

Weston Solutions, Inc.
Suite 500
750 East Bunker Court
Vernon Hills, IL 60061-1450
847-918-4000 • Fax 847-918-4055
www.westonsolutions.com

3 August 2004

Mr. Ross del Rosario
Work Assignment Manager
U.S. Environmental Protection Agency - Region V
77 West Jackson Blvd.
Chicago, Illinois 60604

U.E. EPA Contract No. 68-W7-0026 Work Assignment No. 233-RICO-B51W Document Control No. RFW233-2A-AQSD

Re:

Data Evaluation Summary Report

Revision 1

Ellsworth Industrial Park Site

Downers Grove, Illinois

Dear Mr. del Rosario:

Weston Solutions, Inc. (WESTON®) is pleased to submit three (3) copies of the *Data Evaluation Summary Report* (Revision 1) for the above referenced site. These documents reflect received U.S. EPA written comments dated 21 July 2004 as well as verbal comments from Mr. Tom Kruger received 26 July 2004.

Please contact me at (847) 918-4016 if you have questions or require further information.

Very truly yours,

Weston Solutions, Inc.

Kurt T. Fischer, P.G.

Site Manager

KTF\tg Enclosure

DATA EVALUATION SUMMARY REPORT ELLSWORTH INDUSTRIAL PARK SITE DOWNERS GROVE, DUPAGE COUNTY, ILLINOIS

WA No. 233-RICO-B51W
Document Control No. 233-2A-AQSD
Revision 1 – 3 August 2004
Revision 0 – 16 July 2004

Prepared for

U.S. Environmental Protection Agency Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

Prepared by

WESTON SOLUTIONS, INC.

750 East Bunker Court Suite 500 Vernon Hills, Illinois 60061

		٠.		•		
						_
				•		_
						_
	•					
						_
						_
						-
					•	
			•			-
						_
						_
						_
						_
						_
						_
						•
						-
						-
						_
•						

DATA EVALUATION SUMMARY REPORT ELLSWORTH INDUSTRIAL PARK SITE DOWNERS GROVE, DUPAGE COUNTY, ILLINOIS

Prepared for

U.S. Environmental Protection Agency Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

3 August 2004

Kurt T. Fischer, P.G.

Site Manager

Barry L Crawford

Project Hydrogeologist

Prepared by

Weston Solutions, Inc.
750 East Bunker Court
Suite 500
Vernon Hills, Illinois 60061

Section: TOC Revision: 1 Date: 3 August 2004 Page: 1 of 13

TABLE OF CONTENTS

<u>Se</u>	<u>ction</u>	<u>Title</u>	Page
1	INTROD	DUCTION	1-1
	1.1 ОВЛ	ECTIVES AND SCOPE OF WORK	1-1
2	2.1 GEO 2.2 NAT	Potential Source Properties	2-1 2-2 2-4 2-4 2-5 2-6
3	BACKG	ROUND INFORMATION	. 3-1
			3-1 3-1
4	INVEST	IGATION RESULTS	. 4-1
	4.1 WOO 4.1.1 4.1.2	8 ,	. 4-3 . 4-3 . 4-3
		PERTY NORTH OF 4935 BELMONT	
	4.2.1 4.2.2	G ,	. 4-4 . 4-4

Section: TOC Revision: 1

Date: 3 August 2004 Page: 2 of 13

Section	<u>Title</u>	Page
4.3	4935 BELMONT	4-5
	4.3.1 Geology and Groundwater Occurrence	4-5
	4.3.2 Analytical Results	4-6
	4.3.2.1 Soil	4-6
	4.3.2.2 Groundwater	4-6
4.4	4947 BELMONT	4-7
	4.4.1 Geology and Groundwater Occurrence	4-7
	4.4.2 Analytical Results	4-7
	4.4.2.1 Soil	4-7
	4.4.2.2 Groundwater	4-8
4.5	5240 BELMONT	4-8
	4.5.1 Geology and Groundwater Occurrence	4-8
	4.5.2 Analytical Results	4-9
	4.5.2.1 Soil	4-9
	4.5.2.2 Groundwater	4-9
4.6	5023 CHASE 4-	-10
	4.6.1 Geology and Groundwater Occurrence	-10
	4.6.2 Analytical Results	-10
	4.6.2.1 Soil	-10
	4.6.2.2 Groundwater	-11
4.7	5024 CHASĒ 4-	-11
	4.7.1 Geology and Groundwater Occurrence	-11
	4.7.2 Analytical Results	-12
	4.7.2.1 Soil	-12
	4.7.2.2 Groundwater	-12
4.8	5000 - 5014 CHASE	-13
	4.8.1 Geology and Groundwater Occurrence 4-	-13
	4.8.2 Analytical Results	-13
	4.8.2.1 Soil	-13
	4.8.2.2 Groundwater 4-	-14
4.9	2431 CURTIŠŠ	-15
	4.9.1 Geology and Groundwater Occurrence	-15
	4.9.2 Analytical Results 4-	-15
	4.9.2.1 Soil	
	4.9.2.2 Groundwater	-16

Section: TOC

Revision: 1 Date: 3 August 2004 Page: 3 of 13

Section	<u>Title</u>	<u>Page</u>
4.10	2500 CURTISS	4-17
	4.10.1 Geology and Groundwater Occurrence	
	4.10.2 Analytical Results	
	4.10.2.1 Soil	4-17
	4.10.2.2 Groundwater	4-18
4.11	PROPERTY SOUTH OF INTERSECTION OF CURTISS AND GLENVIEW	
	AND EAST OF BELMONT	4-19
	4.11.1 Geology and Groundwater Occurrence	4-19
	4.11.2 Analytical Results	4-19
	4.11.2.1 Soil	
	4.11.2.2 Groundwater	4-20
4.12	2824 HITCHCOCK	4-20
	4.12.1 Geology and Groundwater Occurrence	4-20
	4.12.2 Analytical Results	
	4.12.2.1 Soil	
	4.12.2.2 Groundwater	
4.13	5224 KATRINE	
	4.13.1 Geology and Groundwater Occurrence	
	4.13.2 Analytical Results	
	4.13.2.1 Soil	
	4.13.2.2 Groundwater	4-23
4.14	2265 MAPLE 4-23	
	4.14.1 Geology and Groundwater Occurrence	
	4.14.2 Analytical Results	
	4.14.2.1 Soil	
	4.14.2.2 Groundwater	4-24
4.15	2315 MAPLE 4-24	
	4.15.1 Geology and Groundwater Occurrence	
	4.15.2 Analytical Results	
	4.15.2.1 Soil	
	4.15.2.2 Groundwater	4-25

Section: TOC Revision: 1 Date: 3 August 2004 Page: 4 of 13

Section	<u>Title</u>	<u>Page</u>
4.16	2754 MAPLE	1-26
	4.16.1 Geology and Groundwater Occurrence	
	4.16.2 Analytical Results	
	4.16.2.1 Soil	
	4.16.2.2 Groundwater	
4.17	5126 WALNUT	1- 27
	4.17.1 Geology and Groundwater Occurrence	1-27
	4.17.2 Analytical Results	
	4.17.2.1 Soil	I-28
	4.17.2.2 Groundwater	L-28
4.18	5225 WALNUT	1-28
	4.18.1 Geology and Groundwater Occurrence	L-28
	4.18.2 Analytical Results	
	4.18.2.1 Soil	l-29
	4.18.2.2 Groundwater	l-29
4.19	5411 WALNUT	l-29
	4.19.1 Geology and Groundwater Occurrence	I-29
	4.19.2 Analytical Results	l-30
	4.19.2.1 Soil	⊦ -30
	4.19.2.2 Groundwater	I-30
4.20	2300 WISCONSIN	ŀ-31
	4.20.1 Geology and Groundwater Occurrence	⊦ -31
	4.20.2 Analytical Results	
	4.20.2.1 Soil	l-31
	4.20.2.2 Groundwater	l-32
4.21	2333 WISCONSIN	l-32
	4.21.1 Geology and Groundwater Occurrence	I-32
	4.21.2 Analytical Results	
	4.21.2.1 Soil	-33
	4.21.2.2 Groundwater	
	2400 WISCONSIN	
	4.22.1 Geology and Groundwater Occurrence	
	4.22.2 Analytical Results	
	4.22.2.1 Soil	
	4.22.2.2 Groundwater	-35

Section: TOC Revision: 1 Date: 3 August 2004 Page: 5 of 13

Section	<u>Title</u>	Page
4.23	2424 WISCONSIN	4-35
	4.23.1 Geology and Groundwater Occurrence	
	4.23.2 Analytical Results	
	4.23.2.1 Soil	4-36
	4.23.2.2 Groundwater	4-36
4.24	2518 WISCONSIN	4-37
	4.24.1 Geology and Groundwater Occurrence	4-37
	4.24.2 Analytical Results	4-38
	4.24.2.1 Soil	4-38
	4.24.2.2 Groundwater	4-38
4.25	2525 WISCONSIN	
	4.25.1 Geology and Groundwater Occurrence	
	4.25.2 Analytical Results	
	4.25.2.1 Soil	
	4.25.2.2 Groundwater	
4.26	2655 WISCONSIN	
	4.26.1 Geology and Groundwater Occurrence	
	4.26.2 Analytical Results	
	4.26.2.1 Soil	
	4.26.2.2 Groundwater	
4.27	2732 WISCONSIN	
	4.27.1 Geology and Groundwater Occurrence	
	4.27.2 Analytical Results	
	4.27.2.1 Soil	
	4.27.2.2 Groundwater	
4.28	SITE-WIDE GROUNDWATER FLOW	4-42
5 INV	ESTIGATION PROTOCOLS	. 5-1
5.1	SAMPLING NETWORK DESIGN AND RATIONALE	5-1
5.2	GEOLOGICAL INVESTIGATION	
٠.٠	5.2.1 Membrane Interface Probe Logging	
	5.2.2 Soil Boring Logging and Sampling	
	5.2.2 Son Doing Logging and Sampling	

Section: TOC Revision: 1 Date: 3 August 2004 Page: 6 of 13

Section	<u>Title</u>	<u>Page</u>
5.3	HYDROGEOLOGIC INVESTIGATION	5-4
	5.3.1 Groundwater Sampling	5-4
	5.3.2 Water Level Measurement	
5.4	FIELD QUALITY CONTROL	5-5
	5.4.1 Filed Duplicate Sampling	5-5
	5.4.2 Field Blank Sampling	5-6
	5.4.3 Trip Blanks	5-6
	5.4.4 Matrix Spike / Matrix Spike Duplicate Samples	5-6
5.5	SAMPLE MANAGEMENT	5-7
•	5.5.1 Sample Documentation	5-7
	5.5.1.1 Field Log Book	5-7
	5.5.1.2 Geologic/Drilling Log	5-7
	5.5.2 Sample Tracking	5-7
	5.5.2.1 Sample Documentation Forms	5-7
	5.5.2.2 Chain-of-Custody/SAS Packing List Form	5-8
	5.5.2.3 Sample Tags	5-8
	5.5.3 Sample Handling	5-8
	5.5.3.1 Sample Containers and Sample Preservation	5-8
5.6	INVESTIGATIVE DERIVED WASTE	5-9
5.7	SURVEYING AND MAPPING	5-9
5.8	DATA MANAGEMENT	5-9
	5.8.1 Data Documentation and Procedures	5-9
	5.8.1.1 Laboratory Data	-10
	5.8.1.2 Data Validation	-10
6 REI	FERENCES	6-1

Section: TOC Revision: 1 Date: 3 August 2004 Page: 7 of 13

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1-1	Site Location Map
1-2	Site Map and Investigative Properties
3-1	Plume Area Base Map
3-2	Previous Investigation Locations
4-1	Soil Analytical Results
4-2	Groundwater Analytical Results
4-3	Potentiometric Surface Map - Intermediate Wells
4-4	Potentiometric Surface Map – Bedrock Wells
5-1	Soil Boring Location Map
5-2	Boring Location Map – Property South of Intersection of Curtis & Glenview East of Belmont
5-3	Boring Location Map – Property North of 4935 Belmont, 4935 Belmont, and 4947 Belmont
5-4	Boring Location Map – 5000 to 5014, 5023, and 5024 Chase
5-5	Boring Location Map – 2315 and 2265 Maple
5-6	Boring Location Map – 2754 Maple and 5411 Walnut
5-7	Boring Location Map – 2300 Wisconsin and 5240 Belmont
5-8	Boring Location Map – 2824 Hitchcock and 5126 Walnut
5-9	Boring Location Map – 5225 Walnut, 5224 Katrine, and 2732 Wisconsin

Section: TOC

Revision: 1 Date: 3 August 2004 Page: 8 of 13

<u>Figure</u>	<u>Title</u>
5-10	Boring Location Map – 2500 Curtiss
5-11	Boring Location Map – 2514 to 2518, 2400, 2424 Wisconsin and 2431, 2537 Curtiss
5-12	Boring Location Map – 2333, 2525, and 2655 Wisconsin

LIST OF FIGURES (Continued)

Section: TOC Revision: 1 Date: 3 August 2004 Page: 9 of 13

LIST OF TABLES

Table	<u>Title</u>
1-1	Site Property Summary and Cross Reference List
4-1A	Soil Sampling Results (VOCs) – Wooded Area South of 2537 Curtiss
4-1B	Groundwater Sampling Results (VOCs) – Wooded Area South of 2537 Curtiss
4-2	Groundwater Sampling Results (VOCs) – Belmont Property North of 4935 Belmont
4-3A	Soil Sampling Results (VOCs) – 4935 Belmont
4-3B	Groundwater Sampling Results (VOCs) – 4935 Belmont
4-4A	Soil Sampling Results (VOCs) – 4947 Belmont
4-4B	Groundwater Sampling Results (VOCs) – 4947 Belmont
4-5A	Soil Sampling Results (VOCs) – 5240 Belmont
4-5B	Groundwater Sampling Results (VOCs) – 5420 Belmont
4-6A	Soil Sampling Results (VOCs) – 5023 Chase
4-6B	Groundwater Sampling Results (VOCs) – 5023 Chase
4-7A	Soil Sampling Results (VOCs) – 5024 Chase
4-7B	Groundwater Sampling Results (VOCs) – 5024 Chase
4-8A	Soil Sampling Results (VOCs) – 5000 to 5014 Chase
4-8B	Groundwater Sampling Results (VOCs) - 5000 to 5014 Chase
4-9A	Soil Sampling Results (VOCs) – 2431 Curtiss
4-9B	Groundwater Sampling Results (VOCs) – 2431 Curtiss

Section: TOC Revision: 1

Date: 3 August 2004 Page: 10 of 13

LIST OF TABLES (Continued)

<u>Table</u>	<u>Title</u>
4-10A	Soil Sampling Results (VOCs) – 2500 Curtiss
4-10B	Groundwater Sampling Results (VOCs) – 2500 Curtiss
4-11A	Soil Sampling Results (VOCs) - Property South of Intersection of Curtiss and Glenview & East of Belmont
4-11B	Groundwater Sampling Results (VOCs) – Property South of Intersection of Curtiss and Glenview & East of Belmont
4-12A	Soil Sampling Results (VOCs) – 2824 Hitchcock
4-12B	Groundwater Sampling Results (VOCs) – 2824 Hitchcock
4-13A	Soil Sampling Results (VOCs) – 5224 Katrine
4-13B	Groundwater Sampling Results (VOCs) – 5224 Katrine
4-14	Groundwater Sampling Results (VOCs) – 2565 Maple
4-15A	Soil Sampling Results (VOCs) – 2315 Maple
4-15B	Groundwater Sampling Results (VOCs) – 2315 Maple
4-16A	Soil Sampling Results (VOCs) – 2754 Maple
4-16B	Groundwater Sampling Results (VOCs) – 2574 Maple
4-17A	Soil Sampling Results (VOCs) – 5126 Walnut
4-17B 4-18	Groundwater Sampling Results (VOCs) – 5126 Walnut Soil Sampling Results (VOCs) – 5225 Walnut
4-19A	Soil Sampling Results (VOCs) – 5411 Walnut
4-19B	Groundwater Sampling Results (VOCs) – 5411 Walnut

without the express, written permission of U.S. EPA.

Revision: 1 Date: 3 August 2004 Page: 11 of 13

LIST OF TABLES (Continued)

<u>Table</u>	<u>Title</u>
4-20A	Soil Sampling Results (VOCs) – 2300 Wisconsin
4-20B	Groundwater Sampling Results (VOCs) – 2300 Wisconsin
4-21A	Soil Sampling Results (VOCs) – 2333 Wisconsin
4-21B	Groundwater Sampling Results (VOCs) – 2333 Wisconsin
4-22A	Soil Sampling Results (VOCs) – 2400 Wisconsin
4-22B	Groundwater Sampling Results (VOCs) – 2400 Wisconsin
4-23A	Soil Sampling Results (VOCs) – 2424 Wisconsin
4-23B	Groundwater Sampling Results (VOCs) - 2424 Wisconsin
4-24A	Soil Sampling Results (VOCs) – 2518 Wisconsin
4-24B	Groundwater Sampling Results (VOCs) – 2518 Wisconsin
4-25	Soil Sampling Results (VOCs) – 2525 Wisconsin
4-26A	Soil Sampling Results (VOCs) – 2655 Wisconsin
4-26B	Groundwater Sampling Results (VOCs) – 2655 Wisconsin
4-27	Soil Sampling Results (VOCs) – 2655 Wisconsin
4-28	Groundwater Quality Control Sampling Results (VOCs)
4-29	Groundwater Elevations / Well Summary
4-30	Logging and Sampling Summary

I:\WO\RAC\233\34286-TOC.WPD RFW233-2A-AQSD

Section: TOC Revision: 1

Date: 3 August 2004 Page: 12 of 13

LIST OF TABLES (Continued)

<u>Table</u>	<u>Title</u>	
5-1	Sampling Locations and Rationale	
5-2	Summary of Water Quality Parameters	

Section: TOC Revision: 1 Date: 3 August 2004

Page: 13 of 13

LIST OF APPENDICES

Appendix

- A Soil Boring Logs
- B Analytical Data Summary Tables
- C MIP Boring Logs on CD
- D Chain-of-Custody on CD
- E Analytical Raw Data on CD

Section: 1 Revision: 1

Date: 3 August 2004

Page: 1 of 2

SECTION 1

INTRODUCTION

1.1 OBJECTIVES AND SCOPE OF WORK

This Supplemental Investigation was carried out for the United States Environmental Protection Agency (U.S. EPA) under Work Assignment No. 233-RICO-B51W, EPA Contract No. 68-W7-0026. The U.S. EPA Work Assignment Form (WAF) designated this work under the Remedial Investigation/Feasibility Study (RI/FS) activity code, and has been designated in approved planning documents as a Phase I RI/FS. However, this work was not intended to fulfill the requirements of an RI/FS at this time. The supplemental investigation was conducted to evaluate the presence and distribution of chlorinated solvent constituents at 27 additional properties both within and outside the Ellsworth Industrial Park (Figure 1-1) boundaries, in order to identify properties that may have contributed to the groundwater contamination detected in the industrial park and residential areas south of the industrial park. The scope of work included borehole logging and soil and groundwater sampling. Work was performed at targeted businesses or sites selected by the U.S. EPA based on historical data and information. These properties are in addition to those previously identified and investigated during U.S. EPA and Illinois Environmental Protection Agency (IEPA) Site Assessment (SA) activities. The purpose of this report is to present the results of the geologic investigation and sampling activities performed. Table 1-1 summarizes the 27 properties that were investigated as part of this supplemental investigation, and Figure 1-2 shows the property locations and approximate property boundaries. Approximate property boundaries shown on figures in this report were derived from DuPage County 2003 Tax Assessment Maps for Lisle Township compiled by U.S. EPA.

This supplemental investigation data evaluation report is divided into five sections. Section 1 is the introduction section, which outlines the project objectives and scope of work as well as a description of the report organization. Section 2 presents the summary and conclusions of the investigative activities based on the data collected as well as making recommendations for further investigative activities as warranted. Section 3 presents the site background history, including previous field investigative activities, previous results from field investigative activities, and information relating

I:\WO\RAC\233\34286S-1.WPD RFW233-2A-AQSD

Section: 1 Revision: 1 Date: 3 August 2004

Page: 2 of 2

to site history at individual properties as available. Section 4 presents the investigative results, which summarizes the analytical results of samples collected as well as presents field geological and hydrogeological observations. Section 5 describes the investigative protocols utilized during the field investigation. These protocols describe the investigative activities undertaken including sample methodology, locations, rationale, etc.

Section: 2 Revision: 1 Date: 3 August 2004 Page: 1 of 10

SECTION 2

SUMMARY AND CONCLUSIONS

This section summarizes the results and presents conclusions regarding the data collected during the supplemental investigation, as well as recommendations for potential future activities at the Ellsworth Industrial Park site. The supplemental investigation was conducted to evaluate the presence and distribution of target chlorinated compound(s) in soil and groundwater at 27 properties in and adjacent to the Ellsworth Industrial Park site (listed in Table 1-1). To achieve the project objectives, the following supplemental investigation tasks were completed:

- Geoprobe MIP Logging (146 locations)
- Geoprobe Soil Boring (146 locations)
- Subsurface Soil Sampling (336 samples)
- Groundwater Sampling (83 samples)
- Surveying and Mapping
- Laboratory VOC Analysis

2.1 GEOLOGY/HYDROGEOLOGY

Limited geologic data gathered during this investigation was found to be generally consistent with the site geologic conceptual model developed during the Phase II SA. The site geology is characterized as stratigraphically complex glacial till and glacial stratified drift deposits with significant localized heterogeneity in geologic materials. Both glacial drift and post-glacial alluvial sequences are present in close proximity to the St. Joseph Creek. In areas north and south of the St. Joseph Creek, generally thick deposits of low-permeability silt and clay till materials are present. Along the approximate axis of St. Joseph Creek and extending to variable distances laterally, significant deposits of more permeable sand and gravel alluvial materials are present. The sand and gravel alluvial deposits in several areas also appear to finger into the outer silty clay tills away from the numerous low-permeability silt and clay layers and lenses throughout the area.

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 2 Revision: 1

Date: 3 August 2004

Page: 2 of 10

The uppermost bedrock unit present in the vicinity of the site consists of the Silurian-aged Racine

Dolomite. Silurian dolomite bedrock was encountered at depths ranging from approximately 50 to

100 feet bgs during previous studies. Bedrock was not encountered during the supplemental

investigation activities.

Limited hydrogeologic data gathered during this investigation was found to be generally consistent

with the site groundwater conceptual model developed during the Phase II SA. Groundwater

occurrence is variable across the site. Three water-bearing zones have been identified at the

Ellsworth Industrial Park site and consist of shallow perched groundwater zones, an intermediate

glacial drift water-bearing zone, and the bedrock aquifer system. The supplemental investigation

focused on soil and groundwater within the upper 30 feet of unconsolidated overburden deposits bgs.

Shallow groundwater zones were encountered within the upper 30 feet at 24 of the 27 properties

investigated. Groundwater in these zones is contained in layers/lenses of silty sands within an

overall silty clay matrix. Several temporary wells installed within these zones were noted to be dry.

Intermediate glacial drift and bedrock groundwater potentiometric surface contour maps developed

during this investigation are consistent with past studies. Bedrock groundwater flow directions are

generally south-southeast, and intermediate glacial drift groundwater flow directions are variable.

Additional detailed hydrogeologic investigations are recommended as part of further investigation

activities to refine and further characterize the geologic and hydrogeologic conceptual model and

evaluate the nature and extent of chlorinated solvent contamination present in soil and groundwater.

2.2 NATURE AND EXTENT OF DETECTED CONSTITUENTS

The supplemental investigation targeted specific chlorinated compounds as part of the soil and

groundwater investigation conducted at the Ellsworth Industrial Park site. The target specific

I:\WO\RAC\233\34286S-2.WPD

RFW-233-2A-AQSD

Section: 2
Revision: 1

Date: 3 August 2004 Page: 3 of 10

chlorinated solvent compounds (i.e., compounds found in residential wells downgradient of the

industrial park) consist of PCE, TCE, and 1,1,1-trichloroethane (1,1,1-TCA). Common degradation

products of PCE and TCE (e.g., dichloroethanes, dichloroethenes, chloroethane, etc) are also

included.

The primary chlorinated-solvent constituents that were the subject of this investigation (PCE and

TCE) were detected at numerous and widespread locations and depths within the Ellsworth

Industrial Park in overburden soil at concentrations up to 35,000 ug/kg. These constituents were

also detected at widespread locations and depths in shallow water-bearing zones within the

overburden alluvial deposits at concentrations up to 340 ug/L. The presence of saturated sand and

gravel alluvial deposits which are in hydraulic communication with the bedrock in the vicinity of the

St. Joseph Creek, continues to establish a link between shallow soil and groundwater contamination

found in the industrial park and the Silurian dolomite aguifer contamination.

While the discussion above highlights the locations where the highest concentrations of target

chlorinated compounds were detected in soil and groundwater, other properties contain target

chlorinated compounds in which applicable soil and/or groundwater standards were exceeded. In

general, these were confined to properties where target chlorinated compounds use has been

documented and/or previous results indicate target chlorinated compounds may be present on the

property or nearby.

Defining the specific source locations and extent of detected target chlorinated compounds at the site

was not within the scope of this investigation. Additional detailed investigations are recommended

as part of the investigation to locate and characterize the nature and extent of specific chlorinated

solvent sources identified at the various locations within the industrial park.

I:\WO\RAC\233\34286S-2.WPD

RFW-233-2A-AQSD

Section: 2

Date: 3 August 2004

Page: 4 of 10

2.3 SOURCE PROPERTY CONCLUSIONS AND RECOMMENDATIONS

Based on the information gathered during this supplemental investigation, it is possible to identify several probable and potential source properties, as well as properties requiring further evaluation. These recommendations are meant to use criteria comparable to those used in the Phase II SA report.

2.3.1 Probable Source Properties

A probable source property is defined as a property where source material may reasonably be expected to be present based on analytical data and background information. In general, these include properties where target chlorinated-solvent constituents exceed screening criteria in both soil and groundwater at concentrations comparable to previously identified probable source areas, and for which available background information indicates the potential for chlorinated-solvent use. Based on the data collected during the supplemental investigation, the following property is identified as a probable target chlorinated compound source:

2655 Wisconsin: During the Phase I RI/FS investigation, TCE was detected in shallow soil at the 2655 Wisconsin property at concentrations ranging from 9,500 to 35,000 ug/kg. TCE was also detected in shallow groundwater at levels of 5.6 to 31 ug/L. These concentrations in soil and groundwater are comparable to reference levels of those properties listed as probable sources during the previous Phase II SA. According to available background information, the 2655 Wisconsin property has previously had unspecified hazardous materials used in four "black oxide" tanks at the property. Waste streams sampled during 1992 indicate the presence of PCE in one sample at a concentration of 21 ug/L. Based on background information and concentrations of TCE in soil and groundwtaer at this property, it is concluded that probable TCE source materials are present on the 2655 Wisconsin property. Additional work will be required to identify the specific source location, extent, and magnitude of target chlorinated compounds.

Section: 2 Revision: 1 Date: 3 August 2004 Page: 5 of 10

2.3.2 Potential Source Properties

A potential source property is defined as a property where there is a possibility that source materials are present based on analytical data and background information. These include properties where reference criteria (soil or groundwater) have been exceeded, but not necessarily at concentrations indicating a definitive source (although one may be nearby), or where complicating factors such as groundwater flow direction or surface drainage patterns increase uncertainty. These facilities will require additional investigation to determine the source, nature, and extent of chlorinated-solvent constituents. Based on data collected during this supplemental investigation, the following properties are identified as potential sources:

- 5000 5014 Chase: PCE was detected in the shallow soil along the north side of the building at a concentration of 240 ug/kg. TCE and several common degradation products, as well as carbon tetrachloride, were also detected in soil samples at concentrations below reference levels. PCE was detected in the shallow groundwater on the north side of the building at concentrations ranging from 17 to 340 ug/L. Additionally, the following target chlorinated compounds exceeded their reference levels in shallow groundwater along the north side of the building: TCE (210 ug/L); 1,1,1-TCA (230 ug/L); 1,1,2-trichloroethane (9.9 ug/L); 1,1-dichloroethene (8.9 ug/L); carbon tetrachloride (18 ug/L); and cis-1,2-dichloroethene (200 ug/L). A subsurface soil investigation report from a previous investigation of the 5000 5014 Chase property conducted by Earth Tech, Inc. dated January 2003 indicates that target chlorinated compounds were detected in the shallow soil and groundwater at the site. Additional work will be required to identify the specific source location, extent, and magnitude of target chlorinated compounds at this property.
- 2424 Wisconsin: During the supplemental investigation, the following target chlorinated compounds exceeded their respective reference levels in shallow soil: 1,1,1-TCA (4,700 ug/Kg); 1,1-dichloroethane (110 to120 ug/kg); 1,1-dichloroethene (83 ug/kg); and carbon tetrachloride (84 ug/kg). The following target chlorinated compounds exceeded their respective reference levels in shallow groundwater: TCE (19 ug/L); 1,1,1-TCA (360 to 1,200 ug/L); and carbon tetrachloride (8.5 ug/L). Background information indicates the company that previously occupied the property used solvents to clean gears and for a cutting process in a closed loop system. An IEPA inspection in 1991 noted stained soil at the property adjacent to a drum storage

Section: 2

Revision: 1 Date: 3 August 2004 Page: 6 of 10

area. Contaminated soil was removed in May 1991. Additional work will be required to identify the specific source location, extent, and magnitude of target chlorinated compounds at this property.

• <u>2500 Curtiss:</u> During supplemental investigation activities, TCE was detected above reference levels at the eastern end of the property at an estimated concentration of 130 ug/L within a shallow groundwater zone. The sampling location is adjacent to a detention basin. An estimated TCE concentration of 4 ug/kg was detected in a shallow soil sample on the west side of the building. The company has indicated that it purchased no chlorinated solvent/cleaner chemicals. The property is located between properties to the east and west which were identified during the Phase II SA as potential source facilities due to detected chlorinated-solvent contamination in soil and groundwater. Additional work will be required to identify the specific source location, extent, and magnitude of target chlorinated compounds at this property, and evaluate the relationship to adjacent properties.

2.3.3 Properties Requiring Further Evaluation

In addition to the probable and potential source properties identified above, a number of properties have been identified within the industrial park for which analytical data indicates the presence of target chlorinated compounds at the property, but at generally low and/or estimated concentrations below screening criteria for soil and groundwater. These properties may also have a history of chlorinated compound use, documentation of past releases, and/or are proximal to previously identified probable or potential sources. These include the following properties:

5240 Belmont: During the supplemental investigation, the following target chlorinated compounds were detected in soil samples: 1,1,1-TCA; and 1,1-dichloroethane. The following target chlorinated compounds were detected in groundwater samples: TCE; 1,1,1-TCA; 1,1-dichloroethane; and cis-1,2-dichloroethene. The compounds present were detected at low and/or estimated values. The property is adjacent to the 2301 Curtiss Street property, previously identified during the Phase II SA as a potential source facility due to the presence of PCE and TCE. Due to the presence of target chlorinated compounds and proximity to a potential source property, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated-compounds.

Section: 2 Revision: 1 Date: 3 August 2004 Page: 7 of 10

- <u>5023 Chase:</u> During the supplemental investigation, 1,1,1-TCA was detected in soil samples, and 1,1,1-TCA and carbon tetrachloride were detected in groundwater samples. The compounds were detected at low and/or estimated values. Background information indicates that the former occupant of the 5023 Chase property at one time used a chlorinated solvent product which contains PCE at 0 to 0.2990 percent by weight. This property is also adjacent to the 5000 5014 Chase property, identified as a potential source facility in this report. Due to the presence of target chlorinated compounds, background information, and proximity to a potential source property, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.
- 5024 Chase: During the supplemental investigation, PCE was detected in soil samples and 1,1,1-TCA was detected in groundwater samples. The compounds were detected at low and/or estimated concentrations. Background information indicates that the current occupants of the facility have used PCE and 1,1,1-TCA, as well as have generated various listed hazardous wastes (D001, D0035, D0039, F003, F005, and F007). Paints and solvents are routinely used in this business. The company has indicated they have not used chlorinated chemicals during their occupation of the property; however, the company received several LDR notifications from Safety Kleen for parts cleaner wastes picked up from the facility which contained PCE. This property is also adjacent to the 5000 5014 Chase property, identified as a potential source facility in this report. Due to the presence of target chlorinated compounds, background information, and a proximity to potential source property, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.
- 2431 Curtiss: During the supplemental investigation, the following target chlorinated compounds were detected in soil samples: PCE; and 1,1,1-TCA. The following target chlorinated compounds were detected in groundwater samples: PCE; 1,1,1-TCA, and carbon tetrachloride. The compounds present are at low and/or estimated concentrations. Background information indicates that a previous occupant of this property may have operated a machine shop. Additionally, this property is north of the 2424 Wisconsin property, identified as a potential source facility in this report; and east of the 2525 Curtiss property, previously identified in the Phase II SA as a probable source facility due to high levels of PCE and TCE. Due to the presence of target chlorinated compounds and proximity to potential source properties, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.

I:\WO\RAC\233\34286S-2.WPD RFW-233-2A-AQSD

Section: 2 Revision: 1 Date: 3 August 2004 Page: 8 of 10

5411 Walnut: During the supplemental investigation, 1,1-dichloroethane was detected in one soil sample at a level equivalent to its screening criteria. The following target chlorinated compounds were detected in groundwater samples: 1,1,1-TCA and 1,1-dichloroethane. Limited background information is available. Due to the presence of one target chlorinated compound at a level equivalent to its screening criteria, and other target chlorinated compounds at low and estimated values, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.

- 2518 Wisconsin: During the supplemental investigation, 1,1,1-TCA was detected in soil samples collected at the 2518 Wisconsin property. The following target chlorinated compounds were detected in groundwater samples: 1,1,1-trichloroethane; and 1,1-dichloroethane. The compounds present were detected at low estimated concentrations. Background information is limited; however, the current occupant states they have never used, purchased, or stored hazardous materials within the Ellsworth Industrial Park. The property is directly south of two properties identified as probable or potential source facilities during the Phase II SA due to the presence of PCE and TCE. Due to the presence of target chlorinated compounds and proximity to probable and potential source properties, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.
 - 2824 Hitchcock: During the supplemental investigation, no target chlorinated compounds were detected in soil samples collected at the 2824 Hitchcock property. The following target chlorinated compounds were detected in groundwater samples: 1,1-dichloroethane and cis-1,2-dichloroethene. The compounds present were detected at very low levels. Background information indicates that a TCE vapor degreaser was located at the property, but has been decommissioned. The company also indicated that it generates waste hydrochloric acid (HCl), nitric acid (HNO₃), and potassium hydroxide (KOH) from refinishing operations. The property is located on the west side of the industrial park, and is not adjacent to facilities identified within this report or past investigations as probable or potential source facilities. However, it is recommended that the presence of the above listed target chlorinated compounds be further evaluated.
- 5225 Walnut: During the supplemental investigation, PCE was detected in one soil sample at a low estimated concentration. No target chlorinated compounds were detected in groundwater samples. Background information indicates that a 2,500-gallon UST containing mineral spirits was removed in 1999. The soil surrounding

I:\WO\RAC\233\34286S-2.WPD RFW-233-2A-AQSD

Section: 2 Revision: 1 Date: 3 August 2004 Page: 9 of 10

the tank was found to be contaminated and was remediated and tested for cleanup verification; however, analysis for PCE/TCE was not conducted as part of this remediation. The property is not adjacent to other facilities identified as a probable or potential source facility in this report or other investigations. However, it is recommended that the presence of PCE be further evaluated.

- 5224 Katrine: During the supplemental investigation, no target chlorinated compounds were detected in soil samples. The following target chlorinated compounds were detected in groundwater samples: 1,1,1-TCA; and 1,1-dichloroethane. The compounds present were detected at low values. Background information regarding this property is limited other than the property was purchased from a bank trust in 1964 and that the owner indicates chlorinated chemicals are not used at the property. The property is south of the 5200 Katrine property, which was identified as a potential source facility during the Phase II SA due to the presence of 1,1,1-TCA at a level of 19,000 ug/Kg. Due to the presence of target chlorinated compounds and proximity to potential source properties, further evaluation of the property is warranted to evaluate the source and extent of detected target chlorinated compounds.
- Property South of the Intersection of Curtiss and Glenview and East of Belmont: During the supplemental investigation, PCE was detected in two soil samples and cis-1,2-dichloroethene was detected in one groundwater sample. The compounds present were detected at very low estimated concentrations. PCE soil detections are located at opposite ends of the property. Historical information regarding this property is limited; however, the property was formerly used as a wastewater treatment plant. The property is located east of the industrial park, and is not adjacent to facilities identified within this report or past investigations as probable or potential source facilities. However, it is recommended that the presence of the above listed target chlorinated compounds be further evaluated.
- 2265 Maple: During the supplemental investigation, no target chlorinated compounds were detected in soil samples. PCE was detected in two groundwater samples. The compound was present at very low estimated concentrations. Background information indicates that the business is a dry cleaner and is a conditionally exempt, small quantity generator that uses less than 140 gallons of PCE a year for its operations. Drilling and testing was conducted in 1998 inside and outside the facility. No evidence of contamination was found. In June 2002, the facility was found to be in compliance with state and federal regulations and requirements of the Dry Cleaners Environmental Trust Fund of Illinois. The property

I:\WO\RAC\233\34286S-2.WPD RFW-233-2A-AQSD

Section: 2 Revision: 1

Date: 3 August 2004 Page: 10 of 10

is not adjacent to other facilities identified as a probable or potential source facility in this report or other investigations. However, it is recommended that the presence of PCE be further evaluated.

• <u>2315 Maple:</u> During the supplemental investigation, no target chlorinated compounds were detected in soil samples. Chloroethane was detected in one groundwater sample at a very low estimated concentration. Very limited background information is available for this property. The property is not adjacent to other facilities identified as a probable or potential source facility in this report or other investigations. However, it is recommended that the presence of chloroethane be further evaluated.

2.3.4 Remaining Properties

The following properties contained no detections of target chlorinated compounds:

- Wooded area south of 2537 Curtiss
- Property immediately north of 4935 Belmont
- 4935 Belmont
- 4947 Belmont
- 2754 Maple
- 5126 Walnut
- 2300 Wisconsin
- 2333 Wisconsin
- 2400 Wisconsin.
- 2525 Wisconsin
- 2732 Wisconsin

Section: 3 Revision: 1 Date: 3 August 2004 Page: 1 of 16

SECTION 3

BACKGROUND INFORMATION

3.1 SITE DESCRIPTION AND LOCATION

The Ellsworth Industrial Park Site ("the site"), located in Downers Grove, Illinois, encompasses an area in which groundwater is contaminated with chlorinated solvents (Figure 3-1). The site is a mix of residential, recreational, and commercial/light industry properties. It is bounded by Burlington Avenue to the north, 63rd Street to the south, Lee and Springside Avenues to the east, and Interstate 355 (I-355) to the west. The Ellsworth Industrial Park (EIP), which is the focus of this report, is located in the northern portion of the site and is suspected to be the source of the groundwater contamination. EIP is bordered on the north by Burlington Avenue; Elmore and Inverness Avenues to the south; Belmont Avenue to the east; I-355 on the west (Figure 1-2).

3.2 **SITE HISTORY**

3.2.1 Previous Field Investigations

Between spring and fall 2001, the IEPA performed a groundwater investigation on the east side of I-355 near Downers Grove in response to citizen concerns related to private-well sampling in neighboring Lisle. The investigation consisted of three rounds of residential-well sampling throughout the area. Approximately 495 private wells were sampled and analyzed for levels of volatile organic compounds (VOCs). Sample results indicated elevated levels of PCE, TCE, and other related VOCs. Approximately 52% of the samples collected during Round 1 and Round 2 contained PCE or TCE above 5 micrograms per liter (ug/l) (the federal drinking-water standards and the State of Illinois Maximum Contamination Limit [MCL]).

Section: 3 Revision: 1 Date: 3 August 2004

Page: 2 of 16

In response to these findings, the IEPA performed a cone penetration test (CPT) investigation within the Ellsworth Industrial Park. The results of this investigation are contained in the Subsurface Groundwater Investigation Report, Ellsworth Industrial Park (Parsons, 2001). The investigation used a CPT rig to log the shallow lithology in the area and collect groundwater samples at a variety of depths above the bedrock in order to evaluate potential source area(s) of the chlorinated solvent releases. The area of investigation included only the southern and southeastern-most portions of the industrial park along portions of Wisconsin, Elmore, and Inverness Avenues. During the investigation, 28 groundwater samples were collected from 27 separate sampling locations within the industrial park. Of the 28 groundwater samples, one sample was found to contain TCE.

In February 2002, U.S. EPA and IEPA conducted additional groundwater investigations within and outside the industrial park to further evaluate the presence and distribution of chlorinated solvent groundwater contamination and narrow down potential source areas. The results of this investigation were documented in the Final Preliminary Groundwater Investigation Report (Weston, 2002). The IEPA conducted boring and sampling activities using a Geoprobe unit outfitted with a membrane interface probe (MIP) for soil logging and sample collection. U.S. EPA performed a follow-up CPT investigation throughout the industrial park and selected areas east of the park. The CPT rig was used to advance stratigraphy borings, which defined the geology at each location as well as identified the presence of water-bearing zones within the unconsolidated overburden soil. Each boring was advanced to refusal, which ranged from approximately 12 to 80 feet below ground surface (bgs). A total of 44 locations were advanced using the CPT and Geoprobe MIP technology. Once the stratigraphy was characterized and the water-bearing zones were identified, depth intervals were selected for groundwater sampling. A total of 37 investigative groundwater samples were collected. Chlorinated constituents, including 1,1,1-TCA, PCE, TCE, and their common degradation products, were detected at several locations and at various concentrations within the industrial park. The highest concentrations were generally found to be present along Curtiss Street between Chase Street

Section: 3 Revision: 1 Date: 3 August 2004 Page: 3 of 16

and Katrine Avenue. TCE was detected in shallow groundwater in this area at concentrations up to 218 ug/L. The presence of TCE and PCE in shallow groundwater provided a potential link between source(s) in the industrial park and contamination observed in residential wells downgradient of the site.

Based on the results of the preliminary groundwater investigation, a Phase II SA was undertaken as a joint effort between U.S. EPA and IEPA to further characterize chlorinated solvent contamination in soil and groundwater and identify potential source properties. Prior to field investigation activities, efforts were undertaken to gather and evaluate existing data and information on properties and businesses within the industrial park. This information was used to focus field investigative efforts on potential chlorinated solvent source areas based on past and present use of these chemicals. In addition to focused investigations at specific facilities, a network of groundwater monitoring wells was also installed throughout the industrial park to begin evaluating site hydrogeologic characteristics. Due to timing and practical constraints, not all potential source areas were included in the Phase II SA. Investigation of the remaining areas was planned for this supplemental investigation.

The results of the Phase II SA indicated that PCE and TCE, and their degradation products, were present at numerous and widespread locations and depths within the Ellsworth Industrial Park in soil at concentrations up to 500,000 ug/Kg, indicating the presence of probable sources. PCE and TCE were also detected in groundwater in both glacial drift and bedrock aquifers at concentrations up to 190 ug/L. By comparison, the highest PCE/TCE concentrations observed in residential wells south of the site were typically around 15 ug/L. The compound 1,1,1-TCA was also found at significant concentrations. The data indicate that chlorinated solvent constituents appear to be migrating from sources within the industrial park through overburden soil, entering the bedrock aquifer system, and migrating in a downgradient direction towards the affected residences. Figure 3-2 is a summary of previous investigation testing and sampling locations.

Section: 3 Revision: 1

Date: 3 August 2004

Page: 4 of 16

3.2.2 Existing Information and Records Review

Throughout the Ellsworth Industrial Park investigation process, U.S. EPA and IEPA have evaluated

available documents and records from numerous properties and businesses within and around the

industrial park to identify current and previous users of chlorinated-solvent products. In October

2001, IEPA sent out information-request letters to approximately 21 facilities that had been

identified during their initial door-to-door survey of the Ellsworth Industrial Park as using

chlorinated cleaners/solvents or other types of chlorinated materials. The information IEPA

requested pertained to site activities related to the purchasing, receiving, processing, storing, treating,

disposing, or otherwise handling of hazardous substances. U.S. EPA issued supplemental

information requests and reviewed the information supplied to U.S. EPA and IEPA, along with

available records from the U.S. EPA Records Center in order to develop a list of facilities in the

industrial park identified as using chlorinated solvents.

U.S. EPA has continued the process of gathering and evaluating background data and information

into the supplemental investigation stage. The following discussion provides a brief summary of the

results of these background investigation activities undertaken by U.S. EPA and IEPA. This

information is supplemented with data contained in other previous investigation reports and field

observations.

Wooded Area South of 2537 Curtiss

This property consists of an overgrown, wooded parcel between 2537 Curtiss and 2538 Wisconsin.

A report from a citizen to U.S. EPA personnel alleged that five gallon containers of chemicals were

dumped in the woods approximately 13 to 15 years ago. No further information is available.

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 3 Revision: 1

Date: 3 August 2004 Page: 5 of 16

Property North of 4935 Belmont

The property immediately north of 4935 Belmont Road currently consists of a long, narrow gravel

lot currently used for parking. No further information is available for this property.

4935 Belmont Road

The property at 4935 Belmont Road is currently occupied by Ketone Automotive, a retailer of paint

and paint related products. There are no manufacturing operations conducted on the property;

however, mixing operations occur. According to the response to the 2001 IEPA survey, the company

indicated chlorinated chemicals are not used at the property; however, some paint products contained

chlorinated components and generate waste. Former occupants are undocumented, however,

information suggests a former auto body shop occupied the property. No further information is

available.

4947 Belmont Road

The property at 4947 Belmont Road currently consists of an asphalt and gravel parking facility for

the METRA station and is owned by METRA. According to METRA representatives, the site was

a former gasoline station, which is confirmed on aerial photographs of the site. No further

information is available for this property.

5240 Belmont Road

The property at 5240 Belmont Road is currently occupied by K & C Services (K&C), is a machine

tool repair company. The company leases the property and has been at the location for over 10 years.

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3

Revision: 1 Date: 3 August 2004 Page: 6 of 16

The property is owned by Arrow Building Corporation, which was also a former occupant of the property. According to the response to the 2001 IEPA survey, the company does not use chlorinated chemicals. A commercial product (Simple Green) is used for any required degreesing. No further

information was available.

5023 Chase Street

The property located at 5023 Chase Street was previously occupied by Hahn Graphics, an off-set printing services firm. Hahn Graphics is no longer located at 5023 Chase Street and the current occupant is unknown. The property is owned by Chase-Belmont Properties according to the IEPA information request. The business owner had indicated that there are no waste pits or ponds at the property and all materials used are purchased in gallon increments. One solvent product was identified as being used consisting of Safety Kleen 105 Solvent which contains PCE at 0 to 0.2990 percent by weight. The information response indicates some unspecified cleaning agents were picked up for recycling by Safety Kleen. The former occupant of the property previous to Hahn

Graphics was a computer company.

5024 Chase Street

The property at 5024 Chase Street is currently occupied by C&C Machine Tool Services (C&C), a repair company for electrical components of printing presses. Former occupants are unknown. The 2001 IEPA survey indicated the company used 1,1,1-PCE and TCA, and generated various listed hazardous waste (D001, D0035, D0039, F003, F005, and F007). C&C has leased the property from Chase-Belmont Properties since 1996. Paints and solvents are routinely used in this business. Used paint, filters, and solvents are stored in containers supplied by Safety Kleen, which collects them for disposal. PCE-containing (0-1%) laquer thinners were also used. No USTs or ASTs are located on the property. Wastewater and stormwater are disposed through the Downers Grove wastewater system. A paint spray booth was also located at the property. The company has indicated they have not used chlorinated chemicals during their occupation of the property; however, the company INWORAC(233)34286S-2.WPD

Section: 3
Revision: 1

Date: 3 August 2004 Page: 7 of 16

received several LDR notifications from Safety Kleen for parts cleaner wastes picked up from the

facility which contained PCE.

5000 - 5014 Chase Street

The property located at 5000 - 5014 Chase Street is currently occupied by Tricon Industries, and

consists of an office park type complex with addresses between 5000 - 5014 Chase Street. Multiple

tenants have been located at the property dating back to 1973. Earth Tech, Inc. (Earth Tech)

completed a subsurface soil and groundwater investigation at the 5000 - 5014 Chase Street property.

The Earth Tech report, dated January 2003, indicated that target chlorinated compounds are present

in shallow soil and groundwater.

2431 Curtiss Street

The property at 2431 Curtiss Street is currently occupied by Contemporary Control Systems, Inc.

(CCSI), a manufacturer of computer PC boards, which leases the property from Spruce Building

L.L.C. According to the 2001 IEPA survey, the company indicated they have never used chlorinated

chemicals at the facility. The company has operated at other locations in the area, including 2733

Curtiss Street from 1985 to 1987, and 2512 Wisconsin Avenue from 1988 to 1997. The company

has apparently used degreasers in the past, but discontinued their use in 1987. According to the

response to the U.S. EPA 104(e), CCSI has never used TCE or PCE containing solvents. The only

hazardous materials used are lead in a solder material. Hazardous materials are removed from the

facility by Alpha Fry Metals. Lovejoy Industries has been identified as a prior occupant of the 2431

Curtiss Street location, and used the facility as a machine shop.

2500 Curtiss Street

The property at 2500 Curtiss Street is currently occupied by GlobalGear, L.L.C., which is an

aftermarket and original manufacturer of automotive equipment including gears. The information

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3 Revision: 1

Date: 3 August 2004

Page: 8 of 16

IEPA obtained from an Information Request Letter sent on 3 October 2001 indicates the building

was constructed in 1987. The facility consists of a one story warehouse and manufacturing building.

Chemicals are purchased from Perkins Products and ZEP Products, and waste is disposed of by

Beaver Oil Company. No solid waste has been removed from the company in the last 5 years and

the company indicated that it has purchased no chlorinated solvent/cleaner chemicals. Previous

investigations at the facility include a Phase I Environmental Site Assessment (ESA) performed in

June 1998 and the facility was found to be in good environmental condition.

