SDMS US EPA Region V

Imagery Insert Form

Document ID:

167734

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

Illegible due to bad source documents. Image(s) in SDMS is equivalent to hard copy.

Specify Type of Document(s) / Comments:

APPENDIX C - WELL LOG & DRILLING REPORTS ; APPENDIX G - BILL OF LADING

Includes X COLOR or X RESOLUTION variations.

Unless otherwise noted, these pages are available in monochrome. The source document page(s) is more legible than the images. The original document is available for viewing at the Superfund Records Center.

Specify Type of Document(s) / Comments:

APPENDIX B - SITE PHOTOGRAPHIC LOG

Confidential Business Information (CBI).

This document contains highly sensitive information. Due to confidentiality, materials with such information are not available in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document.

Specify Type of Document(s) / Comments:

Unscannable Material: Oversized _____ or _____

Oversized _____ or ____ Format. Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center.

Specify Type of Document(s) / Comments:

Document is available at the EPA Region 5 Records Center.

Specify Type of Document(s) / Comments:

CISLER

0000044 167734

RECEIVED NOV 2 7 1996 SOUTHING TO MICT

INSTALLATION OF GROUNDWATER MONITORING WELLS AT THE SOUTH DAYTON DUMP, MORAINE, OHIO

MOBILIZATION ORDER NO. 557-01

INSTALLATION OF GROUNDWATER MONITORING WELLS AT THE SOUTH DAYTON DUMP, MORAINE, OHIO

1 - C

MOBILIZATION ORDER NO. 557-01

Submitted to:

Ohio Environmental Protection Agency Division of Emergency and Remedial Response Southwest District Office 401 E. Fifth Street Dayton, Ohio 45402-2911

Prepared by:

PSARA Technologies, Inc. 10925 Reed Hartman Highway Suite 220 Cincinnati, Ohio 45242

> June 1996 Project No. 60003.06

TABLE OF CONTENTS

Section	Title	Page
1.0	Introduction	1
2.0	Site Investigation	3
2.0	2.1 Historical Review	
	2.2 Review of Aerial Photographs	
	2.3 Exploratory Borings	
	2.4 Monitoring Well Installations	
	2.4 Montoring wen instanations	
3.0	Summary of Findings	
0.0	3.1 Local and Regional Geology and Hydrogeology	
	3.2 Soil Sampling Results	
	3.3 Groundwater Sampling Results	
	3.4 Quality Control Sample Results	
	3.5 Groundwater Flow	
	3.6 Management of Investigation-derived Wastes	
4.0	Variances	16
4.0	4.1 Scope of Work	
	4.2 Field Sampling Procedures	
	4.3 Sample Custody	
	4.4 Laboratory	
	4.5 Data Validation	
5.0	Residuals Management	18
6.0	References	18
0.0		

List of Tables

- 2
- 3
- Groundwater Sample Locations Groundwater Analytical Results Quality Control Sample Analytical Results Groundwater Elevation Data 4
- 5

List of Figures

- 1
- <u>2</u> 3
- Site Location Map Site Lavout Map Exploratory Boring Locations Monitoring Well Locations
- 4
- Groundwater Analytical Results Groundwater Flow Map 5
- 6

ii

TABLE OF CONTENTS (continued)

Section	Title	Page
	Appendices	
Α	Soil Boring Logs	
В	Well Construction Diagrams	
С	ODNR Well Logs and Drilling Reports	
D	Well Development Logs	
Ε	Groundwater Analytical Report	
F	Quality Control Sample Analytical Reports	
<u> </u>	Dill of Loding	

G Bill of Lading

1.0 INTRODUCTION

The South Dayton Dump (also referred to as the South Dayton Landfill or Moraine Recycling) is a 30-acre site located just south of Dayton, Ohio. Figure 1 presents a portion of a U. S. Geological Survey (USGS) topographic map of South Dayton showing the location of the site.

A previous investigation conducted at the South Dayton Dump determined that volatile organic compounds (VOCs) and metals are present in soils at levels above background. The OEPA is performing Site Team Evaluations and Prioritizations (STEPs) at the site pursuant to a Cooperative Agreement with the U.S. Environmental Protection Agency (USEPA). The OEPA, Southwest District Office, issued Mobilization Order No. 557-01 to PSARA Technologies, Inc., under a current level-of-effort (LOE) contract to install exploratory soil borings and groundwater monitoring wells at the site. The primary work product of the mobilization order was the installation of four monitoring wells, which will be used by OEPA to evaluate groundwater quality at the site.

As originally issued, the objectives of the mobilization order were to delineate the extent of the fill at the site and to install groundwater monitoring wells outside the extent of fill material but still within the estimated groundwater contaminant plume. Tasks proposed to define the extent of fill material (geophysical survey) were subsequently deleted from the Scope of Work due to budget limitations, and the final scope was reduced to installation of the four monitoring wells for OEPA use. Exploratory borings were conducted prior to installing the wells to provide information on the extent of fill, soil geology, and hydrogeology so that the wells could be placed in locations that would meet OEPA needs.

The work was conducted in accordance with previously submitted and approved documents including the following:

- Final Work Plan (PSARA 1996a)
- Site-specific Quality Assurance Project Plan (QAPP) (PSARA 1996b)
- Site-specific Health and Safety Plan (HASP) (PSARA 1996c)
- Site-specific Sampling and Analysis Plan (SAP, included in the QAPP).
- Generic QAPP for the LOE contract (PSARA 1993)

This report describes the activities surrounding the installation of the groundwater monitoring wells at the South Dayton Dump Site and the associated findings. Section 2 describes the site investigation activities, including a review of existing information and aerial photographs, installation and sampling of the exploratory borings, and installation of the monitoring wells. Section 3 presents a summary of the findings. Section 4 briefly describes variances from the approved Work Plan. Finally, Section 5 presents references.

2.0 SITE INVESTIGATION

2.1 HISTORICAL REVIEW

The South Dayton Dump is approximately a 30-acre site located at 1976 Springboro Road in Moraine, Ohio. It began accepting wastes in 1941 and operated as a licensed sanitary landfill until 1986. The South Dayton Dump accepted construction and demolition debris until it closed in early 1996.

According to Schmidt, 1986, the site overlies glacial outwash comprising mainly sand and gravel. Groundwater in the vicinity of the site flows west/southwest toward the Great Miami River. The depth to groundwater is approximately 20 to 45 feet below ground surface. The Great Miami River is located about 350 feet west of the site, and a water-filled gravel pit borders the site on its southwest side. A small wetland also exists on site.

OEPA files indicate that the South Dayton Dump accepted wastes including 1,1,1-trichloroethane; 2-butanone; xylenes; cutting oils; paint; Stoddard solvents; machine tool water-based coolants contaminated with cutting oils and solvents; and other unspecified cleaning solvents. During routine inspections, it was documented that containers labeled "hazardous" were discovered on site. Between 1950 and 1970, drummed wastes were occasionally accepted at the site. Photographs of the site from 1968 and 1973 show drums; drums were also seen during OEPA site visits in March and August of 1995.

Eleven soil samples collected at or near the site during a previous investigation found levels of contaminants significantly above background, with some concentrations above risk-based levels. The following contaminants were detected above background in soil samples: 1,2-dichloroethene, tetrachloroethene, toluene, polychlorinated biphenyls (PCBs), antimony, arsenic, barium, cadmium, chromium, copper, mercury, nickel, lead, zinc, and several polynuclear aromatic hydrocarbons (PAHs). Prior to the activities described in this report, no groundwater, surface water, or air samples had been collected at the site.

2.2 **REVIEW OF AERIAL PHOTOGRAPHS**

PSARA reviewed historical low-altitude aerial photographs of the site vicinity obtained by OEPA from the Ohio Department of Transportation. The aerial photographs, which were taken in 1956, 1959, 1968, and 1973, document the progression of the site from rural, undeveloped land through an extensive sand and gravel mining operation and ultimately to landfilling operations.

The site expanded from north to south throughout the time period represented by the aerial photographs. There area north of the site appears to have accepted some type of industrial waste prior to 1956. That northern parcel of land is now occupied by an active asphalt plant.

Sand and gravel were removed from the site to the top of the groundwater table. Local ponds were visible throughout the site in each of the aerial photographs reviewed. Debris of undetermined origin and type was then used to backfill the excavations created from sand mining operations. Stockpiled drums, pallets, and crates are visible in the 1968 photograph.

An automobile salvage yard occupied the area immediately north of the site in the 1968 photograph. All automobiles were gone from the site by the time the 1973 photograph was taken.

PSARA used the aerial photographs to estimate the maximum extent of the landfilling operations. The landfilling operations appear to have been limited to an area of approximately 30 acres. The western boundary is marked by a treeline and ridgeline that parallels the Great Miami River. The area encompassing the landfill is approximately 12 feet higher than the flood plain of the river. The southern extent of the fill is roughly marked by an access road in an easement for high-tension overhead electrical lines. The eastern limit of the fill is unclear but is estimated to be 350 feet west of Dryden Road. (There are reports that fill material actually extends beneath Dryden Road. No evidence of this exists on the aerial photographs, however.) The northern boundary of the site, though likely not the boundary of the fill, parallels a northern access road and is partially delineated in the field by a tree line.

Access to the site is gained through an east-west access road from Dryden Road.

Figure 2 presents a site map, which was developed from the 1993 aerial photograph. The scale of the photograph was determined by measuring the lengths of features near the center of the photo and comparing them to the actual measured lengths of the same features.

2.3 EXPLORATORY BORINGS

PSARA installed seven exploratory borings at the site between February 19 and 26, 1996. Data collected from the exploratory borings were ultimately used to optimize the placement of the groundwater monitoring wells.

The locations of the exploratory borings were determined based on information gathered from the aerial photographs and on accessibility. Based on general knowledge of the regional geology, it was assumed groundwater generally flowed toward the Great Miami River. Consequently, the borings were concentrated along the southern and western boundaries of the site. Two borings, labeled SD-001 and SD-002, were installed along a power line right-of-way at the southern border of the site. Due to access limitations, the remaining borings (SD-003 through SD-007) were installed within the boundaries of the landfill along the western treeline. Figure 3 illustrates the exploratory boring locations, and the Soil Boring Logs are presented in Appendix A. Well borings that had to be abandoned are designated on the boring logs by letters; these letters chronologically identify the number of borings attempted before one was successfully completed.

2.3.1 Soil Sampling

Prior to the installation of any soil borings, PSARA contacted the Ohio Utilities Protection Service (OUPS) to have member utilities mark any underground lines.

All drilling was conducted in Modified Level D personal protective equipment in accordance with the site-specific HASP. Ambient air monitoring for oxygen, explosivity, and VOCs was conducted throughout the duration of drilling activities.

The exploratory borings were installed and sampled using a combination of direct-push and traditional auger and split-spoon techniques. As originally stated in the Work Plan, all of the borings were to be installed and sampled using a direct-push technique called the ESPTM Method by the manufacturer. The ESPTM system utilizes a double-cased system,

which includes a 1.25-inch split spoon driven in front of an outer hollow steel drive casing. When used to collect soil samples, the entire assembly is driven through the sampling interval. The split spoon is retrieved by extracting the inner rods, leaving the outer drive casing in place. The split spoon is then reinserted through the casing, and the process is repeated until the boring is complete.

Site conditions, however, prevented the exclusive use of this technique. Extremely well compacted silty sand layers and cobble zones, usually encountered within the vadose zone, caused premature refusal in most instances where the ESP system was deployed from the surface.

To preserve the integrity of the sampling program, PSARA utilized a 2.25-inch-insidediameter hollow-stem auger, in conjunction with a 2-inch split spoon to collect soil samples throughout the vadose zone. Upon reaching the top of the water table, the ESPTM system was deployed through the center of the augers. This combination of methods was selected in the field to allow for both sampling the harder-than-expected unconsolidated material in the vadose zone and the subsequent collection of groundwater samples below the water table.

Soil sampling continued in each boring until heaving sand prohibited further sampling. Soil samples were retrieved from the split-spoon samplers and split into two aliquots. One sample aliquot was placed in a new, labeled, zipper-lock bag for headspace screening analysis. The other aliquot was used to log the boring and was discarded with the drill cuttings.

Soil vapor headspace screening was conducted in the field with an HNu photoionization detector (PID) and a Foxboro flame ionization detector (FID). The PID analysis was used to supplement the FID analysis when it was noted in the field that methane was forming a significant portion of the headspace.

(14)

- State of a factor

The PID is factory calibrated annually to benzene. However, in the field, it is impractical to use benzene as a calibration gas due to its hazardous nature. According to the manufacturers specifications and industry accepted practices, isobutlene gas is used for field calibration. The HNu has a relative response factor of 0.56 to the isobutlene calibration gas for a 10.2 eV probe. Therefore, the instrument is calibrated to read 56 ppm isobutlene instead of 100 ppm.

PSARA technician calibrated the PID immediately prior to **use** in the field according to the following procedure: fill then purge a plastic Tedlar bag with zero air; fill the Tedlar bag with a standard consisting of 100 ppm isobutylene balanced with zero air; insert the probe of the PID into the Tedlar bag and close with an airtight seal; and adjust the instrument's span (calibration device) to read 56 ppm.

The FID is factory calibrated annually against a methane standard to read methane concentrations directly. A PSARA technician calibrated the FID immediately prior to use in the field according to the following procedure: fill then purge a plastic Tedlar bag with zero air; fill the Tedlar bag with a standard consisting of 100 ppm methane balanced with zero air; insert the probe of the FID into the Tedlar bag and close with an air tight seal; and adjust the instrument's span (calibration device) to read 100 ppm.

Headspace screening was conducted on sample aliquots from each sampling location to determine relative amounts of VOCs present in the soil. Samples were screened upon the completion of each boring. Prior to analysis, the samples were placed inside the cab of the field vehicle and allowed to warm for approximately 15 minutes prior to performing the headspace screening analyses. During the screening analysis, the probes of the FID and PID were inserted into the headspace of the plastic bag containing the sample aliquot. Headspace analysis results are summarized in Table 1, and are included on the Soil Boring Logs in Appendix A.

The split-spoon samplers were decontaminated between each use according to the following procedure: wash with a nonphosphate detergent; rinse with potable water; rinse with deionized water; rinse with methanol; and finally rinse with deionized water. The decontamination fluids were collected in 5-gallon buckets during decontamination, and then transferred into a labeled 55-gallon drum, which was left at the staging area for disposal by OEPA.

All down-hole equipment (i.e., augers, drill rods, ESPTM equipment, etc.) was decontaminated between each boring with a high-pressure stream cleaner. The decontamination unit is a portable unit with a shielded collection tank used to contain decontamination fluids and soil. All decontamination fluids were containerized on site in labeled 55-gallon drums. Auger cuttings were also collected in labeled drums and stored on site pending disposal.

2.3.2 Groundwater Sampling

In addition to the collection and logging of soil samples, PSARA collected groundwater samples from borings SD-001, SD-002, SD-004A, and SD-005. Groundwater samples were not collected from the remaining borings because those borings had to be abandoned prior to reaching the saturated zone due to heaving sand.

Groundwater samples were collected by deploying the water sampling probe for the ESPTM system. The water sampling probe consists of a screened drive-point section that attaches to the inner rods, essentially replacing the split-spoon assembly previously described. The screened section has a double layer of rubber O-ring gaskets above and below the screened section. To deploy the sampler, both the outer casing and inner rod assemblies are removed from the ground and decontaminated. The water sampling probe is then inserted inside the outer casing with the screened section shielded by the outer casing. The entire assembly is advanced to the desired sampling interval, at which point the inner probe assembly is pushed in advance of the outer casing, thus opening the screen to the formation water.

Because of time limitations and problems with heaving sands and auger refusal groundwater samples were not collected from three intervals within the saturated zone, as originally proposed in the Work Plan. Samples were, however, collected from two intervals in most of the borings. The initial ("shallow") sample was collected from approximately 8 to 10 feet into the saturated zone, whereas the second ("deep") sample was then collected 10 to 15 feet below the shallow sample. A duplicate sample was collected from additional sample aliquots collected from the 28 foot interval from boring SD-004A. The groundwater sample locations are summarized in Table 2.

Groundwater samples were retrieved from the sampling probe with a small-diameter stainless steel bailer, which was decontaminated between each use according to the method for decontamination of split spoons described previously. The samples were collected in two 40-ml glass vials provided by OEPA. The vials were pre-preserved by adding hydrochloric acid. The samples were labeled, placed in individual plastic zipper-lock bags, and placed in a cooler with ice. The samples were maintained at the site by OEPA personnel and shipped by OEPA to the OEPA Division of Environmental Services for analysis.

Daily rinseate blanks were collected in accordance with the QAPP. Rinseate blanks were collected by assembling the water sampling probe, filling the probe with deionized water and decanting the rinseate into two pre-preserved 40-ml glass vials.

A. 94

2.4 MONITORING WELL INSTALLATIONS

2.4.1 Monitoring Well Locations

It was anticipated that the locations of monitoring wells would be based on the groundwater analytical results, specifically, the number of parameters detected and their relative concentrations. The wells would then be located in areas with the highest contaminant levels. It was OEPA's best professional judgment, however, that there was little difference in the groundwater analytical results from the borings, and, therefore, the selection of well locations was based on the suspected groundwater flow direction and on ease of access. The locations were approved by the OEPA prior to the start of drilling. Due to the lack of a suitable location for an upgradient well, the OEPA omitted the installation of this well from the scope of work.

All wells were screened approximately 20 to 30 feet below the top of the groundwater table. One well, MW-101, was positioned midway between SD-001 and SD-002 along the southern site boundary. Monitoring wells MW-102 and MW-103 were installed west of the site in the flood plain of the Great Miami River and adjacent to a bike path that parallels the river. Monitoring well MW-101A was installed approximately 8 feet east of MW-101.

2.4.2 Monitoring Well Installation

PSARA installed groundwater monitoring wells MW-101, MW-102, and MW-103 at the site on April 5, April 8, and April 9, 1996, respectively. Monitoring well locations are presented in Figure 4. Due to faulty well construction of MW-101, a replacement well, MW-101A, was installed on May 7, 1996. Well construction consisted of 2-inch-diameter flush-threaded polyvinylchloride (PVC) riser pipe coupled to a 10-foot section of 0.010-inch machine-slotted PVC well screen. The well screen was surrounded by a filter pack of coarse washed quartz sand and sealed with at least a 2-foot layer of hydrated bentonite. The bentonite seal was topped with a bentonite and Portland cement grout and capped with a concrete pad. A locking well seal was placed on each well to prevent tampering.

a

Further well protection was provided by a locking steel standpipe protective cover installed in a 2-foot by 2-foot concrete pad. Further protection was provided by installing two steel posts filled with concrete adjacent to each well. Well Construction Diagrams are presented in Appendix B.

Well logs for the newly installed wells were submitted to the Ohio Department of Natural Resources (ODNR). Copies of the ODNR Well Logs are included in Appendix C.

2.4.3 Monitoring Well Development

On April 23, 1996, PSARA field personnel developed monitoring wells MW-101, MW-102, and MW-103 to remove excess fine particulates. Monitoring well MW-101A was developed on May 10, 1996. Prior to well development, PSARA measured the depth to groundwater in the monitoring wells with an oil/water interface probe and checked each well for the presence of nonaqueous-phase liquids (NAPLs) at the top and bottom of the water column. No measurable layer of NAPL was found in the wells on the dates they were developed. Depth-to-groundwater measurements are reported on the Well Development Logs in Appendix D and summarized in Table 5.

All wells were developed in accordance with the Work Plan. Monitoring wells MW-101, MW-102, and MW-103 were purged with a 2-inch submersible pump. The well was determined to be properly developed when the following criteria had been met: 1) at least three standing well volumes of water had been removed and the pH was within 0.1 S.U., the conductivity was within 10 μ mhos/cm, and the temperature was within 0.5°C of the preceding measurements; and 2) the purge water was free of suspended silt and sediment or became less turbid during development.

An average of 30 gallons of water was removed from each well before the well was determined to be properly developed. The purge water was pumped into a 250-gallon poly tank provided by OEPA, transported to the Montgomery County Wastewater Treatment Plant, and discharged into the sanitary sewer system.

U

Monitoring well MW-101A was developed using a surge block and bailer. A 2-inchdiameter surge block was lowered into the well with a ridged drop rod. The surge block was moved up and down in 1-foot increments throughout the length of the screen. The well was then purged with a decontaminated stainless steel bailer until it was determined to be properly developed.

2.4.4 Monitoring Well Decommissioning

4 44

During well development activities, PSARA discovered that monitoring well MW-101 was installed with a bow or bend in the well casing. This deflection prohibited the efficient use of bailers for purging and sampling. Accordingly, PSARA replaced monitoring well MW-101 with MW-101A on May 7, 1996. The original well, MW-101, was decommissioned on the same day by overdrilling the well with 4.25-inch hollow-stem augers, pulling the well through the augers, and sealing the borehole with a hydrated mixture of Portland cement and bentonite. The boring was grouted from bottom to top through the augers. During extraction, the well broke, leaving the lower 5 feet of the PVC screen at the bottom of the boring.

\$. A

A copy of the ODNR well sealing report is included in Appendix C.

3.0 SUMMARY OF FINDINGS

3.1 LOCAL AND REGIONAL GEOLOGY AND HYDROGEOLOGY

As stated earlier, the site lies adjacent to the Great Miami River, which flows north to south along the western boundary of the site. Regionally, the site overlays the Great Miami Buried Valley system. The valley fill is glacial outwash comprising primarily sand and gravel. Depth to bedrock beneath the site is unknown but, based on deep wells in the vicinity, is expected to be in excess of 185 feet below grade. There are till and bedrock highlands approximately 0.5 mile west of the site.

Regionally, the Great Miami River is expected to provide a major control for groundwater flow in the area. Therefore, regional groundwater flow in the area is expected to be west to southwest toward the river. Local variations are likely, however. Groundwater yields in the vicinity of the site are expected to be 500 to 1000 gpm (Schmidt 1986).

Based on the results of soil sampling, the soil beneath the site comprises primarily sand units with variable amounts of gravel and silt. Localized silty to sandy clay units were encountered across the site at variable depths. Additionally, localized cobble layers were encountered, usually within the vadose zone. Flowing and heaving sands were encountered during drilling operations within 5 to 8 feet of the top of the water table. Up to 3 feet of sand was observed flowing into the augers. Multiple thin brown oxidized zones were common in the vadose zone within 2 feet of the observed static water.

Exploratory borings SD-003 through SD-007, which were installed within the estimated boundaries of the landfill, indicate the fill material, which consists of ash, cinders, foundry sand, debris, and unidentifiable black sludge-like material, is approximately 8 to 12 feet thick along the western site border. The fill material overlays sand with variable amounts of silt and gravel. Abundant silt was encountered in borings SD-101 and SD-101A.

3.2 SOIL SAMPLING RESULTS

Soil sampling indicates the soil beneath the site comprises primarily sands with variable amounts of silt and gravel. Isolated coarse gravel/cobble zones were encountered across the site. Soil sampling within the presumed boundaries of the fill indicates the fill material is highly variable with ash/cinder zones, numerous pieces of burnt wood, miscellaneous waste material (plastic bags, broken glass, etc.), buff colored, well sorted sand (presumed to be foundry sand), and unidentifiable black sludge-like material.

Results of the headspace screening analyses revealed generally low to moderate amounts of volatile organic vapors in the sample headspace. Several borings (SD-003, SD-006, and SD-006A) had FID headspace screening results in excess of 500 ppm. Conversely, field screening of the same samples with the PID indicated significantly lower vapor concentrations. It is assumed, therefore, that since the FID will detect methane whereas the PID will not, the majority of the volatile organic vapors detected by the FID were methane.

Visible vapors were observed emanating from the top of the augers while drilling SD-007. Based on air monitoring results conducted during drilling operations, these vapors were also determined to be methane.

3.3 GROUNDWATER SAMPLING RESULTS

Table 3 summarizes the analytical results for groundwater samples collected from exploratory borings SD-001, SD-002, SD-004A, and SD-005. Figure 5 presents the groundwater analytical results in relation to the boring locations. All samples were analyzed for VOCs using EPA Method 624. None of the VOCs identified exceeded the maximum contaminant levels (MCLs). The groundwater analytical report is presented in Appendix E.

All groundwater data was used as screening data to guide the placement of monitoring wells and is not intended to represent aquifer quality. Factors such as excessive siltation of the samples, caused by not sampling a developed well, may decrease the quality of the samples collected using the ESPTM water sampling probe. Additionally, the excessive siltation caused visible reaction (sustained effervescence) with the HCl used to preserve the sample. The effervescence caused headspace to develop within the sample vial, thus

reducing the quality of the sample. The data were judged to be usable only as screening data for locating the monitoring wells.

The groundwater monitoring wells are scheduled to be sampled by OEPA personnel.

3.4 QUALITY CONTROL SAMPLE RESULTS

Daily rinseate blanks were collected whenever groundwater samples were collected. Methylene chloride was detected in the blanks collected on February 20 and 21, 1996. Additionally, 0.9 ppb of 1,2-dichloroethane was detected in the blank collected on February 21, 1996. No final rinseate blank was collected on February 20, 1996, because the sample probe was destroyed while attempting to collect the final groundwater sample that day. A baseline rinseate blank. SDR1001, was collected as specified in the QAPP on February 20, 1996, prior to any sampling activities, however. No rinseate blank was collected on February 22, 1996, because no groundwater samples were collected on that day.

Trip blanks accompanied each sample shipment to the laboratory. Methylene chloride was detected in the trip blank collected on February 20, 1996. No VOCs were detected in the remaining trip blank samples. Results of the quality control samples are summarized in Table 4 and the Quality Control Sample analytical reports are included in Appendix F.

Methylene chloride was detected in the rinseate blanks collected on February 20, and February 21, 1996 and in the trip blank collected on February 20, 1996. Additionally, 1,2-Dichloroethane (1,2-DCA) was detected in the rinseate blank collected on February 21,1996.

The presence of methylene chloride in two of the rinseate blanks and one of the trip blanks, coupled with the absence of this compound in the groundwater samples, may be an indication of laboratory contamination. The presence of 1.2-DCA in the rinseate blank collected on February 21, 1996, indicates that decontamination procedures on that day were not totally effective. The rinseate blank was collected after sample SDGW004 but before sample SDGW005. It is likely that the results of SDGW004 are representative of the groundwater while the results of sample SDGW005 may be questionable.

3.5 GROUNDWATER FLOW

Approximate water table surface and groundwater flow direction were interpreted from the monitoring well elevations and the depth-to-groundwater measurements made on April 23, 1996. Groundwater elevation data is summarized in Table 5. The groundwater contour map presented in Figure 6 indicates that groundwater flows to the southeast under an approximate hydraulic gradient of 0.002 feet/foot.

28 × 1

Groundwater measurements were collected from monitoring well MW-101A on May 10, 1996. Monitoring wells MW-102 and MW-103 could not be accessed on this date because the Great Miami River was above flood stage, thus restricting access to these wells.

The direction of flow is contrary to the expected flow pattern (i.e., toward the Great Miami River). It is likely that flow near the river is complex and variable with river stage. Additionally, the water-filled gravel pit located along the south side of the site may also alter the groundwater flow patterns.

3.6 MANAGEMENT OF INVESTIGATION-DERIVED WASTES

All residual materials (i.e., soil, decontamination water, used personal protective equipment) generated during the site investigation were containerized in labeled 55gallon drums. A staging area for the drums is located near the entrance gate to the site. The drums were placed on plastic sheeting and left in the staging area pending disposal. OEPA will sample and characterize the waste, and PSARA will arrange for disposal of the drums in accordance with the Work Plan and QAFP.

4.0 VARIANCES

The following summarizes significant changes to either the original objectives as stated in the mobilization order, the scope of work described in the Work Plan, or the sampling and analysis plan as described in the QAPP.

4.1 SCOPE OF WORK

The following items represent changes to the basic framework of the project directed by or agreed to by the OEPA:

- The geophysical survey requested in the mobilization order was deleted by OEPA.
- At the direction of OEPA, no background well was installed at the site.
- OEPA personnel assumed responsibility for sampling and characterizing of all IDW.
- Monitoring well MW-101 was decommissioned in accordance with standard industry practice. There was no contingency for well decommissioning in the approved project documents.

4.2 FIELD / SAMPLING PROCEDURES

The following items reflect changes in field procedures required to meet field conditions. All alterations of the field procedures were approved by onsite OEPA personnel.

- Heaving sands, which caused split spoons to become sand-locked in the augers or ESPTM casing, prevented complete soil sampling in the saturated zone.
 - Monitoring well MW-101A was developed using a surge block and bailer at the request of OEPA.

• Development water was containerized in a poly tank provided by OEPA and was transported to the Montgomery County Waste Water Treatment plant for discharge. Permission to discharge was obtained by OEPA.

.

Pre-preserved sample vials were provided by OEPA.

4.3 SAMPLE CUSTODY

OEPA personnel retained responsibility for sample custody in the field, maintaining the chain of custody and shipment of the samples to the laboratory. PSARA personnel handed each sample vial to the OEPA onsite representative as they were collected.

4.4 LABORATORY

At the direction of OEPA, the groundwater samples were submitted to the OEPA Department of Environmental Services Laboratory for analysis as opposed to Ross Analytical Services as specified in the QAPP.

4.5 DATA VALIDATION

Data validation was limited to the verification of sample holding times and the collection of rinseate and trip blanks. OEPA chose not to require matrix spike and matrix spike duplicate samples, and the lack of this data prevented full data validation as described in the QAPP.

5.0 RESIDUALS MANAGEMENT

PSARA remobilized to the site on October 2, 1996, to oversee the removal of IDW staged on the Cornett Trucking Property. OEPA representatives previously collected samples of the drummed soil to characterize the IDW. The soil was found to be non-hazardous and was, therefore, managed as solid waste. The drummed soil was emptied into a dump truck and shipped in bulk to Waste Management, Inc., Stony Hollow Landfill in Dayton, Ohio. The waste was profiled for disposal by OEPA and permission was granted by Waste Management, Inc., under profile number 416810. A total of 7.56 tons of soil, which represents the combined solid IDW from the South Sanitary Landfill and South Dayton Dump investigations, was received by the landfill. A copy of the bill of lading which corresponds to this soil is included in Appendix G.

Several drums of liquid IDW, specifically, decontamination fluids and purge water from the monitoring well development, was disposed of by OEPA into the Montgomery County Sanitary Sewer District sanitary sewer lines under an agreement reached between OEPA and Montgomery Sanitary Sewer District.

6.0 **REFERENCES**

PSARA Technologies, Inc. 1996a. Final Work Plan, South Dayton Dump and Dorothy Lane Landfill, Mobilization Order No. 557-01. Prepared for the Ohio Environmental Protection Agency, Division of Emergency and Remedial Response, Southwest District Office.

PSARA Technologies, Inc. 1996b. Site-specific Quality Assurance Project Plan, South Dayton Dump and Dorothy Lane Landfill, Montgomery County, Ohio, Mobilization Order No. 557-01. Prepared for the Ohio Environmental Protection Agency, Division of Emergency and Remedial Response, Southwest District Office.

PSARA Technologies, Inc. 1996c. Site-specific Health and Safety Plan. Dorothy Lane Landfill and South Dayton Dump, Moraine, Ohio, Mobilization Order No. 557-01. Prepared for the Ohio Environmental Protection Agency, Division of Emergency and Remedial Response, Southwest District Office.

PSARA Technologies, Inc. 1993. Generic Quality Assurance Project Plan, Remedial Response Level-of-Effort Contract. Prepared for the Ohio Environmental Protection Agency, Division of Emergency and Remedial Response, Southwest District Office.

Schmidt, James J. 1986. Groundwater Resources of Montgomery County. Ohio Department of Natural Resources.

TABLES

.

15	ST 201	SEX 002			615	004			tion, p	<u>2m^a</u> -005		006	<u> </u>				CID	007
Depth, ft	<u>SD-001</u> FID	<u>SD-002</u> FID	FID	-003 PHD	FID	004 PID	FID	004A PID	FID	PID	HD	PID	<u>SD-(</u> FID	PID	<u>SD-(</u> FID	PID	FID	<u>-007</u> PIE
0 to 2	NS ^þ	0.0	8.4	2.8	6.0	5.1	2.8	4.2	3.6	1.2	12	4	1	3	6	12	5	3
2 to 4	NS	0.2	540	5.2	14	3.8	1.8	3.0	4.0	1.6	500	4	>1000	6	••		5	1
4106	NS	0.0	22	16.8	2.2	5.0	4.0	3.2	3.2	1.6			>1000	11		·	80	4
6 to 8	NS	0.0		••	2.4	4.8	3.8	4.2	2.6	2.0			••	••			20	1
8 to 10	NS	0.0		••	5.8	4.8	3.0	4.0	2.8	1.0						• • •	1(X)	3
10 to 12	NS	0,0	·	· ·	18	40	7.2	6.8	3.0	1.2							300	2
12 to 14	NS	6.8	-	· •		•••	NR ^c	NR	NR	NR	••	••	• •				20	3
H to 16	29	14			•		4.2	3.8	14	10.2	••				•	· ··		
16 to 18	160	6.6		••			24	8.0	10	16	•-	••	••	••			· 	
18 to 20	.30ND	60			••	••	2.8	4.0	12	6.2					••		, 	
20 to 22	18	400		••			22	7.5	7.8	3.6					••	· ••		
22 to 24		180			• -	••	5.2	5.8	24	5.0		· •	•-					
24 to 26		160	••		••	••	8.6	5.4	10	3.2		••		in a				-,-
26 to 28	. •						4.8	4.6			•-			••	••			

⁴ Vapor headspace concentrations are reported for total organic vapors including methane (FID) and not including methane (PID)

^b NS=no sample collected

NR - no recovery

d == = boring did not extend through these intervals.

Sample Number	Location (Boring Number)	Date Collected	Sample Depth, ft
SDGW001	SD-001	Feb. 19 <i>,</i> 1 996	19
SDGW002	SD-002	Feb. 20, 1996	22
SDGW003	SD-002	Feb. 20, 1996	32
SDGW004	SD-001	Feb. 21, 1996	34
SDGW005	SD-004A	Feb. 23, 1996	23
SDGW006	SD-004A	Feb. 23, 1996	28
SDGW007a	SD-004A	Feb. 23, 1996	28
SDGW008	SD-005	Feb. 26, 1996	28
SDGW009	SD-005	Feb. 26, 1996	43

Table 2. Groundwater Sample LocationsSouth Dayton Dump, Moraine, Ohio

^a Sample SDGW007 is a duplicate sample of SDGW006.

Table 3. Groundwater Analytical ResultsSouth Dayton Dump, Moraine, Ohio

	Concentration. ppb								
Constituent 5	5DGW001	SDGW002	SDGW003	SDGW004	SDGW005	SDGW006	SDGW007	SDGW008	SDGW009
	· - ·		•						
Benzene	1.2	0.8	1.9	0.9	0.8	0.6	0.5	0.7	1.6
1,1-Dichloroethane	0.5	1.2	2.8	` 0.8	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	1.5	1.9	2.3	1.5	2.4	1.5	-1.5	2.1	2.9
Trichloroethene	4.6	<0.5	<0.5	2.8	1.5	2.0	2.2	<0.5	2.4
1,2 Dichloroethane	< 0.5	0.5	<0.5	0.9	0.9	<0.5	0.8	<0.5	<0.5
cis-1,2-Dichloroethen	e <0.5	0.9	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene (totał m+p)	<0.05	0.6	<0.5	<0.5	1.2	0.7	0.7	0.9	0.9
Vinyl chloride	-:0.5	×0.5	0.9	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	0.6	. 0.7
1,2,4-Trimethylbenzei	ne <0.5	<.0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	0.5
o-Xylene	<0.5	× 0.5	<0.5	<0.5	0.5	< 0.5	<0.5	<0.5	0.7

ł.

.

.

- 3

.

Table 4. Quality Control Sample Analytical Results South Dayton Dump Moraine, Ohio

	Concentration, (ppb)									
Sample No. Sample Type Date Collected	SDR1001 Rinseate Blank Feb. 20, 1996	SDR1002 Rinscate Blank Feb. 21, 1996	SDR1003 Rinseate Blank Feb. 23, 1996	Trip Blank Feb. 20, 1996	Trip Blank Feb 21, 19 96	Trip Bla nk Feb. 23, 19 9 6	Trip Blank Feb. 26, 1996			
CONSTITUENT	· · · · · · · · · · · · · · · · · · ·									
Methylene Chło	oride 0.6	0.7	<0.5	0.8	<0.5	<0.5	×0.5			
	ane <0.5	0.9	<0.5	<0.5	< 0.5	<0.5	<0.5			

۰.

