.69	1.39
728	Lynx rufus	USNHM	019078/ A34812	Kinney County, Texas	41.42	29.60	1.40
721	Lvnx rufus	USNHM	A00637	Carlisle Caves. Pennsvlvanja	38.71	27.22	1.42
726	L vnx rufus	USNHM	A01376	Matamoras Tamaulipas Mexico	43.07	30.93	1.39
71/	Lynx rufus		A01874	Ft Union Texas (Crossed out and written Montana)	40.07	20.00	1 37
714			(1853?)		40.33	23.32	1.07
700		USINHIVI	AU2U32	Shoata County, Colifernia	JU 20 00	20.30	1.09
109	Lynx rutus	USNHM	A21229	Snasta County, California	39.83	29.30	1.36
/3	Lynx rutus	WRAZL	1103/7	Indiana, Dubois Co.	41./8	29.37	1.42
74	Lynx rufus	WRAZL	110377	Indiana, Dubois Co.	42.14	29.64	1.42
75	Lynx rufus	WRAZL	110377	Indiana, Dubois Co.	42.22	29.66	1.42
76	Lynx rufus	WRAZL	110377	Indiana, Dubois Co.	42.39	29.63	1.43
77	Lynx rufus	WRAZL	110377	Indiana, Dubois Co.	42.10	29.62	1.42
78	Lynx rufus	WRAZL	110377	Indiana, Dubois Co.	42.08	29.58	1.42
79	Lynx rufus	WRAZI	210001	Missouri, St. Louis	41.93	30.05	1.40
83	l vnx rufus	WRA7I	8910071		41.43	30.97	1.34
81	Lynx rufus	WRA7I	H07	Arizona, Cocomina Co	37 55	26.18	1 42
20	Lynx rufus			Minnesota Itasca	12 77	21.70	1 22
02	Lynx ruius Naafalia pahulaaa	VVITAZL	1709		43.11 44.55	01.74	1.30
84	iveotelis nebulosa	AIVINH-N	1238650		44.55	34.33	1.30
554	Neotelis nebulosa	DMNH	8309	Denver ∠oo	43.37	32.65	1.33
65	Otocolobus manul	FMNH	60691	Zoo: Brookfield Zoo, Chicago	26.35	20.87	1.26
86	Panthera leo	WRAZL	9510380		100.00	83.78	1.19
90	Panthera onca	AMNH-N	1135928	Mexico, Moreno Station, Box Canyon	60.61	46.41	1.31
2022	Panthera onca	UNIVA	123	Zoo de Barcelona	68.07	52.95	1.29
2025	Panthera onca	UNIVA	125	Zoo de Barcelona	71.87	55.76	1.29
2024	Panthera onca	UNIVA	2415	Zoo do Matapozuelos (Valladolid)	66 40	50.29	1.32
2027	Panthera onca		3110	Valuo Parque de la Naturaleza Malladolid)	7/ /5	57 07	1.02
LUZ1	i anuncia Unca	AVINO	5118	vaivo Farque de la Maturaleza (Valiadolia)	14.40	21.31	1.20

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Felida	e (continuation)						
2021	Panthera onca	UNIVA	4857	Zoo de Madrid	74.25	59.88	1.24
2026	Panthera onca	UNIVA	4857	Zoo de Madrid	73.95	59.66	1.24
91	Panthera pardus	AMNH-N	A90205		62.99	52.14	1.21
92	Panthera tigris	WRAZL	8610108		100.00	82.34	1.21
93	Pardofelis marmorata	AMNH-N	M35399	N.Y. Zoological Society	25.88	19.29	1.34
61	Pardofelis temminckii	FMNH	605584	Zoo: Brookfield Zoo. Chicago	42.61	30.49	1.40
94	Prionailurus bengalensis	AMNH-N	M22904	N.Y. Zoological Society	29.33	21.61	1.36
95	Profelis aurata	AMNH-N	M185465	N.Y. Zoological Society	45.55	33.40	1.36
550	Puma concolor	DMNH	7732	Colorado, Douglas Co., Sedalia	70.28	51.99	1.35
551	Puma concolor	DMNH	8051	Colorado, Sagauche Co., Grove	71.59	52.82	1.36
553	Puma concolor	DMNH	11070	Colorado, Montezuma Co., Mesa Verde National Park, Prator Canyon 1 mi S. of Montezuma Overlock	68.86	51.37	1.34
669	Puma concolor	KU-M	2193	Kansas, Ellis Co., 1 mile north of Catherine, Ravine near Victoria Creek (see Dyche, Kansas Academy of Sciences, p. 160)	68.80	50.73	1.36
670	Puma concolor	KU-M	2194	New Mexico, Grant Co., Santa Rita	76.46	57.22	1.34
668	Puma concolor	KU-M	73933	Mexico, Chihuahua, 2 mi S, 5 mi W Rancho San Francisco, 5500 ft	72.27	54.04	1.34
671	Puma concolor	KU-M	159141	Litah Carbon Co. Helper (W of) Wild Cattle Canvon	69 21	51 51	1.34
434	Puma concolor	LITVPI	M-2713	Texas Brewster Co Black Gap	66 10	48.36	1.37
430	Puma concolor	LITVPI	M-2743	Texas, Presidio Co, Francis Booney Banch	66.80	49.06	1.36
432	Puma concolor		M_2740	Texas, Presidio Co., Prancis Hooney Handh	75 31	53.00	1.00
120	Puma concolor		M_3177	Texas, Presidio Co., Nooney Handh	67 70	10 05	1.40
423	Puma concolor		M 4057	Texas, Most Conneley Banch	76.07	43.03	1.00
435			NI-4037	Arizona, David Spure	70.97	40.50	1.30
03		VVRAZL	D40	Anzona, Paul Spur	70.10	49.09	1.41
68	Puma yagouaroundi		VI42958	N.Y. Zoological Society	30.75	23.09	1.33
96		WRAZL	9910160	Unknown	60.57	47.12	1.29
Herpe 100	stidae Atilax paludinosus	AMNH-N	183337	Kenya, Central Province, Aberdare Mts., Kikuyu, above	26.39	19.76	1.34
101	Atilax paludinosus	AMNH-N	M83339	Kenya, Central Province, Aberdare Mts., Kikuyu, above Kijabe (Kajabi) station	25.72	20.26	1.27
102	Rdeogale nigrines		151581	Zaire Haut Zaire Akenge	27 94	21 12	1 32
102	Crosserebus alexandri		452070	Zaire, Haut Zaire, Akerige	10 00	15 50	1.02
105			VIJJJ979	Zalie, Haul Zalie, Falauje South Africa, Tranual Dravinga, Drataria	10.09	10.00	1.21
105			104090	South Ainca, Tranvaal Province, Pretona	10.43	10.10	1.41
104	Cynictis peniciliata	AIVINH-I	VI90282	N.Y. Zoological Society	10.40	12.82	1.28
106	Dologale dybowskii	AMINH-P	VI51608	Zaire, Haut Zaire, Nangaraa	13.84	10.62	1.30
114	Galerella sanguinea	AMNH-N	VI51019	Zaire, Haut Zaire, Faradje	12.05	9.02	1.34
113	Galerella sanguinea	AMNH-N	M169434	South Africa/Botswana	13.39	10.85	1.23
110	Herpestes edwardsi	AMNH-N	И22907	N.Y. Zoological Society	17.34	12.94	1.34
109	Herpestes edwardsi	AMNH-N	M35441	N.Y. Zoological Society	17.56	13.68	1.28
111	Herpestes ichneumon	AMNH-N	M82779	Kenya	23.25	18.07	1.29
107	Herpestes javanicus	AMNH-N	M232720	Virgin Islands, St Croix, Christiansted (collected by DW Nellis, with 100s of individuals)	12.12	9.61	1.26
108	Herpestes javanicus	AMNH-N	1232721	Virgin Islands, St Croix, Christiansted (collected by DW Nellis, with 100s of individuals)	13.87	11.13	1.25
112	Herpestes naso	AMNH-N	A51610	Zaire, Haut Zaire, Medje, Forest 15 mi. S. Gamangui	25.16	18.17	1.38
116	Ichneumia albicauda	AMNH-N	A51594	Zaire, Haut Zaire, Faradje	29.38	19.45	1.51
115	Ichneumia albicauda	AMNH-N	M187767	Kenya, Central Province, Nyeri Dist., South Laikipia Forest, 10 mi NE Bellevue, 7200 ft	31.15	22.20	1.40
Hyper	nidae			·			
121	Crocuta crocuta		18855	Somaliland East Africa	60.03	44 52	1 25
121		EMNIH	34584	Botewana Ghanzi	50.03	30 33	1.00
100	Hydena Diunnea		7665	Zoo: Lincoln Dark Zoo. Chicago	44.20	26.67	1.27
123	Proteles cristata	FININE	186435	Zoo: Lincoli Fark Zoo, Onicago Zoo:	30.89	24 69	1.21
124			100-00	200.	00.03	27.03	1.20
Niepn			4100040	Duranil Mata Orange Managain	10.00	15 01	1.00
126	Conepatus chinga Conepatus leuconotus	AMNH-I AMNH-I	v133946 v136415	Texas, Brewster Co., Chisos Mts, Juniper, Canon, 6500	19.29 19.79	15.31 16.26	1.26
404	Conepatus leucopotus		61391	Mexico Tamaulipas Mulato	23 50	20 53	1 14
365	Conepatus semistriatus	NRM	58-4860	Linknown	16 02	15 10	1 1 2
361	Conepatus semistriatus		58,4009	Unknown obtained from K. Schoorer, New Verk	10.3Z	12.00	1.12
1/0	Monhitio mooreuro		30-4991	Chibuchua, Danaha La Company, 1470 #	10 50	15.90	1.20
140	Manhitia macroura		106900	Ommuanua, Rancho La Campana, 14/U π	14.10	10.21	1.20
558	Mephitis mephitis	DMNH	6823	Colorado, Weld Co., 7 mi E. of Prospect Homestead Grange	20.80	16.67	1.27