U.S. EPA and IEPA preliminary groundwater investigation activities included soil borings and

groundwater sampling at six locations around the perimeter of this property in February 2002. A

total of five groundwater samples were collected from various depths. Volatile organic compounds

(VOCs) detected include PCE, TCA, 1,1,1-TCA, acetone, 2-butanone, chloroform, benzene, 1,2-

dichloroethane (1,2-DCA), and toluene.

Property South of Intersection of Curtiss Street and Glenview, East of Belmont

The property south of the intersection of Curtiss Street and Glenview, East of Belmont is currently

owned by the Downers Grove Park District. The property is a former wastewater treatment plant

(WWTP). No other information is available.

2824 Hitchcock Avenue

The property at 2824 Hitchcock Avenue is currently occupied by Bales Mold Service, a plastic

injection mold refinisher, and includes chrome and nickel plating operations. They are the owner

of the property and have been present for over 16 years. Former occupants are not known.

According to information provided to IEPA, a TCE vapor degreaser was located at the property at

the time of the survey (purchased in February 2000). The company also indicated that it generates

waste hydrochloric acid (HCl), nitric acid (HNO₃), and potassium hydroxide (KOH) from refinishing

operations. Several state and local permits are on file for the facility including Industrial Wastewater

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AOSD

Data Evaluation Sum Section: 3

Revision: 1 Date: 3 August 2004

Page: 9 of 16

Discharge, Lifetime Operating Permit Injection Mold Servicing, and construction permits for plating

operations. Previous facility investigations between 1997 and 2001 indicated the presence of

chromium, nickel, lead, zinc, and copper in soil samples. No further details of these investigations

were available.

5225 Walnut Avenue/5224 Katrine Avenue

The properties at 5225 Walnut Avenue and 5224 Katrine Avenue are currently occupied by Molex,

Inc. (Molex), a manufacturer of electric and electronic connectors, which involve metal-plating and

injection-molding operations.

Molex has occupied the 5225 Walnut Avenue facility (Molex Fiber Optics) for over 12 years. The

first 10 years, the facility was used as a warehouse, and is currently used for manufacture of fiber

optic cable assemblies and molding operations. The IEPA survey indicated that a 2,500-gallon UST

containing mineral spirits was removed in 1999. The soil surrounding the tank was found to be

contaminated and was remediated and tested for cleanup verification; however, analysis for

PCE/TCE was not conducted as part of this remediation. Plating operations were also conducted at

this property prior to 1993 which generated a nickel sludge. Molex has provided U.S. EPA with

additional information asserting that they did not use chlorinated solvents in their plating process.

Mineral spirits were also used in a stamping operation. Three shallow monitoring wells are present

on the Walnut Avenue property, but no specific well information (depth, boring logs, sample data,

etc.) was available. These wells were sampled during the U.S. EPA Phase II SA.

Little information is available for the Katrine Avenue property other than Molex purchased the

property from a bank trust in 1964 and have indicated that chlorinated chemicals are not used at the

property.

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3 Revision: 1

Date: 3 August 2004 Page: 10 of 16

2265 Maple Avenue

The property located at 2265 Maple Avenue is currently occupied by Maple Plaza Cleaners, a dry

cleaning service. According to the responses to the 2001 IEPA Information Request, the business

is a conditionally exempt, small quantity generator. The facility uses less than 140 gallons of PCE

a year for its dry cleaning operations. No permits or spills were identified for the facility. Drilling

and testing was conducted in 1998 inside and outside the facility. No evidence of contamination was

found. In June 2002, the facility was found to be in compliance with state and federal regulations

and requirements of the Dry Cleaners Environmental Trust Fund of Illinois. No further information

is available.

2315 Maple Avenue

The property at 2315 Maple Avenue is currently occupied by Maple Grove Automotive. No

additional information is available for this property.

2754 Maple Avenue

The property at 2754 Maple Avenue is currently occupied by MB Cleaners, a dry cleaning service.

No additional information is available for this property.

5126 Walnut

The property at 5126 Walnut is currently occupied by Auto Nation, also known as the Joe Madden

Ford Auto Body Shop. The Madden Family Partnership owns the property and Auto Nation leases

the facility. The company indicated in their response to the U.S. EPA 104(e) information request

that the property was vacant prior to purchase by Joe Madden Ford. The company operates an auto

body repair shop. In 1999, Joe Madden Ford entered into an asset purchase agreement with Auto

Nation, Inc. and AN/MF Acquisition Corp. to purchase the assets of Joe Madden Ford. The facility

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3 Revision: 1 Date: 3 August 2004 Page: 11 of 16

contains two paint spray booths and a mixing room. Spent solvents, antifreeze, oils, and waste paints are containerized and recycled by outside vendors. A parts washer is also located onsite which is serviced by Safety Kleen. The company indicated there are no waste piles, landfills, impoundments, lagoons, USTs, or ASTs at the site. Sanitary and wastewater is routed through catch basins or oilwater separators prior to discharge to the Village of Downers Grove wastewater system. According to the IEPA response, the only chlorinated chemicals used are paint thinner for paint spray gun cleaning. Approximately eight gallons of this material is used on a monthly basis. A Phase I ESA was performed at the facility in October 1999 which noted evidence of spills (oil and laquer paint) around storage drums inside and outside the body shop. Used batteries and tires were also noted as being discarded on the property. It was noted in the response that spills and debris have since been removed. A Phase II ESA was also performed which revealed no contamination in testing areas. The scope of Phase II activities is not known.

2300 Wisconsin Avenue

The property at 2300 Wisconsin Street is currently occupied by MXL Industries, Inc., a plastic injection molding and tool & die manufacturer. The company owns the property and has been operating at the location since 1998. According to the 2001 IEPA survey, the owner indicated they did not use chlorinated chemicals at the time of the survey. Lubricating oils and naphtha were used and were handled by Safety Kleen, Inc.

A former occupant of this property was JL Clark Atlas Tube, a manufacturer of toothpaste tubes, who operated at the site from 1967 to 1997. The property was sold to MXL in 1998. The response to the U.S. EPA CERCLA 104(e) request indicated JL Clark Atlas Tube used PCE in carpet shampoo (1%), 1,1,1-TCA (between 10 and 30%), and an unspecified chlorinated solvent (33.5%) in its machine shop. According to the response, there were no known leaks, spills, or releases of hazardous materials at the facility.

Section: 3 Revision: 1

Date: 3 August 2004 Page: 12 of 16

2333 Wisconsin Avenue

The property at 2333 Wisconsin Avenue is currently occupied by Suburban Self Storage, a self-storage facility, which has occupied the property since approximately 1988. The property was previously occupied by Litton Systems, Inc. (also known as Liberty Copper & Wire and Magnetek). Information provided in the U.S. EPA 104(e) information request sent to Litton Systems indicated that Liberty Copper & Wire was incorporated in 1956, acquired by Jefferson Electric Company in 1970, and merged into Litton Systems in 1972. The company was then sold to Magnetek, Inc. in 1984. The company's response also stated that Litton Systems no longer possessed information regarding the use of chlorinated chemicals and indicates that all records regarding the operations of Liberty Copper & Wire were transferred to Magnetek at the time of the sale.

The response to the U.S. EPA 104(e) information request sent to Suburban Self Storage contained environmental information about previous operations by Magnetek and Liberty Copper & Wire. Review of information from the U.S. EPA CERCLA Records Center indicated that the facility used toluene, xylene, cresylic acid, and methanol. Additional information from a 1993 U.S. EPA site inspection documented waste generation at the facility including waste enamel, solvent, electroplating sludge, phenol, and urethane. Corresponding waste codes associated with waste generation identified above include F003, F004, F005, F006, D001, U188, and U238. In 1985, Liberty Copper & Wire generated approximately 9,000 pounds of waste enamel and solvent which was shipped off-site. The site was previously regulated under the Resource Conservation and Recovery Act (RCRA). During RCRA closure activities, soils were found to be contaminated with xylene (57,100 mg/l). A Phase I ESA was conducted for the property in 1997 in which additional testing was recommended for xylene and PCE contamination; however, no further information was available. Review of historical information provided by Environmental Data Resources, Inc. (EDR) indicated that three 4,000-gallon USTs and one 5,000-gallon UST containing hazardous substances have been closed.

Section: 3
Revision: 1

Date: 3 August 2004 Page: 13 of 16

2400 Wisconsin Avenue

The property at 2400 Wisconsin Avenue is currently occupied by Burnside Construction, a home

building business. According to the 2001 IEPA survey, the company indicates it has never used

chlorinated chemicals; however, they do generate some naphtha and waste oil which is processed

by Safety Kleen.

According to the U.S. EPA 104(e) response, the property was previously occupied by Suburban

Moving and Storage Company (Suburban Self Storage). Suburban owned or leased this property

from 1971 through 1994. Information indicates a groundwater monitoring well was installed at the

facility in 1994; however, no further information is available.

2424 Wisconsin Avenue

The property at 2424 Wisconsin Avenue is currently occupied by Flowserve which has been present

there for over 4 years. The property was previously occupied by Bison Gear and Engineering

Corporation, a manufacturer of gears, shafts, and aluminum castings used for gear and electric

motors. The response to the U.S. EPA 104(e) indicates Bison Gear & Engineering Corporation

leased the property from 1976 to 1997. The company used 1,1,1-TCA (in waste petroleum naphtha)

to clean gears and for a cutting process in a closed loop system. In 1986, approximately 2,200

gallons of waste petroleum naphtha was generated. Solvents were stored in drums. Cutting oil was

drained from machinery once or twice a year and removed by Beaver Oil. Waste naphtha was

disposed of by Safety Kleen. The company indicated they stopped using solvents in the late 1980s

or early 1990s. A parts washing machine was purchased in 1986 to reduce the amount of waste

petroleum naphtha generated. An IEPA inspection in 1991 noted petroleum stained soil at the

property adjacent to a drum storage area. Contaminated soil was removed in May 1991 under IEPA

oversight. A June 1991 site inspection by the DuPage County Department of Environmental

Concerns found the property to be in compliance with applicable environmental regulations.

Section: 3 Revision: 1

Date: 3 August 2004 Page: 14 of 16

2518 Wisconsin Avenue

The property at 2518 Wisconsin Avenue is currently occupied by CVP Systems, Inc., an assembler

of vacuum packaging equipment for the food industry. According to the 2001 IEPA survey, CVP

stated they did not use chlorinated chemicals; however, a small parts cleaner was in use over seven

years ago. The response to the U.S. EPA 104(e) indicates CVP has leased the property since 1984.

From 1991 through 1998, Safety Kleen provided a tank for disposal of lubricant used for metal

working machines and a parts washer. CVP states they have never used, purchased, or stored

hazardous materials within the Ellsworth Industrial Park going back to 1950. No spills or facility

investigations have been performed at the property.

2525 Wisconsin Avenue

The property at 2525 Wisconsin Avenue is currently occupied by Flexible Steel Lacing Company

(Flexco), a manufacturer of flexible steel lacings, conveyor belt fasteners, and belt products. Flexco

has been at this location for over 30 years. The information IEPA obtained indicated that the facility

used TCE until approximately 1990 in order to generate oil and water coolant. The firm also used

naphtha parts cleaner. Waste products include waste naphtha and 9644 Solvent 150, which may

contain TCE and PCE.

According to the response to the IEPA Information Request letter, Flexco began operations at the

facility in 1967. In 1981, Flexco purchased additional land west of the facility from the adjacent

property owner. Flexco indicated that they do not store or handle hazardous waste substances at the

facility other than small amounts of paint and janitorial supplies. Spent petroleum and hydraulic

fluids are stored in 55-gallon drums, which are collected by Beaver Oil for reprocessing.

From approximately 1968 to 1992, Flexco operated a vapor degreaser to remove excess oil from

parts. This operation used approximately 5 drums of TCE per month. Virgin solvent was delivered

to the facility by Baron Blakeslee, which provided a storage tank for the solvent, and also retrieved

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3 Revision: 1

Date: 3 August 2004 Page: 15 of 16

spent solvent. Solvents were stored in drums next to the vapor degreaser until 1971 when a 250-gallon storage tank was installed. Spent TCE was stored in drums in the heat treat work area. A

cold trap solvent saver was installed in 1982 which reduced solvent use to approximately 4 drums

per quarter. The vapor degreaser was removed in 1992 along with the 250-gallon storage tank and

the former degreaser location was cleaned and filled with concrete. Remaining solvents were

disposed off-site.

The response to the U.S. EPA CERCLA 104(e) Information Request letter indicated floor drains are

connected to the storm sewer system; however, over time, Flexco has gradually sealed many of the

floor drains at the facility.

2655 Wisconsin Avenue

The property at 2655 Wisconsin Avenue is currently occupied by Lovejoy Inc., a manufacturer of

couplings for transmissions, industry, and machine parts. Lovejoy has operated at its 2655

Wisconsin Avenue facility continuously since 1971. Responses to the U.S. EPA 104(e) indicated

that Lovejoy Industries has operated at two additional addresses within the Ellsworth Industrial Park

at various time periods. These include 2431 Curtiss Street and 5411 Walnut.

The following information is believed to be related to the 2655 Wisconsin Avenue location.

According to responses to U.S. EPA information requests, Lovejoy indicated they did not use

chlorinated chemicals. However, an air permit for a sintering furnace has been issued and generates

coolant and waste. Solid wastes were not stored outside the building, and no waste piles, landfills,

surface impoundments, lagoons, or pits are located on-site. Unspecified hazardous materials were

used in four "black oxide" tanks located at the 2655 Wisconsin Avenue facility. Hazardous waste

from the "black oxide" line was collected in drums located near an evaporator along the east wall

of the building. There are no USTs on the property. One 600-gallon waste oil AST is present on

the east side of the building. Small amounts of methylene chloride were used for a short time period.

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 3 Revision: 1

Date: 3 August 2004 Page: 16 of 16

Small amounts were placed on a towel used to clean parts and it was stated that the solvent was

consumed in the process. Manifest documentation from 1988 to 2001 do not indicate TCE or PCE

waste generation. However, black oxide waste stream samples collected in 1992 showed the

presence of PCE in one sample at 21 ug/L during a facility investigation. No recognized

environmental conditions were noted during a 1997 Phase I ESA.

No information is available in U.S. EPA files regarding Lovejoy ownership or operations at the 5411

Walnut Street facility.

2732 Wisconsin Avenue

The property at 2732 Wisconsin is currently occupied by Spannagel Tool & Die, a tool and die

manufacturer which has owned the property for over 34 years. The company has indicated that it

does not use chlorinated chemicals at the facility. No further information is available for this

property.

I:\WO\RAC\233\34286S-2.WPD

RFW233-2A-AQSD

Section: 4
Revision: 1
Date: 3 August 2004

Page: I of 44

SECTION 4

INVESTIGATION RESULTS

This section summarizes the results of the data collected during the supplemental investigation. Investigation activities included MIP/EC logging, soil sampling, and groundwater sampling. Tables 4-1 through 4-30 summarize the analytical results and investigative activities conducted during the supplemental investigation. Table 4-30 highlights the overall work summary, including borings, depths, samples collected, sample intervals, dates, etc.

The site geology can be described as stratigraphically complex with significant localized heterogeneity in geologic materials. Both glacial drift and post-glacial alluvial sequences are present in close proximity. Significant amounts of low-permeability silt and clay till deposits are present throughout the industrial park and surrounding area. Scattered sand and gravel layers and lenses are present within the silty clay till matrix. The low-permeability till deposits generally increase in thickness to the north and south away from the present St. Joseph Creek as the surface elevation rises. The ground-surface elevation is as much as 40 to 50 feet higher to the north and to the south as compared to the elevations adjacent to St. Joseph Creek.

Site hydrogeologic data gathered as part of preliminary groundwater investigations and the Phase II SA, supplemented with hydrogeologic data gathered by others, indicate groundwater occurrence is variable across the site. In general, three distinct water-bearing zones have been identified at the Ellsworth Industrial Park and consist of shallow perched groundwater zones, an intermediate glacial drift water-bearing zone, and a bedrock aquifer system. Section 4.28 of this report contains further discussion of groundwater flow conditions based on recent water level measurements.

The geology and hydrogeology of the industrial park and surrounding area are described in more detail in the Phase II SA report. Conditions observed during this supplemental investigation are consistent with those previously observed.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004

Page: 2 of 44

For purposes of this investigation, target chlorinated solvent compounds (i.e., compounds found in

residential wells downgradient of the industrial park) consist of PCE, TCE, and 1,1,1-TCA.

Common degradation products of PCE and TCE (e.g., dichloroethanes, dichloroethenes,

chloroethane, etc) are also included.

Methylene chloride (dichloromethane) was detected in several samples and is considered a common

laboratory artifact at low concentrations. Additional common laboratory artifacts include acetone

and 2-butanone. 1,2,4-Trichlorobenzene, acetone, cyclohexane, methyl acetate, and methylene

chloride were detected at low concentrations in laboratory soil blank samples as shown in the raw

data located in Appendix E on the enclosed CD. Additionally, acetone, carbon disulfide,

chloromethane, methylbenzene, methylene chloride, and tribromomethane were detected at low

concentrations in groundwater field blanks as shown in Table 4-28. 2-Butanone, although not

detected in soil or groundwater blanks during this investigation, is also a common laboratory artifact

at low concentrations.

The soil and groundwater results have been compared to reference levels to determine whether

detected compounds exceed concentrations as described in the 35 IAC Part 742 Tiered Approach

to Corrective Action Objectives (TACO) Tier 1 Evaluation. For soil, the most stringent value of the

ingestion, inhalation, and migration to groundwater pathways for industrial/commercial properties

was used. For groundwater, the Tier 1 groundwater remediation objectives of the Class I

groundwater ingestion route were used.

The following discussions summarize geologic and hydrogeologic conditions, and soil and

groundwater analytical results on a property-by-property basis. Tables 4-1 through 4-27 summarize

soil and groundwater results.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 3 of 44

4.1 WOODED AREA SOUTH OF 2537 CURTISS

4.1.1 Geology and Groundwater Occurrence

The geology of the wooded property south of 2537 Curtiss consists primarily of low permeability silty clays to clayey silt, with stratified beds of clayey sands that appear to be laterally discontinuous. The silty clays and clayey silts frequently contain trace amounts of gravel; and are moderately stiff with no to low plasticity.

Groundwater was encountered within a sandy clay zone at 16-feet below ground surface (bgs) at the wooded area south of 2537 Curtiss property.

4.1.2 Analytical Results

4.1.2.1 Soil

Eight soil samples were collected from soil borings at the wooded area south of 2537 Curtiss property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-1A. The following VOCs were detected in soil samples:

- 2-Butanone
- Acetone
- Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations and consist of typical laboratory artifact compounds. No target chlorinated compounds were detected in soil samples at the wooded area south of 2537 Curtiss property.

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004

Page: 4 of 44

4.1.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the wooded area south of 2537

Curtiss. Groundwater samples were collected from boring locations EIP-GP133 and EIP-GP134.

Results of the VOC groundwater sample analysis are presented in Table 4-1B. The following VOCs

were detected in groundwater samples:

Benzene

Methylbenzene

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in groundwater samples at the wooded area south of 2537

Curtiss property.

4.2 **PROPERTY NORTH OF 4935 BELMONT**

4.2.1 Geology and Groundwater Occurrence

The geology of the property north of 4935 Belmont consists of a clayey silt and/or silty clay. The

clayey silt is predominately stiff and highly plastic with trace gravel. The silty clay is laterally

discontinuous across the site, stiff, highly plastic and contains trace gravel.

Groundwater was encountered in the more granular deposits in two of the borings at the property

north of 4935 Belmont between 20 and 30 feet bgs.

4.2.2 Analytical Results

4.2.2.1 Soil

Six soil samples were collected from soil borings at the property north of 4935 Belmont during this

investigation. No VOCs were detected in soil samples collected at the property.

Section: 4

Revision: 1 Date: 3 August 2004

Page: 5 of 44

4.2.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the property north of 4935

Belmont. Groundwater samples were collected from boring locations EIP-GP203 and EIP-GP204.

Results of the VOC groundwater sample analysis are presented in Table 4-2.

The following VOCs were detected in groundwater samples:

Ethylbenzene

Methylbenzene

Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the property.

4.3 4935 BELMONT

4.3.1 Geology and Groundwater Occurrence

The geology of the 4935 Belmont property consists primarily of sandy silts grading to silty clays with

depth. The sandy silts contain trace amounts of gravel and clay, is moderately stiff and has a

medium plasticity. The silty clays contain trace amounts of sand and gravel with laterally

discontinous areas of abundant gravel. The silty clays are primarily stiff with no to low plasticity.

Groundwater was encountered within more granular deposits that appear moderately continuous

throughout the 4935 Belmont property as identified on the MIP logs at depths between 20 and 30

feet bgs.

RFW-233-2A-AQSD I:\WO\RAC\233\34286S-4.WPD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 6 of 44

4.3.2 Analytical Results

4.3.2.1 Soil

Eleven soil samples were collected from soil borings at the 4935 Belmont property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-3A. The following VOCs were detected in soil samples:

- 4-Methyl-2-Pentanone
- Acetone
- Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in soil samples at the 4935 Belmont property.

4.3.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 4935 Belmont property. Groundwater samples were collected from boring locations EIP-GP167, EIP-GP168, EIP-GP169 and EIP-GP171. Results of the VOC groundwater sample analysis are presented in Table 4-3B. The following VOCs were detected in groundwater samples:

- Acetone
- Carbon Disulfide

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 4935 Belmont property.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 7 of 44

4.4 <u>4947 BELMONT</u>

4.4.1 Geology and Groundwater Occurrence

The geology of the 4947 Belmont property consists primarily of clayey silts grading to clayey sands with depth. The clayey silts are medium to highly plastic, well graded, and contain trace pebbles. The clayey sands are medium to highly plastic, frequently exhibit sand and pebble/gravel parting, and is primarily moist with average dilatency.

Groundwater occurred in relatively shallow perched areas along the top of the clayey silts in two of the soil borings at the 4947 Belmont property between 5 and 10 feet bgs.

4.4.2 Analytical Results

4.4.2.1 Soil

Nine soil samples were collected from soil borings at the 4947 Belmont property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-4A. The following VOCs were detected in soil samples:

- 2-Butanone
- Acetone
- Benzene
- Cyclohexane
- Ethylbenzene
- Isopropylbenzene
- Methylbenzene
- Methylcyclohexane
- Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations, except in soil boring EIP-GP201. Elevated compound concentrations were detected in soil boring EIP-GP201 with benzene exceeding its reference level in both soil samples collected. Elevated compound concentrations are most likely attributed to the previous existence of a buried UST associated with

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004

Page: 8 of 44

a former gasoline station located at the 4947 Belmont property, as indicated to WESTON by

METRA representatives. No target chlorinated compounds were detected in soil samples at the 4947

Belmont property.

4.4.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 4947 Belmont property.

Groundwater samples were collected from boring locations EIP-GP199 and EIP-GP202. Results of

the VOC groundwater sample analysis are presented in Table 4-4B. The following VOCs were

detected in groundwater samples:

Acetone

Chloroform

Methylene Chloride

Methyl Tert-Butyl Ether (MTBE)

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in groundwater samples at the 4947 Belmont property.

4.5 5240 BELMONT

4.5.1 Geology and Groundwater Occurrence

The geology of the 5240 Belmont property consists primarily of silty clays grading to sand and

gravel layers with depth. The silty clays contain trace amounts of sands and gravels, have an average

medium plasticity, and are increasingly firm with depth. The sands and gravels are moderately thinly

bedded, interstratified and well graded.

Groundwater was encountered in all five of the soil borings at the 5240 Belmont property within the

sand and gravel layers primarily around 15 to 20 feet bgs.

Section: 4 Revision: 1 Date: 3 August 2004

Page: 9 of 44

4.5.2 Analytical Results

4.5.2.1 Soil

Eleven soil samples were collected from soil borings at the 5240 Belmont property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-5A. The following VOCs were detected in soil samples:

- 1,1,1-TCA
- 1,1-Dichlorethane
- Acetone
- Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. Two target chlorinated solvent compounds (1,1,1-TCA and 1,1-dichloroethane) were detected in soil samples at the 5240 Belmont property. Target compounds were present at concentrations less than their respective reference levels.

4.5.2.2 Groundwater

Groundwater was encountered in all five of the soil borings completed at the 5240 Belmont property. Groundwater samples were collected from boring locations EIP-GP187 through EIP-GP191. Results of the VOC groundwater sample analysis are presented in Table 4-5B. The following VOCs were detected in groundwater samples:

- 1,1,1-TCA
- 1,1-Dichloroethane
- Acetone
- Cis-1,2-Dichloroethene
- Methyl Tert-Butyl Ether (MTBE)
- Methylbenzene
- Methylcyclohexane
- Tribromomethane

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 10 of 44

The above-listed compounds were detected at low and/or estimated concentrations. Four target

chlorinated solvent compounds (TCE, 1,1,1-TCA, 1-1-dichloroethane, and cis-1,2-dichloroethene)

were detected in groundwater samples at the 5240 Belmont property. Target compounds were

present at concentrations less than their respective reference levels.

4.6 <u>5023 CHASE</u>

4.6.1 Geology and Groundwater Occurrence

The geology of the 5023 Chase property consists primarily of a laterally discontinuous strata of silty

clays in upper topographic highs overlaying clay rich and silty sands. The base of the shallow

geology is underlain by a silty clay till. The upper silty clays contain trace sub-angular gravels and

have a low to medium plasticity. The sands vary between clay and silt rich containing trace amounts

of gravel, are well graded, and exhibit frequent iron-staining. The base silty clay till is a stiff,

slightly plastic clay with trace gravel.

Groundwater was encountered in two of the soil borings at the 5023 Chase property within the more

granular sandy deposits between 20 and 30 feet bgs.

4.6.2 Analytical Results

4.6.2.1 Soil

Ten soil samples were collected from soil borings at the 5023 Chase property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-6A. The following

VOCs were detected in soil samples:

• 1,1,1-TCA

• 2-Butanone

Acetone

Methylene Chloride

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 11 of 44

The above-listed compounds were detected at low and/or estimated concentrations. One target chlorinated solvent compound (1,1,1-TCA) was detected in soil samples at the 5023 Chase property. The target compound was present at concentrations less than its reference level.

4.6.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 5023 Chase property. Groundwater samples were collected from boring locations EIP-GP157 and EIP-GP159. Results of the VOC groundwater sample analysis are presented in Table 4-6B. The following VOCs were detected in groundwater samples:

- 1,1,1-TCA
- Benzene
- Carbon Tetrachloride
- Methyl N-Butyl Ketone
- Methylbenzene
- Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. Two target chlorinated solvent compounds (1,1,1-TCA and carbon tetrachloride) were detected in groundwater samples at the 5023 Chase property. Target compounds were present at concentrations less than their respective reference levels.

4.7 5024 CHASE

4.7.1 Geology and Groundwater Occurrence

The geology of the 5024 Chase property consists primarily of silty clays with some sandy/gravelly clays and sand/gravel layers interstratified with the silty clays. The silty clays contain moderate amounts of gravel and trend to increasing plasticity with depth. The interstratified sandy/gravelly clays along with the sand/gravel layers are laterally discontinuous within the shallow investigation strata, are generally well graded materials with an abundance of fines.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 12 of 44

Groundwater was encountered in two of the soil borings at the 5024 Chase property within the deeper more granular deposits at the property located between 20 and 30 feet bgs.

4.7.2 Analytical Results

4.7.2.1 Soil

Nine soil samples were collected from soil borings at the 5024 Chase property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-7A. The following VOCs were detected in soil samples:

- PCE
- Acetone

The above-listed compounds were detected at low and/or estimated concentrations. One target chlorinated solvent compounds (PCE) was detected in soil samples at the 5024 Chase property. The target compound was present at concentrations less than its reference level.

4.7.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 5024Chase property. Groundwater samples were collected from boring locations EIP-GP153 and EIP-GP156. Results of the VOC groundwater sample analysis are presented in Table 4-7B. The following VOCs were detected in groundwater samples:

- 1,1,1-TCA
- Acetone
- Benzene
- Methylbenzene

Data Evaluation Sum Section: 4

Revision: 1 Date: 3 August 2004 Page: 13 of 44

The above-listed compounds were detected at low and/or estimated concentrations. One selected

target chlorinated solvent compound (1,1,1-TCA) was detected in groundwater samples at the 5024

Chase property. The target compound was present at concentrations less than its reference level.

4.8 5000 - 5014 CHASE

4.8.1 Geology and Groundwater Occurrence

The geology of the 5000 - 5014 Chase property consists primarily of upper silty clays transitioning

to interstratified sands/gravels and silty clay layers with depth. The silty clays contain trace amounts

of gravel, have an increasing plasticity with depth, and are moderately stiff. The sand/gravel layers

are laterally discontinuous, well graded, and generally moist to wet.

Groundwater was encountered in six soil borings at the 5000 - 5014 Chase property in the

sand/gravel deposits generally between 10 and 20 feet bgs.

4.8.2 Analytical Results

4.8.2.1 Soil

Seventeen soil samples were collected from soil borings at the 5000 - 5014 Chase property during

this investigation. Results of the VOC soil sample analysis are presented in Table 4-8A. The

following VOCs were detected in soil samples:

• PCE

TCE

• 1,1,1-TCA

• 1,1-Dichloroethene

Acetone

Carbon Tetrachloride

Cis-1,2-Dichloroethene

The above-listed compounds were detected at low and/or estimated concentrations, except in soil

Section: 4 Revision: 1

Date: 3 August 2004 Page: 14 of 44

boring EIP-GP137, where elevated concentrations of PCE were detected. Six target chlorinated solvent compounds (PCE, TCE, 1,1,1-TCA, 1,1-dichloroethylene, carbon tetrachloride, and cis-1,2-dichloroethene) were detected in soil samples at the 5000 - 5014 Chase property. PCE at 240 ug/kg exceeded its reference level (60 ug/kg) in soil boring EIP-GP137 at a depth of 19.5 to 20.5 feet bgs.

4.8.2.2 Groundwater

Groundwater was encountered in six of the soil borings completed at the 5000 - 5014 Chase property. Groundwater samples were collected from boring locations EIP-GP135, EIP-GP137 through EIP-GP140, and EIP-GP206. Results of the VOC groundwater sample analysis are presented in Table 4-8B. The following VOCs were detected in groundwater samples:

- PCE
- TCE
- 1,1,1-TCA
- 1,1,2-Trichloroethane
- 1,1-Dichloroethane
- 1,1-Dichloroethene
- Carbon Tetrachloride
- Chloroform
- Chloromethane
- Cis-1,2-Dichloroethene
- Methylbenzene
- Trans-1,2-Dichlorethene

The above-listed compounds were detected at low and/or estimated concentrations, with the following exceptions. Nine target chlorinated solvent compounds (PCE, TCE 1,1,1-TCA, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, carbon tetrachloride, cis-1,2-dichloroethene, and trans-1,2-dichloroethene) were detected in groundwater samples at the 5000 - 5014 Chase property. Seven of the nine detected target chlorinated solvent compounds exceeded their respective reference levels. PCE exceeded its reference level (5 ug/L) with concentrations of 340, 18, and 8.4 ug/L in soil borings EIP-GP137, EIP-GP138, and EIP-GP140, respectively. TCE exceeded its reference level (5 ug/L) with a concentration of 210 ug/L in soil boring EIP-GP137. 1,1,1-TCA INWONRAC(233)34286S-4.WPD

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1 Date: 3 August 2004

Page: 15 of 44

exceeded its reference level (200 ug/L) with a concentration of 230 ug/L in soil boring EIP-GP137.

1,1,2-Trichloroethane exceeded its reference level (5 ug/L) with a concentration of 9.9 ug/L in soil

boring EIP-GP137. 1,1-Dichloroethene exceeded its reference level (7 ug/L) with a concentration

of 8.9 ug/L in soil boring EIP-GP137. Carbon tetrachloride exceeded its reference level (5 ug/L)

with a concentration of 18 ug/L in soil boring EIP-GP137. Cis-1,2-dichloroethene exceeded its

reference level (70 ug/L) with a concentration of 200 ug/L in soil boring EIP-GP137.

4.9 **2431 CURTISS**

4.9.1 Geology and Groundwater Occurrence

The geology of the 2431 Curtiss property consists primarily of a clay overlying a clayey sand. The

clay is generally dry and stiff with trace gravel and low plasticity. The clayey sand is generally loose

and well graded. The entire property is underlain by a stiff clay glacial till that is primarily dry with

trace gravel.

Groundwater was encountered in two soil borings at the 2431 Curtiss property in the clayey sand

deposits ranging in depth between 17 and 30 feet bgs.

4.9.2 Analytical Results

4.9.2.1 Soil

Ten soil samples were collected from soil borings at the 2431 Curtiss property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-9A. The following

VOCs were detected in soil samples:

PCE

1,1,1-TCA

2-Butanone

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004

Page: 16 of 44

The above-listed compounds were detected at low and/or estimated concentrations. Two target

chlorinated solvent compounds (PCE and 1,1,1-trichloroethane) were detected in soil samples at the

2431 Curtiss property. Target compounds were present at concentrations less than their respective

reference levels.

4.9.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 2431 Curtiss property.

Groundwater samples were collected from boring locations EIP-GP105 and EIP-GP106. Results of

the VOC groundwater sample analysis are presented in Table 4-9B. The following VOCs were

detected in groundwater samples:

PCE

1,1,1-TCA

Acetone

Carbon Tetrachloride

The above-listed compounds were detected at low and/or estimated concentrations. Three target

chlorinated solvent compounds (PCE, 1,1,1-TCA, and carbon tetrachloride) were detected in

groundwater samples at the 2431 Curtiss property. Target compounds were present at concentrations

less than their respective reference levels.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 17 of 44

4.10 **2500 CURTISS**

4.10.1 Geology and Groundwater Occurrence

The geology of the 2500 Curtiss property consists primarily of three lithologies throughout the site.

The property is generally layered with a sandy/silty clay overlying a thickly bedded sand and gravel

which is underlain by a sandy/silty clay. The upper sandy/silty clay is primarily of highly plastic, soft

clay with trace gravel. The thickly bedded sand and gravel strata are generally loose, dry to slightly

moist, and well graded. The lower sandy/silty clay is primarily a stiff, dry basal till containing

consistent trace gravel.

Groundwater was encountered in two soil borings at the 2500 Curtiss property within sand and

gravel deposits generally between 20 and 30 feet bgs.

4.10.2 Analytical Results

4.10.2.1 Soil

Twenty-one soil samples were collected from soil borings at the 2500 Curtiss property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-10A. The following

VOCs were detected in soil samples:

TCE

2-Butanone

Acetone

Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (TCE) was detected in soil samples at the 2500 Curtiss property. The

target compound was present at concentrations less than its reference level.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 18 of 44

4.10.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 2500 Curtiss property. Groundwater samples were collected from boring locations EIP-GP60 and EIP-GP207. Results of the VOC groundwater sample analysis are presented in Table 4-10B. The following VOCs were detected in groundwater samples:

- **PCE**
- TCE
- Benzene
- Carbon Disulfide
- Cis-1.2-Dichloroethene
- Methylbenzene
- Methylcyclohexane
- Trans-1,2-Dichloroethene

The above-listed compounds were detected at low and/or estimated concentrations, with the following exceptions. Four target chlorinated solvent compounds (PCE, TCE, cis-1,2dichlorethene, and trans-1,2-dichloroethene) were detected in groundwater samples at the 2500 Curtiss Chase property. TCE exceeded its reference level (5 ug/L) at an estimated concentration of 130 ug/L in soil boring EIP-GP60.

The TCE concentration detected in GPW-60 was flagged as an estimated value "J" during data validation. The sample was diluted and re-run due to TCE exceeding the instrument calibration range. A laboratory method blank was analyzed in conjunction with this sample. TCE was not reported in the method blank. At some point after the investigative samples were run, and after the laboratory method blank was run, a laboratory storage blank was analyzed. This storage blank was located in the cooler with the samples prior to the samples being analyzed. When the laboratory storage blank was analyzed, TCE was detected. Therefore, the U.S. EPA ESAT contractors that review the data in compliance with the U.S. EPA National Functional Guidelines for Low Concentration Data Review flagged the sample result with a "J", indicating the value is to be I:\WO\RAC\233\34286S-4.WPD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 19 of 44

considered usable, but estimated. In addition, there was a field blank and a trip blank associated with this sample. Neither the field blank or the trip blank contained TCE.

4.11 PROPERTY SOUTH OF INTERSECTION OF CURTISS AND GLENVIEW AND EAST OF BELMONT

4.11.1 Geology and Groundwater Occurrence

The geology of the property south of the intersection of Curtiss and Glenview and East of Belmont consists primarily of silty/sandy clays overlying laterally discontinuous lenses of interstratified silts, sands, and gravels. The silty/sandy clays generally contain trace to moderate amounts of coarse sediments with moderate firmness and plasticity. The silts, sands, and gravels vary in appearance and thickness throughout the property south of the intersection of Curtiss and Glenview and East of Belmont and are laterally discontinuous from one boring location to another.

Groundwater was encountered in seven soil borings at the property south of the intersection of Curtiss and Glenview and East of Belmont in primarily coarse grained lithologies varying in boring depth of 7 to 30 feet bgs.

4.11.2 Analytical Results

4.11.2.1 Soil

Nineteen soil samples were collected from soil borings at the property south of the intersection of Curtiss and Glenview and East of Belmont during this investigation. Results of the VOC soil sample analysis are presented in Table 4-11A. The following VOCs were detected in soil samples:

- PCE
- Acetone
- Chloroform
- Methylene Chloride

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004

Page: 20 of 44

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (PCE) was detected in soil samples. The target compound was

present at concentrations less than its reference level.

4.11.2.2 Groundwater

Groundwater was encountered in seven of the soil borings completed at the property south of the

intersection of Curtiss and Glenview and East of Belmont. Groundwater samples were collected

from boring locations EIP-GP142 through EIP-GP148. Results of the VOC groundwater sample

analysis are presented in Table 4-11B. The following VOCs were detected in groundwater samples:

Benzene

Cis-1,2-Dichloroethene

Methylbenzene

Methylcyclohexane

Tribromomethane

Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (cis-1,2-dichlorethene) was detected in groundwater samples at the

property south of the intersection of Curtiss and Glenview and East of Belmont. The target

compound was present at concentrations less than its reference level.

4.12 2824 HITCHCOCK

4.12.1 Geology and Groundwater Occurrence

The geology of the 2824 Hitchcock property consists of laterally discontinuous layers of clayer silts,

silty clays, and clayey sands. The clayey silts generally contain trace amounts of coarse grained

sediments and are highly plastic. The silty clays are primarily highly plastic, stiff, and contain trace

gravel. The clayey sands are well graded with interstratified thin sand lenses and occasional trace

gravel.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AOSD

Section: 4 Revision: 1 Date: 3 August 2004 Page: 21 of 44

Groundwater was encountered in four soil borings at the 2824 Hitchcock property within the shallow coarse grained deposits generally between 5 and 10 feet bgs.

4.12.2 Analytical Results

4.12.2.1 Soil

Fourteen soil samples were collected from soil borings at the 2824 Hitchcock property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-12A. The following VOC was detected in soil samples:

Acetone

The above-listed compound was detected at low and/or estimated concentrations. No target chlorinated compounds were detected in soil samples at the 2824 Hitchcock property.

4.12.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 2824 Hitchcock property. Groundwater samples were collected from boring locations EIP-GP172, EIP-GP173, EIP-GP175, and EIP-GP177. Results of the VOC groundwater sample analysis are presented in Table 4-12B. The following VOCs were detected in groundwater samples:

- 1,1-Dichloroethane
- Acetone
- Chloromethane
- Cis-1,2-Dichloroethene
- Methylene Chloride

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004 Page: 22 of 44

The above-listed compounds were detected at low and/or estimated concentrations. Two target

chlorinated solvent compounds (1,1-dichloroethane and cis-1,2-dichlorethene) were detected in

groundwater samples at the 2824 Hitchcock property. Target compounds were present at

concentrations less than their respective reference levels.

4.13 **5224 KATRINE**

4.13.1 Geology and Groundwater Occurrence

The geology of the 5224 Katrine property consists of upper layers of laterally discontinuous

interstratified silty clays and gravels overylaying a sandy silt zone followed by a silty clay. The

upper silty clays frequently contain gravel with a low to medium plasticity and are moderately stiff.

The sandy silts generally contain trace gravels and clay and range from very soft to stiff. The lower

silty clays are generally stiff with a moderate plasticity and frequently have trace amounts of gravel.

Groundwater was encountered in one soil boring at the 5224 Katrine property between 20 and 30 feet

bgs.

4.13.2 Analytical Results

4.13.2.1 Soil

Eleven soil samples were collected from soil borings at the 5224 Katrine property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-13A. The following

VOCs were detected in soil samples:

2-Butanone

Acetone

Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in soil samples at the 5224 Katrine property.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 23 of 44

4.13.2.2 Groundwater

Groundwater was encountered in one of the soil borings completed at the 5224 Katrine property. Groundwater samples were collected from boring location EIP-GP115. Results of the VOC groundwater sample analysis are presented in Table 4-13B. The following VOCs were detected in groundwater samples:

- 1,1,1-TCA
- 1,1-Dichloroethane
- 2-Butanone
- Acetone
- Benzene
- Methyl Benzene

The above-listed compounds were detected at low and/or estimated concentrations. Two target chlorinated solvent compounds (1,1,1-TCA and 1,1-dichloroethane) were detected in groundwater samples at the 5224 Katrine property. Target compounds were present at concentrations less than their respective reference levels.

4.14 2265 MAPLE

4.14.1 Geology and Groundwater Occurrence

The geology of the 2265 Maple property consists primarily of clayey silts overlaying silty clays with interstratified, laterally discontinuous silty sand lenses. The clayey silts have a varying plasticity, are generally stiff and contain trace gravel. The interstratified sand lenses are poorly graded. The silty clays are stiff with varying plasticity and contain trace amounts of gravel.

Groundwater was encountered in two soil borings at the 2265 Maple property within the clayey silts between 5 and 15 feet bgs.

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 24 of 44

4.14.2 Analytical Results

4.14.2.1 Soil

Six soil samples were collected from soil borings at the 2265 Maple property during this

investigation. No VOC compounds were detected in the soil borings at the 2265 Maple property.

4.14.2.2 Groundwater

Groundwater was encountered in two of the soil borings completed at the 2265 Maple property.

Groundwater samples were collected from boring locations EIP-GP150 and EIP-GP152. Results of

the VOC groundwater sample analysis are presented in Table 4-14. The following VOCs were

detected in groundwater samples:

PCE

- Acetone
- Benzene
- Ethylbenzene
- Methyl Benzene
- Tribromomethane
- Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (PCE) was detected in groundwater samples at the 2265 Maple

property. The target compound was present at concentrations less than its reference level.

4.15 2315 MAPLE

4.15.1 Geology and Groundwater Occurrence

The geology of the 2315 Maple property consists of a massively bedded silty clay with thin

interstratifed laterally discontinuous lenses of silt and sand. The silty clay firm material of varying

plasticity and frequently contains trace sand and gravel sediments. The silt and sand lenses are very

thin and well graded.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AOSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 25 of 44

Groundwater was encountered in five soil borings at the 2315 Maple property a depths varying between 10 and 30 feet bgs.

4.15.2 Analytical Results

4.15.2.1 Soil

Thirteen soil samples were collected from soil borings at the 2315 Maple property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-15A. The following VOCs were detected in soil samples:

- 2-Butanone
- Acetone
- Methyl Tert-Butyl Ether (MTBE)

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated solvent compounds were detected in soil samples at the 2315 Maple property.

4.15.2.2 Groundwater

Groundwater was encountered in all five of the soil borings completed at the 2315 Maple property. Groundwater samples were collected from boring locations EIP-GP182 through EIP-GP186. Results of the VOC groundwater sample analysis are presented in Table 4-15B. The following VOCs were detected in groundwater samples:

- 2-Butanone
- Acetone
- Benzene
- Carbon Disulfide
- Chloroethane
- Cyclohexane
- Methyl Acetate
- Methyl Benzene
- Methyl Tert-Butyl Ether (MTBE)

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AOSD

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004 Page: 26 of 44

Methylcyclohexane

Tribromomethane

Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (chloroethane) was detected in groundwater samples at the 2315

Maple property. The target compound was present at concentrations less than its reference level.

4.16 **2754 MAPLE**

4.16.1 Geology and Groundwater Occurrence

The geology of the 2754 Maple property consists of a combination of laterally discontinuous layers

of clayey/silty sands, clayey silts, and clays. The clayey/silty sands are well graded sands containing

a mixture of fine grained and gravel sediments. The clayey silts have a medium to high plasticity

and contain frequent occurrences of trace gravel. The clays are primarily stiff, highly plastic and

contain trace amounts of gravel.

Groundwater was encountered in all four soil borings at the 2754 Maple property in medium to

coarse grained deposits varying in depth between 7 and 30 feet bgs.

4.16.2 Analytical Results

4.16.2.1 Soil

Eleven soil samples were collected from soil borings at the 2754 Maple property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-16A. The following

VOCs were detected in soil samples:

Methylene Chloride

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 27 of 44

The above-listed compound was detected at low and/or estimated concentrations. No target chlorinated compounds were detected in soil samples at the 2754 Maple property.

4.16.2.2 Groundwater

Groundwater was encountered in all four of the soil borings completed at the 2754 Maple property. Groundwater samples were collected from boring locations EIP-GP178 through EIP-GP181. Results of the VOC groundwater sample analysis are presented in Table 4-16B. The following VOCs were detected in groundwater samples:

- Benzene
- Chloroform
- Chloromethane
- Methyl Benzene
- Xvlenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 2754 Maple property.

4.17 <u>5126 WALNUT</u>

4.17.1 Geology and Groundwater Occurrence

The geology of the 5126 Walnut property consists of clayey/sandy silts, silty clays, and clayey sands. The clayey sandy silts are laterally discontinuous across the property, vary in plasticity from low to high and generally contain trace gravel. The silty clays are laterally discontinuous across the site, are generally stiff, highly plastic, and contain trace gravel. The clayey sand exists as a thin lense in one boring and is hard with abundant gravel present.

Groundwater was encountered in soil borings at the 5126 Walnut property at depths ranging from 5 to 25 feet bgs.

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 28 of 44

4.17.2 Analytical Results

4.17.2.1 Soil

Twelve soil samples were collected from soil borings at the 5126 Walnut property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-17A. The following VOCs were detected in soil samples:

Acetone

The above-listed compound was detected at low and/or estimated concentrations. No target chlorinated compounds were detected in soil samples at the 5126 Walnut property.

4.17.2.2 Groundwater

Groundwater was encountered in three of the soil borings completed at the 5126 Walnut property. Groundwater samples were collected from boring locations EIP-GP161, EIP-GP164 and EIP-GP165. Results of the VOC groundwater sample analysis are presented in Table 4-17B. The following VOCs were detected in groundwater samples:

- Methyl Tert-Butyl Ether (MTBE)
- Methyl Benzene

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 5126 Walnut property.

4.18 **5225 WALNUT**

4.18.1 Geology and Groundwater Occurrence

The geology of the 5225 Walnut property consists primarily of a mixture of sandy/clayey silts overlaying silty clays. The sandy/clayey silts are moderately stiff with trace gravel appearing

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 29 of 44

frequently in the lithology. The silty clays are predominately stiff, highly plastic sediments with frequent occurrences of trace gravel.

Groundwater was not encountered at the 5225 Walnut property.

4.18.2 Analytical Results

4.18.2.1 Soil

Thirteen soil samples were collected from soil borings at the 5225 Walnut property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-18. The following VOCs were detected in soil samples:

PCE

Acetone

Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. One target chlorinated solvent compound (PCE) was detected in soil samples at the 5225 Walnut property. The target compound was present at concentrations less than its reference level.

4.18.2.2 Groundwater

Groundwater was not encountered in soil borings completed at the 5225 Walnut property.

4.19 **5411 WALNUT**

4.19.1 Geology and Groundwater Occurrence

The geology of the 5411 Walnut property consists of predominantly clayey silts with small, interstratified lenses of sand and gravel appearing within the boring that are laterally discontinuous.

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 30 of 44

The clayer silts are generally very stiff, highly plastic, and contain trace amounts of gravel. The sand and gravel lenses appear locally in one soil boring and are well graded.

4.19.2 Analytical Results

4.19.2.1 Soil

Eleven soil samples were collected from soil borings at the 5411 Walnut property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-19A. The following VOCs were detected in soil samples:

- 1,1-Dichloroethane
- Chlorinated Fluorocarbon (Freon 113)
- Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations, with the following exception. One target chlorinated solvent compound (1,1-dichloroethane) was detected in soil samples at the 5411 Walnut property. 1,1-Dichloroethane was detected at a concentration equal to but did not exceed its reference level of 20 ug/kg in soil boring EIP-GP77.

4.19.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 5411 Walnut property. Groundwater samples were collected from boring locations EIP-GP76 through EIP-GP79. Results of the VOC groundwater sample analysis are presented in Table 4-19B. The following VOCs were detected in groundwater samples:

- 1,1,1-TCA
- 1,1-Dichloroethane
- CFC-12
- Chlorinated Fluorocarbon (Freon 113)
- Methyl Benzene
- Tribromomethane

RFW-233-2A-AQSD

Data Evaluation Summary Report

Section: 4 Revision: 1 Date: 3 August 2004

Page: 31 of 44

The above-listed compounds were detected at low and/or estimated concentrations. Two target

chlorinated solvent compounds (1,1,1-TCA and 1,1-dichloroethane) were detected in groundwater

samples at the 5411 Walnut property. Target compounds were present at concentrations less than

their respective reference levels.

4.20 2300 WISCONSIN

4.20.1 Geology and Groundwater Occurrence

The geology of the 2300 Wisconsin property consists primarily of silty clays with laterally

discontinuous lenses of silt and gravel interstratified throughout the property. The silty clays vary

in range of plasticity from low to high with trace gravel frequently appearing in the lithology. The

silt and gravel lenses are thinly bedded, laterally discontinuous and appear at infrequent intervals

within the lithology of the 2300 Wisconsin property.