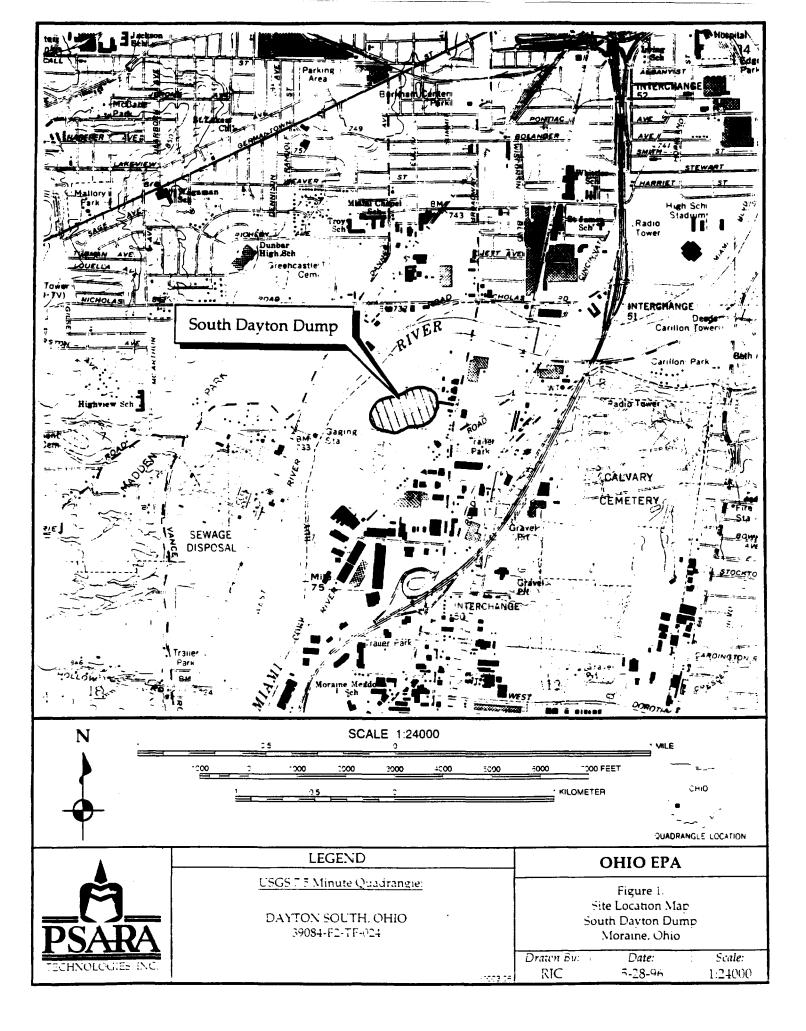
Table 5. Groundwater ElevationApril 23, 1996South Dayton Dump, Moraine, Ohio

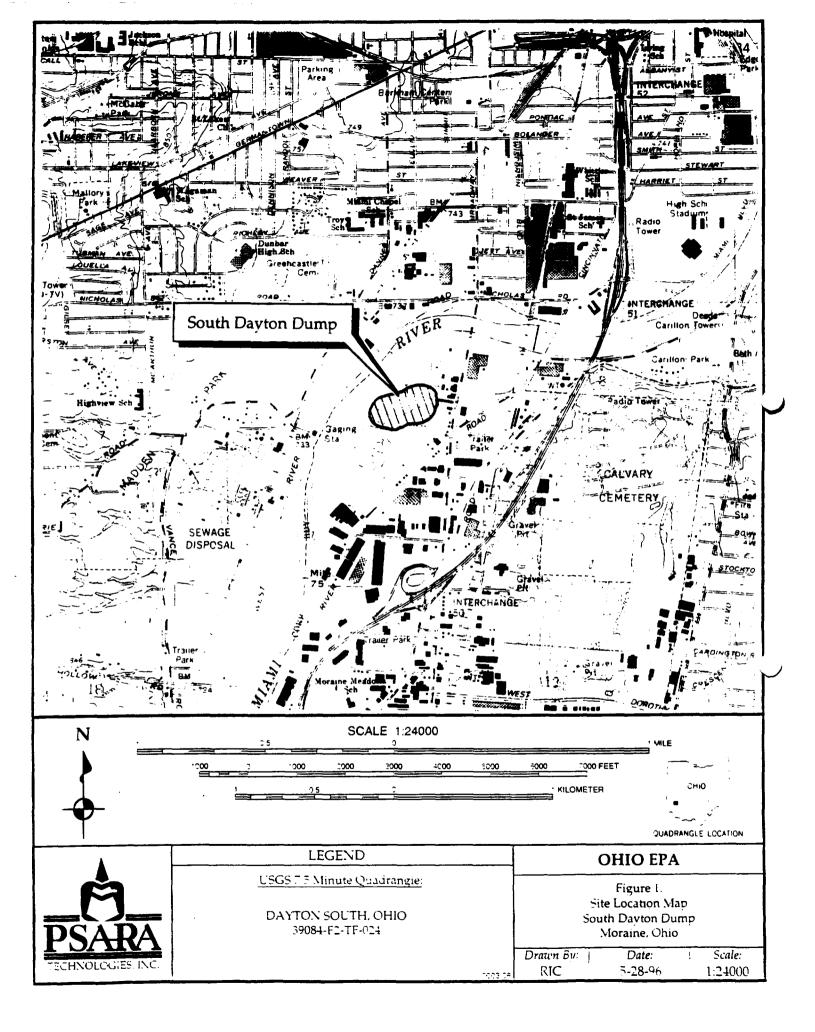
Well No.	Top of Casing Elevation, ft ^a	Depth to Groundwater, ft	Groundwater Elevation, ft ^a	Ground surface Elevation, ft ^a
MW-101	107.36	15.10	92.26	104.68
MW-102	100.00	6.97	93.03	96.96
MW-103	98.91	5.80	93.11	97.04
MW-101A ^b	107.42	10. 52	96.9 0	104.68

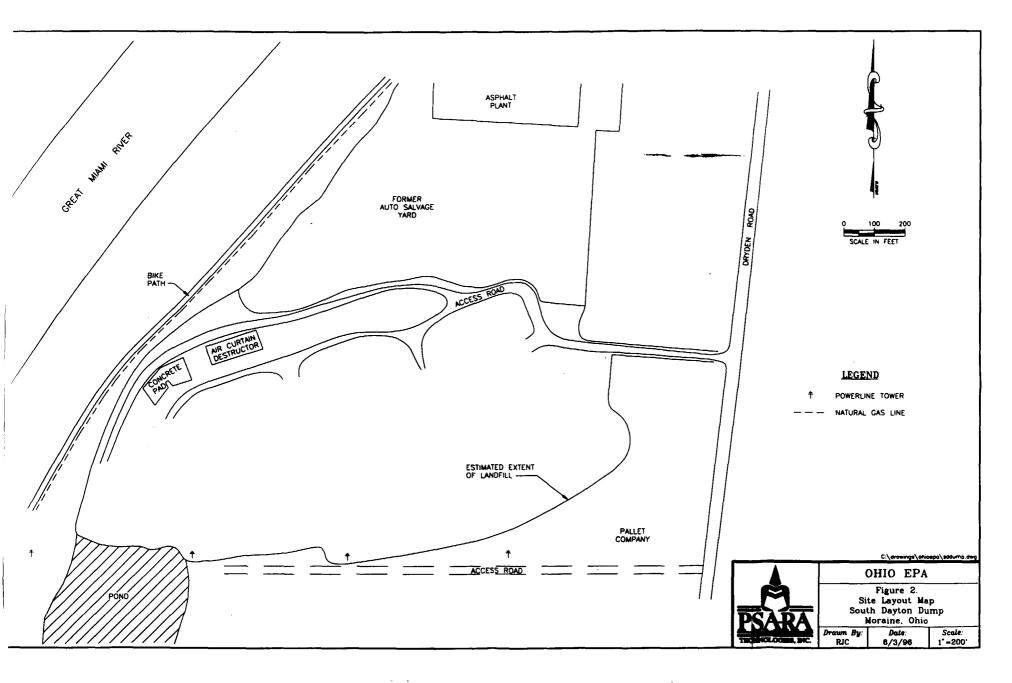
Elevation measured relative to arbitrary site datum, established as the top of the well casing in MW-102 (100.00 ft).

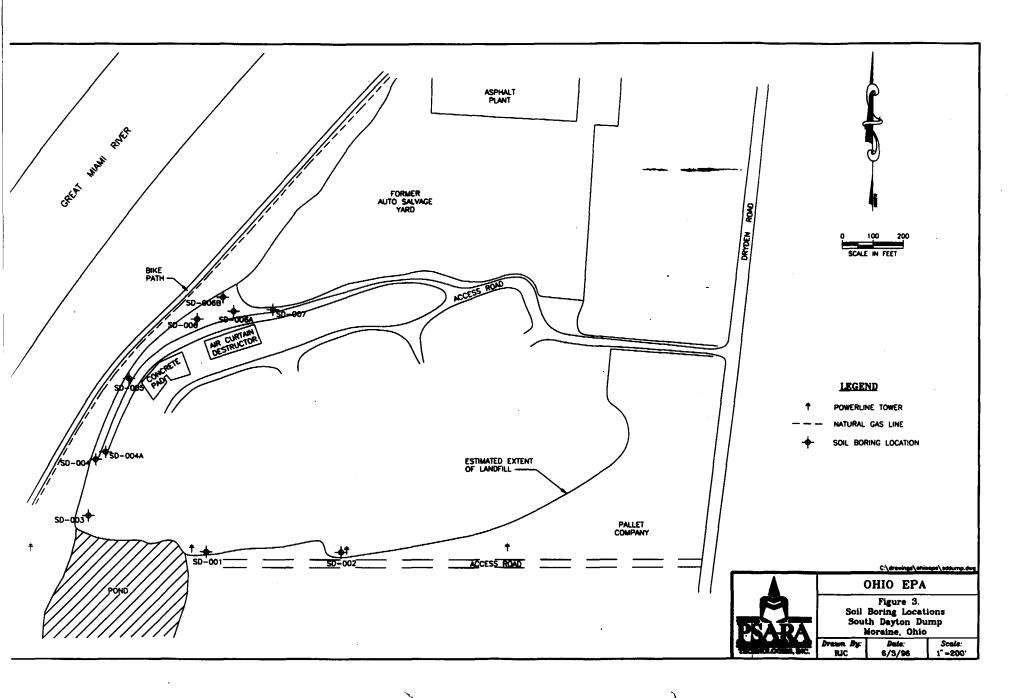
and a second second

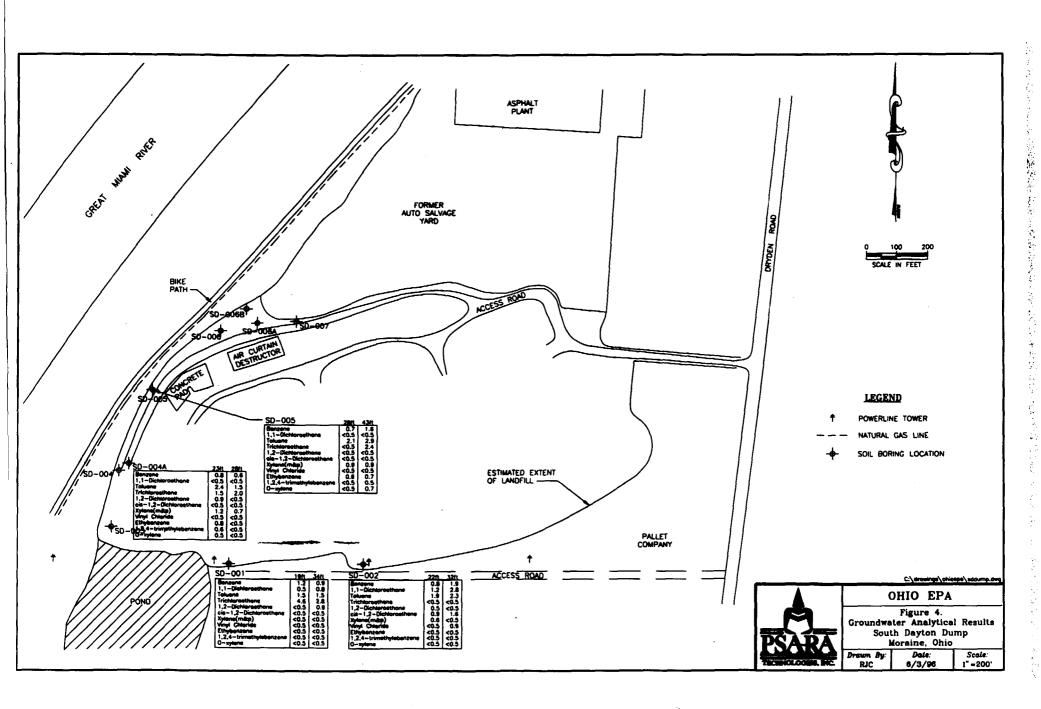
1

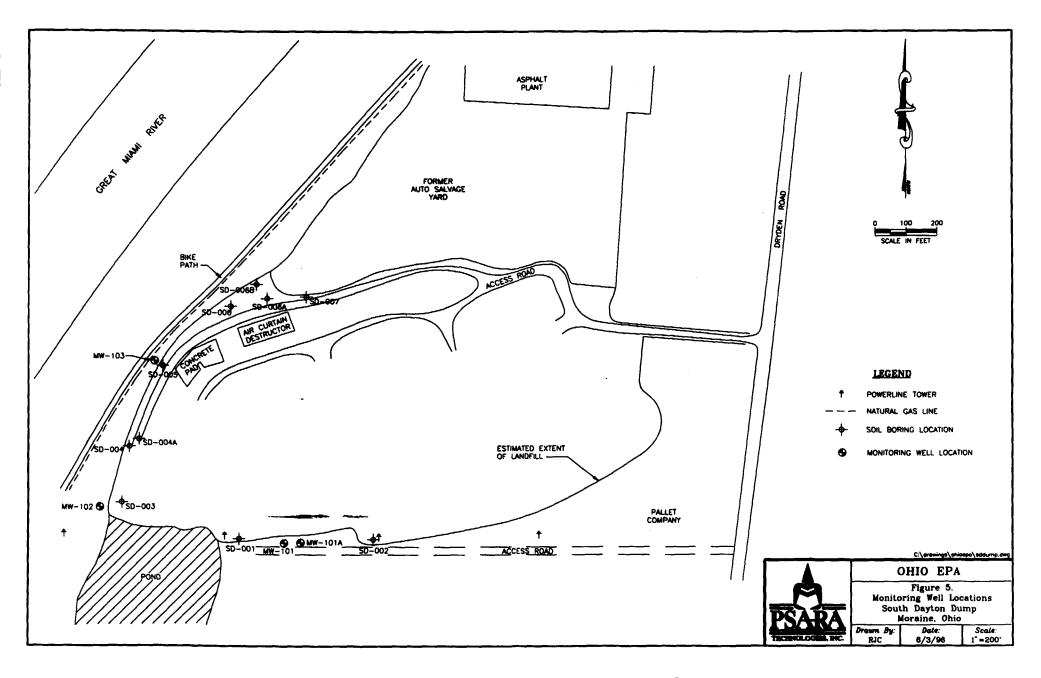

b Depth to water measurement collected on May 10, 1996.

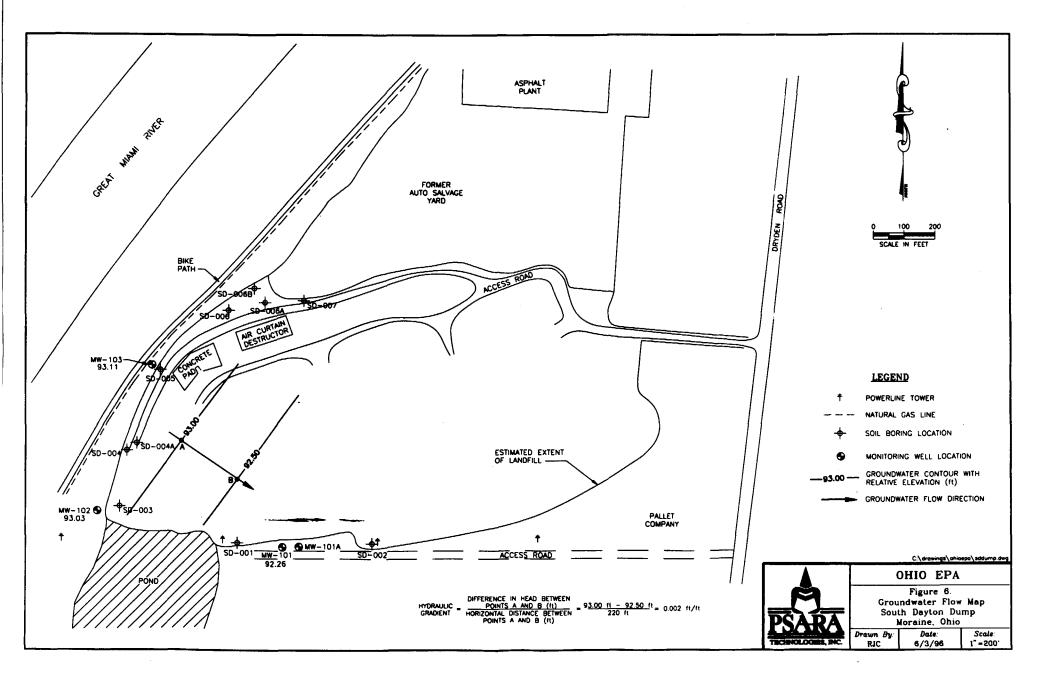

.


a


FIGURES


·





;)

)

·)

.

1

APPENDIX A

Soil Boring Logs

Client: Ohio EPA	Boring No.: SD-001 Date(s) Drilled: February 19, 1996 Drilling Method / Borehole Size: ESP/1.25 in.		
Site Location: South Dayton Dump, Dayton, Ohio			
PSARA Geologist: R. Stuck			
Drilling Contractor: CAS	Total Depth of Borehole (ft): 22		
Sampling Device: 1 x 24" split spoon	Depth to Water Observed During Drilling (ft): 12		
Headspace Screening Instrument: PID FID	Well Installed: Yes X No Well No.:		

Summary of Boring

Sample No.	San Dept	nple th (ft)	Recovery (in)	Blow	Sample/Core Description	Headspace Reading (ppm)	
	From	То	Rec	Count	Sample/Core Description		Total Methane
No samples	0	2	13		6 in. brown loamy soil over ≈4 in. black		
collected					asphalt over ~8 in. brown silty clay with brick.		
	2	4	6		Brown silty clay with minor amount (<5%) of		
					very small gravel. Stiff.		
	4	6	0		No recovery.		
	6	8	6	<u></u>	Clay; brown silty to sandy clay with limestone	-	
				· · · · · · · · · · · · · · · · · · ·	fragments. Minor amount (<1%) of small gravel. Moist.		
	8	10	10		Silty sand with gravel. Approximately 4 in. over		
					clay; brown silty clay with small gravel. green to	-	
					gray staining. Faint hydrocarbon odor.		
	10	12	0		No recovery - limestone cobble.		
	12	14	4		Sand: fine to medium grained sand with minor		
			 		silt. Wet.		
	14	16	4		Sand and gravel: coarse grained sand with		
					gravel - few fines. Wet.		

Ent'd by: SLW
Ck'd by: MES
Date: 3/26/96

. Alter Project No. ______ Boring No. ______ Page _____2

60003.06 SD-001 2_____0f___2

Summary of Boring

Sample No. Sample Depth (ft) From To			Recovery (in)	Blow	Sample/Care Departmention	Headin Readin	space g (ppm)
	Hence Hence	Count Sample/Core Description	Totel Organic	Total Methern			
Auger, Spilt Spoon	12	14	0	1-1-1-1	No recovery - spoon wet at ≈13 ft.		
SD001-01	14	16	8	5-3-2-2	Sand; fine to medium grained sand overlaying	280	
					medium size gravel.		
SD001-02	16	18	20	7-6-6-8	Sand and gravel; medium to coarse sand with	160	
					large gravel (up to 2 in.), wet. Some silt.		
SD001-03	18	20	22	20-17-16-18	Coarsening downward sequence of fine to	300	
					medium grained sand down to coarse clean		
					gravel at bottom of spoon. Some clay/silt in		
					sandy units.		
SD001-04	20	22	14	11-14-18-21	Sand; fine to medium sand (~4 ") overlying	18	
					tight sand with abundant silty clay and gravel.		
					Dry spots throughout tight clayey sand. Wet		
					above.		
SD001-05	22	24	0		≈2 ft of heaving sand.		
							
					· · · · · · · · · · · · · · · · · · ·		

Ent'd by: SLW
Ck'd by: MES
Date: 3/26/96

Project No	60003.06
Boring No.	SD-002
Page	of

Client: Ohio EPA	Boring No.: SD-002 Date(s) Drilled: February 20, 1996			
Site Location: South Dayton Dump, Dayton. Ohio				
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 2.25-in. I.D. HSA/4.75 in			
Drilling Contractor: CAS	Total Depth of Borehole (ft): 25			
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft): 12			
Headspace Screening Instrument: PID X FID	Well Installed: Yes X No Well No.:			

Summary of Boring

Sample No.		n ple In (ft)	Blow Count		Comple/Com Decorretion	Headspace Reading (ppm)	
Sample No.	From	То	В. В. С	Sample/Core Description		Total Organic	Total Methane
SD002-1	0	2	18	7-7-6-5	Clay; brown silty clay with large gravel upper	0.0	
					4 in. Minor (<5%) small gravel with black		
					mottling throughout. Tight.		
	2	4	12	3-3-3-3		0.2	
SD002-2				<u> </u>	Clay: brown silty clay with black mottles and	0.2	
	+			<u> </u>	minor amount of small gravel. Tight. Moist		
					upper 2 in. Glass and other debris		
				<u> </u>	Ifragments.		
SD002-3	4	6	18	3-4-4-4	Clay; light brown sitty clay (upper 6 in.)	0.0	
					overlaying brown silty to sandy clay with		
					abundant small gravel. Sand lower 2 in. of		
·····	İİ				spoon.		
SD002-4	6	8	12	6-21-16-14	Sand: poorly sorted sand with up to 10% small	0.0	
				1	to medium gravel. Clean on fine end. Larger		
				1	cobble fragments.		
SD002-5	8	10	12	14-35-21-24	Sand: poorly sorted sand with up to 15% small	0.0	
					round gravel. Minor amount of silt. Loosely		
					compacted.		
SD002-6	10	12	12	15-17-16-15	Sand: poorly sorted sand with up to 15% small	0.0	
	<u> i i</u>		' 		gravel. Silty, loosely compacted. Faint odor.		

	Ent'd by: SLW
	Ck'd by: MES
	Date: 3/26/96

Soil Boring^{*} Log

40 B

 Project No.
 60003.06

 Boring No.
 SD-002

 Page
 2 of 2

Summary of Boring

Sample No.	ble No. Sample Depth (ft) From To at Count		Headspace Reading (ppm)				
Sample No.	From	То	E. Ber	Count	Sample/Core Description	Total Organic	Total Methane
SD002-7	12	14	10	12-27-22-22	Send; poorly sorted sand with abundant small	6.8	
					gravel, silt and clay. Numberous rusty brown		l
				 	mottles and streaks, Wet. Tight.		
SD002-8	14	16	14	30-8-7-7	Sand; poorly sorted fine to coarse sand with	14	
					gravel and silt (upper 6 in.) overlaying fine to		
					medium sand with minor small gravel/coarse		
					sand and no silt. Wet throughout.		
SD002-9	16	18	12	4-7-10-10	Sand and gravel - ≈6 in. of coarse sand and	6.6	
·····					gravel with no visible fines overlaying 6 in.		
					of medium grained, well saturated sand.		
SD002-10	18	20	8	14-16-4-4	Sand; poorly sorted sand with small gravel and	60	
					silt. Wet.		
SD002-11	20	22	6	6-6-4-4	Gravel: coarse angular gravel with few medium	400	
					to fine sand and silt. Wet.		
SD002-12	22	24	6		Sand; tightly compacted sand with abundant	180	
					clay and gravel. Wet throughout.		
SD002-13	24	26	28	50-32-32-25	Sand; wet fine to medium grained sand over-	160	
					laying tight sandy clay with gravel, moist to		
					damp (≈6 in.) overlaying fine to medium grained		ļ
					wet sand.		ļ
			İ				
	44						ļ
	<u> </u>						ļ
	╂───┤	<u></u>		· · · · · · · · · · · · · · · · · · ·			
							ļ

Ent'd by: SLW
Ck'd by: MES
Date: 3/26/96

١

General Information

Client: Ohio EPA	Boring No.: SD-003 Date(s) Drilled: February 22, 1996 Drilling Method / Borenole Size: 2.25-in. I.D. HSA/4.75 in.			
Site Location: South Dayton Dump, Dayton, Ohio				
PSARA Geologist: R. Stuck				
Drilling Contractor: CAS	Total Depth of Borehole (ft): 6			
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft):			
Headspace Screening Instrument: X PID X FID	Well Installed: Yes X No Well No .:			

Summary of Boring

Sample No.		Sample Depth (ft)		Blow	Sample/Core Description		space g (ppm)
campie no.	From	То	f tecovery (in)	Count	Sample/Core Description	FID	PID
SD003-01	0	2	18	2-2-2-27	Sequence of mixed units: 6" of black to brown	8.4	2.8
			Í		wet clay with organics overlaying =4 in. of black		
					mottled clayey sand over =4 in. of wet pinkish		ļ
<u> </u>			<u> </u>	<u> </u>	medium grained sand over wet brown silt.		}
SD003-02	2	4	8	2-16-21-26	Sand; black to brown sand with abundant silt	540	5.2
			ļ		and clay (?). Wet. Very sticky. Black staining		ļ
					throughout.		
SD003-03	4	6	12	4-4-5-5	Sand; variegated black, gray and white	22	16.8
					sand with tight clayey zones.		
					Boring stopped due to buried waste.		
					· · · · · · · · · · · · · · · · · · ·		
<u></u>						<u> </u>	
			1				
			İ	1			

Cutting "sludgy" on auger when we withdrew.	Ent'd by: SLW
	Ck'd by
	Date: 3/27/96

1.10

General Information

Client: Ohio EPA	Boring No.: SD-004				
Site Location: South Dayton Dump, Dayton. Ohio	Date(s) Drilled: February 22, 1996				
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: ESP/1.25 in.				
Drilling Contractor: CAS	Total Depth of Borehole (ft): 12				
Sampling Device: 1 x 24" split spoon	Depth to Water Observed During Drilling (ft):				
Headspace Screening Instrument: X PID X FID	Well Installed: Yes X No Well No.:				

Summary of Boring

ſ	Sample No.		npie h (ft)	Hecovery (in)	Blow	Sample/Core Description		space g (ppm)
		From	То	Hec)	Count	Sample/Sole Description	FID	PID
	SD004-1	0	2	6		Clay; brown to black silty to sandy clay with	6.0	5.1
-						cinders, slag, and other debris.		
	SD004-2	2	4	8		Brown clay with abundant glass fragments and	1,4	3.8
						assorted debris (5") over coarse pink brick		<u> </u>
-						fragments.	···· <u> </u>	
	SD004-3	4	6	14		Clay; brown silty to sandy clay with small gravel	2.2	5.0
						and gravel fragments, rusty brown mottling and		ļ
					·	few brick fragments.	<u></u>	
-	SD004-4	6	8	4		Sand: buff colored medium grained sand over-	2.4	4.8
-						lain by limestone cobble fragments.		
1	SD004-5	8	10	14		Sand: coarse to fine grained sand with abundant	5.8	4.8
-						silt. Up to 5% small angular gravel.		
-	SD004-6	10	12	8		Sand: poorly sorted fine to coarse sand with	18	40
						gravel up to 20%, very well compacted. Silty.		<u> </u>
						Probe refusal @ 12 ft		
-								ļ
┢								+

Notes

-

General Information

Client: Ohio EPA	Boring No.: SD-004A Date(s) Drilled: February 22 - 23, 1996 Drilling Method / Borehole Size: ESP /1.25 in.			
Site Location: South Dayton Dump, Dayton, Ohio				
PSARA Geologist: R. Stuck				
Drilling Contractor: CAS	Total Depth of Borehole (ff): 28			
Sampling Device: 1 x 24" split spoon	Depth to Water Observed During Drilling (ft): 17			
Headspace Screening Instrument: X PID X FID	Weil Installed: Ves 🔀 No Well No.:			

Summary of Boring

Sample No.		npie th (ft)	Recovery (in)	Blow			space g (ppm)
Sample NO.	From	То	Hecc	Count			PID
SD004A-1	0	2	12		Clay; black organic rich clay with abundant	2.8	4.2
	_				cinders.		
SD004A-2	2	4	0		No recovery, rock in spoon.	<u></u>	
SD004A-3	4	6	4		Clay; brown silty clay with abundant coarse	1.8	3.0
					sand, moist.		· · · · ·
SD004A-4	6	8	12		Clay; brown silty clay with abundant sand and	4.0	3.2
					small gravel (upper 5") overlaying poorly sorted		
· · · · · · · · · · · · · · · · · · ·					sand with gravel and silt. Numerous limestone		
<u></u>					cobble fragments.		
SD004A-5	8	10	14		Sand: poorly sorted sand with silt and abundant	<u>3.</u> 8	4.2
					smail subangular gravel (up to 15%).	<u>-</u>	
SD004A-6	10	12	18		Sand: poorly sorted fine to coarse sand with	3.0	4.0
					abundant gravel and silt. Gravel up to 15% and		
<u> </u>				·· <u></u>	up to 1" diameter. Dry and loosely compacted.		
SD004A-7	12	14	16		Sand; poorly sorted sand with gravel and silt.	7.2	6.8
					Numerous cobble fragments including 1 broken		
		1		1	granite cobble.		1

Ent'd by: SLW Ck'd by: MES
Date: 3/27/96

Summary of Boring

Sample No.	Sample Depth (ft)		Recovery (in)	Blow	Sample/Core Description	Headspace Reading (pp	
	From	То	Rec	Count	Sample/Core Description	FID	PIC
SD004A-8*	14	16	18		Sand; poorly sorted sand with gravel and silt,	4.2	3.8
					≈20% small subrounded gravel. Oxidized		
					zone =1" thick 2 inches from bottom of		
					spoon.		
SD004A-9**	16	18	12	12-13-16-9	Sand: poorly sorted sand with abundant gravel	24	8.0
					and few fines (upper 4 in.) overlaying poorly		
- <u></u>					sorted silty sand with gravel (~3 in.) overlaying		
					wet silty sand with gravel.		
SD004A-10***	18	20	6		Sand and gravel; poorly sorted sand with gravel	2.8	4.0
					and silt. Wet.		
SD004A-11	20	22	8	_	Sand; poorly sorted sand with gravel and silt.	22	7.!
					Several cobble fragments. Very silty near		
					bottom of spoon. Wet.		
SD004A-12	22	24	6		Sand and gravel; poorly sorted sand with gravel	5.2	5.8
					and silt. Appears to have segregated during		
_					sampling. Wet.		
SD004A-13	24	26	6		Gravel: poorly sorted rounded gravel with	8.6	5.4
			[coarse sand. Wet.		
SD004A-14	26	28	2		Sand and gravel: poorly sorted medium to	4.8	4.6
					coarse sand and minor amount of silt. Wet.		<u> </u>
					BOH at 28 ft.		

ľ	Į	0	t	e	S	

Lost probe tools down nole at 16-18 ft interval. Unable to retrieve. Grouted hole. Offset =2 ft.

Will continue with 2.25 HSA.	Ent'd by: SLW
** Boring continued with 2.25 HSA offset ≈2 ft from SD004A initial attempt.	Ck'd by: MES
*** Switch back to ESP through augers.	Date: 3/27/96

FORM NO. 302.0

Client: Ohio EPA	Boring No.: SD-005 Date(s) Drilled: February 23, 1996				
Site Location: South Dayton Dump, Dayton. Ohio					
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: HSA /4.75 and ESP/1.25				
Drilling Contractor: CAS	Total Depth of Borehole (ft): 43				
Sampling Device: 2 x 24 in. and 1 x 24 in. split spoons	Depth to Water Observed During Drilling (ft): 18				
Headspace Screening Instrument: X PID FID	Well Installed: Yes X No Well No.:				

Summary of Boring

Sample No.		nple th (ft)	Recovery (in)	Blow	Sample/Core Description	Headspace Reading (ppm)	
	From	То	Def.	Count	Sample/Core Description	FID	PID
SD005-1	0	2	18	4-6-4-4	Black organic rich clay overlaying ≈6 in. of	3.6	1.2
			-		variegated black to gray clay with cinders, slag		
· =					burnt wood over 6 in. of rusty brown and sandy		ļ
					clay with assorted debris.		
SD005-2	2	4	18	3-3-3-6	Black to gray cinder rich clay with glass, brick,	4.0	1.6
					and slag. Gray streaks. Moist zone (upper		
					1"). Overlaying brown sandy clay to clayey		
					sand lower 6 in.		
SD005-3	4	6	8	6-8-6-3	Clay; brown to black silty clay with gravel.	3.2	1.6
					Loosely compacted.		
SD005-4	6	. 8	18	4-4-4-4	Clay: brown silty clay with black streaks. Few	2.6	2.0
T					sandy clay zones. Small gravel up to 5%. Hard.		
SD005-5	8	10	18	3-4-3-3	Clay: brown silty clay with abundant coarse	2.8	1.0
					sand and small gravel throughout. Black		
					mottling upper 6 in. Fewer gravel near bottom		
					of spoon.		
SD005-6	10	12	20	4-4-4-4	Clay; brown silty clay with coarse sand and	3.0	1.2
			 		small gravel. Single burnt wood at 5 in. from		'
					top of spoon		

Date: 3/27/96		Ent'd by: SLW Ck'd by; F Date: 3/27/96
---------------	--	--

 Project No.
 60003.06

 Boring No.
 SD-005

 Page
 2______of___2

Summary of Boring

	Sample Depth (ft)			Sample 2 Depth (ft)		Blow		Headspace Reading (ppr	
From	То	Hece	Count	Sample/Core Description	FID	PID			
12	14	14	5-5-11-12	Clay; brown silty clay upper 4 in. overlaying	14	10.			
				buff colored clayey sand to sandy clay with up		1			
				to 10% small rounded gravel.					
14	16	12	31-21-19-17	Sand: poorly sorted sand with abundant silt	10	16			
				limestone cobble.					
16	18	18	27-18-15-16	Sand: poorly sorted sand with up to 20% small	12	6.2			
				lower 4 in.					
18	20	6	21-19-14-7	Sand and gravel: poorly sorted fine to coarse	7.8	3.6			
				sand with up to 30% gravel. Wet.					
20	22	8		Sand and gravel; poorly sorted with clay and	24	5.0			
				silt. Wet.					
22	24	6		Sand and gravel; poorly sorted with clay and	10	3.;			
				silt. Wet.		 			
24	26	0		No recovery.					
26	28		[** Soil sampling abandoned ≈3 ft of heave into					
				outer casing. Unable to clear.					
		ļ				ļ			
			ļ			ļ			
	From 12 14 14 16 16 20 22 24	From To 12 14 14 16 14 16 16 18 18 20 20 22 20 22 22 24 24 26	From To $\frac{3}{2}$ 12 14 14 12 14 14 14 16 12 14 16 12 16 18 18 20 22 8 20 22 8 22 24 6 24 26 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 14 14 5-5-11-12 Clay; brown silty clay upper 4 in. overlaying buff colored clayey sand to sandy clay with up to 10% small rounded gravel. 14 16 12 31-21-19-17 Sand; poorly sorted sand with abundant silt and clay - gravel up to 5%. Single broken limestone cobble. 16 18 18 27-18-15-16 Sand; poorly sorted sand with up to 20% small rounded gravel and abundant silt/clay. Wet lower 4 in. 18 20 6 21-19-14-7 Sand and gravel; poorly sorted fine to coarse sand with up to 30% gravel. Wet. 20 22 8 — Sand and gravel; poorly sorted with clay and silt. Wet. 22 24 6 — Sand and gravel; poorly sorted with clay and silt. Wet. 24 26 0 — No recovery. 26 28 ** Soil sampling abandoned =3 ft of heave into	12 14 14 5-5-11-12 Clay; brown silty clay upper 4 in. overlaying 14 12 14 14 5-5-11-12 Clay; brown silty clay upper 4 in. overlaying 14 14 16 12 31-21-19-17 Sand; poorly sorted sand with abundant silt 10 14 16 12 31-21-19-17 Sand; poorly sorted sand with abundant silt 10 14 16 12 31-21-19-17 Sand; poorly sorted sand with abundant silt 10 14 16 12 31-21-19-17 Sand; poorly sorted sand with up to 20% small 12 16 18 18 27-18-15-16 Sand; poorly sorted sand with up to 20% small 12 16 18 18 27-18-15-16 Sand; poorly sorted sand with up to 20% small 12 18 20 6 21-19-14-7 Sand and gravel; poorly sorted fine to coarse 7.8 20 22 8 Sand and gravel; poorly sorted with clay and 24 21 24 6 Sand and gravel; poorly sorted with clay and 10 22 24 6			

Ent'd by: SLW
Ck'd by: HES
Date: 3/27/96

Project No.	60003.06	
Boring No.	SD-006	<u> </u>
Page .	of	1

· •** • • •*

General Information

Client: Ohio EPA	Boring No.: SD-006				
Site Location: South Dayton Dump, Dayton. Ohio	Date(s) Drilled: February 26. 1996				
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 2.25-in. I.D. HSA/4.75 in.				
Drilling Contractor: CAS	Total Depth of Borehole (ft): 4				
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft):				
Headspace Screening Instrument: X PID X FID	Well Installed: Yes X No Well No.:				

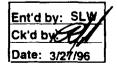
Summary of Boring

Sample No.	San Dept	npie th (ft)	Recovery (in)	Blow	Sample/Core Description		space g (ppm)
	From	то	Bec Bec	Count		FID	PID
SD006-1	0	_2	12	3-4-6-4	Fill: black slag rich fill with abundant cinders.	12	4
			ļ		burnt wood fragments and assorted debris.	·	
SD006-2	2	4	20	3-3-2-1	Clay: brown to black sandy clay with silt and	500	4
<u></u>					gravel, loosely compacted.		
					BOH at 2 ft. Boring abandoned due to toxic		
	<u> </u>				atmosphere and potentially explosvie vapors.		
	ŀ						
<u>. </u>							
<u></u>							
							· · · · · · · · · · · · · · · · · · ·

Ck'd by: PIES	Ent'd by: SLW
Date: 3/97/96	
	Date: 3/27/96

_ .. _ ...

