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ABSTRACT
Statistical comparisons, based on 173 genera distributed in 27 Caradoc localities 
from around the world, show strong faunal similarities between North and South 
China and the Chu-Ili terrane, the Chingiz terrane and Australia/Tasmania. Th e 
Scoto-Appalachian fauna of the Laurentian terrane shows closer similarities to 
faunas from the Gornoi-Altai terrane (belonging to the Kazakhstan terrane) than 
to faunas from Baltica and Avalonia that are generally regarded as being closer 
to Laurentia. Th is suggests a peri-equatorial location for the Gornoi-Altai ter-
rane that would allow the migration of taxa to the west. Th e faunas from North 
and South China are typical deep water Foliomena faunas that are restricted 
to peri-equatorial palaeo-latitudes. Th e North China terrane is best positioned 
closer to the Equator than other palaeogeographical reconstructions suggest. 
Th e three diff erent Kazakhstan terranes group each with a diff erent cluster (i.e. 
the Gornoi-Altai terrane with Laurentia, the Chu-Ili terrane with North and 
South China and the Chingiz terrane with the Australian, including Tasmania, 
part of Gondwana). Th is suggests that Kazakhstan is best regarded as having 
been divided into several terranes, each possessing an individual developing 
history, rather than a single entity.
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INTRODUCTION

In a previous publication (Candela 2003), Late 
Ordovician brachiopod faunas from Laurentia, 
Baltica, Avalonia and Armorica were compared 
using cluster analysis. Th e results discriminated 
three clusters: a fi rst cluster grouping assemblages 
with Armorican affi  nities, a second with Lauren-
tian affi  nities and a third with Avalonian affi  nities. 
Remarks focused, fi rstly, on the strong affi  nities 
between assemblages from Baltica and Avalonia, 
which grouped at high similarity coeffi  cient. Th is 
illustrated the breakdown of brachiopod provincial-
ity that had started during the Middle Ordovician. 
Secondly, the stronger similarity of brachiopod as-
semblages from Pomeroy (Northern Ireland) and 
Kilbucho (South of Scotland), that are found on 

opposite sides of the Southern Upland Fault, rather 
than with assemblages from Girvan (Scotland) 
(which is on the same side of the SUF as Pomeroy), 
suggested a short post-Caradoc displacement. In 
the present paper, data from Kazakhstan (Klenina 
et al. 1984; Kulkov & Severgina 1989; Popov et 
al. 2002), China (Rong & Zhan 1996; Cocks & 
Zhan 1998; Rong et al. 1999), Sibumasu (Cocks 
& Zhan 1998), Australia/Tasmania (Laurie 1991; 
Percival 1991) and Armorica (Villas 1985, 1992) is 
integrated to enable a wider understanding of the 
distribution of faunas from Ordovician shelf, slope 
and basinal settings around palaeocontinents.

Brachiopods were important elements of the 
benthic fauna during the Early-Middle Palaeozoic. 
Th ey are an ideal group for palaeobiogeographic 
studies, because they were sessile, most of them lived 

RÉSUMÉ
Comparaisons statistiques de faunes de brachiopodes fi ni-caradociennes (Ordovicien) 
autour de l’océan Iapetus, et de terrains situés autour de l’Australie, du Kazakhstan 
et de la Chine.
Des comparaisons statistiques, basées sur 173 genres distribués dans 27 localités 
dans le monde, montrent de fortes similarités fauniques entre les terrains de 
Chine du Nord et du Sud, de Chu-Ili, de Chingiz et d’Australie/Tasmanie. La 
faune Scoto-Appalachienne de la Laurentia démontre des similarités plus proches 
des faunes du terrain de Gornoi-Altai (faisant partie du terrain du Kazakhstan) 
que de Baltica et Avalonia qui sont généralement considérés comme étant plus 
proches de la Laurentia. Ceci suggère une position péri-équatoriale du terrain 
de Gornoi-Altai qui permettrait la migration des taxons vers l’ouest. Les faunes 
de la Chine du Nord et du Sud sont des faunes typiques à Foliomena qui sont 
considérées avoir une distribution autour de paléolatitudes péri-équatoriales. 
Le terrain de Chine du Nord est plus adéquatement positionné plus proche de 
l’Équateur que d’autres reconstructions paléogéographiques le proposent. Les 
trois diff érents terrains du Kazakhstan se connectent avec des groupes diff érents 
(à savoir le terrain de Gornoi-Altai avec la Laurentia, le terrain de Chu-Ili avec 
la Chine du Nord et du Sud et le terrain de Chingiz avec la partie australienne, 
incluant la Tasmanie, du Gondwana). Ceci suggère qu’il est plus judicieux de 
considérer le Kazakhstan comme étant constitué de plusieurs terrains possé-
dant chacun une histoire de développement individuel plutôt qu’une seule et 
unique entité.
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FIG. 1. — Reconstructions for Mid-Ordovician (460 Ma) times. Redrawn from: A, Scotese (2002); B, Golonka (2002); C, Cocks & Fortey 
(2002) amended by Fortey & Cocks (2003); D, Rong et al. (1999).
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in relatively shallow water, their shells accumulated 
in large numbers, and they could survive transport, 
burial and diagenesis (Tychsen & Harper 2004). 
Th e last feature enables an accurate identifi cation 
of the animals at the generic and specifi c levels.