Groundwater was encountered in all six of the soil borings at the 2300 Wisconsin property at depths

varying from 15 to 30 feet bgs.

4.20.2 Analytical Results

4.20.2.1 Soil

Fifteen soil samples were collected from soil borings at the 2300 Wisconsin property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-20A. The following

VOCs were detected in soil samples:

2-Butanone

Acetone

Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in soil samples at the 2300 Wisconsin property.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AOSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1

Date: 3 August 2004

Page: 32 of 44

4.20.2.2 Groundwater

Groundwater was encountered in all six of the soil borings completed at the 2300 Wisconsin property. Groundwater samples were collected from boring locations EIP-GP61 through EIP-GP66. Results of the VOC groundwater sample analysis are presented in Table 4-20B. The following VOCs were detected in groundwater samples:

- 2-Butanone
- Acetone
- Benzene
- Chloromethane
- Methylene Chloride
- Methyl Benzene
- Methylcyclohexane

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 2300 Wisconsin property.

4.21 2333 WISCONSIN

4.21.1 Geology and Groundwater Occurrence

The geology of the 2333 Wisconsin property consists primarily of thickly bedded clayey silts and silty/sandy clays with laterally discontinuous sands infrequently interstratified within the lithology of the property. The thickly bedded clayey silts are primarily hard with trace gravel throughout. The silty/sandy clays are generally highly plastic, stiff, and frequently contain trace amounts of gravel. The discontinuous sands are well graded with rounded grain and trace gravel.

Groundwater was encountered in one soil boring at the 2333 Wisconsin property in a silty clay at approximately 26 feet bgs.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 33 of 44

4.21.2 Analytical Results

4.21.2.1 Soil

Fifteen soil samples were collected from soil borings at the 2333 Wisconsin property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-21A. The following

VOCs were detected in soil samples:

Acetone

The above-listed compound was detected at low and/or estimated concentrations. No target chlorinated compounds were detected in soil samples at the 2333 Wisconsin property.

4.21.2.2 Groundwater

Groundwater was encountered in one of the soil borings completed at the 2333 Wisconsin property. Groundwater samples were collected from boring location EIP-GP194. Results of the VOC groundwater sample analysis are presented in Table 4-21B. The following VOCs were detected in groundwater samples:

Acetone

Benzene

Methyl Benzene

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 2333 Wisconsin property.

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 34 of 44

4.22 <u>2400 WISCONSIN</u>

4.22.1 Geology and Groundwater Occurrence

The geology of the 2400 Wisconsin property consists of silty/sandy clays with infrequent

interstratified layers of sand, silt, and gravel. The silty/sandy clays vary is plasticity from low to

high, vary from soft to stiff, and have frequent appearances of trace gravel throughout the property

lithology. The interstratified sand, silt and gravel layers are generally well graded and laterally

discontinuous.

Groundwater was encountered in four soil borings at the 2400 Wisconsin property at depths varying

between 10 and 30 feet bgs.

4.22.2 Analytical Results

4.22.2.1 Soil

Twelve soil samples were collected from soil borings at the 2400 Wisconsin property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-22A. The following

VOCs were detected in soil samples:

2-Butanone

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in soil samples at the 2400 Wisconsin property.

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1

Date: 3 August 2004 Page: 35 of 44

4.22.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 2400 Wisconsin property. Groundwater samples were collected from boring locations EIP-GP95, EIP-GP97, EIP-GP98, and EIP-GP99. Results of the VOC groundwater sample analysis are presented in Table 4-22B. The following VOCs were detected in groundwater samples:

- 1,2-Dichloropropane
- 2-Butanone
- Acetone
- Chloromethane
- Methyl Acetate
- Methyl Benzene
- Methylcyclohexane

The above-listed compounds were detected at low and/or estimated concentrations. No target chlorinated compounds were detected in groundwater samples at the 2400 Wisconsin property.

4.23 <u>2424 WISCONSIN</u>

4.23.1 Geology and Groundwater Occurrence

The geology of the 2424 Wisconsin property consists primarily of clayey sands overlaying clayey silts. The clayey sands are generally well graded and moderately plastic with frequent appearances of trace gravel. The clayey silts are generally stiff and highly plastic with frequent appearances of trace gravel.

Groundwater was encountered in five soil borings at the 2424 Wisconsin property at depths ranging from 7 to 20 feet bgs.

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Section: 4 Revision: 1

Date: 3 August 2004 Page: 36 of 44

4.23.2 Analytical Results

4.23.2.1 Soil

Fifteen soil samples were collected from soil borings at the 2424 Wisconsin property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-23A. The following VOCs were detected in soil samples:

- TCE
- 1,1,1-TCA
- 1,1-Dichloroethane
- 1,1-Dichloroethene
- Acetone
- Carbon Tetrachloride
- Chloroethane
- Cis-1,2-Dichloroethene
- Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations except, with the following exceptions. Seven target chlorinated solvent compounds (TCE, 1,1,1-TCA, 1,1-dichloroethane, 1,1-dichloroethene, carbon tetrachloride, chloroethane, and cis-1,2-dichloroethene) were detected in soil samples at the 2424 Wisconsin property. Three of seven detected target chlorinated solvent compounds exceeded their respective reference levels. 1,1,1-TCA exceeded its reference level (2,000 ug/kg) with a concentration of 4,700 ug/kg in soil boring EIP-GP129. 1,1-Dichloroethane exceeded its reference level (20 ug/kg) with concentrations of 110 and 120 ug/kg in soil borings EIP-GP128 and EIP-GP130, respectively. 1,1-Dichloroethene exceeded its reference level (60 ug/kg) with a concentration of 83 ug/kg in soil boring EIP-GP128.

4.23.2.2 Groundwater

Groundwater was encountered in five of the soil borings completed at the 2424 Wisconsin property. Groundwater samples were collected from boring locations EIP-GP125, EIP-GP127, EIP-GP128,

Section: 4 Revision: 1 Date: 3 August 2004 Page: 37 of 44

EIPGP129, and EIP-GP130. Results of the VOC groundwater sample analysis are presented in Table 4-23B. The following VOCs were detected in groundwater samples:

- TCE
- 1,1,1-TCA
- 1,1,2-Trichloroethane
- 1,1-Dichloroethane
- 1,1-Dichloroethene
- 1,2-Dichloroethane
- Benzene
- Carbon Tetrachloride
- Chlorinated Fluorocarbon (Freon 113)
- Chloroethane
- Chloroform
- Cis-1.2-Dichloroethene
- Methyl Benzene

The above-listed compounds were detected at low and/or estimated concentrations, with the following exceptions. Nine selected target chlorinated solvent compounds (TCE, 1,1,1-TCA, 1,1,2-trichlorothane, 1,1-dichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, carbon tetrachloride, chloroethane, and cis-1,2-dichloroethene) were detected in groundwater samples at the 2424 Wisconsin property. Two of the nine target chlorinated solvent compounds exceeded their respective reference levels. TCE exceeded its reference level (5 ug/L) with a concentration of 19 ug/L in soil boring EIP-GP128. 1,1,1-TCA exceeded its reference level (200 ug/L) with concentrations of 1200 and 620 ug/L in soil borings EIP-GP128 and EIP-GP129, respectively.

4.24 2518 WISCONSIN

4.24.1 Geology and Groundwater Occurrence

The geology of the 2518 Wisconsin property consists primarily of clayey silts with laterally discontinuous layers of clay, clayey sand and gravel. The clayey silts are low to moderately stiff with a medium to high plasticity. The clay is stiff with a low plasticity and trace gravel. The clayey sands

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004

Page: 38 of 44

are thinly bedded and well graded, with a mixture of fine and coarse grained materials within the

lithological matrix. The gravel lenses are very thinly bedded and sparse within the lithological

makeup of the 2518 Wisconsin property, and generally occur as angular dolomite fragments.

Groundwater was encountered in four of the soil borings at the 2518 Wisconsin property at varying

depths ranging from 12 to 30 feet bgs.

4.24.2 Analytical Results

4.24.2.1 Soil

Twelve soil samples were collected from soil borings at the 2518 Wisconsin property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-24A. The following

VOCs were detected in soil samples:

1.1.1-TCA

Chlorinated Fluorocarbon (Freon 113)

The above-listed compounds were detected at low and/or estimated concentrations. One target

chlorinated solvent compound (1,1,1-TCA) was detected in soil samples at the 2518 Wisconsin

property. The target compound was present at concentrations less than its reference level.

4.24.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 2518 Wisconsin property.

Groundwater samples were collected from boring locations EIP-GP100, EIP-GP101, EIP-GP102,

and EIP-GP103. Results of the VOC groundwater sample analysis are presented in Table 4-24B.

The following VOCs were detected in groundwater samples:

1,1,1-TCA

1,1-Dichloroethane

Acetone

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 4 Revision: 1 Date: 3 August 2004

Page: 39 of 44

- Benzene
- Chlorinated Fluorocarbon (Freon 113)
- Chloromethane
- Ethylbenzene
- Methyl Benzene
- Xylenes (Total)

The above-listed compounds were detected at low and/or estimated concentrations. Two target chlorinated solvent compounds (1,1,1-TCA and 1,1-dichloroethane) were detected in groundwater samples at the 2518 Wisconsin property. Target compounds were present at concentrations less than their respective reference levels.

4.25 2525 WISCONSIN

4.25.1 Geology and Groundwater Occurrence

The geology of the 2525 Wisconsin property consists primarily of laterally discontinuous clayey silt overlaying a massive bedded silty clay. The laterally discontinuous clayey silt is stiff with an abundance of gravel throughout. The silty clays are predominately stiff with a moderate plasticity and trace gravel throughout.

Groundwater was not encountered in soil borings located at the 2525 Wisconsin property.

4.25.2 Analytical Results

4.25.2.1 Soil

Twenty soil samples were collected from soil borings at the 2525 Wisconsin property during this investigation. Results of the VOC soil sample analysis are presented in Table 4-25. The following VOCs were detected in soil samples:

Acetone

I:\WO\RAC\233\34286S-4.WPD RFW-233-2A-AQSD

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004

Page: 40 of 44

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in soil samples at the 2525 Wisconsin property.

4.25.2.2 Groundwater

Groundwater was not encountered in the soil borings completed at the 2525 Wisconsin property.

4.26 **2655 WISCONSIN**

4.26.1 Geology and Groundwater Occurrence

The geology of the 2655 Wisconsin property consists of sandy/clayey silts overlaying silty clays.

The sandy/clayey silts are primarily moderately stiff with trace gravel and frequent iron staining.

The silty clays are generally moderately stiff with a medium plasticity and contain trace amounts of

gravel.

Groundwater was encountered in four of the soil borings at the 2655 Wisconsin property at depths

generally between 20 and 30 feet bgs.

4.26.2 Analytical Results

4.26.2.1 Soil

Sixteen soil samples were collected from soil borings at the 2655 Wisconsin property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-26A. The following

VOCs were detected in soil samples:

Trichloroethene (TCE)

Acetone

Data Evaluation Summary Report

Section: 4 Revision: 1

Date: 3 August 2004 Page: 41 of 44

The above-listed compounds were detected at low and/or estimated concentrations, with the

following exception. One target chlorinated solvent compound (TCE) was detected in soil samples

at the 2655 Wisconsin property. TCE exceeded its reference level (60 ug/kg) with concentrations

of 25,000 and 35,000 ug/kg in soil borings EIP-GP82 and EIP-GP83, respectively.

4.26.2.2 Groundwater

Groundwater was encountered in four of the soil borings completed at the 2655 Wisconsin property.

Groundwater samples were collected from boring locations EIP-GP82, EIP-GP83, EIP-GP85, and

EIP-GP86. Results of the VOC groundwater sample analysis are presented in Table 4-26B. The

following VOCs were detected in groundwater samples:

TCE

Acetone

Methyl Benzene

The above-listed compounds were detected at low and/or estimated concentrations, with the

following exception. One selected target chlorinated solvent compound (TCE) was detected in

groundwater samples at the 2655 Wisconsin property. TCE exceeded its reference level with

concentrations of 31 and 5.6 ug/L in soil borings EIP-GP82 and EIP-GP83, respectively.

4.27 **2732 WISCONSIN**

4.27.1 Geology and Groundwater Occurrence

The geology of the 2732 Wisconsin property consists of a sandy silt, clayey silt, silty clay, and clay.

The sandy and clayey silts are stiff with trace gravel and vary generally by the amount of fine or

coarse grained sediment they contain. The silty clays and clays are generally stiff and highly plastic

with trace gravel.

Groundwater was not encountered at the 2732 Wisconsin

I:\WO\RAC\233\34286S-4.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Data Evaluation Summary Report

Section: 4 Revision: 1 Date: 3 August 2004

Page: 42 of 44

.

4.27.2 Analytical Results

4.27.2.1 Soil

Eleven soil samples were collected from soil borings at the 2732 Wisconsin property during this

investigation. Results of the VOC soil sample analysis are presented in Table 4-27. The following

VOCs were detected in soil samples:

Acetone

Methylene Chloride

The above-listed compounds were detected at low and/or estimated concentrations. No target

chlorinated compounds were detected in soil samples at the 2732 Wisconsin property.

4.27.2.2 Groundwater

Groundwater was not encountered in the soil borings completed at the 2732 Wisconsin property.

4.28 SITE-WIDE GROUNDWATER FLOW

As previously discussed, three distinct water-bearing zones have been tentatively identified at the

Ellsworth Industrial Park and consist of intermittent shallow perched groundwater zones, an

intermediate glacial drift water-bearing zone, and the bedrock aquifer system.

Water level measurements from 47 existing monitoring wells were conducted to compare to past

investigation flow characteristics and continued efforts to develop a conceptual model of the

groundwater flow system within the industrial park. Groundwater elevation measurements

summarizing data from three separate groundwater elevation measurement events is located in Table

4-29.

Section: 4 Revision: 1 Date: 3 August 2004 Page: 43 of 44

Intermittent shallow perched groundwater zones within the upper 30 feet of glacial deposits were identified at 24 of the 27 properties investigated during the Phase I RI/FS. These shallow perched groundwater zones appear irregular and are laterally discontinuous. The primary lithologies producing groundwater within these zones have been small lenses of sands and gravels. Multiple temporary wells installed throughout the investigation were dry and show that communication between the shallow perched groundwater zones is inconsistent and no patterns of groundwater flow are evident. This is consistent with past findings indicating heterogeneity of the shallow stratigraphy.

The intermediate water bearing zone underlying the Ellsworth Industrial Park represents a complex flow system due in part to the complex stratigraphic conditions described previously. The intermediate system is primarily present within the alluvial deposits encountered along the approximate axis of the St. Joseph Creek. Within the alluvial deposits, numerous low-permeability layers and lenses of clay/silt are present. In some areas the saturated sand/gravel zones are thick and well defined while in other areas they appear sparse and discontinuous. Sometimes these transitions are abrupt. Groundwater flow within this intermediate system is variable. Overall, the intermediate flow system appears to represent a series of groundwater divides and troughs confined laterally to the St. Joseph Creek alluvial sequences by the presence of thicker silty clay drift deposits to the north and south. Potentiometric low points in this system may represent areas of groundwater recharge to the underlying bedrock aquifer system from more permeable areas of alluvial sediments. The presence of saturated sand and gravel deposits in contact with the Silurian dolomite indicates likely hydraulic communication between groundwater in the overburden system and the bedrock aquifer. This is also apparent from review of head levels in nested well pairs; which indicate that intermediate and bedrock head levels are at similar elevations where permeable sand and gravel deposits directly overlie bedrock. Figure 4-3 is a potentiometric surface map of the intermediate wells measured during this investigation.

Overall, groundwater flow within the upper portion of the bedrock aquifer was found to be south-southeast. The south-southeast groundwater flow direction correlates with regional flow direction

Section: 4 Revision: 1

Date: 3 August 2004 Page: 44 of 44

evaluations conducted during previous investigations. Locally within the industrial park, however, groundwater flow variation is evident. While overall flow is south-southeast, a groundwater mound is present around well BD-14(D) located on the south side of the 2525 Curtiss property, where the water-level elevation was found to be higher than nearby bedrock wells screened in the same aquifer zone. Groundwater would be expected to flow radially out from this area and merge into the general south-southeast flow direction. Another apparent groundwater surface anomaly appears south and west of the intersection of Belmont Road and Curtiss Street, where the groundwater generally flows to the east. Figure 4-4 is a potentiometric surface map of the bedrock wells.

Section: 5 Revision: 1 Date: 3 August 2004 Page: 1 of 10

SECTION 5

INVESTIGATION PROTOCOLS

5.1 <u>SAMPLING NETWORK DESIGN AND RATIONALE</u>

The objectives of the field investigation at the site included conducting further screening work both within and outside the Ellsworth Industrial Park boundaries to identify other potential properties that may have contributed to the groundwater contamination associated with the site. Soil and groundwater samples were collected from 27 properties identified by U.S. EPA and analyzed for VOCs.

A 28th site, consisting of the approximate location of a train derailment along the current METRA rail lines, was not investigated due to difficulty in obtaining timely access. Based on this delay along with a lack of applicable background information showing any releases of solvents or identifying the precise location of the derailment, U.S. EPA cancelled investigation of this site.

Field soil boring and sampling locations are identified on Figures 5-1 through 5-12. Soil boring and sampling locations were selected based on a review of available background data and information for each property, which included the potential for use of chlorinated solvent constituents, storage characteristics, waste storage or accumulation areas, etc. Historical aerial photographic analysis was also used to select soil boring and sampling locations. Boring locations were modified accordingly in the field based on site physical attributes and any additional information provided by current occupants. The description and rationale for each boring location is included in Table 5-1. The field locations were identified and labeled with white paint or wood stakes and cleared for underground utilities prior to commencement of intrusive activities.

Section: 5 Revision: 1

Date: 3 August 2004 Page: 2 of 10

5.2 **GEOLOGICAL INVESTIGATION**

5.2.1 Membrane Interface Probe Logging

Downhole stratigraphic logging and real-time VOC field screening was conducted utilizing a

Geoprobe equipped with a Membrane Interface Probe (MIP) and electrical conductivity (EC)

system. The MIP/EC equipped probe was advanced to a depth of 30-feet bgs (or refusal) in

accordance with the SAP while taking continuous VOC readings. Innovative Probing Solutions (IPS)

of Mount Vernon, Illinois conducted downhole MIP/EC logging utilizing a van mounted Geoprobe,

4200 during investigative activities at the Ellsworth Industrial Park site. The Geoprobe, is a

hydraulically powered machine that utilizes both static force and percussion to advance sampling

and logging tools into the subsurface. A MIP/EC was advanced to obtain soil conductivity logs and

total VOC profiles of subsurface materials at soil boring locations investigated during the

supplemental investigation.

Based on the results of the field screening, two to three subsurface soil samples were collected.

Depths were selected by the field geologist and were based on stratigraphy, MIP screening results,

presence of saturation, etc., in accordance with protocols outlined in the FSP. Each soil sample was

analyzed for VOCs.

The MIP is 1.5-inches in diameter and approximately 12-inches in length. The soil conductivity

portion of the MIP utilizes a dipole measurement arrangement where an alternating electrical current

is passed from the isolated pin at the center of the probe to the probe body. The voltage response

of the soil to the imposed current is measured across the same two points. The probe is considered

accurate for measurements of soil conductivities in the range of 5 to 400 mS/m. In general, sands

or course-grained materials have a lower conductivity, and silts and clays have higher conductivities.

The permeable membrane portion of the MIP is used to detect VOCs in both saturated and

unsaturated soils during its advancement. VOCs in the subsurface come in contact with the heated

I:\WO\RAC\233\34286S-3.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Section: 5 Revision: 1

Date: 3 August 2004 Page: 3 of 10

surface of the MIP polymer membrane and partition (absorb) into the polymer membrane. VOCs

in the gaseous, dissolved, solid, or free-product phase can partition into the membrane. Once VOC

molecules are sorbed into the membrane, they move by diffusion across the membrane to areas of

lower concentrations. Movement across the membrane is very rapid because it is heated from 80-

125 degrees Celcius and is relatively thin. Once through the membrane, the VOCs partition into the

carrier gas which is in contact with the back side of the membrane. It takes approximately 25-35

seconds for the carrier gas to travel through the MIP trunk line before it reaches the detectors. Three

detectors in sequence were used to qualitatively evaluate the VOC concentration. These included

the photo-ionization detector (PID), flame-ionization detector (FID), and electron capture detector

(ECD).

The MIP is advanced at a rate of approximately 1-foot per minute. Soil conductivity (mS/m), probe

speed, temperature (degrees Celcius), PID concentration (uV), FID concentration (uV), and ECD are

recorded on a computer program developed by Geoprobe_®.

MIP borings logs are included in Appendix C located on the enclosed CD.

5.2.2 Soil Boring Logging and Sampling

Subsurface soil samples and downhole logging measurements were used to characterize the

subsurface contamination, the vertical extent of contamination, and the subsurface geology at each

soil boring location. A total of 146 soil borings were drilled and sampled during the supplemental

investigation field activities, with each of the 27 sites consisting of three to nine soil boring and

sampling locations as shown on Figures 5-1 through 5-12. Two to three subsurface soil samples

were collected from each soil boring. Soil boring logs are provided in Appendix A.

Standard 2-inch-inside-diameter (ID) Geoprobe_® rods were used for the soil borings. IPS used a

track-mounted Geoprobe_® 6610DT unit to perform the soil boring drilling activities.

I:\WO\RAC\233\34286S-3.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Data Evaluation Summary Report

Section: 5 Revision: 1

Date: 3 August 2004

Page: 4 of 10

Soil samples were collected for the borings using a 4-foot Geoprobe, Macrocore, disposable

sampling tube. Following removal from the borehole, the sampler was opened on a table lined with

clean polyethylene sheeting. A geologist screened each soil core with a handheld portable PID. The

geologist logged the soil sample, noting items such as sample recovery, geologic makeup, moisture

content, consistency, color, etc. PID monitoring results are shown on the soil boring logs provided

in Appendix A. A soil sample was collected from each interval depth using Encore samplers for

laboratory VOC analysis. The geologist also collected representative soil from each sample interval

for moisture content analysis. The samples were placed on ice in a cooler following collection.

Each soil boring was abandoned upon completion of investigation at that location by filling the

borehole annulus with granular bentonite. Where locations were advanced through asphalt or

concrete, an appropriate hole patch was used to seal and repair the surface.

Drilling equipment, tools, and materials were decontaminated between boring locations.

Decontamination procedures were conducted at a temporary decontamination pad, where the units

and equipment were sprayed with a steam cleaner and allowed to air dry. Sampling equipment (e.g.

Encore T-handle, sample table, etc.) was decontaminated by spraying them with an Alconox solution

followed by deionized water and then wiping them dry with paper towels.

Investigative-derived waste (IDW), including soil cuttings and decontamination rinsate generated

during the drilling and decontamination processes, was containerized in U.S. Department of

Transportation (DOT)-approved 55-gallon drums. These drums were moved to a central staging area

for waste characterization and disposal.

HYDROGEOLOGIC INVESTIGATION 5.3

Groundwater Sampling

At each location that groundwater was encountered, a temporary well was installed and a grab

groundwater sample was collected. Initial attempts to sample groundwater through a Geoprobe,

Section: 5 Revision: 1

Date: 3 August 2004

Page: 5 of 10

screen-point sampler were ineffective due to the presence of fine-grained material with low recharge characteristics. Groundwater samples were collected utilizing a peristaltic pump as the primary sampling device. In the event that the peristaltic pump proved ineffective, a disposable bailer was used to collect samples. The presence of slow recharge and very silty groundwater prevented the use of the small diameter bladder pump. The selection of sampling equipment was made by the geologist based on observed water levels, material type, and the potential for recharge to the rod

string from the target saturated zone. Sampling equipment was decontaminated between sampling

locations in accordance with the procedures detailed in the FSP.

5.3.2 Water Level Measurement

Water levels were recorded from 47 existing monitoring wells installed during previous investigations. The results of the hydrogeologic data are discussed in detail in Section 4 of this

report.

5.4 FIELD QUALITY CONTROL

5.4.1 Field Duplicate Sampling

Field duplicate samples were collected at selected locations during soil and groundwater sampling at a 1-per-10 sample frequency, using procedures identical to those used for the investigative samples. Duplicate samples were analyzed for the same parameters as the investigative sample. Duplicate samples were collected by alternatively filling two sets of sample bottles from the same sample unit (e.g., MacroCore, bailer, etc.). Encore samplers were utilized for soil sampling, and therefore duplicate samples were collected directly adjacent to the location within a sample core where the investigative sample was collected. No mixing or compositing of samples was conducted.

L\WO\RAC\233\34286S-3.WPD RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Data Evaluation Summary Report

Section: 5 Revision: 1

Date: 3 August 2004

Page: 6 of 10

5.4.2 Field Blank Sampling

Field blank samples were collected during groundwater sampling. One field blank was collected for

every 10 or fewer investigative aqueous samples collected during the field sampling activities. Field

blanks were obtained by pouring ultra-pure water (laboratory-grade water) over and through a

decontaminated or disposable sampling device such as a bailer or PVC screen, and collecting the

water in the required sample containers. Disposable sampler parts such as tubing were replaced with

unused or decontaminated equipment. A summary of field blank quality control sample results is

presented in Table 5-2.

5.4.3 Trip Blanks

One trip blank sample was enclosed in each sample shipment container in which aqueous VOC

samples were included. Sample handling, volume, packaging and preservation requirements for the

trip blank were identical to the investigative VOC samples. The trip blanks were obtained directly

from the laboratory. The trip blanks were placed in a sample shipment container and accompanied

field personnel to the site. The trip blank was documented and identified as such on sample

documentation.

5.4.4 Matrix Spike / Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicate samples (MS/MSDs) were collected on a one per 20 sample (or

less) basis for soil and groundwater sampling. MS/MSD samples are investigative samples on which

MS/MSD analyses are performed. Since soil collection was completed using Encore samplers, the

MS/MSD analysis required two additional 5-gram Encore samplers for each MS/MSD sample.

Extra sample volume was required for aqueous MS/MSD analyses. For groundwater MS/MSD

I:\WO\RAC\233\34286S-3.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 5 Revision: 1

Date: 3 August 2004

Page: 7 of 10

analyses, triple the normal volume was collected for VOC analysis. Field blank, trip blank and field duplicate samples were not used as MS/MSD samples. MS/MSD samples were identified as such on sample paperwork.

5.5 SAMPLE MANAGEMENT

5.5.1 Sample Documentation

5.5.1.1 Field Log Book

Field observations and other information pertinent to the collection of samples were recorded in the field. Entries were made in a bound logbook in ink. The entries were detailed and descriptive so that a particular situation can be recalled without reliance on the collector's memory. The data recorded for each sample included date, time, sample number, sample location, sample appearance, and name of the persons collecting the sample. In addition, general information was recorded in the logbook daily, including personnel present at the site, level of protection being worn, and weather.

5.5.1.2 Geologic/Drilling Log

Drilling information was recorded on a geologic drill log. A separate log was maintained for each boring. Instrument readings from the PID used for field screening and health and safety monitoring were recorded in the notes column of the log. Upon completion of the field work, the drill log information was entered into a computer database

5.5.2 Sample Tracking

5.5.2.1 Sample Documentation Forms

Required paperwork for laboratory samples includes chain-of-custody (COC), sample tags, and COC seals. Sample documentation forms were completed by field personnel in accordance with the requirements outlined in the CLP Guidance for Field Samplers (U.S. EPA April 2003). The U.S.

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Data Evaluation Summary Report Section: 5

Section: 5 Revision: 1

Date: 3 August 2004 Page: 8 of 10

EPA Field Operations and Records Management Systems (FORMS) II Lite Software (Version 5.1)

was used for sample documentation and tracking.

Paperwork accompanying the samples being shipped to the laboratory was sealed in a plastic bag that

was taped to the inside of the cooler lid. Copies were made of sample documentation and retained

for in-house files.

5.5.2.2 Chain-of-Custody/SAS Packing List Form

U.S. EPA's registered FORMS II Lite program was used to document samples shipped to U.S. EPA

designated CLP laboratories. U.S. EPA OERR's Analytical Operations/Data Quality Center (AOC)

developed the FORMS II Lite software to generate sample labels, Traffic Reports, and Chain of

Custody (COC) forms. The system also tracks samples from the field to the laboratory and facilitates

electronic capture of sample information into databases. COC documentation was completed in

accordance with the Quality Assurance Project Plan (QAPP).

5.5.2.3 Sample Tags

Sample tags were provided by the U.S. EPA Region V Regional Sample Control Coordinator

(RSCC) and are specific to Region V. The information printed out for the sample label was printed

in duplicate and the copy was affixed to the sample tag.

5.5.3 Sample Handling

5.5.3.1 Sample Containers and Sample Preservation

Samples collected for analysis were containerized, preserved, packaged and shipped in accordance

with the approved FSP and QAPP, the U.S. Department of Transportation's regulations (49 CFR 173

to 177) and Dangerous Goods Regulations, (International Air Transport Association (IATA), (2003).

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Section: 5 Revision: 1

Date: 3 August 2004

Page: 9 of 10

5.6 **INVESTIGATIVE DERIVED WASTE**

IDW are defined as any by-product of the field activities that is suspected or known to be

contaminated with hazardous substances. The performance of field activities produced waste

products such as soil cuttings, purge groundwater, and decontamination rinsate. IDW was

containerized in 55-gallon drums.

In order to collect the decontamination wastewater, a portable or temporary decontamination pad was

set up on site. Wastewater was pumped from the decontamination pad, collected, and containerized.

Composite disposal samples will be collected and analyzed. Sampled wastes will be disposed of at

an offsite waste disposal facility.

5.7 **SURVEYING AND MAPPING**

Soil boring locations were surveyed for horizontal and vertical location and elevation by the U.S.

EPA FIELDS team using sub-meter accuracy Global Positioning System (GPS) equipment. Table

5-3 summarizes survey data for each soil boring location.

5.8 DATA MANAGEMENT

5.8.1 <u>Data Documentation and Procedures</u>

All samples for analysis, including QC samples, were given unique sample numbers. The sample

numbers were recorded in the field logbook and on the COC forms. A unique sample number was

assigned to each sample, which highlights the sample matrix and location, and is used for

documentation purposes in the field logbooks, as well as for presentation of the analytical data in

this report. Sample identification codes were assigned as specified in the FSP and QAPP.

I:\WO\RAC\233\34286S-3.WPD

RFW-233-2A-AQSD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosedin whole or in part without the express, written permission of U.S. EPA.

Section: 5 Revision: 1

Date: 3 August 2004 Page: 10 of 10

5.8.1.1 <u>Laboratory Data</u>

Samples were analyzed by various laboratories in U.S. EPA's CLP, as assigned through U.S. EPA's RSCC.

5.8.1.2 Data Validation

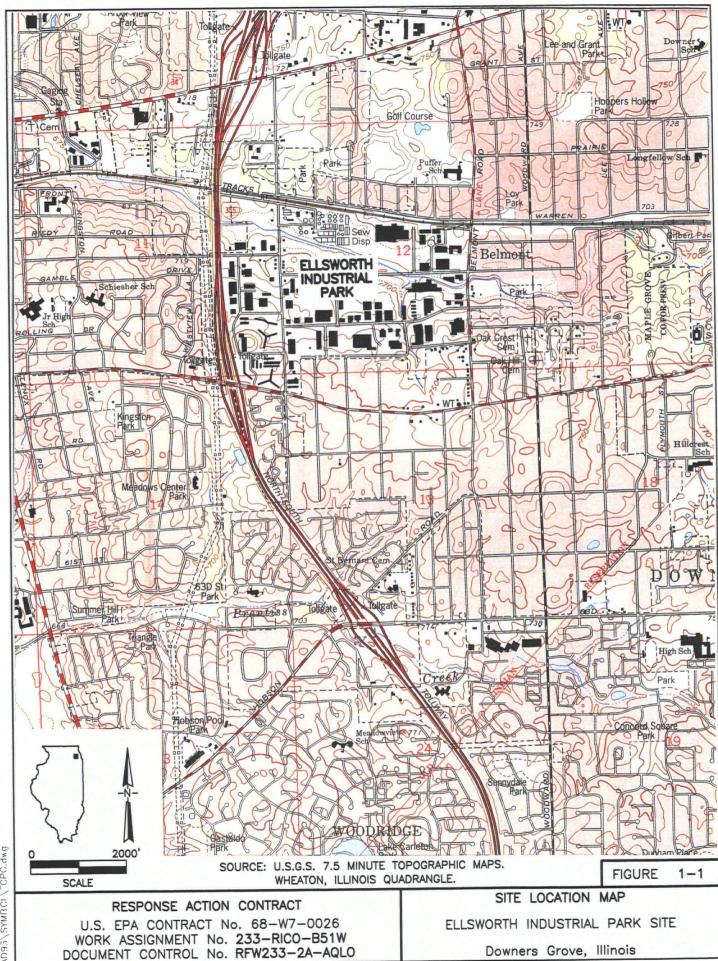
Data validation was performed by U.S. EPA Region V ESAT prior to receipt by WESTON. The resulting data validation qualifiers were provided electronically in the electronic data deliverable (EDD) provided to WESTON and incorporated into the EQuIS database. WESTON performed a compliance check on all data.

Section: 6 Revision: 1

Date: 3 August 2004

Page: 1 of 1

SECTION 6


REFERENCES

EarthTech, Inc. 2003. Subsurface Soil Investigation of Chase-Belmont Properties. Downers Grove, Illinois. January 2003.

Parsons Engineering Science, Inc. 2001. Subsurface Investigation Report, Ellsworth Industrial Park Downers Grove, Illinois.

Weston Solutions, Inc. (WESTON®). 2002. Final Preliminary Groundwater Investigation Report. May 2002.

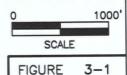
FIGURES

J:\CAD95\SYMBCI\TCPC.dwg

LEGEND

Boundary containing 95+ percent of sampled wells in Downers Grove exhibiting a sum of TCE and PCE concentrations between 2 and 5 ppb

Boundary containing 95+ percent of sampled wells in Downers Grove exhibiting a sum of TCE and PCE concentrations between 5 and 10 ppb


Boundary containing 95+ percent of sampled wells in Downers Grove exhibiting a sum of TCE and PCE concentrations above 10 ppb

NOTES:

Aerial photo obtained from USGS, April 1998

Data Sources:

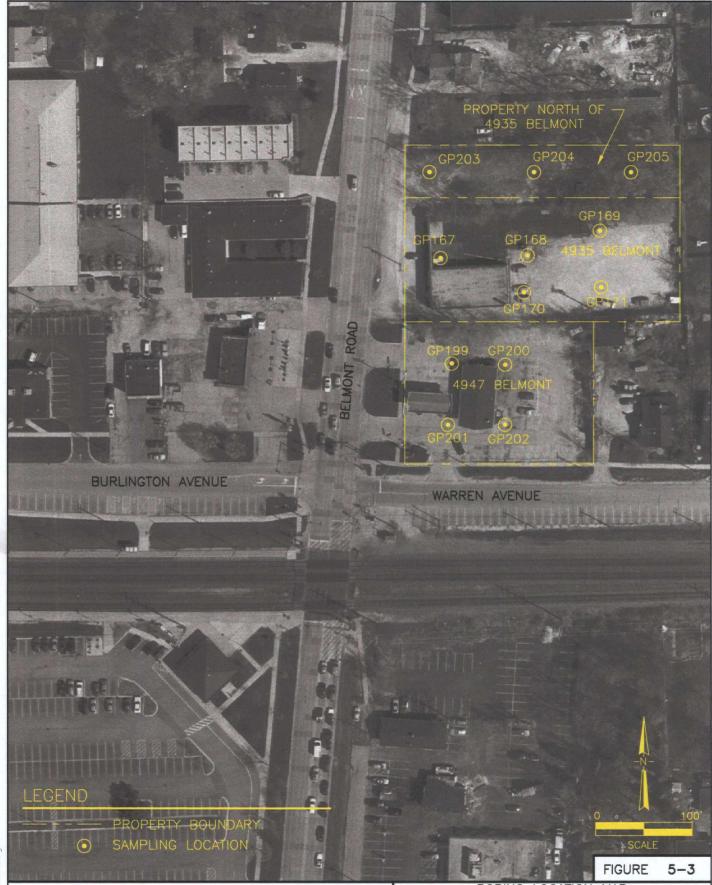
- 1) Prairie Analytical Laboratories, collected from May 2001 through October 2001.
- 2) Illinois Department of Public Health, collected in May 2001

SOURCE: PARSONS ENGINEERING AND SCIENCES, PROVIDED BY IEPA.

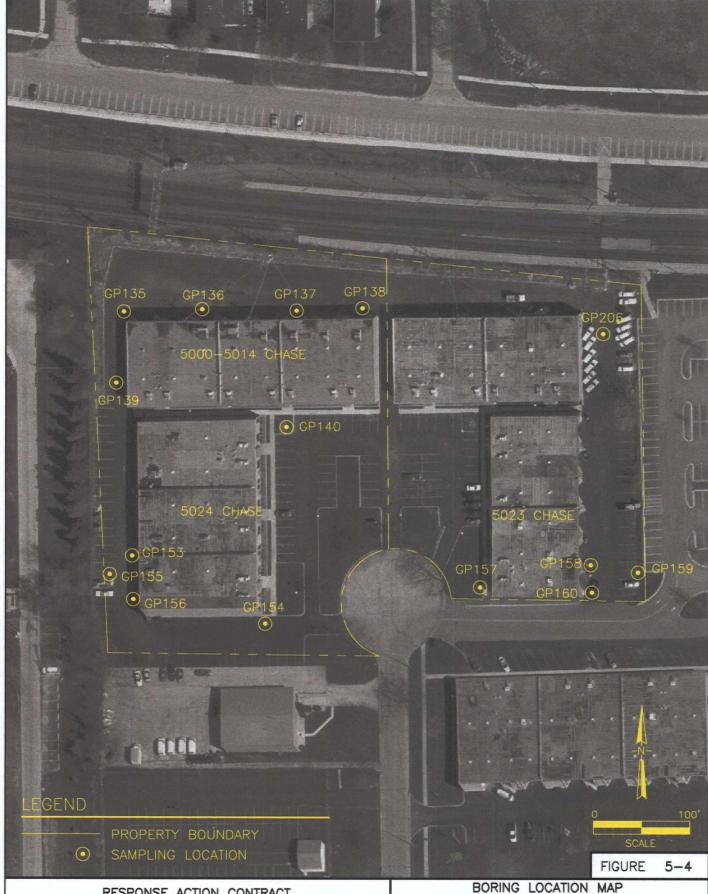
PLUME AREA BASE MAP

U.S. EPA

Downers Grove, Illinois


RESPONSE ACTION CONTRACT

U.S. EPA CONTRACT No. 68-W7-0026 WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO


RESPONSE ACTION CONTRACT

U.S. EPA CONTRACT No. 68-W7-0026 WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO BORING LOCATION MAP
PROPERTY SOUTH OF INTERSECTION OF CURTISS
AND GLENVIEW EAST OF BELMONT
ELLSWORTH INDUSTRIAL PARK SITE
Downers Grove, Illinois

RESPONSE ACTION CONTRACT

U.S. EPA CONTRACT No. 68-W7-0026 WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO BORING LOCATION MAP
PROPERTY NORTH OF 4935 BELMONT,
4935 BELMONT AND 4947 BELMONT
ELLSWORTH INDUSTRIAL PARK SITE
Downers Grove, Illinois

J:\CAD93\200\20603.dwg

RESPONSE ACTION CONTRACT

U.S. EPA CONTRACT No. 68-W7-0026 WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO

5000-5014, 5023, AND 5024 CHASE ELLSWORTH INDUSTRIAL PARK SITE Downers Grove, Illinois

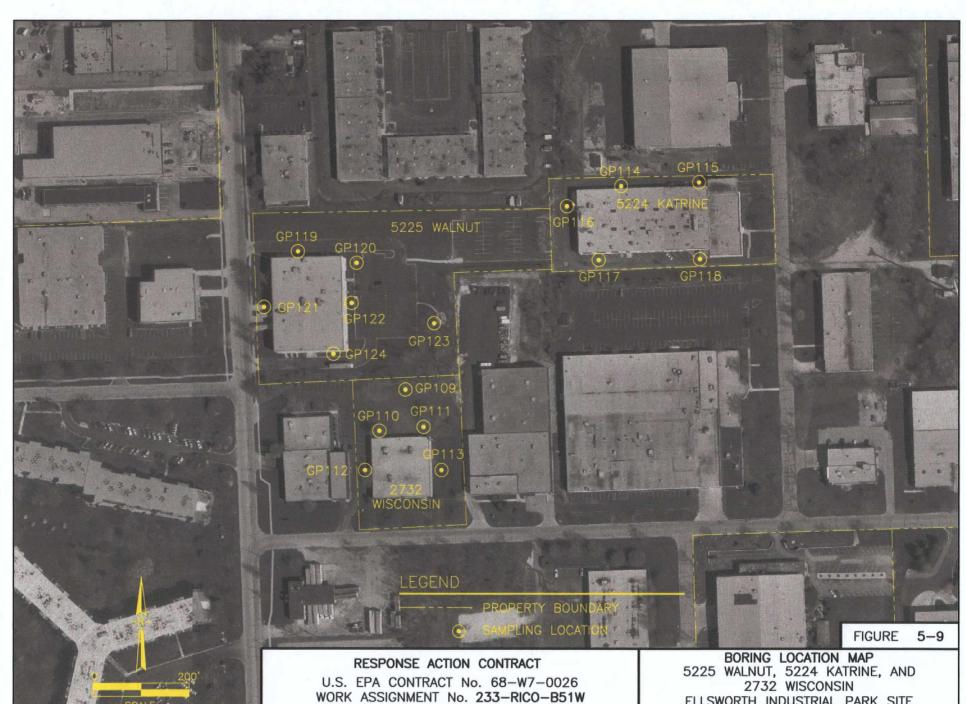
DOCUMENT CONTROL No. RFW233-2A-AQLO

Downers Grove, Illinois

J:\CAD93\200\20603.dwg

RESPONSE ACTION CONTRACT

U.S. EPA CONTRACT No. 68-W7-0026 WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO


2754 MAPLE AND 5411 WALNUT ELLSWORTH INDUSTRIAL PARK SITE Downers Grove, Illinois

Downers Grove, Illinois

RESPONSE ACTION CONTRACT
U.S. EPA CONTRACT No. 68-W7-0026
WORK ASSIGNMENT No. 233-RICO-B51W
DOCUMENT CONTROL No. RFW233-2A-AQLO

BORING LOCATION MAP
2824 HITCHCOCK AND 5126 WALNUT
ELLSWORTH INDUSTRIAL PARK SITE
Downers Grove, Illinois


DOCUMENT CONTROL No. RFW233-2A-AQLO

ELLSWORTH INDUSTRIAL PARK SITE Downers Grove, Illinois

J:\CAD9.5\200\20603.dwg

WORK ASSIGNMENT No. 233-RICO-B51W DOCUMENT CONTROL No. RFW233-2A-AQLO

Downers Grove, Illinois

ELLSWORTH INDUSTRIAL PARK SITE Downers Grove, Illinois

SAMPLING LOCATION

TABLES

Table 1-1
Site Property Summary and Cross Reference List
Ellsworth Industrial Park Site

Downers Grove, Illinois

Address	AT	Current Owner	Occupant	Previous Occupants, As Applicable
Wooded Area South of 2537 Curtiss	08-12-302-006			
Property North of 4935 Belmont				
1935 Belmont	08-12-212-015, 08-12-212-016		Ketone Automotive	
947 Belmont		Metra	Metra	
240 Belmont	08-12-407-011	Arrow Building Corporation	K & C	Arrow Gear
023 Chase	08-12-214-006	Chase-Belmont Properties		
024 Chase	08-12-214-001	Chase-Belmont Properties	C & C Machine Tools	Lovejoy, Inc.
000-5014 Chase	08-12-214-001	Chase-Belmont Properties	Tricon	
431 Curtiss	08-12-302-019	Spruce Building, L.L.C.	CCSI	
500 Curtiss	08-12-300-009	Global Gear, L.L.C.	Global Gear, LLC	Dyna Gear
roperty South of Intersection of Curtiss & Glenview &			· · · · · · · · · · · · · · · · · · ·	
East of Belmont		Downers Grove Park District		
824 Hitchcock	08-11-210-006	Bales Mold Service	Bales Mold Service	
225 Walmrt	08-12-301-019	Molex, Inc.	Molex, Inc.	
411 Walnut			1	
224 Katrine	08-12-301-011	Molex, Inc.	Molex, Inc.	
265 Maple	08-13-206-028	Inland Commercial Property Management, Inc.	Maple Plaza Cleaners	
315 Maple	08-13-205-003	Maple Grove Automotive	Maple Grove Automotive	
754 Maple	08-13-100-002		MB Cleaners	1
126 Walnut	08-11-408-008	Madden Family Partnership	Auto Nation	
300 Wisconsin		MXL Industries	MXL Industries	J Clark Atlas Tube
333 Wisconsin	08-12-409-007	Suburban Self Storage	Suburban Self Storage	Liberty Copper & Wire, Magnetek, and Litton Systems
400 Wisconsin	08-12-302-014	Burnside Construction	Burnside Construction	Suburban Self Storage
424 Wisconsin	08-12-302-013	Wisconsin Avenue Property L.L.C.	Flowserve	Bison Gear & Engineering Corp.
514-2518 Wisconsin		Park Investors Venture I, L.L.C.	CVP	
525 Wisconsin	08-12-304-002, 08-12-304-003, 08-12-304-004	Flexible Steel Lacing Co.	Flexible Steel Lacing Co.	
	08-12-304-001	Lovejoy, Inc.	Lovejoy, Inc.	
732 Wisconsin	08-12-301-007	Spannegel Tool & Die	Spannegel Tool & Die	<u> </u>

Elisworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summary Report

Section: 4 Revision: 1 Date: 3 August 2004

Table 4-1A

Wooded Area South of 2537 Curtiss Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP131-01	GP131-02	GP132-02	GP133-01	GP133-02	GP134-02
Sample Date	Screening	12/1/2003	12/1/2003	12/1/2003	12/2/2003	12/2/2003	4/6/2004
Depth Interval	Criteria *	7.8- 8.5	21.5- 22.5	24- 25	1.5- 2.5	16.5- 17.5	17.5- 18.5
Chemical Name							
2-BUTANONE					6 J		
ACETONE	16,000	4 J	3 J	10 J	24 J		6 J
METHYLENE CHLORIDE	20			2 J	4 J	2 J	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

Table 4-1B

Wooded Area South of 2537 Curtiss Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW134-01
Sample Date	Screening	4/7/2004
Depth Interval	Criteria b	16- 26
Chemical Name		
BENZENE	5	0.16 J
TOLUENE	1,000	0.2 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

I:\WO\RAC233\34286T4-I:XLS RF\W233-2A-AQSD

^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class/I Groundwater.