General Information


Client: Ohio EPA	Boring No.: SD-006A			
Site Location: South Dayton Dump, Dayton. Ohio	Date(s) Drilled: February 26, 1996			
PSARA Geologist: R. Stuck/C. Hall	Drilling Method / Borehole Size: 2.25-in. I.D. HSA/4.75 in.			
Drilling Contractor: CAS	Total Depth of Borehole (ft): 6			
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft):			
Headspace Screening Instrument: X PID X FID	Well Installed: Yes X No Well No.:			

Summary of Boring

	Sample No.		nple th (ft)	Recovery (in)	Blow	Sample/Core Description	Headspa Reading (p		
		From	То	, Bec	Count	Sample, Core Description	FID	PID	
Γ	SD006A-1	0	2	18	4-4-5-5	Fill: black stag rich with sand size material.	1	3	
\prec		ļ		ļ		numerous cinders with burnt wood fragments.			
╞	<u> </u>	<u> </u>				Loosely compacted.	ļ	·	
E	SD006A-2	2	_4	16	4-4-4-4	Ash (?); black silt sized with small white and	>1000	6_	
┝						tan fragments. Slag-rich fill lower 5 in.			
	SD006A-3	4	6	12	2-2-3-2	Fill; cinder and ash rich black fill with	>1000	11	
					· · · · · ·	assorted debris including white plastic bag.			
	_ <u></u>								
┢	<u>. </u>				·				
ſ						 			
┢									
	<u> </u>					1			
								1	

Notes

Boring abandoned due to excessive waste and landfill material

FORMINO. 1010

Client: Ohio EPA	Boring No.: SD-006B			
Site Location: South Dayton Dump, Dayton, Ohio	Date(s) Drilled: February 25, 1996			
PSARA Geologist: C. Hall	Drilling Method / Borenole Size: 2.25-in. I.D. HSA/4.75 In.			
Drilling Contractor: CAS	Total Depth of Borehole (ft): 2			
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft):			
Headspace Screening Instrument: X PID X FID	Well Installed: 🖸 Yes 🕱 No Well No.:			

Summary of Boring

Sample No.	Sa Dep	mple th (ft)	Recovery (in)	Blow	Sampla/Caro Description	Head Readin	space g (ppm)]
Sample No.	From	То	10°-	Count	Sample/Core Description	FID	PID	1
SD006B-1	0	2	4	4-1-2-3	Black fill stag material, slightly clayey. Moist.	6	12	1
					Abandon hole at 2 ft, strong organic odor.			
		L						
	<u> </u>							
							<u>↓</u>	
	1					1	I	1

Ent'd by: SLW
Ck'd by: MES
Date: 3/27/96

 Project No.
 60003.06

 Boring No.
 SD-007

 Page
 1
 of
 1

.

General Information

Client: Ohio EPA	Boring No.: SD-007			
Site Location: South Dayton Dump, Dayton, Ohlo	Date(s) Drilled: February 26, 1996			
PSARA Geologist: C. Hall	Drilling Method / Borehole Size: 2.25-In. I.D. HSA/4.75 in.			
Drilling Contractor: CAS	Total Depth of Borehoie (ft): 14			
Sampling Device: 2 x 24 in. split spoon	Depth to Water Observed During Drilling (ft):			
Headspace Screening Instrument: X PID X FID	Well Installed: Ves 🕱 No Well No.:			

Summary of Boring

Sample No.		nple In (ft)	Recovery (in)	Blow	Sample/Core Description	Head Readin	space g (ppm)
	From	То	H. H.	Count		FID	PIC
SD007-1	0	2	20	2-3-4-6	Fill, coarse grained sand and gravel, large	5	3
• <u>182</u> • • • • • • • • • • • • • • • • • • •			┣──		amount slag material, loosely compacted.		
SD007-2	.2	4	10	7-5-2-2	Fill, sand and gravel, cinder slag material, burnt	5	1
					wood fragments. Loosely compacted.		
SD007-3	4	6	11	6-10-5-5	Sand, orangish-red, coarse grained, loosely	80	4
			ļ		compacted.		┣──
SD007-4	6	8	10	2-1-1-1	Fill, sand, ash, black burnt wood fragments,	20	1
					small amount slag material, loosely compacted.		
SD007-5	8	10	6	1-1-2-1	Fill, black sand, and ash, coarse grained sand,	100	3
					small amount slag material, loosely compacted.		
SD007-6	10	12	10	1-1-1-1	Fill, black sand and cinder, glass fragments,	300	2
					loosely compacted, clay in shoe of spoon.		
SD007-7	12	14	10	2-1-1-1	Clay, dark brown, minor amount of sand, wood	20	3
					fragments at bottom of spoon, loosely		–
·····					compacted coarse grained sand in shoe of		
	1 1				spoon.		

Ent'd by: SLW
Ck'd by: MES
Date: 3/27/96

Client: Ohio EPA	Boring No.: MW-101
Site Location: South Dayton Dump, Dayton. Ohio	Date(s) Drilled: April 5, 1996
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 4.25-in. I.D. HSA/8.25 in.
Drilling Contractor: JEDI	Total Depth of Borehole (ft): 38
Sampling Device: N/A Logged from cuttings	Depth to Water Observed During Drilling (ft): 15
Headspace Screening Instrument: X PID _ FID	Well Installed: 🕱 Yes 🗀 No Well No.:

Summary of Boring

Sample No.	Sar Dep	nple th (ft)	Hecovery (in)	Blow	Sample/Core Description	Head Readin	space g (ppm)
		Sample/Core Description	FID	PID			
	0	11			Clay; brown silty to sandy clay with organic		
. <u> </u>			. 		fragments and gravel. Concrete slabs at		
			$\left - \right $		surface.		
	11	12			Cobble/boulder.		
· · · · · · · · · · · · · · · · · · ·	12	29			Sandy clay to clayey sand with gravel.		
	29	38		· · · · · · · · · · · · · · · · · · ·	Wet sand to silt. Very fine grained, gray plastic.		
				<u>_</u> _		<u> </u>	
						<u> </u>	
			<u>}</u>				
· · · · · · · · · · · · · · · · · · ·							
<u> </u>							
_							

Notes

.

Ent'd by: SLW Ck'd by: MES
Date: 3/27/96

da^{n n}a se

General Information

Client: Ohio EPA	Boring No.: MW-102
Site Location: South Dayton Dump, Dayton, Ohio	Date(s) Drilled: April 8, 1996
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 4.25-In. I.D. HSA/8.25 In.
Drilling Contractor: JEDI	Total Depth of Borehole (ft): 32
Sampling Device: N/A Logged by cuttings	Depth to Water Observed During Drilling (ft): 10
Headspace Screening Instrument: PID FID	Well Installed: 🗹 Yes 🗌 No Well No.: MW-102

Summary of Boring

Sample No.	Imple No. From To E Count	Sample/Core Description	Heads Reading	pace (ppm)			
	From	То	Hee Bee	Count	Sample/Core Description	FID	PID
	0	10			Brown clayey top soil with silt and gravel.		
	10	15			Brown silty to sandy clay, wet.		
	15	32			Sand and gravel; coarse gravel and cobbles;		
<u> </u>					minor coarse sand. Damp to wet.		
	+						
	_						
					·····		
	_						
			• 				
	<u> </u>					<u> </u>	L

	Ent'd by: DMW
	Ent'd by: DMW Ck'd by: MES
	Date: 4/30/96
FORM NO. 001.0	

Client: Ohio EPA	Boring No.: MW-103
Site Location: South Dayton Dump, Dayton, Ohio	Date(s) Drilled: April 9, 1996
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 4.25-in. I.D. HSA/8.25 in.
Drilling Contractor: JEDI	Total Depth of Borehole (ft): 32
Sampling Device: N/A Logged by cuttings	Depth to Water Observed During Drilling (ft): 10
Headspace Screening Instrument: PID _ FID	Well Installed: 🕱 Yes 🗔 No Well No.: MW-103

Summary of Boring

Sample No.	Sar Dept	Sample Depth (ft) rom To H	Sample Depth (ft)		Blow	Sample/Core Description	Head: Reading	space g (ppm)
Campie NO.	From	То		Sample/Core Description	FID	PID		
	0	8	ļ		Clay; brown sandy clay with gravel.			
			 	 				
	8	12	ļ		Clay; brown sandy clay, damp to wet.			
	12	32			Sand and gravel; very few cuttings.			
			[· · · · · · · · · · · · · · · · · · ·				
·								
					1			

Ent'd by: DMW
Ck'd by: MES
Date: 4/30/96

 Project No.
 60003.06

 Boring No.
 MW-101A

 Page
 1
 of
 1

General Information

Client: Ohio EPA	Boring No.: MW-101A
Site Location: South Dayton Dump, Dayton, Ohio	Date(s) Drilled: May 7, 1996
PSARA Geologist: R. Stuck	Drilling Method / Borehole Size: 4.25-in. I.D. HSA/8.25 in.
Drilling Contractor: JEDI	Total Depth of Borehole (ft): 35
Sampling Device: N/A Logged from cuttings	Depth to Water Observed During Drilling (ft): 15
Headspace Screening Instrument: PID FID	Well Installed: 🔀 Yes 🗔 No Well No.: MW-101A

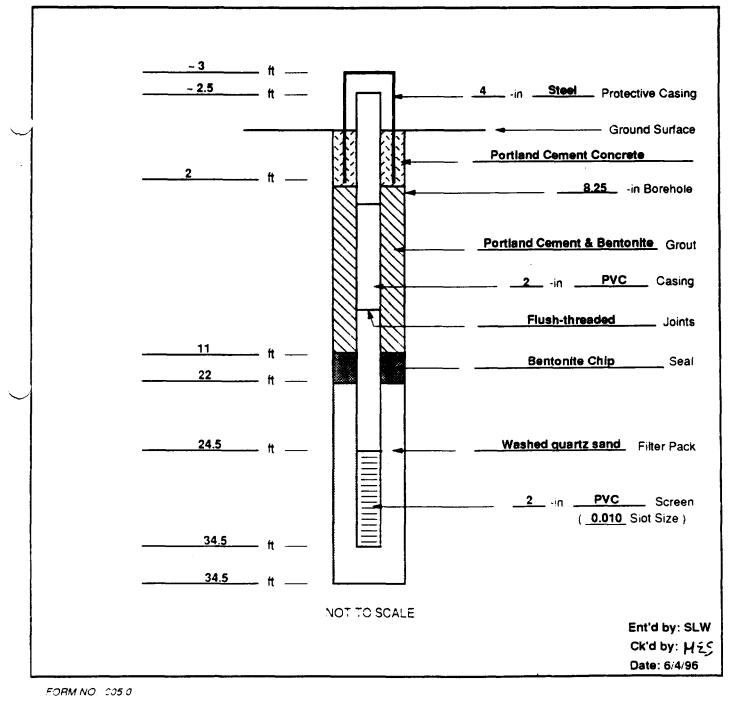
Summary of Boring

Sample No.	San Dept	nple In (ft)	Recovery (In)	3low	Sample/Core Description	Heads Reading	pace (ppm)
	From	То	2 = 2 = 2 =	Count	Sample/Core Description	FID	PID
	0	8			Brown silty clay with gravel.		
	8	15			Brown silty to sandy clay, moist to damp.		
	15	19		······································	Sand and gravel with cobbles. Few cuttings.		
	19	35			Gray to brown sandy silt. Wet. Some cuttings		
					plastic.		
						·	
							1

Notes

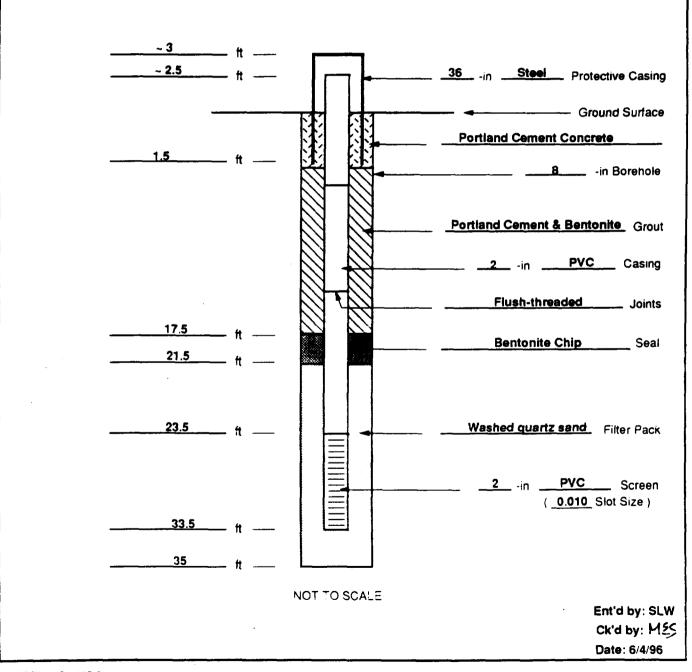
	Ent'd by: DMW
	Ck'd by: MES
· · · · · · · · · · · · · · · · · · ·	Date: 5/13/96

FORM NO. 001.0


APPENDIX B

Well Construction Diagrams

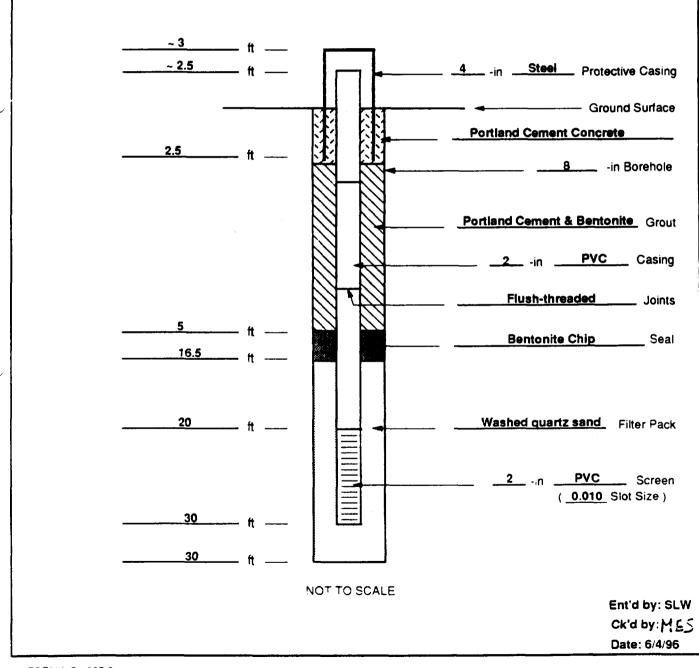
Client: Ohlo EPA	Well No.: MW-101
Site Location: South Dayton Dump, Dayton, Ohio	Date Completed: April 5, 1996
PSARA Geologist: R. Stuck	Drilling Method: 4.25-In. I.D. HSA/8.25 In.
Drilling Contractor: JEDI	Depth to Static Water (ft): 15.10 (4/23/96)


Construction Details

Client: Ohlo EPA	Well No.: MW-101A
Site Location: South Dayton Dump, Dayton, Ohio	Date Completed: May 7, 1996
PSARA Geologist: R. Stuck	Drilling Method: 4.25-In. I.D. HSA/8.25 In.
Drilling Contractor: JEDI	Depth to Static Water (it): 16

Construction Details

FORM NO. 005 0

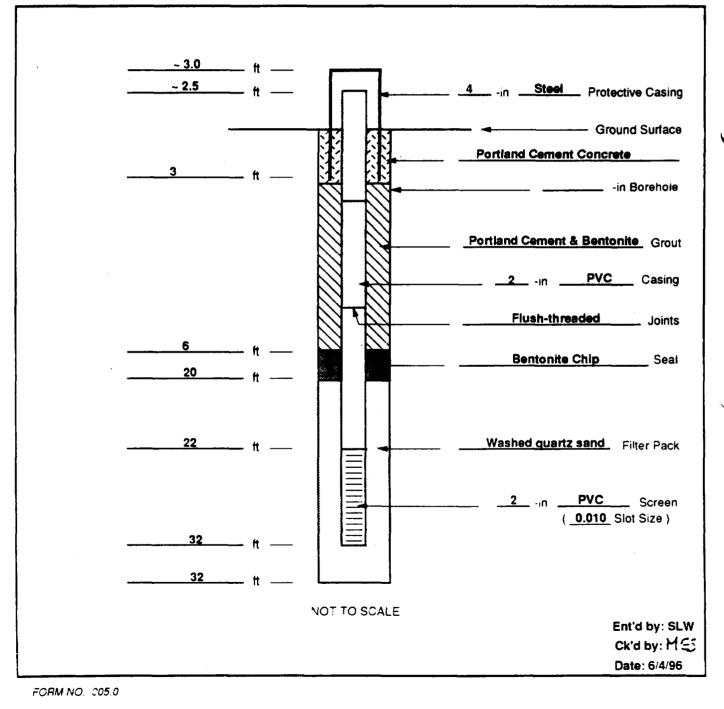


60003.06 MW-102

General Information

Client: Ohio EPA	Well No.: MW-102
Site Location: South Dayton Dump, Dayton, Ohlo	Date Completed: April 8, 1996
PSARA Geologist: R. Stuck	Drilling Method: 4.25-In. I.D. HSA/8.25 in.
Drilling Contractor: JEDI	Depth to Static Water (ft): 6.97 (4/23/96)

Construction Details



FORM NO. 005.0

Client: Ohio EPA	Well No.: MW-103
Site Location: South Dayton Dump, Dayton, Ohio	Date Completed: April 9, 1996
PSARA Geologist: R. Stuck	Drilling Methoa: 4.25-in. I.D. HSA/8.25 in.
Drilling Contractor: JEDI	Depth to Static Water (ft): 5.80 (4/23/96)

Construction Details

APPENDIX C

ODNR Well Logs and Drilling Reports

TYPE OR USE PEN	Ohio Departmer	t of Natural Resources
	and the final state of	
MANT COMERY	TOWNSHIP	MIR/AT
< A ALLAND		A DATA A MALE AND A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A DATA A
Case Crow Bin	PROPERTY ADD	1977 IR IDEAL PLAN AND AND AND AND AND AND AND AND AND A
CATION OF PROPERTY	O. Morain	and a second
SING Tangt being gradese Boraholt Discussion 9 %S	CONSTRUC	
	comession 40	Wateries OFTIONS CONTRACT
	icknees	Depth: placed from
pe: [2] Steel [2] Galv. (2) [2] Othe	6	GRAVEL PACK (Filter Pack)
ints: Threaded I Welded in Solvent	_	Material # 5 SAND Volume used is AS PASS
[2] [2] [2] [2] [2] [2] [2] Other [2] Other [2] [2] [2] Other [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]		Depth: placed from
REEN	a PVC	Prices Device
re (wire wrapped, louvered, etc.) Materia ngth/Dft. Diameter	in	
t between 32 ft. and 22 ft.	Slot 010	Date of Completion <u>4-9-96</u>
WELL LOG* DICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERE	D	Bailing Pumping* Other
Show color, texture, hardness, and formation: sandstone, shale, limestone, gravel, clay, sand, etc.		Test rate NA gpm Duration of testhr
RAVEL BASE	1	Measured from: top of casing ground level COther
I P CILL C L		Static Level (depth to water) ft. Dete:
lar Brown Silty Sandy	28	Quality (clear, cloudy, taste, odor)
LOOK TO GIEUSING CIUL		*(Attach a copy of the pumping test record, per section 1521.05, ORC)
MAN-LESS SHITH	17 70	Type of pump <u>NA</u> <u>Capacity</u> <u>gpm</u>
CLAT-LESS SILLY	17 20	Pump set atft.
VCWD SHALLE GRAVEL	20 25	Pump installed by
- (ODDIED . WIF!	20 25	Location of well in State Plane coordinates, if available:
inion Sand CRAVEL	74 77	Zone X
W/Coboks: WET	0301	Source of coordinates:
"rin Sand & GRAVEL		Sketch a map showing distance well lies from numbered state highways, street intersections, county roads, buildings or other notable landmarks.
-/ indoles . WET	37 32	North FORMER AUTO
	· · · · · · · · · · · · · · · · · · ·	ALVAGE VARD
TH 30'		A CAR CONTRACTOR
ATER ON RODS DO'	·	mwld ()
ATER AT COMP. 13	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · ·	
		DRYDEN
additional space is needed to complete well log, use next consect	itivaly numbered form.)	hereby certify the information given is accurate and correct to the best of my knowledge.
Ing Firm - File File I CONSENT-1		
Tress Pr. BOX 190	· · · ·	Date 4 - 7 7 - 1 - 1 - 1
State Zip		ODH Registration Number Ohio Revised Code - file within 30 days after completion of drilling.
ORIGINAL COPY TO - ODNR, D	IVISION OF WA	TER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224 milers copy Green - Local Health Dept. copy

	OR USE PEN TANSORIEING	1014		D No	ivison of.	Water, 19	t of Natural Resources 39 Eountain Square Drive 24: Phone (614) 265-8739 Restrict to a share a state of the s
nty.	MONTO	2017	ERV		TOWNS	STATES AND AND AND AND AND AND AND AND AND AND	A/A AA I SECTIONIOT NO
ER/B			1 2 30	(<u>N</u> m	8 8		ESS/975 MAD DRYDENIRD, MORANIE OH
TIO	OF PROPERTY	(}	470,4	<u>r Cili</u>			AINE, DHID
	Length below grade)	Borehole	Diamatari	011-		ISTRUC	GROUT
amete	•	Longth*		Wall Tr	in. hickness_5	ch40 in	Material Art Land & BENT. Volume used STARS
amete		Length*	R		nickness		Method of installation TRIANAIE
);		Galv.	PVC	(]			Depth: placed from 14 ft. to ft.
			121 · · · ·	23 Othe 11	er		GRAVEL PACK (Filter Pack) Material #5 SAND Volume used 310 0225
is:	Threaded 1	Welded	Solvent	2 Othe	ər	·	Method of installation GRAVITY
r:	Length	Туре		Wall Thi	ickness	in	Depth: placed from 30 ft. to 18.
EEN	unnered to some				al PV	n	Pitiess Device CAdapter Presses inhibit unit
: (wire th	wrapped, louvere	90, 91C.) ft.	Diameter	Materi		in.	
etwee	n <u>30</u>	ft. and.	20		Siot	20	Date of Completion 4-8-96
0.477		WE	LL LOG*				WELL TEST
CATE	DEPTH(S) AT WH			UNTERE	<u>Mw</u>	#102	Bailing Pumping* Other Test rate NA gpm Duration of test
	<u>Ae shale, limesto</u>			etc.	From	То	Drawdown ft.
010	n Siltu	Clar	" W/GR	AVEL	0	10	Measured from: 🚍 top of casing 🔤 ground level 🔤 Other
	5:144	+0	Sand	/			Static Level (depth to water)ft. Date:
<u>. U.</u>	Siliq		anay				Quality (clear, cloudy, taste, odor)
	ver cl	ay.			10		'(Attach a copy of the pumping test record, per section 1521.05, ORC)
na	a Gra	vel,	Coal	<u>5e</u>			РИМР
Ē	ravel	w/co	BBLES		15	- حق	Type of pump
7	·	-			;		Pump set atft.
	· · · · · · · · · · · · · · · · · · ·				1		WELL LOCATION
							Location of well in State Plane coordinates, if available:
	<u></u>			,.,_	, , .	•-	
	·+	,				-	Elevation of wellft./m. Datum plain: DNAD27 DNAD83 Source of coordinates: DPS Durvey Dother
-7	4 30						Sketch a map showing distance well lies from numbered state highways,
بيني ا	TLF11	. T	70'				street intersections, county roads, buildings or other notable landmarks.
	FREN						ALTO SHLVAGE YHEN
	PAT						ALCETS ALCETS
412	<u> </u>		<u>, / [.</u>				
			· · · · · · · · · · · · · · · · · · ·		_•		
		<u></u>					
							MW T
							# 100 DR HEAL
						•	P. A.S
ditional	space is needed to	compiete	well log, use	(Econsec	utively numi	pered form a	South I hereov certify the information given is accurate and correct to the best of my knowledge.
g Firm.			-				
y erm. ~						-	Signed
ess		: ,	<u> </u>				Date
			·		· · ·		ODH Registration Number
tate 7	n . t.						

٠

÷

.

Blue - Customer's copy Pink - Dniler's copy Green - Local Health Dept. copy

CATION OF PROPERTY	<u>DH</u>	7 (1		INE, DHID
	9115	CON	ISTRUC	GROUT
SING 'sungh below grade) Borehole Diameter			54Dr	Material Portland BEAT Volume und BEALLS
Diameter	Wall Thi			Method of installation TRIAAAIR
ne: [3] Steel [3] Galv. [2] PVC	0			Depth: placed from 20 to the total test to the test to the test test to the test test test test test test test
·	2 Othe	ſ		GRAVEL PACK (Filter Pack) Material #5 SANA Volume used 560 BAGS
nts: 77 Threaded 72 Welded 73 Solvent	2 Other	r		Method of installation BRAUITY
	Wall Thic	;kness	in	Depth: placed from 34 R. W. 33
REEN be (wire wrapped, louvered, etc.)	_ Materia		C	Pitless Device GAdapter CPreaseswithet unit
ngthft. Diameter	,	•	in	. TRotary Cable Augered C Driven Dug C Other
between <u>34</u> tt. and <u>34</u> WELL LOG*	<u>ft</u> f	BlotC	10	Delte of Completion 4-5-96
CATE DEPTH(S) AT WHICH WATER IS ENCO	UNTERE	D.		Bailing Cumping* Other
Show color, texture, hardness, and formation:		Mur		Test rate <u>NA</u> gpm Duration of testhrs.
sanastone, shale, limestone, gravel, clay, sand. (etC.	From	To	Drawdown
con Silly SANDY CLAY	• <u> </u>	<u> </u>		Measured from: _ top of casing _ ground level _ Other Static Level (depth to water) ft. Date:
GRAVEL		0	11	Quality (clear, cloudy, taste, odor)
BBLES		11	12	"(Attach a copy of the pumping test record, per section 1521.05, ORC)
COND SILTU SANDY CA	AY	; 		PUMP
WIDPAUEL : WITT	-	12	29	Type of pump <u>NA</u> Capacity gpm
ET SANDY SILT. VERY	EINIE		G	Pump set atft.
GREV SAND		29	38	Pump installed by
BRE JAIND				Location of well in State Plane coordinates, if available:
				Zone x y Elevation of wellft./m. Datum plain: \(\begin{bmatrix} NAD27 \(\begin{bmatrix} NAD83 \)
· · · · · · · · · · · · · · · · · · ·		·		Elevation of wellft./m. Datum plain: CNAD27 CNAD63 Source of coordinates: CPS Survey Cother
			·	Sketch a map showing distance well lies from numbered state highways,
		•	•	street intersections, county roads, buildings or other notable landmarks.
E. WELL AT 341'			•	PAD SALVAGE VARD
IT ER CALPONS S'				PEAT TO THE AND A THE AND
HTT AT COMP. 16'				RIVER/
		• • • • • • •	·	
		· · · · · · · · · · · · · · · · · · ·	• !	W I East
			:	
			<u> </u>	
		<u></u>	•	MM
			·	#101 DRYDEN
antional space is product to complete well be used	4 000000	-	0/00 10	South 'C' 'S 'rereby certily the information given is accurate and correct to the best of my knowledge.
Some For some				
ng Firm	· · · · ·	<u>telill</u>	<u>11 18 (</u>	Signed
				· · · · · · · · · · · · · · · · · · ·
ress				Date

-

NTY 1. DUIL GOIL ET 4	TOWNS	ню <u>М</u>	ami sectioniot No
FREUE DER South Dayton Dun		RTY ADDR	ESS 1975 DRYDEN RO, MORALATE ON
TION OF PROPERTY MORAINE,			
	<u>co</u> l 73 n	VSTRUC	GROUT
		ch40 m	Meterial Hole alua Volume uset 5 BACS
meterin. Length* ft. W	all Thickness		Method of installation TRIMME
1 1 Steel 1 Gaiv. 1 PVC 1			Depth: placed fromR. toR.
ส อ่อ ด	Other	···	GRAVEL PACK (Filter Pack) Material SAND Volume used 316 6005
s: Inreaged Weided Solvent	Other		Method of installation GRAVITY
• //	all Thickness	in	Depth: placed fromft. toft.
EN (wire wrapped, louvered, etc.) N	Aaterial PM	C	Pitiess Device CAdapter Preaseembled unit
hft. Diameter	2		
etween 2/ft. and 3/ WELL LOG*	tt. Slot	010	Date of Completion <u>5-7-96</u> WELL TEST
ATE DEPTH(S) AT WHICH WATER IS ENCOUN	TERED.		Bailing Pumping' Other
or for, texture, hardness, and formation:	MW		Test rate gpm Duration of test hrs.
nd	From	То	Drawdownt.
AUEL BASE	0	2	Measured from: top of casing ground level Other Static Level (depth to water)ft. Date:
OWN SILTY SAMOY CLAY		8	Quality (clear, cloudy, taste, odor)
EY SILTY CLAY	8	17	*(Attach a copy of the pumping test record, per section 1521.05, ORC)
		1	
	1 17	20	PUMP
ACK TO GREY SILTY CLAY	17	20	
ACK TO GREY SILTY CLAY DWN SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA gpm Pump set at ft.
ACK TO GREY SILTY CLAY NUN SAND & GRAVEL "KOBB	17 183 20 25		PUMP Type of pump VA gpm Pump set at tt. Pump installed by tt.
ACK TO GREY SILTY CLAY DWN SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA gpm Pump set at ft.
ACK TO GREY SILTY CLAY TON SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA Capacity gpm Pump set at ft. Pump installed by WELL LOCATION
ACK TO GREY SILTY CLAY TON SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump
ACK TO GREY SILTY CLAY TON SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump Capacity gpm Pump set at ft. ft. Pump installed by ft. ft. Uccation of well in State Plane coordinates, if available:
ACK TO GREY SILTY CLAY DWN SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump V.ACapacitygpm Pump set at
ACK TO GREY SILTY CLAY NUN SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA gpm Pump set at gpm Pump installed by
ACK TO GREY SILTY CLAY	,	ಎಕ	PUMP Type of pump Capacity gpm Pump set at tt. Pump installed by tt. WELL LOCATION tt. Location of well in State Plane coordinates, if available:
ACK TO GREY SILTY CLAY NUN SAND CRAVEL "KOBB	,	ಎಕ	PUMP Type of pump V.A Capacity gpm Pump set at ft. Pump installed by
ACK TO GREY SILTY CLAY	,	ಎಕ	PUMP Type of pump V.A Capacity gpm Pump set at ft. Pump installed by
ACK TO GREY SILTY CLAY	,	ಎಕ	PUMP Type of pump V.A Capacity gpm Pump set at ft. Pump installed by
ACK TO GREY SILTY CLAY TON SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump V.A Capacity gpm Pump set at ft. Pump installed by
ACK TO GREY SILTY CLAY	,	ಎಕ	PUMP Type of pump VA Capacity gpm Pump set at ft. ft. Pump installed by WELL LOCATION Elevation of well in State Plane coordinates, if available: Zone x y
ACK TO GREY SILTY CLAY	,	ಎಕ	PUMP Type of pump VA Capacity gpm Pump set at ft. ft. Pump installed by WELL LOCATION Elevation of well in State Plane coordinates, if available: Zone x y
ACK TO GREY SILTY CLAY NUN SAND & GRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA Capacity gpm Pump set at ft. ft. Pump installed by WELL LOCATION Installed by Location of well in State Plane coordinates, if available: Zone x Zone x y Elevation of well ft./m. Datum plain: NAD27 NAD83 Source of coordinates: GPS Survey Other Sketch a map showing distance well lies from numbered state highways. Street intersections. county roads. buildings or other notable lanomarks. North Street yrack W M Access KEAL KEAL W est KEAL KEAL East
ACK TO GREY SILTY CLAY NUN SAND CRAVEL "KOBB	,	ಎಕ	PUMP Type of pump VA Capacity gpm Pump set at ft. ft. Pump installed by ft. Location of well in State Plane coordinates, if available: Zone x y Zone x y Source of coordinates: GPS Survey Other Sketch a map showing distance well lies from numbered state highways. street intersections, county roads, buildings or other notable lanomarks. North SHERE YARD North SHERE YARD ACCEES Street intersections, county roads, buildings or other notable lanomarks. North SHERE YARD North SHERE YARD ACCEES Street yard buildings Street yard buildings North SHERE YARD SHERE YARD Street yard buildings North SHERE YARD Street yard buildings Street yard buildings North SHERE WEILD ACCEES Street yard buildings Street yard buildings Y SHERE WEILD ACCEES Street yard buildings Street yard buildings Y SHERE WEILD ACCEES Street yard buildings Street yard buildings Y SHERE WEILD ACCEES Street yard buildings
ACK TO GREY SILTY CLAY SWAI SAND & GRAVEL "KOBBO SWAI SAND & BRAWEL	25	え 3/	PUMP Type of pump VA Capacity gpm Pump set at ft. Pump installed by ft. Uccation of well in State Plane coordinates, if available: Zone x y Elevation of well ft./m. Datum plain: NAD27 NAD83 Source of coordinates: GPS Survey Other Sketch a map showing distance well lies from numbered state highways. street intersections, county roads, buildings or other notable lanomarks. North SMR/EE YARCH ACCESS W est KEAL Ft W est KEAL Eag
ACK TO GREY SILTY CLAY DWN SAND & GRAVEL "KOEB	onsecutively num	⊋ ජ ∃/	PUMP Type of pump VA Capacity gpm Pump set at ft. ft. Pump installed by WELL LOCATION It. Location of well in State Plane coordinates, if available: Zone y Zone x y Elevation of well ft./m. Datum plan: NAD27 NAD83 Source of coordinates: GPS Survey Other Sketch a map showing distance well lies from numbered state highways, street intersections, county roads, buildings or other motable lanomarks. North Survey North Survey ACCESS Reduce Sympthy We street intersections, county roads, buildings or other motable lanomarks. North Survey North Survey ACCESS Reduce Sympthy We street intersections, county roads, buildings or other motable lanomarks. Survey ACCESS North Survey Survey Eagend Yeard L South Survey Survey PUNE // PAGE Symphotic Bagend Survey Survey Imagend Survey Survey Survey Survey South
ACK TO GREY SILTY CLAY DENI SAND & GRAVEL "KOBBE DUNI SAND & BRAVEL	cnsecutively num	ි දි 3/ 1	PUMP Type of pump V.A Capacity gpm Pump set at

	Voi	Ce: (014) 200-07	739 Fax: (614) 447-9503	
County Mont ge	mery 7	rownship <u>Mia</u>	. Circle One or Both	
Address of Well Locatio	n 1975 DA	EXDEN RO	AD Street Name	
	1/2 miles		Zip Code +4	<u> </u>
Property Location			te of	
_ocation of Well in State	Plane N S X		ft. or m +/- Y	fL or m
Elevation of Well	tt. or	Datum P	lain: 🗌 NAD27 📃 NAD83	
Source of Coordinates:	⊡ GPS	irvey 🗌 Other		
RIGINAL WELL	DNR Well Log Nu	umber <u>MN</u> √ ≭	EIOI Copy attached? Ye	cle one) s ov No
AEASURED CONSTRU	ICTION DETAILS	Dat	e of measurements <u>5-7-90</u>	<u> </u>
Depth of Well	4'		-	
Depth of Well	4' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		te of measurements	
Depth of Well	4' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		te of measurements Static Water Level Length of casing	
Vell Condition	4' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sealing Material	Volume
Depth of Well	4' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sealing Material	
Depth of Well Dize of Casing Vell Condition SEALING PROCEDUR Method of Placement Placement: From From From	4' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	To / To / To To	Sealing Material	Volume
Depth of Well Dize of Casing Vell Condition SEALING PROCEDUR Method of Placement Placement: From From Vas Casing Removed? Dondition of Casing Perforations: From	Yes: or No (Yes: or No (Circle one)	To / To To o To	Sealing Material	Volume
Depth of Well Dize of Casing Vell Condition SEALING PROCEDUR Method of Placement Placement: From From Vas Casing Removed? Dondition of Casing	Yes: or No (Yes: or No (Circle one)	To / To To To To	Sealing Material	Volume
Depth of Well Dize of Casing Vell Condition SEALING PROCEDUR Method of Placement Placement: From From Vas Casing Removed? Dondition of Casing Perforations: From Date Sealing Performed	Yes: or No (Yes: or No (Circle one)	To / To To o To	Sealing Material	Volume

Completion of this form is required by section 1521 05 (B) (9). Ohio Revised Code - file within 20 days after completion of sealing. ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224 Blue - Customer's copy Pink - Driller's copy Green - Local Health Dept. copy increations in a constant of the table in

APPENDIX D

Well Development Logs

.