PLATE TECTONIC MODELS

Various palaeogeographic maps have been produced 
since the important work of Scotese & McKerrow 
(1990). Reconstructions have relied principally on 
palaeomagnetic and sedimentologic data (Golonka 
2002; Scotese 2002). Because continental palaeo-
magnetic evidence is less precise for the Early Pal-
aeozoic (Lees et al. 2002), the relative longitudinal 
position of plates and its representation have been 
arbitrary (Mound & Mitrovica 1998). At best, rela-
tive longitude is known to ± 30° and latitude ± 15° 
(Scotese & McKerrow 1990). However, the use of 
key fossil groups such as brachiopods and trilobites, 
combined with palaeomagnetic data, has allowed 
Cocks & Torsvik (2002) to produce palaeogeographic 
reconstructions for the period ranging from 500 to 
400 Ma. Fortey & Cocks (2003) have presented 
the advantages of using palaeontologic evidence in 
global continental reconstructions for the Ordovi-
cian and the Silurian. For example, fossil evidence 
helps resolve longitudinal problems that cannot be 
solved by palaeomagnetism alone (Fortey & Cocks 
2003). Selected models proposed by Scotese (2002) 
(Fig. 1A), Golonka (2002) (Fig. 1B) and Cocks 
& Torsvik (2002), amended by Fortey & Cocks 
(2003) (Fig. 1C) are discussed below.

Th e reconstructions proposed by Cocks & Tors-
vik (2002) diff ered greatly from those published 
by Golonka (2002) and Scotese (2002), the latter 
two being dissimilar in only few details. Consensus 
is achieved in the relative position of Laurentia, 
Baltica, Siberia and Avalonia, although the lat-
ter is placed south of Baltica by Scotese (2002), 
whereas in Golonka’s (2002) map it is placed west 
of Baltica (see also McKerrow et al. [2000]). Cocks 
& Torsvik (2002) also positioned Avalonia west 
of Baltica, and separated Siberia and Laurentia by 
over 6000 km of ocean. In the maps proposed by 
Golonka (2002) and Scotese (2002), Siberia and 

Laurentia are closer together as Siberia was collid-
ing (arc collision) with Laurentia throughout the 
Caradocian (McKerrow et al. 1991), causing the 
Taconian Orogeny.

Th e position of Gondwana, centered at the palaeo-
south pole, has not been modifi ed since Scotese & 
McKerrow (1990), although Golonka (2002) placed 
South America closer to the southern margins of 
Laurentia than Scotese (2002) and Cocks & Torsvik 
(2002). Th e main diff erences regard the relative posi-
tion of Sibumasu, North China and South China. 
In a fi rst scenario (Cocks & Torsvik 2002), these 
have drifted away from the Paleo-Tethys margins 
of Gondwana, with Sibumasu and South China 
located at 30°S, while North China is located in 
the Northern Hemisphere, although there cannot 
have been very great distances between it and the 
neighbouring terranes (Fortey & Cocks 2003). A 
second scenario involves Sibumasu, North China 
and South China remaining peri-Gondwanan ter-
ranes (Metcalfe 1998; Golonka 2002; Scotese 2002): 
North China is located 30°N, South China is at the 
Equator and Sibumasu is intermediate.

Scotese (2002) proposed a North Hemisphere 
position for Kazakhstan, forming an island arc be-
tween Siberia to the west and North China to the 
east. Şengör et al. (1993) and Şengör & Natal’in 
(1996) proposed an Ordovician confi guration for 
the Kazakh terranes (sensu Şengör 1987 and Şengör 
et al. 1993) as strung out in a huge arc (Kipchak 
Arc) stretching from the east coasts of Siberia to 
Baltica (see also Golonka 2002). Fortey & Cocks 
(2003) have discussed and rejected this confi gura-
tion. Th e clear Sino-Australian signature, for the 
Late Ordovician, of trilobites and brachiopods in-
dicated a peri-Gondwanan position for the terranes 
forming the Kipchak Arc. A new reconstruction 
was proposed by Fortey & Cocks (2003: fi g. 15) 
(see also Figure 1C herein).