⁻⁻⁻ Not Established

b = TACO Tier I groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Table 4-2

Belmont Property North of 4935 Belmont Groundwater Sampling Results (VOCs) Downers Grove; Illinois

Field Sample ID		GPW203-01
Sample Date	Screening	4/29/2004
Depth Interval	Criteria ^b	20- 30
Chemical Name		
ETHYLBENZENE	700	0.05 J
TOLUENE	1,000	0.66 J
XYLENES (TOTAL)	10,000	0.18 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values:≈ detection

Exceeds Screening Criteria

^b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summery Report

Table 4-3A

4935 Belmont Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP168-02	GP168-03DUP	GP169-02	GP170-01
Sample Date] .	12/11/2003	12/11/2003	12/16/2003	12/16/2003
Depth Interval	Screening Criteria	11.5- 12.5	22.5- 23.5	14.5- 15.5	6.5- 7.5
Chemical Name					
4-METHYL-2-PENTANONE					2 J
ACETONE	16,000	3 J	5 J		
METHYLENE CHLORIDE	20			3 J	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

Exceeds Screening Criteria

--- Not Established

Table 4-3B

4935 Belmont **Groundwater Sampling Results (VOCs) Downers Grove, Illinois**

Field Sample ID		GPW167-01	GPW171-01		
Sample Date		12/12/2003	12/16/2003		
Depth Interval	Screening Criteria	ing Criteria 26- 26			
Chemical Name					
ACETONE	700	26			
CARBON DISULFIDE	700	<u> </u>	1.1		

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

- Not Established

^{* =} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Table 4-4A

4947 Belmont Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP199-01	GP199-02	GP200-01	GP200-01DUP	GP200-02	GP201-01	GP201-02	GP202-02
Sample Date	Screening	4/15/2004	4/15/2004	4/15/2004	4/15/2004	4/15/2004	4/15/2004	4/15/2004	4/15/2004
Depth Interval	Criteria a	7.5- 8.5	17.5-,18:5	8,5- 9,5	8.5- 9.5	13.5- 14.5:	.6.5- 7.5	10.5- 11.5	21.5- 22.5
Chemical Name									
2-BUTANONE	-							14 J	
ACETONE	16,000	16	,	1	6.1	9 J		27	13 J
BENZENE	30		2·J	2 J	. 2 J	1 J	120	220 54	
CYCLOHEXANE							930	18 J	,
ETHYLBENZENE	13,000		2 J			, ,	970	5 ¹ J	
ISOPROPYLBENZENE			2 J				160		
METHYLCYCLOHEXANE				2 J	2 J	2 J	640		
TOLUENB	1,000	2 J	4 J	5 J	5 J	4.J	12	10 J	
XYLENES (TOTAL)	150,000			,			100	22 J	

- Not Established

Table 4-4B

4947 Belmont Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW199-01	GPW202-01
Sample Date	Screening	4/15/2004	4/15/2004
Depth Interval	Criteria ^b	10- 10	5-5
Chemical Name			
ACETONE	700		17
CHLOROFORM	0.2	0.21 J	
METHYLENE CHLORIDE	5		0.28 J
METHYL TERT-BUTYL ETHER (N	1 70	7.4	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

Exceeds Screening Criteria

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

* = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

Example 2 Exceeds Screening Criteria

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Table 4-5A

5240 Belmont Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP187-01	GP187-02	GP188-01	GP189-01	GP189-01DUP	GP189-02	GP190-01	GP190-02	GP190-03	GP191-02
Sample Date	Screening	1/21/2004	1/21/2004	1/21/2004	1/22/2004	1/22/2004	1/22/2004	1/22/2004	1/22/2004	1/22/2004	1/21/2004
Depth Interval	Criteria *	1.5- 2.5	16.5- 17.5	3.5- 4.5	9,5- 10.5	9.5- 10.5	18.5- 19.5	7-8	11.5- 12.5	14.5- 15.5	13.5- 14.5
Chemical Name					•						
1,1,1-TRICHLOROETHANE	2,000		36	5 J				3 J			4.3
1,1-DICHLOROETHANE	23,000		4 J					43			7.3
ACETONE	16,000	7.1	3 J		4 J	43	2 J		4 J	4.5	2 J
METHYLENE CHLORIDE	20								3 J	2 J	3.1

Table 4-5B

5240 Belmont Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW187-01	GPW188-01	GPW189-01	GPW190-01	GPW191-01	GPW191-01DUP
Sample Date	Screening	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004
Depth Interval	Criteria	10- 20	15- 25	9- 19	10- 20	10- 20	10- 20
Chemical Name							
1,1,1-TRICHLOROETHANE	200	18 J	0.73 J	<u> </u>	0.16 J	0.92 J	0.98 J
1,1-DICHLOROETHANE	700	2		<u> </u>	2	0.87	0.95
ACETONE	700	7.2		4.5 J	3,7 J		
CIS-1,2-DICHLOROETHENE	70	0.21 J				0.043 J	L
METHYL TERT-BUTYL ETHER (MTBE)	70				0.85		
TOLUENE	1,000			0.11 J			
METHYLCYCLOHEXANE	_	0.038 J					
BROMOFORM					:	0,048 J	
TRICHLOROETHENE	5	1.4				0.32 J	0.29 J

I = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

--- Not Established

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

* = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Beld values = detection

Exercise Screening Criteria

^{*=} TACO Tier I groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Table 4-6A

5023 Chase Soil Sampling Results (VOCs) Downers Grove, Illnois

Field Sample ID	1	GP157-01	GP157-02	GP157-03	GP158-01	GP158-02	GP159-02	GP160-01	GP160-02	GP160-03
Sample Date	Screening	1/7/2004	1/7/2004	1/7/2004	1/8/2004	1/8/2004	1/8/2004	1/8/2004	1/8/2004	1/8/2004
Depth Interval	Criteria*	3.5-4.5	11.5- 12.5	15.5-16.5	2.5- 3.5	17.5- 18.5	12.5- 13.5	7.5-8.5	12.5- 13.5	17.5-18.5
Chemical Name										
i,i,i-trichloroethane	2,000					6.1				8 J
2-BUȚANONE	-				4 J					
ACETONE	16000	3·J	5 J	6 J	22		43	3 J	3 J	3 J
METHYLENE CHLORIDE	20									2 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

Exceeds Screening Criteria

— Not Established

Table 4-6B

5023 Chase Groundwater Sampling Results (VOCs) Downers Grove, Illuois

Field Sample ID		GPW157-01	GPW160-01	
Sample Date	Screening	1/8/2004	1/9/2004	
Depth Interval	Criteria ^b	20- 30	20- 30	
Chemical Name				
1,1,1-TRICHLOROETHANE	200		5.1	
BENZENE	5	0,2 J		
CARBON TETRACHLORIDE	5		0.47 J	
METHYL N-BUTYL KETONE	1	0.45 J		
TOLUENE	1,000	0.63	0.27 J	
XYLENES (TOTAL)	10.000	0.29 J		

I = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit

Bold values = detection = Exceeds Screening Criteria

--- Not Established

^{*=} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Table 4-7A

5024 Chase Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP153-02	GP154-01	GP154-02	GP155-01	GP155-02	GP155-03
Sample Date	Screening	1/12/2004	1/9/2004	1/9/2004	1/9/2004	1/9/2004	1/9/2004
Depth Interval	Criteria *	17.5- 18.5	8.5- 9.5	18.5- 19.5	5.5- 6.5	11.5- 12.5	15.5- 16.5
Chemical Name					•		
ACETONE	16,000	3 J	6 J	4 J	9 J	8 J	7 J
TETRACHLOROETHENE	60.			38			

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

Table 4-7B

5024 Chase Groudwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW153-01	GPW156-01
Sample Date	Screening	1/12/2004	1/9/2004
Depth Interval	Criteria ^b	20- 30	26- 30
Chemical Name			
1,1,1-TRICHLOROETHANE	200	0,22.J	0.39 J
ACETONE	700	8.9	
BENZENE	.5	0.17 J	
TOLUENE	1,000	0.39 J	0.17 J

J = Qualitative evidence of analyte present; concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

b = TACO Tier I groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summary Rep

Table 4-8A

5000 to 5014 Chase Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP135-01	GP135-02	GP136-01	GP136-02	GP136-02DUP	GP137-01	GP137-03	GP139-02
rieid Sampie ID		GP135-01	GP135-02	GP130-01	GP130-02	GP130-02DUP	GF137-01	GF137-03	GF139-02
Sample Date	Screening	1/12/2004	1/12/2004	1/12/2004	1/12/2004	1/12/2004	1/13/2004	1/13/2004	1/12/2004
Depth Interval	Criteria a	4.5- 5.5	10.5- 11.5	3.5- 4.5	8.5- 9.5	8.5- 9.5	5.5- 6.5	19.5- 20.5	13.5- 14.5
Chemical Name									
1,1,1-TRICHLOROETHANE	2,000						26	45	
1,1-DICHLOROETHENE	60							3.J	
ACETONE	16,000	5 J	4 J	3 J	4 J	43			4 J
CARBON TETRACHLORIDE	70						3 J	5 J	
CIS-1,2-DICHLOROETHENE	400						3 J	20	
TETRACHLOROETHENE	60		3 J					240 8	
TRICHLOROETHENE	60							19 J	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

Table 4-8B

5000 to 5014 Chase **Groundwater Sampling Results (VOCs) Downers Grove, Illinois**

Field Sample ID		GPW135-02	GPW137-01	GPW138-01	PW138-01DU	GPW139-01	GPW140-01	GPW206-01
Sample Date	Screening	1/12/2004	1/13/2004	1/13/2004	1/13/2004	1/12/2004	1/13/2004	1/12/2004
Depth Interval	Criteria b	20- 30	10- 20	10- 20	10- 20	10-20	20- 30	10- 20
Chemical Name								
1,1,1-TRICHLOROETHANE	200		230				13	1.5
1,1,2-TRICHLOROETHANE	5		9.9					
1,1-DICHLOROETHANE	700		32				2.7	0.62
1,1-DICHLOROETHENE	7		8.9					
CARBON TETRACHLORIDE	5		18.		1		1.2	
CHLOROFORM	. 0.2		0.28 4				1	
CHLOROMETHANE		1				0.45 J		
CIS-1,2-DICHLOROETHENE	70		200				6.1	1.1
TETRACHLOROETHENE	5		340 8	18	诗篇		38.4	0.92
TOLUENE	1,000	0.15 J					0.19 J	
TRANS-1,2-DICHLOROETHEN	100		2.9				0.29 J	
TRICHLOROETHENE	5		5 / 210		0.16 J		1.7	0.33 J

I = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

--- Not Established

I:\WO\RAC\233\32486T4-8.XLS RFW233-2A-AQSD

a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Table 4-9A

2431 Curtiss Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP105-02	GP106-01	GP107-01	GP107-01DUP
Sample Date	Screening	4/5/2004	4/5/2004	4/5/2004	4/5/2004
Depth Interval	Criteria *	14.5- 15.5	3.5- 4.5	9.5- 10.5	9.5- 10.5
Chemical Name					
1,1,1-TRICHLOROETHANE	2,000	2 J	1		12
2-BUTANONE	-		3 J		
TETRACHLOROETHENE	60			10	38

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

 * = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.
- Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

Exceeds Screening Criteria

- Not Established

Table 4-9B

2431 Curtiss **Groundwater Sampling Results (VOCs)** Downers Grove, Illinois

Field Sample ID		GPW105-01	GPW106-01
Sample Date	Screening	4/6/2004	4/5/2004
Depth Interval	Criteria b	20- 30	17- 24
Chemical Name			
1,1,1-TRICHLOROETHANE	200	2,2	
ACETONE	700	9.3	2,4 J
CARBON TETRACHLORIDE	5	0.23 J	
TETRACHLOROETHENE	5	0.41 J	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Table 4-10A

2500 Curtiss Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP207-01	GP207-02	GP207-03	GP54-01	GP54-02	GP54-03	GP55-01	GP55-02	GP56-01	GP58-01DUP	GP58-02	GP58-03	GP59-01	GP59-03	GP60-01	GP60-02	GP60-03
Sample Date	Screening	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/27/2004	1/27/2004	1/27/2004	1/26/2004	1/26/2004	1/26/2004.	1/26/2004	1/26/2004	1/27/2004	1/27/2004	1/27/2004
Depth Interval	_Criteria *	2.5- 3.5.	8.5- 9.5	16.5- 17.5	3.5-4.5	12.5- 13.5	25.5- 26.5	14.5- 15.5	24.5- 25.5	3.5- 4.5	1.5- 2.5	6.5- 7.5	16.5- 17.5	1.5- 2.5	13.5- 14.5	3.5- 4.5	9.5- 10.5	15.5- 16.5
Chemical Name																		
2-BUTANONE											3 J			8 J			5 J	
ACETONE	16,000	9 J					12 J		43	11 J	17.J		2 J .	28 J _		7 J.	. 17 J.	9.J
METHYLENE CHLORIDE	20		2 J	3 J	3 J	2 J	2 J	2 J			2 J	3 J	2 J	2 J	3.3			
TRICHLOROETHENE	60		,												4.3			

I = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

Exceeds Screening Criteria

--- Not Established

Table 4-10B

2500 Curtisa Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW207-01	GPW60-01
Sample Date	Screening	1/27/2004	1/27/2004
Depth Interval	Criteria b	20- 30	20- 30
Chemical Name			
BENZENE_	5	0.17 J	0.32 J
CARBON DISULFIDE	700	0.37 J	0.18 J
CIS-1,2-DICHLOROETHENE	70		6.7
TOLUENE .	1,000	0.41 J	0.55
METHYLCYCLOHEXANE		0,12 J	
TETRACHLOROETHENE	. 5		1.9
TRANS-1,2-DICHLOROETHENE	100		0.1 J
TRICHLOROETHENE	5		130 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

- Not Established

I:\WO\RAC\233\34286T4-10.XLS

RFW233-2A-Aqud

^{* =} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Table 4-11A

Property South of Intersection of Curtiss & Glenview & East of Belmont Soil Sampling Results (VOCs) Downers Grove. Illinois

						~~~~					
Field Sample ID		GP141-01	GP141-02	GP141-03	GP144-02	GP145-01	GP145-02DUP	GP147-01	GP147-02	GP147-03	GP148-02
Sample Date	Screening	1/26/2004	1/26/2004	1/26/2004	1/23/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/23/2004
Depth Interval	Criteria *	0.5- 1.5	2.5-3.5	19.5- 20.5	19- 20	2.5- 3.5	11.5- 12.5	5.5- 6.5	13.5- 14.5	23.5- 24.5	3.5- 4.5
Chemical Name											
ACETONE	16,000						7 J	13 J	20 J		2 J
CHLOROFORM	540		6 J			24					
METHYLENE CHLORIDE	20	3 J		3 J		3.J	3 J			2 J	2 J
TETRACHLOROETHENE	60	4 J	L		2 J						

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

Table 4-11B

# Property South of Intersection of Curtiss & Glenview & East of Belmont Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW143-01	GPW145-01	GPW147-01	GPW148-01
Sample Date	Screening	1/23/2004	1/26/2004	1/26/2004	1/23/2004
Depth Interval	Criteria	20-30	11- 21	7- 17	15- 25
Chemical Name					
BENZENE			0.18 J	0.19 J	
BROMOFORM		0.064 J			0.073 J
CIS-1,2-DICHLOROETHENE	70		0.079 J		
METHYLCYCLOHEXANE	. –	0.08 J	0.088 J		
TOLUENE	1,000		0.93	0.52 J	
XYLENES (TOTAL)	10,000		1.1	1	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

--- Not Established

^{* =} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

## Table 4-12A

# 2824 Hitchcock Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID	Screening	GP172-01	GP173-01	GP173-01DUP	GP174-02	GP176-02	GP177-02
Sample Date	Criteria*	4/14/2004	4/14/2004	4/14/2004	4/13/2004	4/13/2004	4/13/2004
Depth Interval	Citteria	3.5- 4.5	3.5- 4.5	3.5- 4.5	14.5- 15.5	13.5- 14.5	11.5- 12.5
Chemical Name							
ACETONE	16,000	27	11	12	9 J	7 J	7 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

Table 4-12B

# 2824 Hitchcock **Groundwater Sampling Results (VOCs) Downers Grove, Illinois**

Field Sample ID	Screening	GPW173-01	GPW175-01
Sample Date	1	4/15/2004	4/15/2004
Depth Interval	Criteria b	10- 10	10- 10
Chemical Name	1		
1,1-DICHLOROETHANE	700		1.3
ACETONE	700		.11
CHLOROMETHANE	_	0.19 J	
CIS-1,2-DICHLOROETHENE	70		0.77
METHYLENE CHLORIDE	5		0.24 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

Exceeds Screening Criteria

I:\WO\RAC\233\34286T4-12.XLS RFW233-2A-AQSD

⁼ Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

b = TACO Tier-1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. -- Not Established

#### Table 4-13A

# 5224 Katrine Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GP117-01	GP118-01	GP118-02
Sample Date	Screening	12/18/2003	12/17/2003	12/17/2003
Depth Interval	Criteria a	1.5- 2.5	3.5- 4.5	11.5- 12.5
Chemical Name				
2-BUTANONE	_		5 J	
ACETONE	16,000	10 J	20 J	6 J
METHYLENE CHLORIDE	20		4 J	3 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

**Bold values** = detection

= Exceeds Screening Criteria

-- Not Established

Table 4-13B

# 5224 Katrine **Groundwater Sampling Results (VOCs) Downers Grove, Illinois**

Field Sample ID	]	GPW115-01
Sample Date	Screening	12/15/2003
Depth Interval	. Criteria ^b	26- 26
Chemical Name		
1,1,1-TRICHLOROETHANE	200	0.76
1,1-DICHLOROETHANE	700	0.69
2-BUTANONE		6.4
ACETONE	700	31
BENZENE	5	0.18 J
TOLUENE	1,000	0.17 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

**Bold** values = detection

= Exceeds Screening Criteria

^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

**Table 4-14** 

# 2265 Maple Property **Groundwater Sampling Results (VOCs) Downers Grove, Illinois**

Field Sample ID		GPW150-01	GPW152-01
Sample Date	Screening	4/13/2004	4/9/2004
Depth Interval			9.5- 9.5
Chemical Name			
ACETONE	700		11
BENZENE	5	0.21 J	
BROMOFORM		0.35 J	
ETHYLBENZENE	700	0.19 J	
TETRACHLOROETHENE	5	0.19 J	0.21 J
TOLUENE	1,000	1.3 J	
XYLENES (TOTAL)	10,000	0.98	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

**Bold** values = detection



= Exceeds Screening Criteria

--- Not Established

RFW233-2A-AQSD

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

#### Table 4-15A

#### 2315 Maple Soil Sampling Results (VOCs) Downers Grove, Illinois

		· · · · · · · · · · · · · · · · · · ·	<del></del>									
Field Sample ID		GP182-01	GP182-02	GP183-01	GP183-02	GP183-03	GP184-01	GP184-02	GP184-02DUP	GP184-03	GP185-01	GP185-03
Sample Date	Screening	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004
Depth Interval	Criteria *	3,5- 1,5	18.5- 19.5	3.5-4.5	11.5-12.5	15.5- 16.5	8.5- 9.5	14.5- 15.5	14.5- 15.5	19.5- 20.5	2-3	17.5- 18.5.
Chemical Name												
2-BUTANONE											5 J	
ACETONE	16,000	9 J	2 J	10 J	31	2.3		2 J	2 J	.3 J	16 J	3 J
METHYL TERT-BUTYL ETHER (MTBE)	320			2 J			5 J				4.3	[-

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

- Not Established

Table 4-15B

#### 2315 Maple Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW182-01	GPW183-01	GPW184-01	GPW185-01	GPW185-01DUP	GPW186-01
Sample Date	Screening	1/21/2004	1/21/2004	1/21/2004	1/21/2004	1/21/2004	1/21/2004
Depth Interval	Criteria.	16- 26.	10- 20	15- 25	19- 29	19- 29	17- 27
Chemical Name							
2-BUTANONE		4.2 J	6.8	2.1 J	3 J	3.4 J	1.8 J
ACETONE	. <b>700</b> .	20	21.	13 .	14	. 16.	8.4
BENZENE	5	0.25 J	0.26 J	0.061 J	0.13 J	0.14 J	0.087 J
BROMOFORM	***		0.091 J				
CARBON DISULFIDE	700	0.42 J					
CHLOROETHANE		,	·		L	0.046 J	
CYCLOHEXANE						0.28 J	
METHYL ACETATE		1.4 J	1.5 J				
METHYL TERT-BUTYL ETHER (MTBE)	70	2.9	5.5		1.8	1.8	
METHYLCYCLOHEXANE		L	0.082 J		0.11 J		
TOLUENE	1,000	0.51 J					
XYLENES (TOTAL)	10,000	0.51					

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

= Exceeds Screening Criteria

^{* =} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalstion and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb). Bold values = detection

= Exceeds Screening Criteria

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

## Table 4-16A

# 2754 Maple Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GP178-01
Sample Date	Screening	4/8/2004
Depth Interval	Criteria *	5.5- 6.5
Chemical Name		
METHYLENE CHLORIDE	20	5 J

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- ^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb). **Bold** values = detection

= Exceeds Screening Criteria

Table 4-16B

# 2754 Maple Groundwater Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GPW178-01	GPW179-01	GPW180-01
Sample Date	Screening	4/9/2004	4/9/2004	4/9/2004
Depth Interval	Criteria ^b	7- 17	12- 22	12- 22
Chemical Name				
BENZENE	5	0.15 J	0.13 J	
CHLOROFORM	0.2	16.70.250	0.281	
CHI_OROMETHANE		0.26 J	0.27 J	
TOLUENE	1,000	0.27 J	0.64	0.16 J
XYLENES (TOTAL)	10,000		0.42 J	

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

--- Not Established

WA No.: 233-RICO-851W Data Evaluation Se

## Table 4-17A

# 5126 Walnut Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP163-02					
Depth Interval	Screening	10.5- 11.5					
Sample Date	Criteria *	4/29/2004					
Chemical Name							
ACETONE	16,000	21 J					

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

# Table 4-17B

# 5126 Walnut Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW161-01	GPW161-01DUP	GPW165-01
Depth Interval	Screening	10- 20	10- 20	5- 15
Sample Date	Criteria ^b	4/29/2004	4/29/2004	4/29/2004
Chemical Name				
METHYL TERT-BUTYL ETHER (MTBE)	70			0.99 J
TOLUENE	1,000	0.61 J	0.53	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.  $^{\circ}$  = TACO

Tier 1

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

**Bold** values = detection

= Exceeds Screening Criteria

I:\WO\RAC\233\34286T4-17.XLS RFW233-2A-AQSD

# Table 4-18

# 5225 Walnut Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP120-01	GP120-02	GP121-02	GP122-02	GP123-02	GP124-03
Sample Date	Screening	12/18/2003	12/18/2003	12/22/2003	12/18/2003	12/18/2003	12/16/2003
Depth Interval	Criteria*	4.5- 5.5	17.5- 18.5	19.5- 20.5	13.5- 14.5	11.5- 12.5	12.5- 13.5
Chemical Name					•		
ACETONE	16,000	12 J	4 J	2 J	•	4 J	
METHYLENE CHLORIDE	20						2 J
TETRACHLOROETHENE	60				3 J		

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

--- Not Established

I:\WO\RAC\233\34286T4-18.XLS RFW233-2A-AQSD

^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Elloworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summery Repor Revision: 1

# Table 4-19A

## 5411 Walnut Soil Sampling Results (VOCs) Downers Grove, Illnois

Field Sample ID	,	GP77-01
Sample Date	Screening	4/27/2004
Depth Interval	Criteria*	6.5- 7.5
Chemical Name		
1,1-DICHLOROETHANE	20	220 % ± 6
CHLORINATED FLUOROCARBON (FREON 113)	-	17
METHYLENE CHLORIDE	20	4.3

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

Exceeds Screening Criteria

- Not Established

Table 4-19B

# 5411 Walnut Groundwater Sampling Results (VOCs) Downers Grove, Illnois

Field Sample ID		GPW76-01	GPW77-01	GPW78-01	GPW79-01	GPW79-01DUP
Sample Date		4/28/2004	4/28/2004	4/28/2004	4/28/2004	4/28/2004
Depth Interval	Screening Criteria	15- 25	7- 17	7- 17	10- 20	10- 20
Chemical Name		-				
1,1,1-TRICHLOROETHANE	200	l	0,37 J		0.39 J	0.43 J
1,1-DICHLOROETHANE	700		7.8 J	•	6.7 J	9.1 J
BROMOFORM		0.31 J		,		
CFC-12	-		13 J		0.54 J	
CHLORINATED FLUOROCARBON (FREON 113)			1.3 J		0.28 J	
TOLUENE	1,000		0.2 J	0.24 J	0.2 J	0.29 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection
= Exceeds Screening Criteria

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
*= Value based on industrial/commercial property soil-remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

#### Table 4-20A

#### 2300 Wisconsin Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP61-01	GP61-02	GP61-03	GP62-01	GP62-02	GP62-03	GP63-02	GP64-01	GP64-02	GP65-01	GP65-02	GP66-01	GP66-02	GP66-02DUP	GP66-03
Sample Date	Screening	1/14/2004	1/14/2004	1/14/2004	1/22/2004	1/22/2004	1/22/2004	1/8/2004	1/14/2004	1/14/2004	1/14/2004	1/14/2004 -	1/8/2004	1/8/2004	1/8/2004	1/8/2004
Depth Interval	Criteria *	5.5- 6.5	9.5- 10.5	15.5- 16.5	3.5-4.5	8.5- 9.5	21.5- 22.5	8.5- 9.5	3.5- 4.5	19.5- 20.5	5.5- 6.5	9.5- 10.5	1.5- 2.5	6.5-7.5	6.5-7.5	10.5- 11.5
Chemical Name																
2-BUTANONE		3.3	2 J								2 J			3 J	6 J	
ACETONE	16,000	17	20	4 J	2 J_	6 J	2 J	7 J	9.3	43	.15	5 J.	.43	.14	23	16
METHYLENE CHLORIDE	20				3 J	2 J	. 2·J.									

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection

Exceeds Screening Criteria

- Not Established

#### Table 4-20B

#### 2300 Wisconsin Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW61-01	GPW62-01	GPW64-01	
Sample Date	Screening	1/14/2004	1/23/2004	1/14/2004	
Depth Interval	Criteria	20- 30	15- 25	15- 25	
Chemical Name					
2-BUTANONE	***	2.4 J	1.5 J		
ACETONE	700	18 J			
BENZENE	5		0.071 J		
CHLOROMETHANE		0.43 J		0.56	
METHYLENE CHLORIDE	5	0.38 J		0.57	
METHYLCYCLOHEXANE	-		0.074 J		
TOLUENE	1,000		0.19 J		

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Bold values = detection
= Exceeds Screening Criteria

-- Not Established

⁼ Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC-742, Appendix B, Table E. Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

# Table 4-21A

# 2333 Wisconsin Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP195	GP198-02
Sample Date	Screening	12/9/2003	12/11/2003
Depth Interval	Criteria *	2.5- 3.5	11.5- 12.5
Chemical Name			
ACETONE	16,000	5 J	6 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb). **Bold** values = detection

= Exceeds Screening Criteria

Table 4-21B

# 2333 Wisconsin Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW194-01
Sample Date	Screening	12/9/2003
Depth Interval	Criteria ^b	26- 26
Chemical Name		
ACETONE	700	10
BENZENE	5	0.2 J
TOLUENE	1.000	0.22 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

^b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

# Table 4-22A

# 2400 Wisconsin Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GP96-01	GP97-03
Sample Date	Screening	1/15/2004	1/15/2004
Depth Interval	Criteria *	8.5- 9.5	13.5- 14.5
Chemical Name	"	-	
2-BUTANONE		4 J	5 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method

Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

**Bold** values = detection

- Not Established

= Exceeds Screening Criteria

## Table 4-22B

# 2400 Wisconsin **Groundwater Sampling Results (VOCs)** Downers Grove, Illinois

Field Sample ID		GPW95-01	GPW98-01	GPW99-01
Sample Date	Screening	1/15/2004	1/16/2004	1/16/2004
Depth Interval	Criteria ^b	14.2- 14.2	21.3- 21.3	29.5- 29.5
Chemical Name				
1,2-DICHLOROPROPANE	5	1		0.9
2-BUTANONE				4.5 J
ACETONE	700		10 J	22 J
CHLOROMETHANE				2
METHYL ACETATE				0.73 J
METHYLCYCLOHEXANE				0.74
TOLUENE	1,000	0.17 J	0.19 J	0.29 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

- Not Established

= Exceeds Screening Criteria

a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B,

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

## Table 4-23A

# 2424 Wisconsin Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID	1 [	GP127-01	GP128-01	GP129-01	GP129-01DUP	GP129-02	GP129-03	GP130-01	GP130-02
Sample Date	Screening	4/26/2004	4/26/2004	4/27/2004	4/27/2004	4/27/2004	4/27/2004	4/27/2004	4/27/2064
Depth Interval	Criteria*	3.5- 4.5	8.5- 9.5	2,5- 3,5	2.5- 3.5	10.5-11.5	23:5- 24.5	3.5- 4.5	11.5- 12.5
Chemical Name									
1,1,1-TRICHLOROETHANE	2,000	9 J	1800	_	3 J	4700			150
1,1-DICHLOROETHANE	20		110	5 J	13	}			T-15 120
1,1-DICHLOROETHENE	60		J 83 84						18
ACETONE	16,000					740 J			
CARBON TETRACHLORIDE	70					_			84 P
CHLOROETHANE			2 J					3 J	13
CIS-1,2-DICHLOROETHENE	400		53						
METHYLENE CHLORIDE	20			43			3 J		3 J
TRICHLOROETHENE (TCE)	60		43		[				

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit,

Not Established = Exceeds Screening Criteria

Table 4-23B

# 2424 Wisconsin Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GPW125-01	GPW127-01	GPW128-01	GPW129-01	GPW130-01
Sample Date	Screening	4/27/2004	4/27/2004	4/26/2004	4/27/2004	4/27/2004
Depth Interval	Criteria b	10- 20	7- 17	7- 17	10- 20	10- 20
Chemical Name						
I,I,I-TRICHLOROETHANE	200	30	100 J	1200	620 J	360 204
1,1,2-TRICHLOROETHANE	5			0.48 J	0.38 J	
1,1-DICHLOROETHANE	700	2.	18 J	370	64 J	180
1,1-DICHLOROETHENE	7		3.6 J	42 J		19
1,2-DICHLOROETHANE	5			0.88		
BENZENE	5				0.18 J	
CARBON TETRACHLORIDE	5	2.8	3.5 Je 2 9			
CHLORINATED FLUOROCARBON (FREON 113)		34				
CHLOROETHANE	1	I	1:1 J	5.6	5.4 J	52
CHLOROFORM	0.2			一つ0.33リジン	0.32 1	
CIS-1,2-DICHLOROETHENE	70			4.1	0.28 J	0.93 J
TOLUENE	1,000				0.2 J	
TRICHLOROETHENE	5	0.29 J		19	0,26 J	0.22 J

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

— Not Established

= Exceeds Screening Criteria

I:\WO\RAC\233\34286T4-23.XLS RFW233-2A-AQSD

^{*=} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in

³⁵ IAC 742, Appendix B, Table E.

WA No.: 233-RICO-B51W Data Evaluation Summary Report Section: 4 Revision: I Date: 3 August 2004

#### Table 4-24A

# 2518 Wisconsin Soil Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GP100-02
Sample Date	Screening	4/7/2004
Depth Interval	Criteria "	17.5- 18.5
Chemical Name		
1,1,1-TRICHLOROETHANE	2,000	5 J
CHLORINATED FLUOROCARBON (FREON 113)	_	63

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

Exceeds Screening Criteria

- Not Established

# Table 4-24B

# 2518 Wisconsin Groundwater Sampling Results (VOCs) **Downers Grove, Illinois**

Field Sample ID		GPW100-01	GPW101-01	GPW103-01
Sample Date		4/8/2004	4/8/2004	4/8/2004
Depth Interval	Screening Criteria	15- 25	20- 30	12- 22
Chemical Name				
1,1,1-TRICHLOROETHANE	200	0.26 J		
I, I-DICHLOROETHANE	700	0.33.J.	0.23 J	
ACETONE	700·	12	-	
BENZENE	5	0.36 J		
CHLORINATED FLUOROCARBON (FREON 113)	1	0.77		
CHLOROMETHANE	***	0.32 J		
ETHYLBENZENE	700	0.19 <b>J</b>		
TOLUENE	1,000	0.96	0.51	0.21 J
XYLENES (TOTAL)	10,000	0.55	0.41:J	

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

- Not Established

I:\WO\RAC\233\34286T4-24.XLS RFW233-2A-AQSD

^{* =} Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B: Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

# Table 4-25

# 2525 Wisconsin Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP70-01DUP	GP70-02	GP71-01	GP71-02	GP71-03	GP73-02
Sample Date	Screening	12/4/2003	12/4/2003	12/12/2003	12/12/2003	12/12/2003	12/12/2003
Depth Interval	Criteria *	1.5- 2,5	13.5- 14.5	1.5- 2.5	15.5- 16.5	22- 23	15.5- 16.5
Chemical Name							
ACETONE	16,000	14	9 J	6:J	4 J_	7 J	5 J

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- ^a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

E\WO\RAC\233\34286T4-25.XLS RFW233-2A-AQSD

# Table 4-26A

# 2655 Wisconsin Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP82-01	GP82-02	GP83-01
Sample Date	Screening	12/22/2003	12/22/2003	12/22/2003
Depth Interval	Criteria *	5.5- 6.5	9.5- 10.5	5,5- 6,5
Chemical Name				
ACETONE	16,000	520 J		
TRICHLOROETHENE	60	25000	1,9500 J.	35000

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater. Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).
  Bold values = detection

= Exceeds Screening Criteria

--- Not Established

Table 4-26B

# 2655 Wisconsin Groundwater Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID	1	GPW82-01	GPW83-01	GPW85-01	GPW85-01DUP	GPW86-01	
Sample Date	Screening	12/23/2003	12/23/2003	12/23/2003	12/23/2003	12/23/2003	
Depth Interval	Criteria ^b	28- 28	28- 28	28- 28	28- 28	28- 28	
Chemical Name					- <del></del> -		
ACETONE	700	24	11	5.8	4.8 J	14	
TOLUENE	1,000		0.19 J			0.18 J	
TRICHLOROETHENE	5	¥ <b>3</b> 1	516		1		

- J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.
- ^b = TACO Tier 1 groundwater remediation objectives for groundwater component of the class I groundwater ingestion route established in 35 IAC 742, Appendix B, Table E.

Groundwater values are expressed in micrograms per liter (ug/L), or parts per billion (ppb).

**Bold** values = detection

= Exceeds Screening Criteria

I:\WO\RAC\34286T4-26.XLS RFW233-2A-AQSD

# Table 4-27

# 2732 Wisconsin Soil Sampling Results (VOCs) Downers Grove, Illinois

Field Sample ID		GP109-02	GP109-02DUP	GP111-01	GP111-02	GP113-01	GP113-02	GP113-03
Sample Date	Screening	12/17/2003	12/17/2003	12/17/2003	12/17/2003	12/17/2003	12/17/2003	12/17/2003
Depth Interval	Criteria *	9.5- 10.5	9.5- 10.5	10.5- 11.5	23.5- 24.5	1.5- 2.5	17.5- 18.5	21:5- 22:5
Chemical Name							•	
ACETONE	16,000			3 J	9 J	3 J	4 J	4 J
METHYLENE CHLORIDE	20	3 J	3 J	2 J	2 J	3 J	3 J	

J = Qualitative evidence of analyte present: concentration detected is greater than the method detection limit but less than the reporting limit.

Soil values are expressed in micrograms per kilogram (ug/kg), or parts per billion (ppb).

Bold values = detection

= Exceeds Screening Criteria

a = Value based on industrial/commercial property soil remediation objective contained in 35 IAC 742, Appendix B, Table B. Value indicated is lowest of ingestion, inhalation and migration to Class I Groundwater.

## Table 4-28

# Groundwater Quality Control Sampling Results (VOCs) Ellsworth Industrial Park Site Downers Grove, Illinos

	Field Sample ID	EIP-GPWFB-01	EIP-GPWFB-04	EIP-GPWFB-05	EIP-GPWFB-8	EIP-GPWTB-01	EIP-GPWTB-013	EIP-GPWTB-014	EIP-GPWTB-02	EIP-GPWTB-04	EIP-GPWTB-05
	Sample Date	12/23/2003	1/23/2004	1/27/2004	4/29/2004	12/2/2003	1/16/2004	1/21/2004	12/10/2003	12/15/2003	12/16/2003
Chemical Name	Unit										
ACETONE	UG/L				·	2.4 J					<del></del>
CARBON DISULFIDE	UG/L		0.077 J		0.27 J			0.065 J			<del></del>
CHLOROMETHANE .	UG/L										
DICHLOROMETHANE	UG/L	0.23 J				0.68	0.29 J		0.23 J	0.73	0.97
METHYLBENZENE	UG/L			0.079 J				•			<del></del>
TRIBOMOMETHANE	UG/L			0.12 J							

## Table 4-28

# Groundwater Quality Control Sampling Results (VOCs) Ellsworth Industrial Park Site Downers Grove, Illinos

-	Field Sample ID	EIP-GPWTB-06	EIP-GPWTB-07	EIP-GPWTB-08	EIP-GPWTB-09	EIP-GPWTB-16	EIP-GPWTB-17	EIP-GPWTB-22	EIP-GPWTB-24	EIP-GPWTB-25	EIP-GPWTB-26
	Sample Date	12/23/2003	1/8/2004.	1/9/2004	1/12/2004	1/27/2004	4/6/2004	4/14/2004	4/27/2004	4/28/2004	4/29/2004
Chemical Name	Unit "			,							
ACETONE	UG/L					2.9.J					
CARBON DISULFIDE	UG/L				- ""						
CHLOROMETHANE	UG/L			0.44 J							
DICHLOROMETHANE	UG/L	0.56	0.72		0.53		3.6	5.2 J	3.8 J	3.2	2.3
METHYLBENZENE	UG/L										
TRIBOMOMETHANE	UG/L										

# TABLE 4.29 GROUNDWATER ELEVATIONS/WELL SUMMARY JUNE 2002 U.S. EPA DOWNERS GROVE, IL

													·
	· · · · · ·	Overbu T	den Monito	ring Well Screen	1	Water			Bedro	ck Monitori  Screen	ng Well  Screen	1	Water
	Ground	Casing	Interval	Interval	Depth To	Level	ł	Ground	Casing	Interval	Interval	Depth To	Level
ID	Elevation	Elevation	Тор	Bottom	Water ¹	Elevation	· ID	Elevation	Elevation	Тор	Bottom	Water	Elevation
BD-4(1)	699.03	701.65	47	57	42.89	658,76	BD-4(D)	699.28	701.83	71	81	50.08	651,75
<u> </u>													
BD-1(I)	697.60	696.56	27	37	25.62	670.94	BD-1(D)	696,57	696.25	60	70	44.54	651.71
BD-2(1)	702,23	701,78	30	40	33.96	667,82	BD-2(D)	702.18	701.78	67	77	50.26	651.52
BD-3(I)	686,37	688,00	30	35	30,40	657,60	BD-6(D)	693,32	692.97	64	74	40.88	652.09
BD-6(1)	693.21	692.91	45	50	40.61	652,30	BD-8(D)	690,34	690.00	68,5	78.5	37.78	652.22
BD-8(I)	690.43	689,86	35	45	37.54	652.32	IW-1		ļ	unk.	unk.	ļ	
OV-1(f)	702.83	702.56	48	53 58	47.91 39.37	654.65	<b></b>		<del> </del>		<b>├</b>	<b>├</b>	
OV-4(I) OV-5(I)	691,56 694,87	691.04 694.56	48 43	48	41.26	651.67 653,30			<del> </del>	-	<del> </del>	<del>                                     </del>	
OV-7(I)	689.58	688.90	36	46	36.75	652.15					<del> </del>	<del> </del>	
SB-15(I)	700.49	702.09	32	38_	33.75	668,34			I		<u> </u>		
OV-9(I)	703.34	703.04	32	42	34.42	668,62							
								<u>-</u>					
DD 470		T : coo oo	T 24	- 42	1 20.00	(80.94	DD 7(D)	(80.00	T 600.64	- (0	7 70	1 20 22	750.30
BD-7(I) OV-8(I)	690,21 691,08	690.02 690.78	36 30	46 40	30.66 33.25	659,36 657,53	BD-7(D)	689,99	689.64	60	70	39,32	650,32
O 1 -O(1)	971,00	0,0,79	<b>~</b>	779		42,23	-		t	<del>                                     </del>	<del>                                     </del>	† <u>'</u>	
		I											
					l				L	Ĺ	L		
DD ##	C90 #1	690.00	T	A	20.03	680.91	PD SON	680.21	680.04	1 64		14.01	683.03
BD-5(I) BD-15(I)	689.52 690.48	689.05 690.22	37 36	47 46	29.82 38.75	659.23 651.47	BD-5(D) SB-3(D)	689.31 692.57	688.94 691.84	64	74	36.91 40.79	652.03 651.05
OV-2(1)	699,32	699,02	54	64	47,50	651.52	22.01	97827	U. 1.04	<del>-~</del>	<del>  '</del>	1 77.77	452,45
OV-3(1)	690.46	690.08	40	45	37.88	652.20					L		
SB-3(I)	692,68	692.26	- 44	54	40.33	651,93							
SB-17(I)	695.27	694,96	35	45	36.01	.658.95		<u> </u>				<b></b>	
	ļ	1			<del>                                     </del>	ļ	<u> </u>		<b></b>	ļ.——	<del>                                     </del>	<b>.</b>	i
		<b></b> -								ļ	<del> </del>	<del>                                     </del>	
		<del></del>			<del> </del>					<del>                                     </del>		<del> </del>	<del> </del>
		·											•
										-			
SB-11(I)	702.30	702.04	49	54	43.27	658,77	BD-12(D)	700,66	700.30	78	88	48,88	651:42
MW-1(S)		702,07	20	30	23.30	678.77	BD-13(D)	701.97	701.46	79	89	50.19	651.27
MW-2(S) MW-3(S)	<del></del> -	701.81 702.21	11 17	21 27	20.26	695.08 681.95	<u> </u>				<del> </del>	1	
MW-4(S)	699.97	702.80	27	37	34.22	668.58	<u> </u>		<del>                                     </del>		<del>                                     </del>	<del>                                     </del>	+
MW-5(S)	698.11	700.10	25	35	Dry	-						İ	·
MW-6(S)	701,85	703,83	13	23	16.64	687,79							
MW-7(S)		701.33	16	26	Dry	<u> </u>				ļ		ļ	
MW-8(S)		701.58	18	28	20,86	680.72				<u> </u>	<del> </del>	<b>}</b>	-
MW-9(S) MW-10(S)	<del>-</del> -	702.83 701.54	19 20	29 30	Dry Dry	<del></del>	<b>-</b>			<b></b>	<del> </del>	<del> </del>	<del> </del>
1111-10(0)		1 104.07			, Di	1 -			·			1	1
												l	
							hani aa	,		1		,	-
	L	<u> </u>	L	L	L	Ц	PW-10			open hole	open hole		4
BD-14(I)	699,78	698.73	42	47	45,53	653,20	BD-14(D)	699,77	699.28	73	83	45.97	653.31
OV-6(I)	693,86	693,60	40	50	41.40	652.20							
											1	ļ	
	<b> </b>	<del></del>	ļ		ļ	<b></b>			<del> </del>	<b></b>	1	<b>├</b>	<b>├</b> ──
		L	L	· ·	L	L	<del> </del>		<u> </u>	1	1	<u> </u>	Ь
LD-1(I)	705.58	708.06	54	64	56.52	651.54				I	I		1
M-1(S)			unk.	unk.					<b></b>	ļ <u> </u>	<u> </u>		$\Box$
M-2(S)	ļ	<del> </del>	ank.	unk.	ļ		ļ	ļ	——	<b></b>		ļ	
M-3(S)	L	ł	mk.	unk.	L	Щ.	<del></del>	L	<u></u>	L	L		
-							l						
					J		BD-16(D)	705.66	705.36	74	84	54.48	650,88
							BD-17(D)	712.65	712.28	81	91	61,44	650,84
							BD-18(D)	707.14	706.85	81	91	55.55	651,30
	L		L		ŀ	Ľ	<del></del>	L	<u> </u>	<u> </u>	<b></b>		
BD-9(I)	712.62	715,19	37.5	42.5	D-		BD-9(D)	712.57	715.12	79	89	61.57	653,55
<u> </u>	/14.04	/13,17	31.3	76.3	Dry	<del>  -</del> -−	BD-10(D)	717.66	717.35	79	89	63,86	653,49
					· · · · ·		BD-11(D)	704.09	703.69	94	104	49.81	653,88
		L											

 $S = Overburden \ well \ installed \ in shallow/perched \ GW \ approx. \ 0 \ to \ 30 \ ft \ bgs.$   $I = Overburden \ well \ installed \ approx. \ 30 \ to \ 60 \ ft \ bgs.$   $D = Bedrock \ well.$   $O = Location \ cancelled/postponed.$ 

Water levels recorded on 24 June 2002. OV-3(1) water level was taken on 19 June 2002.
 -- No data available.

# TABLE 4-29 (Continued) GROUNDWATER ELEVATIONS/WELL SUMMARY JULY 2002 U.S. EPA DOWNERS GROVE, IL

à													
		Overbii	rden Monito IScreen	ring Well Screen		Water			Bedro	ck Monitorii  Screen	ng Well  Screen		Water
	Ground	Casing	Interval	Interval	Depth To	Level	jj	Ground	Caring	Interval	Interval	Depth To	Level
1D	Elevation	Elevation	Top	Bottom	Water ¹	Elevation	ID	Elevation	Elevation	Тор	Bottom	Water ¹	Elevation
	<del></del>						Î						
BD-4(I)	699.03	701,65	47	57	42.72	658.93	BD-4(D)	699,28	701.83	71	81	50.24	651.59
		·····				<del></del>	<del> </del>						
DB 170	1 (02 (0	1 (04.84	1	1 27	25,18	671.20	PD 1(D)	696,57	696.25	60	70	44,24	652.01
BD-1(I) BD-2(I)	697.60 702,23	696,56 701,78	30	37 40	33.26	671,38 668.52	BD-1(D) BD-2(D)	702.18	701.78	67	77	50.12	651.66
BD-2(I)	686.37	688.00	30	35	30.33	657,67	BD-6(D)	693,32	692.97	64	74	40.88	652.09
BD-6(I)	693.21	692.91	45	50	40.49	652.42	BD-8(D)	690.34	690,00	68.5	78.5	37.79	652.21
BD-8(I)	690,43	689,86	35	45	37.5	652.36	IW-1			unk.	unk.		
OV-1(I)	702,83	702,56	48	53	47.82	654.74				L		<u> </u>	ļ
OV-4(I)	691.56	691.04	48	58	39,41	651.63				· · ·			<del> </del>
OV-5(I)	694.87	694.56	43	48	41.26	653.30	<b></b>	<u>.                                    </u>	<del></del>		<del></del>	ļ	<del> </del>
OV-7(I)	689,58	688.90	36	46	36.41	652.49			<del>                                     </del>	<del> </del>	<del> </del> -	<del>├</del>	<del> </del>
SB-15(I) OV-9(I)	700.49	702.09	32	38	33,7	668,39 668,53	ļ			<del> </del>	<del></del>	├──	+
OV-9(1)	703,34	703.04	32	42	34.51	1 008.33	<b>!</b>		<u> </u>	<u> </u>		J	4
							<b></b>						
BD-7(I)	690,21	690.02	36	_ 46	31.23	658,79	BD-7(D)	689,99	689.64	60	70	38.18	651,46
OV-B(I)	691.08	690.78	30	40	33.59	657.19							
			L							ļ			
			1	oxdot					1				<del></del>
			<u> </u>		L		<b></b>		<u> </u>	L	L	L	ــــــــــــــــــــــــــــــــــــــ
							<del> </del>			<del></del>			=
DD 600	680.60	689,05	1 17	49	30,15	658.9	BD-5(D)	689.31	688,94	54	64	36.83	652.11
BD-5(I) BD-15(I)	689.52 690.48	690,22	37	47	38,92	651.3	SB-3(D)	692.57	691.84	64	74	41.09	650.75
OV-2(I)	699,32	699.02	54	64	48,81	650,21	22.5(2)	47201	1	1	<del>  ''</del>	74,87	† <del>~~,,,,</del>
OV-3(I)	690.46	690.08	40	45	38,08	652.00	(			f	1	<u> </u>	t
SB-3(I)	692.68	692.26	44	54	40.61	651.65							
SB-17(I)	695.27	694.96	35	45	36.33	658,63							
		<b></b>	ļ	<del>  </del>	<del> </del>		ļ		<u> </u>			<del> </del>	<b>├</b>
	<b>├</b> ──	<del></del>		<del>├</del> ──	<del> </del>	—	<del> </del>		<del> </del>	<del> </del>	<del></del>	<del></del>	<del>-</del>
	<del></del>	——	J	Ь	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<b>-</b>		L	L	L	L	٠
							<del></del>						
SB-11(I)	702.30	702.04	49	54	43.58	658.46	BD-12(D)	700.66	700,30	78	88	48,61	651.69
MW-1(S)		702.07	20	30	23.27	678.8	BD-13(D)	701.97	701.46	79	89	50.66	650.8
MW-2(S)		701.81	11	21	6,71	695.1							
MW-3(S)		702.21	17	27	20,06	682,15							
MW-4(S)		702.80	27	37	34.18	668.62	ļ					<b></b>	<del></del>
MW-5(S)		700.10	25	35	Dry		-		<del> </del>	<del> </del>	<del> </del>		<b>├</b>
MW-6(S)		703,83	13	23	15,88	687,95	<b> </b>		+	<del> </del>	<del></del>	<del> </del>	<del> </del> -
MW-7(S) MW-8(S)		701.33 701.58	16	26 28	Dry 20.59	680.99	-		<del>                                     </del>	<del>                                     </del>	<del> </del>	<del>                                     </del>	<del> </del>
MW-9(S)		702.83	19	29	Dry		l -		<del> </del>	<del>                                     </del>	<del></del>	1	1
MW-10(S)		701.54	20	30	Dry	-	1		t				<b>†</b>
	1	L	I										
			,				ļ					1 4/	,
L	Ь	<u> </u>	<u> </u>	ــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	PW-10	L	L	open hole	open hole	61.55	<u> </u>
BD-14(I)	699,78	698,73	42	47	45,38	653.35	BD-14(D)	699,77	699,28	73	83	46.41	652.87
OV-6(I)	693.86	693.60	40	50	41.62	651.98	DO-TAIN]	9,7,11	927,40	<del>                                     </del>	<del>  ",</del>	73.71	1-534.0/
U - 7(1)	1 223,000	1	<del>  ~~</del>	<del>  ~</del>	74.00	1 221.50			<u> </u>		<del>                                     </del>	<del></del>	<del>                                     </del>
					1								
					I								I
			,		T		1			,			
LD-1(I)	705.58	708.06	54	64	56,81	651,25	<b> </b>	<u> </u>	L	I	<u> </u>		٠ــــــــــــــــــــــــــــــــــ
M 1/5		<del>,</del> -			T	<del></del>	╂		т		į.	т	
M-1(S) M-2(S)	1	<del> </del>	unk.	unk.	+	+	<del></del>	ļ <u>.</u>	<del> </del>	<del>                                     </del>	<del> </del>	<del> </del>	<del> </del>
M-2(S)	<del> </del>	<del>                                     </del>	unk.	enk.	<del>                                     </del>	+	1		-	<del>                                     </del>	<del>                                     </del>	<del>                                     </del>	<del>                                     </del>
(6)	•			<u>,,                                 </u>			1		•		•		
							•						
					L		BD-16(D)	705.66	705.36	74	84	54.64	650,72
							BD-17(D)	712.65	712,28	81	91	61.78	650.5
	1		J	<u> </u>			BD-18(D)	707.14	706.85	81	91	55.85	651,00
				_		,	<u> </u>			τ		,	
	<u> </u>	L	ــــــــــــــــــــــــــــــــــــــ	<del></del>		<u> </u>	<b> </b>		L	L	L—		<u> </u>
							<u> </u>						
DD AT	71-72	745.40	20.0	12.5	T -	1	DD A/D'	714 57	707 44	-		1000	150 01
BD-9(I)	712,62	715.19	37,5	42.5	Dry		BD-9(D)	712.57	715.12	79	89	62.56	652.56
BD-9(I)	712,62	715.19	37.5	42.5	Dry	-	BD-10(D)	717,66	717,35	79	89	64,34	653.01
BD-9(I)	712,62	715,19	37.5	42.5	Dry	-							

S = Overburden well installed in shallow/perched GW approx. 0 to 30 ft bgs.

1 = Overburden well installed approx. 30 to 60 ft bgs.

D = Bedrock well.

0 = Location cancelled/postponed.

 ⁼ Water levels recorded on 24 June 2002. OV-3(1) water level was taken on 19 June 2002.
--- No data available.