חו	Species	Specim	en Locality	Calc	Sust	Gear
	opecies	INST NO	Locality	Len	POS	катю
Meph	itidae (continuation)			04 57	10.00	
559	Mephitis mephitis	DMNH 7830	Colorado, Jefferson Co., Evergreen	21.57	18.39	1.17
1/0	Monhitis mephitis		Colorado, Denver Co., Denver	21.90	1/.90	1.23
149	wepritus mepritus	1113101 / 1.03.0	NW of Mauekport (Helecone)	10.10	14.77	1.20
148	Menhitis menhitis	W/RA71 A20	Indiana Monroe Co	19 30	16.06	1 20
324	Spilogale gracilis	AMNH-M121840	New Mexico, Colfax Co, 8 mi W Cimarron, mouth of	12.00	9.59	1.20
024	opilogalo gradilio		Cimarroncito Canvon 7800' Elevation	12.20	0.00	1.20
327	Spilogale gracilis	AMNH-M135961	Arizona Molino Canyon 18 mi ENE of Tucson	11 20	9 96	1 12
328	Spilogale gracilis	AMNH-M135962	Arizona, Molino Canvon, 18 mi ENE of Tucson	10.60	9.48	1.12
326	Spilogale gracilis	AMNH-M137373	Colorado, Costilla Co., 5 mi SSE of Ft. Garland	12.41	9.71	1.28
325	Spilogale gracilis	AMNH-M183843	Colorado, Colorado Springs	11.81	8.89	1.33
159	Spilogale putorius	AMNH-M245674	Nebraska, Brown Co.	12.54	10.17	1.23
160	Spilogale putorius	AMNH-M245675	Nebraska, Brown Co.	12.91	10.52	1.23
158	Spilogale putorius	INSM 71.20.04	112 Indiana, Miami Co.	10.92	9.03	1.21
119	Suricata suricatta	AMNH-M35637	N.Y. Zoological Society	14.86	11.31	1.31
120	Suricata suricatta	AMNH-M35646	N.Y. Zoological Society	14.53	10.68	1.36
212	Suricata suricatta	WRAZL 9510083	}	13.96	10.01	1.39
/luste	elidae					
125	Arctonyx collaris	AMNH-M57118	China, Sichuan, Wanhsien	26.89	23.65	1.14
129	Eira barbara	AMNH-M389	Brazil, Matto Grosso, Chapada	30.62	25.29	1.21
130	Eira barbara	AMNH-M134947	Colombia, Hulamâ^ °	23.29	19.08	1.22
128	Enhydra lutris	WRAZL 9310894	Alaska, Oil spill	39.20	32.30	1.21
131	Galictis cuja	AMNH-M133944	Brazil, Goyas, Annapolis	15.54	14.06	1.11
132	Galictis vittata	AMNH-M35257	N.Y. Zoological Society	16.40	14.16	1.16
133	Galictis vittata	AMNH-M100250	N.Y. Zoological Society	18.55	15.81	1.17
405	Gulo gulo	UMMZ 1/854	Detroit Zoo, Royal Oak	38.39	30.84	1.24
407	Gulo gulo	UMMZ 111093	Montana, Missoula, Cramer Creek, 8 mi E of Clinton	42.44	36.02	1.18
106	Gulo gulo		Detroit 200, Royal Oak	44.84	35.51	1.20
134	Guio guio		Alaska	40.40	34.57	1.17
100	lotonyx libyca		N.Y. Zoological Society	0.00	7.23	1.10
127	lotopyx striatus		Angola Chinongo	20.92	17.00	1.11
565	l ontra canadensis	DMNH 7392	Aligoia, Olipeligo Alaska Minto Elats	20.02	23.02	1.20
138	Lontra canadensis	WRAZI 901000	Indiana Mesker Park Zoo	27.73	20.02	1.21
329	Lontra longicaudis	AMNH-M133950	Brazil Govaz Anapolis	23.55	19.96	1 18
330	Lontra longicaudis	AMNH-M207729	New York Zoological Society	22.39	17 74	1 26
568	Martes americana	DMNH 7824	Alaska, North Star Borough, Fairbanks	18.89	14.71	1.28
567	Martes americana	DMNH 7838	Alaska, Fairbanks	18.14	15.05	1.21
139	Martes americana	WRAZL 891212	Wyoming, Yellowstone National Park	18.10	14.45	1.25
140	Martes foina	FMNH 121676	Zoo: Brookfield Zoo, Chicago	22.90	18.83	1.22
141	Martes martes	AMNH-M183359	Kazakhstan, Kyzl-Kum Desert, Aralsk Dist., Verchneje	17.01	14.31	1.19
698	Martes pennanti	MUZA 45	New Hampshire	24.99	20.00	1.25
142	Martes pennanti	WRAZL 9510032	2 Alaska	19.01	15.55	1.22
143	Meles meles	FMNH 97837	Iran, Kordistan, Akinlou	28.66	24.00	1.19
144	Mellivora capensis	FMNH 43298	Iraq, Al Anbar, Iraq Pipeline Station T-1	27.31	21.13	1.29
145	Melogale personata	AMNH-M31806	Java	14.10	11.37	1.24
151	Mustela erminea	AMNH-M18	-	7.36	6.38	1.15
150	Mustela erminea	AMNH-M245008		4.84	4.24	1.14
U51	iviustela erminea	OMNH-M2318	Alaska, Tanena K. Bridge (reassigned to M. erminea	7.93	6.82	1.16
150	Mustela evoremonii		based on location by PDP) Mongolia, Tze Tzen Wang	15 20	12 60	1 00
102	Mustela tropata		New York Long Island	0.29	12.09	1.20
283	Musicia licitaia Mustela frenata	AMNH_M70262	New Jersey Rear Fort Mts	3.32 7.67	6 12	1.27
282	Musicia irenala Mustela frenata		New Jersey	9.07 9.11	7.20	1.20
300	Mustela frenata	AMNH_M1215/1	Canada Briitish Columbia West of Hudson's Hope	9.06	8 78	1 1 1
999	Mustela frenata	AMNH-M121542	Canada, Briitish Columbia, West of Hudson's Hope	7,92	6 61	1 20
298	Mustela frenata	AMNH-M121543	Canada, British Columbia, West of Hudson's Hope	8,20	6.49	1.26
288	Mustela frenata	AMNH-M122393	New York. Suffolk Co., Mastic	5.80	5.03	1.15
292	Mustela frenata	AMNH-M129338	New York, Westchester Co., Yorktown Heights	5,76	4.69	1.23
291	Mustela frenata	AMNH-M129339	New York, Westchester Co., Yorktown Heights	7.43	5.99	1.24
290	Mustela frenata	AMNH-M129340	New York, Westchester Co., Yorktown Heights	7.97	6.62	1.20
293	Mustela frenata	AMNH-M129397	New York, Westchester Co., Yorktown Heights	5.53	4.83	1.14
281	Mustela frenata	AMNH-M130137	New Hampshire, Lake Sunapee	8.36	6.95	1.20
296	Mustela frenata	AMNH-M130142	New York, Westchester Co., 2 mi. N. of Poundridae	6.00	5.03	1.19
280	Mustela frenata	AMNH-M131843	New Mexico, Colfax Co., Mouth of Cimarroncito Canvon	6.85	6.44	1.06
287	Mustela frenata	AMNH-M135415	New York, Nassau Co, Long Island, Roslyn	8.17	6.68	1.22

				<u> </u>	•	
п	Species	Speci Inst No	men Locality	Calc	Sust	Gear
Musta		inst No	Locality	Len	103	nauo
Muste	lidae (continuation)		7 New Verle Westshester Co. Kstepph Lleels Dood	7 70	6 00	1 10
294	Mustela frenata		Mew York, Westchester Co., Katahan, Heels Road	7.70	0.00	1.12
204	Mustela frenata		New Fork, Long Island, Lawrence	0.00	7.40	1.10
279	Mustela frenata		Nebraska, Sloux Co., Bald Bulte	0.3Z	7.40 5.71	1.12
270	Mustela frenata		Nebraska, Sloux Co, Bald Bulle	0.43	5./I 7.10	1.13
211	Mustela frenata		Neuraska, Brown Co., Long Lake	0.40	7.19	1.10
297	Musleia Irenala		Gross River	9.91	7.07	1.40
289	Mustela frenata	AMNH-M23825	3 New York, Suffolk Co., E. Hampton, Scoy Pond	7.91	6.77	1.17
301	Mustela frenata	AMNH-M25565	3 FLorida, Highlands Co., Lake Placid, SE Tract, Pimitive Boad, Foot Trail 13	9.52	7.69	1.24
695	Mustela frenata	MUZA 55	New Hampshire	9.26	7.50	1.23
696	Mustela frenata	MUZA 65	New Hampshire	7.06	6.07	1.16
2079	Mustela frenata	NCSM 4983	North Carolina, Yancey Co., Mt. Mitchell	7.39	6.66	1.11
2082	Mustela frenata	NCSM 6331	Maryland, Garrett Co., Oakland, 1.25 mi E of Oakland	8.79	7.11	1.24
2081	Mustela frenata	NCSM 8424	Penneylyania	8 5/	7.06	1 21
2081	Mustela frenata	NCSM 15014	North Carolina, Wilkes Co., Hays, 3 mi NNE, on SR	8.46	7.23	1.17
2085	Mustela frenata	NCSM 15015	1002, 0.1 rdmi N of JCT with SR 1951. North Carolina, Wilkes Co., Traphill, nr. center of; on SR	8.65	7.40	1.17
2080	Mustela frenata	NCSM 16924	1002, <0.1rdmi. NW JCT SR 1749 New York, Sullivan Co, Callicoon, Pleasant Valley	9 04	7 97	1 24
2000	Mustela frenata	OMNH-M16777	New York, Wayne County 2 mi S 0.5 mi W Macedon	6 10	5 44	1 12
2043	Mustela frenata		Michigan Kalamazoo Ross Two	5.08	5.50	1.12
2052	Mustela frenata		Oklahoma	7 70	5.50	1.09
2030	Mustela frenata		Oklahoma	7.72	6.25	1.10
2040	Mustela frenata		Unanoma 1 Lozier Terrell County Texas	0.24	7.55	1.14
742	Mustela frenata		5 Locust Grove Lowis County, New York	0.10	7.00	1.24
749	Nustela frenata		5 Educid Grove, Lewis County, New Tork	9.10	7.00	1.00
750	Mustela frenata		7 Farse North Dekete	0.07	0.39	1.20
750	Mustela frenata		Alexandria Esister Osumtu Vinsinia	8.55	0.74	1.27
745	Nustela frenata	USINHIVI 23004	Alexandria, Fairfax County, Virginia	8.81	7.09	1.24
751	Nustela frenata	USNHM 29776	Laurei, Prince Georges County, Maryland	7.69	6.20	1.24
744	Mustela frenata	USNHM 39868	2 Gaybird Farms, Carversville, Bucks County, Pennsylvania	5.87	4.72	1.24
741	Mustela frenata	USNHM 41520	2 Caripe, 3km N and 4km W, near San Agustin, Monagas, Venezuela	10.93	8.96	1.22
760	Mustela frenata	USNHM 50339	6 Grady County, Georgia	9.28	7.52	1.23
743	Mustela frenata	USNHM 51418	9 La Jolla, Ardath Road, about .5 miles W of US 5, Orange County, California	8.50	7.13	1.19
752	Mustela frenata	USNHM 52989	0 5 Mi W Chincoteague, Accomack County, Virginia	8.08	6.27	1.29
759	Mustela frenata	USNHM 54505	0 Cotopaxi National Park 12500 ft Cotopaxi Ecuador	9.35	7.98	1 17
758	Mustela frenata	USNHM 56081	7 Camp VII, Cerro Neblina, Territorio Fed. Amazonas,	10.60	8.92	1.19
754	Maratala fuanata		Venezuela	0.50	745	1 00
754	Nustela frenata		Buffalo, Johnson County, Wyoming	8.50	7.15	1.20
753	Nustela frenata	USNHM 56426	Buffalo, Johnson County, wyoming	7.43	6.04	1.23
748	Mustela frenata	USNHM 56426	Atlanta (VIC), Montmorency County, Michigan	6.17	5.39	1.14
755	Mustela frenata	USNHM 56426	9 Grady County, Georgia	8.09	6.88	1.18
746	Mustela frenata	USNHM 56791	7 Plot 4539, Patuxent Research Refuge, Prince Georges County, Maryland	8.64	6.76	1.28
747	Mustela frenata	USNHM 00001 A0062	7/ Carlisle, Pennsylvania	9.70	7.15	1.36
738	Mustela frenata	USNHM 00044 A0139	3/ Matamoras, Tamaulipas, Mexico	8.27	6.95	1.19
740	Mustela frenata	USNHM A0139	03 Matamoras, Tamaulipas, Mexico	8.76	7.32	1.20
757	Mustela frenata	USNHM A2204	1 Fresno, California	7.61	6.26	1.22
274	Mustela frenata	WRAZI B83	New York	8.07	6.55	1.23
275	Mustela frenata	WRAZI DD52	Indiana Posev Co	7.52	6 41	1 17
302	Mustela nigrines	AMNH-M14030	7 Colorado Et Garland Buck Mt	12 78	11 27	1 13
153	Mustela nigripes	WRA71 10200		13 16	11 26	1 17
303	Mustela nivelis		1 Obio Bowling Green Frie Co	3.87	2 9 9	1 29
276	Mustela nivalis	M/RA71 20102	no.	3 /1	2.00	1 15
205	Neovison vison		Indiana	12 02	10 60	1.10
200	Neovison vison		Maina	10.00	11.00	1.11
320	Neovison viser		Connecticut Pridesest	14.00	10.07	1.10
300			Connecticut, Bridgeport	14.23	12.31	1.15
307		AIVINH-IVI63981	Connecticut New York, Deckland Oc., Deck Marchele Istantic D., 1	11.38	9.56	1.19
315		AIVINH-IVI99/28	New York, Rockland Co., Bear Mountain Interstate Park	13.87	12.08	1.15
308	IVEOVISON VISON	AIVINH-IVI11941	9 New Jersey, Kinnedon	11.02	9.76	1.13
321	INEOVISON VISON	AIMINH-IM12850	iviairie, Somerset Go., Grocker Pond	11.01	9.13	1.21