DATA AND TECHNIQUES

Th e present study integrates a compilation of fossil 
brachiopod data from published sources only (list 
in Appendix) with personal data. Older references 
have been updated to modern taxonomic standards 
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FIG. 2. — Cluster analysis on presence/absence data of 27 localities using 173 genera; UPGMA, Dice Index of similarity (values are 
displayed on the vertical axis). Data: see Appendix. Shaded areas represent the fi ve clusters numbered 1 to 5. Key for assemblage: 
see Appendix.

to form a stable database. A total of 173 genera 
(detailed list in Appendix) were used, recorded in 
27 localities, which correspond to such terranes as 
defi ned by Cocks & Torsvik (2002) and Fortey & 
Cocks (2003). Th e analyses discarded the pandemic 
genera found in more than 10 localities (Leptaena, 
Skenidioides and Sowerbyella): they bias the result 
by over-estimating the correlation between assem-
blages. Th e generic database is founded primarily on 
possible biases in relation to conditions of preserva-
tion (moulds and casts, deformed shells, decalcifi ed 
material, etc.) and to appropriate generic assign-
ment by various authors. Some of the genus names 
used may therefore not be possible to validate, and 
may be incorrect. Multivariate analysis techniques 
included in the PAST software (Hammer et al. 
2005) were used. Firstly, cluster analysis (Fig. 2) 
used the Dice index of similarity, which is suitable 
for the use of presence/absence data (Hammer et al. 
2005) and recommended for palaeobiogeographic 

analysis (Rong et al. 1995). Cluster analysis is a 
straightforward method of visualizing association 
data, although the confi dence of the nodes is highly 
dependent on data quality and levels of similarity 
for cluster nodes is dependent on the similarity 
index used (Tychsen & Harper 2004). Th e mean 
linkage (UPGMA) method is chosen here because 
clusters are joined on the basis of the average distance 
between all members in the two groups. A second 
analysis (Fig. 3) used detrended correspondence 
analysis (DCA), to bring an objective and critical 
approach and to investigate palaeobiogeographic 
trends in the data.

ANALYSIS OF DATA AND DISCUSSION

CLUSTER ANALYSIS

Th e data groups into fi ve distinct clusters (Fig. 2): 
cluster 1 assembles faunas of Scoto-Appalachian 
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affi  nities lying on the eastern margin of Laurentia 
(Williams 1962; Candela 2003); cluster 2 groups 
faunas of Baltoscandian affi  nities (Harper & Owen 
1984; Harper et al. 1984; Paškevičius 1994), also in-
cluding the assemblage from the south east of Ireland 
(Parkes 1994); cluster 3 groups faunas of Avalonian 
affi  nities (Hurst 1979; Pickerill & Brenchley 1979; 
Lockley 1980); cluster 4 links faunas from North 
China (Rong & Zhan 1996) and South China 
(Rong et al. 1999); cluster 5 groups faunas from 
the core of “east” Gondwana (as defi ned by Fortey 
& Cocks 2003), i.e. Tasmania (Laurie 1991) and 
Australia (Percival 1991).

Cluster 5 and high latitude peri-Gondwanan 
faunas of Armorica are linked to the rest of the 
data at a very low similarity index, which refl ects 
the taxonomic structure of these faunas composed 
of many exclusive genera (e.g., Australispira, Tri-
grammaria, Wiradjurella for Australia, Hebertella 
and Tasmanella for Tasmania, and Aegiromena, 
Gelidorthis and Svobodaina for Armorica). Th e term 
exclusive is used sensu Sánchez & Babin (2003) here 
instead of endemic for the same reasons. For obvi-
ous opposite palaeoecologic conditions (Armorica 
positioned at high, circum-polar latitude whereas 
elements from cluster 5 are located around the 
 palaeo-equator), these two groups are not connected 
faunally to each other.

During the Middle to Late Ordovician, Gondwana 
provinciality had not broken down yet, although 
its early dispersal history had started with the rift-
ing from Avalonia that drifted rapidly northward 
between 480 and 460 Ma (Cocks & Torsvik 2002) 
to reach palaeo-latitudes similar to the southern 
margins of Baltica. Avalonia had lost its Gondwa-
nan affi  nities due to the substantial breadth that 
the Rheic Ocean had reached by the Caradoc. Th e 
absence of common fauna is also emphasized by the 
strong gradient in water temperature between the 
warmer water conditions around Avalonia and the 
colder circumpolar waters of Armorica. Avalonia had 
changed its brachiopod signature with the presence 
of genera with ancestors mainly from Baltica (for 
example Leptaena, Sericoidea both from the lower 
Caradoc) (Fig. 2, connection between clusters 2 and 
3). Reciprocally, genera that originated in Avalonia 
(for example Dalmanella in the Arenig) had taken 

the opportunity of colonising the margins of Baltica 
during the Caradoc as the Tornquist Ocean, which 
divided the two palaeocontinents was shrinking. 
Williams et al. (2003) noted an identical migration 
route during the mid Caradoc for ostracods from 
the “North Atlantic” region. Th e assemblage from 
Lithuania groups with assemblages from Scandina-
via (Fig. 2, cluster 2), at a lower level of similarity, 
perhaps due to diff erences in facies.