## TABLE 4-29 (Continued) GROUNDWATER ELEVATIONS/WELL SUMMARY JULY 2004 U.S. EPA DOWNERS GROVE, IL

		Overbui	den Monito		,	1997			Bedro	ck Monitori			
	۱	۱	Screen	Screen	Depth To	Water			۱	Screen	Screen	Depth To	Water
ID '	Ground Elevation	Casing Elevation	Interval Top	Interval Bottom	Water ¹	Level Elevation	ID I	Ground Elevation	Casing Elevation	Interval Top	Interval Bottom	Water	Level Elevation
	15.0.000											<del>-</del>	
BD-4(I)	699.03	701.65	47	57	42,55	659.1	BD-4(D)	699.28	701,83	71	81	50,87	650.5
<del></del>							<del></del>						
BD-1(I)	697,60	696,56	27	37	25.23	671.33	BD-1(D)	696.57	696,25	60	70	45.41	650.8
BD-2(I)	702,23	701.78	30	40	33,75	668.03	BD-2(D)	702,18	701.78	67	77	51.09	650.0
BD-3(I) BD-6(I)	686.37 693.21	688.00 692.91	30 45	35	41:48	651.43	BD-6(D) BD-8(D)	693.32 690.34	692.97 690.00	68.5	74 78.5	41.81 38.7	651;
BD-8(I)	690,43	689,86	35	45	37.79	652.07	IW-1	0/45	W/10/00	unk.	wak.	1	1
OV-1(I)	702.83	702.56	48	53	47.6	654.96					L		
OV-4(T)	694,87	691.04 694.56	48	58	40.06	650.98 652,35	<b> </b>			<del>                                     </del>	<del> </del>	<del> </del>	<del> </del>
OV-5(I) OV-7(I)	689,58	688,90	36	46	37,65	651.25	<b> </b>			<del>                                     </del>		<del> </del>	1
SB-15(I)	700,49	702.09	32	38									
OV-9(I)	703,34	703.04	32	42	34,18	668.86			L		L	<u> </u>	
							<del>}</del>						
BD-7(1)	690,21	690.02	36	46	31,33	658.69	BD-7(D)	689.99	689,64	60	70	39	650.0
DV-8(I)	691.08	690.78	30		34,41	656.37	<b></b>			├		<del> </del>	├
						<u> </u>				<u> </u>			
	l									L	1		
				<del></del>						<del></del>		<del></del>	
BD-5(I)	689.52	689,05	37	47	30.09	658.96	BD-5(D)	689,31	688.94	54	64	36.83	652.
ID-15(I)	690,48	690,22	36	46	39.62	650,6	SB-J(D)	692.57	691.84	64	74	41.65	650.
OV-2(I) OV-3(I)	699.32 690.46	699.02 690.08	54 40	45	46.05 38.59	652.97 651.49			<del> </del>	<del> </del>	<del> </del>	1	├
SB-3(I)	692.68	692,26	44	54	41.21	651.05			<del>                                     </del>	<del> </del>	<del></del>	†	<del> </del>
B-17(I)	695,27	694,96	35	45	36,56	658.4							
	<u> </u>	<del> </del>	ļ	<del> </del>	<del> </del> -	<u> </u>			<b> </b>	<b></b>			
	-	<del>                                     </del>		<del>                                     </del>	<del> </del>	<del> </del>			<del>                                     </del>	<del> </del>	-	<del> </del>	+
					I						]	I	L
							<u> </u>						
B-11(I)	702.30	702.04	49	54	43.55	658.49	BD-12(D)	700,66	700.30	78	88	51.96	648
/W-1(S)	<u> </u>	702.07	20	30	24.19	677,88	BD-13(D)	701.97	701.46	79	89	50.66	650
(W-2(S) (W-3(S)	<del></del> -	701.81	11	21 27	20,21	695.1 682	<b> </b>				<del></del>	<del> </del>	┼-
/W-4(S)	699,97	702.80	27	37	35,36	667.44						1	
1W-5(S)	698.11	700.10	25	35	Dry								
4W-6(S)	701.85	703,83 701,33	13	23 26	16.68	687.15			<b></b>	-	<del>                                     </del>	<del>1</del>	<del> </del> -
4W-7(S) 4W-8(S)	=	701.58	18	28	11.9	689.68			<del> </del>	<del>                                     </del>		+	+
(W-9(S)	-	702,83	19	29	Dry								
W-10(S)	<u> </u>	701.54	20	30	Dry				<u> </u>	Ŀ		1	
			L		T.	L		· · · · · ·		Γ		I	
	Γ	I	1	<u> </u>			PW-10			open hole	epen bele	I	I
D.1400	699,78	698.73	42	47	44.42	642.11	BD-14(D)	699,77	699,28	73	83	46,78	652
ID-14(I) DV-6(I)	693,86	693,60	40	50	41,05	654.31 652.55	PD-14(D)	099,17	077,48	<u> </u>		40,78	034
						F							
		<del> </del>	<del>]</del>	<del>                                     </del>	<del>                                     </del>	┼	-	<b>_</b>	<del>                                     </del>	<del> </del>	<del>                                     </del>	<del> </del>	-
				·						·			
LD-i(I)	705.58	708,06	54	64	57.29	650.77			1	Ε	I		
M-I(S)			ank.	unk.	5.81	Υ	<b></b>		·····	г	ŀ	<del></del>	1
M-2(S)			unk.	unk.	9.63								
M-3(S)			wak.	gak.	11.6	L			<u> </u>		ļ	1	L
				<del></del>			<u> </u>						
			F				BD-16(D)	705.66	705,36	74	84	55.3	650,
						I	BD-17(D)	712.65	712.28	81	91	61.33	650.5
	L	L		L	i	Ц	BD-18(D)	707.14	706,85	81	91	55,95	650.
	r	r	1		Τ	Τ	<del>                                     </del>		T	Γ	1	T	T
										<del></del>			
	712.62	715.19	37.5	42.5	Dry		BD-9(D)	712.57	715.12 717.35	79	89	62,58	652.
SD-9(I)													
BD-9(I)		-	<del> </del>	<del> </del>	<del> </del>	<del> </del>	BD-10(D) BD-11(D)	717.66	703.69	79 94	89 104	64.63	652.

S = Overburden well installed in shallow/perched GW approx. 0 to 30 ft bgs.

1 = Overburden well installed approx. 30 to 60 ft bgs.

D = Bedrock well.

0 = Location cancelled/postponed.

 ⁻ No data available.

- No data available.

TABLE 4-30
Logging and Sampling Summary
Elisworth Industrial Site
Downers Grove, Illinois

			1 2		T 0:11 0 1 (00	(a) (4)	OW Committee Donath	CWONOS
Property	Soil Boring Location	MIP Completed	Soil Sampled	Soil Sample Interval	Sóll QA/QC	GW Sampled	GW Sample Depth	GW QA/QC
				(0.5.4.5) (40.5.44.5)		4/15/04	10"	NA
<u> </u>	GP-172	4/13/04	4/14/04	(3.5-4.5), (10.5-11.5)	NA DUP	4/15/04	10'	NA NA
<u>-</u>	GP-173	4/13/04	4/14/04	(3.5-4.5), (8.5-9.5), (20.5-21.5)				NA NA
2824 Hitchcock	GP-174	4/13/04	4/13/04	(8.5-9.5), (14.5-15.5)	MS/MSD	NA 1/15/04	NA ASI	<del></del>
<u> -</u> -	GP-175	.4/13/04	4/14/04	(3.5-4.5), (18.5-19.5)	NA	4/15/04	10'	NA NA
	GP-176	4/13/04	4/13/04	(1.5-2.5), (13.5-14.5)	NA NA	NA NA	NA Si	NA NA
	GP-177	4/13/04	4/13/04	(4.5-5.5), (11.5-12.5), (15.5-16.5)	NA NA	4/14/04	5'	DUP
THE STATE OF	200		<b>256</b>			4400404		
<b>⊢</b>	GP-161	4/29/04	4/29/04	(6.5-7.5), (19.5-20.5)	DUP	4/29/04	10'-20'	DUP
	GP-162	4/29/04	4/29/04	(6.5-7.5), (13.5-14.5)	NA NA	NA NA	NA NA	NA
5128 Walnut	GP-163	4/29/04	4/29/04	(4.5-5.5), (10.5-11.5)	NA NA	NA .	NA 151.051	NA NA
-	GP-184	4/29/04	4/29/04	(2.5-3.5), (13.5-14.5)	NA NA	4/29/04	15'-25'	NA
<u> </u>	GP-165	4/29/04	4/29/04	(3.5-4.5), (9.5-10.5)	NA	4/29/04	5'-15'	NA NA
	GP-166	4/29/04	4/29/04	(8.5-9.5), (19.5-20.5)	NA	NA NA	NA NA	NA NA
	The second secon	to be made and bearing and a distance of the value of a should				The state of the s	11-277	Contract of the Contract of th
<u> </u>	GP-119	12/15/03	12/16/03	(3-4), (15.5-16.5)	NA	NA NA	NA NA	NA NA
<u> </u>	GP-120	12/18/03	12/18/03	(4.5-5.5), (17.5-18.5)	NA .	NA NA	NA NA	NA NA
5225 Wálnut	GP-121	12/19/03	12/22/03	(9.5-10.5), (19.5-20.5)	DUP/MSD	NA	NA NA	NA NA
-	GP-122	12/18/03	12/18/03	(7.5-8.5), (13.5-14.5)	NA_	NA NA	NA	NA
i-	GP-123	12/16/03	12/18/03	(3.5-4.5), (11.5-12.5)	NA	NA NA	NA	NA NA
	GP-124	12/15/03	12/16/03	(1.5-2.5), (6.5-7.5), (12.5-13.5)	NA NA	NA NA	NA	NA NA
					CONTRACTOR			WWW.
	GP-114	12/15/03	12/15/03	(9.5-10.5), (17.5-18.5), (30.5-31.5)		NA	NA NA	NA .
	GP-115	12/15/03	12/15/03	(5.5-6.5), (17.5-18.5)	NA NA	12/15/03	(26)	NA NA
5224 Katrine	GP-116	12/15/03	12/15/03	(7.5-8.5), (17.5-18.5)	NA NA	NA.	NA NA	NA NA
	GP-117	12/17/03	12/18/03	(1.5-2.5), (15.5-16.5)	NA	NA NA	NA ·	NA NA
	GP-118	12/17/03	12/17/03	(3.5-4.5), (11.5-12.5)	NA	NA	NA NA	NA
Miles Conference of the Confer					The state of the s	581 <i>4</i> 2011		Mary Jak 1 (Jako A)
1445	GP-131	12/1/03	12/1/03	(7.5-8.5), (21.5-22.5)	NA NA	NA NA	NA NA	NA NA
Wooded Area South of	GP-132	12/1/03	12/1/03	(13.5-14.5),(24.0-25.0)	MS/MSD	NA 12/2/03	NA (16)	NA MS/MSD
2537 Curtiss	GP-133	12/1/03	12/2/03	(1.5-2.5), (16.5-17.5)	NA NA			
N. 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18	GP-134	4/6/04	4/6/04	(1.5-2.5), (17.5-18.5)	NA NA	4/7/04	16'-26'	NA.
						The second secon	NA NA	NA NA
<b>}</b> −	GP-54 GP-55	1/16/04 1/15/04	1/26/04 1/27/04	(3.5-4.5),(12.5-13.5),(25.5-26.5) (14.5-15.5),(24.5-25.5)	NA. DUP. MS/MSD	NA NA	NA NA	NA NA
<u>}-</u>	GP-56			(3.5-4.5),(25.5-26.5)	NA	NA NA	NA NA	NA NA
} <del>-</del>	GP-57	1/16/04	1/27/04	(4.5-5.5),(15.5-18.5)	NA NA	NA NA	NA NA	NA NA
2500 Curtiss	GP-58	1/16/04	1/26/04	(1.5-2.5),(15.5-16.5)	DUP	NA NA	NA NA	NA NA
<b>-</b>	GP-59	1/16/04	1/26/04	(1.5-2.5),(5.5-6.5),(13.5-14.5)	NA NA	NA NA	NA NA	NA NA
<b>⊢</b>	GP-60	1/15/04	1/27/04	(3.5-4.5),(9.5-10.5),(15.5-16.5)	NA NA	1/27/04	. (20.0-30.0)	NA NA
<u> </u>	GP-207	1/16/04	1/26/04	(2.5-3.5),(8.5-9.5),(16.5-17.5)	NA NA	1/27/04	(20.0-30.0)	NA NA
	GP-207	1710/04		CANAL REPORTS AND ADDRESS OF				
	GP-109	12/8/03	12/17/03	(1.5-2.5), (9.5-10.5)	(DUP)	NA	NA.	NA
<b>+</b>	GP-110	12/8/03	1/16/04	(1.5-2.5), (19.5-20.5)	MS/MSD	NA NA	NA NA	NA NA
2732 Wisconsin	GP-111	12/8/03	12/17/03	(10.5-11.5), (23.5-24.5)	NA NA	NA NA	NA NA	NA NA
	GP-112	12/8/03	1/16/04	(2.5-3.5), (9.5-10.5)	DUP	NA NA	NA NA	NA NA

I:\WO\RAC\233\34286T4-30.XL8

RFW233-2A-AQSD

## TABLE 4-30 (Continued) Logging and Sampling Summary Ellsworth Industrial Site Downers Grove, Illinois

				Downers Grove, minois		<u></u>		
Property	Soil Boring Location	MIP Completed	Soil Sampled	Soil Sample Interval	Soil QA/QC	GW Sampled	GW Sample Depth	GW QA/QC
			ili sa kalendari	km se	Control of the service	N. 5-11 (1) E. 16 (2)		5 P. C.
	GP-100	4/7/04	4/7/04	(3.5-4.5), (17.5-18.5)	MS/MSD	4/8/04	15'-25'	NA
	GP-101	4/7/04	4/7/04	(3.5-4.5), (15.5-16.5)	NA	4/8/04	20'-30'	NA
2514 - 2518 Wisconsin L	GP-102	4/6/04	4/6/04	(5.5-6.5), (15.5-16.5), (19.5-20.5)	NA	4/7/04	20'-30'	DUP
	GP-103	4/7/04	4/7/04	(5.5-8.5), (13.5-14.5), (18.5-19.5)	DUP	4/8/04	12'-22'	NA
	GP-104	4/6/04	4/6/04	(8.5-9.5), (27.5-28.5)	NA NA	NA NA	NA .	NA
217 X 98 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
Ł	GP-81	12/22/03	12/22/03	(6.5-7.5), (11.5-12.5)	NA	NA	NA NA	NA .
	GP-82	12/22/03	12/22/03	(5.5-6.5), (9.5-10.5), (16.5-17.5)	NA .	12/23/03	(28)	NA
1	GP-83	12/22/03	12/22/03	(5.5-6.5), (9.5-10.5), (13.5-14.5)	NA	12/23/03	(28)	NA NA
2655 Wisconsin	GP-84	12/23/03	12/23/03	(5.5-6.5), (15.5-16.5)	NA	NA NA	NA NA	NA NA
	GP-85	12/22/03	12/23/03	(10.5-11.5), (20.5-21.5)	NA	12/23/03	(28)	MSD/DUP
[	GP-86	12/22/03	12/22/03	(11.5-12.5), (21.5-22.5)	NA	12/23/03	(28)	NA .
	GP-87	12/22/03	12/23/03	(3.5-4.5), (23.5-24.5)	NA	NA	NA.	NA.
	A CANADA NO MENDANCINA	hadden of the second	7.9×11.7×11.5					7.45 (27)
	GP-67	12/4/03	12/4/03	(4.5-5.5), (14.5-15.5)	NA	NA NA	NA NA	NA
	GP-68	12/3/03	12/3/03	(1.5-2.5), (25.5-26.5)	NA	NA	NA .	NA
[	GP-69	12/3/03	12/3/03	(1.5-2.5), (25.5-26.5)	NA	NA NA	NA NA	NA .
[	GP-70	12/4/03	12/4/03	(1.5-2.5), (13.5-14.5)	MS/MSD, DUP	NA NA	NA NA	NA
2525 Wisconsin	GP-71	12/4/03	12/12/03	(1.5-2.5), (15.5-16.5), (22-23)	MS/MSD	NA .	NA NA	NA
	GP-72	12/3/03	12/3/03	(3-4), (5-6), (27.5-28.5)	DUP	NA NA	NA NA	NA
. [	GP-73	12/4/03	12/12/03	(8.5-9.5), (15.5-16.5)	NA	NA NA	NA NA	NA.
[	GP-74	12/3/03	12/4/03	(1.5-2.5), (21.5-22.5)	NA	NA	NA NA	NA NA
	GP-75	12/2/03	12/3/03	(1.5-2.5), (25.5-26.5)	NA	NA NA	NA NA	NA NA
					PHILE STATE	<b>4</b>	NEW YORK STREET	5770
	GP-76	4/27/04	4/28/04	(12.5-13.5), (15.5-16.5), (20.5-21.5	MS/MSD, DUP	4/28/04	15'-25'	NA.
[	GP-77	4/27/04	4/27/04	(6.5-7.5), (19.5-20.5)	NA NA	4/28/04	7'-17'	NA NA
5411 Walnut	GP-78	4/27/04	4/28/04	(5.5-6.5), (15.5-16.5)	NA NA	4/28/04	7'-17'	NA NA
· [	GP-79	4/27/04	4/27/04	(3.5-4.5), (26.5-27.5)	NA	4/28/04	10'-20'	DUP
	GP-80	4/27/04	4/28/04	(11.5-12.5), (19.5-20.5)	NA NA	NA NA	NA NA	NA
				PER CONTROL OF THE PER CONTROL O				100 March 1999 1
	GP-178	4/8/04	4/8/04	(5.5-6.5), (9.5-10.5), (15.5-16.5)	NA	. 4/9/04	7'-17'	NA NA
2754 Maple	GP-179	4/8/04	4/8/04	(3.5-4.5), (10.5-11.5), (15.5-16.5)	DUP	4/9/04	12'-22'	NA NA
2754 Maple	GP-180	4/8/04	4/8/04	(5.5-6.5), (11.5-12.5)	NA	4/9/04	12'-22'	NA
	GP-181	4/8/04	4/8/04	(4.5-5.5), (10.5-11.5), (20.5-21.5)	NA .	4/9/04	20'-30'	NA NA
1000年		Personal Property and the second		50.000 2005 500 000 000 000 000 000 000 000	e vez el	THE RESIDENCE OF		
· · · · · · · · · · · · · · · · · · ·	GP-135	1/9/04	1/12/04	(4.5-5.5),(10.5-11.5)	NA	1/12/04	(10.0-20.0),(20.0-30.0)	NA NA
	GP-136	1/9/04	1/12/04	(3.5-4.5),(8.5-9.5)	DUP	NA NA	NA NA	NA NA
Γ	GP-137	1/9/04	1/13/04	(5.5-6.5),(9-10),(19.5-20.5)	DUP	1/13/04	(10.0-20.0)	NA NA
5000 - 5014 Chase	GP-138	1/12/04	1/13/04	(3.5-4.5),(8.5-9.5),(23.5-24.5)	NA	1/13/04	(10.0-20.0)	DUP
	GP-139	1/9/04	1/12/04	(5.5-6.5),(13.5-14.5)	NA	1/12/04	(10.0-20.0)	NA
	GP-140	1/12/04	1/13/04	(2.5-3.5),(15.5-16.5)	NA NA	1/13/04	(20.0-30.0)	NA NA
	GP-206	1/12/04	1/13/04	(1.5-2.5),(9.5-10.5),(13.5-14.5)	NA	1/13/14	(10.0-20.0)	NA NA
Signal Company		0.00104402747033	100	CARROLL SECTION CONTRACTOR	PSI (Victoria) (1878)	3.8.37 Jan 2004		C. (1998-140-141-149)
Desperts North of 1035	GP-203	4/29/04	4/29/04	(3.5-4.5), (18.5-19.5)	NA	4/29/04	20'-30'	NA
Property North of 4935  -	GP-204	4/29/04	4/29/04	(7.5-8.5), (19.5-20.5)	NA.	4/29/04	2-'-30'	NA NA
Belmont -				( (7.5-6.5), (18.5-20.5)	NA NA	9/20/04	230	

Ellsworth Industrial Park Site
WA No.: 233-RICO-B51 W
Data Evaluation Summary Report
Section: 4
Revision: 1
Data: 3 August 2004
Page: 3 of 4

## TABLE 4-30 (Continued) Logging and Sampling Summary Ellsworth Industrial Site Downers Grove, Illinois

Property	Soil Boring Location	MIP Completed	Soil Sampled	Soil Sample Interval	Soil QA/QC	GW Sampled	GW Sample Depth	GW QA/QC
CONSTRUCTION AND ARCH		OSSI KANDEN DI ANGEL	TO THE RESIDENCE				100000000000000000000000000000000000000	CANAL THE SECTION
	GP-167	12/10/03	12/11/03	(8.5-7.5), (15.5-16.5)	NA	12/12/03	(26)	. NA
	GP-168	12/10/03	12/11/03	(5.5-6.5), (11.5-12.5), (22.5-23.5)	DUP	12/12/03	(28)	NA.
4935 Belmont	GP-169	12/11/03	12/16/03	(1.5-2.5), (14.5-15.5)	NA	12/16/03.	(28)	NA
	GP-170	12/12/03	12/16/03	(6.5-7.5), (18.5-19.5)	MS/MSD, DUP	NA NA	NA .	NA NA
	GP-171	12/12/03	12/16/03	(8.5-9.5), (24.5-25.5)	NA	12/16/03	(28)	NA
		2000	200			1977	Nosekas synthy	No. (Book and the Sa
	GP-199	4/15/04	4/15/04	(7.5-8.5), (17.5-18.5)	NA NA	4/15/04	10	NA NA
4947 Belmont	GP-200	4/15/04	4/15/04	(8.5-9.5), (13.5-14.5)	DUP, MS/MSD	NA NA	NA NA	NA .
4647 Bellion	GP-201	4/15/04	4/15/04	(6.5-7.5), (10.5-11.5), (16.5-17.5)	NA	NA.	NA .	NA NA
	GP-202	4/15/04	4/15/04	(10.5-11.5), (21.5-22.5)	NA NA	4/15/03	5'	NA NA
	College Control of the State of					1000	100000000000000000000000000000000000000	CONTRACTOR AND
	GP-141	1/20/04	1/26/04	(0.5-1.5) (2.5-3.5) (19.5-20.5)	NA	NA	NA NA	- NA
	GP-142	1/22/04	1/23/04	(11.5-12.5), (24.5-25.5)	NA	1/23/04	(20-25)	NA NA
Property South of	.GP-143	1/22/04	1/23/04	(7.5-8.5), (11.5-12.5), (28-29)	DUP	1/23/04	(20-30)	NA .
Intersection of Curtiss&	GP-144	1/22/04	1/23/04	(1.5-2.5), (19-20)	NA	1/23/04	(15-25)	NA .
Glenview & East of	GP-145	1/20/04	1/26/04	(2.5-3.5).(11.5-12.5)	DUP	1/26/04	(11.0-21.0)	MS/MSD
Beimont	GP-146	1/21/04	1/23/04	(8.5-9.5), (20-21)	NA .	1/23/04	(20-30)	NA NA
	GP-147	1/21/04	1/26/04	(5.5-6.5),(13.5-14.5),(23.5-24.5)	MS/MSD	1/26/04	(7.0-17.0)	NA .
	GP-148	1/21/04	1/23/04	.(3.5-4.5), (19.5-20.5)	NA	1/23/04	(15-25)	NA NA
		AND DESIGNATION OF THE PROPERTY OF THE PROPERT		La de sala de la companya de la comp		22/16/20 20:20		
	GP-157	1/7/04	1/7/04	(3.5-4.5),(11.5-12.5),(15.5-16.5)	MS/MSD	1/8/04	(20.0-30.0)	MS/MSD
5023 Chase	GP-158	1/8/04	1/8/04	(2.5-3.5), (17.5-18.5)	NA	NA	NA	NA NA
0020 011030	GP-159	1/7/04	1/8/04	(4.5-5.5), (12.5-13.5)	NA	1/9/04	(20.0-30.0)	NA
	GP-160	1/7/04	1/8/04	(7.5-8.5), (12.5-13.5), (17.5-18.5)	NA .	NA NA	NA NA	NA NA
		Approximation and the second	CONTRACTOR OF SERVICE	ALTON A PROPERTY.				7.00
	GP-187	1/21/04	1/21/04	(1.5-2.5), (16.5-17.5)	· NA _	1/23/04	(10-20)	NA
	GP-188	1/21/04	. 1/21/04	(3.5-4.5), (17.5-18.5)	NA	1/23/04	(15-25)	NA.
5240 Belmont	GP-189	1/21/04	1/22/04	(9.5-10.5), (18.5-19.5)	DUP, MS/MSD	1/23/04	(9-19).	NA NA
	GP-190	1/21/04	1/22/04	(7-8), (11.5-12.5), (14.5-15.5)	NA NA	1/23/04	(10-20)	NA NA
	GP-191	1/21/04	1/21/04	(3.5-4.5), (13.5-14.5)	NA NA	1/23/04	(10-20)	DUP
							Kana kajaban kana X	***************************************
	GP-61	1/12/04	1/14/04	(5.5-8.5),(9.5-10.5),(15.5-16.5)	NA NA	1/9/04	(20.0-30.0)	NA NA
	GP-62	1/20/04	1/22/04	(3.5-4.5), (8.5-9.5), (21.5-22.5)	NA NA	1/23/2004	(15-25)	NA NA
2300 Wisconsin	GP-63	12/19/03	1/8/04	(4.5-5.5), (8.5-9.5)	NA NA	1/9/04	(20.0-30.0)	NA NA
	GP-64	1/12/04	1/14/04	(3.5-4.5),(19.5-20.5)	NA NA	1/14/04	(15.0-25.0)	NA NA
	GP-65	1/12/04	1/14/04	(5.5-6.5),(9.5-10.5)	NA NA	1/14/04	(20.0-30.0)	NA NA
Maria Maria San Harris Salabara (1995)	GP-66	12/19/03	1/8/04	(1.5-2.5), (6.5-7.5), (10.5-11.5)	DUP	1/9/04	(20.0-30.0)	DUP
		The second secon					A SECTION OF THE PROPERTY OF T	
	GP-125	4/16/04	4/16/04	(6.5-7.5), (15.5-16.5), (23.5-24.5)	DUP	4/27/04	10'-20'	MS/MSD
	GP-126	4/16/04	4/26/04	(3.5-4.5), (10.5-11.5)	NA NA	NA NA	NA NA	NA
2424 Wisconsin	.GP-127	4/16/04	4/26/04	(5.5-4.5), (17.5-18.5)	MS/MSD	4/27/04	7-17	NA NA
•	GP-128	4/16/04	4/26/04	(8.5-9.5), (18.5-19.5)	NA NA	4/27/04	7'-17'	NA NA
	GP-129	4/28/04	4/27/04	(2.5-3.5), (10.5-11.5), (23.5-24.5)	DUP	4/27/04	10'20'	NA NA
	GP-130	4/28/04	4/27/04	(3.5-4.5), (11.5-12.5), (20.5-21.5)	NA	4/27/04	10'-20'	NA NA

!:WO,RACC253343186T4-3,D.T.LS

Elloworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summary Report Section; 4 Revision: L Date: 3 August 2004 Page: 4 of 4

#### TABLE 4-30 (Continued) Logging and Sampling Summary Ellsworth Industrial Site Downers Grove, Illinois

Property	Soil Boring Location	MiP Completed	Soll Sampled	Soil Sample Interval	Soil QA/QC	GW Sampled	GW Sample Depth	GW QA/QC
	Post Contract of the Contract	CHECK AND THE SECOND	SAME PROPERTY.	CONTROL OF STREET				2011.0
<u> </u>	GP-95	1/13/04	1/15/04	(9.5-10.5), (13.5-14.5), (19.5-20.5)	NA NA	1/15/04	(10-20)	MS/MSD
l	GP-96	1/13/04	1/15/04	(8.5-9.5), (13.5-14.5)	NA	NA	NA	NA
2400 Wisconsin	GP-97	1/13/04	1/15/04	(5.5-6.5), (9.5-10.5), (13.5-14.5)	NA NA	1/16/04	(20–30)	NA NA
L	GP-98	1/13/04	1/15/04	(5.5-6.5), (11.5-12.5)	DUP	1/16/04	(20-30)	NA .
	GP-99	1/13/04	1/16/04	(5.5-6.5), (13.5-14.5)	DUP	1/16/04	(20-30)	NA NA
100000000000000000000000000000000000000						Production of the production o		
	GP-192	12/9/03	12/9/03	(5.5-6.5), (15.5-16.5)	.NA	NA_	NA .	NA
L	GP-193	12/10/03	12/10/03	(4.5-5.5), (23.5-24.5)	:NA	NA NA	NA NA	NA
<u> </u>	GP-194	12/9/03	12/9/03	(5.5-6.5), (23.5-24.5)	.NA .	12/10/03	(26)	NA
2333 Wisconsin	GP-195	12/9/03	12/9/03	(2.5-3.5), (14.5-15.5)	NA.	NA	NA .	NA
[	GP-196	12/10/03	12/10/03	(5.5-6.5), (9.5-10.5), (27.5-28.5)	DUP	NA	NA .	NA NA
	GP-197	12/10/03	12/10/03	(9.5-10.5), (23.5-24.5)	NA NA	NA .	NA	NA
	GP-198	12/10/03	12/11/03	(1.5-2.5), (11.5-12.5)	NA	- NA	NA .	NA NA
	GP-182	1/15/04	1/20/04	(3.5-4.5),(18.5-19.5)	NA .	1/21/04	(16-26)	NA NA
. [	GP-183	1/14/04	1/20/04	(3.5-4.5),(11.5-12.5),(15.5-16.5)		1/21/04	(10-20)	NA
2315 Maple [	GP-184	1/14/04	1/20/04	(8.5-9.5),(14.5-15.5),(19.5-20.5)	DUP	1/21/04	(15-25)	NA NA
L	GP-185	1/14/04	1/20/04	(2-3),(7.5-8.5),(17.5-18.5)	NA	1/21/04	(19-29)	NA NA
	GP-186	1/14/04	1/20/04	(4.5-5.5),(14.5-15.5)	NA :	1/21/04	(17-27)	NA NA
and the second				Except the second second	8 2 E			
L	GP-150	4/9/04	4/9/04	(1.5-2.5), (4.5-5.5)	NA NA	4/13/04	Ď _	MS/MSD
2265 Maple	GP-151	4/9/04	4/9/04	(3.5-4.5), (10.5-11.5)	NA .	NA_	NA	NA NA
	GP-152	4/9/04	4/9/04	(5.5-6.5), (15.5-16.5)	DUP, MS/MSD	4/13/04	9.5'	NA NA
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -				Constitution of the Consti		200		aget and the second
	GP-153	1/9/04	1/12/04	(8.5-9.5),(17,5-18,5)	NA	1/12/04	(20.0-30.0)	NA NA
5024 Chase	GP-154	1/8/04	1/9/04	(8.5-9.5),(18.5-19.5)	NA	NA_	NA	NA NA
3024 Chase	GP-155	1/8/04	1/9/04	(5.5-6.5),(11.5-12.5),(15.5-16.5)	DUP, MS/MSD	NA NA	NA	NA NA
	GP-156	1/8/04	1/9/04	(4.5-5.5),(11.5-12.5)	NA.	1/9/04	(26.0-30.0)	NA
					ar Openial Co	100000000000000000000000000000000000000		Carac Screen
	GP-105	4/5/04	4/5/04	(1.5-2.5), (14.5-15.5)	_ MS/MSD	4/6/04	20'-30'	NA.
2431 Curtiss	GP-106	4/5/04	4/5/04	(3.5-4.5), (9.5-10.5), (15,5-16.5)	NA.	4/6/04	17'-24'	MS/MSD
2731 Outuss	GP-107	4/5/04	4/5/04	(9.5-10.5), (21.5-22.5)	DUP	NA NA	NA	NA NA
	GP-108	4/5/04	4/5/04	(3.5-4.5), (9.5-10.5), 20.5-21.5)	NA	NA.	NA NA	NA NA

NA - Not applicable Dup - Field QC duplicate MS/MSD - Matrix Spike / Matrix Spike Duplicate sample

I:\WO'RAC\233\34286T4-30.XLS

RFW233-2A-AQSD

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5

Revision: 1 Date: 3 August 2004

Table 5-1

Site	Boring ID	Description/ Rationale of Location
2500 Curtiss	GP54	West side of building, evaluate groundwater constituents detected in previous studies on west side of building adjacent to west property
	L	line.
	GP55	North side of building
	GP56	Northeast portion of building, loading dock area, storage area
	GP57	Northeast corner of building, loading docks, container storage area, possible staining noted 1995 aerial photography.
	GP58	West side of building, evaluate groundwater constituents detected in previous studies on west side of building adjacent to west property line.
	GP59	West side of building, evaluate groundwater constituents detected in previous studies on west side of building adjacent to west property line.
	GP60	East side of property, adjacent to retention basin shown in multiple aerial photographs
	GP207	Northwest corner of property, evaluate previous VOC detections
2300 Wisconsin	GP61	Northwest corner of building, outside storage area and drainage ditch noted in 1967 and 1975 aerial photography
	GP62	North side of building, possible stacked storage area noted 1990 aerial photography.
	GP63	Wooded outlot northeast portion of property in area of noted drainage ditch 1967and 1975 aerial photography
	GP64	West side of building.
	GP65	East side of building, area where drainage ditches originate 1967 and 1975 aerial photography
	GP66	Wooded outlot northeast portion of property in area of noted drainage ditch 1967 and 1975 aerial photography
2525 Wisconsin	GP67	North side of building, loading dock area
	GP68	North side of building
	GP69	North side of building
	GP70	South side of building, manmade drainage channel noted along south side of building in 1978 aerial photo
	GP71	South side of building, ditch noted in area in 1967 aerial photo just to east, manmade drainage channel noted in 1978 aerial photo
	GP72	East side of building, refuse container storage area noted 1972 aerial photo, former vapor degreaser inside building
	GP73	South side of building, ditch noted in area in 1967 aerial photo
	GP74	North side of building, loading dock area
	GP75	East side of building, refuse container storage area noted 1972 aerial photo, former vapor degreaser inside building

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5 Revision: 1 Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location						
5411 Walnut	GP76	Northeast corner of building, outside storage area						
	GP77	East central side of building, storage area						
	GP78	West side of building adjacent to main overhead access doors						
	GP79	Southeast corner of building, outside storage area						
	GP80	East side of building, outside storage area						
2655 Wisconsin	GP81	Northeast corner of building, ground scar noted in 1981 aerial photo						
	GP82	East side of building, north of possible drum storage area 1972 and 1975 aerial photo						
	GP83	East side of building, south of possible drum storage area and at beginning of drainage ditch noted in 1972 aerial photo						
	GP84	Southwest corner of building						
	GP85	outheast corner of building, area of debris and soil staining noted in 1972 and 1975 aerial photograph. Horizontal and vertical tanks and il staining noted in 1981 aerial photo.						
	GP86	Open area southeast of building, staining, outside storage, and dark toned soil noted 1975 and 1978 aerial photographs						
	GP87	Near south property line, just south of cleared area and soil stain area noted in 1972 and 1975 aerial photograph.						
2400 Wisconsin	GP95	North side of building, drainage ditch noted 1975 aerial photo, debris noted 1978 aerial photo,						
	GP96	North side of building, drainage ditch noted 1975 aerial photo,						
	GP97	Eeast side of building						
	GP98	West side of building						
	GP99	East side of building						
2518 Wisconsin	GP100	North side of building						
	GP101	West side of building						
	GP102	Eeast side of building						
	GP103	West side of building						
	GP104	East side of building						

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5

Revision: 1
Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location
2431 Curtiss	GP105	West side of building
	GP106	East side of building
	GP107	West side of building
	GP108	East side of building
2732 Wisconsin	GP109	Northern portion of property, open area
	GP110	Northwest corner of building, dark toned soil, disturbed ground and faint ground scar noted 1978 aerial photography
	GP111	Northeast corner of building
	GP112	West side of building
	GP113	East side of building
5224 Katrine	GP114	North side of building
	GP115	North side of building
	GP116	Northwest corner of building, location of vertical tank, unknown use.
	GP117	Near southwest corner of building
· .	GP118	South side of building, outside storage area noted 1990 aerial photography
5225 Walnut	GP119	North side of building
	GP120	Northeast corner of building
	GP121	West side of building adjacent to loading docks
	GP122	East side of building.
	GP123	Open area east side of property, disturbed ground noted 1995 aerial photography
	GP124	Near southeast corner of building.

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5 Revision: 1 Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location
2424 Wisconsin	GP125	Open area northwest portion of property, dart toned mounded material noted 1978 aerial photograph
	GP126	Open area northeast portion of property, drainage ditch noted 1978 and 1981 aerial photos,
	GP127	North side of building, outside storage area, dark toned soil, and probable staining noted 1978 aerial photo, outside storage along north wall of building noted in 1990 aerial photo
	GP128	North side of building, outside storage area, dark toned soil, and probable staining noted 1978 aerial photo, outside storage along north wall of building noted in 1990 aerial photo
	GP129	Northeast corner of building, drainage ditch noted 1978 aerial photo, outside storage along north wall of building noted in 1990 aerial photo
	GP130	East side of building.
<b>Wooded Property</b>	GP131	Along property line south of wooded area
South of 2537	GP132	Along property line south of wooded area
Curtiss	GP133	Along property line south of wooded area
	GP134	Along property line east of wooded area
5000-5014 Chase	GP135	Loading dock area north side of building
	GP136	Loading dock area north side of building
	GP137	Loading dock area north side of building
	GP138	Loading dock area north side of building
	GP139	Access entryway west side of building
	GP140	South side of building, center area
	GP206	Northeast corner of buildings adjacent to borehole with confirmed contaminants from previous study

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5 Revision: 1 Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location
Property South of	GP141	Location of former pond/lagoon in 1956 aerial photography
Curtiss and	GP142	Location of former structures/buildings/storage areas 1963 aerial photography
Glenview Streets	GP143	Location of former structures/buildings/storage areas 1963 aerial photography
and East of	GP144	Location of former structures/buildings/storage areas 1963 aerial photography
Belmont	GP145	Location of former pond/lagoon in 1956 aerial photography
	GP146	Location of former structures/buildings/storage areas 1963 aerial photography
	GP147	Former pond/lagoon outfall area
·	GP148	Former pond/lagoon
2265 Maple	GP150	South side of building unit, cleaning equipment located inside building this area
•	GP151	North side of building unit, front of business
	GP152	South side of building unit, cleaning equipment located inside building this area
5024 Chase	GP153	West side of unit, loading dock area
<u> </u>	GP154	Random location east side of building, nearest access front of building
	GP155	Storage/parking area west side of lot, west side of building, light toned material noted 2001 aerial photography
	GP156	West side of unit, loading dock area
5023 Chase	GP157	East side of building, nearest access front of building
	GP158	East side of unit, loading dock area
	GP159	Outside storage area, dark toned material, possible soil staining 1978 aerial photography.
	GP160	East side of unit, loading dock area
5126 Walnut	GP161	Northwest corner of building
	GP162	North side of building, central portion
	GP163	Northeast corner of building
ļ .	GP164	Outside storage lot
	GP165	Southwest corner of building
	GP166	South side of building, central portion

Ellsworth Industrial Park Site WANO.: 233-RICO-B51W Data Evaluation Summary Report Section: 5 Revision: 1 Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location
4935 Belmont	GP167	Storage area north side of main building
	GP168	Storage /parking area east side of main building
	GP169	East side of property in parking lot/storage area
	GP170	Storage /parking area east side of main building
	GP171	East side of property in parking lot/storage area
2824 Hitchcock	GP172	Northwest corner of building, outside storage area with crates, debris, and dark toned objects noted in 2001 aerial photography
	GP173	Northeast corner of building
	GP174	West side of building, dark stained soil noted 2001 aerial photography
	GP175	East side of building
	GP176	Southwest corner of building
	GP177	Southeast corner of building
2754 Maple	GP178	North side of building unit
	GP179	North side of building unit
	GP180	South side of building unit, front of business
	GP181	South side of building unit, front of business
2315 Maple	GP182	West side of main building in front of large overhead access doors
	GP183	Southwest corner of building
	GP184	Auto/equipment storage area.
•	GP185	Southeast corner of building, outside storage area
	GP186	Auto/equipment storage area.
5240 Belmont	GP187	Northwest corner of building, north of existing storage area
	GP188	Location in driveway, north side of building
	GP189	West side of building adjacent to existing storage, possible staining noted 1975 aerial photography
	GP190	Location in driveway, south side of building
	GP191	Location east side (front) of building.

Ellsworth Industrial Park Site WANo.: 233-RICO-B51W Data Evaluation Summary Report Section: 5

Section: 5
Revision: 1
Date: 3 August 2004

#### Table 5-1 (Continued)

Site	Boring ID	Description/ Rationale of Location
2333 Wisconsin	GP192	Northwest corner of building
	GP193	Northeast corner of building
	GP194	West central side of building, dark toned material and disturbed ground noted 1978 and subsequent aerial photographs
	GP195	West central side of building, dark toned material and disturbed ground noted 1978 and subsequent aerial photographs
	GP196	West side of building, disturbed ground noted 1963 aerial photo under adjacent structure, outside storage with possible drums and tanks noted in 1978 and 1981 aerial photos
	GP197	Southwest corner of building, dark toned soil noted 1967 and 1975 aerial photo under adjacent structure
	GP198	Southeast corner of building, drainage ditch noted along south side of building in multiple aerial photos.
4947 Belmont	GP199	Northwest corner of former structure
	GP200	Northeast corner of former structure
	GP201	Southwest corner of former structure
	GP202	Southeast corner of former structure
Property North of	GP203	West side of property
4935 Belmont	GP204	Center of property
	GP205	East side of property

Ellsworth Industrial Park Site WA No.: 233-RICO-B51W Data Evaluation Summary Report Section: 5 Revision: 1 Date: 3 August 2004

Table 5-2
Summary of Water Quality Parameters
Groundwater Sampling
Ellsworth Industrial Park

Downers Grove, Illinois

Purge Volume pН Temperature Conductivity Turbidity (NTU) Location Sample Date (gallons) (standard pH unit) (°C) (µS)_ 2.2 GP133 12/2/2003 6.04 10.7 1390 419 GP145 1/26/2004 0.6 7.01 10.1 1581 GP106 0.3 4/6/2004 1.5 6.98 14.5 1242 GP102 4/7/2004 3 7.08 15.3 1318 70.3 GP103 4/8/2004 2.5 6.75 13.6 1214 2,75 4/8/2004 GP101 3.5 6.82 14.5 34 966 GP171 4/9/2004 2.8 7.12 12.8 862 420 GP178 4/9/2004 7.19 11.5 837 0.12 4/9/2004 GP181 2.4 6.74 22 17.3 4.21 7.1 GP180 4/9/2004 3 15.9 4990 1.73 GP150 4/13/2004 0.6 6.89 10.1 2850 GP177 4/14/2004 6.88 12.8 3820 0,33 1.2 950 GP199 4/15/2004 7.21 16.1 2280 2 GP125 4/27/2004 0.84 7.09 12.7 672 1.79 GP127 GP130 4/27/2004 1.32 7.26 12.4 509 0.4 4/27/2004 6.91 3310 1.2 14.4 0 GP129 4/27/2004 1.2 7.03 14.8 1646 0.4 GP79 4/28/2004 7.13 20 1017 911 GP77 4/28/2004 7 16.1 3 642 17.4 GP76 4/28/2004 1.32 6.84 15.7 1298 0

--- Not measured due to insufficient volume

1:\WO\RAC\233\4286T3-2.XLS RFW233-2A-AQSD

# APPENDIX A Soil Boring Logs

	U.S. E	PA COI	NTRAC	T No.	TRACT 88-W7-0026 RICO-851W		LOG	OF	BORING EIP-0	GP54 (Page 1 of 1)	
	Ellswor				в .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 26 Januar : IPS : Geoprobe : Ryan Scot	-	Total Depth : 30' BGS WESTON Geologist : Ted Cagney Location : 2500 Curtiss		
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer	
	0— 2— 4—	36/48		FL CL	FILL; Sandy day, greslightly moist, stiff. SANDY CLAY; Browdry to slightly moist. SILTY CLAY; Dark by gravel, very friable all	n, soft, trace gravel,		0.0	Soil sample collected at 14:55 for VOCs and percent moisture content - sample ID EIP-GP54-01.		
	10—	SAND with gravel; O loose, dry, no petrole 36/48. SW			SAND with gravel; O loose, dry, no petrole	range, coarse gravel eum odor or staining.	-	0.0	Soil sample collected at 15:10 for VOCs and percent moisture content - sample ID EIP-GP54-02.	2" PVC Riser	
07-13-2004 K-N 51 5/Ellsworth Industrial Park Boring Logs/EiP-GP054(28).bor	22- 22- 24- 26-	21/48		CL	SANDY CLAY; Brow trace gravel, soft, bu depth.	n and grey, moist, t becomes, hard with		0.0	Piezometer well screen set from 20 to 30 feet.  Soil sample collected at 15:30 for VOCs and percent moisture content sample ID EIP-GP54-03.	0.010" Slot Screen	
07-13-200	30-		<u></u>	<u> </u>	End of boring @ 30'.	·		<u> </u>	ŀ	] [	

		PA COI	NTRAC	T No.	68-W7-0026		L	.OG	OF	BORING EIP-G	P55	;
	Work A	rth Indu	ıstrial P	ark Sit	RICO-B51W	Date Completed Drilling Company Drilling Method Driller Name	: IPS : Geo			Total Depth		age 1 of 1) : 27'BGS : Ted Cagney : 2500 Curtiss
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		: 2*	Boring Intervals	PID (ppm)	REMARKS	Wei	l: Piezometer
	0- 2- 4- 6- 8-											2" PVC Riser
27).bor	12- 14- 16-	36/48		SW	CLAYEY SAND and orange, less clay with grained sand and grasome plasticity, decr	h depth, coarse avel, slightly moist,	nd		0.0	Soil sample collected at 8:55 for VOCs and percent moisture content - sample ID EIP-GP55-01.		
rial Park Boring Logs EIP-GP055(	20-					*	. *			Piezometer well screen set from 17 to 27 feet.		0.010" Slot Screen
07-13-2004 K:11515 Ellsworth Industrial Park Boring Logs EIP-GP055(27), bor	24-	36/48		CL	SILTY CLAY; Grey, trace gravel.  End of boring @ 27'			X	0:0	Soil sample collected at 9:10 for VOCs and percent moisture content sample ID EIP-GP55-02.		
	28-	1			<del></del>							

	RESPO				FRACT 58-W7-0026		L	.OG	OF	BORING EIP-C	SP56	
					RICO-B51W						(P	age 1 of 1)
	Ellswor				· •	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: IPS : Geo	January oprobe un/Scot		Total Depth	ologist	: 30' BGS : Ted Cagney : 2500 Curtiss
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	l: Piezometer
	0-					• • •	-				[	]
	2- 1- 4-	48/48		FL	FILL; Sand and grave and gray, dry, loose,	coarse grained sand	_ i.	$\square$	0.0	Soil sample collected at 9:50 for VOCs and percent moisture content - sample		
	, - -			CL	SILTY CLAY; Brown slight organic odor, to	race gravel.				ID EIP-GP56-01.		
	6-				<del>_</del>	·						
	8											
	10									·		2" PVC-Riser
	12-								:			
	14			:		·						
	16-											
28).bor	18-							·				
-GP056(	-			,								
Logs/EIP	20-				(1) (1) (1)	-			ļ ļ	Piezometer well screen set from 20 to 30 feet.		
ark'Boring	22-						:					
dustrial Pa	24 SAND and CRAV				NOAND and CRAVE	I. Drove medical	· — :					
07-13-2004 K:\1515Eilsworth Industrial Park Boring Logs EIP-GP056(28).bor	26-	20/48		sw	SAND and GRAVE grained, dry, loose.	u; Brown, medium	٠	X		Soil sample collected at 10:15 for VOCs and percent moisture content - sample ID EIP-GP56-02.		0.010" Slot Screen
K:1151	28-					- <u></u>	· 					
13-2004	,				End of boring @ 30'						·	
-20	30-	<u> </u>										<b>]</b>

U.S. I		NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		L	OG	OF	BORING EIP-C		
1 -	orth Indo			e.	Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: IPS : Geo : Rya	Januar probe in Scot		Total Depth WESTON Ge Location		: 30' BGS : Ted Cagney : 2500 Curtiss
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well	l: Piezometer
6· 8·	30/48		FL	FILL; Sand and grav coarse grained sand gravel. SANDY CLAY; Brow trace gravel, high pla	, dry, well graded n, dry to slightly mo	/		0.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP57-01.		2" PVC Riser
	SW SAND and GRAVI coarse grained. SANDY CLAY; Brogravel, hard.		SANDY CLAY: Brow		/		0.0	Soil sample collected at 11:15 for VOCs and percent moisture content - sample ID EIP-GP57-02.			
20. 18-18/18/18/18/18/18/18/18/18/18/18/18/18/1					÷.				Piezometer well screen set from 20 to 30 feet.		
28 58 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15 58 15									300 1001		0.010" Slot Screen
30	1	<u></u>	<u></u>	End of boring @ 30'			;			] [	

•					: TRACT 68-W7-0026		LC	G	OF	BORING EIP-G	SP58	}
	Work A	\ssignn	nent No	). 155-f	RICO-B51W	· 					(P	age 1 of 1)
	Ellswor Downe				e .	Date Completed Drilling Company Drilling Method Oriller Name Borehole Diameter	: 26 Jar : IPS : Geopr : Ryan :	obe		Total Depth	ologist	: 30' BGS : Ted Cagney : 2500 Curtiss
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	II: Piezometer
	2-	48/48		FL	3" FILL; Asphalt and SILTY SAND; Tan, w SANDY CLAY; Grey gravel, dry to slightly	ith gravel, loose, dry and brown, with			0.0	Soil sample collected at 13:18 for VOCs and percent moisture content - sample ID EIP-GP58-01.		
	6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	48/48	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	GW	CLAYEY SAND and orange, coarse grain		_	X	0.0	Soil sample collected at 13:35 for VOCs and percent moisture content - sample ID EIP-GP58-02.		
	10 - 12 -											——2" PVC Riser
	14-				SAND and GRAVEL	Orange, coarse	-					
9).bor	16- 18-	6- grained, dry, loose, 30/48 SW				X		Soil sample collected at 14:10 for VOCs and percent moisture content - sample ID EIP-GP58-03.				
S/EIP-GP058(1	20-					· <b></b>	-	الس				
ark/Boring Log	22-									·**, •.		
rth Industrial P.	24- - - 26-							Piezometer well screen set from 20 to 30 feet.		0.010" Slot Screen		
07-13-2004 K:\\515\Ellsworth Industrial Park\Boring Logs\ElP-GP058(19).bor	28-								,			
07-13-2004	30-				End of boring @ 30'.							

