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Abstract
Parasitoids of three mealybug pests (Hemiptera: Pseudococcidae), Planococcus ficus (Signoret), Pseudococcus sociabilis
Hambleton, and Pseudococcus viburni (Signoret) have been identified for the first time in Brazil. Mealybugs were collected in
fruit-growing areas along southern Brazil during 2013–2016. An integrative approach, combining morphological and molecular
methods, was used to identify the Brazilian parasitoids to the species level. Fifteen species were recorded, including 14 primary
parasitoids belonging to Encyrtidae and Platygastridae and a single secondary parasitoid species belonging to Signiphoridae. The
encyrtid parasitoids Acerophagus flavidulus (Brèthes), Anagyrus calyxtoi Noyes and Zaplatycerus sp., and the signiphorid
secondary parasitoid Chartocerus axillaris De Santis are reported for the first time in Brazil.

Keywords Integrative taxonomy . Encyrtidae . biological control agents . Pseudococcidae . DNA barcoding

Introduction

Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) are
important pests worldwide, infesting fruit plants such as ap-
ples, persimmon, strawberry, and grapevines (Charles et al.
2015; Pacheco da Silva et al. 2017). Nymphs and adult

females damage crops by secreting honeydew, which facili-
tates the development of sooty mold, and by transmission of
toxins and viruses, which may eventually kill the plant
(Golino et al. 2002; Franco et al. 2009; Daane et al. 2012).
The invasive mealybug Pseudococcus viburni (Signoret),
known as the obscure mealybug, is a common species dam-
aging fruits in temperate regions (Ciampolini et al. 2002;
Daane et al. 2008; Dapoto et al. 2011; Mudavanhu et al.
2011; Correa et al. 2012), and is considered the most common
species in fruit crops in southern Brazil (Pacheco da Silva
et al. 2017). The vine mealybug Planococcus ficus
(Signoret) shows high infestation rates in vineyards and fig
plants (Daane et al. 2012), and it has recently expanded across
Serra Gaúcha, the most important wine production region of
Brazil (Pacheco da Silva et al. 2016). Finally, the Hambleton
mealybug Pseudococcus sociabilis Hambleton has been re-
ported on persimmon fruits from the same area (Pacheco da
Silva et al. 2017). Mealybug control commonly relies on pes-
ticides, but those are inefficient in the long-term because of the
cryptic habits and presence of hydrophobic waxes on the body
surface of mealybugs (Franco et al. 2009). In this context,
biological control agents (BCAs), such as encyrtid parasitoid
wasps and ladybird beetles (Coleoptera: Coccinellidae), espe-
cially the mealybug destroyer Cryptolaemus montrouzieri
Mulsant, play an important role in regulating pest insect
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populations, and represent the best approach for mealybug
suppression (Daane et al. 2012).

Parasitoid wasps are able to attack different insect orders
(Heraty et al. 2013), and can be used on augmentative biological
control programs. Chalcidoidea (Hymenoptera) is the most di-
verse group of parasitoids, comprising 25 families and about
22,500 described species (Heraty et al. 2013; Noyes 2019).
This group has been successfully used as BCAs in agricultural
landscapes (Noyes and Hayat 1994; Heraty 2009). For example,
African populations of the cassava mealybug Phenacoccus
manihoti Matile-Ferrero were controlled through the use of
Anagyrus lopezi (De Santis) (Encyrtidae) from South America
(Neuenschwander et al. 1988; Herren and Neuenschwander
1991) and the Rhodes grass mealybug Antonina graminis
(Maskell) is kept under control after the release of the parasitoid
Neodusmetia sangwani (Subba Rao) (Encyrtidae) in 1970 in
Brazil (Batista Filho et al. 2017). Similarly, Acerophagus
flavidulus (Brèthes) and Leptomastix epona (Walker) have been
introduced from South America to California to control the ob-
scure mealybug (Daane et al. 2008), while Coccidoxenoides
perminutus Girault and Anagyrus pseudococci (Girault) were
introduced against the vine mealybug in California (Sime and
Daane 2014).