Th e brachiopod assemblage from south east 
Ireland [kildare], although palaeo-geographically 
belonging to Avalonia (Fortey & Cocks 2003), is 
related to the Norwegian assemblage from Oslo-
Asker [norw2] (Fig. 2). It contains a higher number 
of taxa common to Baltica, as well as Laurentia, 
than to the Anglo-Welsh province. Owen & Parkes 
(2000) compared the trilobite faunas from Kildare, 
SE Ireland, with coeval Scoto-Appalachian and 
Avalonian trilobite faunas, and concluded that 
the strong Scoto-Appalachian faunal link during 
the lower Upper Ordovician may indicate that the 
Leinster terrane occupied a more oceanward setting 
than the Anglo-Welsh area.

Central Kazakhstan is composed of a series of 
accreted terranes (Şengör 1987; Şengör et al. 1993) 
whose current juxtaposition does not refl ect their 
original geographic position (Fortey & Cocks 
2003). Th eir geologic structure suggests that in the 
Palaeozoic, these terranes formed either a series of 
island arcs, known collectively as the “Kipchak Arc” 
(Şengör 1987; Şengör et al. 1993), that extended 
between Baltica and Siberia, or were regarded as 
microcontinents separated by small oceanic ba-
sins, each having its own history of development 
(Fortey & Cocks 2003). Th ree of these terranes 
are integrated in the analysis: the Chu-Ili [kaz1], 
Chingiz [kaz2] and Altai-Sayan [kaz3] terranes 
(see Appendix for faunal detail). In the Lower to 
Middle Ordovician, the Laurentian (at least Scoto-
Appalachian) and Siberian signature of the Gornoi 
Altai [kaz3] brachiopod faunas is relatively strong 
(Fortey & Cocks 2003). Th e Scoto- Appalachian 
signature is still strong in the Caradoc, as shown 
by the link with faunas from cluster 1 (Fig. 2). Th is 
is due to the presence of genera such as Bimuria, 
Dactylogonia, Dolerorthis, Glyptorthis, Hesperorthis, 
Isophragma, Paurorthis, Sowerbyella and Sower-
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byites that are common in Laurentia (including 
the Scoto-Appalachian province). Th e analysis 
of Caradoc brachiopod faunas by Cocks & Zhan 
(1998: table 1) also emphasized the link between 
the faunas from Gornoi Altai and the Laurentian 
continent.

Although having many genera in common with 
Laurentia during the Middle Ordovician (Llan-
virn) (Fortey & Cocks 2003), the brachiopod 
signature of the Anderken Formation of the Chu-
Ili terrane clearly shows Chinese affi  nities by the 
Upper Ordovician (Caradoc) (Fig. 2). Popov et al. 
(2002) emphasized the relation of the Anderken 
Formation brachiopod assemblage with those of 
north-west China.

Finally the Caradoc brachiopod fauna [kaz2] of 
the Sargaldak Formation of the Chingiz terrane 
shows affi  nities with faunas grouped in cluster 5 
(from Tasmania and New South Wales, Australia), 
although genera such as Aulie and Dulankarella are 
restricted to Kazakhstan during the Caradoc.

Th ese remarks on the Kazakh terranes corroborate 
the idea that, during the Caradoc, these terranes 
were located at a low latitude, along the Equator 
and extended to the margins of “East” Gondwana 
as suggested by Zhylkaidarov (1998), Fortey & 
Cocks (2003) and Alexyutin et al. (2005), rather 
than forming an arc stretching from Baltica to Si-
beria as proposed by Şengör (1987), Şengör et al. 
(1993) and Şengör & Natal’in (1996). Popov et al. 
(1997) argued that the model proposed by Şengör 
et al. (1993) may explain post-Silurian tectonic de-
velopment of the Kazakhstanian orogen, however 
“some terranes in Central Kazakhstan may not be 
incorporated easily into this model” (e.g., Chingiz 
terrane). Popov et al. (1997) assumed the micro-
plates and island arcs associated with Kazakhstan 
to be situated between Baltica and the Australian 
part of Gondwana.

According to Zhan & Jin (2005), the brachio-
pods from the Upper Yangtze Platform (South 
China), Sibumasu and Kazakhstan (Chu-Ili) palaeo-
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geographic regions constitute a distinct faunal 
province, characterised by endemic taxa and sev-
eral regional taxa (i.e. Saucrorthis and Martiella). 
Popov et al. (1999) also noted the strong affi  nities 
between North and South China and Kazakhstan 
(see also Figure 2 herein) for being the place where 
early atrypides and athyridides originated and fi rst 
diversifi ed.

