

Vniver§itat ® València

Susceptibility of *Xylotrechus arvicola* (Coleoptera: Cerambycidae) to five Cry toxins

Álvaro Rodríguez-González^{1*}, Alejandra J. Porteous-Álvarez¹, Mario Del Val¹, Pedro A. Casquero¹ and Baltasar Escriche^{2*}

 Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente Recursos Naturales y Biodiversidad (INMARENBIO). Escuela de Ingeniería Agraria y Forestal (EIAF). Universidad de León. Avenida de Portugal 41, 24071, León, Spain.
Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED). Departamento de Genética. Universitat de Valencia, 46100 Burjassot, Spain.
Correspondence: A.R.G. (alrog@unileon.es) and B.E. (baltasar.escriche@uv.es)

nvers

leon

Xylotrechus arvicola is a significant pest in vineyards (*Vitis vinifera*) in the main wine-producing regions of Iberian Peninsula.

X. arvicola larvae bore the grapevine wood and make galleries, which cause structural damages to the plant and a decrease in the quality and quantity of its production. Cry toxins that exhibited toxicity against coleopteran larvae may be an alternative for its control.

Introduction

Laboratory: 2. Insect mate, lay eggs on substrates for oviposition, and neonate larvae are collected in a Petri

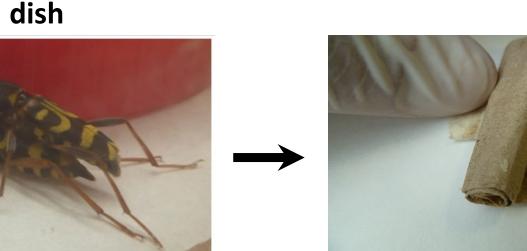
Cry proteins mode of action

IECPS

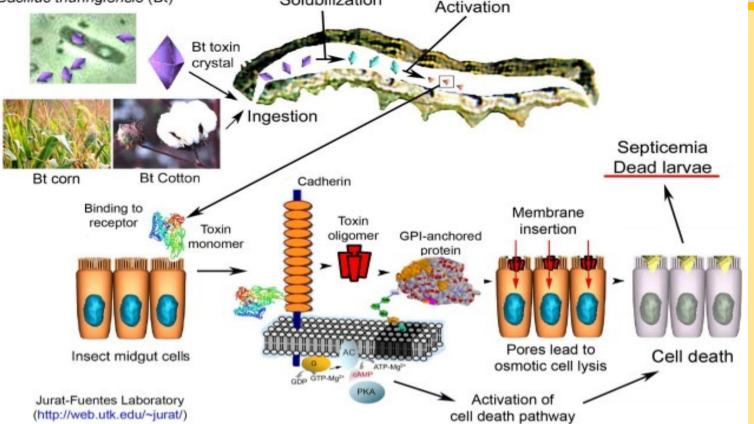
2020

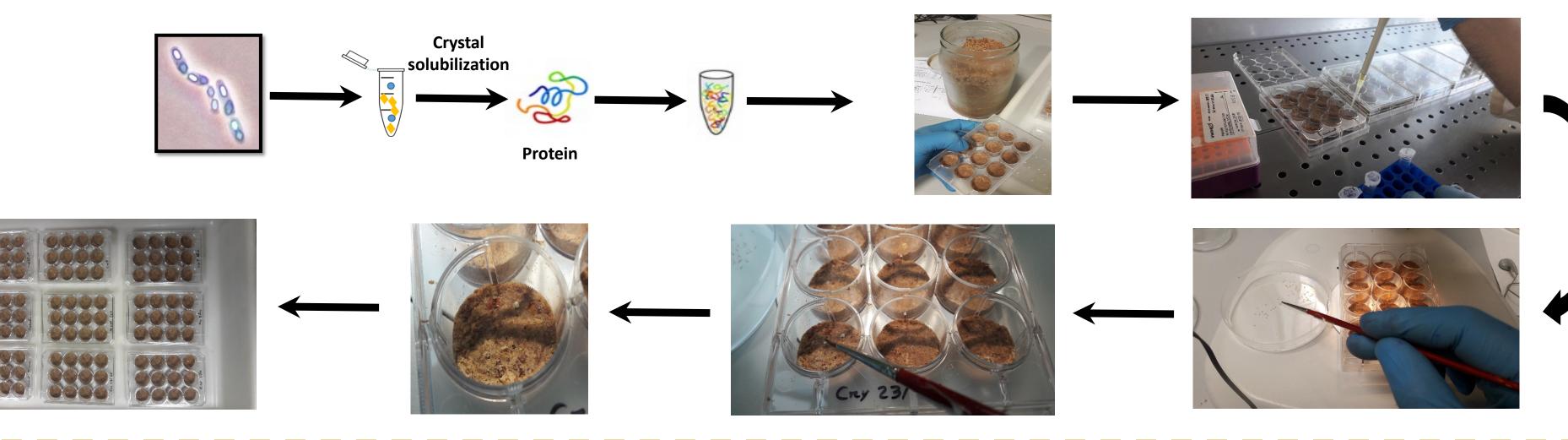
Materials and Methods

Bacillus thuringiensis (Bt)


Solubilization

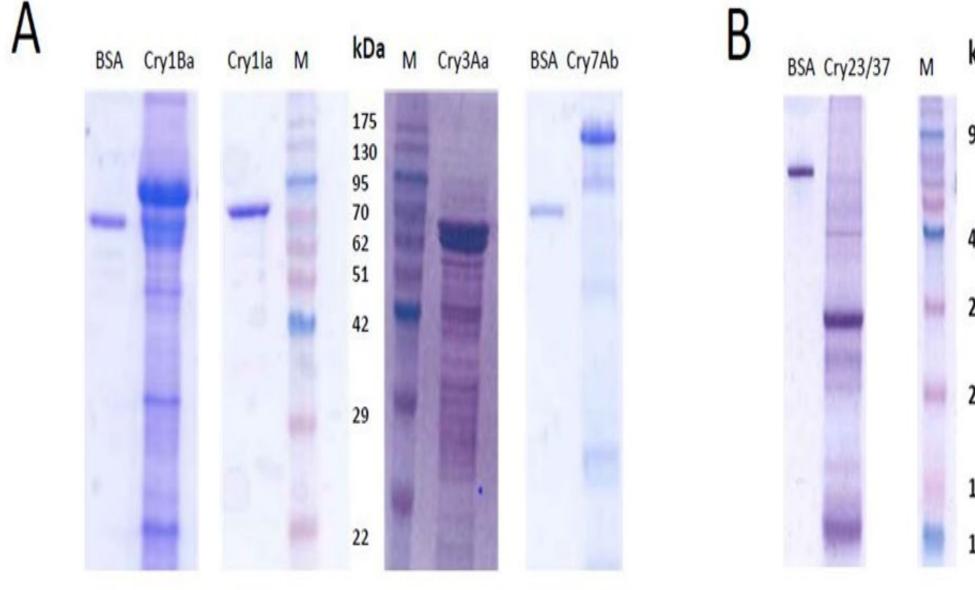
Insect pest collections and X. arvicola rearing


Vineyards: 1. Insects captured with CROSSTRAP[®]