Despite their importance as BCAs and high diversity,
Chalcidoidea is still less studied than other insect groups, es-
pecially if compared to groups with larger sized insects
(Noyes 2000). Out of 17 Chalcidoidea families recorded in
Brazil, the most speciose are Chalcididae (247), Eulophidae
(202), and Pteromalidae (155), followed by Encyrtidae with
140 species (Noyes 2019). Morphological discrimination
among chalcidoid wasps relies mostly on external female
characters, but identification keys are still lacking for many
taxa. DNA barcoding has become increasingly popular for
parasitoid identification (Rugman-Jones et al. 2011;
Fernández-Triana et al. 2014; Beltrà et al. 2015; Correa et al.
2016), particularly when complexes of cryptic species have
been reported (see Triapitsyn et al. 2007). Few molecular
studies have been performed on the Encyrtidae though, which
leaves them particularly underrepresented in public databases.

Efficient selection of biological control agents depends on
appropriate knowledge about parasitoid presence on each
mealybug species. In this study, parasitoid wasps infesting
Ps. sociabilis, Ps. viburni, and Pl. ficus populations in Rio
Grande do Sul (Brazil) were characterized based on morphol-
ogy and DNA markers.

Material and methods

Sampling

Mealybug specimens were collected from 22 sampling
sites on fruit production areas across Rio Grande do Sul

State in Brazil (covering Encruzilhada do Sul and the so-
called Serra Gaúcha region, including Antônio Prado,
Bento Gonçalves, Caxias do Sul, Farroupilha, Monte
Belo, and São Valentin do Sul), between 2013 and 2016
(Table 1). Commercial crops included apple Malus
domestica Borkh (Rosaceae), persimmon Diospyros kaki
L. (Ebenaceae), strawberry Fragaria x ananassa
Duchesne (Rosaceae), and grapes Vitis labrusca L. and
Vitis vinifera L. (Vitaceae). Mealybug-infested fruits and
leaves were collected into plastic boxes and taken to the
Laboratory of Entomology of Embrapa Uva e Vinho.
Mealybugs were examined for parasitism using a stereo
microscope, and mummified mealybugs were kept in gel
capsules until the emergence of adult wasps. The remain-
ing specimens were reared in plastic containers closed with
voile tissue, provided with potato sprouts Solanum
tuberosum L. for food, and held at 25 ± 1°C, relative hu-
midity of 70 ± 10%, and photoperiod of 14 h. These mealy-
bugs were periodically checked for signs of parasitism.
Capsules were checked daily for parasitoid emergence,
and adults were placed in Eppendorf tubes with 95% eth-
anol and stored at − 20°C.

Molecular characterization and phylogenetic analyses

DNA was extracted at Laboratório de Biologia Molecular
from Embrapa Uva e Vinho, through a non-destructive meth-
od, using the prepGEM Insect DNA extraction kit (ZyGEM,
Lane Hamilton, New Zealand) and following the manufac-
turer’s recommendations. Primary vouchers were kept in ethyl
alcohol 70% for later morphological inspection. Polymerase
chain reactions (PCRs) were completed using QIAGEN PCR
Mastermix (Hilden, Germany), composed by 23 μL of reac-
tion mix (water, Tmix and primers) and 2 μL of diluted DNA
(1–20 ng). Primers used for PCR amplification were 5′ –
GAGAGTTMAASAGTACGTGAAAC – 3′ and 5′ – TCGG
-ARGGAACCAGCTACTA – 3′ for the 28S-D2 gene region
and 5′ –GGTCAACAAA-TCATAAAGATATTGG 3′ and 5′
– TAAACTTCAGGGTGACCAAAAAATCA – 3′ for COI
(Folmer et al. 1994). Annealing temperature was 58°C for
28S-D2 and 50°C for COI. After 15 min of polymerase acti-
vation at 95°C, a total of 35 (28S-D2) or 40 (COI) cycles were
completed with 30 s at 95°C for denaturation, 90 s at 58°C
(28S-D2) or 50°C (COI) for hybridization, and 60 s at 72°C
for elongation; a final 10 min extension step at 72°C was
included. PCR products were run through electrophoresis
and sent for bidirectional sequencing to Beckman Coulter
Genomics (Danvers, USA). Consensus sequences were con-
structed using Seqscape v.27 (Applied Biosystems, Foster
City, CA, USA) and then blasted against the Genbank nucle-
otide database by using MEGABLAST (http://www.ncbi.
nlm.gov/BLAST). New sequences are deposited in Genbank
under accession numbers presented in Table 1.
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Sequence alignments were built for each locus (28S-D2 and
COI) using the ClustalW algorithm in Bioedit v.7.02 (Hall
1999). Single gene trees were reconstructed directly from the
alignments using a maximum likelihood (ML) approach as im-
plemented in PhyML v3 (Guindon et al. 2010). A general time-
reversible (GTR) model with discrete gamma-distribution with
four rate categories (+G) plus invariant positions (+I) was used,
estimating the gamma parameter and the fraction of invariant
positions from the alignment. Branch support was computed
using 500 bootstrap replicates. Genetic divergence was calcu-
lated in MEGA7 (Kumar et al. 2016) using 28S data and the
Tamura-Nei model (Tamura and Nei 1993). All positions con-
taining gaps and missing data were eliminated.

