

CSANZ

Right Heart Studies: All you need to know...

A Aitken

2

Right Heart Studies: Introduction

- Indications
- Equipment required for a Right Heart Study
- Interpretation of waveforms / measurements
 Normal and abnormal
- Case Example

3

Right Heart Studies : Indications

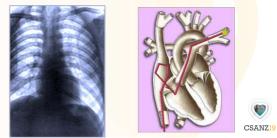
- Assessment of severity of valve disease
 - Especially mitral valve disease
- Pulmonary hypertension
 Diagnosis confirmation
 - Information re aetiology
 - Prognostic information
- Congenital heart disease
- Myocardial / pericardial disease
- Eg restrictive CM vs constrictive pericarditis
- (Critical care setting)

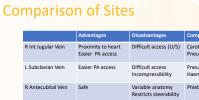
Historical Trends


- Advent of non-invasive diagnostic tools
- Cardiac catheterization / RHS used less often
- Often reserved for most complex cases
- Information gathered may be key to determining
 - Operability
 - Management strategies
- Complementary info to non-invasive studies

CSANZ19

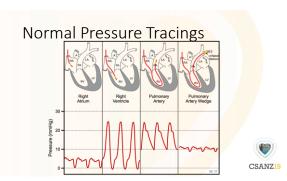
۲

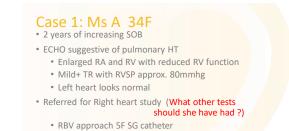

Access Sites : I.J.



CSANZ19

Access Sites : Brachial / Femoral

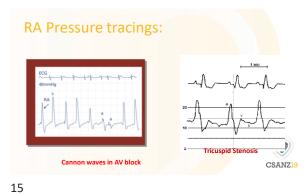

8

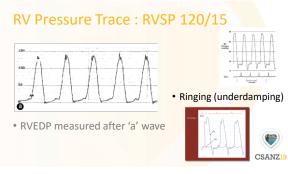

	Advantages	Disadvantages	Complications
R Int Jugular Vein	Proximity to heart Easier PA access	Difficult access (U/S)	Carotid a puncture Pneumothorax
Subclavian Vein	Easier PA access	Difficult access Incompressibility	Pneumothorax Haemothorax
R Antecubital Vein	Safe	Variable anatomy Restricts steerability	Phlebitis
R Femoral Vein	Easy access Convenient for LHC	Difficult PA access Immobility after	Haematoma

9

7

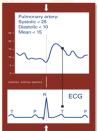
Transducer Position Manifold Mid chest leve CSANZ19 10




- Single transducer
- ABG sent from SVC / MPA and Aorta (radial a or oximeter) CSANZ19

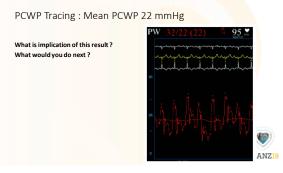
MS A : RA Pressure tracings : mean 10mmHg ECG MAMAMAM a wave atrial systole c wave Tricuspid valve closure x descent Atrial relaxation V Wave Filling during ventricular systole y descent • Fall in atrial pressure with onset of diastole CSANZ19 13

14



16

PA Pressure Tracing : What is value ?

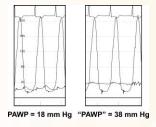


- Underdamping / whip artefact
- Requires correction

Principles of accurate measurements

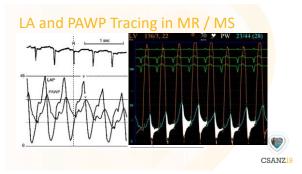
- Shortest tubing (avoid manifolds)
- Regular flushing of catheters
- Stability of catheter (avoid whip artefact)
- Larger catheter (7F vs 5F) if poor quality
- Regular zeroing
- Calm , fastidious approach !