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Muste	elidae (continuation)						
322	Neovison vison	AMNH-N	/128509	Maine, Somerset Co.	10.22	8.47	1.21
318	Neovison vison	AMNH-N	/128510	Maine, Somerset Co.	12.20	10.38	1.18
319	Neovison vison	AMNH-N	/128511	Maine, Somerset Co.	13.70	12.14	1.13
323	Neovison vison	AMNH-N	/128512	Maine, Somerset Co.	11.15	9.53	1.17
309	Neovison vison	AMNH-N	/14114/	New Jersey, Boonton	12.73	11.11	1.15
310	Neovison vison	AMNH-N	/1/6566	New Jersey, RD #3, Sussex Co.	12.13	10.02	1.21
311	Neovison vison		/1180386	New Jersey, Sussex Co., Beemersville, R.D. 3	11.53	9.84	1.17
314	Neovison vison		/1180388	New Jersey, Sussex Co., Deemesville, RD 3	11.71	8 10	1.09
312	Neovison vison		/180389	New Jersey, Sussex Co., Beemesville, RD 3	13.81	11 07	1.00
316	Neovison vison	AMNH-N	//207118	New Hampshire, Grafton Co., Wentworth	11 56	10.25	1.20
317	Neovison vison	AMNH-N	1275984	Pennsylvania, Wavne Co., Lake Starlight	11.54	10.36	1.11
702	Neovison vison	MUZA	52	Missouri. Callaway Co.	14.25	12.55	1.14
694	Neovison vison	MUZA	82	New Hampshire	11.98	10.53	1.14
154	Neovison vison	WRAZL	9110677		10.14	8.73	1.16
155	Neovison vison	WRAZL	HH20		15.33	13.21	1.16
156	Poecilogale albinucha	FMNH	177235	Mozambique, Zambezia, Mt Namuli area	9.49	6.88	1.38
157	Poecilogale albinucha	FMNH	177236	Mozambique, Zambezia, Mt Namuli area	10.50	7.84	1.34
574	Taxidea taxus	DMNH	2018	Colorado, Weld Co., Horsetail Creek	28.06	23.46	1.20
162	Taxidea taxus	FMNH	122619	Michigan, Washtenaw Co.	31.83	23.89	1.33
163	Taxidea taxus	FMNH	122620	Michigan, Washtenaw Co.	28.03	23.23	1.21
701	Taxidea taxus	MUZA	157	Oregon, Garfield Co.	30.85	25.17	1.23
693	Taxidea taxus	MUZA	486	North Dakota, Oliver Co., Cross Ranch	30.30	24.90	1.22
161	l axidea taxus	WRAZL	AB68	Indiana, Owen Co.	26.46	21.88	1.21
Nandi	niidae						
207	Nandinia binotata	AMNH-N	151461	Zaire, Haut Zaire, Medje	22.10	18.50	1.19
208	Nandinia binotata	AMNH-N	/151469	Zaire, Haut Zaire, Medje	22.46	19.50	1.15
Procy	onidae						
166	Bassaricyon gabbii	FMNH	70723	Colombia, Antioquia, Urrao, Guapantal	17.10	14.16	1.21
167	Bassaricyon gabbii	FMNH	70727	Colombia, Huila, San Agustin, San Antonio	18.66	14.35	1.30
548	Bassariscus astutus	DMNH	2665	Texas, Palo Pinto Co., Mineral Wells	16.84	13.93	1.21
549	Bassariscus astutus		10988	Colorado, Jefferson Co.	15.66	12.92	1.21
169	Bassariscus astutus		29303	Texas, Travis Co., Central Texas Uplift, near Jonestown	16.03	12.41	1.29
667	Bassariscus astutus		129300	Texas, Malverde Co	15.83	12.30	1.20
666	Bassariscus astutus	KU-M	146602	Oregon Douglas Co. Boseburg 7 mi S 10 mi E of	15.53	13.38	1 16
481	Bassariscus astutus	UTVPL	M-3276	Texas, Kerr Co., Hwy pickup between Mountain Home	17.38	14.37	1.21
				and Rock Springs			
480	Bassariscus astutus	UTVPL	M-3452	Texas, Travis Co., 5 mi west of Austin	15.91	13.31	1.20
479	Bassariscus astutus	UTVPL	M-3898	Texas, Hays Co., Dripping Springs	15.44	12.30	1.26
478	Bassariscus astutus	UTVPL	M-3908	Texas, Hays Co., Dripping Springs	16.21	13.36	1.21
477	Bassariscus astutus	UTVPL	M-3909	Texas, Hays Co., Dripping Springs	15.96	13.04	1.22
483	Bassariscus astutus	UTVPL	M-6709	Texas, Crockett Co.	16.77	13.06	1.28
482	Bassariscus astutus	UTVPL	M-7319	Texas, Travis Co.	15.84	13.22	1.20
401	Bassariscus sumichrasti	UMMZ	114646	Mexico, Veracruz, 3.5 mi N. San Andres Tuxtla	18.84	14.44	1.30
402	Bassariscus sumichrasti	UMMZ	114647	Iviexico, Veracruz, 3.5 mi N. San Andres Tuxtla	20.24	15.02	1.35
225	Ivasua narica Necus perios		0/10/ 100210	Ventral America, 200	30.93	24.34	1.27
224	Nasua narica		1∠9310 61301	Anzona, Jania Uluz UU. Mexico, Tamaulinas, San Joso	29.0U 27.04	24.00 22.45	1.23
308	Nasua narica		63074	Relize Mt Pine Ridge	27.34	22.40	1.24
400	Nasua narica	UMM7	63164	Guatemala Peten Llaxactur	28 70	23 59	1 22
170	Nasua nasua	FMNH	70728	Colombia, Huila, Urrao	24.56	19.44	1.26
171	Nasua nasua	FMNH	70731	Colombia, Huila, Urrao	25.11	19,63	1.28
569	Potos flavus	DMNH	6305	Thornton Animal Hospital (pet)	23.28	19.83	1.17
172	Potos flavus	FMNH	8611	Zoo: Lincoln Park Zoo, Chicago	24.20	21.42	1.13
173	Potos flavus	FMNH	127430	Zoo: Lincoln Park Zoo, Chicago	22.84	19.63	1.16
174	Potos flavus	WRAZL	W29		22.96	18.32	1.25
334	Procyon cancrivorus	AMNH-N	//215129	Bolivia, Dept. Beni, 20 Km S. San Joaquin, Estanncia Yutiole	37.62	31.85	1.18
335	Procyon cancrivorus	AMNH-N	Л261314	Bolivia, Santa Cruz, San afael de Amboro	35.80	28.57	1.25
394	Procyon cancrivorus	UMMZ	46409	British Guiana, Dunoon	39.02	31.86	1.22
393	Procyon cancrivorus	UMMZ	146503	Paraguay, Dept. Presidente Hayes, 8 km E. Juan de Zalazar	38.81	33.22	1.17
542	Procyon lotor	DMNH	7418	Colorado, Jefferson Co., Littleton, Ken Caryl Road	29.87	24.50	1.22
544	Procyon lotor		8495	Colorado, Arapahoe Co., Aurora, 12700 E. Colfax	30.73	27.66	1.11
541 573	Procyon lotor		9042	Colorado, Arapanoe Co., Quincy and Buckley	30.33	25.39	1.19
545			3200	Solorauo, Auamo OO., Dhynion Last Or Darr Lake	00.40	20.10	1.13

ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Batio
Procy 545	onidae (continuation) Procyon lotor	DMNH	9317	Colorado, Denver Co., Highline Canal, btw Alameda	30.83	26.77	1.15
EAG	Drooven later		0000	and Mississippi	04.00	00 40	1.01
540	Procyon lotor		9020	Colorado, Boulder Co., Boulder	04.0Z	20.42	1.21
047 040	Procyon lotor		11019	Colorado, Montezuma Co., Mesa Verde National Park	31.34	20.00	1.22
249	Procyon lotor		49037	Leuisiana, Ibaria Dariah, Avany Jaland	29.52	24.30	1.21
230	Procyon lotor		49090	Louisiaria, idenia Farisri, Avery Islanu	29.24	20.04	1.13
240	FIOCYONIOLOI		50005	Hobson Road	23.41	21.14	1.20
241	Procyon lotor	FMNH	58800	Illinois, Du Page Co., Downers Grove, Highland Ave., W. of George Williams College Campus	29.16	23.61	1.24
239	Procyon lotor	FMNH	58965	Illinois, Du Page Co., Downers Grove, Highland Ave., W. of George Williams College Campus	29.98	24.25	1.24
236	Procyon lotor	FMNH	91196	Illinois, Cook Co., Homewood	27.93	22.80	1.23
248	Procyon lotor	FMNH	104968	Wisconsin, Dodge Co., S. End	29.36	22.78	1.29
233	Procyon lotor	FMNH	106281	Illinois, Cook Co., US Hwy 41 (40 mi. S. Knosha, Wisconsin	29.76	25.81	1.15
231	Procyon lotor	FMNH	134393	Texas, Jeff Davis Co., Ft Davis, 7 mi S on SR 118	29.62	23.06	1.28
237	Procyon lotor	FMNH	134576	Illinois, Cook Co., Chicago	29.23	25.32	1.15
243	Procyon lotor	FMNH	135303	Illinois, Dupage Co., Downers Grove, Maple Grove Forest Preserve	29.16	23.68	1.23
247	Procvon lotor	FMNH	154709	Wisconsin, Brown Co., Green Bay	29.25	24.71	1.18
235	Procyon lotor	FMNH	156863	Illinois, Cook Co., Palatine, near corner of Delgado Dr and Knox	29.21	25.28	1.16
234	Procyon lotor	FMNH	156864	Illinois, Cook Co., Palatine, near corner of Delgado Dr and Knox	29.81	24.83	1.20
238	Procyon lotor	FMNH	156865	Illinois, Cook Co., Palatine, near corner of Delgado Dr and Knox	27.25	22.83	1.19
245	Procvon lotor	FMNH	167058	Illinois, Greene Co., Carrollton, 3 mi NE	27.88	23.23	1.20
244	Procvon lotor	FMNH	167060	Illinois, Lake Co., Lake Forest	25.10	21.22	1.18
246	Procvon lotor	FMNH	167061	Illinois, Will Co., Naperville, South	27.83	23.44	1.19
232	Procvon lotor	FMNH	167062	Illinois, Carrol Co., Mt Carol, 1 mi S.	33.33	25.65	1.30
229	Procyon lotor	FMNH	171148	Florida, Highlands Co., Archbold Biological Station, OSB 8	29.13	25.25	1.15
242	Procvon lotor	FMNH	175311	Illinois, Du Page Co., Oakbrook	27.01	22.45	1.20
653	Procvon lotor	KU-M	1581	Kansas, Douglas Co.	28.09	24.41	1.15
661	Procvon lotor	KU-M	4125	Kansas, Douglas Co., near Clinton	31.19	26.22	1.19
660	Procvon lotor	KU-M	4274	Kansas, Douglas Co.	29.82	24.62	1.21
657	Procyon lotor	KU-M	4276	Kansas, Douglas Co., near Clinton	30.88	24.91	1.24
655	Procyon lotor	KU-M	4277	Kansas, Douglas Co., near Clinton	29.78	24.98	1.19
654	Procyon lotor	KU-M	4283	Kansas, Atchison Co., 6 mi NE of Muscotah	30.26	23.67	1.28
646	Procyon lotor	KU-M	4286	Kansas, Atchison Co.	32.10	26.42	1.21
649	Procyon lotor	KU-M	4287	Kansas, Atchison Co., 21 mi NE Muscotah	28.94	23.85	1.21
650	Procyon lotor	KU-M	4288	Kansas, Atchison Co.	29.95	24.37	1.23
659	Procyon lotor	KU-M	4364	Kansas, Douglas Co., 7.5 mi SW of KU	28.97	23.63	1.23
656	Procyon lotor	KU-M	6632	Kansas, Douglas Co.	30.44	26.34	1.16
647	Procyon lotor	KU-M	6641	Kansas, eastern	27.34	23.07	1.19
648	Procyon lotor	KU-M	6652	Kansas, eastern	29.24	24.23	1.21
651	Procyon lotor	KU-M	6657	Kansas, eastern	28.60	23.02	1.24
652	Procyon lotor	KU-M	7574	Kansas, eastern	31.38	26.79	1.17
662	Procyon lotor	KU-M	14311	Kansas, Meade Co.	28.05	23.50	1.19
663	Procyon lotor	KU-M	14312	Kansas, Meade Co.	31.03	25.53	1.22
645	Procyon lotor	KU-M	14604	Georgia, Talbot Co., 2.5 mi E. of Geneva	24.98	20.36	1.23
664	Procyon lotor	KU-M	18572	North Dakota, Cass Co., near Fargo	32.04	25.54	1.25
665	Procyon lotor	KU-M	35031	Kansas, Meade Co., State Park	30.50	25.86	1.18
527	Procyon lotor	MSB	43026	New Mexico, Bernalillo Co., Cedar Crest	30.82	25.49	1.21
523	Procyon lotor	IVISE	49074	New Mexico, Bernalillo Co.	21.01	23.04	1.21
524	Procyon lotor	IVISD	49070	New Mexico, Bernalillo Co., Cedar Crest	30.10	24.14	1.20
525	Procyon lotor	IVISE	49077	New Mexico, Bernalillo Co., Cedar Crest	29.00	20.34	1.10
529			52350	Animas	20.47	20.07	1.21
526	Procyon lotor	MSB	54908	New Mexico, Bernalillo Co.	26.74	23.25	1.15
530	Procyon lotor	MSB	56919	New Mexico, Coltax Co., NM	30.87	26.01	1.19
534	Procyon lotor	MSB	82505	Nex Mexico, Socorro Co., Near Bernardo Overpass, Hwy. 60 at Rio Grande, DOR	30.28	25.37	1.19
522	Procyon lotor	MSB	85581	Mexico, Sonora, 6.5 KM North, 7.75 KM W of San Carlos	28.58	22.46	1.27
531	Procyon lotor	MSB	140702	New Mexico, Chaves Co., 10.2 mi N NW of intersection of US 245 and Macho Draw	32.26	27.24	1.18