Morphological identification

Morphological identification of vouchers was carried out by
the second author at the CEPAVE (La Plata, Argentina).
Specimens were mounted using conventional techniques
and, when necessary for more detailed study, slide-mounted
in Canada balsam following Noyes (1990). Identification was
based on taxa-specific keys (De Santis 1964; Gibson et al.
1997; Noyes 1980, 2000; Triapitsyn et al. 2014) and direct
comparison with reference material. Voucher specimens are
deposited in the collection of División Entomología ofMuseo
de La Plata (see Table 1).

Results

Morphological identification

Fifteen parasitoid species, belonging to the families Encyrtidae,
Platygastridae, and Signiphoridae, were found parasitizing the
three mealybugs studied (Table 1). Eleven species were associ-
ated with Ps. viburni, including the encyrtids Acerophagus
flavidulus (Brèthes), Anagyrus calyxtoi Noyes, Anagyrus sp.
1, Anagyrus sp. 2, An. near quilmes, Blepyrus clavicornis
(Compere), Blepyrus sp., and Zaplatycerus sp.; one signiphorid
hyperparasitoid (Chartocerus axillaris De Santis); and two
platygastrids (Allotropa sp. 1 and Allotropa sp. 2). Only one
encyrtid, Blepyrus schwarzi (Howard), was found parasitizing
Ps. sociabilis, while two encyrtids were found associated with
Pl. ficus namely, Anagyrus vladimiri Triapitsyn and
Coccidoxenoides perminutus Girault. Clausenia sp. was col-
lected from an unidentified Pseudococcus specimen. It should
be pointed out that the species Ac. flavidulus, An. calyxtoi, and
Ch. axillaris and the genus Zaplatycerus Timberlake are report-
ed for the first time from Brazil.

Inconsistencies between morphological and molecular
identification have been observed in the genera Blepyrus
Howard and Anagyrus Howard. Blepyrus specimens from
Encruzilhada do Sul vineyards most likely represent an
undescribed cryptic species, showing high molecular diver-
gences for both COI (22.36%) and 28S (8.81%) with

Table 1 Parasitoids of mealybugs found in Rio Grande do Sul–Brazil. Parasitoid identity, number of specimens found (N), host mealybug, host plant
substrate, location, collection code, and accession number.