20



Delayed PCWP cf LAP(reflection)

21


Spurious Recordings

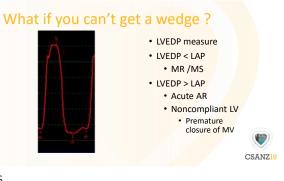
- Over-wedging / damping
 Partially deflate balloon
- Re-advance
- Confirm with O₂ saturation
 > 95%
- May require larger bore catheter

CSANZ19

22

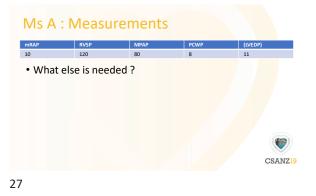
23

PAWP Trace

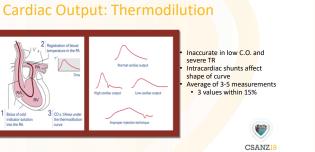

Balloon Wedging

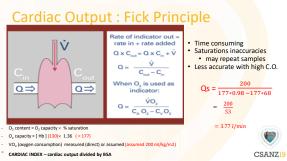
CSANZ19

How to get a good wedge


- Get it in the right position
 Preferably basal lung segments
- Measure at end expiration
- Serial measurements
- If looks like PA trace ensure balloon fully inflated / retry
- If looks damped withdraw catheter / re-inflate balloon with less air and retry
 - May require larger catheter

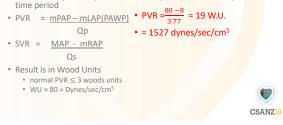
25

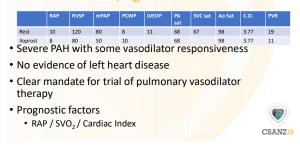

26


CSANZ19

INDEX RVSP MPAP PCWP (WEDP) 10 120 80 8 11 SVC sat MPA sat Ao Sat 67% 68% 98% VC sat MPA sat Ao Sat 67% 68% 98% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 67% 68% 98% 68% 10000 <t

Ms A : Measurements

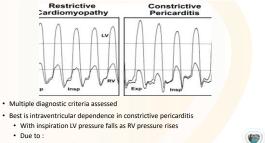



Pulmonary Vascular Resistance

Pressure drop across pulm. circulation per unit of flow in specified

31

Ms A – results /significance



32

Const. Pericarditis vs Restrictive Cardiomyopathy

- Clinical history
- Exam findings unlikely to help pericardial knock vs 3rd HS !
- ECG / CXR / BNP may help
- ECHO
 - Increased resp variation in vent filling velocity in CP
 - E' < 8 RCM >12 CP (but generally measures between these]
- CT/MRI for pericardial thickening / scar / interdependence CSANZ19

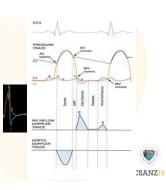
33

 dissociation of intrathoracic and intracardiac pressures • ↓ PCWP reflecting intrathoracic pressure but LV shielded from this CSANZ19

34

- RHS not quite a forgotten art
 - Clear ongoing rationale for procedures
- Importance of scrupulous technique
- Ensure all important information collected
 - Pressures / cardiac output / vasodilator challenge if
 - Ensure question posed is answered....

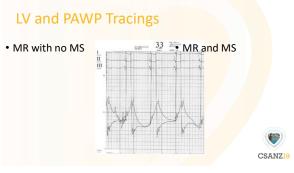
36

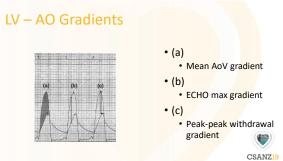

۳

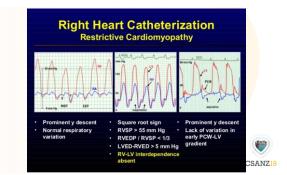
CSANZ19

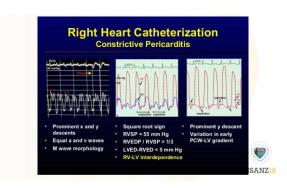
LVEDP

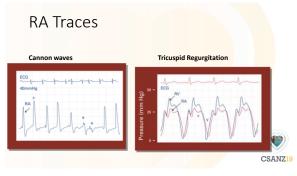
- Same as atrial 'a' wave
- Peak at end of diastole assoc. with atrial contraction
- 3 phases of LV filling


37


Left Heart Pressure Examples
 Mitral Stenosis


 Assessment of Mean Gradient


38


39

Right vs Left Ventricular Pressure				
	Constrictive Pericarditis	Restrictive Cardiomyopathy		
End diastolic pressure equalization (LVED-RVED)	≤ 5 mm Hg	> 5 mm Hg		
Pulmonary artery pressure	< 55 mm Hg	> 55 mm Hg		
RVEDP / RVSP	> 1/3	≤ 1/3		
Dip-plateau morphology	LV rapid filling wave > 7 mm Hg	LV rapid filling wave ≤ 7 mm Hg		
Kussmaul's sign	No respiratory variation in mean RAP	Normal respiratory variation in mean RAP		