Boring Intervals    Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Intervals   Soring Inter	U.S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026		LC	og	OF	BORING EIP-G	- SP59	)
Ellaworth Industrial Park Site Downers Grove, Illinois  Drilling Gompany Drilling Method Driller Name Ryan Scott Borehola Diameter Ryan Scott Location  2500 Curd Borehola Diameter REMARKS  Depth In Stand Scott Borehola Diameter Remarks REMARKS  REMARKS  REMARKS  DESCRIPTION  Depth In Stand Scott REMARKS  DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  REMARKS  Soil sample collected at 11:37 FILL; Sand with gravel, tan, low plasticity, dry.  Soil sample in EIP-GP59-01.  Soil sample collected at 11:37 FOVCs and percent moisture content-sample ID EIP-GP59-02.  Soil sample collected at 11:37 FOVCs and percent moisture content percent moisture percent percent moisture percent percent percent percent percent perce	Work /	Assignn	nent No	o. 155-l	RICO-B51W						(P	age 1 of 1)
Depth in in feet   Depth in in feet   Depth in in feet   Description	1 '				e	Drilling Company Drilling Method Driller Name	: IPS : Geopi : Ryan	robe		WESTON Ge	ologist	
FILL; Sand with gravel, tan, low plasticity, dry.  FIL Fill; Sand with gravel, tan, low plasticity, dry.  FIL Fill; Sand with gravel, tan, low plasticity, dry.  Soil sample collected at 11:32 for VOCs and percent moisture content sample ID EIP-GP59-01.  Soil sample collected at 11:37 for VOCs and percent moisture content percent moisture percent	in	Recovery (in)	GRAPHIC	nscs	VOC Soil Samp	le Interval		Boring Intervals	PID (ppm)	REMARKS	Wel	li: Piezometer
4 4 48/48 FL dry.  CL SILTY CLAY; Brown, trace gravel, dry to slightly moist, soft.  SC SANDY CLAY; Tan and orange, with gravel, dry to slightly moist, stiff.  SC SANDY CLAY; Tan and orange, with gravel, dry to slightly moist, stiff.  SC SANDY CLAY; Tan and orange, with gravel, dry to slightly moist, stiff.  Soil sample collected at 11:32 for VOCs and percent moisture content - sample ID EIP-GP59-01.  Soil sample collected at 11:37 for VOCs and percent moisture content - sample ID EIP-GP59-02.  Soil sample collected at 11:38 for VOCs and percent moisture content - sample ID EIP-GP59-03.	0-		5.5		Ell I : Sand with gray	el tan low plasticity					ι ὶ: Γ	1
CL slightly moist, soft.  SC SANDY CLAY; Tan and orange, with gravel, dry to slightly moist, stiff.  SC SANDY CLAY; Tan and orange, with gravel, dry to slightly moist, stiff.  SC SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:37 for VOCs and percent moisture content sample ID EIP-GP59-02.  Soil sample collected at 11:48 for VOCs and percent moisture content sample ID EIP-GP59-03.	2-	48/48	0 0 0 0	FL	dry.			X	0.0	11:32 for VOCs and percent moisture content -	. ,	
SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:37 for VOCs and percent moisture content - sample ID EIP-GP59-02.  Soil sample collected at 11:38 for VOCs and percent moisture content - sample ID EIP-GP59-03.		=		CL	SILTY CLAY; Brown slightly moist, soft.	, trace gravel, dry to				sample to EIF-GF39-01.		
SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:48 for VOCs and percent moisture content - sample ID EIP-GP59-03.	4-	=		sc						Soil sample collected at		,
SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SP  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:48 for VOCs and percent moisture content sample ID EIP-GP59-03.	6-	48/48		sc	SANDY CLAY; Tan a gravel, dry to slightly	and orange, with moist, stiff.		X	0.0	11:37 for VOCs and percent moisture content -		
SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SP  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:48 for VOCs and percent moisture content sample ID EIP-GP59-03.	8-	8					-  L	ᅫ				ï
SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  SP  SP  SAND and GRAVEL; Orange, coarse grained, dry, low plasticity, some large cobbles throughout.  Soil sample collected at 11:48 for VOCs and percent moisture content - sample ID EIP-GP59-03.	10-									·		2" PVC Riser
14—38/48 SP cobbles throughout.  SP cobbles throughout.  11:48 for VOCs and percent moisture content - sample ID EIP-GP59-03.	12-	1		_	SAND and GRAVEL	; Orange, coarse	-	$\neg$		Sail comple collected at		
	14-	38/48		SP	cobbles throughout.	sucity, some large		X	0.0	11:48 for VOCs and percent moisture content -		i .
18-    20-    22-      24-	16-	<u>-</u>		-			-	_				
20-1 22-1 24-1 24-1 24-1 24-1 24-1 24-1 24	g 18-	1	į									·
22- 24- 24- 26- 26- 28- 28- 28-	11)650d5-d	1		,					:			
Piezometer well screen set from 20 to 30 feet.	19860 Bul	1								4, s,		
Piezometer well screen set from 20 to 30 feet.	24-	=										
28- 199 98- 199 199 199 199 199 199 199 199 199 199	ть индельная 26-	4 4 4 -										0.010" Slot Screen
	5/Ellsw	]										
	78- 28-	<del>-</del>   		. :		•						
등 30 End of boring @ 30'.	<u>원</u> 30-	<del>                                     </del>	<u> </u>	L	End of boring @ 30'.	· · · · · · · · · · · · · · · · · · ·	<u>l</u> '			<u></u>	1 1	H

<b>⊍.</b> s.	EPA (	CON	ITRAC	T No.	TRACT 68-W7-0026 RICO-B51W	· ·	L	.OG	OF	BORING EIP-G	6P60 (Page 1 of 1)
	worth-l			ark Sit	e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: IPS : Ged	Januar oprobe an Scot		Total Depth WESTON Ge Location	: 30' BGS ologist : Ted Cagney : 2500 Curtiss
Depti in feet	1 00	Newvery (iii)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
2	36/	48		FL	FILL; Sandy day and slightly moist, moder SILTY CLAY; Brown moist, trace gravel.	ate plasticity.			0.0	Soil sample collected at 12:00 for VOCs and percent moisture content - sample ID EIP-GP60-01.	
10	3-24	/48		CL.	As above.	·			0.0	Soil sample collected at 12:10 for VOCs and percent moisture content - sample ID EIP-GP60-02.	2" PVC Riser
	30,	/48		CL	SILTY CLAY; Black, gravel, organic odor. SAND and GRAVEL coarse grained sand	; Brown and orange,			0.0	Soil sample collected at 12:25 for VOCs and percent moisture content - sample ID EIP-GP60-03.	
97-13-2004 K.M.S.I SEII sworth Industrial Park Boxing Loga EIP -CP060(18)-box 30 20 20 20 20 20 20 20 20 20 20 20 20 20							•			Piezometer well screen set from 20 to 30 feet.	0.010" Slot Screen
70.43-2004	,=			·	End of boring @ 30'.						

RESPONSE ACTION CONTRACT LOG OF BORING EIP-GP61 U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 14 January 2004 **Date Completed** Ellsworth Industrial Park Site **Drilling** Company : IPS **Total Depth** : 30' BGS Downers Grove, Illinois WESTON Geologist : Geoprobe **Drilling Method** : James Molholm : Ryan Scott **Driller Name** Location : 2300 Wisconsin Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected **Boring Intervals** Geologic Sample Interval Recovery (in) Well: Piezometer PID (ppm) GRAPHIC Depth **REMARKS** in feet **DESCRIPTION** 0 2-SILTY CLAY; Brown, organic with roots, some coarse gravel, soft, moist, plastic. Soil sample collected at 11:06 for VOCs 6-32/48 0.0 and percent moisture SILTY CLAY; Tan, firm, some moist, low content - sample ID plasticity. EIP-GP61-01. 8-SILTY CLAY; Brown and tan, some sand and gravel, firm, plastic. Soil sample collected at 11:16 for VOCs 10-48/48 0.0 2" PVC Riser and percent moisture SILT; Tan, with coarse sand and medium content - sample ID gravel, 2" seam of rock fragments at 11.5', EIP-GP61-02. very moist. 12-14 SILTY CLAY; Tan, with rock (dolostone) fragments, firm, slightly moist. CL Soil sample collected at 11:30 for VOCs CLAY, Grey, moist, with more plasticity. 16-46/48 0.0 and percent moisture CL content - sample ID EIP-GP61-03. 07-13-2004 K:N 515/Ellsworth Industrial Park/Boring Logs/EIP-GP061(18).bor 18-20-22-24 Piezometer screen set 0.010" Slot Screen from 20 to 30 feet. 26 28 30 End of boring @ 30'.

		A COI	NTRAC	T No.	68-W7-0026		LOC	3 O	FΒ	BORING EIP-GP62		
	Work A	ssignn	nent No	). 155-F	RICO-B51W						(P	age 1 of 1)
	Ellswor Downe				e 	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 Janua : IPS : Geoprob : Ryan So : 2"	e	)4	Total Depth WESTON Geo Location	ologist	: 25' BGS : James Molholm : 2300 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
١	0-	IL.					<u>\</u>		UL.		Г	1
	2	48/48		CL	SILTY CLAY; Brown low moisture, low pla gravel.	fading to tan at 3', si sticity, with coarse a	tiff, ingular	X	0.0	Soil sample collected at 14:46 for VOCs and percent moisture content - sample ID		
	6-		W			. <b></b> _		Щ		EIP-GP62-01.		
	8-	36/48		CL	As above; Tan, stiff, increasingly brown, of Frequent poorly grad and gravel, moist.	rey, and soft at 9.5'.	 .d,	X	0.0	Soil sample collected at 14:55 for VOCs and percent moisture content - sample ID EIP-GP62-02.		2" PVC Riser
	12-											1200
200	14-											·
P062(24).	16-											1.
ring Logs/EIP-G	18						·.		,		-	
07-13-2004 K:11515 Ellsworth Industrial Park Boring Logs EIP-GP062(24), bor	plastic, with poorly				SILTY CLAY; Grey, plastic, with poorly s	orted gravels and	oist,			Piezometer screen set from 15 to 25 feet.  Soil sample collected		0.010" Slot Screen
15/Ellsworth Inc	22 40/48 CL Occasional sand la				occasional sand laye	ers (3").		X	0.0	at 15:10 for VOCs and percent moisture content - sample ID EIP-GP62-03.		
104 K:115	24											
7-13-20	_		<b>.</b>	L	End of boring @ 25'.	<del></del>			L	1	i i	<b>1</b>
٦	26-	L										

l				TRACT 68-W7-0026	LOG OF BORING EIP-GP63						
Work A	Assignn	nent No	). <b>1</b> 55-l	RICO-B51W	: :					(Page 1	l of 1)
Ellswor Downe				<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 Janua : IPS : Geoprot : Ryan So : 2"	æ	4	Total Depth WESTON-Ge Location	-	BGS. es Molholm ) Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporar	y Well
0- 2-				·							
4-	47/48		CL	CLAY; Tan, stiff, low gravel, occasional da layers.	plasticity, trace coars ark brown organic da	se y	X	0.0	Soil sample collected at 13:12 for VOCs and percent moisture		
8-	40/48		CL	CLAY; Tan, stiff, son with trace large roun	ne moisture, low plas ded gravel.	ticity,	$\boxtimes$	0.0	content - sample ID EIP-GP63-01.  Soil sample collected at 13:19 for VOCs and percent moisture content - sample ID		
12-									EIP-GP63-02.		2" PVC Riser
14-									·		
16-											
18-								:			
22- 24- 24- 30-											
24-									:		
26-									Piezometer screen set from 20 to 30 feet.		0.010" Slot Scree
28-					•						
30-	<u> </u>	<u>'</u> '	<u></u>	End of boring @ 30'.				<u> </u>	<u> </u>	П	

		PA COI	NTRAC	T No.	68-W7-0026		LO	G O	FΒ	ORING EIP-G	SP64	
	Work A	ussignn	nent No	). 155-F	RICO-B51W						(P	age 1 of 1)
	Ellswor Downe				9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 14 Janu : IPS : Geoprol : Ryan So : 2"	be	04	Total Depth WESTON Ge Location	ologist	: 25' BGS : James Molholm : 2300 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	l: Piezometer
	0-											]
	2	48/48		CL	2" SAND; Dark Brow moist. SILTY CLAY; Brown with coarse and roun fragment, firm, low pi CLAY; tan.	with dark organic danded gravel, and brid	ay, xk		0.0	Soil sample collected at 9:11 for VOCs and percent moisture content - sample ID EIP-GP64-01.		
	8-											—— 2* PVC Riser
	12-									·		
P-GP064(22).bor	16-	:							!	Piezometer screen set		
rk'Boring Logs'E	18-			CL	SILTY CLAY; Grey, splasticity, moist.	slight soft, moderate	<b>,</b> –			from 15 to 25.  Soil sample collected at 9:27 for VOCs and		
orth Industrial Pa	20-	38/48		МН	SANDY SILT; Grey, gravel and silt seams	trace 3" medium gra s, soft, wet.	ained	X	0.0	percent moisture content - sample ID EIP-GP64-02.		0.010" Slot Screen
07-13-2004 K:\1515'Ellsworth Industrial Park'Boring Logs'ElP-GP064(22).bor	24-						<u>-</u>					
07-13-2	26				End of boring @ 25'.				1	<u> </u>	. !	J
(	26-	<u> </u>										

	ONSE A			FRACT 68-W7-0026	LOG OF BORING EIP-GP65								
Work	Assignn	nent No	. 155-F	RICO-B51W					(Page 1 of 1)				
	orth Indu ers Gro			e	Date Completed : 14 January 2004 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"				Total Depth WESTON Ge Location	ologist	: 30' BGS : James:Motholm : 2300 Wisconsin		
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		Boring Intervals	PID (ppm)	REMARKS	Well	: Piezometer			
2-						:							
6-	36/48		CL	SILTY CLAY; Brown sub-rounded, and su fragments, firm, sligh	ib-angular gravel, b	 orick icity.	X	0.0	Soil sample collected at 8:09 for VOCs and percent moisture content - sample ID				
8-	] ]	//	CL.	SANDY CLAY; Brow soft, moist. Wet coa plastic.	TY CLAY; Tan, with gravel, firm, low				EIP-GP65-01.  Soil sample collected				
	48/48		CL	<u> </u>			X	0,0	at 8:18 for VOCs and percent moisture content - sample ID EIP-GP65-02.	,	——2" PVC Riser		
12									211-01-00-02.				
14-						,							
16									  -				
18: 18:								:					
20 19 19	1				÷	•		 !					
Soring Log	1				•	. •					,		
200-61-70 2004 K:\\ 51-51 5 Fell sworth Industrial Park Boring Logs 61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 50-61-70 5									Piezometer screen set		0.010" Slot Screen		
frows From 26	1								from 20 to 30 feet.				
28	1				•			t.					
30	-	<u></u>	<u>t                                     </u>	End of boring @ 30'	<u>'</u> .		1			] [	3		

1			CTION		RACT 68-W7-0026	LOG OF BORING EIP-GP66							
1					ICO-851W						(Page 1 of 1)		
			strial P			Date Completed : 8 January 2004  Drilling Company : IPS  Drilling Method : Geoprobe  Driller Name : Ryan Scott  Borehole Diameter : 2"				Total Depth WESTON Geo Location	: 30' BGS ologist : James Molholm : 2300 Wisconsin		
		y (in)	၁		Boring Intervals  VOC Soil Samp  Geologic Sampl			itervals	(1		Temporary Well		
Der ir fed	١	Recovery (in)	GRAPHIC	nscs	DES	CRIPTION		Boring Intervals	PID (ppm)	REMARKS			
	2-4-	48/48		CL	SILTY CLAY; highly: low moisture, low pla top, some coarse sut	sticity, 1" organic soil	stiff,		0.0	Soil sample collected at 11:25 for VOCs and percent moisture content - sample ID EIP-GP66-01.			
	6-1	48/48		CL	SILTY CLAY: 1' Tan, coarse sub-angular g 6' then to brown and SILT layer at 8', stiff,	ravel. Grades to blac grey mottling at 8', 12	kat i	X	0.0	Soil sample collected at 11:28 for VOCs and percent moisture content - sample ID			
	10-	44/48		GM	SILT and GRAVEL; It wet, grades to SILT, moist. 2" gravel and top, grades to 6" silt and 10'.	tan, highly plastic, ve sand layer, tan, mois and gravel layer, tan	ery st at	X	0.0	EIP-GP66-02.  Soil sample collected at 11:38 for VOCs and percent moisture content - sample ID	2* PVC Riser		
	14-	·		CL	1' silty clay layer, tan sub-angular gravel, n \bottom.	, firm, with coarse noist, low plasticity at				EIP-GP66-03.			
	16-												
6(13) bor	18-												
07-13-2004 KN1515/Ellsworth Industrial Park/Boring Logs/EIP-GP066(13) bor	20-			:									
rk\Boring Log	22-						•						
Industrial Par	24-									Piezometer screen set from 20 to 30 feet.	0.010" Slot Screen		
15/Ellsworth	26-				·					TION 20 to 30 leet.			
-2004 KN151	28-					•	·						
07-13	30-			•	End of boring @ 30 f	feet.			•		u tu		

U	J.S. EF	PA CO	TRAC		-W7-0026		LOG OF BORING EIP-GP67						
"	VOIK A	ssignm	ent No.	. 155-RIC	CO-B51W _,						(Page 1 of 1)		
l l			strial Pa e, Illino	ark Site is:		Date Completed : 4 December 2003 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2*				Depth TON Geo	: 17' BGS ologist : Ted Cagney : 2525 Wisconsin		
1	epth in	Recovery	GRAPHIC	SS	Boring Intervals  VOC Soil San  Geologic San		ole Intervals				REMARKS		
f	feet	Rec	%95	nscs		DESCRIPTI	ON		Boring Intervals	PID (in)			
	2												
	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			CL		m with gravel, dry, lo		gravel.	X		Soil sample collected at 9:45 for VOCs - sample ID EIP-GP67-01.		
	8   10   10   10   10   10   10   10   1					·							
3P067.bor	12-						·	:					
Park/Boring Logs/EIP-C	14-	42/48		CL	SILTY CLAY; Gray increases with dept	, trace gravel and co th	bbles, dry, hard, st	tiffness	X	0.0	Soil sample collected at 10:10 for VOCs -		
orth Industrial	16-			, ,						0.0	sample ID EIP-GP67-02.		
07-13:2004 KA1515/Ellsworth Industrial Park/Boring Logs/EIP-GP067.bor	18-				End of boring @ 17	7 feet		<b></b>					
-20	20-	1											

			CONTR	ACT W7-0026	LOG OF BORING EIP-GP68								
			155-RIC			:4				(Page 1 of 1)			
	orth Indu ers:Grov				Date Completed : 4 December 2003 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"					: 27' BGS ologist : Ted Cagney : 2525 Wisconsin			
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Sai  Geologic Sar	mple Collected inple Intervals  DESCRIPTI	ON		Boring Intervals	PlĎ (ppm)	REMARKS			
2-	48/48		OL CL	trace gravel and co SILTY CLAY; Brow gravel and cobbles	vn, orange, black, and	d grey mottling, som		X	0.0 0.0 0.0 0.0	Soil sample collected at 15:30 for VOCs - sample ID EIP-GP68-01.			
6-													
10-													
12-													
16-						·							
18 20 20 20 20 20 20 20 20 20 20 20 20 20	<u> </u>					*.	•••						
07-13-2004 Ki1515IEllsworth Industrial Park Boring Logs/EIP-GP068.bor 57 57 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	48/48		CL	SILTY CLAY; Grey moist, low to mode	y, trace gravel and co erate plasticity.	bbles, hard, slightly	,	X	0:0 0.0 0:0	Soil:sample collected at 15:45 for VOCssample ID EIP-GP68-02.			
28 2004				End of boring @ 2	7 feet.								

U.S. E	PA-COI	NTRAC		-W7-0026	LOG OF BORING EIP-GP69							
Work A	ssignm	ent No.	. 155-RIC	O-B51W					(Page 1 of 1)			
		strial Pa re, Illino	ark Site	: :	Date Completed : 3 December 2003  Drilling Company : IPS  Drilling Method : Geoprobe  Driller Name : Ryan Scott  Borehole Diameter : 2"				Depth TON Geo	; 28 ⁱ BGS blogist : Ted Cagney : 2525 Wisconsin		
		:			mple Collected			ıvals				
Depth in feet	Recovery	GRAPHIC	sosn		DESCRIPT	TION		Boring intervals	PID (ppm)	REMARKS		
2-	48/48`		OL SM	material, slightly material, slightly material, slightly Brown gravel and cobbles SANDY SILTY CLA	LAYEY SILT, trace oist.  In and orange mottle, soft, slightly moist or and orange mottle or and orange mottle.		X	0.0 0.0 0.0 0.0	Soil sample collected at 14:10 for VOCs - sample ID EIP-GP69-01.			
6-												
12-												
14-		:										
20 - 22 -												
24 - 26 - 28 -	44/48		CL	SANDY SILTY CL slightly moist.		d cobbles, hard, stiff	, dry to		0.0 0.0 0.0 0.0	Soil sample collected at 14:35 for VOCs - sample ID EIP-GP69-02.		

1			CONTR. T No. 68-	ACT W7-0026	LOG OF BORING EIP-GP70						
Work A	Assignn	nent No.	155-RIC	O-B51W	:				(Page 1 of 1)		
1		istrial Pa ve, Illino			Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 4 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		I Depth STON Ge	: 16' BGS ologist : Ted Cagney : 2525 Wisconsin		
Depth in feet	Recovery	GRAPHIC	sosn	Boring Intervals  VOC Soil Sar  Geologic San	DESCRIPT		Boring Intervals	PID (ppm)	REMARKS		
0-			СМ	CLAYEY SILT; Bla moist, no odor or si	ck, with gravel and d taining.	organic material, slightly		0.0			
2-	44/48		CL	SILTY CLAY; Brow slightly moist, no or	n trace gravel and c dor or staining.	organic material, dry to		0.0	Soil sample collected at 14:50 for VOCs - sample ID EIP-GP70-01. Duplicate soil sample		
4-							_	0.0	collected at 14:55		
6-											
8-									· .		
Jog 07.						•					
12 -	• · · · · · · · · · · · · · · · · · · ·	ии		SANDY CLAY: Bro	own, trace gravel, so	oft, slightly moist.	- ، طالعا ا				
07-13-2004 K.11515/Ellsworth industrial Park/Bering Logs/EiP-GP070 bor C	48/48		CL		/n, trace gravel , sof	t, stiffness increases with	,   <del> </del>	0.0	Soil sample collected at 15:10 for VOCs - sample ID		
KN1515Ellsworth				SILTY CLAY; trace	gravel, soft, dry.			0.0	EIP-GP70-02. MS/MSD soil sample collected.		
16-		<u>.0e.1 , 16 1</u>		End of boring @ 10	6 feet.			•			

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP71** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 12 December 2003 **Date Completed** Well Diameter Ellsworth Industrial Park Site : IPS **Drilling Company Total Depth** : 24' BGS Downers Grove, Illinois: **Drilling Method** : Geoprobe WESTON Geologist : Barry Crawford : Ryan Scott **Driller Name** Location : 2525 Wisconsin Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Intervals Recovery (In) (mdd) QI GRAPHIC Depth USCS **REMARKS** in feet DESCRIPTION 0 FILL; Grass and topsoil, dry, organic rich, loose. FL Soil sample collected at 9:05 for 2 48/48 0.0 VOCs and percent moisture SILT; Tan clay rich, with gravel, dry, hard, low plasticity. content - sample ID ML EIP-GP71-01. MS/MSD sample collected. 6 8 SILTY CLAY; Grey, with gravel (till), dry to slight moist, stifflow plasticity. 10 46/48 CL 0.0 12 14 CLAY; As above. 07-13-2004 KN1515/Ellsworth Industrial Park/Boring Logs/EIP-GP071.bor Soil sample collected at 9:45 for CL 16-44/48 0.0 VOCs and percent moisture sample ID EIP-GP71-02. 18 20 CLAY; As above. 22-CL 48/48 0.0 Soil sample collected at 10:10 for VOCs and percent moisture 24 End of boring @ 24'.

1	ONSE.A			FRACT 58-W7-0026	LOG OF BORING EIP-GP72						
Work /	Assignm	ent No	. 155-R	RICO-B51W				(Page 1 of 1)			
1	orth Indu			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 3 December 2003 : IPS : Geoprobe : Ryan Scott : 2"	WE	tal Depth ESTON ( cation	: 30"BGS. Geologist : Ted Cagney : 2525 Wisconsin		
Depth in	Recovery	GRAPHIC	SS	Boring Intervals  VOC Soil Samp  Geologic Sampl		Boring Intervals	(u)	REMARKS			
feet	Reg	GR.	nscs	<u> </u>	DESCRIPTIO	N	Bori	g G			
0-	<del>                                     </del>										
2-	48/48		CL	SILTY CLAY; Brown,	trace gravel and cot	obles, hard.		0.0	Soil sample and Dup collected at 10:15 for VOCs - sample ID EIP-GP72-01.		
6-				<del></del>				0:0	Soil sample collected at 10:20 for VOCs - sample ID EIP-EIP-GP72-02.GP72-02.		
8-	1		CL								
10- 12- 14-	42/48		CL	SANDY SILTY CLAY moist, trace gravel ar	r; Grey, moderate pland cobbles.	nsticity, dry to slightly		0.0 0.0 0.0 0.0			
16-	1				•	·					
18- 20- 20- 20-	44/48		CL	SILTY CLAY; Grey, t moist, moderate plas	race gravel and cobt	oles, dry to slightly		0.0 0.0 0.0			
110 Cogs/Ell					- <del>-</del>	. <u>~</u>		0.0			
07-13-2004 K.11515/Ellsworth Industrial Park/Boring Logs/EIP-GP072 bor 97-13-2004 K.11515/Ellsworth Industrial Park/Boring Logs/E	-										
thoward 26-	1			SANDY SILTY CLAY moist, moderate plas	/; Greytrace gravel a	nd cobblesdry to slightly		0.0			
2121.3 28-	46/48		CL				X	0.0 0.0 0.0	Soil sample collected at 11:50 for VOCs - sample ID EIP-GP72-02.GP72-03.		
30-	1	אנאנ	L	End of boring @ 30 t	_11:_1	L	<u>4</u>				

	A CON	TRAC	T No. 6	RACT 88-W7-0026 ICO-B51W	LOG OF BORING EIP-GP73 (Page 1 of 1)						
Ellswor Downer				• .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 12 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	al Dep STON ation		
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS		
2											
8-	38/48		ML	CLAYEY SILT; Tan, plasticity, no odor or	with gravel, dry to sli staining.	ghtly moist, stiff, low				Soil sample collected at 11:55 for VOCs and percent moisture content - sample ID EIP-GP73-01.	
14 – 14 – 14 – 14 – 14 – 14 – 14 – 14 –	48/48		CL	SILTY CLAY; Grey, plasticity.	with gravel (till), dry t	o slightly moist, stiff,	low			Soil sample collected at 12:15 for VOCs and percent moisture content - sample ID EtP-GP73-02.	
20-		MX	<u>  </u>	End of boring @ 19	<del>-</del>					<u>.</u>	ļ

U.S. EF									
Ellswor Downe	th Indu	strial P	ank Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 4 December 2003 : IPS : Geoprobe : Ryan Scott : 2"	 WE	al Depth STON G	(Page 1 of 1)  : 24' BGS Seologist : Ted Cagney : 2525 Wisconsin
Depth in feet	Recovery	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		)N	Boring Intervals	PID (in)	REMARKS
2-	44/48		ML CL	CLAY SILT; Black, so moist. SILTY CLAY; Brown cobbles.			X	0.0	Soil sample collected at 8:00 for VOCs - sample ID EIP-GP74-01.
6-						<del></del>			
10-									
14-									
18-						. <b></b>			
20 -	48/48		CL	SILTY CLAY; Grey,	trace sand, gravel ar	nd cobbles, dry.	X	0.0 0.0 0.0	Soil sample collected at 8:40 for VOCs - sample ID EIP-GP74-02.
24-		11.47.1.4	ri	End of boring @ 24	feet.		 L		

			CTION		FRACT 58-W7-0026	LOG OF BORING EIP-GP75						
\	Nork A	ssignm	ent No.	. 155-R	ICO-B51W						(Page 1 of 1)	
- 1			strial Pa			Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 3 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	al Depi STON cation	th : 28' BGS Geologist : Ted Cagney : 2525 Wisconsin	
1	epth in feet	Recovery	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp		N		Boring Intervals	PID (in)	REMARKS	
-		A.	Ö	5	<u>.                                    </u>	DESCRIPTIO		,[:	8	ā		
	2-	48/48		FL	FILL; concrete and g SILTY CLAY; Brown dry to slightly moist, s	and grey mottling, tra stiff.	-	bles,	X	0.0	Soil sample collected at 7:45 for VOCs - sample ID EIP-GP75-01.	
	SILTY CLAY; Brown, trace gravel, slightly moist, stiff.									0.0		
	6-			:						:		
	8-											
	10-				·							
	12-		,									
	14-										•	
	16-											
P-GP075.bo	18-	-										
ring Logs/Ell	20-						·.	• •				
07-13-2004 KN1516/Ellsworth Industrial PerkiBoring Logs/EIP-GP075.bor	22-					·						
Ilsworth Indu	24				SILTY CLAY; Grey, I plasticity, dry to sligh	trace gravel and cobb	oles, moderate			0.0		
04 K:\1515\E	26-	48/48		CL					X	0.0	Soil sample collected at 8:15 for VOCs - sample ID EIP-GP75-02.	
07-13-20	28-			l	End of boring @ 28	feet.				0.0		

	RESPO				FRACT 88-W7-0026		LO	3 O	F B	ORING EIP-G	P76
					RICO-B51W						(Page 1 of 1)
	Ellswor Downe				9	Date Completed Dritting Company Dritting Method Dritter Name Borehole Diameter	: 28 April : IPS : Geoprob : Ryan Sc : 2"	e-		Total Depth WESTON Ged Location	: 25' BGS ologist : Michael Castillo : 5411 Walnut
	Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Soil In			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
-	0-	α	ဖ		<u> </u>			<b>.</b>	<u>a</u>		_
	0- 2- 4- 6-	30/48		ML	CLAYEY SILT; Tan a high dilatency, soft, t plasticity, no odor or at top; Black, soft, dr organics and above	race pebbles, high staining. 1' Topsoil la v. high dilatency, trac	ayer		0.2		
	8-				CLAYEY SILT; Till, c	rey, very stiff, moist	at top				2" PVC Riser
bor	12	48/48		CL	to rounded), trace sn	nali pebbles (%5).	iguiai	X	0.2	Soil sample collected at 09:10 for VOCs and percent moisture content - sample ID EIP-GP76-01.	
3oring Logs/EIP-GP76(23).	18-	46/48		CĹ				X	0.2	Soil sample collected at 09:30 for VOCs and percent moisture content - sample ID EIP-GP76-02.	
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\ElP-GP76(23).bor	20-	40/48		CL	As above; No large p			X	0.2	from 15' to 25'.  Soil sample collected at 09:40 for VOCs and percent moisture content - sample ID EIP-GP79-03.	
3-2004 K:\151	24-			ı	End of boring @ 25'.						
07-1	26-		<u> </u>		Life of boiling @ 25.	·					

		PA COI	NTRAC	T No.	TRACT 58-W7-0026 RICO-B51W	LOG OF BORING EIP-GP77 (Page 1 of 1)							
	Ellswor Downe				<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 27 April : IPS : Geoprol : Ryan Sc	e		Total Depth WESTON Ge Location	: 22' BGS ologist : Michael Castillo : 5411 Walnut		
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well		
	0- 2- 4- 6-	40/48		ML	CLAYEY SILT; Tan a stiff, dry, low dilatenc high plasticity on top bottom 1', 1.5' clayey and tan mottling, ver	cy, trace rounded pe 1.5', no plasticity at y sand layer at 6.5';	bbles, Grey		0.0	Soil sample collected	2" PVC Riser		
	8- 10- 12-								0.0	at 13:10 for VOCs and percent moisture content - sample ID EIP-GP77-01.	0.010" Slot Screen		
Ing Logs/EIP-GP77(22) bor	14- 16-									from 7' to 17'.			
07-13-2004 K:11515 Ellsworth Industrial Park Boring Logs ElP-GP77(22).bor	18-	36/48		ML	CLAYEY SILT; Till, of dilatency, high plasti pebbles (%5), 1" sat	grey, stiff, dry, slight icity, trace sub-round turated slough.	 ded	X	0.0	Soil sample collected at 13:25 for VOCs and percent moisture content - sample ID EIP-GP77-02.	Н		
07-13-200	22-			II	End of boring @ 22'			UI		L	<b>.</b>		

U.S. E	PA CO	NTRAC	T No. (	TRACT 68-W7-0026	LOG OF BORING EIP-GP78								
Work /	Assignr	nent No	. 155-l	RICO-851W			<u> </u>			(Page 1 of 1)			
1		ıstrial P ve, Illin		e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 28 April : IPS : Geoprot : Ryan So : 2"	е		Total Depth WESTON Ge Location	: 22' BGS cologist : Michael Castillo : 5411 Walnut			
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well			
0- 2- 4- 8-	38/48	0	CL	SILTY CLAY; Green soft, dry, high dilaten plasticity.  5" CLAYEY GRAVEI saturated, angular, w	and black mottling, and black mottling, loy, well sorted, high		ă X	0.1	Soil sample collected at 10:05 for VOCs and percent moisture content - sample ID EIP-GP78-01.	2" PVC Riser			
07-13-2004 K:1151 SEllsworth Industrial ParkBoring Logs EilP-GP78(18), box 8 9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	48/48		ML	CLAYEY SILT; Till, c dilatency, trace smal white angular pebble 1.5' SILTY SAND str well graded.	l pebbles (5%), 1 lar @ 15'.	ge	X	0.1	from 7' to 17' Soil sample collected at 10:15 for VOCs and percent moisture content - sample ID EIP-GP78-02				
07-13-2004 KM515Kills			J.VI	End of boring @ 18'.									

	RESPO				RACT 68-W7-0026		LOG OF BORING EIP-GP79					
					RICO-B51W						(Page 1 of 1)	
	Ellswor Downe				3	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 27 April : IPS : Geoprot : Ryan So : 2"	ю		Total Depth WESTON Geo Location	: 29'BGS Diogist : Michael Castillo : 5411 Walnut	
	Depth in	Recovery (in)	GRAPHIC	SO	Boring Intervals  VOC Soil Samp  Geologic Samp	le Interval		Boring Intervals	PID (ppm)	REMARKS	Temporary Well	
	feet	Rec	GR.	USCS	DES	CRIPTION		ğ.	문			
	0- 2- 4- 6-	48/48		ML	CLAYEY SILT; Tana trace sub-rounded la plasticity, poorly grad	rge pebbles, high	iff, dry,		0.1	Soil sample collected at 10:00 for VOCs and percent moisture content - sample ID EIP-GP79-01.	2" PVC Riser	
	8- 10-											
9(23).bor	12- 14- 16- 18-		:							Temporary well screen set from 10' to 20'.	0.010" Slot Screen	
rial Park Boring Logs EIP-GP7	20-						٠.					
07-13-2004 K:\\ 515\Ellsworth Industrial Park\Boring Logs\ElP-GP79(23).bor	24- 26- 28- 30-	15/48		ML	CLAYEY SILT; till, g plasticity, trace roun limestone pebble blo	ded pebbles, large ocked most recovery		X	0.0	Soil sample collected at 10:45 for VOCs and percent moisture content - sample ID EIP-GP79-02:		

1	PONSE A			FRACT 68-W7-0026	·	SP80				
Work	Assignr	nent No	). 155-R	RICO-B51W						(Page 1 of 1)
	orth Indi ners Gro			• · · · · · · · · · · · · · · · · · · ·	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 28 April : IPS : Geoprot : Ryan So : 2"	æ		Total Depth WESTON Geo Location	: 22' BGS ologist : Michael Castillo : 5411 Walnut
Depth in feet	Recovery (in)	GRAPHIC	uscš	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\Ellsworth Industrial Park\Boring Logs\Ellsworth Logs\Ellsworth Industrial Park\Boring Log	48/48		ML	CLAYEY SILT; Till, g dilatency, high plasti 2" pebble layer; white CLAYEY SILT; Till, g dilatency, high plasti 3.5" silty sand layer, sorted, saturated.	grey, hard, dry, no city, trace pebbles (% e, dry.	 10 5%),		0.1	Soil sample collected at 08:15 for VOCs and percent moisture content - sample ID EIP-GP80-01.  Temporary well screen set from 10' to 20'.  Soil sample collected at 08:30 for VOCs and percent moisture content - sample ID EIP-GP80-02.	2" PVC Riser0.010" Slot Screen
worth Industrial Perk/E				End of boring @ 22'.						
25 56 Elsv					-					
30	) <u>-</u>	·								

RESPO				TRACT 58-W7-0026		LOG OF BO	RING	EIF	P-GP81
Work A	ssignm	ent No	. 155-R	RICO-B51W					(Page 1 of 1)
Ellswor				· ·	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 December 2003 : IPS : Geoprobe : Ryan Scott : 2*	W	otal Dep /ESTO	oth : 14' BGS N Geologist : Barry Crawford : 2655 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp		N	Boring Intervals	PID (ppm)	REMARKS
0	48/48		ML CL	SANDY SILT; Tan, we moderately soft, iron  SILTY CLAY; Grey we see the soft of boring @ 14'.	stalning abundant.	s, slightly moist,		0.0	Soil sample collected at 10:10 for VOCs and percent moisture content - sample ID EIP-GP781-01.  Soil sample collected at 10:25 for VOCs and percent moisture content - sample ID EIP-GP81-02.
14-		H-Z-11-A	1	End of boring @ 14'.	•	4	<del>- U</del>	I.I	,

	RESPO				TRACT 68-W7-0026		LOG OF E	BORII	NG	EIF	P-GP82
	Work A	\ssignn	ent No	. 155-F	RICO-B51W						(Page 1 of 1)
	Ellswor				<b>2</b> .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WI	tal Dep ESTON cation	oth : 19' BGS I Geologist : Barry Crawford : 2655 Wisconsin
	Depth in :	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Sampl  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS
-	0-	α	ဖ	)		DESCRIPTIO	····	1	ň	مَ	
	2										
	6	48/48		ML .	SANDY CLAYEY SIL moderately stiff, iron	Y SILT; Tan, with gravel, slightly moist, iron staining abundant.			X	0.0	Soil sample collected at 11:30 for VOCs and percent moisture content - sample ID EIP-GP782-01.
	8	48/48		ML	As above.  Dolomite cobbles, no	odor or staining.		1	X	0.0	Soil sample collected at 11:40 for VOCs:and percent moisture content - sample ID EIP-GP82-02.
bor	12			CL.	SILTY CLAY; Grey w plasticity.	ith gravel, (till), slight	ly moist, very stiff, lo	w			
ning Logs/EIP-GP082	14-				· · · · · · · · · · · · · · · · · · · ·	-	·,				
07-13-2004 KN1515/Elisworth Industrial Park/Boring Logs/EIP-GP082.bor	16	SILTY CLAY; Grey with gravel, (till), slightly moist, soft, medium plasticity.		, m	X	0.0	Soil sample collected at 11:55 for VOCs and percent moisture				
13-2004 KN1515/E	18	18————————————————————————————————————				]			content - sample ID EIP-GP82-03.		
20	20-	1									

		PA COI	NTRAC	T No. 6	TRACT 68-W7-0026 IICO-B51W	LOG OF BORING EIP-GP83 (Page 1 of 1)					
	Ellswor	th Indu	strial Pa	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	tal Dep ESTON cation	
	Depth in	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl	le Intervals			Boring Intervals	PID (ppm)	REMARKS
-	feet 	R _e	នួ	Sn		DESCRIPTIO	N		<u>®</u>	<u>P</u>	
	2-										
	4-11-11-11-11-11-11-11-11-11-11-11-11-11	moderately stiff.				T; Tan, with gravel, t	mostly dry, crumbly,		X	33	Soil sample collected at 14:00 for VOCs and percent moisture content - sample ID EIP-GP783-01.
	8-				SILTY CLAY; Grey w moderately stiff, low	vith trace gravel (till), to medium plasticity	dry to slightly molst,			:	Soil sample collected at 14:10 for
gs/EIP-GP083.bor	10-	48/48		CL						0.0	VOCs and percent moisture content - sample ID EIP-GP83-02.
ustrial Park\Boring Lo	12-					- <del>-</del>	<i></i>				
07-13-2004 K:\1515\Elisworth industrial Park\Boring Logs\ElP-GP083.bor	14-			CL			•				
07-13-2004	16-		ИИ	<u>L.</u>	End of boring @ 16'.				Щ	<u>L</u>	1

			ACTION NTRAC		RACT 8-W7-0026	LOG OF BORING EIP-GP84					
	Work A	ssignm	nent No.	155-R	ICO-B51W						(Page 1 of 1)
	Eliswor		istrial Pa ve, Itlino		,	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 23 December : IPS : Geoprobe : Ryan Scott : 2"	2003	W	tal Dep ESTON cation	th : 18' BGS   Geologist ::Barry Crawford : 2655 Wisconsin
	Depth in feet	in   S   A   S					NI		Boring Intervals	PID (ppm)	REMARKS
		ž	<u> </u>	ອ		DESCRIPTIO			м	ā	
ark\Boring Logs\EIP-GP084.bor	2 4 	48/48		ML	SANDY SILT; Tan, w moderately stiff.					0.0	Soil sample collected at 10:45 for VOCs and percent moisture content - sample ID EIP-GP784-01.
07-13-2004 K.\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP084.bor	16- 18-	48/48		CL	medium plasticity.				X	0.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP84-02.
07-13-20	1.0				End of boring @ 18'.						

	RESPO				RACT 8-W7-0026		LOG OF B	BORI	NG	EIP	P-GP85
					ICO-B51W						(Page 1 of 1)
	Ellswor Downer					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 23 December 2003 : IPS : Geoprobe : Ryan Scott		WE	tal Dep ESTON cation	th : 23' BGS ! Geologist : Barry Crawford : 2655 Wisconsin
	Depth in	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp	le Intervals			Boring Intervals	(mdd)	REMARKS
	feet	æ	a R	S)	:	DESCRIPTIO	)N 		8	<u> </u>	
	0- - 2-							,			
	-										
	4-										
	6- - - -									,	
	8-				CLAYEY SILT; Tan,	with trace sand and	gravel, slightly moist,				
	10-	48/48		ML	moderately stiff.				X	0.0	Soil sample collected at 9:35 for VOCs and percent moisture content - sample ID EIP-GP785-01.
	12 –										Sample to En Oi 70001.
3P085.bor	14-				·						
ing Logs/EIP-C	16-										
strial Park\Bori	18- -	1									
07-13-2004 K/1515/Ellsworth Industrial Park/Boring Logs/EIP-GP085.bor	20-	48/48		CL	SILTY CLAY; Grey was moderately stiff, low	with trace.gravel (till) to medium plasticity	, dry, slightly moist,	;	X	0.0	Soil sample collected at 9:50 for VOCs and percent moisture content - sample ID EIP-GP85-02.
7-13-2004 K	22-				End of boring @ 23'		<del>-</del>				
	24-	<u> </u>			· · · · · · · · · · · · · · · · · · ·						

1	ONSE A PA COI			RACT 68-W7-0026	LOG OF BORING EIP-GP86								
				ICO-B51W						(Page 1 of 1)			
1	rth Indu ers Grov			• ·	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 December 200 : IPS : Geoprobe : Ryan Scott : 2"	<b>3</b>	W	tal Dep ESTON cation	th : 24' BGS Geologist : Barry Crawford : 2655 Wisconsin			
Depth in feet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Sampl  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS			
0-	<u> </u>	0		<u> </u>					а.				
2-													
6-													
10-	I I I I SANDY CLAYEY			SANDY CLAYEY SIL	LT; Tan, with gravel,	slightly moist, cru	mbly,						
12-	42/48		ML	·		. <b>_ _</b>		X	0.0	Soil sample collected at 15:30 for VOCs and percent moisture content - sample ID EIP-GP786-01.			
16-GP086.bor													
al Park/Boring Lo	4					*.							
55 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	medium plasticity				Grey with trace gravel (till), dry, stiff, low to ity, no odor or staining.					Soil sample collected at 16:00 for VOCs and percent moisture			
07-13-2004 KA1515/Ellsworth Industrial ParkBoring Logs/ElP-GP086 bor 2013-2004 KA1515/ElP-GP086 bor 2013-2014 KA1515/ElP-GP0	1			End of boring @ 24'.	 @ 24'.					content - sample ID EIP-GP86-02.			

	ONSE A			RACT 8-W7-0026	LOG OF BORING EIP-GP87								
- 1				ICO-B51W						(Page 1 of 1)			
	orth Indu ers Grov			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 23 December 20 : IPS : Geoprobe : Ryan Scott : 2"	03	WE	tal Dep ESTON cation	oth : 26' BGS I Geologist : Barry Crawford : 2655 Wisconsin			
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS			
0-	1	:											
2-	48/48		ML	SANDY CLAYEY SIL slightly moist, crumb	T; Tan, iron staining ly, moderately soft.	ı, — —		0.0	Soil sample collected at 8:00 for VOCs and percent moisture content - sample ID EIP-GP787-01.				
6-			CL	SILTY CLAY; Grey, v moist, low to medium	with trace gravel (till) n plasticity.	, stiff, dry to slight	dy						
8-													
10-													
12-	1			3									
14-	4 - - -						·	,					
3P087.bor	7 1 1 1								:				
18 Togs/EIP	1					•	• •						
trial Park/Borl	1				·								
subul howsilia				SILTY CLAY; Grey, v slightly moist, low to	with trace gravel (till) medium plasticity.	, moderately stiff,	dry to		·	Soll comple collected at 9.45 for			
19-13-2004 K:\1515\  Ellsworth Industrial Park\ Boring Logs\  EllP-GP087\ boring Logs\  EllP-GP0	48/48		CL		<u>-</u>				0.0	Soil sample collected at 8:15 for VOCs and percent moisture content - sample ID EIP-GP87-02.			
26.			<u> </u>	End of boring @ 26'.	<del></del>		ul.	I					

	RESPO				FRACT 68-W7-0026	• •	LO	G O	FB	ORING EIP-C	SP95	5
					RICO-B51W						(P	Page 1 of 1)
	Ellswor Downe					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 Janu : IPS : Geoprol : Ryan So : 2"	be	)4	Total Depth WESTON Ge Location	ologist	: 22' BGS : James Molholm : 2400 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Sampl  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Wel	l: Piezometer
	0- 2- 4- 6-		ПИ		SILTY CLAY; Tan, w	ith coarse and round	ed					——2" PVC Riser
	10-	48/48		CL	gravel, firm, slightly n			X	0.0	Soil sample collected at 12:54 for VOCs and percent moisture content - sample ID EIP-GP95-01.		
22).bor	12			CL	SANDY CLAY; Tan a gravel, firm, slightly n	and brown, with silt ar noist, low plasticity.	 nd			Soil sample collected at 13:01 for VOCs and percent moisture		
.ogs/EIP-GP095(;	14- - - 16-	48/48	000000	SM	GRAVEL AND SAND grained sand, with gr Wet 2" gravel and sa	avel, moderate plasti			0.0	content - sample ID EIP-GP95-02.		0.010" Slot Screen
trial Perk\Boring L	.0 - - - 18-		77		CLAY; Grey, smooth	moderately set his	,			Piezometer screen set from 10 to 20 feet.		
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP095(22).bor	20 —	42/48		CL	plasticity, moist.			X	0.0	Soil sample collected at 13:16 for VOCs and percent moisture content - sample ID EIP-GP95-03.		
07-13-2004 K:	22 <i>-</i> -	-		CL	SILTY CLAY; Grey, v grained gravel. End of boring @ 22'.		edium —				}	

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP96** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) Date Completed : 15 January 2004 Ellsworth Industrial Park Site **Drilling Company** : IPS : 30' BGS **Total Depth** Downers Grove, Illinois: **Drilling Method** : Geoprobe WESTON Geologist : James Molholm **Driller Name** : Ryan Scott Location : 2400 Wisconsin Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Geologic Sample Interval Boring Intervals Recovery (in) Well: Piezometer GRAPHIC (mdd) Depth REMARKS feet DESCRIPTION 0 2 6 SANDY SILT; Dark brown, fine sand, very firm, root fragments, slightly moist. 8 Soil sample collected at 10:54 for VOCs and 38/48 0.0 percent moisture content - sample ID 10 2" PVC Riser EIP-GP96-01. 12 SILTY CLAY; Tan with some grey, trace medium-fine grained sand, trace coarse and Soil sample collected rounded gravel, moist, moderate plasticity. at 11:06 for VOCs and 14 0.0 percent moisture content - sample ID EIP-GP96-02. 16 27-13-2004 K:\1515\Eilsworth Industrial Park\Boring Logs\EIP-GP096(16).bor 18 20 22 24 0.010" Slot Screen Piezometer screen set from 20 to 30 feet. 26 28 30 End of boring @ 30'.

