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● Internal virtualization projects which use KVM
● Type-1 hypervisor better, no huge TCB
● Could we replace KVM with seL4?
● How to bring QEMU’s (KVM’s ”little helper”) virtio to seL4?
● Could we use CrosVM instead of QEMU (virtio-wayland)?

Why?



Our seL4 idea



Our seL4 idea



Multihost



Mixed VM/native



● “modern” virtio 1.0 supported
● virtio-console, virtio-blk, virtio-net, virtfs
● virtio-display, virtio-gpu, virtio-input (mouse, keyboard)
● PCI transport; no need to configure anything in guest
● Some preliminary results
● rpi4 virtio-blk 70 MB/s
● rpi4 virtio-net 1 MB/s (3% of native, ouch)
● rpi4 virtio-gpu glx-gears 45 fps @ 720p
● One service VM / one user VM
● Host sees all of guest’s memory

Where are we now



● System-wide ftrace (kernel, VMMs, guests)
● Traces absolutely required to understand all interactions
● vhost should help with inferior virtio-net performance  
● Minimize context switches
● Hypervisor/guest scheduler options study
● 1:1 service/user  M:N service/user→
● Restrict guest memory visibility to host
● Dynamic VMs (pure virtio, no need for IOMMU/SMMU)
● CrosVM and its derivatives

What we are working on



● Docker container to build it all
● seL4 kernel, vm_qemu_virtio example, guest Yocto Linux root filesystems
● Boot from network with DHCP / TFTP
● First VM uses NIC passthrough and mounts root from NFS
● Second VM mounts root from virtio-blk provided by QEMU in first VM
● So effectively both root filesystems served from development desktop
● Quick iteration cycle, no need to play with SD cards
● ”screen” to multiplex VM consoles onto RPi4’s physical UART
● QEMU’s debug monitor also in the screen session
● Try it out: https://github.com/tiiuae/tii_sel4_build

VMs with RPi4

https://github.com/tiiuae/tii_sel4_build


Virtio recap
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MMIO emulation



virtio MMIO
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Virtual PCI in seL4



● To proxy faults to QEMU we need RPC
● Ring buffers on shared memory & doorbells
● On native side with seL4 threads everything is easy
● Shared memory is just (minted & copied) capabilities to frames
● Doorbells are just notifications

RPC



● Static configuration
● VMM maps shared memory to VM’s vspace (stage-2 mapping)
● VMM adds vPCI device whose BAR points to GPA of this mapping
● PCI driver kernel module is added to guest Linux
● Maps shared memory to userland via UIO (stage-1 mapping)
● We can map guest memory to QEMU’s address space easily:

qemu-system-aarch64 
  -object memory-back-end-file,\
    id=virt.ram,size=128M,mem-path=/dev/uio1,offset=4096,share=on\
  -machine memory-backend=virt.ram

● We had to add ”offset” support
● Offset of 1 * PAGE_SIZE or 4096 selects dataport mapping instead of event BAR

QEMU shared memory



● Event BAR of cross-connector PCI device is the doorbell
● Mapped to QEMU via page 0 of /dev/uioX
● QEMU VMM thread blocks on UIO fd
● Host-VMM receives specially badged notification from guest-VMM
● Cross-connector increase event count in event BAR
● Injects IRQ to host VM
● Host’s guest Linux forwards IRQ to UIO
● UIO asks cross-connector whether this IRQ is for it
● Kernel module sets event count to zero (MMU fault)
● UIO unblocks QEMU thread doing poll() on fd

QEMU doorbells (recv)



● Host Linux writes to event BAR emit register (MMU fault)
● Cross-connector sends seL4 notification
● Guest VMM notification wait thread unblocks
● Thread asynchronously (to VMM thread) handles ring buffer
● Async handler might post semaphore for ops than wait synchronously

QEMU doorbells (send)



● Tweak init_ram_module() for user-VM
● Put shared memory frames where guest RAM frames used to be
● Those were unity mapping for ”untyped_mmios”
● We don’t really need unity mapping if we don’t use DMA
● Use shared memory frame caps to map memory to VM’s vspace

Sharing VM RAM to QEMU



● CAmkES VMM supports only edge-triggered IRQs
● QEMU’s virtio-pci needs level-triggered IRQs
● We added support for them
● Inject another IRQ if any external IRQ line still active

Level-triggered IRQs



● Important to get thread priorities right
● ”Host” threads should have higher priority than ”guest”
● VMM threads should have higher priority than vCPU threads
● Host continues to execute after QEMU has served the guest
● Host just executes WFI (Wait For Interrupt) until its timeslice is consumed
● Our modification to seL4 kernel does yield when it traps WFI from user threads
● virtio-blk benchmark shows 25 % – 40 % improvement in throughput

WFI / seL4_Yield()



● Two levels of schedulers
● One in seL4 kernel (for each CPU)
● Guests running their own schedulers
● Nasty interactions
● Big field of research

seL4/guest schedulers



● Essential for improving performance
● sel4bench good for kernel and native threads
● We need also traces from guest VMs (Linux kernel / QEMU)
● seL4 kernel / VMM tracing easy
● Guest tracing is more complex since there can be multiple vCPUs
● Hard to implement atomic writes to trace buffer
● Let’s avoid “not invented here” and use Linux ftrace instead

Tracing



● We intend to convert seL4 kernel and VMM traces into ftrace format
● Merging kernel, VMM and guest traces into one
● Possibly existing work from KVM community can be used
● We need to record virtual timer offsets on vCPU thread switches to do that
● After that we can use kernelshark, FlameGraphs, etc.
● The whole system will be visualized
● ”Doing nothing” or ”doing context switches” more easily pinpointed

Tracing



● Every QEMU hypervisor backend has to implement memory listeners
● Configures callbacks that get called when given region is accessed
● Our prototype uses custom code
● Similar thing exists in KVM, called ioeventfd
● ioeventfds configured on /dev/kvm with proper ioctl()
● Better change our code to adhere to this API
● Prepares us for other KVM-compatible VMMs
● Hides the memory listener details from VMM

ioeventfd



● QEMU needs a way to raise IRQ in guest
● Once again, our code is one-off hack
● Glues the injection code to QEMU’s gpex PCI host
● KVM has irqfd concept
● When you write to fd, IRQ gets injected to guest
● Supporting irqfds gives us even more KVM compatibility

irqfd



● With pure virtio VMs we don’t need DMA capability
● No need for unity stage 2 mapping
● We can allocate RAM from VM anywhere
● GPA range stays the same due to stage 2 mapping
● Idea: create a ”mallocator” seL4 application
● Has a pool of untyped memory
● VMMs request memory from mallocator
● It copies/mints capabilities and transfers them to VMM
● VMM maps these caps as VM’s RAM

Dynamic RAM allocation



● ioeventfd and irqfd simplifies VMM porting
● Dynamic RAM allocation doable
● Some more bits from KVM API need to be provided
● We need to provide means to create vCPUs, route IRQs etc.
● Most probably we won’t be able to be 100% pin-compatible…
● … but not sure if that’s even desirable
● The important point is to minimize the VMM porting effort
● CrosVM, firecracker, etc.

Dynamic VMs



● Right now host sees all of the guest’s RAM
● Only pages involved with virtio needed
● Idea: use mallocator to restrict host access 
● Mallocator intercepts notifications between host and guest
● Tracks which pages guest wants to share to host
● Host VMM can ask mallocator to give caps to virtio pages

Host blinding



vhost



seL4 virtio transport



seL4 virtio transport
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