• —

- ----

General Information

Client: Ohio EPA	Well No.: MW-101
Site Location: South Dayton Dump. Dayton, Ohio	Date Developed: April 23, 1996 Time: 0845 to 1430
PSARA Technician(s): S. Walton	Weather: Rain. 45-60°F

Well Volume Calculations

Measuring Point: 🗷 Top of Casing 🗌 Other:	Measurement Instr.: Tape X Electronic O/W Probe
Depth to Water (ft): D1 = 15.10	Height of Water Column (ft): H = (D2 - D1) = 19.18
Depth to Well Bottom (ft): D2 = 34.28	Volume of Water in Well (gal): $V = (H \times F) = 3.13$
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA
	: Official E 0.100 (1) (1) (1) (1)

2" weil: F = 0.163

4" weil: F = 0.651

Well Development Data

Well Volume	рН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	8.84	400	11.0	Very silty, grey
Volume No. 1	8.61	514	10.8	Clearing
Volume No. 2	8.46	440	10.5	Silty, sandy - dry @ 3.5 gallons
Volume No. 3	7.51	617	8.3	Grey, silty, sandy
Volume No. 4	8.04	675	8.8	Grey, silty, sandy
Volume No. 5	7.71	699	9.2	Grey, silty, sandy
Total Volume Pu	rged (gal): 13	•	Well Pu	rged Dry: 🗴 Yes 🗌 No

Notes	pH Conductivity		Temperature	Appearance/Odor
Volume No. 6	8.44	472	11.0	Clear
Volume No. 7	8.47	431	10.0	Light brown
Volume No. 8	8.48	385	10.0	Brownish
half of a fourth ve	olume before v	is 18.85. Well bottom well purged dry. Purged additional volu		
- Notice obstructio	on in well whe	n attempt is made to pu	urge additional volume	es with bailer.
- Notice obstruction 1930 leave site.			urge additional volume	es with bailer. Ent'd by: DMW
1930 leave site.	Well undevelo		urge additional volume	

FORM NO. 303.0

Client: Ohio EPA	Well No.: MW-101A
Site Location: South Dayton Dump, Dayton. Ohio	Date Developed: May 10, 1996 Time: 1100 to 1155
PSARA Technician(s): S. Walton	Weather: Sunny, 70°F

Well Volume Calculations

Measurement Instr.: Tape X Electronic O/W Probe
Height of Water Column (ft): $H = (D2 - D1) = 24.36$
Volume of Water in Well (gal): V = (H x F) = 3.97
Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	рН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	7.93	300	17.2	Sandy, light brown; silty brown
Volume No. 1	7.92	700	14.2	Lighter, sandy, silty brown
Volume No. 2	7.93	600	16.6	Silty brown
Volume No. 3	7.90	1400	16.4	Silty brown
Volume No. 4	7.74	1022	18.3	Clearing; silty, light brown
Volume No. 5	7.74	1002	17.0	Clearing; silty, light brown
Total Volume Pur	ged (gal): 40		Well Pu	rged Dry:Yes XNo

Notes	pH	Conductivity	Temperature	Appearance
Volume No. 6	7.86	1005	16.2	Clearing, silty light brown
Volume No. 7	7.75	1002	14.8	Clearing, silty light brown
Volume No. 8	7.78	950	17.4	Clearing, silty light brown
Volume No. 9	7.73	978	16.7	Clearing, silty light brown
Volume No. 10	7.80	927	17.5	Purge water is mostly clear
		vals. Depth to bottom	1 at 04.54 phot to bar	ling
Bailed well. Rech		stant. Stainless Steel	······	ling
Bailed well. Rech Water in drum. Le	arge was in	······································	······	ling.
	arge was in	······································	······	ling. Ent'd by: DMW
	arge was in	······································	······	· · · · · · · · · · · · · · · · · · ·

FORM NO. 203.2

Project No. _____

60003.06 MW-102

General Information

Client: Ohio EPA	Well No.: MW-102
Site Location: South Dayton Dump, Dayton. Ohio	Date Developed: April 23. 1996 Time: 1050 to 1130
PSARA Technician(s): S. Walton	Weather: 50-60°F, rain.

Well Volume Calculations

Measuring Point: X Top of Casing Cother:	Measurement Instr.: 🗌 Tape 🔀 Electronic 🗔 O/W P
Depth to Water (ft): D1 = 6.97	Height of Water Column (ft): $H = (D2 - D1) = 24.99$
Depth to Well Bottom (ft): D2 = 31.96	Volume of Water in Well (gal): V = (H x F) = 4.07
Product Present: Yes X No	Deptn to Product (ft): NA Product Thickness (in): NA
	2" well: F = 0.163 4" well: F = 0.651

Well Development Data

Well Volume	pН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	7.31	696	7.9	Silty, brown
Volume No. 1	7.25	707	8.6	Silty, brown
Volume No. 2	7.70	723	8.5	Silty, brown
Volume No. 3	7.55	711	9.1	Silty, brown
Volume No. 4	7.60	726	9.1	Clearing, silty after surging
Volume No. 5	7.56	745	9.3	Silty, surge
Total Volume Pur	ged (gai): 2	8	Well Pu	irged Drv:Yes X No

Notes	рН	Conductivity	Temperature	Appearance	
Volume No. 6	7.51	741	9.2	Clearing	
Volume No. 7	7.57	746	9.2	Clear	
		· · ·			Ent'd by: DMW
			· ··· · · · · · · · · · · · · · · · ·		CK'd by: MES
					Date: 5/21/96

FORM NO. DC3.3

.

MW-103

General Information

Client: Ohio EPA	Well No.: MW-103
Site Location: South Dayton Dump, Dayton, Ohio	Date Developed: April 23, 1996 Time: 1000 to 1045
PSARA Technician(s): S. Walton	Weather: rain, 50-60°F

Well Volume Calculations

Measuring Point: 🕱 Top of Casing 🗌 Other:	Measurement Instr.: Tape X Electronic O/W Probe
Depth to Water (ft): D1 = 5.80	Height of Water Column (ft): H = (D2 - D1) = 26.31
Depth to Well Bottom (ft): D2 = 32.11	Volume of Water in Well (gal): V = (H x F) = 4.29
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	pН	Conductivity (µmno)	Temperature (°C)	Appearance / Odor
First Bailer	8.2	420	8.0	Very silty brown
Volume No. 1	7.9	410	7.8	Very silty brown
Volume No. 2	7.9	430	7.9	Clearing
Volume No. 3	7.8	580	8.0	Silty
Volume No. 4	7.8	650	8.2	Silty
Volume No. 5	7.74	700	8.2	Silty
Total Volume Pur	rged (gal): ≈4	40	Weil Pu	irged Dry:Yes 🕱 No

Notes	ρН	Conductivity	Temperature	Appearance	
Volume No. 6	7.8	700	8.0	Clearing	
Volume No. 7	7.8	700	8.7	Clearing	
Volume No. 8	7.8	709	8.4	Clear	
	·····		······		
					Ent'd by: DMW Ckd by: MES
					Date: 5/21/96

FORM NO. 003.0

APPENDIX C:

COMPREHENSIVE ANALYTICAL RESULTS

(1prehensive Analytical Results - Soi(mples

.

Г		96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-
SAMPLE NUMBERS		S01	S02	\$0-DV-03- \$03	D03	90-DV-03- S04	\$0-DV-03- \$05	50-DV-03- S06	96-DV-03- S07	S08	S09
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Background		
COMPOUND DETECTED (ug/kg)											
VOLATILE ORGANIC COMPOUNDS	CROL										
chloromethane	10 µg/kg	1 2 U	10U	12U	12U	16U	12U	16U	11U	11U	11U
bromomethane	10 µg/kg	12U	10Ü	12U	12U	16U	12U	16U	11U	11U	11U
vinyl chloride	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
chloroethane	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
methylene chloride	10 μ g/kg	1 2JB U	16BU	12JBU	12JBU	16JBU	1 2J BU	16JBU	11JBU	16	11JBU
acetone	10 µg/kg	12U	10U	12U	3J	16U	12U	16U	11U	11U	11U
carbon disulfide	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,1-dichloroethene	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,1-dichloroethane	10 μ g/kg	1 2 U	10U	12U	12U	16U	12U	16U	11U	110	11U
1,2-dichlorothene (total)	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
chloroform	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,2-dichloroethane	10 μ g/kg	12U	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
2-butanone	10 μ g/kg	1 2 U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,1,1-trichloroethane	10 µg/kg	12U	10U	12U	12U	16U	12U	16U .	11U	11U	11U
carbon tetrachloride	10 µg/kg	12U	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
bromodichloromethane	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,2-dichloropropane	10 μ g/kg	12U	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
cis-1,3-dichloropropene	10 μ g/kg	12U	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
trichloroethene	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
dibromochloromethane	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
1,1,2-trichloroethane	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
benzene	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
trans-1,3-dichloropropene	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
bromoform	10 µg/kg	1 2 U	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
4-methyl-2-pentanone	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	110	11U	11U
2-hexanone	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
tetrachloroethene	10 μ g/kg	59	10U	12U	12U	16U	1 2 U	16U	11U	11U	11U
1,1,2,2-tetrachloroethane	10 µg/kg	1 2 U	10U	12U	12U	16U	12U	16U	11U	11U	11U
toluene	10 μg/kg	12U	10U	7J	5J	16U	12U	16U	11U	10J	11U
chlorobenzene	10 μ g/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U

Comprehensive Analytical Results - Soil Samples

ATE SAMPLE COLLECTED7/09/967/09/96TIME SAMPLE COLLECTED17:2017:00AMPLE DEPTH0-4"3-4"OAQC DESCRIPTION (if applicable)0COMPOUND DETECTED (\mug/kg)10 \mug/kg 12UCOMPOUND DETECTED (\mug/kg)10 \mug/kg 12UNormethane10 \mug/kg 12U11Uromomethane10 \mug/kg 12U11Uinju chloride10 \mug/kg 12U11Uhloroethane10 \mug/kg 12U11Unethylene chloride10 \mug/kg 12U11Uinju chloroethene10 \mug/kg 12U11U.1-dichloroethene10 \mug/kg 12U11U.1-dichloroethane10 \mug/kg 12U11U.1-dichloroethane10 \mug/kg 12U11U.2-dichloroethane10 \mug/kg 12U11U.2-dichloroethane10 \mug/kg 12U11U.1-dichloroethane10 \mug/kg 12U11U.2-dichloroethane10 \mug/kg 12U11U.2-dichloroethane10 \mug/kg 12U11U.1-dichloroethane10 \mug/kg 12U11U.1-dichlo			96-DV-03-	96-DV-03-
IME SAMPLE COLLECTED17:2017:00AMPLE DEPTH 0.4^n 3.4^n AVQC DESCRIPTION (if applicable) 0.4^n 3.4^n COMPOUND DETECTED (ug/leg)CROLCommonsthane10 \mug/kg 12U11UInformethane10 \mug/kg 12U11UInformom10 \mug/kg 12U11UInformethane10 \mug/kg 12U11UInformomethane10 \mug/kg 12U11U <tr< th=""><th>AMPLE NUMBERS</th><th></th><th></th><th></th></tr<>	AMPLE NUMBERS			
AMPLE DEPTH 0.4° 3.4° A/QC DESCRIPTION (if applicable) 0.4° 3.4° COMPOUND DETECTED (ug/kg) $0.0 \mug/kg$ 120 110 Commonstance $10 \mug/kg$ 120 110 invisition of the comparison of the			···· • • ··· ·· · · · · · · ·	
AAQC DESCRIPTION (if applicable)Image: state of the state				
CMPOUND DETECTED ($\mu g/kg$) CROL COLATILE ORGANIC COMPOUNDS CR I Informethane 10 $\mu g/kg$ 12U 11U nomomethane 10 $\mu g/kg$ 12U 11U injectionide 10 $\mu g/kg$ 12U 11U hitting for the state of t			0-4"	3-4"
COLATILE ORGANIC COMPOUNDS CROL hloromethane 10 $\mu g/kg$ 12U 11U romomethane 10 $\mu g/kg$ 12U 11U inyl chloride 10 $\mu g/kg$ 12U 11U hloromethane 10 $\mu g/kg$ 12U 11U inyl chloride 10 $\mu g/kg$ 12U 11U horomethane 10 $\mu g/kg$ 12U 11U methylene chloride 10 $\mu g/kg$ 12U 11U arbon disulfide 10 $\mu g/kg$ 12U 11U .1-dichloroethane 10 $\mu g/kg$ 12U 11U .2-dichloroethane 10 $\mu g/kg$ 12U 11U .2-dichloropethane 10 $\mu g/kg$ 12U 11U .2-dichloropethane 10 $\mu g/kg$ 12U 11U .2-dichloropropene 10 $\mu g/kg$ 12U 11U </th <th>QA/QC DESCRIPTION (if applicable)</th> <th></th> <th></th> <th></th>	QA/QC DESCRIPTION (if applicable)			
COLATILE ORGANIC COMPOUNDS CROL hloromethane 10 μ g/kg 12U 11U romomethane 10 μ g/kg 12U 11U inyl chloride 10 μ g/kg 12U 11U hloromethane 10 μ g/kg 12U 11U inyl chloride 10 μ g/kg 12U 11U horomethane 10 μ g/kg 12U 11U methylene chloride 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U .1-dichloroethane 10 μ g/kg 12U 11U .2-dichloroethane 10 μ g/kg 12U 11U .2-dichloropropane 10 μ g/kg 12U 11U .2-dichloropropene 10 μ g/kg 12U 11U		•••••••••••••••••		<u></u>
hloromethane 10 $\mu g/kg$ 12U 11U romomethane 10 $\mu g/kg$ 12U 11U ininj chloride 10 $\mu g/kg$ 12U 11U hloroethane 10 $\mu g/kg$ 12U 11U nethylene chloride 10 $\mu g/kg$ 12U 11U nethylene chloride 10 $\mu g/kg$ 12U 11U arbon disulfide 10 $\mu g/kg$ 12U 11U ,1-dichloroethane 10 $\mu g/kg$ 12U 11U ,1-dichloroethane 10 $\mu g/kg$ 12U 11U ,2-dichloroethane 10 $\mu g/kg$ 12U 11U ,1.1-trichloroethane 10 $\mu g/kg$ 12U 11U ,2-dichloropropanc 10 $\mu g/kg$ 12U 11U ,1.1-trichloroethane 10 $\mu g/kg$ 12U 11U ibromochloromethane 10		CROI		
Interface Interface Interface Interface ining consomethane Interface Interface Interface ining consomethane Interface Interface Interface Interface Interface Interface Interface			12U	11U
inyl chloride 10 μ g/kg 12U 11U hloroethane 10 μ g/kg 12U 11U methylene chloride 10 μ g/kg 12JBU 17BU ocetone 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U .1-dichloroethene 10 μ g/kg 12U 11U .1-dichloroethane 10 μ g/kg 12U 11U .2-dichloroethane 10 μ g/kg 12U 11U .1,1-trichloroethane 10 μ g/kg 12U 11U .2-dichloropropane 10 μ g/kg	bromomethane			
Investment 10 μ g/kg 12U 11U nethylene chloride 10 μ g/kg 12JBU 17BU nethylene chloride 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U .1-dichoroethane 10 μ g/kg 12U 11U .2-dichloroethane 10 μ g/kg 12U 11U .1,1-trichloroethane 10 μ g/kg 12U 11U .2-dichloropropane 10 μ g/kg 12U 11U .2-dichloropropane 10 μ g/kg 12U 11U .2-dichloropropane 10 μ g/kg 12U 11U .2-dichloropropene 10 μ g/kg<				
Image: Section 10 Image: Section 10 IPBU IPBU cectone 10 µg/kg 12U I1U arbon disulfide 10 µg/kg 12U I1U ,1-dichloroethane 10 µg/kg 12U I1U ,1-dichloroethane 10 µg/kg 12U I1U ,2-dichlorothene (total) 10 µg/kg 12U I1U ,2-dichloroethane 10 µg/kg 12U I1U ,1,1-trichloroethane 10 µg/kg 12U 11U ,2-dichloropropane 10 µg/kg 12U 11U ,2-dichloropropane 10 µg/kg 12U 11U ,1,2-trichloroethane 10 µg/kg 12U	chloroethane			_
cetone 10 μ g/kg 12U 11U arbon disulfide 10 μ g/kg 12U 11U ,1-dichloroethene 10 μ g/kg 12U 11U ,1-dichloroethane 10 μ g/kg 12U 11U ,2-dichlorothene (total) 10 μ g/kg 12U 11U ,2-dichloroethane 10 μ g/kg 12U 11U ,1-trichloroethane 10 μ g/kg 12U 11U ,1,1-trichloroethane 10 μ g/kg 12U 11U ,2-dichloropropane 10 μ g/kg 12U 11U ,2-dichloropropane 10 μ g/kg 12U 11U ,2-dichloropropene 10 μ g/kg 12U 11U ,2-dichloropropene 10 μ g/kg 12U 11U ,1,2-trichloroethane 10				17BU
arbon disulfide 10 $\mu g/kg$ 12U 11U ,1-dichloroethene 10 $\mu g/kg$ 12U 11U ,1-dichloroethane 10 $\mu g/kg$ 12U 11U ,2-dichloroethane 10 $\mu g/kg$ 12U 11U ,1-trichloroethane 10 $\mu g/kg$ 12U 11U ,1,1-trichloroethane 10 $\mu g/kg$ 12U 11U ,1,1-trichloropethane 10 $\mu g/kg$ 12U 11U ,2-dichloropropane 10 $\mu g/kg$ 12U 11U ,2-dichloropropene 10 $\mu g/kg$ 12U 11U ,1,2-trichloroethane 10 $\mu g/kg$ 12U 11U ,1,2-trichloroethane 10 $\mu g/kg$ 12U 11U ,1,2-trichloropropene 10 $\mu g/kg$ 12U 11U ,1,2-tr	acetone		12U	11U
.1-dichloroethene 10 μ g/kg 12U 11U .1-dichloroethane 10 μ g/kg 12U 11U .2-dichlorothene (total) 10 μ g/kg 12U 11U .2-dichloroethane 10 μ g/kg 12U 11U .1-trichloroethane 10 μ g/kg 12U 11U .1-trichloroethane 10 μ g/kg 12U 11U .1-dichloroptopane 10 μ g/kg 12U 11U .2-dichloroptopane 10 μ g/kg 12U 11U .2-dichloroptopene 10 μ g/kg 12U 11U .2-dichloroptopene 10 μ g/kg 12U 11U .2-dichloroptopene 10 μ g/kg 12U 11U .1-z-trichloroethane 10 μ g/kg 12U 11U .1,2-trichloroethane 10 μ g/kg 12U 11U .1,2-trichloropropene<	carbon disulfide		12U	11U
1-dichloroethane10 $\mu g/kg$ 12U11U,2-dichlorothene (total)10 $\mu g/kg$ 12U11U,hloroform10 $\mu g/kg$ 12U11U,2-dichloroethane10 $\mu g/kg$ 12U11U,2-dichloroethane10 $\mu g/kg$ 12U11U,2-dichloroethane10 $\mu g/kg$ 12U11U,1-trichloroethane10 $\mu g/kg$ 12U11U,1,1-trichloroethane10 $\mu g/kg$ 12U11U,2-dichloroptopane10 $\mu g/kg$ 12U11U,2-dichloroptopane10 $\mu g/kg$ 12U11U,2-dichloroptopane10 $\mu g/kg$ 12U11U,2-dichloroptopane10 $\mu g/kg$ 12U11U,1,2-trichloroethane10 $\mu g/kg$ 12U11U,1,2-trichloroethane10 $\mu g/kg$ 12U11U,1,2-trichloroptopene10 $\mu g/kg$ 12U11U,1,2-trichloroptopene10 $\mu g/kg$ 12U11U,1,2-trichloroptopene10 $\mu g/kg$ 12U11U,1,2-trichloroptopene10 $\mu g/kg$ 12U11Uurans-1,3-dichloropropene10 $\mu g/kg$ 12			12U	11U
2-dichlorothene (total) $10 \ \mu g/kg$ $12U$ $11U$,2-dichlorothene (total) $10 \ \mu g/kg$ $12U$ $11U$,2-dichlorothane $10 \ \mu g/kg$ $12U$ $11U$,2-dichlorothane $10 \ \mu g/kg$ $12U$ $11U$,2-dichlorothane $10 \ \mu g/kg$ $12U$ $11U$ -butanone $10 \ \mu g/kg$ $12U$ $11U$ -arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$,1,2-trichloroothane $10 \ \mu g/kg$ $12U$ $11U$,1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ unreshead $10 \ \mu g/kg$ $12U$ $11U$ unreshead $10 \ \mu g/kg$ $12U$ $11U$ unreshead $10 \ \mu g/kg$				
hloroform $10 \ \mu g/kg$ $12U$ $11U$,2-dichloroethane $10 \ \mu g/kg$ $12U$ $11U$ 2-butanone $10 \ \mu g/kg$ $12U$ $11U$ 2-butanone $10 \ \mu g/kg$ $12U$ $11U$ 1,1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloropropane $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloroethane $10 \ \mu g/kg$ $12U$ $11U$ arbon colloromethane $10 \ \mu g/kg$ $12U$ $11U$ arbon colloropropene $10 \ \mu g/kg$ $12U$ $11U$ aras-1,3-dichloropropene				11U
2-dichloroethane $10 \ \mu g/kg$ $12U$ $11U$ 2-butanone $10 \ \mu g/kg$ $12U$ $11U$ 1,1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ (1,1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ (1,1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ (1,1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ (1,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$ (1,2-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ (1,1,2-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ (1,1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ (1,1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ (1,1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ (1,1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ (1,2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$ <t< th=""><td>chloroform</td><td></td><td></td><td></td></t<>	chloroform			
2-butanone $10 \ \mu g/kg$ $12U$ $11U$.1, 1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$.1, 1-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ arbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ wromodichloromethane $10 \ \mu g/kg$ $12U$ $11U$.2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$.2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$.2-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.2-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 2-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 2-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$.1, 2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 2-trichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 2-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$.1, 3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$.1, 2-pentanone $10 \ \mu g/kg$ $12U$ $11U$.1, 2, 2-tetrachloroethane $10 \ \mu g/kg$ $12U$ $11U$.1, 2, 2-tetrachloroethane $10 \ \mu g/kg$ $12U$ $11U$				
interaction tetrachloride10 μ g/kg12U11Uisarbon tetrachloride10 μ g/kg12U11Upromodichloromethane10 μ g/kg12U11Ui.2-dichloropropane10 μ g/kg12U11Ui.3-dichloropropene10 μ g/kg12U11Uisis-1,3-dichloropropene10 μ g/kg12U11Uibromochloromethane10 μ g/kg12U11Uibromochloromethane10 μ g/kg12U11Uibromochloromethane10 μ g/kg12U11Uibromochloromethane10 μ g/kg12U11Uibromochloropropene10 μ g/kg12U11Uibromochloropro	2-butanone			
interaction $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloride $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloropropane $10 \ \mu g/kg$ $12U$ $11U$,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$,is-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ richloroethene $10 \ \mu g/kg$ $12U$ $11U$ hibromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ nas-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloropropene $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloropropene $10 \ \mu g/kg$ $12U$ $11U$ nas-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloropropene $10 \ \mu g/kg$ $12U$ $11U$ varbon tetrachloroethene $10 \ \mu g/kg$ $12U$ $11U$ 1.2,2-tetrachloroethane $10 \ \mu g/kg$ $12U$ $11U$				
Normodichloromethane $10 \ \mu g/kg$ $12U$ $11U$ 1,2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$ 1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ 10 richloroethene $10 \ \mu g/kg$ $11J$ $11U$ 11 bromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ 11 bromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ 11 create $10 \ \mu g/kg$ $12U$ $11U$ 11 create $10 \ \mu g/kg$ $12U$ $11U$ 11 create $10 \ \mu g/kg$ $12U$ $11U$ 11 create $10 \ \mu g/kg$ $12U$ $11U$ 12 create $10 \ \mu g/kg$ $12U$ $11U$ 13 create $10 \ \mu g/kg$ $12U$ $11U$ 14 create $10 \ \mu g/kg$ $12U$ $11U$ 14 create $10 \ \mu g/kg$ $12U$ $11U$ 14 create $10 \ \mu g/kg$ $12U$ $11U$ 14 create $10 \ \mu g/kg$ $12U$ $11U$ 14 create $10 \ \mu g/kg$ $12U$ $11U$	carbon tetrachloride			
1.2-dichloropropane $10 \ \mu g/kg$ $12U$ $11U$ is-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ richloroethene $10 \ \mu g/kg$ $11J$ $11U$ dibromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ dibromochloroethane $10 \ \mu g/kg$ $12U$ $11U$ i.1,2-trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ openzene $10 \ \mu g/kg$ $12U$ $11U$ rans-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ openzene $10 \ \mu g/kg$ $12U$ $11U$	bromodichloromethane			-
Lis-1,3-dichloropropene10 μ g/kg12U11Urichloroethene10 μ g/kg11J11Ulibromochloromethane10 μ g/kg12U11Ul,1,2-trichloroethane10 μ g/kg12U11Uoenzene10 μ g/kg12U11Urans-1,3-dichloropropene10 μ g/kg12U11Uoromoform10 μ g/kg12U11U-methyl-2-pentanone10 μ g/kg12U11U2-hexanone10 μ g/kg12U11U1,2,2-tetrachloroethane10 μ g/kg12U11U1,2,2-tetrachloroethane10 μ g/kg12U11U				11U
richloroethene $10 \ \mu g/kg$ $11J$ $11U$ libromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ libromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ libromochloroethane $10 \ \mu g/kg$ $12U$ $11U$ rans-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ libromochloroethene $10 \ \mu g/kg$ $12U$ $11U$ libromochloroethene $10 \ \mu g/kg$ $12U$ $11U$ libromochloroethane $10 \ \mu g/kg$ $12U$ $11U$	cis-1,3-dichloropropene		12U	11U
libromochloromethane $10 \ \mu g/kg$ $12U$ $11U$ $1, 1, 2$ -trichloroethane $10 \ \mu g/kg$ $12U$ $11U$ penzene $10 \ \mu g/kg$ $12U$ $11U$ penzene $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ penzene $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$	trichloroethene		11J	11U
penzene $10 \ \mu g/kg$ $12U$ $11U$ rans-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$	dibromochloromethane		12U	110
Denzene $10 \ \mu g/kg$ $12U$ $11U$ rans-1,3-dichloropropene $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ promoform $10 \ \mu g/kg$ $12U$ $11U$ h-methyl-2-pentanone $10 \ \mu g/kg$ $12U$ $11U$ etrachloroethene $10 \ \mu g/kg$ $12U$ $11U$ $10 \ \mu g/kg$ $12U$ $11U$ $11U$ 2 -hexanone $10 \ \mu g/kg$ $12U$ $11U$ $110 \ \mu g/kg$ $12U$ $11U$ $11U$	1,1,2-trichloroethane		12U	11U
rans-1,3-dichloropropene 10 μg/kg 12U 11U promoform 10 μg/kg 12U 11U n-methyl-2-pentanone 10 μg/kg 12U 11U 2-hexanone 10 μg/kg 12U 11U 2-hexanone 10 μg/kg 12U 11U etrachloroethene 10 μg/kg 12U 11U 1,1,2,2-tetrachloroethane 10 μg/kg 12U 11U	benzene	and the second second second second second second second second second second second second second second second	12U	11U
promoform 10 μg/kg 12U 11U 1-methyl-2-pentanone 10 μg/kg 12U 11U 2-hexanone 10 μg/kg 12U 11U 2-hexanone 10 μg/kg 12U 11U etrachloroethene 10 μg/kg 12U 11U ,1,2,2-tetrachloroethane 10 μg/kg 12U 11U	trans-1,3-dichloropropene			11U
1-methyl-2-pentanone10 μ g/kg12U11U2-hexanone10 μ g/kg12U11Uetrachloroethene10 μ g/kg12U11U,1,2,2-tetrachloroethane10 μ g/kg12U11U	bromoform		12U	11U
I c $\mu g/kg$ 120110etrachloroethene10 $\mu g/kg$ 12U11U,1,2,2-tetrachloroethane10 $\mu g/kg$ 12U11U	4-methyl-2-pentanone			
etrachloroethene 10 μg/kg 12U 11U ,1,2,2-tetrachloroethane 10 μg/kg 12U 11U	2-hexanone			
1,1,2,2-tetrachloroethane 10 µg/kg 12U 11U	tetrachloroethene			
((toluene			
			(
			(

(1prehensive Analytical Results - Soi(mples

SAMPLE NUMBERS		96-DV-03- S01	96-DV-03- 802	96-DV-03- S03	96-DV-03- D03	96-DV-03- S04	96-DV-03- S05	96-DV-03- \$06	96-DV-03- S07	96-DV-03- S08	96-DV-03- 809
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Background		
ethyl benzene	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	11U	11U	11U
styrene	10 µg/kg	12U	10U	12U	1 2 U	16U	12U	16U	11U	11U	11U
xylene (Total)	10 µg/kg	12U	10U	12U	12U	16U	12U	16U	110	11U	11U
	·							-			
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL										
phenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	⁷ 370U	64J
bis(2-chloroethyl)ether	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	4+370U	350U
2-chlorophenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
1,3-dichlorobenzene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
1,4-dichlorobenzene	330 µg/kg	140J	340U	410U	410U	520U	380U	530U	380U	370U	350U
1,2-dichlorobenzene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2-methylphenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
4-methylphenol	330 µg/kg	410U	340U	410U	410U	5 2 0U	380U	530U	380U	370U	350U
n-nitroso-di-n-dipropylamine	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
hexachloroethane	330 µg/kg	410U	340U	410U	410U	5 20 U	380U	530U	380U	370U	350U
nitrobenzene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
isophorone	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2-nitrophenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2,4-dimethylphenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	⊰ 3 70U	350U
bis(2-chloroethoxy)methane	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2,4-dichlorophenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
1,2,4-trichlorobenzene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
naphthalene	330 µg/kg	410U	20J	410U	410U	58J	380U	530U	380U	250J	35J
4-chloroaniline	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
hexachlorobutadiene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
4-chloro-3-methylphenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2-methylnaphthalene	330 µg/kg	410U	340U	410U	410U	77J	380U	530U	380U	390	49J

, the second second second second second second second second second second second second second second second

Comprehensive Analytical Results - Soil Samples

<u> </u>			
SAMPLE NUMBERS		96-DV-03- \$10	96-DV-03- S11
DATE SAMPLE COLLECTED		7/09/96	7/09/96
TIME SAMPLE COLLECTED		17:20	17:00
SAMPLE DEPTH		0-4"	3-4"
QA/QC DESCRIPTION (if applicable)			
			r
chlorobenzene	10 µg/kg	12U	11U
ethyl benzene	10 μ g/kg	12U	11U
styrene	10 µg/kg	12U	11U
xylene (Total)	10 μ g/kg	12U	110
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL		
phenol	330 µg/kg	400U	360U
bis(2-chloroethyl)ether	330 µg/kg	400U	360U
2-chlorophenol	330 µg/kg	400U	360U
1,3-dichlorobenzene	330 µg/kg	400U	360U
1,4-dichlorobenzene	330 µg/kg	400U	360U
1,2-dichlorobenzene	330 µg/kg	400U	360U
2-methylphenol	330 µg/kg	400U	360U
4-methylphenol	330 µg/kg	400U	360U
n-nitroso-di-n-dipropylamine	330 μ g/kg	400U	360U
hexachloroethane	330 μ g/kg	400U	360U
nitrobenzene	330 µg/kg	400U	360U
isophorone	330 µg/kg	400U	360U
2-nitrophenol	330 µg/kg	400U	360U
2,4-dimethylphenol	330 µg/kg	400 U	360U
bis(2-chloroethoxy)methane	330 µg/kg	400U	360U
2,4-dichlorophenol	330 µg/kg	400U	360U
1,2,4-trichlorobenzene	330 µg/kg	400U	360U
naphthalene	330 µg/kg	26J	59J
4-chloroaniline	330 µg/kg	400U	360U
hexachlorobutadiene	330 µg/kg	400U	360U
4-chloro-3-methylphenol	330 µg/kg	400U	360U
2-methylnaphthalene	330 µg/kg	46J	74J

(

(aprehensive Analytical Results - Soi(.mples

		96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-
SAMPLE NUMBERS		S01	S02	\$0-DV-03- \$03	D03	\$0-D V-03- \$04	S05	\$0-D V-03- \$06	\$0-DV-03- \$07	\$0-DV-03- \$08	\$0-DV-03- \$09
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Background		
COMPOUND DETECTED (µg/kg)											
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL										
hexachlorocyclopentadiene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2,4,6-trichlorophenol	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2,4,5-trichlorophenol	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
2-chloronaphthalene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2-nitroaniline	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	🎋 920U	880U
dimethylphthalate	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
acenaphthylene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
2,6-dinitrotoluene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
3-nitroaniline	330 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	9 2 0U	880U
acenaphthene	330 µg/kg	410U	340U	410U	410U	33J	380U	530U	380U	91J	350U
2,4-dinitrophenol	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
4-nitrophenol	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
dibenzofuran	330 µg/kg	410U	340U	410U	410U	28J	380U	530U	380U	160J	350U
2,4-dinitrotoluene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
diethylphthalate	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
4-chlorophenyl-phenyl ether	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	** 370U	350U
fluorene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	🤹 87J	350U
4-nitroaniline	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
4,6-dinitro-2-methylphenol	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
n-nitrosodiphenylamine	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	27J	350U
4-bromophenyl-phenyl ether	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
hexachlorobenzene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	370U	350U
pentachlorophenol	800 µg/kg	1000U	860U	1000U	1000U	1300U	960U	1300U	940U	920U	880U
phenanthrene	330 µg/kg	410U	340U	33J	34J	170J	21J	530U	63J	1700	1 8 0J
anthracene	330 µg/kg	410U	340U	410U	410U	29J	380U	530U	380U	290J	26J
di-n-butylphthalate	330 µg/kg	410U	18J	410U	27J	28J	380U	31J	28J	370U	1500
fluoranthene	330 µg/kg	410U	21J	410U	410U	140J	31J	530U	110J	2000	340J
pyrene	330 µg/kg	410U	20J	410U	410U	160J	30J	530U	130J	1900	320J

•••

(prehensive Analytical Results - Soil mples

SAMPLE NUMBERS		96-DV-03-	96-DV-03-
DATE SAMPLE COLLECTED		<u>\$10</u> 7/09/96	<u>\$11</u> 7/09/96
TIME SAMPLE COLLECTED		17:20	17:00
SAMPLE DEPTH		0-4"	3-4"
QA/QC DESCRIPTION (if applicable)		4	5-4
QAIGE DESCRIPTION (II applicable)		<u>.</u>	
COMPOUND DETECTED (µg/kg)			
	CRQL		
	330 µg/kg	400U	360U
	330 µg/kg	400U	360U
	800 µg/kg	1000U	900U
2-chloronaphthalene	330 µg/kg	400U	360U
2-nitroaniline	800 µg/kg	1000U	900U
dimethylphthalate	330 µg/kg	400U	360U
acenaphthylene	330 µg/kg	400U	50J
2,6-dinitrotoluene	330 µg/kg	400U	360U
3-nitroaniline	330 µg/kg	1000U	900U
acenaphthene	330 µg/kg	400U	26J
2,4-dinitrophenol	800 µg/kg	10 00 U	900U
	800 µg/kg	1000U	900U
	330 µg/kg	400U	29J
	330 µg/kg	400U	360U
	330 µg/kg	400U	360U
	330 µg/kg	400U	360U
	330 µg/kg	400U	38J
	800 µg/kg	1000U	900U
	800 µg/kg	1000U	900U
	330 μg/kg	400U	360U
	330 µg/kg	400U	360U
	330 μg/kg	400U	360U
	800 μg/kg	1000U	900U
	330 μg/kg	1000E	570
	330 μg/kg	400U	97J
	330 μg/kg	35J	360U
	330 μg/kg	100J	1300
	330 μg/kg 330 μg/kg	120J	1600

Comprehensive Analytical Results - Soil Samples

							04 DV 00	06 774 00	04 DV 00		
SAMPLE NUMBERS		96-DV-03- S01	96-DV-03- 802	96-DV-03- S03	96-DV-03- D03	96-DV-03- \$04	96-DV-03- 805	96-DV-03- \$06	96-DV-03- \$07	96-DV-03- S08	96-DV-03- \$09
DATE SAMPLE COLLECTED	····	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED	······································	10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Beckground		
COMPOUND DETECTED (µg/kg)											
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL										
butylbenzylphthalate	330 µg/kg	410U	25J	410U	33J	520U	380U	530U	26J	370U	18000E
carbazole	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380J	280J	350U
benzo(a)anthracene	330 µg/kg	410U	340U	410U	410U	41J	380U	530U	58J	1100	180J
chrysene	330 µg/kg	410U	340U	21J	25J	56J	27J	530U	83J	1200	320J
bis(2-ethylhexyl)phthalate	330 µg/kg	24J	33J	410U	410U	540	380U	530U	32J	230J	2100
di-n-octylphthalate	330 µg/kg	410U	23J	410U	410U	520U	380U	530U	380U	19J	350U
benzo(b)fluoranthene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	1000	320J
benzo(k)fluoranthene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	950	200J
benzo(a)pyrene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	62J	820	110J
indeno(1,2,3-cd)pyrene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	48J	480	120J
dibenzo(a,h)anthracene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	310J	350U
benzo(g,h,i)perylene	330 µg/kg	410U	340U	410U	410U	520U	380U	530U	380U	160J	350U
									_		
PESTICIDES/PCBs	CROL							_			
alpha-BHC	1.7 μ g/kg	2.1U	1.8U	2 .1U	2.1U	2.6U	2.0U	2.7U	1.9U	0.71PJ	1. 8 U
beta-BHC	1.7 μ g/kg	2.1U	1.8U	2.1U	2.1U	2.6U	2 .0U	2.7U	1.9U	1.9U	1.8U
delta-BHC	1.7 μ g/kg	2.1U	1.8U	2.IU	2.1U	2.6U	2.0U	2.7U	1.9U	1.9U	1. 8 U
gamma-BHC (Lindane)	1.7 μ g/kg	2.1U	1.8U	<u>2.1U</u>	2.1U	2.6U	2.0U	2.7U	1.9U	1.8J	1.8U
heptachlor	1.7 μg/kg	2.1U	1.8U	2.1U	2.1U	2.6U	2.0U	2.7U	1.9U	1.9U	1.8U
aldrin	1.7 μg/kg	2.1U	1.8U	2.1U	2 .1U	2.6U	2.0U	2.7U	1.9U	1.9U	1.8U
heptachlor epoxide	1.7 μ g/kg	2.1U	1.8U	2.1U	0.49PJ	0.78PJ	2.0U	2.7U	1.9U	1.9U	1.8U
endosulfan I	1.7 μ g/kg	2.1U	1.8U	2.1U	2.1U	2.6U	2.0U	2.7U	0.42PJ	1.9U	1.8U
dieldrin	3.3 μg/kg	4.1U	3.4U	4.1U	4.1U	5.2U	3.8U	5.3U	3.8U	3.7U	3.5U
4,4-DDE	3.3 µg/kg	4.1U	3.4U	4.1U	4.1U	2.6J	0.44PJ	5.3U	3.8U	2.4PJ	3.5U
endrin	3.3 µg/kg	1.4PJ	3.4U	2.3PJ	4.1U	5.2U	3.8U	5.3U	3.8U	3.7U	3.5U
endosulfan II	3.3 µg/kg	4.1U	3.4U	4.1U	4.1U	5.2U	3.8U	5.3U	1.4J	5.4	3.5U
4,4-DDD	3.3 µg/kg	4.1U	3.4U	4.1U	4.1U	5.2U	3.8U	5.3U	0.65J	3.7U	3.5U
endosulfan sulfate	3.3 µg/kg	4.1U	3.4U	4.1U	4.1U	5.2U	3.8U	5.3U	3.8U	3.7U	3.5U
4,4-DDT	3.3 µg/kg	0.60PJ	3.4U	4.1U	4.1U	5.2U	0.71PJ	5.3U	1.6PJ	8.8P	3.5U

