

Feral animal timeline

Santa Rosa Island

	1800	1850	1900	1950	2000	2013
Herbivores						
Horse	<u>1844</u>				2	<u>011</u>
Feral Pig		<u>1853</u>		1993		
Mule Deer			1880	cull 1998	3 2	<u>013</u>
Roosevelt Elk			1880	cull 1998	3 2	<u>011</u>
Cattle	<u>1844</u>			1998	<u> </u>	
Sheep	<u>1844</u>			1950s-early1960s		

Santa Cruz Island

	<u>1800</u>	1850	1900	1950	2000	2013
Herbivores						
Horse	1830				2009	
Feral Pig		1853			2006	
Cattle	1830			198	 39	
Sheep		1853			2001	
Turkey		1853		2	2001	

Research Questions

- 1. Where are the rare plant taxa?
- 2. How do they compare to the past?
- 3. How are populations doing now?
- 4. Are there major threats to populations that we can do something about?

Research Methods

- Herbarium archives
- Field surveys
- Repeated counts
- Demographic monitoring
- Experiments

Science can be fun

15 Listed taxa 5 Park Islands

Taxon	Life History	Status	# pops	Islands where present ¹
Arabis (Boechera) hoffmannii	Perennial	E	5	SCI, SRI, (AI)
Arctostaphylos confertiflora	Shrub	Е	3	SRI
Berberis pinnata ssp. insularis	Shrub	Е	5	SCI, (AI, SRI)
Castilleja mollis	Perennial	Е	2	SRI
Dudleya nesiotica	Perennial	Т	1	SCI
Dudleya traskiae	Perennial	Ε	10	SBI
Galium buxifolium	Subshrub	Е	8	SCI, SMI, (SRI)
Gilia tenuiflora ssp. hoffmannii	Annual	Е	2	SRI
Helianthemum greenei	Perennial	Т	36	SCI, SRI, SCT
Malacothamnus fasciculatus var. nesioticus	Shrub	Е	4	SCI
Malacothrix indecora	Annual	Е	6	SCI, SRI
Malacothrix squalida	Annual	Е	1	SCI
Phacelia insularis var. insularis	Annual	Е	1	SRI, SMI
Sibara filifolia	Annual	Е	2	(SCI), SCT, SCL
Thysanocarpus conchuliferus	Annual	Е	8	SCI

¹AI = Anacapa Island, SBI = Santa Barbara Island, SCI = Santa Cruz Island, SCT = Santa Catalina Island (non-NPS), SMI = San Miguel Island, SRI = Santa Rosa Island; parentheses () indicate presumed extirpated.

Current Condition

Desired Future

Few
Small
Isolated
Declining

Constraints

Many
Large
Connected
Growing

Constraints

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Isolation
Habitat fragmentation
Habitat loss

Pollinator limitation
Rooting and trampling
Erosion

Fog

POPULATION

HABITAT

LANDSCAPE

ECOSYSTEM

Recovery Tools

Seed increase
Seed banking
Hand pollination
Tissue culture

Invasive control
Habitat restoration
Population augmentation

New populations

Animal eradication

Good as it gets

Population expansion

Torrey pine (*Pinus torreyana* var. *insularis*)

Moving out of refugia Jolla Vieja endemics

1994 2011

1994 - 11 Species

2010 - 17 Species

270% Average percent change in abundance

Change in Abundance all Canyons

Life History

Fire follower

Island rush-rose *Crocanthemum (Helianthemum) greenei*

Doesn't like pigs or grass or litter

....or cool weather?

Island jepsonia *Jepsonia malvifolia*

Large Adult Survivorship: Santa Cruz Island

What about climate?

Santa Rosa to the rescue

Climate effects without pigs

Combined effects

Colonize terraces: seed increase, habitat manipulation and outplant

Can't find the next good place

North-facing and steep and foggy and no litter and no grass

Hoffmann's rock-cress demography

- Population sizes 20 300
- 12 20% flower annually
- Self-compatible, self-pollinating
- 30 -125 fruits per plant x 120 seeds per fruit
- 3,750 15,000 seeds per plant
- 20% germination in experiments
- 80% of seedlings die first year
- Recruitment 1 5 seedlings per parent annually
- No plants in grass or deep litter

Outplanting Hoffmann's rock-cress

80% survival of plantlets to fruiting 20% germination from planted seeds 5% survival of seed plants to fruiting 2nd generation fruiting now

Deep litter accumulation is preventing recruitment at 2 sites

Santa Rosa Island Sierra Pablo

Island bush mallow distribution

4 clones, ca. ~ 150 ramets

B: 1997 > 2006; 3 > 50 D: 1993 > 2006; 32 > 16

Fruit and Seed Set

- Self-compatible; "mixed-mating"
- Fruit set in natural populations relatively low (0 – 12 %)
- Seed set in natural populations variable (17 – 50 %) among years and sites
- Ex situ outcrossed fruit and seed set relatively high

```
overall fruit set = 57 % overall seed set = 65 %
```

- Overall seed viability = 81 %
- Seed viability of buried in situ seeds= 67 % after 2 years

Outplant experiment

Island bush-mallow outplanting survival

90% survival - March 2013

Fragmented habitat, herbivory and climate change

Soft-leaved island paintbrush Castilleja mollis

Scraping

Browsing

Paintbrush trend, herbivores

Paintbrush trend, herbivores, temperature

Cumulative proportion of *Castilleja mollis* seeds germinating, October 26, 2001 - January 9, 2002

Hybridization

Castilleja mollis

Castilleja mollis x affinis

Changed climate regime, habitat invaded

Island Phacelia (*Phacelia insularis*)

Phacelia plot counts 2003-2013

Competition and climate change

Precipitation treatments Bromus and Phacelia biomass

Bromus clearing treatments and Phacelia growth

Temperature after first rains and Phacelia population size

Current Condition

Desired Future

Few
Small
Isolated
Declining

Constraints

Many
Large
Connected
Growing

Constraints - Population

Few plants
Poor seed production
Low seed viability
Low recruitment

Constraints - Habitat

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Constraints - Landscape

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Isolation
Habitat fragmentation
Habitat loss

Constraints - Ecosystem

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Isolation
Habitat fragmentation
Habitat loss

Pollinator limitation
Rooting and trampling
Erosion
Fog

Constraints

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Isolation
Habitat fragmentation
Habitat loss

Pollinator limitation
Rooting and trampling
Erosion
Fog

Recovery tools

Seed increase
Seed banking
Hand pollination
Tissue culture

Invasive control
Habitat restoration
Population augmentation

New populations

Animal eradication Monitoring

Constraints

Few plants
Poor seed production
Low seed viability
Low recruitment

Grass competition
Open canopy
No seed bed

Isolation
Habitat fragmentation
Habitat loss

Pollinator limitation
Rooting and trampling
Erosion

Fog

Recovery Tools POPULATION Seed increase

Seed increase
Seed banking
Hand pollination
Tissue culture

HABITAT Invasive control Habitat restoration

Population augmentation

LANDSCAPE

New populations

ECOSYSTEM

Animal eradication

Kathryn McEachern, Ph.D. Research Ecologist

U.S. Geological Survey
Western Ecological Research Center
Channel Islands Field Station,
Ventura, CA

kathryn_mceachern@usgs.gov