Th e brachiopod assemblages from North China 
[nch] and South China ([sch1] to [sch5]) are typi-
cal deep water Foliomena faunas as fi rst defi ned by 
Sheehan (1973) and amended by Rong et al. (1994, 
1999). Th e strophomenoid brachiopod Foliomena 
originated in South China in early Caradoc black 
graptolitic shales of the Miaopo Formation (BA 
4). Th e typical Foliomena fauna appeared in the 
middle Caradoc in South China in the carbonate 
facies of the Pagoda Formation (BA 5) (Rong et al. 
1999). Th e Foliomena fauna is typical of deep water 
benthic regimes, marginal to continents, which 
helps with reconstructing the position of palaeo-
plates. Th is evidence suggests that North China, 
South China and Sibumasu (which possesses an 
early Ashgill Folio mena fauna) with their Foliomena 
faunas “faced” oceanward (Palaeo-Tethys Ocean), 
as proposed by Rong et al. (1999: fi g. 9) and Fortey 
& Cocks (2003: fi g. 15). Th is diff ers from recon-
structions of Scotese (2002) and Golonka (2002). 
According to Rong et al. (1999), the Foliomena 
fauna occurs within a restricted latitudinal range 
of between 18-25° in the southern hemisphere, 
supported later by Fortey & Cocks (2003), who 
postulated a peri-equatorial to subtropical location 
for South China, Sibumasu and North China. 
Golonka (2002) positioned North China at 45°N 
and South China at 30°S, and the Sibumasu ter-
rane in an intermediate position. Webby (2002), in 
his study of the Ordovician reefs, stressed that the 
palaeoposition of North China in palaeolatitudes 
of 30-45°N, as proposed by Golonka (2002) and 
Scotese (2002), is problematic. Th e reefs (coral, 
algal and stromatoporoid) found in North China 
are typical of the tropics, which has a latitudinal 
range not greater than between 25°N and 25°S (see 
Webby 2002: fi g. 7).

In the present study, the Sibumasu terrane (com-
prising the western part of the Malay Peninsula, 

Th ailand and Burma (Cocks & Torsvik 2002; 
Fortey & Cocks 2003) has a low level of simi-
larity with the circum-Iapetus assemblages (i.e. 
clusters 1 to 3). Several genera are found outside 
Sibumasu (e.g., “Cyclospira”: [Avalonia, Laurentia]; 
Nicolella: [Avalonia, Baltica, Laurentia]; Onniella: 
[Avalonia, Baltica]; Skenidioides: [Avalonia, Baltica, 
Laurentia]; “Protozyga”: [Avalonia, Laurentia]) 
indicating some communication between these 
terranes or possibly relatively warm and uniform 
global temperatures (Cocks & Torsvik 2002). 
Th ese genera are generally typical of subtropical 
latitudes. No common taxa are recorded in high-
latitude circum-polar terranes. Th e breakdown of 
terrane provinciality during rising sea-level echoed 
the middle Caradoc brachiopod diversifi cation 
that drastically increased the number of genera 
over about 20 Ma (from 470-450 Ma). Cluster 4 
(including North and South China) and the as-
semblage from the Chu-Ili terrane have similarities 
with the Sibumasu assemblage. Th e small orthid 
Saucrorthis, formerly thought to be restricted to 
the early Caradoc of South China is also present 
in the younger assemblage from Sibumasu, and, 
Bekkerella and Dirafi nesquina are restricted to the 
Naungkangyi Group in Sibumasu. Although the 
Sibumasu terrane has been demonstrated to have 
geographical affi  nity with South China (Fortey & 
Cocks 1998), this new evidence indicates some 
separation from South China (Fortey & Cocks 
2003). The small number of common genera 
between the Chinese and the Sibumasu terranes 
(“Cyclospira” and Skenidioides) may denote dif-
ferent palaeo ecological conditions. Th e Chinese 
assemblages have a typical low diversity Foliomena 
faunas (deep water, BA 5), whereas the assemblage 
from Sibumasu is a shallower water assemblage 
(BA 2 to 3) (Cocks & Zhan 1998).

ORDINATION ANALYSIS

A bivariate plot (Fig. 3) shows the result of the 
detrended correspondence analysis (DCA). Both 
assemblages from Australia and the assemblage from 
Tasmania form a tight cluster in DCA displaying 
little variation along axis 1. Th e small variation along 
axis 2 (Fig. 3) can be explained by the presence of 
exclusive genera such as Australispira, Doleroides, 
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Molongcola, Paraonychoplecia, Quondongia, Trigram-
maria, Tylambonites and Wiradjurella in the two 
Australian assemblages and Hebertella and Tasmanella 
in Tasmania. Taxonomic diff erences between these 
contemporaneous and adjacent assemblages existed 
because of diff erent tectono-sedimentary regimes 
and thus environments for benthic life. Th e as-
semblage from Tasmania was a former Gondwana 
shelf margin assemblage, whereas the assemblages 
from Australia were off shore, island-arc shelf area 
assemblages (Webby 1987, 1991). Webby (1991) 
also noted stromatoporoid genus and species pro-
vincial diff erences between Tasmania and Australia. 
Th e stromatoporoid fauna showed affi  nities with 
faunas from North America, but closer biogeo-
graphic links are shown with Asian terranes such 
as North China, Kazakhstan and Malaysia (Webby 
1991). Brachiopod assemblages also demonstrate 
ties between Australia, Laurentia, North and South 
China and Kazakhstan.