Parasitoid identity N Host mealybug Host plant Location (city) Collection code Accession number

28S-D2 COI

Acerophagus flavidulus 28 Ps. viburni Apple Caxias do Sul 15160 MW465441 ---

Anagyrus calyxtoi 2 Ps. viburni Persimmon Farroupilha 15177 MW465445 ---

Anagyrus calyxtoi 1 Ps. viburni Apple Caxias do Sul 15164 --- MW463922

Anagyrus vladimiri 78 Pl. ficus Grapes Pinto Bandeira 22611 --- ---

Anagyrus sp. 1 28 Ps. viburni Strawberry Farroupilha 15075 MW465438 ---

Anagyrus sp. 1 12 Ps. viburni Grapes São Valentin do Sul 15192 --- MW463920

Anagyrus sp. 2 1 Ps. viburni Apple Caxias do Sul 15166 MW465439 ---

Anagyrus near quilmes 20 Ps. viburni Strawberry Farroupilha 15076 MW465437 MW463921

Allotropa sp. 1 16 Ps. viburni Strawberry Farroupilha 22608 MW465435 MW463918

Allotropa sp. 2 8 Ps. viburni Strawberry Farroupilha 22632 --- ---

Blepyrus clavicornis 166 Ps. viburni Strawberry Farroupilha 22575 MW465436 MW463919

Blepyrus schwarzi 2 Ps. sociabilis Persimmon Farroupilha 15176 MW465443 MW463923

Blepyrus sp. 4 Ps. viburni Grapes Encruzilhada do Sul 22591 MW465447 MW463926

Chartocerus axillaris 2 Ps. viburni Strawberry Farroupilha 15142 MW465440 ---

Clausenia nr. purpurea 1 Pseudococcus sp.* Persimmon Farroupilha 22630 MW465448 MW463924

Coccidoxenoides perminutus 12 Pl. ficus Grapes Pinto Bandeira 22566 MW465444 ---

Zaplatycerus sp. 26 Ps. viburni Grapes Encruzilhada do Sul 22571 MW465446 MW463925

*Pseudococcus sp. corresponds to mummies that were collected directly in the field so the mealybug species could not be determined.
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B. clavicornis from Serra Gaúcha Region; however, no mor-
phological differences were observed between them.
Anagyrus quilmesTriapitsyn, Logarzo&Aguirre sensu stricto
and An. near quilmes present differences in wing setation and
color of head and antennal segments, but they show high
molecular similarity (see below).

Molecular characterization and phylogenetic analyses

A total of 379 sequences were obtained from 216 parasitoids.
Among all the parasitoids collected, fragments of 719 to 931
base pairs for 28S-D2 were successfully amplified for 15 dif-
ferent haplotypes corresponding to 15 taxa. For COI, frag-
ments of 520 to 659 base pairs were obtained, corresponding
to 22 haplotypes from 12 different taxa. Nine haplotypes were
observed for Anagyrus sp. 1, whereas two haplotypes were
detected for Allotropa sp. 1, and Zaplatycerus sp., with diver-
gences of 0.30% (2/656) and 2.57% (15/582) between haplo-
types, respectively. Distance-based phylogenetic trees are
shown in Fig. 1. Sequence divergences for the 28S gene
ranged from 0.003 to 0.193 within Encyrtidae, from 0.451 to
0.493 between Encyrtidae and Platygastridae, and from 0.129
to 0.163 between Encyrtidae and Signiphoridae (Table 2).
Blast hits resulted in some Anagyrus 28S sequences (An.
calyxtoi, Anagyrus sp. 1, and Anagyrus sp. 2) showing more
than 97% similarity with An. pseudococci (Girault) from
GenBank (AY599315.1). Acerophagus flavidulus and Co.
perminutus 28S sequences blasted with more than 98% simi-
larity to Ac. flavidulus (KU499433.1) and Co. perminutus
(KY211082.1), respectively. The 100% similarity for 28S
(An. quilmes: MG731478-88) and 94% similarity for COI

sequences (An. quilmes: MG731507-17) show a close rela-
tionship between our An. near quilmes and An. quilmes from
Argentina. Anagyrus vladimiri COI sequences blasted with
more than 99% similarity with An. near pseudococci
(KU499515.1), a cryptic species recently described as An.
vladimiri (Andreason et al. 2019). Lower similarity values
(below 96%) were observed between other species and
GenBank sequences.