(

(

(prehensive Analytical Results - Soil(mples

		96-DV-03-	96-DV-03-
SAMPLE NUMBERS		S10	<u>\$11</u>
DATE SAMPLE COLLECTED		7/09/96	7/09/96
TIME SAMPLE COLLECTED		17:20	17:00
SAMPLE DEPTH		0-4"	3-4"
QA/QC DESCRIPTION (if applicable)		<u></u>	_
COMPOUND DETECTED (under)		• • • •	
COMPOUND DETECTED (µg/kg)	CRQL		
SEMI-VOLATILE ORGANIC COMPOUNDS butylbenzylphthalate	330 μg/kg	61J	360U
carbazole	330 μg/kg	400U	38J
		4000 51J	950
benzo(a)anthracene	330 µg/kg		1000
chrysene	330 µg/kg	93J	
bis(2-ethylhexyl)phthalate	330 µg/kg	72J	120J
di-n-octylphthalate	330 µg/kg	400U	360U
benzo(b)fluoranthene	330 µg/kg	79J	1300
benzo(k)fluoranthene	330 µg/kg	73J	920
benzo(a)pyrene	330 µg/kg	400U	1000
indeno(1,2,3-cd)pyrene	330 µg/kg	400U	910
dibenzo(a,h)anthracene	330 µg/kg	400U	450
benzo(g,h,i)perylene	330 µg/kg	400U	310J
PESTICIDES/PCBs	CROL		
alpha-BHC	1.7 µg/kg	2.1U	1.8U
beta-BHC	1.7 μg/kg	2.1U	1.8U
delta-BHC	1.7 μ g/kg	2.1U	1.8U
gamma-BHC (Lindane)	1.7 μg/kg	0.77PJ	0.42J
heptachlor	1.7 μg/kg	2.1U	1.8U
aldrin	1.7 μg/kg	2.1U	1.8U
heptachlor epoxide	1.7 μg/kg	2.1U	1.8U
endosulfan I	1.7 μg/kg	2.1U	1.8U
dieldrin	1.7 μg/kg 3.3 μg/kg	4.0U	3.6U
4,4-DDE	3.3 μg/kg	4.0U	3.6U
			3.6U
endrin	3.3 μg/kg	4.0U	
endosulfan II	3.3 μg/kg	4.0U	3.6U
4,4-DDD	3.3 µg/kg	4.0U	4.4
endosulfan sulfate	3.3 μg/kg	4.0U	3.6U
4,4-DDT	3.3 µg/kg	4.0U	3.6U

• -

Comprehensive Analytical Results - Soil Samples

				1		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
SAMPLE NUMBERS		96-DV-03- \$01	96-DV-03- S02	96-DV-03- S03	96-DV-03- D03	96-DV-03- S04	96-DV-03- 805	96-DV-03- 	96-DV-03- S07	96-DV-03- S08	96-DV-03- \$09
DATE SAMPLE COLLECTED		07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96
TIME SAMPLE COLLECTED		10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Background		
COMPOUND DETECTED (µg/kg)							•				
PESTICIDES/PCB3	CROL										
methoxychlor	17 μg/kg	21U	18U	1.8PJ	21U	26U	0.94PJ	27U	19U	19U	1 8 U
endrin ketone	3.3 μg/kg	4.1U	3.4U	4.1U	4.1U	5.2U	3.8U	5.3U	3.8U	3.7U	3.5U
endrin aldehyde	3.3 μg/kg	2.2PJ	3.4U	6.6	6.6P	5.2U	4.0P	5.3U	6.4P	3.7U	3.5U
alpha-chlordane	1.7 μ g/kg	2.1U	1.8U	2.1U	2.1U	5.4P	2.0U	2.7U	1.9U	1.9U	1.8U
gamma-chlordane	1.7 μ g/kg	2.1U	0.35PJ	2.1U	0.96PJ	4.3	2.0U	2.7U	1.9U	1.9U	1.8U
toxaphene	170 μ g/kg	210U	180U	210U	210U	260U	200U	270U	190U	190U	180U
aroclor-1016	33 µg/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	35U
aroclor-1221	33 µg/kg	83U	69U	83U	8 4U	100U	78U	110U	76U	74U	71U
aroclor-1232	67 μ g/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	35U
aroclor-1242	33 µg/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	35U
aroclor-1248	33 µg/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	35U
aroclor-1254	33 µg/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	830
aroclor-1260	33 µg/kg	41U	34U	41U	41U	52U	38U	53U	38U	37U	1200

TCL COMPOUND QUALIFIERS	DEFINITION
J	Indicates an estimated value.
U	Compound was analyzed for but not detected.
В	Compound is found in the associated blank as well as in the sample.
D	This flag indicates all compounds identified in an analysis at a secondary dilution factor.
Е	This flag indentifies compounds whose concentrations exceed the calibration range of the GC/MS instrumet.
Р	Indicates there is a greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

(nprehensive Analytical Results - Soi(.mples

SAMPLE NUMBERS		96-DV-03- S10	96-DV-03- S11
DATE SAMPLE COLLECTED		7/09/96	7/09/96
TIME SAMPLE COLLECTED		17:20	17:00
SAMPLE DEPTH		0-4"	3-4"
QA/QC DESCRIPTION (if appli	icable)		
COMPOUND DETECTED (µg/	kg)		
PESTICIDES/PCBs	CROL		
methoxychlor	17 μg/kg	21U	18U
endrin ketone	3.3 μg/kg	4.0U	7.5P
endrin aldehyde	3.3 μg/kg	4.0U	3.6U
alpha-chlordane	1.7 µg/kg	2.1U	1.8U
gamma-chlordane	1.7 μg/kg	2.1U	2.3P
toxaphene	170 μ g/kg	210U	180U
aroclor-1016	33 µg/kg	40U	36U
aroclor-1221	33 μg/kg	82U	73U
aroclor-1232	67 μ g/kg	40U	36U
aroclor-1242	33 μg/kg	40U	36U
aroclor-1248	33 μg/kg	40U	36U
aroclor-1254	33 µg/kg	170P	36U
aroclor-1260	33 μg/kg	40U	36U

TCL COMPOUND QUALIFIERS	DEFINITION
J	Indicates an estimated value.
U	Compound was analyzed for but not detected.
В	Compound is found in the associated blank as well as in the sample.
D	This flag indicates all compounds identified in an analysis at a secondary dilution factor.
Е	This flag indentifies compounds whose concentrations exceed the calibration range of the GC/MS instrumet.
Р	Indicates there is a greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

Comprehensive Analytical Results - Soil Samples

······			<u> </u>			r	1			<u> </u>	<u> </u>
SAMPLE NUMBERS		96-DV-03- S01	96-DV-03- <u>802</u>	96-DV-03- \$03	96-DV-03- D03	96-DV-03- S04	96-DV-03- 805	96-DV-03- S06	96-DV-03- S07	96-DV-03- S08	96-DV-03- S09
DATE SAMPLE COLLECTED		07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96	07/09/96
TIME SAMPLE COLLECTED		10:10	11:10	11:30	11:30	2:05	16:00	18:00	14:45	15:30	16:30
SAMPLE DEPTH		4'-4'6"	0-1"	18"-26"	18"-26"	18"-26'	5'	18"-28"	0-2"	2-3"	3-6"
QA/QC DESCRIPTION (if applicable)					Field Duplicate				Background		
ANALYTE DETECTED (mg/kg)											
TAL METALS/CYANIDE	CRDL										
aluminum	40 mg/kg	3470	10400	1910	1140	5290	9920	6210	6890	14300	4970
antimony	12 mg/kg	0.75U	0.70B	0.74U	0.90U	1.0B	3.5B	1.0U	0.6 8 U	278	2.9B
arsenic	2 mg/kg	20.7	77.2	1.6B	1.2U	27.0	12.2	49.7	6.0	141	36.0
barium	40 mg/kg	182	272	12.2B	7.2B	222	268	320	112	13000	824
beryllium	l mg/kg	2.0	5.8	0.25U	0.30U	3.1	0.68B	3.3	0.62B	0.77B	2.6
cadmium	l mg/kg	0.47B	6.6	0.43B	0.30U	0.38B	0.23U	0.33U	0.57B	0.69B	3.9
calcium	1000 mg/kg	4060	5650	995B	979B	16400	25500	2280	12900	5410	19800
chromium	2 mg/kg	5.5	23.6	17.6	8.5	14.0	12.6	16.5	17.3	62 .0	50.7
cobalt	10 mg/kg	6.0B	16.2	2.0B	1.4B	9.6B	7.9B	8.7B	6.6B	17.5	11.2
copper	5 mg/kg	26.8	91.8	136	96.9	73.0	18.3	41.5	22.5	1830	1680
iron	20 mg/kg	3240	9430	24200	15900	5890	19200	3120	13200	59500	13800
lead	0.6 mg/kg	29.9	110	15.4	7.2	97.0	16.8	18.2	31.5	652	1990
magnesium	1000 mg/kg	1010B	1480	565B	560B	8070	13200	596B	6100	2480	18200
manganese	3 mg/kg	98.2	99.1	427	265	72.8	621	45.2	681	614	236
mercury	0.1 mg/kg	0.12U	0.48	0.1 2 U	0.15U	0.14U	0.12U	0.17U	0.18	0.11U	0.21
nickel	8 mg/kg	10.4	34.6	18.7	11.3B	20.0	15.1	16.6	12.9	78.3	85.0
potassium	1000 mg/kg	611B	1390	126B	86B	810B	1010B	1230B	886B	1400	685B
selenium	l mg/kg	1.3	8.8	0.99U	1. 2 U	6.3	0.93U	8.6	0.90U	2.1	2.8
silver	2 mg/kg	0.25U	0.21U	0. 25 U	0.30U	0.28U	0.23U	0. 33 U	0.45B	0.23B	0.90B
sodium	1000 mg/kg	276B	364B	327B	318B	448B	364B	406B	207B	254B	279B
thallium	2 mg/kg	1.0U	1.8B	2.1B	1.3B	1.7B	2.4	1.3U	2.2B	4.0	1.5B
vanadium	10 mg/kg	18.3	92.6	1.2B	0.62B	47.7	24.0	61.9	17.4	18.5	33.6
zinc	4 mg/kg	33.7	39.4	41.7	22.3	231	60.9	48.0	76.9	286	291
cyanide	2 mg/kg	0.27B	0.26B	0.19U	0.22U	0.34B	0.17U	0.29B	0.30B	2.3	3.7

•

TAL ANALYTE QUALIFIERS	DEFINITION
В	Value is real, but is above instrument detection limit and below contract-required detection limit.
U	Analyte was analyzed for but not detected.

(

.

(aprehensive Analytical Results - Soi(mples

		96-DV-03-	96-DV-03-	
SAMPLE NUMBERS		S 10	S11	
DATE SAMPLE COLLECTED		7/09/96	7/09/96	
TIME SAMPLE COLLECTED		17:20	17:00	
SAMPLE DEPTH		0-4"	3-4"	
QA/QC DESCRIPTION (if applicable)				
ANALYTE DETECTED (mg/kg)	<u> </u>		<u></u>	
TAL METALS/CYANIDE	CRDL			
aluminum	40 mg/kg	8080	3290	
antimony	12 mg/kg	8.4B	2.1B	
arsenic	2 mg/kg	15.4	6.6	
barium	40 mg/kg	318	93.8	
beryllium	l mg/kg	1.9	1.1B	
cadmium	l mg/kg	16.3	1.4	
calcium	1000 mg/kg	48800	98000	
chromium	2 mg/kg	43.2	18.7	
cobalt	10 mg/kg	13.8	4.3B	
copper	5 mg/kg	191000	405	
iron	20 mg/kg	92300	16000	
lead	0.6 mg/kg	12100	242	
magnesium	1000 mg/kg	8860	36200	
manganese	3 mg/kg	693	344	
mercury	0.1 mg/kg	0.1 3 U	0.11U	
nickel	8 mg/kg	139	24.2	
potassium	1000 mg/kg	763B	599B	
selenium	l mg/kg	2.6	0.93B	
silver	2 mg/kg	7.6	0. 22 U	
sodium	1000 mg/kg	809B	368B	
thallium	2 mg/kg	4.5	1.3B	
vanadium	10 mg/kg	28.1	15.6	
zinc	4 mg/kg	11500	159	
cyanide	2 mg/kg	0.60B	0.55	

TAL ANALYTE QUALIFIERS	DEFINITION
В	Value is real, but is above instrument detection limit and below contract-required detection limit.
U	Analyte was analyzed for but not detected.

Comprehensive Analytical Results - Sediment Samples

SAMPLE NUMBERS		96-DV-03- \$15	96-DV-03- S16	96-DV-03- \$17	96-DV-03- D17	96-DV-03- \$18	96-DV-03- \$19		
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96		
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45		
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"		
QA/QC DESCRIPTION (if applicable)					Field Duplicate		Background		
COMPOUND DETECTED (µg/kg)									
VOLATILE ORGANIC COMPOUNDS	CROL								
chloromethane	10 μ g/kg	26U	29U	15U	14U	18U	18U		
bromomethane	10 µg/kg	26U	29U	15U	14U	18U	18U		
vinyl chloride	10 µg/kg	26U	29 U	15U	14U	1 8 U	18U		
chloroethane	10 μ g/kg	26 U	29U	15U	14U	18U	18U		
methylene chloride	10 µg/kg	26BJU	29BJU	15BJU	14BJU	18BJU	18BJU		
acetone	10 μ g/kg	47	43	15U	14U	33	19		
carbon disulfide	10 µg/kg	26U	29U	15U	14U	18U	1 8 U		
1,1-dichloroethene	10 µg/kg	26U	29U	15U	14U	18U	18U		
1,1-dichloroethane	10 µg/kg	26 U	29U	15U	14U	18U	1 8 U		
1,2-dichlorothene (total)	10 μ g/kg	26U	29U	15U	14U	18U	18U		
chloroform	10 μ g/kg	26 U	29U	15U	14U	18U	18U		
1,2-dichloroethane	10 µg/kg	26U	29U	15U	14U	18U	18U		
2-butanone	10 μg/kg	26U	10J	15U	14U	5J	18U		
1,1,1-trichloroethane	10 μ g/kg	26U	29U	15U	14U	18U	18U		
carbon tetrachloride	10 μ g/kg	2 6U	29U	15U	14U	18U	1 8 U		
bromodichloromethane	10 μ g/kg	26U	29U	15U	14U	18U	18U		
1,2-dichloropropane	10 μg/kg	26U	29U	15U	14U	18U	18U		
cis-1,3-dichloropropene	10 µg/kg	26U	29 U	15U	14U	18U	18U		
trichloroethene	10 µg/kg	0.8J	29U	0.7J	14U	18U	18U		
dibromochloromethane	10 µg/kg	26U	29U	15U	14U	18U	18U		
1,1,2-trichloroethane	10 µg/kg	26U	29U	15U	14U	18U	18U		
benzene	10 μg/kg	26U	29U	15U	14U	18U	18U		
trans-1,3-dichloropropene	10 µg/kg	26U	29 U	15U	14U	18U	18U		
bromoform	10 µg/kg	26U	29U	15U	14U	18U	18U		
4-methyl-2-pentanone	10 µg/kg	26U	29U	15U	14U	18U	18U		
2-hexanone	10 µg/kg	26U	29U	15U	14U	18U	18U		
tetrachloroethene	10 µg/kg	26U	29U	15U	14U	18U	18U		
1,1,2,2-tetrachloroethane	10 µg/kg	26U	29U	15U	14U	18U	18U		
toluene	10 µg/kg	26Ú	29U	15U	14U	18U	1J		

Сот	ehensive Analytical Results - Sedim	Samples
CON	chemistre i thaty tieur itesuits beaning	· Manipico

Г					<u> </u>		<u> </u>		
SAMPLE NUMBERS		96-DV-03- \$15	96-DV-03- \$16	96-DV-03- \$17	96-DV-03- D17	96-DV-03- \$18	96-DV-03- \$19		
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96		
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45		
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"		
QA/QC DESCRIPTION (if applicable)					Field Duplicate		Background		
COMPOUND DETECTED (µg/kg)								 	
VOLATILE ORGANIC COMPOUNDS	CRQL								
chlorobenzene	10 μg/kg	26U	29U	15U	14U	18U	18U		
ethyl benzene	10 μg/kg	26U	29U	15U	14U	1 8 U	18U		
styrene	10 µg/kg	26U	29U	15U	14U	18U	18U		
xylene (total)	10 µg/kg	26U	29U	15U	14U	18U	18U		
					-			 	 <u>ين</u>
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL								
phenol	330 µg/kg	85 0U	940U	500U	460U	580U	600U		
bis(2-chloroethyl)ether	330 µg/kg	850U	940U	500U	460U	580U	600U		
2-chlorophenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
1,3-dichlorobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
1,4-dichlorobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
1,2-dichlorobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
2-methylphenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
2,2-oxybis(1-chloropropane)	330 µg/kg	850U	940U	500U	460U	580U	600U		
4-methylphenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
n-nitroso-di-n-diproprylamine	330 µg/kg	850U	940U	500U	460U	580U	600U		
hexachloroethane	330 µg/kg	850U	940U	500U	460U	580U	600U		
nitrobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
isophorone	330 µg/kg	850 U	940U	500U	460U	580U	600U		
2-nitrophenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
2,4-dimethylphenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
bis(2-chloroethoxy)methane	330 µg/kg	850U	940U	500U	460U	580U	600U		
2,4-dichlorophenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
1,2,4-trichlorobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
naphthalene	330 µg/kg	70J	77J	31J	25J	18J	63J		
4-chloroaniline	330 µg/kg	850 U	940U	500U	460U	580U	600U		
hexachlorobutadiene	330 µg/kg	850U	940U	500U	460U	580U	600U		
4-chloro-3-methylphenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
2-methylnaphthalene	330 µg/kg	120J	75J	23J	19J	16J	31J		

Comprehensive Analytical Results - Sediment Samples

r					·				
SAMPLE NUMBERS		96-DV-03- S15	96-DV-03- \$16	96-DV-03- 817	96-DV-03- D17	96-DV-03- \$18	96-DV-03- \$19		
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96		
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45		
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"		
QA/QC DESCRIPTION (if applicable)					Field Duplicate		Background		
COMPOUND DETECTED (µg/kg)									
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL							 	
hexachlorocyclopentadiene	330 µg/kg	850U	940U	500U	460U	580U	600U		
2,4,6-trichlorophenol	330 µg/kg	850U	940U	500U	460U	580U	600U		
2,4,5-trichlorophenol	800 µg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
2-chloronaphthalene	330 µg/kg	85 0U	940U	500U	460U	580U	600U		
2-nitroaniline	800 μg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
dimethylphthalate	330 µg/kg	850U	940U	500U	460U	580U	600Ü		
acenaphthylene	330 µg/kg	85 0U	61J	160J	150J	14J	22J		
2,6-dinitrotoluene	330 µg/kg	85 0U	940U	500U	460U	580U	600U		
3-nitroaniline	330 µg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
acenaphthene	330 µg/kg	59J	92J	21J	15J	40J	89J		
2,4-dinitrophenol	800 µg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
4-nitrphenol	800 μ g/kg	2100U	2400U	1300U	1200U	1500U	1500U		
dibenzofuran	330 µg/kg	70J	95J	11J	7J	34J	100J		
2,4-dinitrotoluene	330 µg/kg	85 0U	940U	500U	460U	580U	600U		
diethylphthalate	330 µg/kg	850U	39J	24J	27J	51J	33J		
4-chlorophenyl-phenyl ether	330 µg/kg	850U	940U	500U	460U	580U	600U		
fluorene	330 µg/kg	76J	160J	53J	43J	60J	130J		
4-nitroaniline	800 µg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
4,6-dinitro-2-methylphenol	800 μ g/kg	2100U	2400U	1300U	1200U	1500U	1500U		
n-nitrosodiphenylamine	330 μ g/kg	85 0U	940U	500U	460U	580U	600U		
4-bromophenyl-phenyl ether	330 µg/kg	85 0U	940Ú	500U	460U	580U	600U		
hexachlorobenzene	330 µg/kg	850U	940U	500U	460U	580U	600U		
pentachlorophenol	800 µg/kg	2100U	2400U	1300U	1200U	1500U	1500U		
phenanthrene	330 µg/kg	890	1500	700	610	830	1900		
anthracene	330 µg/kg	110J	230J	400J	390J	75J	170J		
carbazole	330 µg/kg	85J	110J	20J	15J	84J	190J		
di-n-butylphthalate	330 µg/kg	850BJU	940BJU	500BJU	460BJU	580BJU	600BJU		
fluoranthene	330 µg/kg	1100	2600	2000	2000	1400	2200		
pyrene	330 µg/kg	1300	3000	4700E	3700E	1400	2700		

 $(\cdot$

Co(cehensive Analytical Results - Sedim(Samples

		96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-		
SAMPLE NUMBERS		<u>\$15</u>	S16	S17	D17	S18	S19		
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96		
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45		
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"		
QA/QC DESCRIPTION (if applicable)			, 		Field Duplicate	l	Background		
COMPOUND DETECTED (µg/kg)		··········						 	· · · · · · · · · · · · · · · · · · ·
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL		-						
butylbenzylphthalate	330 µg/kg	85 0U	940U	500U	460U	580U	84J		
3,3-dichlorobenzidine	330 µg/kg	850U	940U	500U	460U	580U	600U		
benzo(a)anthracene	330 µg/kg	490J	1500	2200	2100	600	1300		
chrysene	330 µg/kg	550J	1500	2500	2100	710	1500		
bis(2-ethylhexyl)phthalate	330 µg/kg	850U	470J	500U	84J	330J	360J		
di-n-octylphthalate	330 µg/kg	850U	940U	500U	460U	580U	600U		
benzo(b)fluoranthene	330 µg/kg	800J	2500	2700	2300	1000	1800		
benzo(k)fluoranthene	330 µg/kg	300J	950	930	930	410J	690		
benzo(a)pyrene	330 µg/kg	460J	1800	2100	2100	580	1100		
indeno(1,2,3-cd)pyrene	330 µg/kg	460J	1900	1900	1400	650	1400		
dibenzo(a,h)anthracene	330 µg/kg	120J	480J	430J	320J	150J	310J		
benzo(g,h,i)perylene	330 µg/kg	490J	2000	2200	1600	660	1400		
PESTICIDES/PCBs	CROL		T			1			
alpha-BHC	1.7 μ g/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
beta-BHC	1.7 μg/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
delta-BHC	1.7 μg/kg	4.5U	4.9U	1.4ЛР	1.5ЛР	3.0U	3.1U		
gamma-BHC (Lindane)	1.7 μ g/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
heptachlor	1.7 μ g/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
aldrin	1.7 μ g/kg	4.5U	4.9U	2.6U	2.4U	3.0U	1.3JP		
heptachlor epoxide	1.7 μ g/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
endosulfan I	1.7 μg/kg	4.5U	4.9U	2.6U	2.4U	3.0U	3.1U		
dieldrin	3.3 µg/kg	9.6P	2.6ЛР	0. 8 6JP	4.6U	2.5JP	4.0JP		
4,4-DDE	3.3 µg/kg	8.7U	2.2ЛР	5.0U	4.6U	2.6JP	2.4ЈР		
endrin	3.3 µg/kg	34	9.4U	3.4ЛР	4.8P	2.4JP	6.0U		
endosulfan II	3.3 μg/kg	8 .7U	9.4U	5.0U	4.6U	5.8U	6.0U		
4,4-DDD	3.3 µg/kg	1.7JP	9.4U	2.2JP	4.9	3.4JP	3.6JP		
endosulfan sulfate	3.3 µg/kg	3.7JP	9.4U	5.0U	4.6U	3.0JP	6.0U		
4,4-DDT	3.3 µg/kg	4.4JP	2.4ЛР	2.1JP	2.2JP	2.7JP	2.3JP		

.

.

Comprehensive Analytical Results - Sediment Samples

		96-DV-03- \$15	96-DV-03- S16	96-DV-03- S17	96-DV-03- D17	96-DV-03- \$18	96-DV-03- S19			
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96			
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45			
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"			
QA/QC DESCRIPTION (if applicable)					Field Duplicate		Background			
COMPOUND DETECTED (µg/kg)								 		
PESTICIDES/PCBs	CROL									
methoxychlor	17 μ g/kg	18J	17JP	50	65	8.9ЛР	12ЛР			
endrin ketone	3.3 µg/kg	8 .7U	4.9J	3.2ЛР	4.0ЛР	5.8U	2.5ЛР			
endrin aldehyde	3.3 µg/kg	7.9JP	9.4U	5.0U	4.6U	5.8U	6.0U			
alpha-chlordane	1.7 µg/kg	12	1.8ЛР	0.72ЈР	2.4U	7.0P	6.6P			
gamma-chlordane	1.7 μg/kg	4.9P	3.2J	1.4J	2.4U	6.9	5.6P			
toxaphene	170 µg/kg	450U	490U	260U	240U	300U	310U			
aroclor-1016	33 µg/kg	8 7U	94U	50U	46U	5 8 U	60U			
aroclor-1221	33 μg/kg	1 8 0U	190U	100U	93U	120U	120U			
aroclor-1232	67 μg/kg	87 U	94U	50U	46U	- 58 U	60U			
aroclor-1242	33 µg/kg	87U	94U	50U	46U	58U	60U			
aroclor-1248	33 μg/kg	87 U	94U	50U	46U	58U	60U			
aroclor-1254	33 µg/kg	660	94U	50U	46U	58U	60U			
aroclor-1260	33 µg/kg	87 U	94U	_50U	46U	58U	60U			

TCL COMPOUND QUALIFIERS	DEFINITION
J	Indicates an estimated value.
Ŭ	Compound was analyzed for but not detected.
В	Compound is found in the associated blank as well as in the sample.
D	This flag indicates all compounds identified in an analysis at a secondary dilution factor.
E	This flag indentifies compounds whose concentrations exceed the calibration range of the GC/MS instrumet.
Р	Indicates there is a greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

(

,	,	
Cor(ehensive Analytical Results - Sedim	Samples

.

		96-DV-03- \$15	96-DV-03- S16	96-DV-03- \$17	96-DV-03- D17	96-DV-03- S18	96-DV-03- 819			
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96			
TIME SAMPLE COLLECTED		10:30	11:00	15:15	15:15	14:45	15:45			
SAMPLE DEPTH		15'-18'	15'-18'	0-6"	0-6"	0-6"	0-6"			
QA/QC DESCRIPTION (if applicable)					Field Duplicate		Background			
ANALYTE DETECTED (mg/kg)									· · · · ·	
TAL METALS/CYANIDE	CRDL									
aluminum	40 mg/kg	2750	6590	9750	8450	8940	8600			
antimony	12 mg/kg	9.1U	13.5U	7.9U	8.1U	10U	10.1U			
arsenic	2 mg/kg	10.3	12.6	9.2	9.2	6.0	9			
barium	40 mg/kg	73.0	137	128	125	117	130			
beryllium	l mg/kg	0. 28 B	0.35B	0.54B	0. 48 B	0.5B	0.47B			
cadmium	1 mg/kg	1.0U	1.5U	0. 89 U	0.91U	1.1U	1.1U			
calcium	1000 mg/kg	53600	11800	61700	58100	81900	74900			
chromium	2 mg/kg	23.1	17.2	14.9	13.7	18	22.3			
cobalt	10 mg/kg	3.7B	6.7B	6.6B	6.2B	6.5B	7.2B			
copper	5 mg/kg	29.3	24.7	29.3	29.0	26	33.5			
iron	20 mg/kg	11300	13500	16400	15500	15000	15800			
lead	0.6 mg/kg	33.7	42.0	51.6	47.2	30.5	47.9			
magnesium	1000 mg/kg	13600	21600	17200	16100	24200	20600			
manganese	3 mg/kg	205	545	299	258	330	420			
mercury	0.1 mg/kg	0.0 8 U	0.1 2 U	0.63	0.65	0.09U	0.1 3 B			
nickel	8 mg/kg	13.4	18.7B	16.2	17.9	19.9	23.7			
potassium	1000 mg/kg	297B	736B	812B	709B	1090B	991B			
selenium	l mg/kg	1.1B	0. 59 B	0.4B	0. 59 B	0.73B	0.59B			
silver	2 mg/kg	1.4U	2.1U	1.2U	1.2U	1.5U	1.5U			
sodium	1000 mg/kg	165B	206B	144B	131B	191B	183B			
thallium	2 mg/kg	0.68B	0. 98 U	1.0B	0.66B	0.84B	0.9B			
vanadium	10 mg/kg	9.6B	16.8B	21.8	19.2	20.2	20			
zinc	4 mg/kg	80.7	143	93.6B	80.4	114	132			
cyanide	2 mg/kg	0. 27 B	0.17U	0.19B	0.21B	0.23B	0.32B			

TAL ANALYTE QUALIFIERS	DEFINITION
В	Value is real, but is above instrument detection limit and below contract-required detection limit.
U	Analyte was analyzed for but not detected.

Comprehensive Analytical Results - Monitoring Wells Samples

		96-DV-03-	96-DV-	96-DV-03-	96-DV-03-	96-DV-03-
SAMPLE NUMBERS		\$22	03-S23	D23	S24	S25
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		9:50	10:50	10:50	13:55	<u>14:30</u>
MONITORING WELL NUMBERS		MW 104	MW 101	MW 101D	MW 103	MW 102
QA/QC DESCRIPTION (if applicable)		Background		Field Duplicate		
COMPOUND DETECTED (ug/L)				<u></u>		
VOLATILE ORGANIC COMPOUNDS	CROL					
chloromethane	10 μg/L	10U	10U	10U	10U	10U
bromomethane	10 μg/L	10U	10U	10U	10U	10U
vinyl chloride	10 µg/L	10U	4J.	4J	10U	10U
chloroethane	10 μg/L	10U	2J	10U	10U	22
methylene chloride	10 μg/L	10U	10U	4J	10U	6J
acetone	10 μg/L	10U	30	29	10U	10U
carbon disulfide	10 μg/L	10U	10U	10U	10U	10U
1,1-dichloroethene	10 μ g/ L	10U	10U	10U	10U	10U
1,1-dichloroethane	10 µg/L	10U	13	13	10U	10U
1,2-dichloroethene (Total)	10 µg/L	10U	150	140	10U	10U
chloroform	10 μg/L	10U	10U	10U	10U	10U
1,2-dichloroethane	10 μg/L	10U	10U	10U	10U	10U
2-butanone	10 μ g/L	10U	10U	10U	10U	10U
1,1,1-trichloroethane	10 µg/L	10U	10U	10U	10U	10U
carbon tetrachloride	10 µg/L	10U	10U	10U	10U	10U
bromodichloromethane	10 µg/L	10U	10U	10U	10U	10U
1,2-dichloropropane	10 µg/L	10U	10U	10U	10U	10U
cis-1,3-dichloropropene	10 μ g /L	10U	10U	10U	10U	10U
trichloroethene	10 µg/L	10U	10U	10U	10U	10U
dibromochloromethane	10 μ g/ L	10U	10U	10U	10U	10U
1,1,2-trichloroethane	10 μ g/ L	10U	10U	10U	10U	10U
benzene	10 μg/L	10U	10U	10U	10U	10U
trans-1,3-dichloropropene	10 μg/L	10U	10U	10U	10U	10U
bromoform	10 μg/L	10U	10U	10U	10U	10U
4-methyl-2-pentanone	10 μg/L	10U	10U	10U	10U	10U
2-hexanone	10 µg/L	10U	10U	10U	10U	10U
tetrachloroethene	10 µg/L	10U	10U	10U	10U	10U
1,1,2,2-tetrachloroethane	10 µg/L	10U	10U	10U	10U	10U
toluene	10 µg/L	10U	10U	1J	100	15
chlorobenzene	10 μg/L	_ 10U	10U	10U	10U.	Uni
······································						て ―

•

Compre asive Analytical Results - Monitorin /ells Samples

	96-DV-03-	96-DV- 03-823	96-DV-03-							
		the second second second second second second second second second second second second second second second s								
10 μg/L	100	100	100	100	4J					
	9000000									
			1							
10 μg/L										
10 µg/L		10U	10U							
10 μ g/ L	10U	10U	10U	10U	10U					
10 μ g/ L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 μg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 μ g/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	100	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 µg/L	10U	10U	10U	10U	10U					
10 μg/L	10U	10U	10U	10U	10U					
	10U	10U	10U	10U	10U					
	10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L 10 μg/L	S22 7/09/96 9:50 MW 104 Background 10 µg/L 10U 10 µg/L 10U	S22 03-S23 7/09/96 7/09/96 9:50 10:50 MW 104 MW 101 Beckeround	S22 03-S23 D23 7/09/96 7/09/96 7/09/96 9:50 10:50 10:50 MW 104 MW 101 MW 101D Background Field Duplicate 10 µg/L 10U 10U 10U 10 µg/L 10U 10U 10U	S22 03-S23 D23 S24 $7/09/96$ $7/09/96$ $7/09/96$ $7/09/96$ $7/09/96$ 9:50 10:50 13:55 MW 104 MW 101 MW 101 MW 103 Background Field Dubleate	S22 03-S23 D23 S24 S25 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 9:50 10:50 10:50 13:55 14:30 MW 104 MW 101 MW 101 MW 103 MW 102 Bederound Field Dankete	S22 03-S23 D23 S24 S25 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 9:50 10:50 13:55 14:30 S24 MW 104 MW 101 MW 103 MW 102 MW 102 Beberound Field Dunkate 10 $\mu g/L$ 10U 10U 10U 10U 10 $\mu g/L$ 10U </td <td>S22 03-S23 D23 S24 S25 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 9:50 10:50 13:55 14:30 100 100 100 MW 104 MW 101 MW 101 MW 103 MW 103 MW 102 100 Bederound Field Dankate </td> <td>S22 $03-523$ D23 S24 S25 7$(09)96$ 7$(09)96$ 7$(09)96$ 7$(09)96$ 7$(09)96$ 9:50 10:50 13:55 14:30 MW 104 MW 101 MW 103 MW 102 Bakrood Frid Dabate </td> <td>S22 03-823 D23 S24 S25 S26 S26</td>	S22 03-S23 D23 S24 S25 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 7/09/96 9:50 10:50 13:55 14:30 100 100 100 MW 104 MW 101 MW 101 MW 103 MW 103 MW 102 100 Bederound Field Dankate	S22 $03-523$ D23 S24 S25 7 $(09)96$ 7 $(09)96$ 7 $(09)96$ 7 $(09)96$ 7 $(09)96$ 9:50 10:50 13:55 14:30 MW 104 MW 101 MW 103 MW 102 Bakrood Frid Dabate	S22 03-823 D23 S24 S25 S26 S26

-**--** `

Comprehensive Analytical Results - Monitoring Well Samples

			04 P.			
SAMPLE NUMBERS		96-DV-03- S22	96-DV- 03-823	96-DV-03- D23	96-DV-03- \$24	96-DV-03- \$25
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		9:50	10:50	10:50	13:55	14:30
SAMPLE DEPTH (below surface)						
QA/QC DESCRIPTION (if applicable)		Background		Field Duplicate		
COMPOUND DETECTED (µg/L)						
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL					
hexachlorocyclopentadiene	10 µg/L	10U	10U	10U	10U	10U
2,4,6-trichlorophenol	10 µg/L	10U	10U	10U	10U	10U
2,4,5-trichlorophenol	25 μg/L	25U	25U	25U	25U	25U
2-chloronaphthalene	10 µg/L	10U	10U	10U	10U	10U
2-nitroaniline	25 μg/L	25U	25 U	25U	25U	25U
dimethyl phthalate	10 µg/L	10U	10U	10U	10U	10U
acenaphthylene	10 µg/L	10U	10U	10U	10U	10U
2,6-dinitrotoluene	10 μg/L	10U	10U	10U	10U	10U
3-nitroaniline	25 μg/L	25U	25U	25U	25U	25U
acenaphthene	10 µg/L	10U	10U	10U	10U	10U
2,4-dinitrophenol	25 μg/L	25U	25U	25U	25U	25U
4-nitrophenol	25 μg/L	25U	25U	25U	25U	25U
dibenzofuran	10 µg/L	10U	10U	10U	10U	10U
2,4-dinitrotoluene	10 μ g/ L	10U	10U	10U	10U	10U
diethylphthalate	10 μg/L	10JBU	10JBU	10JBU	10U	10U
4-chlorophenyl-phenyl ether	10 μ g/ L	10U	10U	10U	10U	10U
fluorene	10 μ g/ L	10U	10U	10U	10U	10U
4-nitroaniline	25 μg/L	25U	25U	25U	25U	25U
4,6-dinitro-2-methylphenol	25 μg/L	25U	25U	25U	25U	25U
n-nitrosodiphenylamine	10 μ g/L	10U	10U	10U	10U	10U
4-bromophenyl-phenyl ether	10 μ g/L	10U	10U	10U	10U	10U
hexachlorobenzene	10 μ g/L	10U	10U	10U	10U	10U
pentachlorophenol	10 µg/L	25U	25U	25U	25U	25U
phenanthrene	10 μ g/L	10U	10U	10U	10U	10U
anthracene	10 μ g/L	10U	10U	10U	10U	10U
di-n-butylphthalate	10 μ g/L	10U	10U	10U	10U	10U
fluoranthene	10 μ g/L	10U	10U	10U	10U	10U
pyrene	10 μ g/ L	10U	10U	10U	10U	10U
butylbenzylphthalate	10 μ g/ L	10U	10U	10U	10U	10U
3,3'-dichlorobenzidine	10 µg/L	<u>10U</u>	10U	10U	10U	100
						τ-