Th e Welsh assemblage [wales1] plots apart from 
the rest of the Avalonia cluster including the other 
Welsh assemblages ([wales2], [wales3] and [wales4]). 
It is characterized by shallow water brachiopod fau-
nas including Heterorthis alternata and Sowerbyella 
sericea. Coeval rocks to the north-west, on the op-

posite side of the Welsh Borderland Fault System 
(WBFS) ([wales2] and [wales3]), are characterized 
by deeper water brachiopod faunas including Eo-
plectodonta, Onniella and Sericoidea. Th e contrast 
between [wales1] and the other Avalonia assemblages 
expressed by variations along DCA axis 2 (Fig. 3) is 
probably related to palaeoenvironmental settings: 
as the direction along a north west transect of these 
localities across the WBFS represents a transition 
from shallow water platform to an off shore deeper 
water environment.

Armorica keeps its palaeogeographic and taxo-
nomic (Aegiromena, Gelidorthis and Svobodaina) 
individuality (Fig. 3).

Sibumasu retains its position close to the Baltica-
Avalonia and Scoto-Appalachian clusters (Fig. 3 
and Fig. 2), but also holds a close position near 
the Chinese cluster. Th is latter relationship is well 
established (Fortey & Cocks 1998, 2003) and 
documented, and is, therefore not surprising. Laurie 
& Burrett (1992) proposed an Early Ordovician 
juxtaposition of Sibumasu and western Australia. 
On the basis of faunal distribution and palaeo-
magnetic data, the North China terrane suggests 
proximity to Australia and Sibumasu (Burrett & 
Stait 1987).
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CONCLUSIONS

Th e palaeogeographic reconstruction proposed herein 
(Fig. 4) is based on this revised faunal analysis and 
also on previous works (Rong et al. 1999; Cocks & 
Torsvik 2002; Fortey & Cocks 2003). North and 
South China, Sibumasu and the Kazakh terranes 
and their faunas suggest:
– North China was close to Equator; 
– Sibumasu and South China lay in tropical lati-
tudes, and were close to North China;
– Kazakhstan was not a single entity, but divided into 
several terranes located at the equator, rather than 
being part of an arc between Siberia and Baltica;
– these geographic positions allowed an exchange 
and spread of taxa via currents as shown by Herr-
mann et al. (2004).
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APPENDIX
List of faunas used in the analyses.

[armorica]: Peña del Tormo member of the Fombuena Formation, 

central Spain (Villas 1985, 1992); Aegiromena, Gelidorthis, 
Rafi nesquina, Rostricellula, Svobodaina.

[austr1]: Billabong Creek Limestone Member, Billabong Creek, 

New South Wales, Australia (Percival 1991); Anoptambonites, 

Australispira, Bowanorthis, Didymelasma, Dinorthis, Doleroides, 

Eridorthis, Paraonychoplecia, Protozyga, Quondongia, Rhynchotrema, 
Sowerbyella, Sowerbyites, Trigrammaria, Wiradjuriella, Zygospira.

[austr2]: Quondong Limestone, Palin Yard Creek, New South Wales, 

Australia (Percival 1991); Australispira, Bowanorthis, Hesperorthis, 
Molongcola, Phaceloorthis, Ptychopleurella, Trigrammaria, Tylambonites, 

Wiradjuriella, Zygospira.

[kaz1]: Unit 5 of the Anderken Formation, Chu-Ili Range, south-

eastern Kazakhstan (Popov et al. 2002); Acculina, Anoptambonites, 

Bellimurina, Bowanorthis, Christiania, Craspedelia, Didymelasma, 
Dolerorthis, Foliomena, Glyptorthis, Grammoplecia, Ilistrophina, 

Kajnaria, Kellerella, Limbimurina, Liostrophina, Nikolaispira, 

Nushbiella, Parastrophina, Pectenospira, Phaceloorthis, Phragmorthis, 

Placotriplesia, Plectorthis, Plectosyntrophia, Rhynchotrema, 

Schizostrophina, Skenidioides, Sortanella, Sowerbyella, Triplesia.