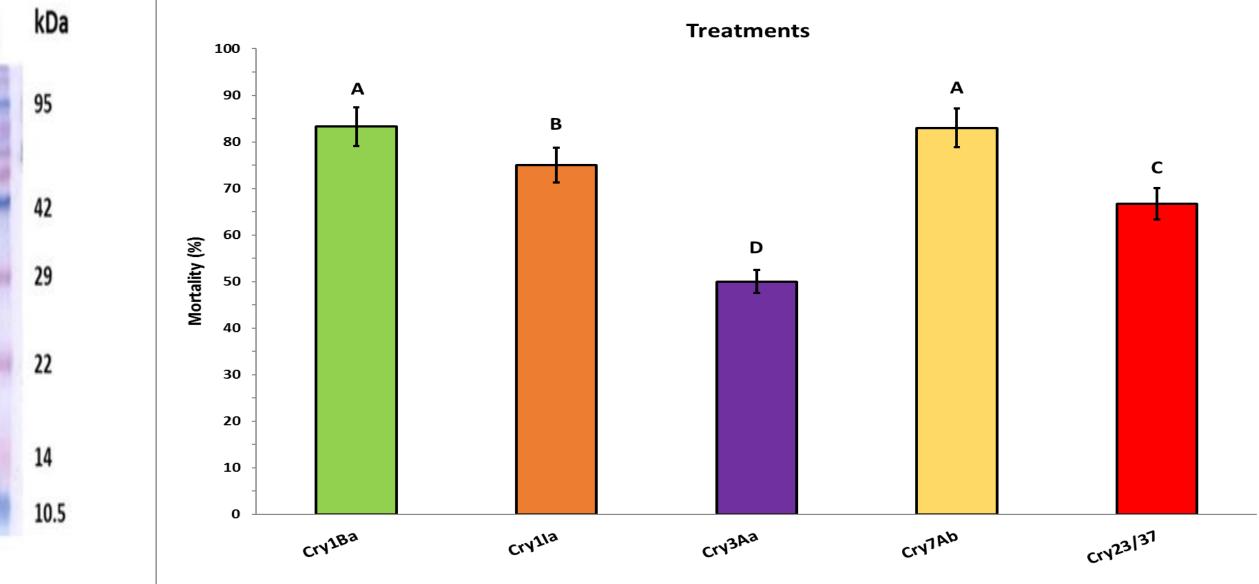
Test Toxic Activity

Single dose bioassays: 1. Surface contamination method over semi synthetic diet and introduction of *X. arvicola* neonate larvae


Cry proteins evaluated

Protein	Abbreviation	Strain	Source	Solubilization buffer
Cry1Ba1	Cry1B	Bt	Ecogen Inc.,	Na2CO3 50 mM,
		(EG11916)	Langhorne, USA	pH 10.5
Cry1Ia7	Cry1Ia	E. coli	Universidad Pública de Navarra, Spain	Na₂CO₃ 50 mM, pH 12
Cry3Aa1	Cry3Aa	E. coli	Bacillus Genetic	Na2CO3 50 mM,
		(4AA1)	Stock Collection, Columbus, USA	pH 12
Cry7Ab2	Cry7Ab	Bt	Bacillus Genetic	Na2CO3 50 mM,
		(HD867)	Stock Collection, Columbus, USA	pH 10.5
Cry23Aa/Cry37Aa	Cry23/37	Bt	Agricultural	
		(EG10327)	Research Culture	Na ₂ CO ₃ 50 mM,
			Collection,	NaCl 100 mM,
			NRRL, USA	pH 11.3

Results and discussion


Protein Profile

Acknowledgments

Toxic Activity

Conclusions

The evaluation of insecticide active substances against coleopteran pests with a long and cryptic biological cycle is a challenge.

We have successfully applied the bioassay protocol used on X. arvicola larvae with other pesticides.

However, the accuracy of the results could be discussed, since some toxicological effects do not depend on the Cry proteins which can be degraded in a long treatment period.

Nevertheless, we can assess the results since we assume the generally accepted fact that the main insect toxicity effect of Cry preparation relies on the Cry proteins in the sample, and, with the reported data, we have, at least, preliminary toxic information.

Analysis of expression of strains that produced a single Cry protein (**A**), and the Bt EG10327 strain which produced Cry23Aa (about 30 kDa) and Cry37Aa (about 15 kDa) (**B**). BSA: 750 ng bovine serum albumin (BSA). M: molecular mass marker (Pink pre-stained protein ladder Pink B4MWP02, Nippon genetics).

Corrected mortality (% ± SE) of *X. arvicola* neonate larvae exposure to 1 mg/cm2 of Cry proteins applied over an artificial diet. Abbott's formula was used for correction. Different letters on the bars indicate statistically significant differences (LDS test) among the mortality rates.

We thank to R.M. Gonzalez for her support in toxin preparation. This work was supported by the Spanish Ministry of Science and Innovation (Ref. RTI2018-095204-B-C21 and PTA2017–14403-I), cofunded by EU FEDER funds

The Cry proteins evaluated have demonstrated different toxicity activity against the insect pests assayed, with over 50% mortality rates in all cases. Cry1Ba and Cry7Ab showed the most aggressive responses.

The larval stage tested is previous to drilling in the plant, which makes spray treatments feasible.

The results can help in designing combinations of Cry proteins as biopesticides to apply them by the time these larvae hatch to increase vine wood protection.