		PA CO	NTRAC	T No. 6	68-W7-0026		LO	G O	FB	ORING EIP-G	6P97	•
	Work A	\ssignm	ent No	. 155-R	IICO-B51W						(Page 1	l of 1)
	Ellswor Downe					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 Janu : IPS : Geoprol : Ryan So : 2"	be	)4_	Total Depth WESTON Geo Location	-	BGS es Molholm ) Wisconsin
	Depth in	Recovery (in)	GRAPHIC	S	Boring Intervals  VOC Soil Samp  Geologic Sampi			3oring intervals	PID (ppm)	REMARKS	Well: Piez	ometer
-	feet	Reco	GRA	uscs	DES	CRIPTION		Borl	PID (	TEMARKS	:	
	2-	SILTY CLAY; Tan, with coarse and rounded gravel, firm, very moist at top 4", moist to								-		
	6-	35/48			SILTY CLAY; Tan, w gravel, firm, very moi bottom, slight iron sta	st at top 4", moist to	ed	X	0.0	Soil sample collected at 13:56 for VOCs and percent moisture content - sample ID EIP-GP97-01.		
	10-	48/48		CL	As above; Angular gr As above; Grey, mor		X	0.0	Soil sample collected at 14:02 for VOCs and percent moisture content - sample ID EIP-GP97-02.	-	2" PVC Riser	
,	12- 14- 16-	48/48		CL	2" sand silt and grave wet.	'; Tan, with gravel, mo el lense, poorly sorted with coarse sand, plas	1,		.0.0	Soil sample collected at 14:12 for VOCs and percent moisture content - sample ID EIP-GP97-03.		·.
7(24).bor	18			CL								
07-13-2004 KN1515/Ellsworth Industrial Park/Boring Logs/EIP-GP097(24).bor	20-	SILTY CLAY; Grey coarse gravel, grad				with coarse sand and s downwards to more						,
I Park\Boring	22 – - - - 24 –	48/48				trace coarse, soft, sliç	ght		0.0			
Isworth Industrie	26	End of boring @ 24								Piezometer screen set from 20 to:30 feet.		0.010" Slot Screen
304 K:\1515\EI	28-									·		
07-13-20	30-					: 					· <b>[</b> ]	

U.S. EI	PA CO		T No. 6	8-W7-0026	LOG OF BORING EIP-GP98					1	
Eliswo	rth-Indu	strial Pa	ark Site	HCO-B51W	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 Janua : IPS : Geoprob : Ryan So : 2"	e	4	Total Depth WESTON Geo Location		age 1 of 1)  : 30' BGS : James Molholm : 2400 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well	: Piezometer
2- 4- 6- 8- 10- 12- 14- 16-	44/48		OL CL	SILTY CLAY; Dark be and grey with coarse plasticity.  SILTY CLAY; Tan, first SITLY CLAY Grey, we moist, soft, plastic wifragment lense (2").	gravel, sand, and			0.0	Soil sample collected at 9:56 for VOCs and percent moisture content - sample ID EIP-GP98-01.  Soil sample collected at 10:07 for VOCs and percent moisture content - sample ID EIP-GP98-02 and EIP-GP98-02 DUP.		—— 2" PVC Riser
22-04-01-01-01-01-01-01-01-01-01-01-01-01-01-			End of boring @ 30'.						Piezometer screen set from 20 to 30 feet.		0.010" Slot Screen

U.S. EI		NTRAC	T No. 6	FRACT 58-W7-0026 NCO-B51W		LO	G O	FΒ	ORING EIP-G		
	rth Indu	strial Pa	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 Janu : IPS : Geoprol : Ryan So	be	4	Total Depth WESTON Ged Location	ologist :	ge 1 of 1) 30'BGS James Molholm 2400 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well:	Piezometer
2- 4- 6- 8-	36/48		CL	SILTY CLAY; Brown moist, plastic, with o	n and grey, moderately soft, coarse and rounded gravel.			0.0	Soil sample collected at 7:52 for VOCs and percent moisture content - sample ID EIP-GP99-01.		— 2* PVC Riser
12 - 14 - 16 -	40/48		CL	SILTY CLAY; Grey, plasticity, moderate farge dolostone fragi	slightly soft, moderat moist, trace gravel ar ments.	e e nd		0.0	Soil sample collected at 8:07 for VOCs and percent moisture content - sample ID EIP-GP99-02 and EIP-GP99-02 DUP.		÷.
07-13-2004 KM1515/Ellsworth Industrial Park(Boring Logs/EIP-GP099(16),bor 20-20-4 KM1515/Ellsworth Industrial Park(Boring Logs/EI						٠,			Piezometer screen set from 20 to 30 feet.		0.010" Slot Screen
30-			<u></u>	End of boring @ 30*		<u> </u>		<u> </u>		J []	

U.S. EI		TRAC	T No. 6	RACT 8-W7-0026 ICO-B51W	LOG OF BORING EIP-GP100 (Page 1 of 1)						
Eliswoi	rth Indu rrs Grov	strial Pa	ank Site	·	Drilling Company Drilling Method Driller Name	: 7 April 20 : IPS : Geoprob : Ryan Sco : 2"	e		Total Depth WESTON Geo Location		: 25' BGS : Michael Castillo : 2514-2518 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		,	Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
0- 2- 4- 6- 8-	40/48		, FL ML	CLAYEY SILT; Olive sub-rounded gravel.	RAVEL, 7" CLAY, white	e		0.0	Soil sample collected at 11:05 for VOCs and percent moisture content - sample ID EIP-GP100-01.		—— 2* PVC Riser
07-13-2004 KA1515LEllsworth Industrial Park Boying Logs/EIP-GP100(20) bor 15-2004 KA1515LEllsworth Industrial Park Boying Logs/EIP-GP100(20) bor 27-20-20-20-20-20-20-20-20-20-20-20-20-20-	34/48		ML	CLAYEY SILT; Grey plasticity, high dilate	and olive, very soft, higher the solution of t	 gh 		0.0	Soil sample collected at 11:15 for VOCs and percent moisture content - sample ID EIP-GP100-02.  Piezometer screen set from 15 to 25 feet.		0.010" Slot Screen
26.		1		End of boring @ 25	25'.						

U.S. E		NTRAC	T No. 6	58-W7-0026		LOC	e OF	= B(	ORING EIP-G	P101	!
Work	Assignn	nent No	. 155-F	RICO-B51W	· •					(Pa	age 1 of 1)
	orth Indu ers Grov			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 7 April 2 : IPS : Geoprob : Ryan So : 2"	oe		Total Depth WESTON Ger Location	ologist	: 30' BGS : Michael Castillo : 2514-2518 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl			Boring Intervals	PID (ppm)	REMARKS	T _i em	porary Well
0- 2- 4- 6- 8-	48/48		ML	CLAYEY SILT; Grey pebbles, medium stift dilatency, trace micro	f. high plasticity, low	ace		0.0	Soil sample collected at 13:05 for VOCs and percent moisture content - sample ID EIP-GP101-01.		—2" PVC Riser
12-2004 K315151Ellsworth Industrial Park/Borlng Logs/EIP-CP101(18) bor 26-2004 K315151Ellsworth Industrial Park/Borlng Logs/EIP-CP101(18) bor 26-21-2004 K3151Ellsworth Industrial Park/Borlng Logs/EIP-CP101(18) bor 26-21-2004 K3151Ells	48/48		ML CL	As above; Olive, stiff CLAY; TILL, Grey, tr. low dilatency, very st	ace pebbles, low plas	sticity,		0.0	Soil sample collected at 13:14 for VOCs and percent moisture content - sample ID EIP-GP101-02.  Piezometer screen set from 20 to 30 feet.		—0.010" Slot Screen
30-13-2004 K/1515R	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			End of boring @ 30'.	-						

		PA CO	NTRAC	T No. 6	8-W7-0026		LOG	OF	BO	ORING EIP-G	P102	2
-	Work A	ssignm	ent No.	155-R	ICO-B51W						(P	age 1 of 1)
	Ellswor Downer					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 6 April 2 : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ged Location	ologist	: 30' BGS : Michael Castillo : 2514-2518 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES		;	Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
07-13-2004 KN1515 Elisworth Industrial Park\Boring Logs\EIP-GP102(22).bor	0- 2- 4- 10- 12- 14- 16- 20- 22-	48/48 45/48		ML SC	CLAYEY SILT; TILL, pebbles, very stiff, m dilatency, dry.	Olive, little angular			0.1	Soil sample collected at 09:51 for VOCs and percent moisture content - sample ID EIP-GP102-01.  Soil sample collected at 10:00 for VOCs and percent moisture content - sample ID EIP-GP102-02.  Soil sample collected at 10:20 for VOCs and percent moisture content - sample ID EIP-GP102-03.		2" PVC Riser
77-13-2004 KN15151E	28- 30-				End of boring @ 30'.	• .						
٦		<u> </u>				· · · · · · · · · · · · · · · · · · ·						

RESPONSE ACTION CONTRACT LOG OF BORING EIP-GP103 U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 7 April 2004 Ellsworth Industrial Park Site **Drilling Company** : IPS Total Depth : 22' BGS Downers Grove, Illinois: **Drilling Method** : Geoprobe WESTON Geologist : Michael Castillo : Ryan Scott Driller Name Location : 2514-2518 Wisconsin Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) **Temporary Well** GRAPHIC (mdd) Depth USCS **REMARKS** in feet DESCRIPTION 0 CLAYEY SILT; Tan and grey mottling, trace to little sub-rounded gravel, stiff, low plasticity, low dilatency, dry. Soil sample collected 48/48 2" PVC Riser 6 ML. at 09:55 for VOCs and percent moisture content - sample ID EIP-GP103-01. 8 10 12 CLAY; TILL, Grey, 4", trace gravel, stiff, high plasticity, dry. 27-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EllP-GP103(21).bor GRAVEL; Grey, 8", large angular dolomite CG pebbles, dry. Soil sample collected 44/48 at 10:12 for VOCs and CLAYEY SAND; Brown, some pebbles, moist. SC percent moisture content - sample ID CLAYEY GRAVEL; Brown, saturated, some EIP-GP103-02. GC pebbles and sand, loose. 16 0.010" Slot Screen Piezometer screen set CLAYEY SILT; TILL, grey, soft, high plasticity, from 12 to 22 feet. high dilatency. 18 Soil sample collected ML at 10:26 for VOCs and 26/48 percent moisture content - sample ID 20 EIP-GP103-03. CLAYEY SAND; Tan, some rounded pebbles, stiff, loose, moist. 22 End of boring @ 22'.

U.S. E	PA COI		T No. 6	8-W7-0026	LOG OF BORING EIP-GP104					
Work /	\ssignm	ent No.	. 15543	ICO-851W	·					(Page 1 of 1)
4		strial Pa e, Illino			Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 6 April 20 : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ge Location	: 30' BGS ologist : Michael Castillo : 2514-2518 Wisconsin
	y (in)	ñ		Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	m)		Temporary Well
Depth In feet	Recovery (in)	GRAPHIC	uscs	DES	CRIPTION		Boring I	PID (ppm)	REMARKS	1
0-				l.						, 1. Π
2-										2" PVC Riser
8-			sc	CLAYEY SAND; Oliv angular pebbles, loos grainsize from 7' to 8	se, moist, increased	· - — —			Soil sample collected	
10-	32/48		ML	CLAYEY SILT; TILL, pebbles, soft, high pl	olive, trace sub-rour asticity, slightly mois	nded t.		0.1	at 12:14 for VOCs and percent moisture content - sample ID EIP-GP104-01.	
14									Piezometer screen set from 8 to 18 feet.	0.010" Slot Screen
16-										
Σα 18-	1								·	
5) 20- 20- 20- 20-										
Joring Logs.						•				-
Strial Park\B	4-									
18-2004 K:\1515\Eilsworth Industrial Park\Borling Logs\EilP-GP104(30).bor 27-20 28 29 29 29 29 29 29 29 29 29 29 29 29 29	1	CLAY; TILL, grey, trace pebbles and s increase firmness with depth, low dilal							Call comple as liceted	
78 58	43/48	high plasticity, dry, no odor or staining.			0.0	Soil sample collected at 12:33 for VOCs and percent moisture content - sample ID				
30		V /	1	End of boring @ 30'	- <del>-</del>				EIP-GP104-02.	

		PA COI	NTRAC	T No. 6	TRACT 58-W7-0026 RICO-B51W		LOG	O O	= B(	ORING EIP-G		age 1 of 1)
	Ellswor Downe				9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 5 April 2 : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ge Location	ologist	: 30' BGS : Michael Castillo : 2431 Curtiss
	Depth In feet	Recovery (in)	GRAPHIC	sosn	Boring Intervals  VOC Soil Samp  Geologic Samp	•		Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
	2-	38/48		CG	loose.	LL; White and black angular gravel, dry, ose.  LAY; TILL, Tan, hard, trace gravel, dry.				Soil sample collected at 13:38 for VOCs and percent moisture content - sample ID EIP-GP105-01.		
	8- 10-											2" PVC Riser
16	14 —	37/48		SC CL	CLAYEY SAND; Ora graded, increase fine low dilatency. CLAY; TILL, Grey, in trace gravel, dry, no	es with depth, loose, v	vet.		0.0	Soil-sample collected at 13:50 for VOCs and percent moisture content - sample ID EIP-GP105-02.		<b>.</b>
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP105(17).bor	18- 20-											
trial Park\Boring Log	22-											
15/Ellsworth Indus	26-									Piezometer screen set from 20 to 30 feet.		0.010" Slot Screen
07-13-2004 K:\15	28 – 30 –				End of boring @ 30'.	·						

			CTION ITRAC		RACT 8-W7-0026		LOG	OF	= B(	ORING EIP-G	P10	6
Worl	( Assi	gnm	ent No.	155-R	ICO-B51W				· · · · · · ·		(F	age 1 of 1)
			strial Pa e, Illino			Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 5 April 20 : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ged Location	ologist	: 28' BGS : Michael Castillo : 2431 Curtiss
Depti in feet	<del>- </del> -	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
2		į,			CLAYEY FILL; Olive, plasticity, dry.	little gravel, very stif	ff, low			Soil sample collected at 09:46 for VOCs and		
6	1	/48		FL	<del>-</del>				0.1	percent moisture content - sample ID EIP-GP106-01 and EIP-GP106-01 MS/MSD.		
10	1	)/48		SILTY SAND and FIL well graded, dry to 11 12'), low plasticity, m		<ol><li>High dilatency (11</li></ol>	bles, I' to	0.2		Soil sample collected at 09:50 for VOCs and percent-moisture content - sample ID		2" PVC Riser
12	4				CLAY; TILL, olive, tra	trace sand and pebbles,				EIP-GP106-02.		
-	1	9/48		CL	very stiff, dry, low dila	atency, low plasticity.		X	0.1	Soil sample collected at 10:04 for VOCs and percent moisture content - sample ID EIP-GP106-03.		
07-13-2004 K.\151f5(Ellsworth Industrial Park\Boring Logs\EiP-GP106(28).bor 20 20 20 20 20 20 20 20 20 20 20 20 20	1											
ustrial Park\Borin						· <u> </u>			Piezometer screen set from 17 to 27 feet.		0.010" Slot Screen	
S/Ellsworth Indu	*	1/48		sc	CLAYEY SAND; Lightrace pebbles, satura	ited, low plasticity.	l, — —		0.0			
2004 KN1516	3 3 1			CL	End of boring @ 28'.		. – –		0.0			Ħ
30	) <del> </del>											

	U.S. El		NTRAC	T No. 6	FRACT 58-W7-0026 RICO-B51W	LOG OF BORING EIP-GP107 (Page 1 of 1)							
		rth Indu ers Grov			·	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 5 April 2004 : IPS Total Dep : Geoprobe WESTOI : Ryan Scott Location : 2"				: 30' BGS cologist : Michael Castillo : 2431 Curtiss		
	Depth in feet				VOC Soil Samp		:	Boring Intervals	PID (ppm)	REMARKS	Temporary Well		
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\EIP-GP107(24).bor	0- 2- 4- 6- 10- 12- 14- 20- 22- 24- 28-	20/48		SC CL CG	CLAYEY SAND; Light saturated, low plastic pebbles through.  CLAY; TILL, Grey, trastiff, dry, no odor or settiff, dry, no	ace gravel, low plastic staining.			0.0	Soil sample collected at 12:45 for VOCs and percent moisture content - sample ID EIP-GP107-01.  Soil sample collected at 12:58 for VOCs and percent moisture content - sample ID EIP-GP107-02.  Piezometer screen set from 20 to 30 feet.	——2" PVC Riser  ——0.010" Slot Screen		
07-1					End of boring @ 30'.								

U.S. E		TRAC	T No. 6	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP108								
Ellswo	th Indu	strial Pa	ark Site		Date Completed : 5 April 2004 Drilling Company : tPS Total Depth Drilling Method : Geoprobe WESTON Geo Driller Name : Ryan Scott Location Borehole Diameter : 2"					(Page 1 of 1)  : 28' BGS  Dlogist : Michael Castillo : 2431 Curtiss			
Depth in feet	,   §   <del>g</del>   8						Boring Intervals	PID (ppm)	REMARKS	Temporary Well			
0- 2- 4- 6-	48/48		CL	SILTY CLAY; TILL, 7 sorted, stiff, loose, transition of the microfractures, dry.	black, brown, well ace gravel, some			0.0	Soil sample collected at 14:56 for VOCs and percent moisture content - sample ID EIP-GP108-01.				
10-	28/48		sc	CLAYEY SAND and sub-angular, large pe graded, loose, slightled	obbles to 11.5', well y wet.	ım /		0.0	Soil sample collected at 15:08 for VOCs and percent moisture content - sample ID EIP-GP108-02.		2" PVC Riser		
14- 16-													
07-13-2004 KA15515IEIIsworth Industrial ParkiBoring Logs/EIP-GP108(23).bot	39/48		CL	CLAY; TILL, Olive a gravel, slightly soft, I plasticity.	nd green mottling, tra ow dilatency, high	ace	X	0.0	Soil-sample collected at 15;23 for VOCs and percent moisture content - sample ID EIP-GP108-03.				
5/Elisworth Industrial Pa					<del>-</del> -	- <del></del>			Piezometer screen set from 18 to 28 feet.				
30- 28- 30-	End of boring @ 28".												

U.S. E		NTRAC	T No. 6	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP109						
Ellswo	orth Indu	istrial P	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 17 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	ital Der ESTON cation	(Page 1 of 1)  oth : 12'BGS I'Geologist : Barry Crawford : 2732 Wisconsin	
Depth	Boring Intervals  VOC Soil Samp  Geologic Samp  Geologic Samp							Boring Intervals	pm)		
in feet	Reco	GRAPHIC	nscs		DESCRIPTIO	N		Boring	PID (ppm)	REMARKS.	
0-		0000	OL.	FILL; Black organic to SANDY SILT; Tan, w		iff.					
2-	48/48		ML				X	0.0	Soil sample collected at 15:20 for VOCs and percent moisture content - sample ID EIP-GP7109-01.		
4-		ANGERONALINGSE STATESTATUSES STATESTATUSES		  -							
6-											
ogs/EIP-GP109.bor				CLAYEY SILT; Tan, moist, stiff.	with sand and grave	throughout, slightly					
orth Industrial Park/Boring L.	48/48		ML			•		X	0.0	Soil sample collected at 15:35 for VOCs and percent moisture content - sample ID EIP-GP109-02.	
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\EliP-GP109.bpr				End of boring @ 12'.	- <del>-</del>	- <b></b>	. :				

RESPO				FRACT 68-W7-0026	LOG OF BORING EIP-GP110								
Work A	ssignn	ent No	. 155-F	NCO-B51W						(Pa	age 1 of 1)		
Ellswore				•	Date Completed : 16 January 2004 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"				Total Depth WESTON Geo Location	WESTON Geologist : James Molholm			
Depth in	Recovery (in)	Boring Intervals  VOC Soil Samp  Geologic Samp  Geologic Samp  DES						(ppm)	REMARKS	Well: Piezometer			
feet	Reco	8	nscs	DES	CRIPTION		Borir	PO					
2-	48/48		CL	SILTY CLAY; Brown gravel and brick fragi	and Tan, firm, with conents, iron staining.	oarse 2"	X	0.0	Soil sample collected at 10:55 for VOCs and percent moisture content - sample ID EIP-GP110-01 and MS/MSD.				
6- 8- 10- 12-											2" PVC Riser		
14 - 16 -													
20-	36/48		CL	CLAY; Grey, with co moderately firm, moi	arse and rounded gra st, plastic.		X	0.0	Soil sample collected at 11:11 for VOCs and percent moisture content - sample ID EIP-GP110-02.				
26-				· ·	· ·				Piezometer screen set from 19 to 29 feet.		0.010" Slot Screen		
30-				End of boring @ 29'.									

		PA COI	NTRAC	T No. 6	TRACT 58-W7-0026 NCO-B51W	LOG OF BORING EIP-GP111								
	WORA	งออเซเปเ	rent INO	. 120-M	1100-D3144						(Page 1 of 1)			
	Ellswor Downe				3	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 17 December 2003 : IPS : Geoprobe : Ryan Scott : 2"	3	W	tal Dep ESTON cation	th : 26' BGS I Geologist ::Barry Crawford : 2732 Wisconsin			
	VOC Soil Samp								Boring Intervals	m)				
	in feet	Recovery (in)	GRAPHIC	nscs		DESCRIPTIO	N		Boring I	PID (ppm)	REMARKS			
	0-													
	2-													
	4-													
	6-													
	8-		,											
	10-				SANDY SILT; Tan, w	ith clayand gravel, sl	ightly moist, stiff.				content - sample ID			
	12-	48/48		ML					X	0.0	Soil sample collected at 14:00 for VOCs and percent moisture content - sample ID EIP-GP7111-01.			
	14-													
.bor	16-	1.												
3\EIP-GP111	18-													
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP111.bor	20-						•	•				•		
ndustrial Pari	22-		יכוק											
5/Ellsworth li	24-	42/48		CL	SILTY CLAY; Grey w plasticity.	vith trace gravel (till),	suit, slightly moist,	, <b>iow</b>		0.0	Soil sample collected at 14:20 for			
2004 KN151	-	1								5.5	VOCs and percent moisture content - sample ID EIP-GP111-02.			
07-13-	26 End of boring @ 26'.													

RESPONSE ACTION CONTRACT U.S. EPA CONTRACT No. 68-W7-0026	LOG OF BORING EIP-GP112								
Work Assignment No. 155-RICO-B51W				(Page 1 of 1)					
Ellsworth Industrial Park Site Downers Grove, Illinois:	Date Completed : 16 Jan Drilling Company : IPS Drilling Method : Geopre Driller Name : Ryan S Borehole Diameter : 2"	Total Depth WESTON Geo Location							
Depth in feet Boring Intervals    Depth in feet   Depth in fee		Boring Intervals PID (ppm)	REMARKS	Well: Piezometer					
SILTY CLAY; Tan, tr gravel, firm, moist, o CLAYEY TOPSOIL a SILTY CLAY; Dark b	race and and coarse rganic material. 3" at top.	0.0	Soil sample collected at 12:32 for VOCs and percent moisture content - sample ID EIP-GP112-01.  Soil sample collected at 12:45 for VOCs and percent moisture content - sample ID EIP-GP112-02 and EIP-GP112-02 DUP.	——2" PVC Riser  ——0.010" Slot Screen					
80 End of boring @ 30	· · · · · · · · · · · · · · · · · · ·								

ı	ONSE A			FRACT 58-W7-0026	LOG OF BORING EIP-GP113						
1				ICO-B51W						(Page 1 of 1)	
4	rth Indu ers Grov			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 17 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	otal Dep ESTON cation	th : 24' BGS   Geologist : Barry Crawford : 2732 Wisconsin	
Depth in	Recovery (in)	GRAPHIC	SS	Boring Interval  VOC Soil Samp  Geologic Samp	1			Boring Intervals	PID (ppm)	REMARKS	
feet	Rec	GR	nscs		DESCRIPTION						
0-			FL	FILL; Mix of asphalt a	and organic topsoil.						
2-	48/48	SANDY SILT; Tan with trace gravel and clay, slightly moist, moderately stiff.  ML							0.0	Soil-sample collected at 11:15 for VOCs and percent moisture content - sample ID EIP-GP7113-01.	
4-					· <del>-</del>			الل			
6-				·				•			
8-				SANDY CLAYEY SIL low plasticity.	T; Tan, with trace gra	avel, slightly moist, sti	iff,				
10-	48/48		ML						0.0		
12-	]							Ш			
14-								:			
98/EIP-GP112	1			SILTY CLAY; Grey, plasticity.	with trace gravel (till),	slightly moist, stiff, lo				·	
Park/Boring C	44/48		CL			<b>'</b> ,		X	0.0	Soil sample collected at 11:50 for VOCs and percent moisture content - sample ID:EIP-GP113-02.	
20-	1			As above.	. – – – –						
07-15-2004 KA1515Ellsworth Industrial ParkBoring Logs\EIP-GP113.bor	48/48		CL					X	0.0	Soil sample collected at 14:10 for VOCs and percent moisture content - sample ID EIP-GP113-03.	
24-	End of boring @ 24'.								1		

RESPO				RACT 88-W7-0026	LOG OF BORING EIP-GP114							
1				CO-B51W						(Page 1 of 1)		
Ellswor Downe		strial Pa re, Illinoi		•	Date Completed : 15 December 2003  Drilling Company : IPS  Drilling Method : Geoprobe  Driller Name : Ryan Scott  Borehole Diameter : 2"				Total Depth : 33' BGS WESTON Geologist : Barry Crawford Location : 5224 Katrine			
Depth in feet	Boring Intervals    VOC Soil Sample Collected   Collec							Boring Intervals	PID (ppm)	REMARKS		
0-				<u> </u>		<u>_</u> !	 					
2-						-						
4-												
6-	3-1											
8-	SILTY CLAY; Grey, with gravel (till), slight moist, moderately stiff, low plasticity.						stiff,			Sail cample collected at 44.00 /		
10	48/48 CG CLAY RICH GRAVEL; Grey, loose, wet, poorly sorted.						M	0.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID			
12-			CĿ	SILTY CLAY; Grey, v plasticity.	with gravel (till), mois	t, medium soft, med	dium /			EIP-GP7114-01.		
14-	1			<u>}</u> .								
16-	111111	113 de 11	ML	SANDY SILT; Grey, plasticity.	with clay, medium sc	oft, moist, medium				Soil sample collected at 11:20 for		
18-	36/48	9°9	SP	SAND; Grey, with lar poorly graded.	rge gravel and silt, sli	ightly moist, loose,		M	0.0	VOCs and percent moisture content - sample ID EIP-GP114-02.		
20-	1	M	CL	SILTY CLAY; Grey, to medium plasticity.		o slight moist, stiff,	low/					
22-	† - - -					_ <b></b>	_·		1			
20 - 22 - 22 - 24 - 26 - 28 - 30 - 32 - 32 - 32 - 32 - 32 - 32 - 32	1	:										
26-												
28-	1											
30-	48/48	SILTY CLAY; Grey, with trace gravel (till), soft, medium plasticity.  48/48 CL				ticity.		0.5	Soil sample collected at 11:40 for			
32-										VOCs and percent moisture content - sample ID EIP-GP114-03.		
34-	1			End of boring @ 33'.	•							

U.	S. EP	A CON	ITRAC		TRACT 88-W7-0026 IICO-B51W	LOG OF BORING EIP-GP115 (Page 1 of 1)						
- 1		th Indu		ark Site ois:		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation	th : 20°BGS   Geologist : Barry Crawford : 5224 Katrine	
i	pth n	Recovery (in)	GRAPHIC	nscs	Boring Interval  VOC Soil Samp  Geologic Sampl				Boring Intervals	PID (ppm)	REMARKS	
14 K:\1515\Elisworth Industrial Park\Boring Logs\EIP-GP115.bor	8   10   14   16   18   18   18   18   18   18   18	48/48		ML	SANDY CLAYEY SIL low plasticity.  SILTY CLAY; Grey, medium soft, low to	with gravel throughou	 			0.0	Soil sample collected at 13:35 for VOCs and percent moisture content - sample ID EIP-GP7115-01.  Soil sample collected at 13:45 for VOCs and percent moisture content - sample ID EIP-GP115-02.	
07-13-20	20-		<i>V</i> 1. 3		End of boring @ 20'.			·				

U.S. E		VTRAC	T No. 6	TRACT 58-W7-0026 RICO-B51W	LOG OF BORING EIP-GP116 (Page 1 of 1)						
4	orth Indu			9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	ital Dep ESTON cation	oth : 20' BGS I Geologist : Barry Crawford : 5224 Katrine	
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		N	·	Boring Intervals	PID (ppm)	REMARKS	
0- 2- 4- 8-	48/48	9	CL	SILTY CLAY; Grey, v medium soft, low to	with gravel throughou			B.	0.6	Soil sample collected at 9:40 for VOCs and percent moisture content - sample ID EIP-GP7116-01.	
10-03s/Eip.GP118.bor											
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP\116.bor 9 1	44/48		CL	 As above.	· - — — — —			X	0.0	Soil sample collected at 9:55 for VOCs and percent moisture content - sample ID EIP-GP116-02.	
20-		ar - 1 - 1		End of boring @ 20'.							

		PA CO	İTRAC	T No. 6	68-W7-0026		LOG OF E	BORIN	1G I	EIP	-GP117	
'	Work A	ssignm	ent No	. 155-F	RICO-B51W	i					(Page 1 of 1)	
	Ellswor Downer				<b>9</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 18 December 2003 : IPS : Geoprobe : Ryan Scott : 2*		WE	tal Dep ESTON cation	th : 30° BGS I Geologist : Barry Crawford : 5224 Katrine	
	Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS	
	0-	36/48		FL	FILL; Mix of asphalt a material.	and gravel base with	<del>-</del>		0.0	Soil sample collected at 8:10 for VOCs and percent moisture content - sample ID		
	4-	ML SANDY SILT; Tan, with trace gravel and clay, stiff, slightly moist,									EIP-GP7117-01.	
	1.1.1											
	10-											
	12											
	14-	40/48		CL	SILTY CLAY; Grey, v low to medium plastic	vith trace gravel, (till)	, dry to slightly mois	st. –		0.0	Soil sample collected at 8:25 for	
bor	18-	SILTY CLAY; Grey, with trace gravel, (till), dry to slightly moist, low to medium plasticity, medium stiff.									VOCs and percent moisture content - sample ID EIP-GP117-02	2
18/EIP-GP117.												
rk\Boring Log	22-						·.					
h Industrial Pa	24-	:			·							
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\ElP-GP117.bor	26 28											
07-13-2004 K	30				End of boring @ 30'.	·	<u> </u>					

1	ONSE /			FRACT 68-W7-0026		LOG OF B	ORIN	G I	EIP	-GP118
1 .				RICO-B51W						(Page 1 of 1)
1	orth Indu ers Grov			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 17 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	al Dep STON cation	oth : 14' BGS I Geologist : Barry Crawford : 5224 Katrine
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals VOC Soil Samp Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS
0- 2- 4-	48/48	######################################	ML	SILT; Black organic v plasticity.  SANDY SILT; Grey v plasticity.  SANDY SILT; Tan wi medium plasticity.	vith trace gravel, sligt	ntly moist, soft, media	um		0.0	Soil sample collected at 9:05 for VOCs and percent moisture content - sample ID EIP-GP7118-01.
07-13-2004 K.\1515\Selisworth Industrial ParkBoring Logs\EIP-GP118.bor	48/48		CL	SILTY CLAY; Grey v low to med plasticity,		dry to slightly moist,		X	0.0	Soil sample collected at 9:20 for VOCs and percent moisture content - sample ID EIP-GP118-02.
07-13-20				end of borning @ 14.	•					

	RESPO		•		RACT 88-W7-0026		LOG OF	BORIN	1G	EIP	-GP119
١					ICO-B51W						(Page 1 of 1)
	Ellswor Downer					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 December 2003 : IPS : Geoprobe : Ryan Scott : 2"	3	W	tal Dep ESTON cation	th : 18' BGS Geologist : Ted Cagney : 5225 Walnut
	Depth in feet	Recovery (In)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS
	0-				FILL; Tan gravel and			<u>_</u>		<u>"</u>	
	, , , , , , , , , , , , , , , , , , ,	20,40		-	FILL; Grey gravel and	•				0.0	<u>.</u>
	2	36/48	000	FL						0.0	
	4-		0000							0.0	Soil sample collected at 9:15 for VOCs and percent moisture content - sample ID EIP-GP7119-01.
	6							·			
	8-										
	10-				·						
19.bor	-										·
Logs/EIP-GP1	12-						·.				
rial Park\Boring	14-	SILTY CLAY; Grey				trace gravel and sand	d, dry, stiff.			0.0	
07-13-2004 KN1515\Ellsworth Industrial Park\Boring Logs\ElP-GP119.bor	16	48/48		CL				4	X	0.0	Soil sample collected at 9:30 for VOCs and percent moisture content - sample ID EIP-GP119-02.
07-13-2004	18-				End of boring @ 18'.		. <b></b> .				·

	RESPO				RACT 68-W7-0026		LOG OF B	ORIN	G E	IP.	-GP120
ļ					ICO-B51W						(Page 1 of 1)
	Ellswor Downe				,	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 18 December 2003 : IPS : Geoprobe : Ryan Scott : 2"				th : 30° BGS I Geologist : Barry Crawford : 5225 Walnut
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		N.	-	Boring Intervals	PID (ppm)	REMARKS
	2-		¥8.6					,			
	4 6	48/48	enska steroske steros Steroske steroske Steroske steroske	.ML	SANDY SILT; Tan, sl below. CLAYEY SILT; Grey stiff.				X ·	0.0	Soil sample collected at 14:20 for VOCs and percent moisture content - sample ID EIP-GP7120-01.
	8-			1							
	12 - 14 -										
	16-						, dry, stiff, low to				
3P120.bor	18-	SILTY CLAY; Grey, medium plasticity.							X	0.0	Soil sample collected at 14:35 for VOCs and percent moisture content - sample ID EIP-GP120-02.
ring Logs/EIP-C	20-	20-									
tustrial Park/Bo.	24-	24-									
15/Ellsworth Inc	26-										
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP120.bor	28- 30-				End of boring @ 30'.	•					·
õ					3 @ 30.	•					

1	PA COL	NTRAC	T No. 6	RACT 8-W7-0026 ICO-B51W	LOG OF BORING EIP-GP121 (Page 1 of 1)						
Ellswort Downer				· •	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 22 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation		
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		DN:		Boring Intervals	PID (ppm)	REMARKS	
0-	æ	ပ	<u> </u>	<u> </u>	DLOOM III	<b></b>	<u></u>	m	<u>ā</u>		
2 4- 6- 8-		92842088200 82842084208 82842842084		SANDY SILT; Tan wi medium stiff.	ith gravel and some	clays, slightly moist				Soil sample collected at 8:10 for	
10-	36/48		ML					X	0.0	VOCs and percent moisture content - sample ID EIP-GP7121-01.	
"	,							_			
14- 16- 18- 20-	,										
16-	6-						• •				
18				SILTY CLAY; Grey, medium plasticity.	with gravel (till), slig	htly moist, stiff, low to					
20-	48/48		CL					X	0.0	Soil sample collected at 8:40 for VOCs and percent moisture content - sample ID EIP-GP121-02.	
22-			l	End of boring @ 22'.	· ·	<b></b> .			<u> </u>		

Work Assignment No. 156-RICO-BSTW  Elisworth Industrial Park Site  Doming Company : IRS  Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe WESTON Geologist : Barry Clarkfuld Location : 5225 Wahnut  Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geographe Drilling Method : Geog	RESPO				RACT 68-W7-0026		LOG OF B	ORIN	1G I	EIP	-GP122
Elsworth Industrial Park Site Downers Grove, Illinois:    Depth   Dept											(Page 1 of 1)
Depth in Sold Sample Collected Geologic Sample Intervals  DESCRIPTION  DESCRIPTION  SANDY SILT; Tan, with gravel, stiff, slightly moist, some iron staining, no odor.  Sold Sample collected at 12:40 for VOCs and percent moisture content - sample ID EIP-GP7122-01.  SILTY CLAY; Grey, with trace gravel (till), stiff, low plasticity, slightly moist.  Sold Sample collected at 12:50 for VOCs and percent moisture content - sample ID EIP-GP7122-02.	1				3	Drilling Company Drilling Method Driller Name	: IPS : Geoprobe : Ryan Scott	· · · · · · · · · · · · · · · · · · ·	WE	ESTON	Geologist : Barry Crawford
SANDY SILT; Tan, with gravel, stiff, slightly moist, some iron  8 48/48  ML  Soil sample collected at 12:40 for VOCs and percent moisture content - sample tD EIP-GP7122-01.  Soil sample collected at 12:40 for VOCs and percent moisture content - sample tD EIP-GP7122-01.  Soil sample collected at 12:50 for VOCs and percent moisture content - sample tD EIP-GP122-02.	in	Recovery (In)	GRAPHIC	nscs	VOC Soil Samp	le Intervals	'N		Boring Intervals	PID (ppm)	REMARKS
SANDY SILT; Tan, with gravel, stiff, slightly moist, some iron staining, no odor.  Soil sample collected at 12:40 for VOCs and percent moisture content - sample ID EIP-GP7122-01.  SILTY CLAY; Grey, with trace gravel (till), stiff, low plasticity, slightly moist.  CL  Soil sample collected at 12:40 for VOCs and percent moisture content - sample ID EIP-GP7122-01.  Soil sample collected at 12:50 for VOCs and percent moisture content - sample ID EIP-GP122-02.	2-				·						
SILTY CLAY; Grey, with trace gravel (till), stiff, low plasticity, slightly moist.  O.0 Soil sample collected at 12:50 for VOCs and percent moisture content - sample ID EIP-GP122-02.	8-	48/48	PARTER AND AND AND AND AND AND AND AND AND AND	ML	SANDY SILT; Tan, w staining, no odor.	vith gravel, stiff, sligh	tly moist, some iron			0.0	VOCs and percent moisture content - sample ID
	14-	48/48		CI.	SILTY CLAY; Grey, v	with trace gravel (till)	, stiff, low plasticity,			0.0	VOCs and percent moisture content - sample ID
20- 22- 22- 24- 24- 26- 28- 28-				; 							
24 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 –	20 -										
26 -	24 -										
	26-										
30 = 1   End of boring @ 30'.	30- 2007 30- 30-					•					

Work Assignment No. 155-RICO 851W  Elloworth Industrial Park Sile  Data Completed : 18 December 2003  Drilling Campany IPS  Drilling Method : Cesporbo  Differ Name Ryan Scott  Borefools Differ Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  REMARKS  Double Name Ryan Scott  REMARKS  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  REMARKS  Double Name Ryan Scott  REMARKS  Double Name Ryan Scott  Double Name Ryan Scott  Double Name Ryan Scott  REMARKS  Double Name Ryan Scott  Double Name Remarks  REMARKS  Double Name Remarks  REMARK	1				I CONT T No. 6	RACT 8-W7-0026	LOG OF BORING EIP-GP123						
Dilling Company   IPS   Total Depth   21 PBS   PBM   21 PBS   PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PBS   PBM   21 PB												(Page 1 of 1)	
Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet   Depth in feet							Drilling Company Drilling Method Driller Name	: IPS : Geoprobe : Ryan Scott		WE	STON	Geologist : Barry Crawford	
SANDY SILT; Tan, with gravet and clay, slightly moist, stiff.    A	1 :	in	covery (in)	APHIC	SO	VOC Soil Samp	les Intervals			ring Intervals	) (ppm)	REMARKS	
SANDY SILT; Tan, with gravet and clay, slightly moist, stiff.    Ask48	16		&	6	S		DESCRIPTIO	N 		8	풉		
SILTY CLAY; Grey with gravel (till), slightly moist, stiff, low  12 48/48 CL  Soil sample collected at 10:10 for VOCs and percent moisture content - sample ID EIP-GP123-02.  End of boring @ 21'.		2-4-	48/48	SANCOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANCANOSANC	ML	SANDY SILT; Tan, w	rith gravel and clay, s	lightly molst, stiff.				VOCs and percent moisture content - sample ID	
18- 18- 20- End of boring @ 21'.	-GP123.bor	10-	48/48		CL	SILTY CLAY; Grey w plasticity.	vith gravel (till), slightl	y moist, stiff, low			0.0	VOCs and percent moisture content - sample:ID	
End of boring @ 21'.	2004 K:\1515Elisworth Industrial Park/Boring Logs\EIP-	18-						•					
SI 22⊣	07-13-2	End of boring @ 21'.											

		PA ČOI	NTRAC	T No. 6	TRACT 58-W7-0026 BICO-B51W		LOG OF BORI	NG	EIP	-GP124 (Page 1 of 1)
	Ellswor Downer				· .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 December 2003 : IPS : Geoprobe : Ryan Scott : 2"	W	otal Dep ESTON ocation	
	Depth in feet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Sampl		N	Boring Intervals	PID (ppm)	REMARKS
	0-	FL FILL; Black silty clay, asphalt and gravel, slightly moist.  FL SILTY CLAY; Brown-grey, trace gravel, dry hard.								Soil sample collected at 8:10 for VOCs and percent moisture
	<b>4</b>			CL	SILTY CLAY; Brown-	grey mottling, trace	gravel, dry, hard.		0.0	content - sample ID EIP-GP7124-01.
	6	48/48		CL	SILTY CLAY; Brown-	grey mottling, trace (	gravel, dry, hard.		0.0	Soil sample collected at 8:20 for VOCs and percent moisture
	8-			SC CL	CLAYEY SAND; Bro staining.  SILTY CLAY; Brown	<u>.</u>	ghtly moist, no odor or		0.0	content - sample ID EIP-GP124-02.
3/EIP-GP124.bor	10									
strial Park\Boring Log	12-				SANDY SILTY CLAY slightly moist.	7; Grey, trace gravel	and cobbles, stiff, dry to		0.0	Soil sample collected at 8:35 for
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\ElP-GP124.bor	14-	40/48		CL					0.0	VOCs and percent moisture content - sample ID EIP-GP124-03.
07-13-200	16-				End of boring @ 15'.					

- 1		ONSE A			RACT 8-W7-0026	LOG OF BORING EIP-GP125						
W	ork A	ssignm	ent No.	. 155-R	ICO-B51W						(Page 1 of 1)	
		th Indu				Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 April : IPS : Geoprot : Ryan Sc	e		Total Depth WESTON Ged Location	: 26' BGS ologist : Michael Castillo : 2424 Wisconsin	
1 1	epth in eet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Temporary Well	
	0-										l N	
	2-											
	6-	41/48		sc	CLAYEY SAND; Tan pebbles, high plastici		inded		0.0	Soil sample collected at 13:15 for VOCs	2" PVC Riser	
	8-	4								and percent moisture content - sample ID EIP-GP125-01.		
	12-											
bor	14-		Z	sc	CLAYEY SAND; Gre rounded pebbles, hig		- — — ded.		0.0	Piezometer screen set from 10 to 20 feet.  Soil sample collected	0.010* Slot Screen	
(EIP-GP125(26)	16-	46/48		ML	CLAYEY SILT; TILL, Grey, very stiff, trace		e /. 		0.0	at 13:25 for VOCs and percent moisture content - sample ID EIP-GP125-02.		
07-13-2004 K.11515/Eilsworth Industrial Park/Boring Logs/Eip-GP125(26) bor	20-											
Isworth Industrial	22-				CLAYEY SILT; As a	bove.			0.0	Soil sample collected at 14:25 for VOCs and percent moisture		
04 K:\1515\E	24-	30/48		ML	CLAYEY SAND; Oliv	ve, medium-grained,	high	X	0.0	content - sample ID EIP-GP125-03. Boring relocated for this interval due to		
07-13-20	26-		1/./	1	plasticity, little round End of boring @ 26'	ed pebbles, moist.		اـــــــــــــــــــــــــــــــــــــ		refusal.	<u> </u>	

RESPO				FRACT 58-W7-0026		LOC	OF	B	ORING EIP-G	P126
				RICO-851W	<u>.</u>					(Page 1 of 1)
Eliswori Downer					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 26 April : IPS : Geoprol : Ryan So : 2"	oe		Total Depth WESTON Geo Location	: 15' BGS
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
2- 4- 6-	46/48		sc	CLAYEY SAND; Tan frequent micro-fractu pebbles. 18" sandy dry, loose.	res, trace small roun	 d 3',		0.0	Soil sample collected at 10:30 for VOCs and percent moisture content - sample ID EIP-GP126-01.	2" PVC Riser
10-	48/48		SC	As above.  CLAYEY SILT; TILL 11' - 12', low dilatend pebbles.	, Tan, stiff, slightly m cy, few subangular la	oist at rge		0.1	Soil-sample collected at 10:50 for VOCs and percent moisture content - sample ID EIP-GP126-02.  Piezometer screen set from 10 to 20 feet.	0.010" Slot Screen
16-			<u> </u>	End of boring @ 15'			1	l		J 8
18-						•,			\$ <b>\$</b> \$ \$	
20-										
24-										·
26-										

U	.S. EF		NTRAC	T No. 6	TRACT 68-W7-0026 RICO-B51W		LOG	OF	= B(	ORING EIP-G	
E	llswor	th Indu	strial P	ank Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 26 April : IPS : Geoprot : Ryan So	e e		Total Depth WESTON Ged Location	(Page 1 of 1)  : 20'.BGS  blogist : Michael Castillo : 2424 WisconsIn
	epth in eet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
	2-										2" PVC Riser
	6 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	48/48		sc	CLAYEY SAND; Tan moist, trace dilatency sub-rounded. 7" coa 6', slightly wet, high p	/, trace gravel, rse clayey SAND lay	-	X	0.1	Soil sample collected at 9:05 for VOCs and percent moisture content - sample ID EIP-GP127-01 along with MS/MSD.	
	10-									Piezometer screen set	0.010" Slot Screen
	14-					y				from 7 to 17 feet.	
07-13-2004 KN1515/Elisworth Industrial Park/Boring Logs/EIP-GP127.bor	16-	46/48		ML	CLAYEY SILT; TILL, dilatency, dry, high p pebbles, wet indicate point in liner.	lasticity, well sorted,	trace	X	0.1	Soil sample collected at 9:20 for VOCs and percent moisture content - sample ID EIP-GP127-02.	
dustrial Park/Bor	20-			<u>.</u>	End of boring @ 20'.		- <del>-</del>	U <u>1</u>	1		ļ
11515/Ellsworth In	24										·
07-13-2004 K	26-		·			-		<u> </u>			

	PA COI	TRAC	T No. 6	RACT 88-W7-0026 BCO-B51W		LOG	O O	= B(	ORING EIP-G		
Ellswor Downe	th Indu	strial:Pa	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 26 April 2 : IPS : Geoprob : Ryan Sc : 2"	ė	· · ·	Total Depth WESTON Geo Location		age 1 of 1) : 21'BGS : Michael Castillo : 2424 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
2	48/48		SC ML	CLAYEY SAND; Tan high dilatency, high plastic pebbles, occasional layer.  CLAYEY SILT; TILL, depth, slightly moist, pebbles (%5), occas pebbles, well graded	plasticity, trace pebble very stiff, dry, no city, trace rounded 1" medium grained sa grey, stiff, harder wit low dilatency, trace sional large rounded	es. and		0.0	Soil sample collected at 9:45 for VOCs and percent moisture content - sample ID EIP-GP128-01.  Piezometer screen set from 7 to 17 feet.  Soil sample collected at 10:00 for VOCs and percent moisture content - sample ID EIP-GP128-02.		2" PVC Riser 0.010" Slot Screen

		PA CO	NTRAC	T No. 6	TRACT 58-W7-0026 NCO-B51W		LOC	OI	F BO	ORING EIP-G	
	WUIK A	งองหิแเ	~1 <b>1</b> Ω	. 120 <u>-</u> 10		Date Completed	: 27 April	2004			(Page 1 of 1)
		rth Indu			<b>.</b>	Drilling Company Drilling Method Driller Name Borehole Diameter	: IPS : Geoprot : Ryan So	e-		Total Depth- WESTON Ged Location	: 26' BGS ologist : Michael Castillo : 2424 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Sampl			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
ŀ	0-	α	<u> </u>		<u> </u>			Δ.	<u> </u>		l In
	2-	48/48		sc	CLAYEY SAND; Tan trace angular pebble black, dry, well sorted	s, 4" FILL layer at top	city,	X	0.1	Soil sample collected at 8:30 for VOCs and percent moisture content - sample ID EIP-GP129-01 along with duplicate.	
	- 6-		K - K -		<del>_</del> _	<del></del>		ليا			2" PVC Riser
	- - - - 8-			-							
	10-	40/48		GC	CLAYEY SAND and saturated, poorly sort As:above; Grey increwet.	GRAVEL; Tan, loose ted, round to angular.	•	X	0.1	Soil sample collected at 8:45 for VOCs and percent moisture content - sample ID EIP-GP129-02.	
	14-									Piezometer screen set	0.010" Slot Screen
9.bor	16-									from 8 to 18 feet.	
ogs/EIP-GP12	18-						•				
Park\Boring L	20 -			-	. '		•				
07-13-2004 K11515\Ellsworth Industrial Park\Boring Logs\EIP-GP129.bor	22- -			sc	CLAYEY SAND; Gre medium plasticity, tra 7" large pebbles at 2	ace sub-rounded pebl	ded, bles,		0.0	Soil sample collected at 9:00 for VOCs and	
K:\1515\E	24-	48/48	m		CLAYEY SILT: TILL.	Grey, very stiff, high		X	0.1	percent moisture content - sample,ID EIP-GP129-03.	
07-13-2004	26-	-	Ш	ML	plasticity, trace pebb End of boring @ 26'.	les (%4), low dilatend	су. — —		0.1	- Or 165700.	
Ĭ		<u> </u>								·	

1	PA CON	NTRAC	T No. 6	TRACT 68-W7-0026 RICO-B51W		LOG	G OF	= B(	ORING EIP-G	
Ellswor Downe	rth Indu	strial P	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 27 April : IPS : Geoprob : Ryan So : 2"	ie		Total Depth WESTON Geo Location	(Page 1 of 1)  : 23' BGS  plogist : Michael Castillo : 2424 Wisconsin
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
0-										
2~	48/48		sc	CLAYEY SAND; Tan high plasticity, little ro SILT, trace micro-fra and gravel; tan, loose	ounded pebbles, little ctures, 3" coarse san		X	0.0	Soil sample collected at 7:45 for VOCs and percent moisture content - sample ID EIP-GP130-01 along with duplicate:	2" PVC Riser
8-									mui suplicate.	
12-	34/48		GP	GRAVEL and SAND sub-rounded, well gra	TAN, saturated, loos aded, trace clayey sil		X	0.0	Soil sample collected at 7:50 for VOCs and percent moisture content - sample ID EIP-GP130-02.	
130 Por									Piezometer screen set from 10 to 20 feet.	0.010" Slot Screen
គឺ  										
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\Ell-GP130.bor	48/48		ML	CLAYEY SILT; TILL top, high plasticity, w trace rounded pebble	Grey, stiff, dry, mois vell sorted, fine-graine es (%2).	it at ed,	X	0.0	Soil sample collected at 8:05 for VOCs and percent moisture content - sample ID EIP-GP130-03.	
71515/Ellswort	-		<u>L</u>	End of boring @ 23'.	 ·	· <del>-</del> -	U	<u> </u>	1	J
26-					• 					

	RESPO				TRACT 58-W7-0026		LOG OF B	ORING	EIP	-GP131
	Work A	ssignm	ent No	. 155-F	NCO-B51W					(Page 1 of 1)
	Ellswor Downe					Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 1 December 2003 : IPS : Geoprobe : John U. : 2"		Total De WESTO! Location	N Geologist : Ted Cagney
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Sampl  Geologic Sampl		N .	Boring Intervals	PID (ppm)	REMARKS
	0-								1	
	2									
	6 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	48/48		CL	SANDY SILT CLAY; little gravel, dry, hard		ownish grey, trace to your moist, low plasticity.		0.0	Soil sample collected at 16:10 for VOCs and percent moisture content - sample ID EIP-GP7131-01.
	10-						. — — — <del></del>			
bor	14			CL			·			
ogs\EIP-GP131	16-					~	r			
ial Park\Boring L	18-					· .	•			
Industr	20-	1			SANDY SILTY CLAY	; Grey, moist, trace	gravel, stiff.		0.0	
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP131.bor	22-	48/48		CL	SILTY CLAY; Grey, I very stiff.	irace gravel, slightly i	moist grading to dry,		0.0	Soil sample collected at 16:40 for VOCs and percent moisture content - sample ID EIP-GP131-02.
3-2004	24-			<u> </u>	End of horizon 2041	·			0.0	
07-1					End of boring @ 24'.					