Phylogenetic tree estimates were congruent for both 28S
and COI (Fig. 1). Encyrtidae is monophyletic in both cases,
and the genera Zaplatycerus, Aenasius, and Blepyrus group
together with high bootstrap support (> 85%). A second clade,
including Leptomastidea spp. and Anagyrus spp., was also
found with high bootstrap support in both cases. The relative
position of other genera such as Clausenia Ishii,
Coccidoxenoides Girault or Acerophagus Smith and
Metaphycus Mercet within the family remains unresolved.
Furthermore, our Anagyrus sp. 2 sequences cluster together
with sequences from An. calyxtoi, while An. quilmes from
Genbank cluster with An. near quilmes.

Parasitoid-host relationship

Parasitism rate was low in all sampling sites except in the late-
season vineyard, showing up to 70% of adult Pl. ficus females
parasitized by An. vladimiri (Table 1). In the strawberry field,
besides the great diversity of species parasitism reached only
2.15% of total Ps. viburni collected. The parasitism rates were
not measured for the other crops and localities. Encyrtidae
showed the greatest number of species recorded (11 species)
andwas the most abundant family (about 90%). Anagyruswas

Table 2 Estimates of evolutionary divergence between 28S-D2 sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Acerophagus flavidulus 1.

2. Anagyrus sp. 1 0.189 2.

3. Anagyrus near quilmes 0.152 0.036 3.

4. Anagyrus calyxtoi 0.155 0.044 0.009 4.

5. Anagyrus sp. 2 0.159 0.047 0.012 0.003 5.

6. Blepyrus clavicornis 0.145 0.126 0.100 0.096 0.100 6.

7. Blepyrus schwarzi 0.147 0.123 0.101 0.097 0.101 0.057 7.

8. Blepyrus sp. 0.143 0.122 0.099 0.096 0.099 0.052 0.005 8.

9. Clausenia nr. purpurea 0.156 0.107 0.082 0.084 0.087 0.082 0.092 0.087 9.

10. Coccidoxenoides perminutus 0.193 0.133 0.107 0.103 0.103 0.119 0.125 0.129 0.111 10.

11. Zaplatycerus sp. 0.135 0.107 0.085 0.085 0.089 0.055 0.063 0.058 0.065 0.093 11.

12. Chartocerus axillaris 0.163 0.152 0.135 0.133 0.129 0.144 0.148 0.146 0.137 0.162 0.129 12.

13. Allotropa sp. 1 0.481 0.468 0.456 0.465 0.468 0.451 0.468 0.462 0.489 0.493 0.477 0.485 13.

14. Allotropa sp. 2 0.482 0.468 0.456 0.465 0.468 0.451 0.468 0.462 0.489 0.493 0.477 0.484 0.003 14.

The number of base substitutions per site from between sequences is shown. Analyses were conducted using the Tamura-Nei model (Tamura and Nei
1993). The analysis involved 19 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 667
positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013).
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the most diverse genus within the family, with five species
being represented (Table 1).

Acerophagus flavidulus was the main parasitoid species
found in one apple orchard infested by Ps. viburni and was
not observed in other fruit crops. In persimmon orchards, three
parasitoid species were found sporadically in two locations, one
infested with Ps. sociabilis and other with Ps. viburni.Asmany
as seven species of parasitoids were observed in an organic Ps.
viburni–infested strawberry farm, with Blepyrus clavicornis ac-
counting for 70.8% of the total mealybugs parasitized and be-
ing the main primary parasitoid, followed by Anagyrus spp.
representing 20.5% and Allotropa spp. with 8.7% of the

parasitism. Parasitoids were also found in three vineyards, the
two infested withPs. viburni includedAnagyrus sp. 1,Blepyrus
sp., and Zaplatycerus sp., whereas the vineyard infested with
Pl. ficus included An. vladimiri and Co. perminutus.