			<u> </u>		• •	<u>.</u>	
	Species	Inot	Specimen	Locality	Calc	Sust	Gear
טו	opecies	INST	NO	Locality	Len	POS	Ratio
Procy	onidae (continuation)						
528	Procyon lotor	MSB	142758	New Mexico, Bernalillo Co., Cedar Crest	31.64	25.93	1.22
532	Procyon lotor	MSB	142875	New Mexico, Los Alamos Co., near Los Alamos	32.79	27.93	1.17
533	Procyon lotor	MSB	156771	New Mexico, Santa Fe Co., 132A nine mile road, Santa	30.19	25.31	1.19
0070	Dere and taken	NOON	0074	Fe	04.07	00.57	1.01
2073	Procyon lotor	NCSM	2674	North Carolina, Johnston Co., Smithfield	24.97	20.57	1.21
2038	Procyon lotor	OMNH-	VI14869	Oklahoma, Cleveland County, Norman	29.12	23.62	1.23
2037	Procyon lotor	OMNH-	VI15029	Oklanoma, Cleveland, 6.5 ml E Norman, Hwy 9	31.87	25.89	1.23
2041	Procyon lotor	OMNH-I	VI15649	Oklahoma, Cleveland Cty. U.5 ml SW Noble, 18N, R2W, Sec 27	28.19	23.54	1.20
2032	Procvon lotor	OMNH-	M15780	Oklahoma Texas County 0.5 mi N 2.5 mi E Four	30.65	24 18	1 27
LUUL	1 rooyon lotor			Corners	00.00	21110	
2028	Procyon lotor	OMNH-	M16582	OklahomaMurray County	29.08	23.44	1.24
2035	Procyon lotor	OMNH-	VI16583	Oklahoma, Cleveland, S of Norman (intersection of	30.22	25.39	1.19
				Classen and Hwy 9)			
2033	Procyon lotor	OMNH-	M16747	Oklahoma, Cleveland County, Norman, Hwy 9 &	26.18	21.54	1.22
				Chautauqua			
2040	Procyon lotor	OMNH-I	VI16975	Oklahoma, Cleveland, Little Axe	30.55	24.65	1.24
2031	Procyon lotor	OMNH-I	VI31847	Oklahoma, Cleveland County, Oklahoma City (5700	28.99	24.38	1.19
				block of SW 134)			
2029	Procyon lotor	OMNH-	M32235	Tennessee, Fayette County, Ames Plantation, site 311,	26.34	22.27	1.18
0000	Due even leter		400007	evening course	00 1 4	05 17	1 00
2030	Procyon lotor		VI33037	Oklanoma, Cleveland Cty, Norman, DOR	30.14	25.17	1.20
2030	Procyon lotor		VI30244	Oklahoma, Claudand County, Meeman Biological Station	20.90	21.30	1.22
2039	Procyon lotor		VI30290	Michigan Derrien Co. Warren Waada	20.03	21.34	1.22
304 205	Procyon lotor		52733	Michigan, Berlen Co., Warren Woods	20.00	21.09	1.24
303	Procyon lotor		0010U 61510	Maxiaa Tamaulinaa Marmalaia	27.20	22.70	1.20
290	Procyon lotor		6/101	Relize Sen Lerenze Near Cave	30.00	24.00	1.20
200	Procyon lotor		65902	Minnegeta Ottertail Ca	20.01	21.00	1.10
202	Procyon lotor		00002	Michigan Westerney Co. Ann Arber	30.30	20.09	1.19
392	Procyon lotor		00090	Michigan, Washlehaw Co., Ann Arbor	20.90	22.47	1.20
270	Procyon lotor		00401	Nichigan Washtanaw Ca. 2 Mi E Ann Arbar	20.00	20.10	1.14
379	Procyon lotor		90032	Michigan, Washtenaw Co., 5 Mil. E. Ann Arbor	20.20	21.31	1.10
201	Procyon lotor		90975	Michigan, Washtenaw Co., Ann Arbor	20.33	23.52	1.21
207	Procyon lotor		116245	Moving via Tanaahtitlan Varaaruz	20.40	22.10	1.24
291	Procyon lotor		100340	Michigan Albana Co. NE 1/4 Soc. 11	07 07	20.40	1.20
375	Procyon lotor		122099	Michigan Washtonaw Co. Ann Arbor	21.01	24.10	1.10
380	Procyon lotor		123401	Michigan, Washerlaw Co., Ann Aibor Michigan, Schoolcraft Co., Sency Wildlife Refuge	20.30	23.22	1.22
003	1 Tocyoff Totor	OIVIIVIZ	153010	Headquarters	21.22	20.00	1.15
390	Procvon lotor	UMMZ	159617	Michigan, Schoolcraft Co., Sency Wildlife Refuge	28.27	24.59	1.15
				Headquarters			
387	Procyon lotor	UMMZ	162697	Michigan, Livingston Co., E. S. George Reserve	26.56	22.05	1.20
382	Procyon lotor	UMMZ	168355	Michigan, Washtenaw Co., Ann Arbor	24.85	19.92	1.25
381	Procyon lotor	UMMZ	168398	Wasthington, King Co. NE of 98th Str, E of 41sst PI NE,	28.30	24.20	1.17
	,			S & W of 43rd PL NE			
376	Procyon lotor	UMMZ	170525	Michigan, Washtenaw Co.	29.85	24.54	1.22
374	Procyon lotor	UMMZ	170526	Michigan, Washtenaw Co.	30.07	24.24	1.24
763	Procyon lotor	USNHM	1 91427	Severance, Essex County, New York	28.54	23.37	1.22
768	Procyon lotor	USNHM	1 91428	Severence, Essex County, New York	24.62	20.48	1.20
772	Procyon lotor	USNHM	1 91429	Severance, Essex County, New York	26.09	21.29	1.23
762	Procyon lotor	USNHM	1 187907	Locust Grove, Lewis County, New York	28.67	23.00	1.25
785	Procyon lotor	USNHM	1 251154	Peten, Guatemala	29.73	24.34	1.22
788	Procyon lotor	USNHM	256028	Hilton Head Island, Beaufort County, South Carolina	23.36	18.99	1.23
790	Procyon lotor	USNHM	256029	Hilton Head Island, Beaufort County, South Carolina	24.06	19.92	1.21
791	Procyon lotor	USNHM	256030	Hilton Head Island, Beaufort County, South Carolina	25.92	21.26	1.22
787	Procyon lotor	USNHM	1 256031	Hilton Head Island, Beaufort County, South Carolina	24.52	19.37	1.27
789	Procyon lotor	USNHM	1 256032	Hilton Head Island, Beaufort County, South Carolina	24.76	20.68	1.20
786	Procyon lotor	USNHM	1 271097	La Venta, Tabasco, Mexico	27.09	21.93	1.24
769	Procyon lotor	USNHM	276356	Blackwater Wildlife Refuge, Dorchester County,	26.39	21.60	1.22
				Maryland			
777	Procyon lotor	USNHM	1 283182	Hazel Run, 2400ft, Shenandoah National Park, Virginia	27.36	22.11	1.24
770	Procyon lotor	USNHM	1 349917	1.5 Mi N Wolfsville, 1300ft, Fredrick County, Maryland	27.22	22.69	1.20
				(393545 N 0773230W)	oc - :	a / = ·	
776	Procyon lotor	USNHM	1 360971	Raleigh, Wake County, North Carolina	26.61	21.71	1.23
/64	Procyon lotor	USNHM	396237	Near Annapolis, Anne Arundel County, Maryland	26.30	21.10	1.25
/61	Procyon lotor	USNHM	396274	373, 2 IVII W of Junction with 210, Prince Georges	28.18	23.15	1.22
				County, Maryland			