Compr	nsive Analytical Results - Monitoria	Nell Samples
-------	--------------------------------------	---------------------

	ľ	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-	96-DV-03-			
SAMPLE NUMBERS		96-DV-03- S22	\$6-DV-03- \$23	D23	50-DV-03- S24	\$6-DV-03- \$25			
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96			
TIME SAMPLE COLLECTED		9:50	10:50	10:50	13:55	14:30			
SAMPLE DEPTH (below surface)									
QA/QC DESCRIPTION (if applicable)		Background		Field Duplicate					
COMPOUND DETECTED (µg/L)							 	 	 <u></u>
SEMI-VOLATILE ORGANIC COMPOUNDS	CRQL								
benzo(a)anthracene	10 μ g/L	10U	10U	10U	10U	10U			
bis(2-ethylhexyl)phthalate	10 μ g/L	1J	2J	10U	2J	10U			
chrysene	10 µg/L	10U	10U	10U	10U	10U ·			
di-n-octyl phthalate	10 µg/L	3J	1J	10U	10U	10U			
benzo(b)fluoranthene	10 µg/L	10U	10U	10U	10U	10U			
benzo(k)fluoranthene	10 µg/L	10U	10U	10U	10U	10U			
benzo(a)pyrene	10 µg/L	10U	10U	10U	10U	10U			
indenol(1,2,3-cd)pyrene	10 µg/L	10U	10U	10U	10U	10U			
dibenzo(a,h)anthracene	10 μ g/L	10U	10U	10U	10U	10U			
benzo(g,h,i)perylene	10 µg/L	10U	10U	10U	10U	10U			
PESTICIDES/PCBs	CRQL								
alpha-BHC	0.05 μg/L	0.0 50 U	0.050U	0.050U	0.050U	0.050U			
beta-BHC	0.05 μ g/L	0.050U	0.050U	0.0 50 U	0.0 50 U	0.050U			
delta-BHC	0.05 μ g/L	0.0 50 U	0.0 50 U	0.0 50 U	0.050U	0.050U			
gamma-BHC (Lindane)	0.05 μg/L	0.0 5 0U	0.050U	0.0 50 U	0.050U	0.0 50 U			
heptachlor	0. 05 μg/L	0.0 5 0U	0.051PJ	.0082PJ	.0095PJ	.0092PJ			
aldrin	0. 05 μg/L	0.050U	0.0 50 U	0.050U	0.050U	0.050U			
heptachlor epoxide	0.05 μg/L	0.050U	0.050U	0.050U	0.050U	0.050U			
endosulfan I	0.05 μg/L	0.050U	0.0 50 U	0.0 50 U	0.050U	0.050U			
dieldrin	0.10 μ g/L	0.10U	0.10U	0.10U	0.10U	0.10U			
4,4'-DDE	0.10 μg/L	0.10U	0.10U	0.10U	0.10U	0.10U			
endrin	0.10 μ g/L	0.10U	0.10U	0.10U	0.10U	0.10U			
endosulfan II	0.10 μ g/L	0.10U	0.10U	0.10U	0.10U	0.10U			
4,4'-DDD	0.10 μg/L	0.10U	0.10U	0.10U	0.10U	0.10U			
endosulfan sulfate	0.10 μg/L	0.10U	0.10U	0.10U	0.10U	0.10U			
4,4'-DDT	0.10 µg/L	0.10U	0.10U	0.10U	0.10U	0.10U			

Comprehensive Analytical Results - Monitoring Well Samples

SAMPLE NUMBERS		96-DV-03- S22	96-DV- 03-S23	96-DV-03- D23	96-DV-03- S24	96-DV-03- \$25
DATE SAMPLE COLLECTED	-	7/09/96	7/09/96	7/09/96	7/09/96	7/09/96
TIME SAMPLE COLLECTED		9:50	10:50	10:50	13:55	14:30
SAMPLE DEPTH (below surface)						
QA/QC DESCRIPTION (if applicable)		Background		Field Duplicate		
COMPOUND DETECTED (µg/L)					_	
PESTICIDES/PCBs	CRQL			I		
methoxychlor	0. 50 μg/L	0.50U	0.50U	0.50U	0. 50 U	0.50U
endrin ketone	0.10 μ g/ L	0.10U	0.10U	0.10U	0.10U	0.10U
endrin aldehyde	0.10 μ g/L	0.10U	0.10U	0.10U	0.10U	0.10U
alpha-chlordane	0.05 μ g/L	0.0 50 U	0.050U	0.050U	0.050U	0.050U
gamma-chlordane	0.05 μ g/L	0.050U	0.050U	0.050U	0.050U	0.050U
toxaphene	5.0 μg/L	5.0U	5.0U	5.0U	5.0U	5.0U
aroclor-1016	1.0 μ g/L	1.0U	1.0U	1.0U	1.0U	1.0U
aroclor-1221	1.0 μ g/ L	2.0U	2.0U	2.0U	2.0U	2.0U
aroclor-1232	2.0 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U
aroclor-1242	1.0 μ g/ L	1.0U	1.0U	1.0U	1.0U	1.0U
aroclor-1248	1.0 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U
aroclor-1254	1.0 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U
aroclor-1260	1.0 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U

TCL COMPOUND QUALIFIERS	DEFINITION
J	Indicates an estimated value.
U	Compound was analyzed for but not detected.
В	Compound is found in the associated blank as well as in the sample.
D	This flag indicates all compounds identified in an analysis at a secondary dilution factor.
E	This flag indentifies compounds whose concentrations exceed the calibration range of the GC/MS instrumet.
Р	Indicates there is a greater than 25% difference for detected concentrations between two GC columns. The lower of the two values is reported.

(

Comprehensive Analytical Results - Monitoring Well Samples

						<u> </u>	
SAMPLE NUMBERS		96-DV-03- \$22	96-DV- 03-S23	96-DV-03- D23	96-DV-03- S24	96-DV-03- S25	
DATE SAMPLE COLLECTED		7/09/96	7/09/96	7/09/96	7/09/96	7/09/96	
TIME SAMPLE COLLECTED		9:50	10:50	10:50	13:55	14:30	
SAMPLE DEPTH (below surface)							
QA/QC DESCRIPTION (if applicable)		Background		Field Duplicate			
ANALYTE DETECTED (µg/L)							
TAL METALS/CYANIDE	CRDL						
aluminum	200 μg/L	5730	10000	361	98.4B	183B	
antimony	60 µg/L	3.0U	3.0U	3.0U	3.0U	3.0U	
arsenic	10 μg/L	547	9.6B	4.0U	4.0U	4.0U	
barium	200 µg/L	2530	330	347	92.5B	84.4B	
beryllium	5 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U	
cadmium	5 μg/L	1.0U	1.0U	1.0U	1.0U	1.0U	
calcium	5000 μg/L	190000	224000	81700	78800	87000	
chromium	10 μg/L	17.3	17.4	1.2B	7.6B	1.0U	
cobalt	50 μg/L	24.6B	12.3B	2.0B	1.0U	1.0U	
copper	25 μg/L	27.8	30.8	4.9B	3.2B	3.1B	
iron	100 μg/L	38000	20600	720	180	332	
lead	3 μg/L	13.4	21.5	8.7	2.8B	1.1B	
magnesium	5000 μg/L	75400	76800	12400	23100	25000	
manganese	15 μg/L	1000	1000	86.7	46.3	107	
mercury	0.2 μg/L	0.20U	0.20U	0.20U	0. 20 U	0.20U	
nickel	40 μg/L	17.3B	29.7B	14.2B	1.1B	2.2B	
potassium	5000 μg/L	9570	39600	114000	2720B	3390B	
selenium	5 μg/L	8.3	4.0U	4.0U	4.0U	4.0U	
silver	10 µg/L	1.0U	1.0U	1.0U	1.0U	1.0U	
sodium	5000 μg/L	81800	46200	98700	13400	12400	
thallium	10 µg/L	4.6B	4.4B	4.0U	4.0U	4.0U	
vanadium	50 μg/L	14.8B	20.9B	1.0U	1.0U	1.0U	
zinc	20 μg/L	89.7	77.7	10B	7.2B	9.5B	
cyanide	10 μg/L	9.2B	3.0U	3.0U	3.0U	<u>3.0</u> U	

TAL ANALYTE QUALIFIERS	DEFINITION
В	Value is real, but is above instrument detection limit and below contract-required detection limit.
U	Analyte was analyzed for but not detected.

APPENDIX E

Groundwater Analytical Report

.

Date Received <u>96 p2/21</u>	FEB & Eng	5 NG		- A		
Station/Location <u>South Davien</u> Sample Collected By <u>Pson A Rick Cra</u>	Jer Willy Af	niiation	F3+RA	is LUE C	an trecto	س کچ
Bill to	Řé	port Ana	lysis to $\underline{\mathcal{R}}$	ICE Cisle	r/DEP	Ś
Division: []DSW []DDAGW [L]DERF District: []CDO []NEDO []NWDO	R []DHWM []D []SEDO [4 5 W	DAPC [DO		Othe	r	
Sample Type: [JAqueous []Sediment []Tis	sue []Oil []Air(Other	Canister	[]Air Filter]	XjGrab []Co	mposite	
۲۲ MM DD H Date & Time of Sample Begin <u>96 102 ا 1</u> 9	H MM Y $\frac{16}{20}$ End $\frac{2}{2}$	Y MM D		-	19'	
Sample Use: []Rush []Litigation []Comp	plaint [i]Complian	ce []S	urvey []Amb	ient []Other		
Well Use: []Industrial []Public [`]Priva	ate NA					
Sample Volume Submitted:# of Vials	# of Liter Ja	rs		Other		-
Analysis Requested	Method		Analyzed	Reported	Analyst	ļ
Volatile Organic Compounds (VOC): (GC/MS)	Mez4 []8260 []524.2	961022	46107126	-AT	
Volatile Organic Compounds (VOC): (GC)	[]601&602 []502.2	<u>_</u>	<u> </u>		
Base-Neutral & Acid Extractables: (GC/MS)	[]625 []8270	/			
Base-Neutral Extractables (PAHs): (GC/MS)	[]625 []8270	//	!!		
Acid Extractables (Phenols): (GC/MS)	[]625 []6270	/	!!!		
Pesticides: (GC)	[]508 [0803[
Polychlorinated bichenyls (PCSs): (GC)	[]608 [0803	//			
Chlordane: (GC)	[]608 []8080	//	!!		
Toxaphene: (GC)	[]608 []8080		!!		
Others:						$\left \right $
Volatile Preserved with XHCL []Sodium Thiosulfate	E:c	assav Sar	cle Submitted: []	Yes MNO		
Comments: ()						1

.

.

	Ohio E Volatile Organic Analy	t	
Sample: Date Collected: Data Analyzed: Matrix: File No:	C8921 SOUTH DAYTON DUMP 02/20/96 02/22/96 Water V22206.D	Method: Collected by: Analyzed by: Dilution: Conc. Units:	624 PASARA A.JAMAL 1 ug/L
CAS NO.	COMPOUND	CONC	DL
71-43-2	Eenzene	1.2	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butylbenzene	ND	0.5
56-23-5	Carbon tetrachloride	ND	0.5
108-90-7	Chloropenzene	ND	0.5
	Chloroethane	ND	0.5
75-00-3			
67-66-3	Chloroform	ND	0.5
74-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chlorotoluene	ND	0.5
124-48-1	Dibromochloromethane	ND	0.5
96-12-8	1.2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1.2-Dibromoethane	ND	0.5
74-95-3	Dibromomethane	ND	0.5
95-50-1	1 2-Dichlorobenzene	ND	0.5
541-73-1	1.3-Dichlorobenzene	ND	0.5
106-46-7	1.4-Dichlorobenzene	ND	0.5
75-71-8	Dichlorodifluoromethane	ND	0.5
75-34-3	1.1-Dichloroethane	0.5	0.5
107-06-2	1 2-Dichloroethane	ND	0.5
75-35-4	1.1-Dichloroethene	ND	0.5
156-59-4	Cis-1,2-dichloroethene	ND	0.5
156-60-5	Trans-1,2-dichloroethene	ND	0.5
78-87-5	1.2-Dichloropropane	ND	0.5
142-28-9	1.3-Dichloropropane	ND	0.5
594-20-7	2.2-Dichloropropane	ND	0.5
563-58-6	1.1-Dichloropropene	ND	0.5
10061-1-5	Cis-1,3-dichloropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
100-41-4	Ethylbenzene	ND	0.5
87-68-3	Hexachlorobutadiene	ND	0.5

~

	Ohio E	PA				
	Volatile Organic Analysis Data Report					
Sample:	O8921 SOUTH DAYTON DUMP	Method:	624			
Date Collected:	02/20/96	Collected by:	PASARA			
Data Analyzed:	02/22/96	Analyzed by:	A.JAMAL			
Matrix:	Water	Dilution:	1			
File No:	V22206.D	Conc. Units:	ug/L			
CAS NO.	COMPOUND	CONC	DL			
98-82-8	isopropyibenzene	ND	0.5			
99-87-6	4-Isopropyltoluene	ND	0.5			
75-09-2	Methylene chloride	ND	0.5			
91-20-3	Naphthalene	ND	0.5			
103-65-1	N-Propylbenzene	ND	0.5			
100-42-5	Styrene	ND	0.5			
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5			
79-34-5	1,1,2.2-Tetracnioroethane	ND	0.5			
127-18-4	Tetrachloroethene	ND	0.5			
108-88-3	Toluene	1.5	0.5			
87-61-6	1,2,3-Trichlorobenzene	ND	0.5			
120-82-1	1,2,4-Trichlorobenzene	ND	0.5			
71-55-6	1,1,1-Trichloroethane	ND	0.5			
79-00-5	1,1,2-Trichloroethane	ND	0.5			
79-01-6	Trichloroethene	4.6	0.5			
75-69-4	Trichlorofluoromethane	ND	0.5			
96-18-4	1,2,3-Trichloropropane	ND	0.5			
95-63-6	1,2,4-Trimethylbenzene	ND	0.5			
108-67-8	1,3,5-Trimethylbenzene	ND	0.5			
75-01-4	Vinyl chloride	ND	0.5			
95-47-6	O-xylene	ND	0.5			
108-38-3	Total m&p-xylenes	ND	0.5			

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

£ - ' € *	The state of the s	100 A	<u>s</u> e
		Ohio EPA nic Analysis Data Report dentified Compounds	
Sample: 08921 S	OUTH DAYTON DUMP		<u>.</u>
Number TICs found:	0	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

FEP 2 3 1995 BY Allellan

ORGANIC SAMPLE SUBMISSION / RI	EPORT FORM		1002		· · ·	•
Date Received <u>96,02,21</u>		Lab Numb		<u>2892</u>	4	
Station/Location <u>South</u> Diviten <u>Nur</u> Sample Collected By <u>P3ARA / Matt Ju</u> Bill to		Affiliation Report An		Fiss LOE K Cister	Contra Oontra /OER	icte. R
Division: []DSW []DCAGW F DERI District []CDO []NECO []NWDO]DAPC [SWDO]DST/MM	Othe	fC7	
Sample Type: Aqueous [Sediment []Ti	ssue []Oil []/ Other	Air Canister	[]Az Filter	[]Grab []Co	mposite	
YY MM DD H Date & Time of Sample Begin <u>761021201</u>	iH MM <u>'5 / <i>i 5</i> Enc</u>				22'	
Sample Use: []Rush []Liögation []Com		iance []S	Survey []Amt	pient []Other		
Well Use: []Industrial []Public []Prive	ate NA-					
Sample Volume Submitted:# of Viais	# of Liter	Jars		Other	•	
Analysis Requested	Method		Analyzed	Reported	Analyst	
Volatile Organic Compounds (VCC): (GC/MS)	1324 []8260	[]524.2	<u>96: = 7: 72</u>	9/10726	(AT	
Volatile Organic Compounds (VCC): (GC)	[]601&602	[]502.2				1
Base-Neutral & Acid Extractaties: (GC/MS)	[]625	[]8270				1
Base-Neutral Extractables (FAFs): (GC/MS)	[]625	[]8270				,
Acid Extractables (Phencis): (GC/MS)	[]625	[]8270	<u>'</u>		·	
Pesticides: (GC)	[]608	_ 0338[]	!!			
Polychiorinated biphenyls (PCBs): (GC)	[]608	[]8080	/	_//		
Chlordane: (GC)	[]608	[]8030		/		
Toxachene: (GC)	[]608	[]8080	'/			I
Others:				/		1
Volatile Preserved with HCL [Scium Thiosulfate		Bioassay Sam	ole Sumitted: []	res Ano		
Comments: Analyze per Star Martin U. Chat Data mile bi use angunt ad deca Space	tico a Se	ree sat	in hit	due to	Inge	¢
conclust up such splice	YILL IS	L'ara, 4		13-	_ <u>`</u>	

DES QA approval included on computer printout

:

-

SD002 221

	Ohio E	PA	
	Volatile Organic Analy		t
		tion and the second second second second second second second second second second second second second second	
Sample:	O8924 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/20/96	Collected by:	PSARA
Data Analyzed:	02/22/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22204.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	0.8	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
8-06-6	Tert-Butylbenzene	ND	0.5
6-23-5	Carbon tetrachloride	ND	0.5
08-90-7	Chlorobenzene	ND	0.5
/5-00-3	Chloroethane	ND	0.5
66-3	Chloroform	ND	0.5
4-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
06-43-4	4-Chlorotoluene	ND	0.5
24-48-1	Dibromochloromethane	ND	0.5
6-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1,2-Dibromoethane	ND	0.5
74-95-3	Dibromomethane	ND	0.5
95-50-1	1.2-Dichlorobenzene	ND	0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
06-46-7	1,4-Dichlorobenzene	ND	0.5
75-71-8	Dichlorodifluoromethane	ND	0.5
5-71-6 75-34-3	1,1-Dichloroethane	1.2	0.5
07-06-2	1,2-Dichlorcethane	0.5	0.5
/5-35-4	1.1-Dichloroethene	ND	0.5
56-59-4	Cis-1,2-dichloroethene	0.9	0.5
56-60-5	Trans-1,2-dichloroethene	ND	0.5
28-87-5	1,2-Dichloropropane	ND	0.5
42-28-9	1,3-Dichloropropane	ND	0.5
142-28-9 594-20-7	2,2-Dichloropropane	ND	0.5
594-20-7 563-58-6	1,1-Dichloropropene	ND	0.5
10061-1-5	Cis-1.3-dichlcropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
00-41-4	Ethylbenzene	ND	0.5
37-55-3	Hexachiorobutadiene	ND	0.5

....

3

2

:..

۰.--

53

100

· · · · · · · · · · · · · · · · · · ·	Ohio EPA Volatile Organic Analysis Data Report					
Sample: Date Collected: Data Analyzed: Matrix: File No:	08924 SOUTH DAYTON CUMP 02/20/96 02/22/96 Water V22204.D	Method: Collected by: Analyzed by: Dilution: Conc. Units:	624 PSARA A.JAMAL 1 ug/L			
CAS NO.	COMPOUND	CONC	DL			
98-82-8	Isopropylbenzene	ND	0.5			
99-87-6	4-Isopropyitoluene	ND	0.5			
75-09-2	Methylene chloride	ND	0.5			
91-20-3	Naphthalene	ND	0.5			
103-65-1	N-Propylbenzene	ND	0.5			
100-42-5	Styrene	ND	0.5			
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5			
127-18-4	Tetrachloroethene	ND	0.5			
108-88-3	Toluene	1.9	0.5			
87-61-6	1,2,3-Trichlorobenzene	ND	0.5			
120-82-1	1,2,4-Trichlorobenzene	ND	0:5			
71-55-6	1,1,1-Trichloroethane	ND	0.5			
7 <u>9</u> -00-5	1,1,2-Trichloroethane	ND	0.5			
79-01-6	Trichloroethene	ND	0.5			
75-69-4	Trichlorofluoromethane	ND	0.5			
96-18-4	1,2,3-Trichloropropane	ND	0.5			
95-63-6	1,2,4-Trimethylbenzene	ND	0.5			
108-67-8	1,3,5-Trimethylbenzene	ND	0.5			

19

Explanation of terms:

75-01-4

95-47-6

108-38-3

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL

Vinyl chloride

Total m&p-xylenes

O-xylene

DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments: Data will be used as a screening only, due to large amount of head space & air bubbles.

ND

ND

0.6

.

0.5

0.5

0.5

		24) 24)	ÿ
		Ohio EPA nic Analysis Data Report Identified Compounds	
Sample: 08924 S	OUTH DAYTON DUMP	· · · · · · · · · · · · · · · · · · ·	
Number TICs found:	1	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
000066-25-1	Hexanal	12.29	2.35
		•	

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

FEP 23 1996 BY A MONARUL Ste Chrimment

UNIOEPA	Division of E		nial Services	50	•
ORGANIC SAMPLE SUBMISSION / R	EPORT FOR	M 💬	002.		
Date Received 76 102,21		Lab Numb	and the second s	8925	
Station/Location <u>South</u> Devien Du Sample Collected By <u>PSARA</u> /inatt <u>Si</u> Bill toDERR	mp - SDE stice	Affiliation Report An) 3-D PSARA alysis to <u>Ric</u>	SULINIL is LOE KCisler	CUNATE T
Division: (JDSW (JDDAGW DDER District: [JCDO [JNEDO [JNWDO			jdsiw m _	Othe	er -
Sample Type: MAqueous []Sediment []Ti		Air Canister	[]Air Filter	[]Grab []Co	mposite
Other YY MM DD HH MM YY MM DD HH MM Date & Time of Sample Begin <u>1616212016140</u> End <u>111</u> 32 ¹					
Sample Use: []Rush []Litigation []Ccm	plaint JComp	liance []S	iurvey []Ami	pient []Other	
Well Use: []Industrial []Public []Priv	ate NA				
Sample Volume Submitted: 2 # of Vials	# of Lite	r Jars		Cther	
Analysis Requested	Metho	d	Analyzed	Reported	Analyst
Volatile Organic Compounds (VOC): (GC/MS)	1 624 []8260	[]524.2	16102122	46102126	.At
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2			
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270			
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270		_//	
Acid Extractables (Phenols): (GC/MS)	[]625	[]8270	·		
Pesticides: (GC)	[]eos	[]8080	!!	<u> </u>	
Polychlorinated Siphenyls (PCBs): (GC)	[]608	[]8080		/	
Chlordane: (GC)	[]608	[]8080	!	_!_!	
Toxaphene: (GC)	[]608	[]8080	!!	!!	
Others:			/		
Volatile Preserved with PPCL []Sodium Thiosulfate		Elcassay Sam	ple Submitted: []	Yes	
Comments: Analyze per stere Martin per Data and be used as a S stated Space & an bull	Conversa	tion ju	ith TK	osanue	4 U. Chat
Data duce en bard la se	Curin 3		-	Ű	1

-

DES GA approval included on computer printout

••••

~

22002 321

•

Ohio EPA Volatile Organic Analysis Data Report

*

5.4

5

. $\sim 10^{-10}$ O8925 SOUTH CAYTON DUMP Method: Sample: 624 Collected by: Date Collected: 02/20/96 PASARA Analyzed by: Data Analyzed: 02/22/96 A.JAMAL Dilution: 'Water 1 Matrix: Conc. Units: V22205.D ug/L File No:

CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	1.9	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butyibenzene	ND	0.5
56-23-5	Carbon tetrachloride	ND	0.5
108-90-7	Chlorobenzene	ND	0.5
75-00-3	Chloroethane	ND	0.5
67-66-3	Chloroform	ND	0.5
74-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chlorotoluene	ND	0.5
124-48-1	Dibromochloromethane	ND	0.5
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1.2-Dibromoethane	ND	0.5
74-95-3	Dibromomethane	ND	0.5
95-50-1	1,2-Dichlorobenzene	ND	0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
106-46-7	1,4-Dichlorobenzene	ND	0.5
75-71-8	Dichlorodifluoromethane	ND	0.5
75-34-3	1,1-Dichloroethane	2.8	0.5
107-06-2	1,2-Dichloroethane	ND	0.5
75-35-4	1,1-Dichloroethene	ND	0.5
156-59-4	Cis-1,2-dichloroethene	1.6	0.5
156-60-5	Trans-1.2-dichloroethene	ND	0.5
78-87-5	1.2-Dichloropropane	ND	0.5
142-28-9	1,3-Dichloropropane	ND	0.5
594-20-7	2,2-Dichloropropane	ND	0.5
563-58-6	1.1-Dichloropropene	ND	0.5
10061-1-5	Cis-1,3-dichloropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
100-41-4	Ethylbenzene	ND	0.5
37-63-3	Hexachiorobutagiene	ND	0.5

	Ohio E	PA	
•	Volatile Organic Analy	sis Data Repor	
Sample:	O8925 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/20/96	Collected by:	PASARA
Data Analyzed:	02/22/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22205.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
99-87-6	4-isopropyitoluene	ND	0.5
75-09-2	Methylene chlorde	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propyibenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachicroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachicroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	2.3	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichloroethene	ND	0.5
75-69-4	Trichlorofluoromethane	ND	0. 5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethyltenzene	ND	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chloride	0.9	0.5
25-47-6	O-xylene	ND	0.5
108-38-3	Total m&p-xylenes	ND	0.5

Explanation of terms:

~

CAS NO : Chemical Abstracts Service Number.

- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments: Data will be used as a screening only, due to large amount of head space & air bubbles.

	C.		j
		Ohio EPA nic Analysis Data Report lentified Compounds	
Number TICs found:	2	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
000115-07-1	Propene	1.68	67.19
000075-28-5	isobutane	1.88	6.08

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

\$

FEB 2 3 BY Hlê

		•	S. 3.5	- 0001		
Date Received 96 102123	• .	ab Numbe	·	08921	2	
Station/Location <u>Sound Orthon</u> Dunip - Bog Sample Collected By <u>Zich Spicic / PSmert B.</u> Bill to				004 DE WATIZA	-1UR / 0EPA / SE	R2_
Division: []DSW []DDAGW [YDERR []DHWM []DAFC []DSIWMOther District: []CDO []NEDO []NWDO []SEDO [YSWDO						
Sample Type: [/Aqueous []Sediment []Tis	Other			[]Grab []Cor	nposite	
YY MM DD HH MM YY MM DD HH MM Date & Time of Sample Begin <u>96 2 2 /4 00</u> End <u>96 2 2 1 /4 30</u>						
Sample Use: []Rush []Litigation []Comp	laint []Ccmplia	nce [_V]Si	urvey []Amb	ient []Other		
Weil Use: []Industrial []Public []Priva						
Sample Volume Submitted:# of Vials	# of Liter J	ars		Other		
Analysis Requested	Method		Analyzed	Reported	Analyst	
Volatile Organic Compounds (VOC): (GC/MS)	M624 []8260	[]524.2	96 <u>02127</u>	96107101	女	
Volatile Organic Compounds (VOC): (GC)	[]601 &602	[]502.2	<u></u>	<u> </u>		
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270	//			
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270		!!`		
Acid Extractables (Phenois): (GC/MS)	[]825	[]8270				
Pesticides: (GC)	[]:03	(]୧୦୨୦				
Polychlorinated biphenyls (PCBs): (GC)	[]608	[]8030				
Chlordane: (GC)	[]608	0303[]	!!			
Toxaphene: (GC)	[]e08	0803[]				
Others:					<u> </u>	
Volatile Preserved with MHCL []Sodium Thiosulfate Bioassay Sample Submitted: []Yes [MNo						
Volatile Preserved with MHCL (Iscular Missing) Comments: Sample NERY SINTY/MRBID; FURMY, EFFERNERICHE K I Vial submitter with Acadspace, I Vial Submitted with an Sublice. KLH						

DES CA approval included on computer printout

٠,

--.·

-2001

341

	Ohio E	PA		
	Volatile Organic Analy	sis Data Répôr	t	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
Sample:	O8926 SOUTH DAYTON DUMP		624	
Date Collected:	02/21/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22721.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
71-43-2	Berzene	0.9	0.5	
108-86-1	Brcmobenzene	ND	0.5	
74-97-5	Bromochloromethane	ND .	0.5	
75-27-4	Brc.modichloromethane	ND	0.5	
75-25-2	Brcmoform	ND	0.5	
74-83-9	Brcmomethane	ND	0.5	
104-51-8	N-Eutylbenzene	ND	0.5	
135-98-8	Sec-Butylbenzene	ND	0.5	
98-06-6	Te:-Butylbenzene	ND	0.5	
56-23-5	Carcon tetrachloride	ND	0.5	
108-90-7	Chicrobenzene	ND	0.5	
75-00-3	Chicroethane	ND	0.5	
57-66-3	Chloroform	ND	0.5	
74-87-3	Chipromethane	ND	0.5	
95-49-8	2-Calorotoluene	ND	0.5	
106-43-4	4-Calorotoiuene	ND	0.5	
124-48-1	Dibromochloromethane	ND	0.5	
6-12-8	1,2-Dibromo-3-chloropropane	ND	0.5	
106-93-4	1.2-Dibromoethane	ND	0.5	
			-	
74-95-3	Dibromomethane	ND	0.5	
95-50-1	1,2-Dichlorobenzene	ND	0.5	
541-73-1	1,3-Dichlorobenzene	ND	0.5	
06-46-7	1,4-Dichlorobenzene	ND	0.5	
75-71-8	Dichlorodifluoromethane	ND	0.5	
75-34-3	1,1-Dichloroethane	0.8	0.5	
07-06-2	1,2-Dichloroethane	0.9	0.5	
75-35-4	1,1-Dichloroethene	ND	0.5	
156-59-4	Cis-1,2-dichloroethene	ND	0.5	
156-60-5	Trans-1,2-dichloroethene	ND	0.5	
78-87-5	1,2-Dichloropropane	ND	0.5	
142-28-9	1,3-Dichloropropane	ND	0.5	
594-20-7	2.2-Dichloropropane	ND	0.5	
563-58-6	1,1-Dichloropropene	ND	0.5	
10061-1-5	Cis-1,3-dichloropropene	ND	0.5	
10061-02-6	Trans-1,3-dichloropropene	ND	0.5	
100-41-4	Ethylbenzene	ND	0.5	

.

34

	Ohio E					
	Volatile Organic Analy	Volatile Organic Analysis Data Report				
			· · · · · · · · · · · · · · · · · · ·			
Sample:	08926 SOUTH DAYTON DUMP	Method:	624			
Date Collected:	02/21/96	Collected by:	PSARA			
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL			
Matrix:	Water	Dilution:	1			
File No:	V22721.D	Conc. Units:	ug/L			
CAS NO.	COMPOUND	CONC	DL	·····		
98-82-8	Isopropyibenzene	ND	0.5			
99-87-6	4-Isopropyltoluene	ND	0.5			
75-09-2	Methylene chloride	ND	0.5			
91-20-3	Naphthalene	ND	0.5			
103-65-1	N-Propylbenzene	ND	0.5			
100-42-5	Styrene	ND	0.5			
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5			
127-18-4	Tetrachloroethene	ND	0.5			
108-88-3	Toluene	1.5	0.5			
87-61-6	1,2,3-Trichlorobenzene	ND	0.5			
120-82-1	1,2,4-Trichlorobenzene	ND	0.5			
71-55-6	1,1,1-Trichloroethane	ND	0.5			
79-00-5	1,1,2-Trichloroethane	ND	0.5			
79-01-6	Trichloroethene	2.8	0. 5			
75-69-4	Trichlorofluoromethane	ND	0.5			
96-18-4	1,2,3-Trichloropropane	ND	0.Ē			
95-63-6	1,2,4-Trimethylbenzene	ND	0.5			
108-67-8	1,3,5-Trimethylbenzene	ND	0.5			
75-01-4	Vinyl chloride	ND	0.5			
95-47-6	O-xylene	ND	0.5			
108-38-3	Total m&p-xylenes	ND	0.5			

69

49) (

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.
- Comments: Data will be used as a screening, due to a large amount of head space.

A	~ "		3
	Volatile Organic	Ohio EPA Analysis Data Report Lified Compounds	
Sample: 08926 S	OUTH DAYTON DUMP		
Number TICs found:	1	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
000115-11-7	1-Propene, 2-methyi-	2.02	3.74

Tentatively Identified Compounds are listed for the 10 most prominant compounds. Notes: Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A MAR 31 1995 BY <u>J. Mc Quill</u>

Station/Location <u>South</u> Dayton Du Sample Collected By <u>Psers</u> / Rick Cislo Bill to		Report Ana	alysis to	eve Martin	DERR
Division: []DSW []DDAGW [/]DERF District: []CDO []NEDO []NWDO	R []DHWM [[]SEDO [1]S	JDAPC [WDO]DSIWM	Other	r ·
Sample Type: []Aqueous []Sediment []Tis	ssue []Oil []A Other	ir Canister	[]Air Filter	[]Grab []Co	mposite
YY MM DD H Date & Time of Sample Begin <u>96 102 12 3</u>	10 10 End	961621	10 13		
Sample Use: []Rush []Litigation []Comp	plaint []Complia	ance []S	Survey []Ami	pient []Other	•
Well Use: []Industrial []Public []Priva	ate				
Sample Volume Submitted:	# of Liter	Jars		Other	
Analysis Requested	Method		Analyzed	Reported	Anaiyst
Volatile Organic Compounds (VOC): (GC/MS)	624 []8260	[]524.2	<u> 96102127</u>	96103101	T
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2		<u> </u>	
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270	<u></u>		
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270			
Acid Extractables (Phencis): (GC/MS)	[]625	[]8270			
Pesticides: (GC)	[]608	[]8080	/	!!	
Polychlorinated biphenyis (PCEs): (GC)	[]603	0308[]			
Chlordane: (GC)	[]608	C308[]	//		
Toxaphene: (GC)	[]608	0308[]			
Others:	l			<u>_</u>	
Volatile Preserved with CL []Scdium Thiosuifate		Bioassay Sar	nple Submitted: []Yes []No	
Comments:				•	
Sample SDGWC05 ID = SDGWC05	5 17 11	۰.	0	\mathbf{S}	

E if

: مۇرى

١.

. ---

.-

いるとアハン

•

2

	Ohio E Volatile Organic Anal			
-				
Sampie:	O8930 SOUTH DAYTON DUMP	Method:	624	
Date Collected:	02/23/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22706.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
71-43-2	Benzene	0.8	0.5	
108-86-1	Bromobenzene	ND	0.5	
74-97-5	Bromochloromethane	ND	0.5	
75-27-4	Bromodichloromethane	ND	0.5	1
75-25-2	Bromoform	ND	0.5	
74-83-9	Bromomethane	ND	0.5	
104-51-8	N-Butylbenzene	NÐ	0.5	·
135-98-8	Sec-Butylbenzene	ND	0.5	
98-06-6	Tert-Butylbenzene	ND	0.5	
56-23-5	Carbon tetrachloride	ND	0.5	
108-90-7	Chlorobenzene	ND	0.5	
75-00-3	Chloroethane	ND	0.5	
67-66-3	Chloroform	ND	0.5	
74-87-3	Chloromethane	ND	0.5	
95-49-8	2-Chlorotoluene	ND	. 0.5	
106-43-4	4-Chlorotoluene	ND	0.5	
124-48-1	Dibromochloromethane	ND	0.5	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5	
106-93-4	1,2-Dibromoethane	ND	0.5	
74-95-3	Dibromomethane	ND	0.5	
95-50-1	1,2-Dichlorobenzene	ND	0.5	
541-73- 1	1,3-Dichlorobenzene	ND	0.5	
106-46-7	1,4-Dichlorobenzene	ND	0.5	
75-71-8	Dichlorodifluoromethane	ND	0.5	
75-34-3	1,1-Dichloroethane	ND	0.5	
107-06-2	1,2-Dichlorcethane	0.9	0:5	
75-35-4	1,1-Dichloroethene	ND	0.5	
156-59-4	Cis-1,2-dichloroethene	ND	0.5	
156-60-5	Trans-1,2-dichloroethene	ND	0.5	
78-87-5	1,2-Dichloropropane	ND	0.5	
142-28-9	1,3-Dichloropropane	ND	0.5	
594-20-7	2,2-Dichloropropane	ND	0.5	
563-58-6	1,1-Dichloropropene	ND	0.5	
10061-1-5	Cis-1,3-dichloropropene	ND	0.5	
10061-02-6	Trans-1,3-dichloropropene	ND	0.5	
100-41-4	Ethylbenzene	0.3	0.5	
37-68-3	Hexachlorobutadiene	ND	0.5	

			A	
	Ohio E			
	Volatile Organic Analy	/sis Data Repo	rt.	
Sample:	O8930 SOUTH DAYTON DUMP	Method:	624	
Date Collected:	02/23/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22706.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
98-82-8	Isopropyibenzene	ND	. 0.5	
9 9- 87 <i>-</i> 6	4-Isopropyltoluene	ND	0.5	
75-09-2	Methylene chloride	ND	0.5	
91-20-3	Naphthalene	ND	0.5	
103-65-1	N-Propylbenzene	ND	0.5	
100-42-5	Styrene	ND	0.5	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5	
127-18-4	Tetrachloroethene	ND	0.5	

99-87 <i>-</i> 6	4-Isopropyitoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylbenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	2.4	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichloroethene	1.5	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	0.6	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chloride	ND	0.5
95-47-6	O-xylene	0.5	0.5
108-38-3	Total m&p-xylenes	1.2	0.5

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.
- Comments: Data will be used as a screening, due to a large amount of head space & air bubbles.

