Game Plan

Lecture

Taxonomy Identification and classification of microbes Dichotomous keys

APO-4: Bergey's Manual and dichotomous keys

<u>Lab</u>

DNA Fingerprinting

Microbial Diversity- phage infection

Microbial Diversity- survey

<u>Next Lab</u> Lab Exam

Scientific names and meanings

Scientific binomial	Source of Genus name	Source of Specific epithet
Klebsiella pneumoniae	Honors Edwin Klebs	The disease
Pfiesteria piscicida	Honors Lois Pfiester	Disease in fish
Salmonella typhimurium	Honors Daniel Salmon	Stupor (typh-) in mice (muri-)
Streptococcus pyogenes	Chains of cells (strepto-)	Forms pus (pyo-)
Penicillium notatum	Tuftlike (penicill-)	Spores spread in wind (nota)
Trypanosoma cruzi	Corkscrew-like (trypano-, borer; soma-body)	Honors Oswaldo Cruz

Organisms within a genus share **93%** similar rRNA Organisms within a species share **97%** similar rRNA

Hierarchy of classification

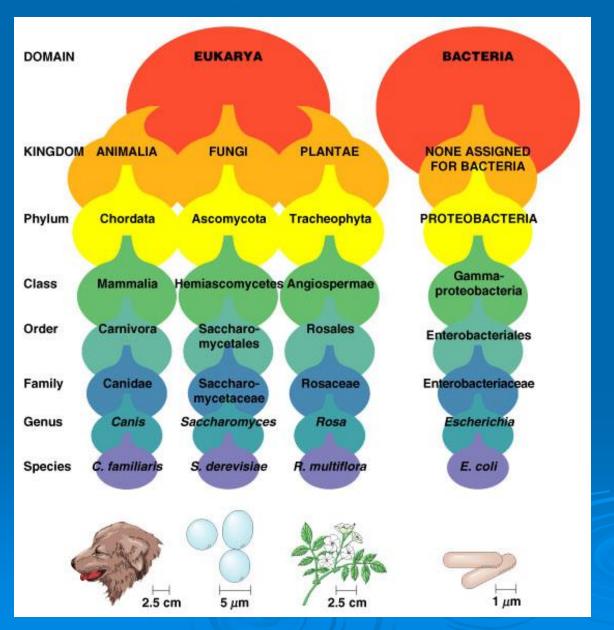


Figure 10.5 (2 of 3)

Species defined

Eukaryotic species:

A group of closely related organisms that breed among themselves

Prokaryotic species:

A population of cells with similar characteristics

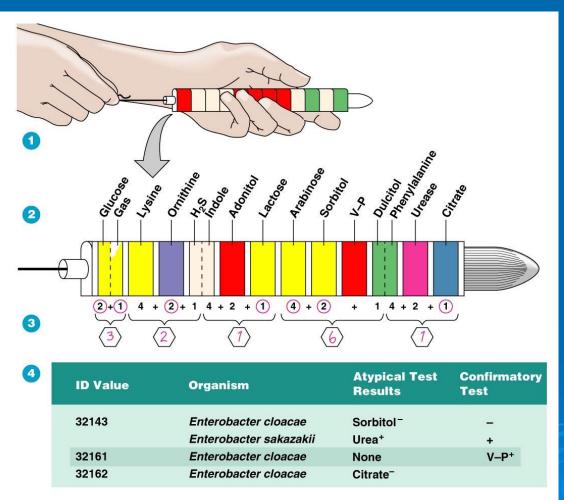
<u>Clone:</u> A population of cells derived from a single cell

<u>Strain</u>: A subgroup within a species with one or more characteristics that distinguish it from other subgroups in the species

Viruses:

A population of viruses with similar characteristics that occupy a particular ecological niche

Species identification and classification methods


1. Morphological characteristics

Additional tests

General

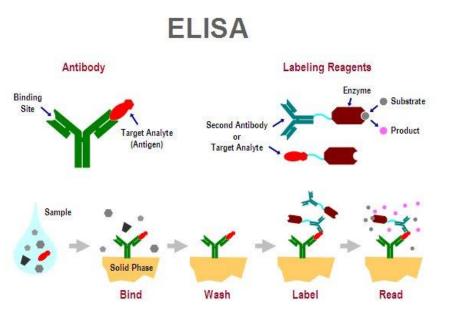
- **1. Differential staining**
- **2.** Biochemical tests- determine presence of enzymes
 - Numerical identification
- 4. Genetic homology (similarity of DNA)
 - Base composition
 - DNA and RNA sequencing (16s rRNA gene)
 - DNA hybridization
- 5. Protein and amino acid homology (similarity of proteins)
 - Western blots
 - Amino acid sequences
- 6. Immunological methods
 - ELISA (enzyme linked immunosorbent assay)
 - Western blots