			<u> </u>		<u> </u>	<u> </u>	
ID	Species	Inst	Specimen No	Locality	Calc Len	Sust Pos	Gear Ratio
Procv	onidae (continuation)						
775	Procyon lotor	USNHM	396277	US 220 3 Mi N of Jct with Rainsburg Road, Bedford	26.69	21.77	1.23
780	Procvon lotor	USNHM	514512	Great Falls, Fairfax County, Virginia	25.02	19.54	1.28
782	Procyon lotor	USNHM	532412	Brackenridge Research Tract Austin Texas	25.93	22 14	1 17
783	Procyon lotor	USNHM	564263	Bay Ronde, Mississippi Delta Bay, Plaquemines Parish,	23.70	19.09	1.24
784	Procyon lotor	USNHM	564264	near Forks, Beaver Creek on Sol Duc River, Clallam	28.16	22.40	1.26
765	Procyon lotor	USNHM	567940	Bottomland Forest, Plot 2705, Patuxent Research	26.41	20.81	1.27
766	Procyon lotor	USNHM	567941	Plot 3701, Margin of Patuxent River, Prince Georges	24.61	19.91	1.24
767	Procyon lotor	USNHM	567942	Plot 5483, Kluckuhn Loop Road near north storage barn, Patuxent Research Refuge, Prince Georges	25.51	20.86	1.22
778	Procyon lotor	USNHM	568664	Partlow, near 10200 Wallers Road, Spotsylvania	26.85	21.75	1.23
779	Procyon lotor	USNHM	569082	Partlow, near 10200 Wallers Road, Spotsylvania	24.21	20.69	1.17
773	Procyon latar		400575	County, Virginia Carliele, Cumberland County, Pennsylvania	28.08	22.84	1 23
781	Procyon lotor	USNHM	A01386	St Cauch Matamoras Tamaulinas Mexico	31 02	25.46	1.20
771	Procyon lotor	LISNHM	A21136	East Penfield New York	23.98	19 78	1.22
774	Procyon lotor	USNHM	A22243	Pennsylvania	24 79	20.83	1 19
468	Procycn lotor	I ITVPI	M-1806	Texas Travis Co	27.33	21.62	1.10
467	Procycn lotor		M-1818	Texas, Ree Co	28 59	23.47	1.20
469	Procycn lotor		M-1851	Texas, Karns Co. Bunge	29.56	25.43	1 16
471	Procyon lotor	UTVPL	M-2106	Texas, Burnet Co., approx. 4 miles south of Burrnet of	29.42	24.44	1.20
470	Procyon lator	I ITVPI	M-2222	Texas Travis Co. Austin Balcones Research Center	27 77	22 11	1 26
472	Procyon lotor		M-3182	Texas, Havis Co., W of Kyle, Kuykendall Banch	27.74	22.56	1.23
466	Procycn lotor		M-363	Texas, Travis Co	27.54	23.01	1 20
175	Procyon lotor	WRAZL	10265	Indiana, Monroe Co.	27.46	22.93	1.20
Ursida	ie.						
2	Ailuropoda melanoleuca	FMNH	36758	China, Sichuan, Yaan Pref, Dun Shih Goh, above Baoxing	64.48	56.74	1.14
176	Helarctos malavanus	FMNH	54201	Zoo: Brookfield Zoo, Chicago	54.35	48.84	1.11
177	Helarctos malavanus	FMNH	54316	Zoo: Brookfield Zoo, Chicago	53 18	47.80	1 1 1
178	Melursus ursinus	FMNH	27441	India Uttar radesh Kheri North Oudh	68 72	62 43	1 10
179	Melursus ursinus	FMNH	27442	India, Uttar radesh, Kheri, North Oudh	73.37	68.92	1.06
180	Tremarctos ornatus	FMNH	41294	Peru Prov Lambavque Chiclay	60.28	50.33	1 20
181	Tremarctos ornatus	FMNH	142010	Zoo: Brookfield Zoo. Chicago	51.80	43.95	1 18
183	l Irsus americanus	FMNH	18864	Florida Brevard Co. Banana B	59.39	52 11	1 14
184	l Irsus americanus	FMNH	57282	Zoo: Lincoln Park Zoo. Chicago	57 12	49.47	1.14
182	l Irsus americanus	INSM	71 09 0233	Indiana Harrison Co. Eair-to-Middl'in Well Pit 15 Mi	68.89	59.68	1.10
607		MUZA	755	New of Mauckport (Holocene)	65.38	50.82	1.00
105			210076	Game)	67.16	59.00	1.03
186	Ursus arctos	FMNH	63802	Alaska, Alaska Penninsula, Game Management Unit 9,	100.00	102.41	0.98
187	Ursus arctos	FMNH	63803	Alaska, Alaska Penninsula, Game Management Unit 9, Mather Goose Lake	84.86	74.48	1.14
373	Ursus arctos	UMM7	197532	Alaska, Baranof Island, Red Bluff Bay	82.92	76.14	1.09
484	Ursus arctos	UTVPI	M-3773	Wyoming, Yellowstone National Park, Slough Creek	68.33	62.16	1.10
188	Ursus maritimus	FMNH	53989	Canada, Region of Hudson Bay	94.06	79.86	1.18
189	Ursus maritimus	FMNH	58827	Zoo: Lincoln Park Zoo. Chicago	100.00	100.76	0.99
190	Ursus thibetanus	FMNH	99349	Zoo: Brookfield Zoo, Chicago	70.80	60.84	1.16
Viverri	dae						
192	Arctictis binturona	AMNH-M	180163		37 97	33 77	1 12
191	Arctictis binturona	AMNH-M	1119600		37.53	34.15	1.10
193	Civettictis civetta	AMNH-M	151797	Zaire, Haut Zaire, Akenge	36.41	28.80	1.26
198	Genetta genetta	AMNH-M	1114190	Kenya, Coast Provine, Ucase, Wacamba Country, 1750	16.56	14.01	1.18
199	Genetta genetta	AMNH-M	1187725	Kenya, Northeastern Prov., Garissa Dist., 1 mi. W. Galmagalla, 270 ft	21.41	16.76	1.28
200	Genetta maculata	AMNH-M	1216345	Mozambique, Manica and Sofala, Alvez de Lima Camp	21.95	16.68	1.32

			Specime	n	Calc	Sust	Gear
ID	Species	Inst	No	Locality	Len	Pos	Ratio
Viverr	idae (continuation)						
201	Genetta maculata	AMNH-	M216346	Mozambique, Manica and Sofala, Alvez de Lima Camp	19.92	16.46	1.21
202	Genetta servalina	AMNH-	M51543	Zaire, Haut Zaire, Medje	20.31	16.78	1.21
203	Genetta servalina	AMNH-	M150447	Zaire, Kivu Prov. Lubutu	21.81	17.31	1.26
204	Genetta victoriae	AMNH-	M51406	Zaire, Haut Zaire, Medje	22.85	18.29	1.25
206	Hemigalus derbyanus	AMNH-	M32658		18.35	15.23	1.20
205	Hemigalus derbyanus	AMNH-	M106623	Indonesia, Sumatra, Propinsi Bengkul (Benkoelen), Bunkit Sanggul (Boekit Sanggoel), 500 m.	20.67	16.36	1.26
209	Paradoxurus hermaphroditus	AMNH-	M113032	Burma, Sagaing Div., E. band Chindwin Riv, Kindat	23.53	19.80	1.19
210	Paradoxurus hermaphroditus	AMNH-	M113771	Vietnam (S.), Lagna River	22.86	19.51	1.17
211	Poiana richardsonii	AMNH-	M51438	Zaire, Haut Zaire, Medje	14.33	11.26	1.27
214	Viverra tangalunga	AMNH-	M20790	N.Y. Zoological Society	26.13	19.42	1.35
213	Viverra tangalunga	AMNH-	M226805	Indonesia, Šulawesi (Central), Gunung, Lokilalaki (Nokilalaki)	25.42	19.60	1.30
216	Viverra zibetha	AMNH-	M35450	N.Y. Zoological Society	35.96	26.42	1.36
215	Viverra zibetha	AMNH-	M113482	Burma, Upper Chindwin Prov., Homalin, E bank	33.27	26.64	1.25
217	Viverricula indica	AMNH-	M54831	Indian (? Tamil Nadu, Medura Dist.)	23.77	18.14	1.31
218	Viverricula indica	AMNH-	M54832	Indian (? Tamil Nadu, Medura Dist.)	24.23	18.78	1.29

APPENDIX 9. — Original measurements from 224 fossil carnivoran specimens. The Excel version of this document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix9-fossil_specimen_measurements.xlsx

		Coll	Specimen				SustFac	Gear
ID	Species	Code	No.	Age	Locality	Len	ToPost	Ratio
Amph	nicyoninae							
156	Amphicyon ingens	AMNH-FM	68117	E. Barstovian	Olcott, Boulder Qu., Sioux Co., Nebraska	125.33	110.25	1.137
157	Amphicyon ingens	AMNH-FM	68117-A	E. Barstovian	Olcott, Boulder Qu., Sioux Co., Nebraska	116.61	99.74	1.169
158	Amphicyon ingens	AMNH-FM	68142-L	Barstovian	Olcott Fm, Humbug Quarry, Nebraska	108.27	87.87	1.232
159	Amphicyon ingens	AMNH-FM	68142-P	Barstovian	Olcott Fm., West Sand Quarry, Sioux Co., Nebraska	116.45	98.03	1.188
160	Amphicyon ingens	AMNH-FM	68142-O	L. Heminofordian	Sheep Creek Fm., Pliohippus Draw	110.87	96.6	1.148
241	Amphicyon longiramus	FLMNH	UF 173920	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	103.5	88.16	1.174
242	Amphicyon longiramus	FLMNH	UF 5774	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	88.79	78.46	1.132
237	Cynelos caroniavorus	FLMNH	UF 204441	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	46.88	34.84	1.346
238	Cynelos caroniavorus	FLMNH	UF 257683	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	42.03	32.61	1.289
161	Cynelos idoneus	AMNH-FM	68114	L. Hemingfordian	Sheep Cr., Hilltop Q, Sioux Co, Nebraska	72.93	63.94	1.141
162	Cynelos idoneus	AMNH-FM	68114-F	L. Hemingfordian	Sheep Cr., Thompson Q, Sioux Co, Nebraska	89.77	73.7	1.218
163	Cynelos idoneus	AMNH-FM	68114-C	L. Heminofordian	Sheep Cr., Hilltop Q, Sioux Co, Nebraska	80.14	69.8	1.148
164	Cynelos idoneus	AMNH-FM	68114-B	L.	Sheep Cr., Long Q, Sioux Co, Nebraska	80.87	68.33	1.184
165	Cynelos idoneus	AMNH-FM	68114-H	L.	Sheep Cr., Long Q, Sioux Co, Nebraska	96.86	82.34	1.176
346	lschyrocyon gidleyi	AMNH-FM	68180a	L.	Leptarctus Quarry	86.75	73.82	1.175
				Miocene,				
				Upper Ash				
			01171	Hollow Beds		70.47	045	1 0 1 7
311	Ischyrocyon gidleyi	UNSM	21174	Early Clarendonian	Penny Creek LF	78.47	64.5	1.217
Barbo	ourofelidae							
221	Barbourofelis fricki	AMNH-FM	61989	Hemphillian	Jack Swavze Qu. Clark Co. Kansas	68.86	60.8	1.133
293	Barbourofelis	FLMNH	UF 25189	Clarendonian	Love Bone Bed, Alachua, Florida	72.25	60.08	1.203
294	Barbourofelis	FLMNH	UF 25192	Clarendonian	Love Bone Bed, Alachua, Florida	67.79	55.66	1.218
222	Barbourofelis morrisi	AMNH-FM	61882	Lt. Clarendonian	Ash Hollow Fm, Merritt Reservoir Member,	66.41	55.92	1.188
223	Barbourofelis morrisi	AMNH-FM	61883	Lt.	Ash Hollow Fm, Merritt Reservoir Member,	66.42	55.15	1.204
224	Barbourofelis morrisi	AMNH-FM	61881	Lt.	Ash Hollow Fm, Merritt Reservoir Mbr,	65.06	57.83	1.125
225	Barbourofelis whitfordi	AMNH-FM	FAM 61885	M.	Ash Hollow Fm, Cap Rock Mbr, Brown Co,	63.28	53.18	1.190
				Clarendonian	Nedraska			
Borop	ohaginae		07100			10.11	00.40	1 0 1 7
144	Aelurodon asthenostylus	AMNH-FM	27162	Lower Barstovian	Barstow Fm., Second Division, San Bernardino Co., California	46.41	38.12	1.217
145	Aelurodon asthenostylus	AMNH-FM	28332-4	Lower Barstovian	Horse Quarry, Colorado	56.53	47.05	1.201
146	Aelurodon asthenostvlus	AMNH-FM	28355	Lower Barstovian	Horse Quarry, Logan Co., Colorado (Pawnee Creek Fm.)	59.22	49.68	1.192
143	Aelurodon ferox	AMNH-FM	61746	Lower Barstovian	W. Fork of Deep Cr, Brown Co., Nebraska. 25' below contact with Burge	57.99	45.25	1.282
314	Aelurodon ferox	UNSM	UNSM 76631	Miocene, Late	Type Valentine Quarry (CR-12)	59.84	49.19	1.217
315	Aelurodon ferox	UNSM	UNSM 46815	Miocene, Clarendonian, Upper	Bug Prospect (KX-119), «9mi west and 1.5 miles north of Creighton, Knox Co. NE, 15» below base of (local) «Caprock» in u	56.6	45.93	1.232
324	Aelurodon taxoides	UNSM	4477	Late Clarendonian.	Or Sh-0	71.41	57.19	1.249
454	A set a s		50000	Ash Hollow	Three Tube levelth, p. 00	10.00	10.05	1 0 1 1
151	Archaeocyon leptodus	AMINH-FM	20233	vvnitneyan	Mountain, Whitney Member, Brule Formation (Whitneyan), Goshen County, Wyoming	19.68	16.25	1.211