Discussion

Biological control programs against Pseudococcus species
generally rely on New World encyrtids such as Acerophagus
Smith and Anagyrus. Our results suggest that further attention
should be paid to poorly studied genera, such as Blepyrus and

Fig. 1 Maximum-likelihood tree for the 28S (left) and COI (right) datasets. Bootstrap values (500 replicates) are displayed. Rooted by Aphelinus sp. and
Chartocerus axillaris.
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Zaplatycerus Timberlake, which have not been used very of-
ten as BCAs (Noyes 2000). The encyrtids Ac. flavidulus,
Anagyrus spp., and B. clavicornis were the most common
parasitoids infesting Ps. viburni populations in the Serra
Gaúcha region. Our analyses yield new evidence on
mealybug parasitoids compared with previous surveys.
Daane et al. (2008) observed four encyrtid species on Ps.
viburni populations (Ac. flavidulus, An. pseudococci,
Leptomastix dactylopiiHoward, and Leptomastidea abnormis
(Girault)), while five encyrtids were recorded in South Africa
(Anagyrus sp., Acerophagus sp., Ac. maculipennis (Mercet),
Pseudectroma sp., and Tetracnemoidea sp.) (Wakgari and
Giliomee 2004) and no parasitoids were observed in New
Zealand (Charles et al. 2010). In this study, 11 parasitoids
were found associated with Ps. viburni, which provides fur-
ther support for the hypothesis of a South American origin of
this species (Charles 2011; Correa et al. 2015). The new par-
asitoids found here for Ps. viburni and Ps. sociabilis are most
likely native South American species with strong host speci-
ficity, which makes them ideal candidates as biological con-
trol agents.

Other parasitoids reported here were only found sporadi-
cally. Species fromClausenia have been used in the biological
control of Ps. comstocki (Kuwana) (Guerrieri and Pellizzari
2009), but only one femaleClausenia specimen was observed
in this study. Similarly, platygastrid parasitoids (e.g.,
Allotropa spp.) have been previously used in mealybug man-
agement (Roltsch et al. 2006; Quaglietti et al. 2017), but they
were only found in low numbers here. The same happened
with the signiphorid hyperparasitoid Ch. axillaris, which was
rarely collected in this survey.

The parasitoids An. vladimiri and Co. perminutus are
known to be important biological control agents against the
vine mealybug (Pl. ficus), an exotic species recently observed
damaging vineyards in Serra Gaúcha region (Pacheco da Silva
et al. 2016). They were still observed in the last year of our
survey, showing high levels of parasitism during the late sea-
son (March and April, 2016). Coccidoxenoides perminutus
had been recently recorded in Brazil parasitizing Pl. citri
(Risso) and could have easily infested Pl. ficus (Fernandes
et al. 2016). Our observation also agrees with the fact that
Co. perminutus infests Pl. ficus populations in Africa, where
it is probably an endemic species (Walton et al. 2004;
Mahfoudhi and Dhouibi 2009).

Occasional outbreaks of Ps. sociabilis and Ps. viburni in
Southern Brazil are probably due to common pesticides kill-
ing off the local parasitoid community, and alternative strate-
gies to combat mealybugs are needed to improve fruit produc-
tion. Our results show that the most suitable natural enemies
against the obscure mealybug are Ac. flavidulus, Anagyrus
species, and B. clavicornis, and that the establishment of An.
vladimiri and Co. perminutus as biological control agents
(BCAs) should contribute to reduce vine mealybug outbreaks.

Encyrtid parasitoids are key BCAs around the world and their
morphological and molecular characterization will be an im-
portant step towards efficient management of mealybug pest
populations across South America, not just Brazil.

The integrative taxonomy approach used here revealed the
presence of several cryptic species parasitizing mealybugs.
Females of Anagyrus sp. 1 are morphologically close to An.
quilmes but clearly distinct at the molecular level, whereas
another species (i.e., An. near quilmes) showed significant
molecular similarity despite being morphologically distinct
from An. quilmes. Anagyrus is a highly diverse genus with a
complex taxonomic history, in which other cryptic species
have already been identified (Andreason et al. 2019;
Triapitsyn et al. 2018). Our investigation confirmed the pres-
ence of new parasitoid species infesting Ps. viburni in Brazil,
but many more potential biological control agents might re-
main undescribed.
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