[kaz2]: Sargaldak Formation, Chingiz Range, Kazakhstan (Klenina 

et al. 1984); Archaeorthis, Aulie, Austinella, Camerella, Craspedelia, 

Dulankarella, Ectenoglossa, Eoanastrophia, Leptaena, Perimecocoelia, 

Productorthis, Ptychoglyptus, Rhynchotrema, Sowerbyella, Tuvinia.
[kaz3]: Khankhar Horizon, Gornoi Altai, Russia (Kulkov & Severgina 

1989); Bimuria, Boreadorthis, Dactylogonia, Dolerorthis, Eoanostrophia, 

Eridorthis, Glyptorthis, Hesperorthis, Isophragma, Leangella, Mimella, 

Multicostella, Onniella, Orthambonites, Palaeostrophomena, Paurorthis, 

Plectorthis, Rhynchotretoides, Rostricellula, Severginella, Sowerbyella, 
Sowerbyites, Titanambonites, Togaella, Triplesia.

[kildare]: Grange Allen Formation, Co. Kildare, Ireland (Parkes 

1994); Cremnorthis, Dalmanellida gen. indet., Hedstromina, Kullervo, 

Leptaena, Leptestiina, Lingulella, Nicolella, Orthisocrania, Petrocrania, 

Philhedra, Platystrophia, Rhactorthis, Salopia, Sericoidea, Skenidioides, 
Sowerbyella.

[lithuania]: Oandu Stage, Lithuania (Paškevičius 1994); Boreadorthis, 

Camerella, Glossorthis, Hesperorthis, Holtedahlina, Horderleyella, 

Howellites, Leptaena, Nicolella, Oanduporella, Onniella, Platystrophia, 

Rafi nesquina, Sampo, Skenidioides, Sowerbyella, Strophomena, 
Vellamo, Zygospira.
[nch]: Pingliang Formation, Longxian, Shaanxi Province, Northwest 

China (Rong & Zhan 1996); Anisopleurella, Bellimurina, Bicuspina, 

Christiania, Cyclospira, Dolerorthis, Foliomena, Glyptorthis, Gunnarella, 

Kiaeromena, Leangella, Leptaena, Leptestiina, Longxianirhynchia, 
Nubialba, Paracraniops, Skenidioides, Sowerbyella.
[norw1]: Furuberg Formation, Hadeland, Norway (Harper et al. 
1984); Dalmanella, Dolerorthis, Eoplectodonta, Gunnarella, Leptaena, 

Leptestiina, Mcewanella, Mjoesina, Nicolella, Parastrophinella, 
Petrocrania, Platystrophia, Plectorthis, Porambonites, Skenidioides, 
Sowerbyella, Strophomena.

[norw2]: Nakkholmen Formation, Oslo-Asker, Norway (Harper et al. 

1984); Chonetoidea, Dalmanellida gen. indet., Glyptorthis, Hisingerella, 
Horderleyella, Kjaerina, Kjaerulfi na, Leptaena, Leptestiina, Nicolella, 

Onniella, Petrocrania, Platystrophia, Porambonites, Skenidioides, 

Sowerbyella, Spiriferida gen. indet.

[norw3]: Norderhov Formation, Ringerike, Norway (Harper et 
al. 1984); Dalmanellida gen. indet., Hedstroemina, Kjaerulfi na, 
Leptaena, Mjoesina, Nicolella, Orbiculoidea, Oxoplecia, Plectorthis, 
Rhactorthis, Sowerbyella, Strophomena, Triplesia.

[pomeroy]: member III of the Bardahessiagh Formation, Pomeroy, 

Co. Tyrone, Northern Ireland (Candela 2003); Anisopleurella, 

Anoptambonites, Apatomorpha, Bicuspina, Bilobia, Bimuria, Caeroplecia, 

Campylorthis, Christiania, Colaptomena, Dactylogonia, Dalmanella, 
Diambonia, Dicoelosia, Dinorthis, Dolerorthis, Drummuckina, 

Eochonetes, Eoplectodonta, Fascifera, Foliomena, Glossorthis, 

Glyptambonites, Glyptomena, Glyptorthis, Gunnarella, Hesperorthis, 

Idiospira, Isophragma, Laticrura, Leptaena, Leptellina, Leptellininae 

gen. indet., Leptestiina, Mimella, Mjoesina, Oanduporella, Oepikina, 
Palaeostrophomena, Paucicrura, Paurorthis, Platymena, Plectorthis, 

Protozyga, Pseudolingula, Ptychoglyptus, Ptychopleurella, Rostricellula, 

Rugosowerbyella, Salopina, Scaphorthis, Sericoidea, Skenidioides, 

Sowerbyella, Sowerbyites, Strophomena, Sulevorthis.

[sch1]: Pagoda Formation, Mianxian County, Shaanxi Province, 

South China (Rong et al. 1999); Christiania, Foliomena, Leangella, 

Skenidioides.

[sch2]: Pagoda Formation, Nanzhen County, Shaanxi Province, South 

China (Rong et al. 1999); Anisopleurella, Christiania, Cyclospira, 

Foliomena, Leangella, Nubialba, Skenidioides.
[sch3]: Pagoda Formation, Guangyuan County, Sichuan Province, 

South China (Rong et al. 1999); Christiania, Cyclospira, Foliomena, 

Leangella, Skenidioides.