ID	Coll S O Species Code N		Coll Specimen Code No. Age Locality				SustFac ToPost	Gear Ratio
Boro	phaginae (continuation)							
153	Archaeocyon leptodus	AMNH-FM	49096	Early Arikareean	Horse Creek area, lower Arikaree Group (early Arikareean), Goshen County, Wyoming	32.51	25.88	1.256
149	Archaeocyon pavidus	AMNH-FM	63970	Arikareean east side of Roundhouse Rock, 5 mi southwest of Bridgeport, Morrill Co., Nebraska (Whitney, Fm.)		15.74	12.94	1.216
126	Arnette Canid? Sp. 1	OMNH-VP	8975	Tertiary, Miocene, Hemphillian, Ogallala Fm., 7 5 Ma	V54, Arnett, Ellis Co., Oklahoma, Ogallala Fm.	71.12	57.46	1.238
243	Borophagus pugnator	FLMNH	UF 65664	Hemphillian (Early Pliocene)	Fort Green Mine, #13 Dragline (PO019), Polk Co. Florida	53.1	44.8	1.185
244	Borophagus pugnator	FLMNH	UF 1566	Hemphillian (Early Pliocene)	Kingsford Mine (PO018), Polk Co., Florida	52.85	44.39	1.191
118	Borophagus secundus	OMNH-VP	11789	Tertiary, Miocene, Hemphillian, Ogallala Em	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	43.81	36.38	1.204
119	Borophagus secundus	OMNH-VP	11790	Tertiary, Miocene, Hemphillian,	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	44	36.86	1.194
120	Borophagus secundus	OMNH-VP	11791	Tertiary, Miocene, Hemphillian,	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	41.02	35.71	1.149
121	Borophagus secundus	OMNH-VP	15200	Tertiary, Miocene, Hemphillian,	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	45.02	37.05	1.215
325	Carpocyon compressus	UNSM	2037-90	Late Barstovian,	Hazard Homestead	41.04	33.44	1.227
322	Carpocyon robustus	UCMP	UCMP 33569	Clarendonian,	Ricardo Amphitheater 14,	45.54	37.03	1.230
326	Carpocyon webbi	UNSM	unnumbered	Late Clarendonian, Ash Hollow	Harrisburg Loc A1	54.32	44.89	1.210
327	Cynarctus saxatilis	UNSM	45074	Late Barstovian,	Myers Farm	38.76	33.22	1.167
152	Desmocyon thomsoni	AMNH-FM	49018	Late Arikareean	25 mi southeast of Lusk, Upper Harrison beds (late Arikareean),Goshen County, Wyoming	27.41	23.11	1.186
328	Desmocyon thomsoni	UNSM		Hemingfordian, Runningwater	, .	35.46	29.76	1.192
245 246 247 248 323	Epicyon haydeni Epicyon haydeni Epicyon saevus Epicyon saevus Epicyon saevus	FLMNH FLMNH FLMNH FLMNH UCMP	UF 37879 UF 37879 UF 37881 UF 37868 UCMP 29584	Clarendonian Clarendonian Clarendonian Clarendonian Clarendonian, Ash Hollow	Love Bone Bed, Alachua, Florida Love Bone Bed, Alachua, Florida Love Bone Bed, Alachua, Florida Love Bone Bed, Alachua, Florida Little Beaver B	58.08 57.45 53.55 50.64 41.29	47.78 48.65 43.86 41.38 36.08	1.216 1.181 1.221 1.224 1.144
262 265 266 267 148	Euoplocyon spissidens Euoplocyon spissidens Euoplocyon spissidens Euoplocyon spissidens Metatomarctus canavus	FLMNH FLMNH FLMNH FLMNH AMNH-FM	UF 17674 UF 271243 UF 259350 UF 177779 49199	Formation Hemingfordian Hemingfordian Hemingfordian Middle Hemingfordian	Thomas Farm, Gilchrist Co., Florida Thomas Farm, Gilchrist Co., Florida Thomas Farm, Gilchrist Co., Florida Thomas Farm, Gilchrist Co., Florida Pebble Creek, Dawes Co. Nebraska	33.07 32.99 31.89 35.04 39.96	26.67 26.47 26.6 29.02 32.36	1.240 1.246 1.199 1.207 1.235
264	Metatomarctus canavus	FLMNH	UF 94781	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	33.65	26.54	1.268
270	Metatomarctus canavus	FLMNH	UF 271346	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	36.85	31.28	1.178
271	Metatomarctus canavus	FLMNH	UF 9089	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	37.51	28.61	1.311

ID	Species	Coll Code	Specimen No.	Age	Locality	Calc Len	SustFac ToPost	Gear Ratio
Boro	phaginae (continuation)							
272	Metatomarctus canavus	FLMNH	UF 9088	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	38.24	31.68	1.207
273	M canavus	FI MNH	UF 9092	Heminofordian Thomas Farm Gilchrist Co. Florida 37		37.9	30.83	1,229
274	M canavus	FLMNH	LIF 9091	Heminafordian	Thomas Farm Gilchrist Co. Florida	37 18	30.14	1 234
275	M. canavus		LIE 17660	Heminafordian	Thomas Farm, Gilchrist Co., Florida	37 37	30.84	1 212
275	M. conovuo			Lomingfordian	Thomas Farm, Gildhrist Co., Florida	27.02	20.04	1.212
270	IVI. Carlavus		UF 9094	Herningfordian	Dridese art Orems A OC	37.03	30.3	1.222
332	WI. canavus	UNSM		Runningwater	Bridgeport Quarry A Q6	42.24	35.72	1.183
320	Paratomarctus euthos	UNSM	None	Miocene, Early Clarendonian.	Miocene, Early Buffalo Creek, Penny Creek Local Fauna		41.48	1.292
168	Paratomarctus temerarius	AMNH-FM	63290	Early Barstovian	Early Fleming Fm., Locality: Back of Mann Place, 4 Barstovian 1 mi. N of Mann Home, about 4mi. SE of		37.93	1.208
					Oakhurst, TX			
150	Phlaocyon leucosteus	AMNH-FM	8768	Late Arikareear	Martin Canyon,head of Dorby Creek, Martin Canyon beds,Logan County, Colorado	20.54	16.51	1.244
154	Psalidocyon marianae	AMNH-FM	27397	Early	White Operation, Skull Ridge Member,	43.33	35.33	1.226
				Barstovian	Tesuque Formation (early Barstovian),			
					Santa Fe County, New Mexico			
147	Tomarctus brevirostris	AMNH-FM	67866	Lower	3 Point, West Side, Pawnee Creek area,	42.74	36.3	1.177
				Barstovian	Colorado (Pawnee Creek Fm.)			
Canir	126							
Δ1	Canis arensis/	CENIEH	ΔΤΔ97 ΤΕ10	1 22 MVA (or	Atapuerca, Sima del Elefante, Laver TE10	46 99	37 62	1 2/19
40	mosbachensis	OENIEI	61 61	younger)	(see Rodríguez et al., 2010)	40.33	05.40	1.243
42	Canis arensis/ mosbachensis	CENIEH	No. 18	Younger than 1.22 mya	(see Rodríguez <i>et al.</i> , 2010)	43.08	35.49	1.214
43	Canis arensis/ mosbachensis	CENIEH	ATA96 TE12A, no 27	Younger than 71.22 mya	Atapuerca, Sima del Elefante, Layer TE12a (see Bodríguez et al., 2010)	42.16	32.64	1.292
9	Canis dirus	AMNH-FM	92488	,	Florida, Pinellas Co., Seminole Field	61.48	48.06	1.279
10	Canis dirus	INSM	Uncatalogue	11 ate	Harrodsburg Fissure	53.97	42.82	1 260
10	Ourils Girus		Oncatalogue	Diciotacono	That rousburg Tissuic	50.57	72.02	1.200
C1	Operation alligned		00050	Pleislocene		CO 1	40.0	1 000
61	Canis dirus	UCIVIP	20050	RLB	El Tajo, Mexico, Locality V2501	62.1	48.2	1.288
62	Canis dirus	UCMP	26650 (mislabelled 27650)	RLB	El Tajo, Mexico, Locality V2501	62.2	47.4	1.312
63	Canis dirus	LICMP	192632	11-15K rovbo	McKittrick Locality -1370	68 3	54 3	1 258
64	Carlis dirus		100607	11 15K roybp	Mellithial Legelity 1970	67.0	54.5	1.250
64	Canis dirus	UCIVIP	192627	11-15K rcybp	McKittrick, Locality -1370	67.2	53.5	1.250
65	Canis dirus	UCMP	192628	11-15K rcybp	McKittrick, Locality -1370	60.3	47.3	1.275
66	Canis dirus	UCMP	192629	11-15K rcybp	McKittrick, Locality -1370	64.8	50.8	1.276
67	Canis dirus	UCMP	192630	11-15K rcybp	McKittrick, Locality -1370 (E1 4ft 5/18/21)	64.2	50.7	1.266
68	Canis dirus	UCMP	192631	11-15K rcybp	McKittrick, Locality -1370 (E1 4ft 5/18/21)	63.2	50.5	1.251
69	Canis dirus	UCMP	13577	22692 rcybp	Rancho La Brea, Locality 1059	66.3	52.4	1.265
70	Canis dirus	UCMP	13580	22692 rcybp	Rancho La Brea, Locality 1059	63.2	50.3	1.256
71	Canis dirus	UCMP	13956	22692 rcybp	Rancho La Brea, Locality 1059	62.1	48.7	1.275
72	Canis dirus	UCMP	14721	mean 22 692 rcybp	Rancho La Brea, Locality 1059	65.3	52.8	1.237
				mean				
73	Canis dirus	UCMP	14973	22692 rcybp mean	Rancho La Brea, Locality 1059	62.7	50.7	1.237
74	Canis dirus	UCMP	15648	22692 rcybp	Rancho La Brea, Locality 1059	63.4	50.2	1.263
75	Canis dirus	LICMP	38195	RIR	San Pedro Lumber Yard Loc 2047	64 1	<u>⊿</u> 0 8	1 287
33	Canie dirue		30067 172	Rancholabraan	Tavas Indeside	72 07	57 50	1 267
25			20067 055	Dependencia	Toxas, Ingleside	12.31	57.00	1.207
30	Canis airus	UIVPL	30907-955	Hancholabrean	rexas, ingleside	00./1	55.13	1.210
36	Canis dirus	UIVPL	30967-172	Kancholabrean	i exas, Ingleside	/3.17	58.24	1.256
40	Canis mosbachensis	CENIEH	ATA08 TD3- TDR4 E10	/31 KYA	Atapuerca, Gran Dolina, Layer TDW3- TDW4 (see Rodríguez <i>et al.</i> , 2010)	43.56	33.18	1.313
			No. 145					
342	Eucyon davisi	AMNH-FM	63017	Miocene, Late Hemphillian, Big Sandy Fm.	Clay Bank Quarry, near Wikiup, Mohave County, Arizona	36.38	26.75	1.360