· · · · · · · · · · · · · · · · · · ·	-	:	Y
	Volatile Organic Tentatively Ider	Ohio EPA Analysis Data Report atified Compounds	
Sample: 08930	SOUTH DAYTON DUMP		
Number TICs found:	3	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	_
000078-78-4	Butane, 2-methyl-	2.67	EST. (
000109-66-0	Pentane		3.87
000096-37-7	Cyclopentane, methyl-	3.01	3.07
~		6.32	1.11

Notes:

Tentatively Identified Compounds are listed for the 10 most prominant compo Additional compounds may be present if all 10 are listed. Names listed repre the best fit as determined by library identification by computer. The name list is not necessarily the name of the actual compound. Where less than 10 cor are listed, no additional compounds were found.

APPI BY_<

1

(iii i	· · ·			18730	•
Date Received 96.102126	•••••••••••••••••••••••••••••••••••••••				
Station/Location South Dayton Du	mp -50	Gind	da		
Sample Collected By PSARA / Cisker	53b/	Amiliation	UNIO EPA	<i>t</i>	
Bill to			lysis to <u>Ste</u>	ve Marki	
Division: []DSW []DDAGW [YDERR []DHWM []DAPC []DSIWMOther District: []CDO []NEDO []NWDO []SEDO [YSWDO					
Sample Type: [JAqueous []Sediment []Tissue []Oil []Air Canister []Air Filter []Grab []Composite					
YY MM DD H Date & Time of Sample Begin <u>96102123</u>	H MM <u>//155</u> End	YY MM D <u>94_p_2;3</u>	D HH MM 3, 12,00	. ·	
Sample Use: []Rush []Litigation []Com		ance []S	urvey []Amb	ient []Other	•
Well Use: []Industrial []Public []Priva	ate	Jars		Óther	
	Method	<u> </u>	Analyzed	Reported	Analyst
Analysis Requested			Analyzed	Reported	, t.
Volatile Organic Compounds (VOC): (GC/MS)	18250	[]524.2	<u> 16:102127</u>	<u>96 163 101</u>	5
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2		<u>·</u>	
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270	/		
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270			
Acid Extractables (Phencis): (GC/MS)	[]625	[]8270	//	// 	
Pesticides: (GC)	.[]608	[]8080	/		
Polychlorinated biphenyls (PCBs): (GC)	[]608	[]8080			
Chlordane: (GC)	[]608	[]8080			
Toxaphene: (GC)					
Others:					
Volatile Preserved with LAHCL []Scdium Thiosulfate Comments: Similar SDC-1N306 * 11 TD = SDC-1N306	lias wit	ik lg	. air bu	alde. K	C++-

DES QA approval included on computer printout

٠,

٠.

SDOOMA 24

-. مربع ۲۰۰۰ - مربع میرو عبر بر Ohio EPA Volatile Organic Analysis Data Report

eport	

.

		•		•
Sample:	08932 SOUTH DAYTON DUMP	Method:	624	-
Date Collected:	02/23/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22709.D	Conc. Units:	ug/L	
				_

`*'\$**"**

CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	0.6	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Brcmodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butylbenzene	ND	0.5
56-23-5	Carbon tetrachloride	ND	0.5
108-90-7	Chlorobenzene	ND	0.5
75-00-3	Chloroethane	ND	0.5
67-66-3	Chloroform	ND	0.5
74-87-3	Chioromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chlorotoluene	ND	0.5
124-48-1	Dipromochloromethane	ND	0.5
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1,2-Dibromoethane	ND	0.5
74-95-3	Dicromomethane	ND	0.5
95-50-1	1,2-Dichlorobenzene	ND	0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
106-46-7	1,4-Dichlorobenzene	ND	0.5
75-71-8	Dicnlorcdifluoromethane	ND	0.5
75-34-3	1,1-Dichloroethane	ND	0.5
107-06-2	1,2-Dichloroethane	ND	0.5
75-35-4	1,1-Dicnloroethene	ND	0.5
156-59-4	Cis-1,2-dichloroethene	ND	0.5
156-60-5	Trans-1.2-dichloroethene	ND	0.5
78-87-5	1,2-Dichloropropane	ND	0.5
142-28-9	1,3-Dichloropropane	ND	0.5
594-20-7	2.2-Dichloropropane	ND	0.5
563-58-6	1,1-Dichloropropene	ND	0.5
10061-1-5	Cis-1,3-dichloropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
100-41-4	Ethylbenzene	ND	0.5
87-58-3	Hexachlorobutadiene	ND	0.5

	Ohio E	PA	
	Volatile Organic Analy	sis Data Report	
- ···			
Sample:	O8932 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22709.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
99-87 - 6	4-isoprocyltoluene	ND	. 0.5
75-09-2	Methyler.e chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylcenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachicroethene	ND	0.5
108-88-3	Toluene	1.5	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichlorcethene	2.0	0.5
75-69-4	Trichlorcfuoromethane	ND .	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chlcride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Total m&c-xylenes	0.7	0.5

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

.

	-W.	* e.	
	Volatile Organic	Dhio EPA Analysis Data Report Ified Compounds	
Sample: 08932 S	OUTH DAYTON DUMP		· · · · · · · · · · · · · · · · · · ·
Number TICs found:	0	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
<u></u>			
		·	

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY O.A

MAP 11 1995 BY Alle Kan

Date Received 96 62,26 Lab Number 08735							
Station/Location <u>South Dayton Dump SDGWD07</u> Sample Collected By <u>DSART / Rick Cister</u> Affiliation <u>Obio EPA</u> , DEPER Bill to <u>DERR</u> Report Analysis to <u>Steve Micritici</u>							
Division: []DSW []DDAGW [YDERR []DHWM · []DAPC []DSIWMOther District: []CDO []NEDO []NWDO []SEDO [1/8WDO							
Sample Type: []Aqueous []Sediment []Tis	isue []Oil []Ai Other	ir Canister	[]Air Fiiter	Grab []Co	nposite		
YY MM DD H Date & Time of Sample Begin <u>76 1021 23</u>	////5 End	<u>% 102 17</u>					
Sample Use: []Rush []Litigation [9Comp	olaint []Complia	ince []S	urvey []Amb	ient []Other	•		
Well Use: []Industrial []Public []Priva							
Sampie Volume Submitted:# cf Vials	# of Liter	Jars		Óther			
Analysis Requested	Method		Analyzed	Reported	Analyst		
Volatile Organic Compounds (VOC): (GC/MS)	X1224 []8260	[]524.2	<u>96 102127</u>	<u>96193181</u>	YA		
Volatile Organic Compounds (VOC): (GC)	[]601 &602	[]502.2		<u></u>			
Base-Neutral & Acid Extractables: (GC/MS)	[]825	[]8270					
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270					
Acid Extractables (Phencis): (GC/MS)	[]625	[]8270					
Pesticides: (GC)	[]508	[]8080	!!			\cup	
Polychlorinaled biphenyls (PC3s): (GC)	[]608	0308[]		!!			
Chlordane: (GC)	[]608	0808[]					
Toxaphene: (GC) []608 []8080 _/_///							
Others: /_/_ /_/ /_/							
Volatile Preserved with Volatile []Sodium Thicsulfate			mple Submitted: [•		
SDG-W007 = Sturle	~ > *		t Cin b		-in-		

DES CA approval included on computer printout

٠,

ODDHA 24 Departer.

ч. С

-4.8-

	Ohio		
	Volatile Organic Ana	lysis Data Repor	
Sample:	08933 SOUTH DAYTON DUM		624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22710.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	0.5	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25 - 2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butylbenzene	ND	0.5
56-23-5	Carbon tetracnloride	ND	0.5
108-90-7	Chlorobenzene	ND	0.5
75-00-3	Chloroethane	ND	0.5
67-66-3	Chloroform	ND	0.5
74-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chlorotoluene	ND	0.5
124-48-1	Dibromochloromethane	ND	0.5
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1,2-Dibromoethane	ND	0.5
74-95-3	Dibromomethane	ND	0.5
95-50-1	1.2-Dichlorobenzene	ND	0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
106-46-7	1,4-Dichlorobenzene	ND	0.5
75-71-8	Dichlorodifluoromethane	ND	0.5
75-34-3	1,1-Dichloroethane	ND	0.5
107-06-2	1,2-Dichloroethane	0.8	0.5
75-35-4	1,1-Dichloroethene	ND	0.5
156-59-4	Cis-1,2-dichloroethene	ND	0.5
156-60-5	Trans-1,2-dichloroethene	ND	0.5
78-87-5	1,2-Dichloropropane	ND	0.5
142-28-9	1,3-Dichloropropane	ND	0.5
594-20-7	2.2-Dichloropropane	ND	0.5
563-58-6	1,1-Dichloropropene	ND	0.5
10061-1-5	Cis-1,3-dichloropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
100-41-4	Ethylbenzene	ND	0.5
e7-68-3	Hexachlorobutadiene	ND	0.5

.

	Ohio E	PA	
	Volatile Organic Analy	sis Data Repor	
Sample:	08933 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed;	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22710.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
99-87-6	4-Isopropyltoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthaiene	ND	0.5
103-65-1	N-Propyibenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroetnane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	1.5	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichlorcethene	2.2	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chloride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Total m&p-xylenes	0.7	0.5

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

المراجع المتحصين المراجع

		Ohio EPA c Analysis Data Report ntified Compounds	
Sample: 08933 S	OUTH DAYTON DUMP		······································
Number TICs found:	0	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY O.A

BY Julchanul

Date Received <u>96102121</u> MAR 0 2 1996				10
Station/Location <u>South</u> Dayte Dump 5 DDG-WOO8 Sample Collected By <u>Ban/Cipter</u> Affiliation <u>Derr</u> Report Analysis to <u>Steve Martin</u>				
Division: []DSW []DDAGW MDERR []DHWM []DAPC []DSIWMOther District: []CDO []NEDO []NWDO []SEDO SWDO				
Sample Type: Aqueous []Sediment []Tis	Oulei]Grab []Con	nposite
YY MM DD H Date & Time of Sample Begin <u>% 102 126 c</u>	<u>29145</u> End			
Sample Use: []Rush []Litigation []Com		e []Survey []Amb	ient []Other	
Well Use: []Industrial []Public []Privious Sample Volume Submitted:	# of Liter Jars	; 	Óther	
Analysis Requested	Method	Analyzed	Reported	Anaiyst
Volatile Organic Compounds (VOC): (GC/MS)	624 []8260 []	524.2 9 <u>16.162127</u>	<u>96,13,01</u>	T
Volatile Organic Compounds (VOC): (GC)	[]601&602 []	502.2 <u> </u>	<u> </u>	
Base-Neutral & Acid Extractables: (GC/MS)	[]625 []	8270	!	
Base-Neutral Extractables (PAHs): (GC/MS)	[]625 []	8270	!!	
Acid Extractables (Phenois): (GC/MS)	[]625 []	8270	//	
Pesticides: (GC)	[]608 []	8050 0308	!	\
Pclychlorinated biphenyis (PCBs): (GC)	[]ecs []	0503		
Chlordane: (GC)	[]608 []	0308		
Toxaphene: (GC)	[]608 []	8080	<u>_</u>	
Others:		l/	<u> </u>	<u> </u>
Volatile Preserved with HCL []Sodium Thicsuifate Bioassay Sample Submitted: []Yes []No Comments: if an builder in Both Vuals				
Comments: # air builles	_un Both	Vuals	.	
				<u></u>

DES QA approval included on computer printout

۰.

50005 29-29

	Ohio EPA Volatile Organic Analysis Data Report				
Sample:	08942 SOUTH DAYTON DUMP	Method:	624		
Date Collected:	02/26/96	Collected by:	CISLER		
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL		
Matrix:	Water	Dilution:	1		
File No:	V22712.D	Conc. Units:	ug/L		
CAS NO.	COMPOUND	CONC	DL		
71-43-2	Benzene	0.7	0.5		
108-86-1	Bromobenzene	. NO	0.5		
74-97-5	Bromochloromethane	ND	0.5		
75-27-4	Bromodichloromethane	ND	0.5		
75-25-2	Bromoform	ND	0.5		
74-83-9	Bromomethane	ND	0.5		
104-51-8	N-Butylbenzene	ND	0.5		
135-98-8	Sec-Butylbenzene	ND	0.5		
98-06-6	Tert-Butylbenzene	ND	0.5		
56-23-5	Carbon tetrachloride	ND	0.5		
108-90-7	Chlorobenzene	ND	0.5		
75-00-3	Chloroethane	ND	0.5		
57-66-3	Chloroform	ND	0.5		
74-87-3	Chloromethane	ND	0.5		
95-49-8	2-Chlorotoluene	ND	0.5		
106-43-4	4-Chlorotoluene	ND	0.5		
124-48-1	Dibromochloromethane	ND	0.5		
6-12-8	1,2-Dibromo-3-chloropropane	ND	0.5		
106-93-4	1,2-Dibromoethane	ND	0.5		
74-95-3	Dibromomethane	ND	0.5		
95-50-1	1,2-Dichlorobenzene	ND	0.5		
541-73-1	•	ND	0.5		
	1,3-Dichlorobenzene	ND	0.5		
06-46-7	1,4-Dichlorobenzene Dichlorodifluoromethane	ND	0.5		
75-71-8		ND	0.5		
75-34-3	1,1-Dichloroethane 1,2-Dichloroethane	ND	0.5		
07-06-2	• • •				
75-35-4	1,1-Dichloroethene	ND	0.5		
156-59-4	Cis-1,2-dichloroethene	ND	0.5		
156-60-5	Trans-1,2-dichloroethene	ND	0.5		
78-87 - 5	1,2-Dichloropropane	ND	0.5		
42-28-9	1,3-Dichloropropane	ND	0.5		
594-20-7	2,2-Dichloropropane	ND	0.5		
563-58-6	1,1-Dichloropropene	ND	0.5		
0061-1-5	Cis-1,3-dichloropropene	ND	0.5		
0061-02-6	Trans-1,3-dichloropropene	ND	0.5		
00-41-4	Ethylbenzene	0.6	0.5		
37-68-3	Hexachlorobutadiene	ND	0.5		

بوره

-

Page 1

.

	Ohio E	PA	
	Volatile Organic Analy	sis Data Repo	t
Sample:	O8942 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/26/96	Collected by:	CISLER
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22712.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
99-87- 6	4-isopropyitoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propyibenzene	ND	0.5
100-42-5	Styrene	ND	0.5
530-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachlorcethene	ND	0.5
108-88-3	Toluene	2.1	0.5
37-61-6	1,2,3-Trichlorobenzene	ND	0.5
20-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichlorcethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
' 9-01 <i>-</i> 6	Trichloroethene	ND	0.5
′5-69-4	Trichlorofluoromethane	ND	0.5
6-18-4	1,2,3-Trichlorcpropane	ND	0.5
5-63-6	1,2,4-Trimethylbenzene	ND	0.5
08-67-8	1,3,5-Trimethylbenzene	ND	0.5
5-01-4	Vinyl chloride	ND	0.5
5-47-6	O-xylene	ND	0.5
08-38-3	Total m&p-xylenes	0.9	0.5

مب

10

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.
- Comments: Data will be used as a screening, due to a large amount of head space & air bubbles.

Ohio EPA Volatile Organic Analysis Data Report Tentatively Identified Compounds						
Sample: 08942 S	OUTH DAYTON DUMP		· · · · · · · · · · · · · · · · · · ·			
Number TICs found:	1	Concentration units:	ug/L			
CAS NO.	COMPOUND	R. TIME	EST. CONC			
000106-97-8	Butane	2.04	5.65			
		. .				
•						

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

ACOQUER EN Q.A MAR 01 1995 BY Juli Mariel

Date Received 96 102/27	IAR 0 5 1996	.ab Numbe	r	6991	
Station/Location South Difton Dump Sample Collected By <u>Psim/Cistor</u> Bill to <u>DERR</u>	SDDGWOOD	filiation _	Derr lysis to _5t	eve Marti	<u> </u>
Division: []DSW []DDAGW DERR District: []CDO []NEDO []NWDO]DAPC [WDO]DSIWM	Other	• .
Sample Type: Aqueous []Sediment []Tis	sue []Oil []A Other	ir Canister	()Air Filter (]Grab []Co	mposite
YY MM DD Hi Date & Time of Sample Eagin <u>96102126</u> Sample Use: []Rush []Litigation	0130 End		D HH MM _// urvey []Amb	ient []Other	42.43
Well Use: []Industrial []Public []Priva	ite ///			Other	
Analysis Requested	Method		Analyzed	Reported	Analyst
	24 []8250	[]524.2	96102127	<u>96,03,01</u>	AT.
Volatile Organic Compounds (VOC): (GC)	[_=01 &602	[]502.2	<u></u>	<u> </u>	
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270			
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270	!		
Acid Extractables (Phencis): (GC/MS)	[]525	[]8270	/	/	
Pesticides: (GC)	[]608	0808[]			\
Polychlorinated biphenyls (PCBs): (GC)	[]608	0308[]		/	
Chlordane: (GC)	[]608	0808[]			
Toxaphene: (GC)	[]e08	0338[]		//	
Others:				<u> </u>	<u>!</u>
Volatile Preserved with HCL []Sodium Thiosulfate Comments: + Huad Space an Buth andy per U.B.	Viab	Bicassay Sai - USE	nple Submitted: (ac a a	jres [jro	ing

DES CA approval included on computer printout

۰.

SDUDST

-12-43

	Ohio EPA				
	Volatile Organic Analysis Data Report				
<u></u>					
Sample:	O8941 SOUTH DAYTON DUMP	Method:	624		
Date Collected:	02/26/96	Collected by:	CISLER		
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL		
Matrix:	Water	Dilution:	1		
File No:	V22711.D	Conc. Units:	ug/L		
CAS NO.	COMPOUND	CONC	DL		
71-43-2	Benzene	1.6	0.5		
108-86-1	Bromobenzene	ND	0.5		
74-97-5	Bromochloromethane	ND	0.5		
75-27-4	Bromodichloromethane	ND	0.5		
75-25-2	Bromoform	ND	0.5		
74-83-9	Bromomethane	ND	0.5		
104-51-8	N-Butylbenzene	ND	0.5		
135-98-8	Sec-Butylbenzene	ND	0.5		
98-06-6	Tert-Butyibenzene	ND	0.5		
56-23-5	Carbon tetrachloride	ND	0.5		
108-90-7	Chlorobenzene	ND	0.5		
75-00-3	Chloroethane	ND	0.5		
67-66-3	Chloroform	ND	0.5		
74-87-3	Chloromethane	ND	0.5		
95-49-8	2-Chlorotoluene	ND	0.5		
106-43-4	4-Chlorotoluene	ND	0.5		
124-48-1	Dibromochloromethane	ND	0.5		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5		
106-93-4	1,2-Dibromoethane	ND	0.5		
74-95-3	Dibromomethane	ND	0.5		
95-50-1	1,2-Dichlorobenzene	ND	0.5		
541-73-1	1,3-Dichlorobenzene	ND ND			
106-46-7	1,4-Dichlorobenzene	ND	0.5 0.5		
75-71-8	Dichlorodifluoromethane		0.5		
75-34-3	1.1-Dichloroethane	ND	0.5		
107-06-2	1,2-Dichloroethane	ND	0.5		
75-35-4	1,1-Dichloroethene	ND	0.5		
156-59-4	Cis-1,2-dichloroethene	ND	0.5		
	Trans-1,2-dichloroethene	ND			
156-60-5			0.5		
78-87-5	1,2-Dichloropropane	ND	0.5		
142-28-9	1.3-Dichloropropane	ND	0.5		
594-20-7	2,2-Dichloropropane	ND	0.5		
563-58-6	1,1-Dichloropropene	ND	0.5		
10061-1-5	Cis-1,3-dichloropropene	ND	0.5		
10061-02-6	Trans-1.3-dichloropropene	ND 0.7	0.5		
100-41-4 37-63-3	Ethylbenzene Hexachlorobutadiene	0.7 ND	0.5 0.5		

1.1

وي ا

	Ohio E	PA TOTA		
• • •	Volatile Organic Analysis Data Report			
Sample:	O8941 SOUTH DAYTON DUMP		624	
Date Collected:	02/26/96	Collected by:	CISLER	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	· Water	Dilution:	1	
File No:	V22711.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
98-82-8	Isopropyibenzene	ND	0.5	
99-87-6	4-Isopropyitoluene	ND	0.5	
75-09-2	Methylene chloride	ND	0.5	
91-20-3	Naphthalene	ND	0.5	
103-65-1	N-Propyibenzene	ND	0.5	
100-42-5	Styrene	ND	0.5	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5	
7 9-34-5	1,1,2,2-Tetrachioroethane	ND	0.5	
127-18-4	Tetrachloroethene	ND	0.5	
108-88-3	Toluene	2.9	0.5	
87-61-6	1,2,3-Trichlorobenzene	ND	0.5	
120-82-1	1,2,4-Trichlorobenzene	ND	0.5	
71-55-6	1,1,1-Trichloroethane	ND	0.5	
79-00-5	1,1,2-Trichloroethane	ND	0.5	
79-01-6	Trichloroethene	2.4	0.5	
75-69-4	Trichlorofluoromethane	ND	0.5	
96-18-4	1,2,3-Trichloropropane	ND	0.5	
95-63-6	1,2,4-Trimethylbenzene	0.5	0.5	
108-67-8	1,3,5-Trimethylbenzene	ND	0.5	
75-01-4	Vinyl chloride	ND	0.5	
95-47-6	O-xylene	0.7	0.5	
108-38-3	Total m&p-xylenes	0.9	0.5	

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

.

Comments: Data will be used as a screening only, due to large amount of head space & air bubbles.

•••••••••

	Volatile Organic	Ohio EPA Analysis Data Report ified Compounds	
Sample: 08941 S	OUTH DAYTON DUMP	Seconde	
Number TICs found:	2	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
000106-98-9	1-Butene	2.01	4.76
000115-11-7	1-Propene, 2-methyl-	2.03	0.93

1.00

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

MAR 01 1995 Mc Danef BY S

APPENDIX F

.

Quality Control Sample Analytical Reports

ORGANIC SAMPLE SUBMISSION / R	EPORŢFOR	M	1999 - 1999 -				
Date Received 96 10212	C		er(0892=	2		
Station/Location <u>Secth Dayton</u> <u>Burger</u> Station/Location <u>Secth Dayton</u> <u>Burger</u> Station <u>PSARA is LOE Contractor</u> Sample Collected By <u>PSARA 77777777777777777777777777777777777</u>							
Division: []DSW []DDAGW []DERI District: []CDO []NEDO []NWDO]DSIWM	Othe	H		
Sample Type: [/Aqueous []Sediment []Ti YY MM DD H Date & Time of Sample Begin <u>96 [02 20 /</u>	Other {H MM /// 30 Er	YY MM (DD HH MM				
Sample Use: []Rush []Litigation [;/Com		liance []S	Survey []Am	bient []Othei	•		
Well Use: []Industrial []Public []Prive							
Sampie Volume Submitted: 2 2 4 of Vials	# of Lite	r Jars		Other			
Analysis Requested	Metho	d	Analyzed	Reported	Analyst		
Volatile Organic Compounds (VOC): (GC/MS)	[1624 []8260) []524.2	96107122	96102124	A		
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2					
Base-Neutrai & Acid Extractables: (GC/MS)	[]625	[]8270	!!				
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270					
Acid Extractables (Phenols): (GC/MS)	[]625	[]8270					
Pesticides: (GC)	[]608	[]8080					
Polychlorinated biphenyls (PCBs): (GC)	[]608	[]8080					
Chlordane: (GC)	[]608	[]8080	!!				
Toxaphene: (GC)	[]608	[]8080	''				
Others:							
Volatile Preserved with MHCL []Scdium Thiosulfate	<u> </u>	Bioassay San	nple Submitted: []	Yes KiNo			
Comments:							

DES QA approval included on computer printout

•

Rinsere

1

•

•

	Ohio EPA Volatile Organic Analysis Data Report				
Sample:	08922 SOUTH DAYTON DUMP	Method:	624		
Date Collected:	02/20/96	Collected by:	PASARA		
Data Analyzed:	02/22/96	Analyzed by:	A.JAMAL		
Matrix:	Water	Dilution:	1		
File No:	V22207.D	Conc. Units:	ug/L		
CAS NO.	COMPOUND	CONC	ĎL.		
71-43-2	Benzene	ND	0.5		
108-86-1	Bromobenzene	ND	0.5		
74-97-5	Bromochloromethane	ND	0.5		
75-27-4	Bromodichloromethane	ND	0.5		
75-25 -2	Bromoform	ND	0.5		
74-83-9	Bromomethane	ND	0.5		
104-51-8	N-Butylbenzene	ND	0.5		
135-98-8	Sec-Butylbenzene	ND	0.5		
98-06-6	Tert-Butyibenzene	ND	0.5		
56-23-5	Carbon tetrachloride	ND	0.5		
108-90-7	Chlorobenzene	ND	0.5		
75-00-3	Chlorcethane	ND	0.5		
57-66-3	Chioroform	ND	0.5		
74-87-3	Chloromethane	ND	0.5		
95-49-8	2-Chlorotoluene	ND	0.5		
106-43-4	4-Chlorotoluene	ND	0.5		
124-48-1	Dibromochloromethane	ND	0.5		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5		
106-93-4	1,2-Dibromoethane	ND	0.5		
74-95-3	Dibromomethane	ND	0.5		
95-50-1	1,2-Dichlorobenzene	ND	0.5		
541-73-1	1,3-Dichlorcbenzene	ND	0.5		
106-46-7	1,4-Dichlorobenzene	ND	0.5		
75-71-8	Dichlorodifluoromethane	ND	0.5		
75-34-3	1,1-Dichloroethane	ND	0.5		
107-06-2	1,2-Dichloroethane	ND	0.5		
75-35-4	1,1-Dichloroethene	ND	0.5		
156-59-4	Cis-1,2-dichloroethene	ND	0.5		
156-60-5	Trans-1.2-dichloroethene	ND -	0.5		
78-87-5	1,2-Dichloropropane	ND	0.5		
142-28-9	1,3-Dichloropropane	ND	0.5		
594-20-7	2,2-Dichloropropane	ND	0.5		
563-58-6	1,1-Dichloropropene	ND	0.5		
10061-1-5	Cis-1,3-dichloropropene	ND	0.5		
10061-02-6	Trans-1,3-dichloropropene	ND	0.5		
100-41-4	Ethylbenzene	ND	0.5		
37-58-3	Hexach!crobutadiene	ND	0.5		

	Ohio E	PA	
	Volatile Organic Analy	sis Data Repor	
	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	
Sample:	08922 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/20/96	Collected by:	PASARA
Data Analyzed:	02/22/96	Analyzed by:	A JAMAL
Matrix:	Water	Dilution:	1
File No:	V22207.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
9 9- 87-6	4-Isopropyitcluene	ND	0.5
75-09-2	Methylene chloride	0.6	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylberzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2.2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroe:hene	ND	0.5
108-88-3	Toluene	ND	0.5
87-61-6 ⁻	1,2,3-Trichicrobenzene	ND	0.5
120-82-1	1,2,4-Trichlcrobenzene	ND	0.5
71-55-6	1,1,1-Trichlcroethane	ND	0.5
79-00-5	1,1,2-Trichlcrcethane	ND	0.5
79-01-6	Trichloroethene	ND	0.5
75-69-4	Trichloroflucromethane	ND	0.5
96-18-4	1,2,3-Trichlcropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67 - 8	1,3,5-Trimemylbenzene	ND	0.5
75-01-4	Vinyl chloride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Total m&p-xylenes	ND	0.5

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

دي - مل <i>ت</i>	Ŵ	30°	,
		Ohio EPA	
		Analysis Data Report	
Sample: 08922 S		· · · · · · · · · · · · · · · · · · ·	<u></u>
Number TICs found:	2	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
00067-64-1	Acetone	3.71	1.57
01066-40-6	Silanol, trimethyl-	6.64	1.98
		•	
	• •	· .	

Tentatively Identified Compounds are listed for the 10 most prominant compounds. Notes: Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A FEP 2 3 1895 . BY

Date Received 96 102123	Lab Numbe	erO	8927	<u></u>
Station/Location <u>South Desition</u> Dunip Sample Collected By <u>Picit Struck/PSACE</u> , B.M. Bill to <u>NCIA</u>	STRICOZ	BELING SO	1001 $0 \in 0 $	WA
Division: []DSW []DDAGW [JDERF District: []CDO []NEDO []NWDO	R []DHWM · []DAPC [[]SEDO [/jSWDO]DSIVVM	Othe	r.
Sample Type: [MAqueous []Sediment []Tis	ssue []Oil []Air Canister Other H MM YY MM D		[]Grab []Co	mposite
Date & Time of Sample Begin 961212/ 1	$\frac{6}{30}$ End $\frac{76}{2}$	1116130		
Sample Use: []Rush []Litigation []Comp		urvey []Amb	ient []Other	· · ·
Well Use: []Industrial []Public []Priva	•			
Sample Volume Submitted: 2 # of Vials	# of Liter Jars		Other	\
Analysis Requested	Method	Analyzed	Reported	Analyst
Volatile Organic Compounds (VOC): (GC/MS)	M624 []8260 []524.2	76107127	96103101	(AT
Volatile Organic Compounds (VOC): (GC)	[]601&602 []502.2	/	<u> </u>	
Base-Neutral & Acid Extractables: (GC/MS)	[]625 []6270	!		
Base-Neutral Extractables (PAHs): (GC/MS)	[]625 []8270		_!_!	
Acid Extractables (Phenols): (GC/MS)	[]625 []8270			
Pesticid≘s: (GC)	0303[] 806[]	!		
Polychlcrinated biphenyls (FCBs): (GC)	[]603 []6030	!!		
Chlordana: (GC)	[]608 []8080			
Toxaphene: (GC)	0308[] 803[]			
Others:			<u> '</u>	·
Volatile Preserved with MHCL []Sodium Thiosulfate	Bioassay Sa	mple Submitted: (]Yes MNo	
Comments: EINSONE BUNKE				
				1

1

DES CA approval included on computer printout

٠,

	Ohio EPA Volatile Organic Analysis Data Report			
		en de Pro		
Sample:	O8927 SOUTH DAYTON DUMP	Method:	624	
Date Collected:	02/21/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22713.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
71-43-2	Benzene	ND	0.5	
108-86-1	Bromobenzene	ND	0.5	
74-97-5	Bromochloromethane	ND	0.5	
75-27-4	Bromodichloromethane	ND	0.5	
75-25-2	Bromoform	ND	0.5	
74-83-9	Bromomethane	ND	0.5 ·	
104-51-8	N-Butylbenzene	ND	0.5	
135-9 8-8	Sec-Butylbenzene	ND	0.5	
98-06-6	Tert-Butyibenzene	ND	0.5	
56-23-5	Carbon tetrachloride	ND	0.5	
108-90-7	Chlorobenzene	ND	0.5	
75-00-3	Chloroethane	ND	0.5	
67-66-3	Chloroform	ND	0.5	
74-87-3	Chloromethane	ND	0.5	
95-49-8	2-Chlorotoluene	ND	0.5	
106-43-4	4-Chlorotoluene	ND	0.5	
124-48-1	Dibromochloromethane	ND	0.5	
6-12-8	1,2-Dibromo-3-chloropropane	ND	0.5	
106-93-4	1,2-Dibromoethane	ND	0.5	
74-95-3	Dibromomethane	ND	0.5	
95-50-1	1,2-Dichlorobenzene	ND	0.5	
541-73-1	1,3-Dichlorobenzene	ND	0.5	
106-46-7	1,4-Dichlorobenzene	ND	0.5	
75-71-8	Dichlorodifluoromethane	ND	0.5	
75-3 4-3	1,1-Dichloroethane	ND	0.5	
107-06-2	1,2-Dichloroethane	0.9	0.5	
75-35-4	1,1-Dichloroethene	ND	0.5	
156-59-4	Cis-1,2-dichloroethene	ND	0.5	
156-60-5	Trans-1,2-dichloroethene	ND	0.5	
78-87-5	1,2-Dichloropropane	ND	0.5 .	
142-28-9	1,3-Dichloropropane	ND	0.5	
594-20-7	2.2-Dichloropropane	ND	0.5	
563-58-6	1,1-Dichloropropene	ND	0.5	
10061-1-5	Cis-1,3-dichloropropene	ND	0.5	
10061-02-6	Trans-1.3-dichloropropene	ND	0.5	
10001-02-0	Ethylbenzene	ND	0.5	
87-68-3	Hexachlorcbutadiene	ND	0.5	

5

,

	Ohio EPA Volatile Organic Analysis Data Report			
Sampie:	O8927 SOUTH DAYTON DUMP	Method:	624	
Date Collected:	02/21/96	Collected by:	PSARA	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22713.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
98-82-8	Isopropylbenzene	ND	0.5	
99-87-6	4-Isopropyltoluene	ND	0.5	
75-0 9 -2	Methylene chloride	0.7	0.5	
91-20-3	Naphthalene	ND	0.5	
103-65-1	N-Propylbenzene	ND	0.5	
100-42-5	Styrene	ND	0.5	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5	
79-34-5	1,1.2.2-Tetrachloroethane	ND	0.5	
127-18-4	Tetrachloroethene	ND	0.5	
108-88-3	Toluene	ND	0.5	
87-61-6	1,2,3-Trichlorobenzene	ND	0.5	
120-82-1	1,2,4-Trichlorobenzene	ND	0.5	
71-55-6	1,1,1-Trichloroethane	ND	0.5	
79-00-5	1,1,2-Trichioroethane	ND	0.5	
79-01-6	Trichloroethene	ND	0.5	
75-69-4	Trichlorofluoromethane	ND	0.5	
	1,2,3-Trichloropropane	ND	0.5	
95-63-6	1,2,4-Trimethylbenzene	ND	0.5	
108-67-8	1,3,5-Trimethylbenzene	ND	0.5	
75-01-4	Vinyl chloride	ND	0.5	
95-47-6	O-xylene	ND	0.5	
108-38-3	Total m&p-xylenes	ND	0.5	

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

• •			7
		Ohio EPA c Analysis Data Report entified Compounds	
Sample: 08927 S		· · ·	498
Number TICs found:	1	Concentration units:	u g/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
000067-64-1	Acetone	3.72	1.99

ć

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

MAR 01 1996 BY AMCIA

Date Received 96102126		*** 1umber0	8931				
Station/Location Sath Digton Du-			03				
Sample Collected By PSARA / RICK CISLER Amiliation Ohis EPA, DERR							
Bill to	С Керо	rt Analysis to $\underline{>}$	eve Martin	DERK			
Division: []DSW []DDAGW []DERF District: []CDO []NEDO []NWDO			Othe	۲ ۲ .			
Sample Type: [JAqueous []Sediment []Tis	ssue []Oil []Air Cai Other	nister []Air Filter	[]Grab []Co	mposite			
YY MM DD H Date & Time of Sample Eegin <u>96 102 123</u> Ø		MM DD HH MM					
Sample Use: []Rush []Litigation []Comp	plaint [-]Compliance	[]Survey []Am	bient []Cthei				
Well Use: []Industrial []Public []Priva	ate						
Sample Volume Submitted:# of Viais	# of Liter Jars		Other	· · · ·			
Analysis Requested	Method	Analyzed	Reported	Analyst			
Volatile Organic Compounds (VOC): (GC/MS)	[c]624 []8260 []52	4.2 <u>96102127</u>	96107101	(AT			
Volatile Organic Compounds (VOC): (GC)	[]601 &602 []50	2.2					
Base-Neutral & Acid Extractables: (GC/MS)	[]625 []82	.70	· ·				
Base-Neutral Extractables (PAHs): (GC/MS)	[]625 []82	70					
Acid Extractables (Phenols): (GC/MS)	[]625 []82	70					
Pesticides: (GC)	[]eo8 []80	8003		\			
Polychiorinated biphenyls (PCBs): (GC)	[]608 []80	80					
Chlordane: (GC)	[]608 []80						
Toxaphene: (GC) []608 []8080							
Others: //							
Volatile Preserved with [VHCL []Sodium Thicsulfate Bicassay Sample Submitted: []Yes []No							
Comments: 1 50005 - 50 RI 003							

DES CA approvat included on computer printout

RASCHE

(證)

	- Ohio E	PA	
	Volatile Organic Analy	sis Data Repor	t
		- -	
· · · ·			
Sample:	08931 SOUTH DAYTON DUMP	Method:	624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22715.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	ND	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butyibenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butylbenzene	ND	´ 0.5
56-23-5	Carbon tetrachloride	ND	0.5
108-90-7	Chlorobenzene	ND	0.5
75-00-3	Chloroethane	ND	0.5
3-66-3	Chloroform	ND	0.5
74-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chiorotoluene	ND	0.5
124-48-1	Dibromochloromethane	ND	0.5
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1,2-Dibromoethane	ND	0.5
	Dibromomethane	ND	0.5
74-95-3		ND	
95-50-1	1,2-Dichiorobenzene		0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
106-46-7	1,4-Dichlorobenzene	ND ND	0.5
75-71-8 75-24-2	Dichlorodifluoromethane		0.5
75-34-3	1,1-Dichloroethane	ND	0.5
07-06-2	1,2-Dichloroethane	ND	0.5
75-35-4	1,1-Dichlcroethene	ND	0.5
56-59-4	Cis-1,2-dichloroethene	ND	0.5
56-60-5	Trans-1,2-dichloroethene	ND	0.5
⁷ 8-87-5	1,2-Dichloropropane	ND	0.5
42-28-9	1,3-Dichloropropane	ND	0.5
94-20-7	2,2-Dichloropropane	ND	0.5
63-58-6	1,1-Dichloropropene	ND	0.5
0061-1-5	Cis-1,3-dichloropropene	ND	0.5
0061-02-6	Trans-1,3-dichloropropene	ND	0.5
00-41-4	Ethylbenzene	ND	0.5
37-68-3	Hexachlorobutadiene	ND	0.5

<u>т</u>.,

5

	Ohio E	. P A	
	Volatile Organic Analy	/sis Data Repo r	n and a state of the state of t
Sample:	O8931 SOUTH DAYTON DUMP		624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22715.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropylbenzene	ND	0.5
99-87-6	4-isopropyitoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylbenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	ND	0.5
87-61-6	1.2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichlorcethene	ND	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5

1 **1** 2

WB7

Explanation of terms:

75-01-4

95-47-6

108-38-3

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL

Vinyl chloride

Total m&p-xylenes

O-xylene

DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

ND

ND

ND

0.5

0.5

ب ه . م	(4) (4)				
		Ohio EPA Analysis Data Report			
Sample: 08931 S	OUTH DAYTON DUMP				
Number TICs found:	1	Concentration units:	ug/L		
CAS NO.	COMPOUND	R. TIME	EST. CONC		
001066-40-6	Silanol, trimethyl-	6.66	1.10		

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

MAE 01 1996 , + Mclike BY

ORGANIC SAMPLE SUBMISSION / F	REPORT FOR	M			
Date Received <u>96,02,2</u>		Lab Numb	er(38923	>
Station/Location	Jank	SCI	2 2 7996	~	
Sample Collected By	K-SWI Jab	Affiliation			
Bill to DEKI2		Report An	alysis 21 R/	RICK CL	sler/l
Division: []DSW []DDAGW X DEF District: []CDO []NEDO []NWDO			jdsiwii	Othe	۲
Sample Type: Aqueous []Seciment []	Tissue []Oil [Other	Air Canister	[]Air Fiiter	[]Grab []Co	mposite
YY MM DD	HH MM	YY MM (DD HH MM		
Date & Time of Sample Begin <u>76103120</u>	/ Er	id//_			
Sample Use: []Rush []Litigation []Con		liance []S	Survey 🔄 Ami	pient (10ther	•
	-	- *	•••		
Well Use: []Industrial []Public []Pri	vate				
Sample Volume Submitted:/_# of Viai	s# of Lite	r Jars		Other	•
Analysis Requested	Metho	đ	Analyzed	Reported	Analyst
Volatile Organic Compounds (VOC): (GC/MS)	14824 []8250	[]524.2	9615122	96102126	、大
	1	•			1
Vciatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2			
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270	/		
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270	1.1		
Dase-Neural Exhactables (1 Alls). (Collid)	[]025	1 10210			
Acid Extractables (Phencis): (GC/MS)	[]625	[]8270			
Pesticides: (GC)	[]608	[]8080	, ,	, ,	
		-			
Polychlorinated biphenyls (PCEs): (GC)	[]608	080 9[]	/		
Chlordane: (GC)	[]608	0803[]			<u></u>
Toxaphene: (GC)	[]608	0808[]	, ,		
		f Jonen	'		<u> </u>
Others:	:			<u> </u>	
Volatile Preserved with MHCL []Socium Thiosulfate		Bioassay Sam	ole Submized: ())	res ANO	
Comments:				1	

DES CA approval included on computer printout

.