Numerical identification: the Enterotube

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Species identification and classification methods

1. Morphological characteristics


Additional tests

General

- **1. Differential staining**
- **2.** Biochemical tests- determine presence of enzymes
 - Numerical identification
- 4. Genetic homology (similarity of DNA)
 - Base composition
 - DNA and RNA sequencing (16s rRNA gene)
 - DNA hybridization
- 5. Protein and amino acid homology (similarity of proteins)
 - Western blots
 - Amino acid sequences
- 6. Immunological methods
 - ELISA (enzyme linked immunosorbent assay)
 - Western blots

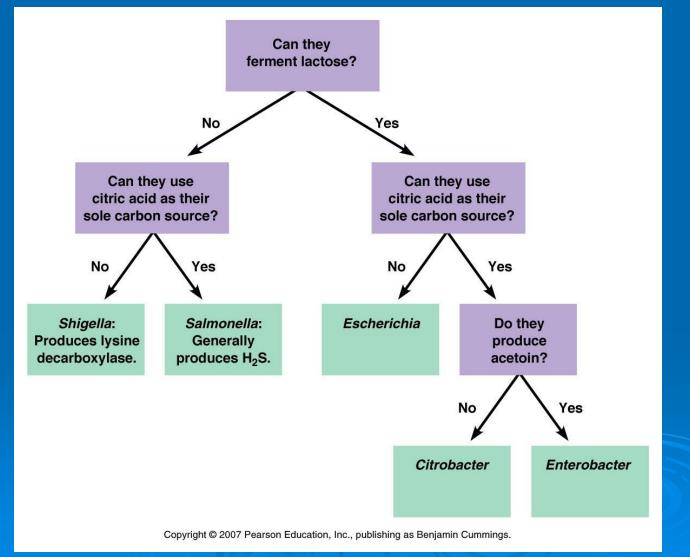
Enzyme Linked Immunosorbent Assay (ELISA)

bbc.co.uk

Criteria for classifying/ identifying bacteria

TABLE 10	0.5	Tax

Taxonomic Criteria and Methods for Classifying and Identifying Bacteria


Criterion or	Used for		
Method	Classification	Identification	
Morphological characteristics	No (yes for cyanobacteria)	Yes	
Differential Staining	Yes (for cell wall type)	Yes	
Biochemical Testing	No	Yes	
Serology	No	Yes	
Phage Typing	No	Yes	
Fatty Acid Profiles	No	Yes	
Flow Cytometry	No	Yes	
DNA Base Composition	Yes	No	
DNA Fingerprinting	Yes	Yes	
PCR	Yes	Yes	
Nucleic Acid Hybridization Techniques	Yes	Yes	
rRNA Sequencing	Yes	No	

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Classification and identification references

 Bergey's Manual of Determinative Bacteriology Provides identification schemes for identifying bacteria and archaea 	•Morphology, differential staining, biochemical tests
 Bergey's Manual of Systematic Bacteriology Provides phylogenetic information on bacteria and archaea 	•Based on rRNA sequencing
 • Approved Lists of Bacterial Names • Lists species of known prokaryotes 	Based on published articles

Tools of identification: the dichotomous key

Tools of identification: the dichotomous key

I.	Gram-positive				
	А.	A. Catalase+			
		1.	Acid from glucose	Staphylococcus	
		2.	Glucose	Micrococcus	
	B. Catalase-				
		1.	Coccus	Streptococcus	
		2.	Rod	Lactobacillus	
П.	Gra	Gram-negative			
	А.	Oxi	dase-		
		1. Acid from lactose			
			a. Uses citric acid	Citrobacter	
			b. Citric acid	Escherichia	
		2.	Lactose-		
			a. H ₂ S produced		
			(1) Urease positive	Proteus	
			(2) Urease negative	Salmonella	. –
	B. Oxidase+				
		1.	Rod	Pseudomonas	
		2.	Coccus	Neisseria	