ID	Species	Coll Code	Specimen No.	Age	Locality		SustFac ToPost	Gear Ratio
Canir	ae (continuation)							
171	Leptocyon vafer	AMNH-FM	62780	Barstovian/ Clarendonian?	Tesuque Fm., Pojoaque mbr., New Mexico?	26.38	21.38	1.234
172	Leptocyon vafer	AMNH-FM	62779		Jemez Cr. Area, Sandoval Co., N. Mexico (from west tributary of Canyada de zia, about 40' above the green zone at top of		19.13	1.256
173	Leptocyon vafer	AMNH-FM	62779		Jemez Cr. Area, Sandoval Co., N. Mexico (from west tributary of Canyada de zia,		19.78	1.194
174	Leptocyon vulpinus	AMNH-FM	12883	Thompson	about 40' above the green zone at top of Thompson Rosebud formation, lower beds. Porcupine Crk. S. Dak.		23.61	1.210
Daph	oeninae							
155	Adilophontes brachvkolos	AMNH-FM	54140	(Miocene)	Goshen Harrison Formation, Spoon Butte SW. Wyoming	80.64	70.44	1.145
169	Daphoenodon	AMNH-FM	107601	E. Heminofordian	Brown Quarry, Nebraska	81.33	66.61	1.221
345	Daphoenodon	AMNH-FM	FAM 107601	E. Hemingfordian	Brown Quarry, Nebraska	81.61	66.22	1.232
166	Daphoenodon	AMNH-FM	107759	Lt. Arikareean	U. Harrison Fm., Agate Springs Q., Sioux	62.71	51.87	1.209
167	Superbus Danhoenus vetus	AMNH-FM	63344	no data	2 mi S E of Scenic L O	52 87	44 53	1 187
310	Daphoenus vetus	UNSM	00044	Farly	Birdcage Gap	31.66	25.7	1.232
				Arikareean, Whitney		01100	2011	TIEGE
Felina	ie							
185 186	Felis rexroadensis Felis rexroadensis	AMNH-FM AMNH-FM	PAN 419-137 BEAU	Blancan	Writ. Q., Panaca area, Nevada Sec. 15, Aguanga Horizon	55.77 49.36	44.02 36.38	1.267 1.357
282	Felis rexroadensis	FLMNH	31-102 UF/TRO	Hemphillian	Palmetto Mine (Agrico) (PO001), Polk Co.,	52.83	38.38	1.376
45	Lynx issiodorensis	CENIEH	ATA08 TE9C	(Early Pilocene) 1.22 MYA	Atapuerca, Sima del Elefante, Layer TE9c	48.59	35.78	1.358
278	Nimravides galiani	FI MNH	L30 NO 43	Clarendonian	(see Roonguez et al., 2010) Love Bone Bed, Alachua, Florida	93 11	67 76	1.374
279	Nimravides galiani	FLMNH	UF 25179	Clarendonian	Love Bone Bed, Alachua, Florida	96.29	74.1	1.299
187	Nimravides pedionomus	AMNH-FM	none		Bx2 Amarillo, Texas	73.19	56.12	1.304
188	N. pedionomus	AMNH-FM	62158	Clarendonian	MCD.Q.	94.14	70.38	1.338
334	N. pedionomus	UCMP	UCMP 29186	Chadronian, Ash Hollow Formation	North Rim Locality, Minnechaduza	71.77	57.2	1.255
178	Nimravides thinobates	AMNH-FM	HIG-160- 1555	Hemphillian	Box T, W Draw, Sandy Clay, Lipscomb Co, Texas	133.38	106.7	1.250
179	Nimravides thinobates	AMNH-FM	HIG-228- 1873	Hemphillian	V.V. Parker, Lipscomb Co., Texas	101.78	78.06	1.304
180	Nimravides thinobates	AMNH-FM	HIG-217- 1707	Hemphillian	V.V. Parker, Lipscomb Co., Texas	99.1	74.38	1.332
1	Panthera atrox	AMNH-FM	69086	Rancholabrean	Alaska, Fairbanks, Fairbanks Creek	120.17	91.75	1.310
2	Panthera atrox	AMNH-FM	69087	Rancholabrean	Alaska, Fairbanks, 53 Pedro Creek	116.67	93.74	1.245
3	Panthera atrox	AMNH-FM	69089	Rancholabrean	Alaska, Fairbanks, Fairbanks Creek	126.94	94.62	1.342
4	Panthera atrox	AMNH-FM		Rancholabrean	Alaska, Fairbanks, Ikpikpuk River	107.99	82.31	1.312
5	Panthera atrox	AMNH-FM	69088	Rancholabrean	Alaska, Fairbanks, Goldstream	116.73	91.56	1.275
93	Pantnera atrox	UCMP	20016	mean	Rancho La Brea, Locality 2050	125.0	94.4	1.331
94	Panthera atrox	UCMP	21025	22692 rcybp mean	Rancho La Brea, Locality 2051	118.7	91.5	1.297
95	Panthera atrox	UCMP	21052	22 692 rcybp mean	Rancho La Brea, Locality 2051	128.1	96.7	1.325
96	Panthera atrox	UCMP	21106	22 692 rcybp mean	Rancho La Brea, Locality 2051	123.4	93.4	1.321
97	Panthera atrox	UCMP	No #, Grid 6-E-18	22692 rcybp	Rancho La Brea, Locality 2051	128.8	95.2	1.353
98	Panthera atrox	UCMP	22283	22692 rcybp	Rancho La Brea, Locality 2051	132.9	98.8	1.345
46	Pseudaelurus quadridentatus	MNCN	46.598a 46.601	Vallesian	Los Valles de Fuentidueña (Segovia, Spain)	50.61	37.6	1.346

ID	Species	Coll Code	Specimen No.	Age	Locality	Calc Len	SustFac ToPost	Gear Ratio
Homid	voninco			-				
232	Hemicyon barbouri	AMNH-FM	68165b	E. Clarendoniar	Valentine Fm., Lucht Quarry, Brown Co.,	78.84	66.43	1.187
301	Phoberocyon	FLMNH	UF 270997	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	58.55	47.36	1.236
302	Phoberocyon	FLMNH	UF 1458	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	81.2	63.82	1.272
303	Phoberocyon johnhenryi	FLMNH	UF 164791	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	70.13	58.26	1.204
Hespe	erocvoninae							
331	Enhydrocyon pahinsintewakpa	UNSM		, Early Arikareean, Gering	Mo-103, Courthouse Rock, 59' below Gering Ash	61.29	49.6	1.236
253	Osbornodon iamonensis	FLMNH	UF 17647	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	45.86	37.4	1.226
254	O. iamonensis	FLMNH	UF 277890	Heminafordian	Thomas Farm. Gilchrist Co., Florida	40.79	32.21	1.266
255	O. iamonensis	FLMNH	UF 188657	Heminafordian	Thomas Farm, Gilchrist Co., Florida	40.97	33.42	1.226
256	O. iamonensis	FLMNH	UF 213042	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	40.19	32.74	1.228
257	O. iamonensis	FLMNH	UF 60549	Heminafordian	Thomas Farm, Gilchrist Co., Florida	40.12	31.62	1.269
258	O. iamonensis	FLMNH	UF 201560	Hemingfordian	Thomas Farm, Gilchrist Co., Florida	40.02	33.87	1.182
259	O. iamonensis	FLMNH	UF 94780	Heminafordian	Thomas Farm, Gilchrist Co., Florida	38.51	31.63	1.218
260	O. iamonensis	FLMNH	UF 160978	Heminafordian	Thomas Farm, Gilchrist Co., Florida	39.19	32.53	1.205
261	O. iamonensis	FLMNH	UF 94777	Heminafordian	Thomas Farm, Gilchrist Co., Florida	41.41	33.17	1.248
175	Paraenhydrocyon iosephi	AMNH-FM	54097	Arikareean?	3 mi W of Muddy Crk loro Wyoming	35.89	27.89	1.287
176 177	Paraen. josephi Paraen. josephi	AMNH-FM AMNH-FM	54115 54107	Arikareean?	4 mi E of Tremaine north of keeline, WY	30.14 35.37	25.25 29.25	1.194 1.209
Lopto	rotingo				· · · · · · · · · · · · · · · · · · ·			
200	Lontaretus ancinidans		115 262052	Hominafordian	Thomas Farm Cilchrist Co. Florida	27 / 2	22.26	1 1 2 1
290	Leptarctus ancipidens			Homingfordian	Thomas Farm Cilchrist Co., Florida	27.40	20.20	1.101
281			01 9097	Clarondonian	Lovo Bono Bod. Alachua, Elorida	24.00	20.03	1 1 2 0
212	Leptarctus wortmani	AMNH-FM	S 110 -Th	L. Hemingfordian	/Sheep Cr., Sioux Co, Nebraska	33.3	28.6	1.164
213	Leptarctus wortmani	AMNH-FM	AINS.564.266	SM. Clarendonian	Hollow Horn Bear Quarry, Todd Co., SD	28.79	23.89	1.205
214	Leptarctus wortmani	AMNH-FM	AINS.572.541	M. Clarendonian	Hollow Horn Bear Quarry, Todd Co., SD	32.58	27.93	1.166
37	Trocherion albanense	NMW	Unnumbered Vienna	Middle Miocene (MN 5)	Neudorf / Spalte, Czechoslovakia (Zapfe,) 1949)	1.91	1.61	1.186
Lutvin								
284	ae Enhydritherium terraenovae	FLMNH	UF 58385	Early Hemphillian	Haile 19A, Alachua Co., Florida	36.29	32.13	1.129
288	Enhydritherium terraenovae	FLMNH	UF 100000	Early Hemphillian	Moss Acres S. Racetrack, Sec 11, T14S, R19E, Morriston Quad, Marion Co.,	38.38	33.21	1.156
					Florida			
Mach	airodontinae							
24	Homotherium serum	UTVPL	933-2139	Pleistocene	Texas, Friesenhahn Cave	82.19	67.63	1.215
25	Homotherium serum	UTVPL	933-2938	Pleistocene	Texas, Friesenhahn Cave	81.76	68.72	1.190
26	Homotherium serum	UTVPL	933-3340	Pleistocene	Texas, Friesenhahn Cave	83.89	67.8	1.237
27	Homotherium serum	UTVPL	933-148	Pleistocene	Texas, Friesenhahn Cave	76.97	62.64	1.229
48	Machairodus alberdiae	MNCN	65809-65810	Vallesian	Los Valles de Fuentidueña (Segovia, Spain)	87.16	65.97	1.321
49 181	Machairodus alberdiae Machairodus	MNCN AMNH-FM	65808 Bx-16 384-	Vallesian Hemphillian	Los Valles de Fuentidueña (Segovia, Spain) Coffee Ranch, Hemphill Co., Texas (? -	97.87 105.51	70.94 82.79	1.380 1.274
182	coloradensis Machairodus	AMNH-FM	1933 CLAR 412-	Hemphillian	written on drawer) Hill Quarry, 20 mi. S.W. Claude, Texas.	93.45	74.7	1.251
183	coloradensis Machairodus	AMNH-FM	8402 107673	Lt. Hemphillian	Horace Baker Ranch Guymon, Texas Co., Oklahoma	97.86	78.68	1.244
184	coloradensis Machairodus	AMNH-FM	38-1209		R.R. Sand, Oklahoma	94.39	77.98	1.210
283	coloradensis Machairodus	FLMNH	UF24727	Early	Withlacoochee River 4A Citrus Co., Florida	83.64	72.78	1.149
	coloradensis	0.0.0		Hemphillian		00.05	-	4 0 1 -
114	Machairodus coloradensis	OMNH-VP	11711	Tertiary, Miocene, Hemphillian,	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	89.99	74.04	1.215
189	Pseudaelurus intrepidus	AMNH-FM	62183	Lt. Barstovian-Lt. Clarendonian	Hollow Horn Bear Quarry, Todd Co., SD	56.56	43.37	1.304

Coll S ID Species Code N		Specimen No.	Age	Locality	Calc Len	SustFac ToPost	c Gear t Ratio	
Mach	nairodontinae (continuat	ion)						
190	Pseudaelurus intrepidus	AMNH-FM	62228	Hemphillian 65.06		48.51	1.341	
191 192	P. intrepidus P. intrepidus	AMNH-FM	62233 62237	Hemphillian	BX 15 Colorado Location-B Bx14 Canadian Texas Lower Laver	65.98 62.06	48.37 46 3	1.364 1.340
193	P. intrepidus	AMNH-FM	62183C	Lt. Barstovian-Lt.	Lt. Hollow Horn Bear Quarry, Todd Co., SD Barstovian-Lt. Clarendonian		41.39	1.324
194	P. intrepidus	AMNH-FM	ESP 490- 3298(B)	Barstovian	Lower Pojoaque Bluffs, New Mexico	55.41	41.49	1.336
195	Pseudaelurus marshi	AMNH-FM	27453	Barstovian	Arroyo Ojito Fm., New Mexico	51.16	40.8	1.254
196 197	Pseudaelurus marshi Pseudaelurus marshi	AMNH-FM AMNH-FM	62136 62170	Clarendonian Lt. Barstovian-Lt. Clarendonian	Ainsworth, Xmas Quarry	62.81 59.47	49.6 46.72	1.266 1.273
198	Pseudaelurus marshi	AMNH-FM	27340-G	Clarendonian	BX85	73.83	58.16	1.269
199 200	Pseudaelurus marsni Pseudaelurus marshi	AMNH-FM AMNH-FM	62170-A 62183A	Late Barstovian-Lt.	Neoraska Hollow Horn Bear Quarry, Todd Co., SD	61.61 55.65	48.03 43.57	1.283
201	Pseudaelurus marshi	AMNH-FM	62183B	Lt. Barstovian-Lt.	Clarendonian Lt. Hollow Horn Bear Quarry, Todd Co., SD Barstovian-Lt.		41.89	1.254
202 335	Pseudaelurus marshi Pseudaelurus marshi	AMNH-FM UNSM	62719-A 123556	Barstovian Late Barstovian, Valentine Em	Pawnee Creek Fm, Colorado South end of Harlan County Dam	59.23 58.35	47.11 46.7	1.257 1.249
203	Pseudaelurus stouti	AMNH-FM	61825	L. Heminofordian	Sheep Creek Fm, Sioux Co, Nebraska	34.7	30.14	1.151
204	Pseudaelurus validus	AMNH-FM	62128	L. Heminofordian	Tesque Fm, Nambe Mbr, E. Cuyamunque, Santa Fe Co. New Mexico.	53.38	43.97	1.214
205	Pseudaelurus validus	AMNH-FM	62128	L. Heminofordian	Tesque Fm, Nambe Mbr, E. Cuyamunque, Santa Fe Co. New Mexico	54.74	43.84	1.249
8	Smilodon fatalis	AMNH-FM	69252	Late Florida, Devil's Den Mine, 8» Redeposited		85.13	64	1.330
103	Smilodon fatalis	UCMP	15052	22692 rcybp	Rancho La Brea, Locality 1059	95.1	79.5	1.196
104	Smilodon fatalis	UCMP	16448	22692 rcybp	Rancho La Brea, Locality 1059	97	79.5	1.220
105	Smilodon fatalis	UCMP	19136	22692 rcybp	Rancho La Brea, Locality 1059	94.6	77.9	1.214
106	Smilodon fatalis	UCMP	19238	22692 rcybp	Rancho La Brea, Locality 1059	99.2	82	1.210
107	Smilodon fatalis	UCMP	19320	22692 rcybp	Rancho La Brea, Locality 1059	97.1	80.2	1.211
108	Smilodon fatalis	UCMP	19321	22692 rcybp	Rancho La Brea, Locality 1059	97.3	80.5	1.209
30 206	Smilodon fatalis Smilodon gracilis	UTVPL AMNH-FM	933-4498 95533	Pleistocene Irvingtonian	Texas, Friesenhahn Cave McLeod Lime Rock Mine, Levy Co., FL. 2.2	82.77 82.04	70.58 67.26	1.173 1.220
207	Smilodon gracilis	AMNH-FM	95534	Irvingtonian	Mi north of Williston McLeod Lime Rock Mine, Levy Co., FL. 2.2 mi north of Williston	79.37	67.53	1.175
Miac	idae							
340	Miacis parvivorus	AMNH-FM	13087	Bridger B5	Mouth of Summer's Dry Creek, Bridger Basin, Wyoming	18.08	14.46	1.250
344	Vulpavus palustris	AMNH-FM	11497	Bridgerian, Eocene, Bridger B2	Grizzly Buttes E, Bridger Basin, Wyoming	27.38	24.43	1.121
Must	elidae							
347	Plesictis genettoides	AMNH-FM	11001	Oligocene/ Miocene	Peu Blanc (Allier), Puy de Dome, France (Poirrier Collection)	14.79	12.31	1.201
Must	elinae							
292 285	Miomustela madisonae Sthenictis lacota	FLMNH FLMNH	UF 406545 UF 38002	Hemingfordian Clarendonian	Thomas Farm, Gilchrist Co., Florida Love Bone Bed, Alachua, Florida	13.66 41.38	10.56 33.65	1.294