:

Tap Blume

9

S

-

•

Ohio EPA Volatile Organic Analysis Data Report				
Sample: Date Collected:	08923 TRIP BLANK 02/20/96	Method: Collected by:	624 PASARA	
Data Analyzed:	02/22/96	Analyzed by:	A.JÁMAL	
Matrix:	Water	Dilution:	1	
File No:	V22208.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
71-43-2	Benzene	ND	0.5	
108-86-1	Bromobenzene	ND	0.5	
74-97-5	Bromochloromethane	ND	0.5	
75-27-4	Bromodichloromethane	ND	0.5	
75-25-2	Bromoform	ND	0.5	
74-83-9	Bromomethane	ND	0.5	
104-51-8	N-Butylbenzene	ND	0.5	
135-98-8	Sec-Butylbenzene	ND	0.5	
98-06-6	Tert-Butylbenzene	ND	0.5	
56-23-5	Carbon tetrachloride	ND	0.5	
108-90-7	Chlorobenzene	ND	0.5	
75-00-3	Chloroethane	ND	0.5	
67-66-3	Chloroform	ND	0.5	
74-87-3	Chloromethane	ND	0.5	
95-49-8	2-Chlorotoluene	ND	0.5	
33-49-8 106-43-4	4-Chlorotoluene	ND	0.5	
124-48-1	Dibromochloromethane	ND	0.5	
96-12-8		ND	0.5	
	1,2-Dibromo-3-chloropropane	ND	0.5	
106-93-4	1,2-Dibromoethane	ND	0.5	
74-95-3	Dibromomethane			
95-50-1	1,2-Dichlorobenzene	ND	0.5	
541-73-1	1,3-Dichlorobenzene	ND	0.5	
106-46-7		ND	0.5	
75-71-8	Dichlorodifluoromethane	ND	0.5	
75-34-3	1,1-Dichloroethane	ND	0.5	
107-06-2	1,2-Dichloroethane	ND	0.5	
75-35-4	1,1-Dichloroethene	ND	0.5	
156-59-4	Cis-1,2-dichloroethene	ND	0.5	
156-60-5	Trans-1,2-dichloroethene	ND	0.5	
78-87-5	1,2-Dichloropropane	ND	0.5	
142-28-9	1,3-Dichloropropane	ND	0.5	
594-20-7	2,2-Dichloropropane	ND	0.5	
563-58-6	1,1-Dichloropropene	ND	0.5	
10061-1-5	Cis-1,3-dichloropropene	ND	0.5	
10051-02-6	Trans-1,3-dichloropropene	ND	0.5	
100-41-4	Ethylbenzene	ND	0.5	
97-68-3	Hexachlorobutadiene	ND	0.5	

	Ohic	EPA	
	Volatile Organic An	alysis Data Repor	t
Sample:	O8923 TRIP BLANK	Method:	624
Date Collected:	02/20/96	Collected by:	PASARA
Data Analyzed:	02/22/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22208.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropyibenzene	ND	0.5
99-87-6	4-isopropyltoluene	ND	0.5
75-09-2	Methylene chloride	0.8	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propyibenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	ND	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichloroethene	ND	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyi chloride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Total m&p-xylenes	ND	0.5

Explanation of terms:

CAS NO : Chemical Abstracts Service Number.

- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

		Ohio EPA Volatile Organic Analysis Data Report Tentatively Identified Compounds		
Sample: 08923 T	RIP BLANK		<u></u>	
Number TICs found:	0		Concentration units:	ug/L
CAS NO.	COMPOUND		R. TIME	EST. CONC
		•		

and the Restored

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found. APPROVED BY Q.A

FEP 2 3 1995 BY <u></u> Mi

7 **3**

8 - 14

Date Received 96,62,23	Lab Numbe	er0	8928	
Station/Location THP BLACK S Sample Collected By B. ALCONT OTAL Bill to Page	<u>SO</u> Affiliation _		いいつ ノロロば	-
Division: []DSW []DDAGW [/]DERF District: []CDO []NEDO []NWDO				
Sample Type: MAqueous [Sediment []Tis	ssue []Oil []Air Canister Other	[]Air Filter	[]Grab []Co	mposite
YY MM DD H Date & Time of Sample Begin 9612121				
Sample Use: []Rush []Litigation []Comp	plaint [v]Compliance [JS	iurvey []Amt	oient []Other	•
Well Use: []Industrial []Public []Priva	ate $n/4$			
Sample Volume Submitted:# of Vials	# of Liter Jars		Other	
Analysis Requested	Method	Analyzed	Reported	Anaiyst
Volatile Organic Compounds (.'OC): (GC/MS)	[]624 []8250 []524.2	96102127	96103101	At
Volatile Organic Compounds (*OC): (GC)	[]601&602 []502.2	<u></u>	<u> </u>	·
Base-Neutral & Acid Extractables: (GC/MS)	[]625 []6270			
Base-Neutral Extractables (PA∺s): (GC/MS)	[]625 []8270			
Acid Extractables (Phenois): (GC/MS)	[]525 []5270			
Pesticides: (GC)	0303[] 803[]		<u> </u>	
Polychlorinzted biphenyls (PCEs): (GC)	[]608 [] 8080		<u></u>	
Chlordane: (GC)	[]608 []8080			
Toxaphene: (GC)	[]608 []8080			
Others:				
Volatile Preserved with MHCL [Sodium Thiosuifate	Bioassay Sa	mple Submitted: [IYes (MNO	
Comments:				

.

•

DES QA approval included on computer printout

	Ohio EPA Volatile Organic Analysis Data Report			
Sample:	O8928 TRIP BLANK	Method:	624	
Date Collected:	02/21/96	Collected by:	B.MARLATT	
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL	
Matrix:	Water	Dilution:	1	
File No:	V22714.D	Conc. Units:	ug/L	
CAS NO.	COMPOUND	CONC	DL	
71-43-2	Benzene	ND	0.5	
108-86-1	Bromobenzene	ND	0.5	
74-97-5	Bromochloromethane	ND	0.5	
75-27-4	Bromodichloromethane	ND	0.5	
75-25-2	Bromoform	ND	0.5	
74-83-9	Bromomethane	ND	0.5	
104-51-8	N-Butyibenzene	ND	0.5	
135-98-8	Sec-Butylbenzene	ND	0.5	
98-06-6	Tert-Butylbenzene	ND	0.5	
56-23-5	Carbon tetrachloride	ND	0.5	
108-90-7	Chlorobenzene	ND	0.5	
75-00-3	Chloroethane	ND	0.5	
67-66-3	Chloroform	ND	0.5	
74-87-3	Chloromethane	ND	0.5	
95-49-8	2-Chlorotoluene	ND	0.5	
106-43-4	4-Chlorotoluene	ND	0.5	
124-48-1	Dibromochloromethane	ND	0.5	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5	
106-93-4	1,2-Dibromoethane	ND	0.5	
74-95-3	Dibromomethane	ND	0.5	
95-50-1	1,2-Dichlorobenzene	ND	0.5	
541-73-1	1,3-Dichlorobenzene	ND	0.5 C.5	
106-46-7	1,4-Dichlorobenzene	ND	0.5	
75-71-8	Dichlorodifluoromethane	ND	0.5	
75-34-3	1,1-Dichlorcethane	ND	0.5	
107-06-2	1,2-Dichloroethane	ND	. 0.5	
75-35-4	1,1-Dichlorcethene	ND	0.5	
56-59-4	Cis-1,2-dichlcroethene	ND	0.5	
156-60-5	Trans-1,2-dichloroethene	ND	0.5	
78-87-5	1,2-Dichloropropane	ND	0.5	
42-28-9	1,3-Dichloropropane	ND	0.5	
594-20-7	2,2-Dichloropropane	ND	0.5	
563-58-6	1,1-Dichloropropene	ND	0.5	
0061-1-5	Cis-1,3-dichloropropene	ND	0.5	
10061-02-6	Trans-1.3-dichloropropene	ND	0.5	
00-41-4	Ethylbenzene	ND	0.5	
7-68-3	Hexachlorobutadiene	ND	0.5	

63

.

- 1

			•
		Ohio EPA ic Analysis Data Report entified Compounds	
Sample: 08928 T	RIP BLANK		
Number TICs found:	0	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A MAR 01 1996 BY <u>G McCanel</u>

, . . **.** . . .

	:		(i.)	0001	,		
Date Received 96102126	MAR () 5 1996	Lab Numb	erO	8934_			
Station/Location South Dayton Do	~ 0 ~ 1	11- L	3 Jank				
Sample Collected By DABEN / Rich Gi	GALINE UIU	Affiliation		H, DERR			
Bill to			alysis to	ten Martin	Denn		
Division: []DSW []DDAGW [9DERR []DHWM []DAPC []DSIWMOther District: []CDO []NEDO []NWDO []SEDO [2]SWDO							
Sample Type: []Aqueous []Sediment []Ti	ssue []Oil []A Other	vir Canister	[]Air Filter	[]Grab []Co	mposite		
Date & Time of Sample Begin $\frac{96122123}{9602223}$			D HH MM				
Sample Use: []Rush []Litigation []Com	plaint [deompli	anc e []S	Survey []Amb	cient []Other			
Well Use: []Industrial []Public []Priv.	TRIP B	LANIK					
_Sample Volume Submitted:≓ of Vials	/# of Liter	Jars		Óther	•		
Analysis Requested	Method		Analyzed	Reported	Analyst		
Volatile Organic Compounds (VOC): (GC/MS)	JA24 []8260	[]524.2	961521=7	<u>101 FOI 29</u>	AT		
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2		<u> </u>			
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270	!!				
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270	/				
Acid Extractables (Phenols): (GC/MS)	[]625	[]8270					
Pesticides: (GC)	[]608	[]8080	·/	/			
Polychlorinated biphenyls (PCEs): (GC)	[]608	0308[]	!!				
Chlordane: (GC)	[]603	[]8080	!!				
Toxaphene: (GC)	[]ecs	[]8C80					
Others:	[
Volatile Preserved with MHCL []Sodium Thiosulfate		Bicassay San	nple Submitted: []	Yes []No	<u></u>		
Comments: / \							

DES CA approval included on computer printout

5

TRID B. ANK.

Ohio EPA Volatile Organic Analysis Data Report

Sample:	O8934 TRIP BLANK	Method:	. 624
Date Collected:	02/23/96	Collected by:	PSARA
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22716.D	Conc. Units:	ug/L

<u>}</u>

CAS NO.	COMPOUND	CONC	DL
71-43-2	Benzene	NĎ	0.5
108-86-1	Bromobenzene	ND	0.5
74-97-5	Bromochloromethane	ND	0.5
75-27-4	Bromodichloromethane	ND	0.5
75-25-2	Bromoform	ND	0.5
74-83-9	Bromomethane	ND	0.5
104-51-8	N-Butylbenzene	ND	0.5
135-98-8	Sec-Butylbenzene	ND	0.5
98-06-6	Tert-Butylbenzene	ND	0.5
56-23-5	Carbon tetrachloride	ND	0.5
108-90-7	Chlorobenzene	ND	0.5
75-00-3	Chioroethane	ND	0.5
67-66-3	Chloroform	ND	0.5
74-87-3	Chloromethane	ND	0.5
95-49-8	2-Chlorotoluene	ND	0.5
106-43-4	4-Chlorotoluene	ND	0.5
124-48-1	Dibromochloromethane	ND	0.5
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5
106-93-4	1.2-Dibromoethane	ND	0.5
74-95-3	Dibromomethane	ND	0.5
95-50-1	1,2-Dichlorobenzene	ND	0.5
541-73-1	1,3-Dichlorobenzene	ND	0.5
106-46-7	1,4-Dichlorobenzene	ND	0.5
75-71-8	Dichlorodifluoromethane	ND	0.5
75-34-3	1,1-Dichloroethane	ND	0.5
107-06-2	1,2-Dichloroethane	ND	0.5
75-35-4	1,1-Dichloroethene	ND	0.5
156-59-4	Cis-1.2-dichloroethene	ND	0.5
156-60-5	Trans-1,2-dichloroethene	ND	0.5
78-87-5	1,2-Dichloropropane	ND	0.5
142-28-9	1,3-Dichloropropane	ND	0.5
594-20-7	2,2-Dichloropropane	ND	0.5
563-58-6	1,1-Dichloropropene	ND	0.5
10061-1-5	Cis-1,3-dichloropropene	ND	0.5
10061-02-6	Trans-1,3-dichloropropene	ND	0.5
100-41-4	Ethyibenzene	ND	0.5
87-68-3	Hexachlorobutadiene	ND	0.5

Ohio EPA					
Volatile Organic Analysis Data Report					
Sample:	O8934 TRIP BLANK	Method:	624		
Date Collected:	02/23/96	Collected by:	PSARA		
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL		
Matrix:	Water	Dilution:	1		
File No:	V22716.D	Conc. Units:	ug/L		
CAS NO.	COMPOUND	CONC	DL		
98-82-8	isopropylbenzene	ND	0.5		
99-87-6	4-Isopropyitoluene	ND	0.5		
75-09-2	Methylene chloride	ND	0.5		
91-20-3	Naphthalene	ND	0.5		
103-65-1	N-Propylbenzene	ND	0.5		
100-42-5	Styrene	ND	0.5		
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.5		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5		
177 19 4	Tetrachioroethene	ND	0.5		

CAS NO.	COMPOUND	CONC	DL
98-82-8	isopropyibenzene	ND	0.5
99-87-6	4-Isopropyitoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylbenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,1,2-Tetrachloroethane	' ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	ND	0.5
87-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichloroethene	ND	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
96-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
108-67-8	1.3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chloride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Total m&p-xylenes	ND	0.5
1			

Explanation of terms:

CAS NO :	Chemical Abstracts Service Number.

- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

		· · · · · · · · · · · · · · · · · · ·		
		Ohio EPA nic Analysis Data Report dentified Compounds		
Sample: 08934 TRI	P BLANK	<u> </u>	. <u></u>	
Number TICs found:	0	Concentration units:	u g/L	
CAS NO.	COMPOUND	R. TIME	EST. CONC	
			. <u> </u>	

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

MAR 01 1995 McDanel BY⊈

UNUAINIC JAINIFLE JUDI AJOINT				rail	2
Date Received <u>96 p2,27</u>	MAR 0 5 19	dab Numb 95	er	0019	/
Station/Location Trip bland Sample Collected By Lab	<u>د</u>	STRIC	<u> </u>	DER	R
Bill to DERR				5. Martin	
Division: []DSW []DDAGW ADDER District: []CDO []NEDO []NWDO	RR []DHWM []]SEDO }[] S]DAPC (SWDO]DSIVM	Othe	r
Sample Type: Aqueous []Sediment []	īssue []Oil []4 Other	Air Canister	[]Air Filter	[]Grab []Co	mposite
۲۲ MM DD Date & Time of Sample Begin <u>96 ا 102</u>			D HH MM		
Sample Use: []Rush []Litigation []Con	nplaint (JCompli	ance []S	iurvey []Aml	bien: []Other	
Well Use: []Industrial []Public []Pri	vate				
Sample Volume Submitted:# of Vial	s# of Liter	Jars		Cther	
Analysis Requested	Method		Analyzed	Reported	Analyst
Volatile Organic Compounds (VOC): (GC/MS)	H624 []8260	[]524.2	<u>96 02 127</u>	9 <u>01301</u>	A
Volatile Organic Compounds (VOC): (GC)	[]601&602	[]502.2	/		
Base-Neutral & Acid Extractables: (GC/MS)	[]625	[]8270			
Base-Neutral Extractables (PAHs): (GC/MS)	[]625	[]8270			<u> </u>
Acid Extractables (Phenols): (GC/MS)	[]625	[]8270		_/_/	
Pesticides: (GC)	[]608	[]8080	!!		
Polychlorinated biphenyls (PCEs): (GC)	[]608	[]8080	/		
Chlordane: (GC)	[]608	[]8080	//		
Toxaphene: (GC)	[]608	[]8080	!!		
Others: /_/_ ///					
Volatile Preserved with AHCL [Scdium Thicsulfate Bicassay Sample Submitted: []Yes []No					
Comments:					
Sheet written at lab					
DES QA approval included on computer printout					
x		. h.			

TAP BOOK

	Ohio EPA				
	Volatile Organic Ana	iysis Data Repor	t		
Sample:	O8943 TRIP BLANK	Method:	624		
Date Collected:	02/26/96	Collected by:	LAB		
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL		
Matrix:	Water	Dilution:	1		
File No:	V22719.D	Conc. Units:	ug/L		
CAS NO.	COMPOUND	CONC	DL		
71-43-2	Benzene	ND ·	0.5		
108-86-1	Bromobenzene	ND	0.5		
74-97-5	Bromochioromethane	ND	0.5		
75-27-4	Bromodichloromethane	ND	0.5		
75-25-2	Bromoform	ND	0.5		
74-83-9	Bromomethane	ND	0.5		
104-51-8	N-Butylbenzene	ND	0.5		
135-98-8	Sec-Butyibenzene	ND	0.5		
98-06-6	Tert-Butylbenzene	ND	0.5		
56-23-5	Carbon tetrachloride	ND	0.5		
108-90-7	Chlorobenzene	ND	0.5		
75-00-3	Chloroethane	ND	0.5		
67- 66- 3	Chloroform	ND	0.5		
74-87-3	Chloromethane	ND	0.5		
95-49-8	2-Chlorotoluene	ND	0.5		
106-43-4	4-Chlorotoluene	ND	0.5		
124-48-1	Dibromochloromethane	ND	0.5		
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.5		
106-93-4	1,2-Dibromoethane	ND	0.5		
74-95-3	Dibromomethane	ND	0.5		
95-50-1	1,2-Dichlorobenzene	ND	0.5		
541-73-1	1,3-Dichloropenzene	ND	0.5		
106-46-7	1,4-Dichlorobenzene	ND	0.5		
75-71-8	Dichlorodifluoromethane	ND	0.5		
75-34-3	1,1-Dichloroethane	ND	0.5		
107-06-2	1,2-Dichloroethane	ND	0.5		
75-35-4	1,1-Dichloroethene	ND	0.5		
	Cis-1,2-dichloroethene	ND	0.5		
156-59-4	Trans-1,2-dichloroethene	ND	0.5		
156-60-5		ND	0.5		
78-87-5	1,2-Dichloropropane 1,3-Dichloropropane	ND			
142-28-9	2,2-Dichloropropane	ND	0.5		
594-20-7			0.5		
563-58-6	1,1-Dichloropropene	ND	0.5		
10061-1-5	Cis-1,3-dichloropropene	ND	0.5		
10061-02-6	Trans-1,3-dichloropropene	ND	0.5		
100-41-4	Ethylbenzene	ND	0.5		
87-68-3	Hexachlorobutadiene	ND	0.5		

-

	Ohio	EPA	
·	Volatile Organic An	alysis Data Repor	t
Sample:	O8943 TRIP BLANK	Method:	624
Date Collected:	02/26/96	Collected by:	LAB
Data Analyzed:	02/27/96	Analyzed by:	A.JAMAL
Matrix:	Water	Dilution:	1
File No:	V22719.D	Conc. Units:	ug/L
CAS NO.	COMPOUND	CONC	DL
98-82-8	Isopropylbenzene	ND	0.5
99-87-6	4-Isopropyitoluene	ND	0.5
75-09-2	Methylene chloride	ND	0.5
91-20-3	Naphthalene	ND	0.5
103-65-1	N-Propylbenzene	ND	0.5
100-42-5	Styrene	ND	0.5
630-20-6	1,1,2-Tetrachloroethane	ND	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.5
127-18-4	Tetrachloroethene	ND	0.5
108-88-3	Toluene	ND	0.5
37-61-6	1,2,3-Trichlorobenzene	ND	0.5
120-82-1	1,2,4-Trichlorobenzene	ND	0.5
71-55-6	1,1,1-Trichloroethane	ND	0.5
79-00-5	1,1,2-Trichloroethane	ND	0.5
79-01-6	Trichloroethene	ND	0.5
75-69-4	Trichlorofluoromethane	ND	0.5
6-18-4	1,2,3-Trichloropropane	ND	0.5
95-63-6	1,2,4-Trimethylbenzene	ND	0.5
08-67-8	1,3,5-Trimethylbenzene	ND	0.5
75-01-4	Vinyl chloride	ND	0.5
95-47-6	O-xylene	ND	0.5
108-38-3	Totai m&p-xylenes	ND	0.5

5.5

Ð

Explanation of terms:

- CAS NO : Chemical Abstracts Service Number.
- ND : Compound not detected OR less than DL
- DL : Detection Limit taking into account MDL and sample dilution considering actual volume of sample analyzed.

Comments:

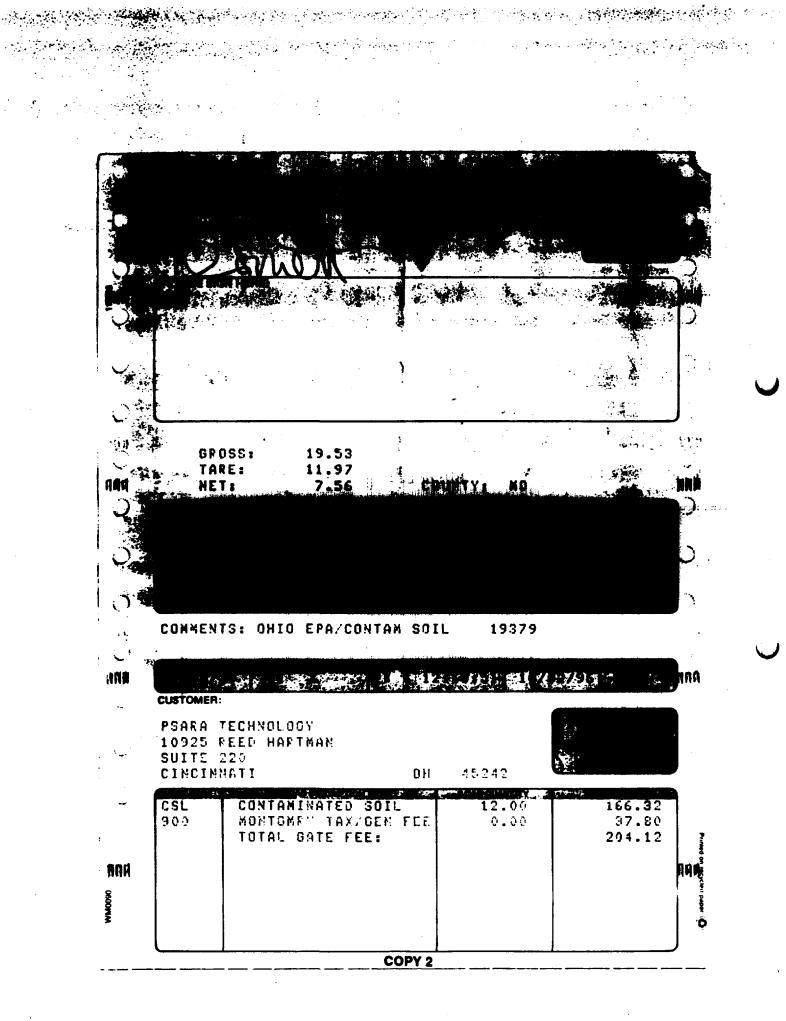
	···		
Sample: 08943 T	RIP BLANK		
Number TICs found:	0	Concentration units:	ug/L
CAS NO.	COMPOUND	R. TIME	EST. CONC
	<u> </u>		
·			
		·	

Notes: Tentatively Identified Compounds are listed for the 10 most prominant compounds. Additional compounds may be present if all 10 are listed. Names listed represent the best fit as determined by library identification by computer. The name listed is not necessarily the name of the actual compound. Where less than 10 compounds are listed, no additional compounds were found.

APPROVED BY Q.A

1 1993 Uch 8¥4

APPENDIX G


er tæ⊲t

ŧ. .

¥....

4 -

Bill of Lading

and the second of the second and and

5 - 2

ž

1000

.

10

APPENDIX B:

SITE PHOTOGRAPHIC LOG

Sample Collection Photographic Log Index

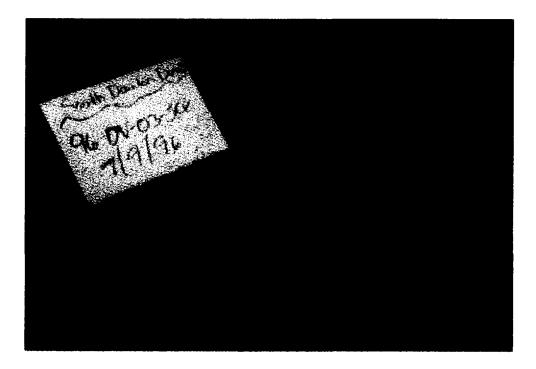

for the

South Dayton Dump and Landfill

Ohio Master Sites List #557-0752 Montgomery County Dayton, Ohio

Compiled by:

The Ohio Environmental Protection Agency Division of Emergency and Remedial Response 401 East Fifth Street Dayton, Ohio 45402



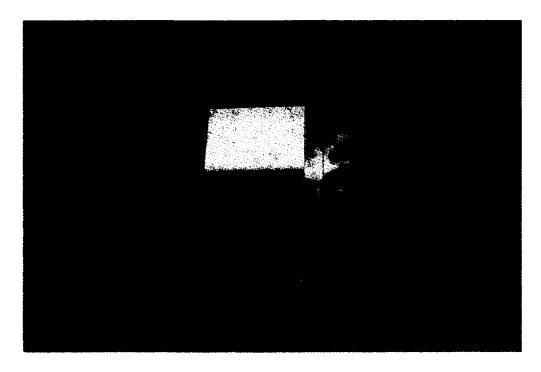
Photograph #96-DV-03-S01

Date: July 9, 1996

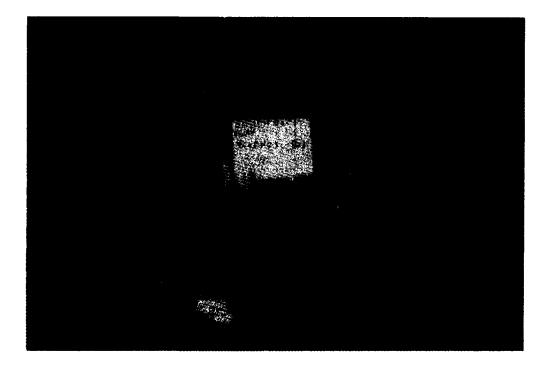
Direction: N/A

Description: Soil sample collected 4 - 4.5 feet below ground surface (bgs) north of center portion of landfill near drum area. Sample collected five (5) yards south of the east-west access road that runs along the northern portion of the site.

Photograph #96-DV-03-S02 Date: July 9, 1996

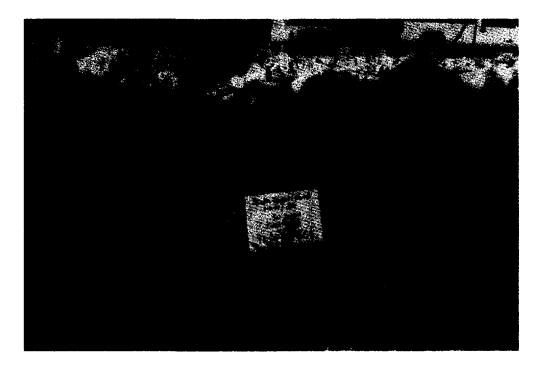

Direction: N/A

Description: Soil sample collected from 0 - 1 inches bgs along the north-south access road located in center of the landfill.


Sample #96-DV-03-S03 and #96-DV-03-D03 Date: July 9, 1996 Direction: N/A

Description: Soil sample collected from 1.5 - 2 feet bgs near concrete rubble piles at the northwest edge of the depression area located in the center of the landfill.

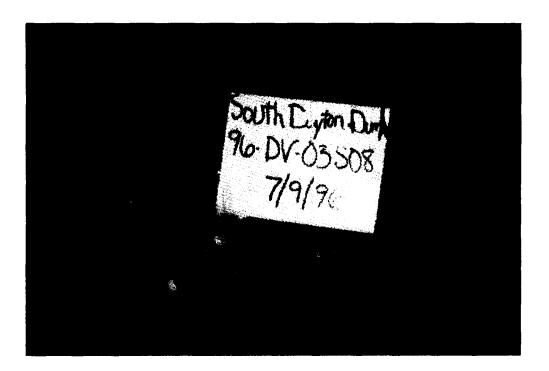
Sample #96-DV-03-S04 Date: July 9, 1996 Direction: N/A


Description: Soil sample collected from 1.5 - 2 feet bgs immediately east of the mideastern edge of the depression area located in the center of the landfill.

Date: July 9, 1996

Direction: N/A

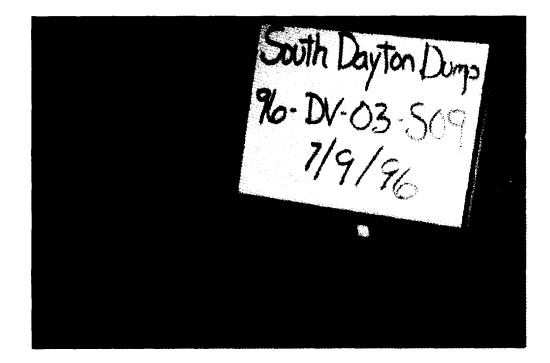
Description: Soil sample collected from 5 feet bgs along western edge of the landfill between the access road and the steep slope to the flood plain.



Sample #96-DV-03-S06

Date: July 9, 1996

Direction: Northeast


Description: Soil sample collected from 1.5 - 2.3 feet bgs near the mid-southeastern portion of landfill between existing concrete rubble piles and the depression area.

Date: July 9, 1996

Direction: N/A

Description: Surface soil sample collected from 2 -3 inches bgs along the midwestern edge of the landfill on the slope adjacent to the bike trail and Great Miami River between MW-102 and MW-103. Sample collected adjacent to a exposed drum containing hard, green, waste material.



Sample #96-DV-03-S09

Date: July 9, 1996

Direction: N/A

Description: Soil sample collected 2 - 6 inches bgs along the slope at the northwest corner of the landfill. Sample collected adjacent to 4 exposed drums.

Date: July 9, 1996

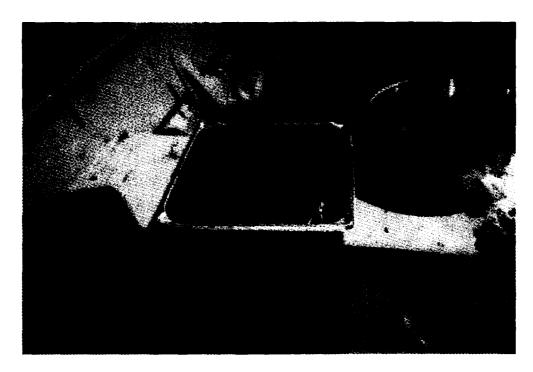
Direction: N/A

Description: Soil sample collected from 0 - 4 inches bgs along the slope south of the center of the eastern concrete pad located along the north access road in midwest portion of landfill.

Sample #96-DV-03-S11

Date: July 9, 1996

Direction: N/A


Description: Soil sample collected from 3 - 4 inches bgs along the ravine located at the southeast corner of the landfill. Sample collected near the west end of the ravine.

Date: July 9, 1996

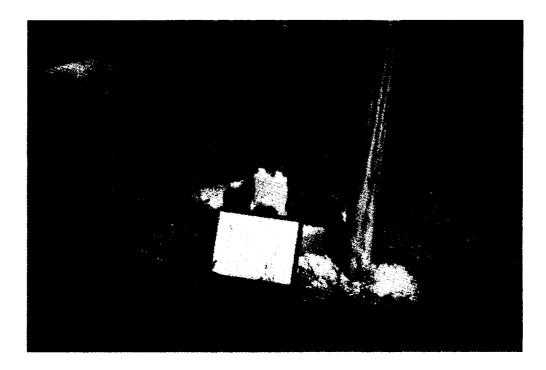
Direction: N/A

Description: Sediment sample collected from 15 - 18 feet below water surface (bws). Located between the two utility towers, 25 yards from the shoreline, directly below the overhead utility lines, in the impoundment located off the southwest corner of the landfill.

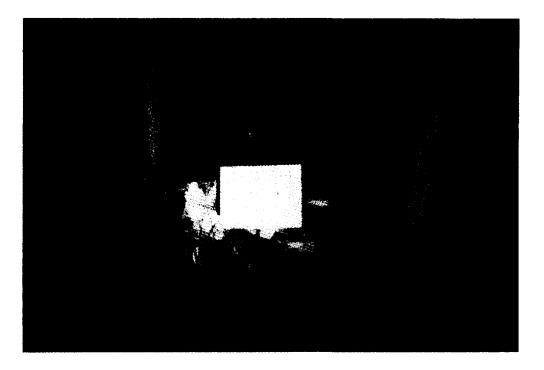
Sample #96-DV-03-S16

Date: July 9, 1996

Direction: N/A


Description: Sediment sample collected from 15 - 18 feet bws. Located 200 feet southeast of utility tower on gravel outcrop along the northeast shoreline, in the impoundment located off the southwest corner of the landfill.

Date: July 9, 1996


Direction: North

Description: Background sediment sample collected from 0 - 6 inches bgs. Located upstream of the site, between the landfill and the asphalt plant, along the east bank of the Great Miami River.

Sample #96-DV-03-S23 and #96-DV-03-D23 Date: July 9, 1996 Direction: N/A

Description: Ground-water sample from monitoring well #101. Well screen interval from 23.5 - 33. 5 feet bgs. Located near southeast corner of site near adjacent to the neighboring pallet company property.

Date: July 9, 1996

Direction: N/A

Description: Ground-water sample from monitoring well #103. Well screen interval from 22 - 32 feet bgs. Located in the middle of the landfill's western end, adjacent to the bike path running along the Great Miami River.

Sample **#96-DV-03-S25**

Date: July 9, 1996

Direction: N/A

Description: Ground-water sample from monitoring well #102. Well screen interval from 20 - 30 feet bgs. Located near the southwest corner of the landfill, adjacent to the bike path running along the Great Miami River. Located approximately 450 feet south of monitoring well #102.