[sch4]: Pagoda Formation, Wangcang County, Sichuan Province, 

South China (Rong et al. 1999); Anisopleurella, Foliomena, Leangella, 

Skenidioides.

[sch5]: Pagoda Formation, Ningqiang County, Shaanxi Province, South 

China (Rong et al. 1999); Foliomena, Leangella, Petrocrania.

[scot1]: Craighead Limestone Formation, Girvan, Scotland (Williams 

1962): Anisopleurella, Anoptambonites, Bilobia, Bimuria, Camerella, 

Christiania, Conotreta, Cyclospira, Dactylogonia, Dalmanella, Dinorthis, 

Dolerorthis, Drepanorhyncha, Eoplectodonta, Eparoplecia, Fardenia, 

Fascifera, Glossella, Glyptorthis, Hesperorthis, Idiospira, Laticrura, 

Leptaena, Lingulella, Nicolella, Obolus, Oligorhynchia, Orbiculoidea, 
Orthorhynchuloides, Oxoplecia, Palaeostrophomena, Parastrophina, 
Parastrophinella, Paucicrura, Philhedra, Pionodema, Platystrophia, 
Plectorthis, Porambonites, Protozyga, Rafi nesquina, Reuschella, 

Rostricellula, Sericoidea, Schizambon, Schizotreta, Skenidioides, 

Sowerbyella, Strophomena, Sulevorthis, Zygospira.

[scot2]: Ardwell Farm Formation, Girvan, Scotland (Williams 1962): 

Bilobia, Bimuria, Cyclospira, Diambonia, Dinorthis, Dolerorthis, 
Eoplectodonta, Glyptorthis, Idiospira, Laticrura, Leangella, Leptaena, 

Leptellina, Oxoplecia, Paucicrura, Reuschella, Skenidioides.
[scot3]: Kirkcolm Formation, Kilbucho, SE Scotland (unpublished 

data); Bilobia, Bimuria, Camerella, Campylorthis, Christiania, 

Colaptomena, Dactylogonia, Eoplectodonta, Glyptambonites, Glyptorthis, 

Hesperorthis, Idiospira, Isophragma, Laticrura, Leangella, Leptaena, 
Leptellina, Leptellininae gen. indet., Leptestiina, Mcewanella, 
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Oanduporella, Palaeostrophomena, Paucicrura, Paurorthis, Petrocrania, 

Pholidostrophia (Eopholidostrophia), Plaesiomys, Rugosowerbyella, 
Salopina, Scaphorthis, Sericoidea, Skenidioides, Sowerbyella, Sowerbyites, 

Strophomena, Sulevorthis.
[sibumasu]: Naungkangyi Group, Shan States, Burma (Cocks & 

Zhan 1998); Bekkerella, Bellimurina, Cyclospira, Dirafi nesquina, 

Glyptomena, Ishimia, Leptellina, Nicolella, Onniella, Palaeoglossa, 
Plaesiomys, Porambonites, Protozyga, Saucrorthis, Skenidioides.

[taz]: Benjamin Limestone, Florentine Valley, Tasmania (Laurie 1991); 

Dinorthis, Hebertella, Hesperorthis, Ptychopleurella, Rhynchotrema, 
Tasmanella.

[wales1]: Alternata Limestone Formation, Welsh Borderland (Hurst 

1979); Bancroftina, Dalmanella, Dolerorthis, Heterorthis, Kjaerina, 

Marionites, Paracraniops, Reuschella, Sowerbyella, Trematis.

[wales2]: Cymerig Limestone Formation of the Bala District, 

North Wales (Lockley 1980); Cyclospira, Dalmanella, Dalmanellida 
gen. indet., Eoplectodonta, Onniella, Palaeoglossa, Paracraniops, 

Paterula, Protozyga, Reuschella, Rhactorthis, Sericoidea, Skenidioides, 
Strophomenida gen. indet.

[wales3]: Gelli-grîn Calcareous Ashes of the Bala District, North 

Wales (Lockley 1980); Cremnorthis, Dalmanella, Dalmanellida gen. 

indet., Dolerorthis, Eoplectodonta, Leptaena, Onniella, Sericoidea, 

Skenidioides, Strophomenida gen. indet.

[wales4]: Cwm Rhiwarth Siltstones, south Berwyn Hills, North Wales 

(Pickerill & Brenchley 1979): Bicuspina, Colaptomena, Dalmanella, 

Dinorthis, Dolerorthis, Howellites, Kiaeromena, Kjaerina, Leptaena, 
Leptestiina, Lingulella, Linguloid gen. indet., Orbiculoidea, Oxoplecia, 

Platystrophia, Reuschella, Skenidioides, Sowerbyella.