ID	Species	Coll Code	Specimen No.	Age Locality		Calc Len	SustFac ToPost	Gear Ratio
Nimra	vidae							
226	Nimravus brachyops	AMNH-FM	62151	Arikarrean	3/5 mi. E of Tremain R.R. Station, E Side, Horse Cr. Basin, Upper White Layer, Wyoming	70.77	54.84	1.290
227 228 220	Nimravus brachyops Nimravus brachyops Nimravus brachyops	AMNH-FM AMNH-FM	6940 6940	Arikarrean Arikarrean	John Day Formation, Oregon John Day Formation, Oregon	64.82 65.38	49.43 50.05	1.311 1.306
229	Nimiavus brachyops		none		John Day	03.5	50.55	1.202
Oligo	buninae							
210	Brachypsalis matutinus	AMNH-FM	AINS-577- 688	Clarendonian	Hollow Horn Bear Quarry, Todd Co., SD	42.07	36.96	1.138
211	Brachypsalis matutinus	AMNH-FM	AINS-577- 688	Clarendonian	Hollow Horn Bear Quarry, Todd Co., SD	42.93	36.71	1.169
219	Megalictis ferox	AMNH-FM	FAM 144568	Hemingfordian	16 Mile District, Goshen Co., Wyoming, USA, middle brown sand formation	58.42	49.28	1.185
220	Megalictis ferox	AMNH-FM	54079	no data	no data	55 34	45 47	1 217
215	Promartes lepidus	AMNH-FM	27462	M. Canyada Piedra Parada, 50 yds E. of Hemingfordian Standing Rock Q., Sandova/Co., N. Mex. Zia sand Em		20.35	17.52	1.162
216	Promartes lepidus	AMNH-FM	27583	Lower Arikareean	Royal Valley, Niobara Co., Wyo., L. Marshland Fm.	20.58	17.89	1.150
Proc	vonidae							
202	Arotopasua floridana		LIE 27006	Clarandonian	Lovo Rono Rod, Alachua, Elorida	36.00	20 10	1 105
200	Arctonasua floridana			Clarendonian	Love Bone Bed, Alachua, Florida	26 10	20.13	1.100
299	Arcionasua nonuana		UF 37 999	Clarendonian	Love Done Ded, Alachua, Florida	20.19	00.27	1.190
290	Paranasua biradica Paranasua biradica		UF 36004	Clarendonian	Love Bone Bed, Alachua, Florida	33.74	20.31	1.192
201	T dranasta biracica		01 07 550	Olarchuonian	Love Done Ded, Alachda, Honda	04.10	21.5	1.220
Ursina	ae							
234	Agriotherium gregoryi	AMNH-FM	RED 181- 3527	L. Hemphillian	Quibiris Fm., Old Cabin Quarry, Redington area, Pima Co., Arizona	100.51	88.76	1.132
235	Agriotherium gregoryi	AMNH-FM	103-586	L. Hemphillian	Big Sand Fm., Wikieup, Mohave Co., Arizona	94.53	80.68	1.172
300	Agriotherium schneideri	FLMNH	UF 24182	Hemphillian (Early Pliocene)	North Palmetto Mine (PO021) Polk Co., Florida	110.58	89.49	1.236
122	Agriotherium schneideri	OMNH-VP	13676	Tertiary, Miocene, Hemphillian, Ogallala Em	V52, Optima, Texas County, Oklahoma, Ogallala Fm.	100.59	89.71	1.121
56	Arctodus simus	UCMP	3719	L. Pleist-E.	Potter Creek Cave, Locality 1055	100.5	96.8	1.038
57	Arctodus simus	UCMP	10214	L. Pleist-E.	Potter Creek Cave, Locality 1055	107.5	98.1	1.096
58	Arctodus simus	UCMP	8324	L. Pleist-E.	Potter Creek Cave, Locality 1055	95.6	88.6	1.079
59	Arctodus simus	UCMP	3450	L. Pleist-E.	Potter Creek Cave, Locality 1055	102.2	93.8	1.090
233 305	Indarctos oregonensis Indarctos oregonensis	AMNH-FM FLMNH	HIG 33-514 UF13796	E. Hemphillian Early Hemphillian	Box T Pit 1, Lipscomb Co., Texas Withlacoochee River 4A Citrus Co., Florida	122.75 104.89	108.03 89.14	1.136 1.177

APPENDIX 10. — Reconstructed ancestral gear ratio values for the nodes of the tree shown in Appendix 1. Uncertainties are one standard error (SE). The Excel version of this document is available at the following address: http://sciencepress.mnhn.fr/sites/default/files/documents/en/appendix10-node_reconstructions.xlsx

Node	Best estimate	Uncertainty (SE)	Node	Best estimate	Uncertainty (SE)	Node	Best estimate	Uncertainty (SE)
0	1 189	0 125	70	1 231	0 172	140	1 210	0 153
1	1 203	0.120	70	1 289	0.172	140	1 160	0.166
2	1 223	0.129	72	1 288	0.158	142	1 158	0.154
3	1 221	0.125	73	1 299	0.138	143	1 159	0.154
4	1 228	0.147	74	1.332	0.100	140	1 165	0.100
5	1 253	0.128	75	1.331	0.125	145	1 137	0.000
6	1 254	0.120	76	1.339	0.128	146	1 114	0.102
7	1 253	0.123	77	1.322	0.119	147	1 116	0.080
8	1 271	0.104	78	1.308	0.144	148	1.130	0.081
9	1 268	0.099	79	1 320	0 143	149	1 111	0.082
10	1 317	0.093	80	1 284	0.094	150	1 086	0.034
11	1.300	0.000	81	1 219	0.113	151	1 135	0.116
12	1 263	0.100	82	1 216	0.126	152	1 219	0.167
13	1 260	0.089	83	1 195	0 156	153	1 224	0 117
14	1 273	0.085	84	1 165	0.080	154	1 227	0 135
15	1 288	0.072	85	1 235	0.092	155	1 230	0 152
16	1 217	0.078	86	1 242	0.057	156	1 224	0 114
17	1.318	0.092	87	1.205	0.115	157	1.224	0.113
18	1.329	0.002	88	1 187	0 103	158	1 224	0 110
19	1.335	0.002	89	1 205	0.085	159	1 222	0 141
20	1.354	0.001	90	1 219	0 114	160	1 207	0.096
21	1.357	0.087	91	1 215	0.133	161	1 209	0.000
22	1.358	0.007	92	1 220	0.157	162	1 213	0.000
23	1 364	0.065	93	1 257	0 166	163	1 215	0.068
24	1.336	0.081	94	1 248	0 139	164	1 215	0.070
25	1 342	0 103	95	1 244	0 126	165	1 210	0.072
26	1.344	0.091	96	1.248	0.109	166	1.201	0.069
27	1 337	0.087	97	1.231	0.106	167	1.206	0.062
28	1.348	0.091	98	1.209	0.147	168	1.239	0.026
29	1.349	0.091	99	1.207	0.142	169	1.212	0.073
30	1.303	0.060	100	1.213	0.128	170	1.212	0.026
31	1.385	0.006	101	1.215	0.119	171	1.213	0.077
32	1.334	0.093	102	1.243	0.125	172	1.216	0.080
33	1.333	0.085	103	1.235	0.118	173	1.218	0.088
34	1.334	0.086	104	1.219	0.101	174	1.202	0.103
35	1.358	0.062	105	1.214	0.114	175	1.201	0.096
36	1.338	0.099	106	1.219	0.091	176	1.196	0.106
37	1.370	0.025	107	1.225	0.105	177	1.226	0.152
38	1.259	0.083	108	1.237	0.123	178	1.254	0.119
39	1.262	0.082	109	1.194	0.117	179	1.277	0.106
40	1.257	0.087	110	1.199	0.103	180	1.235	0.006
41	1.271	0.087	111	1.210	0.114	181	1.278	0.105
42	1.298	0.083	112	1.211	0.112	182	1.282	0.109
43	1.303	0.084	113	1.212	0.098	183	1.282	0.116
44	1.295	0.113	114	1.209	0.088	184	1.284	0.110
45	1.289	0.108	115	1.207	0.088	185	1.282	0.102
46	1.295	0.107	116	1.206	0.088	186	1.285	0.072
47	1.253	0.133	117	1.197	0.100	187	1.268	0.054
48	1.212	0.077	118	1.181	0.101	188	1.303	0.094
49	1.181	0.090	119	1.155	0.111	189	1.283	0.090
50	1.180	0.083	120	1.179	0.103	190	1.278	0.086
51	1.176	0.081	121	1.216	0.123	191	1.276	0.072
52	1.253	0.130	122	1.204	0.101	192	1.249	0.063
53	1.244	0.151	123	1.197	0.105	193	1.252	0.057
54	1.237	0.162	124	1.189	0.105	194	1.258	0.053
55	1.170	0.169	125	1.190	0.106	195	1.240	0.004
56	1.246	0.154	126	1.176	0.059	196	1.310	0.068
57	1.253	0.155	127	1.193	0.116	197	1.324	0.066
58	1.249	0.119	128	1.217	0.113	198	1.288	0.071
59	1.247	0.099	129	1.240	0.112	199	1.282	0.069
60	1.242	0.091	130	1.208	0.096	200	1.276	0.080
61	1.275	0.169	131	1.212	0.106	201	1.275	0.060
62	1.281	0.158	132	1.212	0.109	202	1.274	0.060
63	1.300	0.130	133	1.225	0.115	203	1.275	0.063
64	1.263	0.156	134	1.219	0.092	204	1.259	0.064
65	1.270	0.169	135	1.219	0.089	205	1.260	0.019
66	1.283	0.123	136	1.180	0.127	206	1.2/1	0.065
6/	1.251	0.086	137	1.196	0.089	207	1.269	0.060
68	1.269	0.145	138	1.195	0.082	208	1.2/3	0.005
69	1.257	0.159	139	1.180	0.093	209	1.2/2	0.070