RESPO				TRACT 58-W7-0026		LOG OF BO	RIN	IG I	EIP	-GP132
Wark A	Ssignm	ent No	. 155-F	RICO-B51 <u>W</u>						(Page 1 of 1)
Ellswor Downe	rth Indu ers Grov				Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 1 December 2003 : IPS : Geoprobe : John U. : 2"		WE	tal Dep ESTON cation	oth : 28' BGS I Geologist : Ted Cagney : 2537 Curtiss
Depth in	Recovery (In)	GRAPHIC	ş	Boring Intervals  VOC Soil Samp  Geologic Sampl				Boring Intervals	(ppm)	REMARKS
feet	Rec	GR	nscs		DESCRIPTIO	N 		Bori	<u>e</u>	
2-						·				
4-										
8-										
10-		Z.Z.		CI AVEV SAND: Brow		avel, moist, soft sand is				
14-	48/48		sc	fine to medium grade SILTY CLAY; Brown, SILTY CLAY; Grey, t	d.			X	0.0	Soil sample collected at 14:45 for VOCs and percent moisture content - sample ID EIP-GP7132-01.
16			CL	SILTY CLAY; Grey, t	race cobbles, dry, ha	rd. 			0.0	
98/EIP-GP132.t					5.					
07-13-2004 KN1515Ellsworth Industrial ParkBoring Logs\EIP-GP132.bor				·		•				
Ilsworth Industria	12/48		CL	SILTY CLAY; Grey,	some cobbles, moist,	moderate plasticity.	_	$\boxtimes$	0.0	Soil sample collected at 15:10 for VOCs and percent moisture content - sample ID
700 KM1515/E									EIP-GP132-02.	
28-		<u> </u>	i	End of boring @ 28'.	· · · · · · · · · · · · · · · · · · ·			<u> </u>	l	<u> </u>

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP133** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 2 December 2003 Ellsworth Industrial Park Site **Drilling Company** : IPS **Total Depth** : 19' BGS Downers Grove, Illinois: **Drilling Method** : Geoprobe WESTON Geologist : Ted Cagney Driller Name : John U. Location : 2537 Curtiss Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Intervals Recovery (in) GRAPHIC Depth **REMARKS** feet **DESCRIPTION** 0 FILL; Black CLAYEY SILT, with gravel and organics, moist. SILTY CLAY; Black and brown, some gravel, moist, slightly stiff, 0.0 Soil sample collected at 8:50 for 48/48 VOCs and percent moisture content - sample ID CL 0:0 EIP-GP7133-01. 0.0 10 07-13-2004 K;\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP133.bor 12 14 SANDY CLAY; Brown, trace gravel and cobbles, wet, medium 0.0 plasticity. 16 SILTY SANDY CLAY; Brown, trace gravel and cobbles, dry to slightly moist, stiff. Soil sample collected at 9:05 for 48/48 VOCs and percent moisture content - sample ID 0.0 EIP-GP133-02. 18 0.0 SILTY CLAY; Grey, trace gravel, stiff, dry to slightly moist. End of boring @ 19'. 20

U.S. E		NTRAC	T No. 6	TRACT 68-W7-0026 RIÇO-B51W		LOC	G OF	BC	ORING EIP-G		
Ellswo	rth Indu	ıstrial P	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 6 April 2 : IPS : Geoprob : Ryan So	e		Total Depth WESTON Geo Location		: 26' BGS : Michael Castillo : 2514-2518 WIsconsin
Depth in feet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
2-	32/48		МН	CLAYEY SILT: Tan a pebbles, soft, high pl frequent microfractur gravel at top.	asticity, low dilatency	, dry,	X	0.0	Soil sample collected at 13:05 for VOCs and percent moisture content - sample ID EIP-GP134-01.		
6- 8-											2" PVC Riser
12-											
07-13-2004 K:\1515\Ellsworth Industriel Park\Borthg Logs\EllP-GP134(20).bor 20-91	36/48		МН	CLAYEY SILT; Olive dilatency, slightly mo Stiff, low dilatency, d	ist to 17.5'.	high	$\square$	0.0	Soil sample collected at 13:20 for VOCs and percent moisture content - sample ID EIP-GP134-02.		
15)Ellsworth Industrial Park									Piezometer screen set from 16 to 26 feet.		0.010" Slot Screen
2004 KN15				End of boring @ 26'.							

U:S.	EPA C		CT No.	68-W7-0026	LOG OF BOI				ORING EIP-GP135 (Page 1 of 1)		
Ellsv	vorth Inc	ment No lustrial f ove, Illin	Park Site	RICO-851W e	Date Completed Drilling Company Drilling Method	: 12 Janu : IPS : Geopro	be	<b>)4</b>	Total Depth WESTON Geo	•	
					Driller Name Borehole Diameter	: Ryan:Si	cott		Location	: 5024 Chase	
Depti in feet	Recov	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		· · · · · · · · · · · · · · · · · · ·	Boring Intervals	PID (ppm)	REMARKS	Temporary Well	
2	1							-			
4	48/4			SILTY CLAY; Brown gravel, low plasticity, staining.	grading to grey, with low moist, trace iron	trace		0.0	Soil sample collected at 10:12 for VOCs and percent moisture		
						<del>-</del>			content - sample ID EIP-GP135-01.		
10	40/4	8	sw	rounded and angular CLAY, grey, stiff, me	ed, well graded, coars , no odor or staining. dium plasticity at top. oft, det, high plasticit	1' . 0.5'		0.0	Soil sample collected at 10:20 for VOCs and percent moisture content - sample ID EIP-GP135-02.	2" PVC Riser	
14											
135(13).bor	), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				·	·					
07-13-2004 KN151SEilsworth Industrial ParklBoring Logs\EIP-GP135(13) bor									, `.		
Industrial Park/Bo				·	·				Piezometer screen set from 20 to 30 feet.	0.010" Slot Screen	
71515/Eilsworth	1										
3. 4002-61-70	)-			End of boring @ 30'		<u>-</u>	<u> </u>				

	PA COI	NTRAC	T No. 6	8-W7-0026		LOG	OF	BO	ORING EIP-G	P136	6
Work A	ssignm	ent No	, 155-R	RICO-B51W			·			(P	age 1 of 1)
		strial Pa			Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: 12 Janua : IPS : Geoprob : Ryan So : 2"	e e	4	Total Depth WESTON Geo Location	ologist	: 26' BGS : James Molholm : 5024 Chase
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PiD (ppm)	REMARKS	Ten	porary Well
0-											
2- 4-	48/48		CL	SILTY CLAY; Grey, s gravel, moist, mediur SAND, and GRAVEL	m plasticity. 1" SILT.	ided :		0.0	Soil sample collected at 12:57 for VOCs and percent moisture content - sample ID EIP-GP136-01.		
8-	48/48		SP	SAND and GRAVEL poorly sorted, slight SILTY CLAY; Grey, thigh plasticity.	plasticity.		X	0.0	Soil sample collected at 13:03 for VOCs and percent moisture content - sample ID EIP-GP136-02 and EIP-GP136-02 DUP.		2" PVC Riser
12-						_	;				<u> </u>
14-											
16-											
16- 18- 20- 22- 24- 26-						•					
20-	1				·.	•					
22-					,	;			Piezometer screen set from 16 to 26 feet.		0.010" Slot Screer
24-											
26-	1	1		End of boring @ 26'.	•					_	

U.S. EI	PA CO		T No. 6	TRACT 58-W7-0026 NCO-B51W		LOG	OF	BO	ORING EIP-G	
Ellswo	th Indu	strial Pa	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 13 Janua : IPS : Geoprob : Ryan Sc	e	4	Total Depth WESTON Geo Location	(Page 1 of 1)  : 22'-BGS  plogist : James Molholm  : 5024 Chase
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PiD (ppm)	REMARKS	Well: Piezometer
2-	40/48		CL SP	SILTY CLAY; Tan, fir plasticity. SILTY CLAY with GF Iron staining.				5.4	Soil sample collected at 11:57 for VOCs and percent moisture content - sample ID EIP-GP137-01.	——2" PVC Riser
10-	44/48		CL	SILT CLAY; 1' Browing and subangular grave and subangular grave and subangular grave and subangular grave and subangular grayers.	el.		X	0.0	Soil sample collected at 12:07 for VOCs and percent moisture content - sample ID EIP-GP137-02.	
14-	40/48		CL	SILTY CLAY; Grey, subangular gravel, m plastic, moist.	with coarse rounded noderately firm, highly	and y		0.0	Piezometer screen set from 10 to 20 feet.	0.010" Slot Screen
18 - 20 -	36/48		SP	SAND and GRAVEL iron staining, poorly SILTY CLAY; with green and of boring @ 22'.	ravel, wet.	ome	X	0.0	Soil sample collected at 12:44 for VOCs: and percent moisture content - sample ID EIP-GP137-03 along with MS/MSD sample.	

1	PA CON	TRAC	T No. 6	TRACT 58-W7-0026 BCO-B51W	·	LOG	OF	₹ BC	ORING EIP-G	P138 (Page 1 of 1)
Ellswor Downe	rth Indu rs Grov			•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 13 Janua : IPS : Geoprobe : Ryan Sco	e	4	Total Depth WESTON Ged Location	: 26' BGS
Depth In feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
0- 2- 4-	48/48		CL	CLAY; Grey and brownedium grained, san plastic, moist. 2" fill CLAY; Tan, silty gravitim.	id and gravel, soft, ve	ery		1.2	Soil sample collected at 10:32 for VOCs and percent moisture content - sample ID EIP-GP138-01.	——2" PVC Riser
10-	16/48		ML CL SC	sand and coarse gra CLAY; Grey, grade f plastic. SAND and GRAVEL	rom above to wet, so	ft,		1.0	Soil sample collected at 10:44 for VOCs and percent moisture content - sample ID EIP-GP138-02.	
14 - 16 -				·					Piezometer screen set from 10 to 20 feet.	0.010" Slot Screen
18 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2							-			
07-13-2004 K:\1515\Eilsworth Industrial Perk\Boring Logs\EiP-GP138(26), bor 5	plastic, moist, with trac angular gravel.				moderately soft, very ace subangular and	· 	X	2.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP138-03 along	
26-	1		<u> </u>	End of boring @ 26'					with MS/MSD sample.	<u>.                                    </u>

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP139** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) Date Completed : 12 January 2004 Ellsworth Industrial Park Site **Drilling Company** : IPS **Total Depth** : 20' BGS Downers Grove, Illinois: : Geoprobe WESTON Geologist **Drilling Method** : James Molholm : Ryan Scott Location : 5024 Chase **Driller Name** Borehole Diameter : 2* Boring Intervals VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) **Temporary Well** PID (ppm) GRAPHIC Depth uscs **REMARKS** feet DESCRIPTION 0-SILTY CLAY; Brown and trace grey, stiff, low moist, low plasticity. 2" PVC Riser Soil sample collected 48/48 at 08:59 for VOCs and percent moisture content - sample:ID EIP-GP139-01. 8 10 12 07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP139(16).bor SANDY SILT; Grey, very moist, frequent poorly sorted layers through 15'. 1' SILT layer, grey, wet, high plasticity. Soil sample collected at 09:10 for VOCs and percent moisture 42/48 content - sample ID EIP-GP139-02. -0.010" Slot Screen 16-Piezometer screen set from 10 to 20 feet. 18 20-End of boring @ 20'.

		PA CON	NTRAC	T No. 6	68-W7-0026		LOG	OF	BC	ORING EIP-G	P140	)
	Work A	ssignm	ent No	. 155-R	RICO-B51W						(P	age 1 of 1)
	Ellswor				•	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 13 Janua : IPS : Geoprob : Ryan Sco : 2"	e	4	Total Depth WESTON Geo Location	ologist	: 30° BGS ; James:Molholm : 5024 Chase
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl  DES	.,		Boring Intervals	PIĎ (ppm)	REMARKS	Well	l: Piezometer
	0-							i		:	: [	
	2-	42/48		GC	SAND and GRAVEL, brown, with silt, mois	t, plastic.			2.5	Soil sample collected at 7:42 for VOCs and percent moisture		
	6			GM	SILT; Tan with grave plastic.	I, soft, very moist, hig	anly			content - sample ID EIP-GP140-01.	·	
	8-											·
	10-						1					—— 2" PVC Riser
	12											
	14-		77	GC	CLAY; Grey fine, with	h coarse and subang	ular and			Soil sample collected		
oor		40/48		CL	and silt lense, wet.  SILTY CLAY; grey we fine to medium sand subangular gravel.	ery moist, soft, plastic and trace coarse to	c, with		0.0	at 7:55 for VOCs and percent moisture content - sample ID EIP-GP140-02.		
140(18).1		1		_		<del></del>						·
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\EIP-GP140(18).bor	20-					<u>.</u>						
ark\Boring L	22-						<b>.</b> *					
Industrial Pa	24-									Plezometer screen set from 20 to 30 feet.		0.010" Slot Screen
SEllsworth 1	26-									nom 20 to 30 leet.		
004 K:\151!	28-											] 
07-13-2	30-		<u> </u>		End of boring @ 30'.	- <del></del>	. <u> </u>		<u> </u>	1	ا ل	IJ.

Borrier Intervals    Borrier Intervals   South State   Sou		RESPO				FRACT 58-W7-0026		LOG	OF	BORING EIP-G	P141
Ellsworth Industrial Park Site Downers Grove, Illinois:    Drilling Kethod   Geoprobe   WESTON Geologist   Ted Cagney		Work A	\ssignn	ent No	. 155-R	ICO-B51W					(Page 1 of 1)
Depth   Geologic Sample Interval   Popular   Geologic Sample Interval   Geologic Sample Int						•	Drilling Company Drilling Method Driller Name	: IPS : Geoprobe : Ryan Scot		Total Depth WESTON Geo	ologist : Ted Cagney : S. of Curtiss & Glennview,
FILE; Silt with sand; black, trace clay and gravel, dry, hard, slight organic odor.  SILTY CLAY; Black, trace gravel and sand, soft, slightly moist. SILTY CLAY; Brown and orange mottling, trace gravel, slightly moist, to dry, hard.  Soli samples collected at 9.57 and 10:00 for VOCs and percent moisture content - sample ID EIP-GP141-01 and 02.  EIP-GP141-01 and 02.  Table 10-0-10-10-10-10-10-10-10-10-10-10-10-10		in	Recovery (in)	GRAPHIC	uscs	VOC Soil Samp	e Interval	Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
Solt, Silt, TY CLAY; Brown and orange mottling, trace gravel, slightly moist, to dry, hard.  10- 112- 114- 116-			48/48			gravel, dry, hard, slig SILTY CLAY; Black,	ht organic odor.		0.0	9:57 and 10:00 for VOCs and percent moisture content - sample ID	
10- 12- 14- 16-		- -			а	SILTY CLAY: Brown	and orange mottling, moist, to dry, hard.			EIP-GP141-01 and 02.	
12-		- - -									
16-	į	-							     		2" PVC Riser
					:						
Soil sample collected at 10:15 for VOCs and percent molsture content sample ID EIP-GP141-02.  Piezometer well screen:set from 20 to 30 feet.  Piezometer well screen:set from 20 to 30 feet.		16-							;		
20 48/48 SP SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 22 - 48/48 SP 2	141(22).bor	18		0 8 0 0		SAND with GRAVEL grained, dry.	; Orange, coarse	-			
Piezometer well screen set from 20 to 30 feet.  Piezometer well screen set from 20 to 30 feet.	Logs/EIP-GP	-	48/48	0 0 0	SP	· · · · · · · · · · · · · · · · · · ·	-		0.0	percent moisture content -	Ç.
Piezometer well screen:set from 20 to 30 feet.	I Park\Boring	-					· ,				
2004 K.151.51.51.51.51.51.51.51.51.51.51.51.51	worth Industria	-									0.010" Slot Screen
	4 K:\1515\Eils	28-							,		
End of boring @ 30'.	07-13-200	30-	-	<u> </u>	<u>.                                    </u>	End of boring @ 30'.			<u> </u>	1	] []

U.S. El		TRAC	T No. 6	RACT 8-W7-0026 ICO-B51W		LOG	OF	BORING EIP-G	P142 (Page 1 of 1)
	th Indu			; ;	Date Completed Drilling Company Drilling Method Oriller Name Borehole Diameter	: 23 Janua : IPS : Geoprob : Ryan So : 2"	•	Total Depth WESTON Ge Location	: 26' BGS
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	•	Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
0- 2- 4-									
14- 16-	24/48		GC	SANDY GRAVELLY iron stains, plastic, n 4" SAND and GRAV SILT; with dolostone moist.	EL; low fines.		0.0	Soil samples collected at 8:14 for VOCs and percent moisture content - sample ID EIP-GP142-01 and 01.	2" PVC Riser
oring Logs\EIP-GP142(2					_			Piezometer well screen set from 20 to 25 feet.	
07-13-2004 K.11515/Ellsworth Industrial Park/Boring Logs/EP-GP142(28), bor 20-32004 K.11515/Ellsworth Industrial Park/Boring Logs/EP-GP142(28), bor 20-3204 K.11515/EP-GP142(28), bor 20-3204 K.11515/EP-GP142(28), bor 20-3204 K.11515/EP-GP142(28), bor 20-3204 K.11515/EP-GP142(28), bor 20-3204 K.11515/EP-GP14	30/48		GM CH/C	grained sand, trace SILTY CLAY; Grey, and large dolostone	, with silt, and mediur iron staining. soft, with coarse gra- fragments. 4" SILT	/k	0.0	Soil sample collected at 8:42 for VOCs and percent moisture content - sample ID EIP-GP142-02.	
30 30 30 30 30 30 30 30 30 30 30 30 30 3				\seam; Brown, plasti End of boring @ 26		J			· · · · · · · · · · · · · · · · · · ·

	ONSE A			RACT 58-W7-0026	LOG OF BORING EIP-GP143							
Work A	Assignm	ent No.	. 155-R	ICO-B51W						(Pa	ge 1 of 1)	
	rth Indu ers Grov			•	Date Completed : 23 January 2004  Drilling Company : IPS  Drilling Method : Geoprobe  Driller Name : Ryan Scott  Borehole Diameter : 2"				Total Depth WESTON Geo Location	ologist	: 30' BGS : James Molholm : S. of Curtiss & Glennview : E. of Belmont	
Depth In feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC:Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Welt:	Piezometer	
0- 2- 4- 6- 8- 10- 12- 14- 16-	36/48		CL SP CL CL	CLAY; Brown, with c 3" Seam; fine sand a grained gravel, tan, r SILTY CLAY; Brown with medium grained SILTY CLAY; Tan, v above, more firm. SANDY GRAVELLY fragments, iron stain moist.	nd medium to coarse noist low fines. , moderately firm, pla sand and iron stains with coarse gravel as — — — — — — — — — — — — — — — — — — —	stic,		0.0	Soil sample collected at 9:37 for VOCs and percent moisture content - sample ID EIP-GP143-01 and MS/MSD.  Soil sample collected at 9:44 for VOCs and percent moisture content - sample ID EIP-GP143-02.		2" PVC Riser	
20- 22- 24- 26-	24/48	C	SP	fine grain. 2" Tan, saturated co Course SAND.	sand, low fines. SAND layer, mediun arse GRAVEL, round	led.		0.0	Piezometer well screen set from 20 to 30 feet.  Soil sample collected at 10:05 for VOCs and percent moisture content - sample ID EIP-GP143-03.		0.010" Slot Scree	

U.S	. EPA	CON	ITRAC	T'No. 6	TRACT 58-W7-0026	LOG OF BORING EIP-GP144							
Wo	rk Ass	signm	ent No.	. 155-F	RICO-B51W						(Page 1 of 1)		
			strial Pa e, Illino		3	Drilling Method : Geoprobe WESTO				Total Depth WESTON Geo Location			
Dep in fee		Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		ing Interval (ppm) REM			REMARKS	Well: Piezometer		
	0-			F1	4" TOPSOIL.						ا: • [	7	
	2-4	18/48		FL CL	8" FILL; Gravel and c SANDY CLAY; Brow coarse to medium graphastic. 2" SILTY CLAY; Dark material.	n and tan, fine sand, ained gravel, soft, hig	jhly	X	0.0	Soil sample collected at 11:04 for VOCs and percent moisture content - sample ID EIP-GP144-01.			
ľ	4					. – – – –							
	6-												
	8-											——2" PVC Riser	
1	0-												
1	2-								i. 1		·		
	14-												
P-GP144(21)	16-					- <del>-</del>	<b>_</b> _					-	
13/8B0 1	8-	٠.			No recovery.	•.						I	
ark\Boring L		24/48	0 0 0 0 0 0 0 0 0 0	SP	sorted, medium to co SAND AND GRAVE	L; Fine to medium sa ded gravel, iron staini sorted, fine grained.	ınd,	X	0.0	Soil sample collected at 11:20 for VOCs and percent moisture content - sample ID EIP-GP144-02.	0.010" Slot Screer		
6\Ellsworth h	22-					· <del>-</del>				Piezometer screen set		 	
2004 K:\\151	24-					•				from 15 to 25 feet.			
07-13-2	_				End of boring @ 25'.					•	ا و		
	26-											·	

U.S. E		VTRAC	T No. 6	FRACT 68-W7-0026 RICO-B51W		LOG	BORING EIP-G			
	rth Indu			<b>3</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 26 Januar : IPS : Geoprobe : Ryan Scot		Total Depth WESTON Ge Location	(Page 1 of 1)  : 21' BGS cologist : Ted Cagney : S. of Curtiss & Glennvier : E. of Belmont	
Depth in feet	in   N A A S					Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer	
2- 4-	48/48		SC	FILL; Sand and silt, g gravel, slightly moist. FILL; Silt with clay, I gravel, soft. CLAY; Orange and b gravel, hard.	Brown, moist, trace		0.0	Soil samples collected at 8:00 for VOCs and percent moisture content - sample ID EIP-GP145-01 and 02.	2" PVC Riser	
10- 12- 14-	24/48	SAND and GRAVEL mottling, moist, low p	Brown and orange lasticity.		0.0	Soil sample collected at 8:10 for VOCs and percent moisture content - sample ID EIP-GP145-02.				
07-13-2004 K.)1515[Elisworth Industrial Park/Borng Logs/EIP-GP145(14).bor								Piezometer well screen set from 11 to 21 feet.		
07-13-2004 KATS15Eilsworth	1 1 1 1 1 1 1 1 1			End of boring @ 21'.	<del>-</del>					

		PA COI	NTRAC	T No. 6	FRACT 58-W7-0026 BICO-B51W		GP146			
	Ellswor Downer	th Indu	strial P	ark,Site		Drilling Company Drilling Method	: 23 January : IPS : Geoprobe : Ryan Scott		Total Depth WESTON Ged Location	(Page 1 of 1)  : 30' BGS  ologist : James Molholm : S. of Curtiss & Glennviev : E. of Belmont
	Depth in feet	δ   δ   <del>δ</del>   <del>β</del>			VOC Soil Samp		Boring Intervals	PID (ppm)	REMARKS	Well: PZ-1
	10— 12— 14— 14—	34/48	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	CL SM CL	SILTY CLAY; Brown, coarse gravel. SANDY SILT; Tan, w soft, plastic, moist. SILTY CLAY; Brown, more firm, lower plas	vith clay and fine sand		0.0	Soil sample collected at 13:03 for VOCs and percent moisture content sample ID EIP-GP146-01.	——2" PVC Riser
07-13-2004 K:\1515\Eilsworth Industrial Park\Boring Logs\EIP-GP146(22).bor	18			SP	SILTY CLAY; Brown moist, low plasticity. SAND AND GRAVEI medium grained, iror slightly, moist, with d	n staining, low fines,			Soil sample collected at 13:19 for VOCs and percent moisture content - sample ID EIP-GP146-02.  Piezometer screen set from 20 to 30 feet.	0.010" Slot Scree
07-13-200	30-				End of boring @ 30'					J U

					FRACT. 58-W7-0026	LOG OF BORING EIP-GP147							
İ	Work A	Assignm	ent No	. 155-R	RICO-B51W						(Page 1 of 1)		
	Ellswor					Date Completed : 26 January 2004 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"				Total Depth WESTON Ge Location	: 26" BGS ologist : Ted Cagney : S. of Curtiss & Glennview, : E. of Belmont		
	Depth In feet	n   Š   d   S						Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer		
	0	30/48		FL	SANDY SILT; Black, odor. SILTY CLAY; Brown trace gravel, slightly odor, stiff.	and orange mottling,			0.0	Soil sample collected at 8:50 for VOCs and percent moisture content - sample ID EIP-GP147-01.  Piezometer well screen set from 7 to 11 feet.	——2" PVC Riser		
P147(26).bor	12- 14- 16-	24/48	CL SANDY CLAY; Brown gravel, stiff, dry.  SAND; Brown and bla grain, wet, trace gravel, stiff.  CL SILTY SANDY CLAY with some gravel, stiff.	ack, medium to fine el.		0.0	Soil sample collected at 9:05 for VOCs and percent moisture content - sample ID EIP-GP147-02.						
rk\Boring Logs\EIP-G	18-						·*,			· · · · · · · · · · · · · · · · · · ·			
07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP147(26).bor	22- 24-	CLAY; Grey, with trace dry, hard.			ce silt, sand, and gra	vel,		0.0	Soil sample collected at 9:20 for VOCs and percent moisture content - sample ID				
07-13-2004 K	26-			SP	SAND; With clay; bro to coarse grained, m low plasticity. End of boring @ 26'.	oist to wet, some gra	lium vel, /			EIP-GP147-03.			

					TRACT 68-W7-0026	LOG OF BORING EIP-GP148						
	Work A	Assignn	nent No	o. 155-l	RICO-B51W					(P	age 1 of 1)	
	Ellswo	rth Indu			e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 23 Janua : IPS : Geoprob : Ryan Sc : 2"	e	Total Depth	ologist	: 25' BGS : James Molholm : S. of Curtiss & Glennview, : E. of Belmont	
	Depth in feet	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Boring Intervals	PID (ppm)	REMARKS	Wel	l: PZ-1	
	0-							T	1	1	]	
	2- -			CH pl	CLAY; Dark brown, s plastic, moist.	oft, organic, some si	it,		Soil sample collected at 14:26 for VOCs and			
	4-	46/48		SM CL	coarse grained, with	very moist, medium to gravel, soft, plastic. vith coarse gravel, very		0.0	percent moisture content - sample ID EIP-GP148-01.			
	6-		ИИ	OL.	moist, soft, plastic.		-  -					
	8-										2" PVC Riser	
	10-						,					
	12-		:				:					
ō	14-						1					
-GP148(22).b	16-											
ring Logs/EIP	18-		//	SM	SANDY SILTY CLAY gravel, very moist, so	'; Tan, with coarse oft, plastic.	-		Soil comple collected at			
ustrial Park/Bc	20-	36/48		CL	SILTY CLAY, Grey, v subangular gravel, m	with coarse and		0,0	Soil sample collected at 14:43 for VOCs and percent moisture content - sample ID EIP-GP148-02.		0.010" Slot Screen	
07-13-2004 K:11515/Ellaworth Industrial Park Boring Logs/EIP-GP148(22).bor	22-					· - <u>-</u>	_		Piezometer well screen set from 15 to 25 feet.			
2004 K:N 515	24-					-						
07-13-	26-				End of boring @ 25'.			-		. t	-	

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP150** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) Total Depth : 14' BGS : 9 April 2004 **Date Completed** Elisworth Industrial Park Site : IPS WESTON Geologist : Michael Castillo **Drilling Company** Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 2265 Maple Driller Name : Ryan Scott Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) **Temporary Well** PID (ppm) GRAPHIC Depth USCS **REMARKS** in feet DESCRIPTION 0-7" FILL; SAND AND GRAVEL; Asphalt. CLAYEY SILT; Tan, slightly stiff; high plasticity, low dilatency, trace rounded pebbles. Soil sample collected at 12:55 for VOCs 0.2 2and percent moisture content - sample ID EIP-GP150-01. 2" PVC Riser As above. 07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\EIP-GP150(12).bor Soil sample collected at 13:05 for VOCs and pecent moisture content - sample ID SILTY SAND; Tan, saturated, well sorted, no EIP-GP150-02 odor or staining. 48/48 0.1 10-SM SILTY CLAY; TILL, Grey, slightly stiff; low dilatency, moist to dry with depth, trace Piezometer screen pebbles, no odor or staining. 0.1 set from 9 to 14 feet. 0:010" Slot Screen 12 CL End of boring @ 14'.

PA CO	NTRAC	T No. (	68-W7-0026	LOG OF BORING EIP-GP151 (Page 1 of 1)					
			e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: IPS : Geoprol	oe .		Total Depth WESTON Ge Location	: 15' BGS ologist : Michael Castillo : 2265 Maple
Recovery (in)	GRAPHIC	nscs	Geologic Samp	le Interval	1 1 1	Boring Intervals	PID (ppm)	REMARKS	Temporary Well
48/48		FL	asphalt, gravel on bo  CLAYEY SILT; Tan a sub-rounded pebbles	and grey, trace			0.1	Soil sample collected at 11:15 for VOCs and percent moisture content - sample ID EIP-GP151-01.	2" PVC Riser
48/48		CL	pebbles, stiff, high p 3" wet SAND at top.	lasticity, low dilatenc	lar y, dry,		0.1	Soil sample collected at 11:30 for VOCs and percent moisture content - sample ID EIP-GP151-02 Piezometer screen set from 5 to 15 feet.	0.010" Slot Screen
	PA COI Assignment Industrial Growth (iu)	Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assignment No. Assign	Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1  Assignment No. 155-1	Boring Intervals VOC Soil Samp Geologic Samp  The sub-rounded pebbles throughout, low to m dilatency, stiff, dry.  SILTY CLAY; Grey pebbles, stiff, high p 3" wet SAND at top.	PA CONTRACT No. 68-W7-0026 Assignment No. 155-RICO-B51W  Thi Industrial Park Site ars Grove, Illinois  Boring Intervals  VOC Soil Sample Collected  Geologic Sample Interval  FL  16* FILL; Black, organic soil, slight odor i asphalt, gravel on bottom.  CLAYEY SILT; Tan and grey, trace sub-rounded pebbles, microfractures throughout, low to medium plasticity, low dilatency, stiff, dry.  SILTY CLAY; Grey TILL, trace sub-angupebbles, stiff, high plasticity, low dilatency 3" wet SAND at top.	The Industrial Park Site are Grove, Illinois    Date Completed	Assignment No. 155-RICO-851W  Inthindustrial Park Site are Grove, Illinois  Borring Intervals  VOC Soil Sample Collected  Geologic Sample Interval  DESCRIPTION  BESCRIPTION  SILTY CLAY; Grey TILL, trace sub-angular pebbles, stiff, high plasticity, low dilatency, dry, 3* wet SAND at top.  SILTY CLAY; Grey TILL, trace sub-angular pebbles, stiff, high plasticity, low dilatency, dry, 3* wet SAND at top.	Assignment No. 155-RICC-B51W  rth Industrial Park Site are Grove, Illinois    Date Completed	Assignment No. 155-RICO-95HW  th Industrial Park Site are Grove, Itlinois  Borring Intervals    Completed   19 April 2004   Total Depth WESTON Ge Caporbe Driller Name   Ryan Scott Borehole Dismeter   2

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP152** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 9 April 2004 **Total Depth** : 18' BGS Date Completed Ellsworth Industrial Park Site : IPS WESTON Geologist : Michael Castillo **Drilling Company** Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 2265 Maple **Driller Name** : Ryan Scott Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected **Boring Intervals** Geologic Sample Interval Recovery (in) **Temporary Well** PID (ppm) GRAPHIC Depth **USCS REMARKS** in feet **DESCRIPTION** Temporary well screened from 9.5 to 14.5 feet 2 CLAYEY SILT; Tan, trace rounded pebbles, stiff, low plasticity, low dilatency, dry. 2" PVC Riser Soil sample collected 6 ML 0.0 at 13:55 for VOCs and percent moisture content - sample ID EIP-GP152-01 and EIP-GP152-01 DUP. 10 07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\ElP-GP152(18).bor 12 0.010" Slot Screen CLAY, TILL, Grey, trace sub-rounded, pebbles, stiff, low plasticity, low dilatency, dry. Soil sample collected 16-CL 48/48 at 13:46 for VOCs and percent moisture content - sample ID EIP-GP152-02 and EIP-GP152-02 MS/MSD. 18 End of boring @ 18'. 20

	RESPO				TRACT 68-W7-0026	LOG OF BORING EIP-GP153							
	Work A	Assignn	nent No	), <b>15</b> 5-l	RICO-B51W					(Page 1 of 1)			
	Ellswor				<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: 12 January : IPS : Geoprobe : Ryan Scott : 2"			Total Depth WESTON Ge Location	: 30' BGS : James Molholm : 5024 Chase		
		,			Boring Intervals  VOC Soil Samp  Geologic Samp		·	als	•		Piezometer		
	Depth in	Recovery (in)	GRAPHIC	nscs				Boring Intervals	PID (ppm)	REMARKS			
	feet	- R	<u>a</u>	Sn	DE	SCRIPTION		8	邑				
	0- 2- 4-												
	6-											·	
	8-	SILTY CLAY; Tan, s moderate plasticity. tan, moist.			SILTY CLAY; Tan, s moderate plasticity. s tan, moist.	tiff, trace coarse gra Sand and silt seam a	vel, at 9.2',	X	0.0	Soil sample collected at 08:12 for VOCs and percent moisture			
	10-			СН	SAND and GRAVEL higher plasticity.	LY CLAY; Tan, soft	, wet, /			content - sample ID EIP-GP153-01.		——2ª PVC Riser	
	14-												
	16				Grades to grey, stiff, to Tan, with large do	ith trace rounded gravel. low moisture at 18'. Grades			<u>.</u> !	Soil sample collected at 08:21			
>1 53(20).bor	18- 20-	40/48		CL	SAND and SILT sea fragments.	m with large dolosto	ne		0.0	for VOCs and percent moisture content - sample ID EIP-GP153-02.			
g Logs/EIP-G	22-						•						
07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\EIP-GP153(20).bor	24-									Piezometer well		0.010" Slot Screen	
Isworth Indus	26-							i:		screen set from 20 to 30 feet.			
14 K: 11 51 5/EI	28- - - - 30-					· 	·						
07-13-20C	32-				End of boring @ 30'	•							
	<u> </u>	<u> </u>			·			· · · · ·					

	U.S. E	PA CO		T No.	68-W7-0026		LOG	OF	во	RING EIP-G	P154	
	'Ellswor	rth Indu	ıstrial P	ark Sit	e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 9 January : IPS : Geoprobe : Ryan Scot	,		Total Depth WESTON Ge Location	(Page 1 of 1)  : 30'BGS  blogist : James Molholm : 5024 Chase	
	Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Piezometer	
07-13-2004 K:N 51 S'Ellsworth Industrial Park'Boring Logs/ElP-GP154(21).bor	10- 12- 112- 113- 114- 115- 118- 118- 118- 118- 118- 118- 118	48/48		CL SC	SILTY CLAY; Tan, we sub-angular gravel, semoisture.  SANDY CLAY; Tan a gravel, poorly sorted gravel, poorly sorted gravel, poorly sorted gravel, slightly plastic, 2" seam, slightly moi	ith coarse rounded a stiff, low plasticity, low and Brown, with som , soft, moist.	e coarse		0.0	Soil sample collected at 11:21 for VOCs and percent moisture content - sample ID EIP-GP154-01.  Soil sample collected at 11:35 for VOCs and percent moisture content - sample ID EIP-GP154-02.  Piezometer well screen set from 20 to 30 feet.	2" PVC Riser0.010" Slot Screei	
07-13	32-											

	PONSE A			TRACT 68-W7-0026		LOG	OF	во	RING EIP-G	P15	5
				RICO-B51W	<u> </u>  -					(P	age 1 of 1)
	orth Indu ners Gro			e .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 9 January : IPS : Geoprobe : Ryan Scot			Total Depth WESTON Ge Location	ologist	: 30' BGS : James Molholm : 5024 Chase
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Piez	cometer
2									-		
6	48/48		CL	SILTY CLAY; Tan, h coarse-grained grav moisture, low plastic	el, light iron staining	ium- to , low	$\boxtimes$	0.0	Soil sample collected at 15:00 for VOCs and percent moisture		
10		ru ru		SILTY CLAY, Tan gr	rading to grey at 12'				content - sample ID EIP-GP155-01 and EIP-GP155-01DUP. Soil sample collected at 15:12		2" PVC Riser
	SILTY CLAY, Tan gradi with coarse rounded an moderate plasiticity.			and angular gravel	, moist,	X	0.0	for VOCs and			
14	1		CL	SILTY CLAY, Grey, trace gravel.	high plasticity, soft,	moist,		0.0	MS/MSD. Soil sample collected at 15:24		
18	1					- <del></del> -			content - sample ID EIP-GP155-03:		
20	1								·		
22 22 22	22-				•				-		
Strie Park 8								Piezometer well		0.010" Slot Screen	
26	26-							screen set from 20 to 30 feet.			
K: 11515	28-3			•	,			·			
2004	80 End of boring @ 30'.					- <b>-</b> -			<u>-</u>		-
32	4					· · · · · · · · · · · · · · · · · · ·					····

		PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W	LOG OF BC			BORING EIP-GP156 (Page 1 of 1)				
	Ellswor				<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 9 January : IPS : Geoprobe : Ryan Scot	,		Total Depth WESTON Ge Location	N Geologist : James Molholm		
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Piez	zometer	
	2	45/48		SM	SANDY SILT; Brown rounded gravel, sligh staining, low plasticit SILTY CLAY; Tan, h	itly moist, moderate ii y.	se ron		0.0	Soil sample collected at 13:05 for VOCs and percent moisture content - sample ID EIP-GP156-01.			
4).bor	10— 12— 14— 16—	10 SILTY CLAY, Tan, t with coarse sand.  12 36/48 CL			SILTY CLAY, Tan, h with coarse sand.	ard, moist, medium p	asticity,		0.0	Soil sample collected at 13:13 for VOCs and percent moisture content - sample ID EIP-GP156-02.		——2" PVC Riser	
07-13-2004 K:1151 SEllsworth Industrial Park Boring Logs/EIP-GP156(14).bor	20-				•		•	Piezometer well screen set from 20 to 30 feet.		0.010" Slot Screen			
07-13-2004 K:N515	30- 32-				End of boring @ 30'.	·	· 						

	PA CON	NTRAC	T No. (	TRACT 68-W7-0026 RICO-B51W		LOG	OF	BO	RING EIP-G	P157 (Page 1 of 1)
Ellswor				B	Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: 7 January : IPS : Geoprobe : Ryan Scot			Total Depth WESTON Ged Location	: 18' BGS plogist : Barry Crawford : 5023 Chase
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	
2	38/48		sc	CLAYEY SAND; Tan root moss, dry, loose	n, with trace gravel as abundant iron stair	nd some		0.0	Soil sample collected at 13:35 for VOCs and percent moisture content - sample ID EIP-GP157-01 and EIP-GP157-01 MS/MSD.	
10- 12- 14- 16-	33/48		CL	SANDY CLAY; Tan, iron staining, slightly medium plasticity.  SILTY CLAY; TILL, slightly moist, mediu plasticity.	moist, medium stiff, grey, with trace grav m stiff, low to mediu	low to	X	0.0	Soil sample collected at 13:45 for VOCs and percent moisture centent - sample ID EIP-GP157-02.	
16- 18-	18			3" SANDY CLAY lay gravel, dry to slightly End of boring @ 18"		and taining.	X	0.0	Soil sample collected at 14:00 for VOCs:and percent moisture content - sample ID EIP-GP157-03.	

U	.S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		LOG	OF	во	RING EIP-G		·
- 1 -			ıstrial F ve, Illin		<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 January : IPS : Geoprobe : Ryan Sco : 2"	•		Total Depth WESTON Ge Location		age 1 of 1) : 20' BGS : James Molholm : 5023 Chase
	epth in eet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Piez	ometer
kBoring Logs/EIP-GP158(20).bor	0 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	24/48		CL	SILTY CLAY; Brown, gravel. 1' FILL; Black CLAY; Tan, with coar gravel.  SILTY SAND; Tan, n SILTY CLAY layer; T low plasticity at top. 1 poorty sorted, freque	c, loose gravel and sirse, round and subar	ilt. 0.5' ngular		0.0	Soil sample collected at 14:52 for VOCs and percent moisture content - sample ID EIP-GP158-01.		——2" PVC Riser
3-2004 K:\1515\Ellsworth	18-	8-36/48 SP				·	. <b>–</b> – –	X	0.0	Soil sample collected at 15:32 for VOCs and percent moisture content - sample ID EIP-GP158-02.		
07-1				· ,								

RESPONSE ACTION CONTR U.S. EPA CONTRACT No. 68- Work Assignment No. 155-RIC	-W7-0026	LOG OF	во	RING EIP-G	
Ellsworth Industrial Park Site Downers Grove, Illinois	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 January 2004 : IPS : Geoprobe : Ryan Scott : 2"	=	Total Depth WESTON Ge Location	(Page 1 of 1) : 15' BGS ologist : James Molholm : 5023 Chase
1 1 1 1 1	Boring Intervals  VOC Soil Sample Collected  Geologic Sample Interval  DESCRIPTION	Boring Intervals	PID (ppm)	REMARKS	Piezometer
0	SILTY CLAY, Brown, with sub-angular galightly soft, slight plasticity, increase tarirm, some coarse gravel, slightly moist, plasticity.  SILTY CLAY, Tan, trace coarse sub-angravel with moderate iron staining, hard plasticity, slightly moist, grade to grey and plasticity, slightly moist, grade to grey and plasticity.	gular	0.0	Soil sample collected at 08:24 for VOCs and percent moisture content - sample ID EIP-GP159-01.	

RESPONSE ACTION CONTRACT LOG OF BORING EIP-GP160 U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 8 January 2004 **Total Depth** : 21' BGS Ellsworth Industrial Park Site **Drilling Company** WESTON Geologist : James Molholm Downers Grove, Illinois Drilling Method : Geoprobe Location : 5023 Chase : Ryan Scott **Driller Name Borehole Diameter** : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval PID (ppm) Depth REMARKS feet DESCRIPTION 0-SILTY CLAY; Brown, moist. 6" coarse SAND and GRAVEL layer, grey at top, increasing coarse gravel content 0.5' to 2'. 3" SILT seam, brown, with gravel and sand. Slightly soft, iron staining from 2' to 4'. 46/48 CL 0.0 6 SILTY CLAY, Tan, hard, slightly moist,increasing moisture and plasticity at 7' (4" layer). Increasing gravel content from 7', trace large pebbles, heavy iron staining. Soil sample 40/48 collected at 07:40 for VOCs and percent moisture content - sample ID EIP-GP160-01. 10-SILTY CLAY, Tan, stiff, slightly moist, increasing grey, slightly plastic, trace iron staining at 12.25'. 12 Soil sample 07-13-2004 K:N 515/Eilsworth Industrial Park Boring Logs/EilP-GP160(21),bor 0.0 collected at 07:50 for VOCs and percent moisture content - sample ID EIP-GP160-02. 16-16" Large rounded GRAVEL; with brown sand. Soil sample 18 GP collected at 08:01 for VOCs and percent moisture 30/48 0:0 SANDY SILT; Tan, moist, iron staining, no odor. content - sample ID 3" plastic SILT seam, grey to tan, graded from EIP-GP160-03. 20 above, with iron staining. End of boring @ 21'. 22

U:S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026		LOG	OF	= B(	ORING EIP-G	P161
Ellswo	Assignn orth Indu ers Grov	ıstrial P	ark Sit	e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprot : Ryan So : 2"	e .		Total Depth WESTON Ge Location	(Page 1 of 1)  : 22' BGS  ologist : Michael Castillo : 5126 Walnut
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	•		Boring Intervals	PID (ppm)	REMARKS	Temporary Well
07-13-2004 K:(151 SEllsworth Industrial Park/Boring Logs/Eilb-GP161(22).bor 27-21-41-41-41-41-41-41-41-41-41-41-41-41-41	48/48	99	SN ML	CLAYEY SILT; Tan.adry, low plasticity, tradeplasticity, trace pebb SAND layer at top; T saturated.	and grey mottling, had ace gravel.			0.0	Soil sample collected at 10:35 for VOCs and percent moisture content - sample ID EIP-GP161-01 and EIP-GP161-01DUP.  Piezometer screen set from 10 to 20.  Soil sample collected at 10:45 for VOCs and percent moisture content - sample ID EIP-GP161-02.	——2" PVC Riser  ——0.010" Slot Screen
22-502-502-502-502-502-502-502-502-502-5	20 44/48 ML CLAYEY SILT; Till, plasticity, trace peb SAND layer at top; saturated.			End of boring @ 22'.		i	1			

		PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		LOG	OF	= B(	ORING EIP-G	P162 (Page 1 of 1)
	Ellswor				e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoproi : Ryan So	e		Total Depth WESTON Ge Location	: 20' BGS ologist : Michael Castillo : 5126 Walnut
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
	2-				·						
	6	34/48		CL	SILTY CLAY; Tan, B mottling, very stiff, dr pebbles and sand (%	y, high plasticity, trac	 //e ce		0.0	Soil sample collected at 12:30 for VOCs and percent moisture content - sample ID EIP-GP162-01.	2" PVC Riser
07-13-2004 K:\1515\Elisworth Industrial Park/Boring Logs\EliP-GP162(20).bor	10 12 14	48/48		ML	CLAYEY SILT; Tan, grey, medium plastic pebbles (%1). 0.5" si well sorted, wet. Gra Tan, loose, saturated	ity in bottom half, tra ilty sand seam at 14' velly sand parting at	ce : fine.		0.0	Soil sample collected at 12:45 for VOCs and percent moisture content - sample ID EIP-GP162-02.  Piezometer screen set from 10' to 20'.	0.010* Slot Screen
07-13-2004	20-			L	End of boring @ 20'.				<u> </u>	<u></u>	l B

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP163** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 29 April 2004 Total Depth : 20' BGS Ellsworth Industrial Park Site **Drilling Company** : IPS WESTON Geologist : Michael Castillo Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 5126 Walnut **Driller Name** : Ryan Scott Borehole Diameter : 2" Boring Intervals VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) **Temporary Well** GRAPHIC PID (ppm) Depth USCS REMARKS in feet DESCRIPTION SILTY CLAY; Tan, grey, black and olive mottling, hard, dry, high plasticity, trace organics, sand and pebbles, occasional black 2" PVC Riser organic soil layers. Soil sample collected at 13:15 for VOCs and percent moisture content - sample ID EIP-GP163-01. 0.0 8 CLAYEY SAND; Grey in top half then tan, hard, molst, high plasticity, fine grained, abundant large pebbles, trace small pebbles 10 (%10), trace organics. Soil sample collected 48/48 SC 0.0 at 13:25 for VOCs and percent moisture content - sample ID 12 07-13-2004 K:11515/Ellsworth Industrial Perk Boring Logs/EIP-GP163(13).bor EIP-GP163-02. 0.010" Slot Screen 14 Piezometer screen set from 10' to 20'. 16-18 20 End of boring @ 20'.

	U.S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W	LOG OF BO			F BORING EIP-GP164 (Page 1 of 1)			
	Ellswor	rth Indu	ıstrial P	ark Sit	·	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprol : Ryan Se	be	· —,	Total Depth WESTON Ge Location	<u> </u>	: 25' BGS : Michael Castillo : 5126 Walnut
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	le Interval	·	Boring Intervals	PID (ppm)	REMARKS	Ter	nporary Well
	0-	ď	ថ	Š	DES	CRIPTION			ā		]	<b>-</b>
	2-	48/48		CL	SILTY CLAY; Tan an low plasticity, trace o loose gravel, dry.	nd grey mottling, hard rganics and pebbles	d, dry, 1'	X	0.0	Soil sample collected at 09:45 for VOCs and percent moisture content - sample ID EIP-GP164-01.		
	6 <u>-</u>									į		
	8-			!		•	:					2" PVC Riser
	10-											
	12-		ruri		CLAYEY SILT; Grey,	medium stiff, drv. hi						
4(16).bor	14-	36/48		ML	plasticity, no dilatenc partings, some pebbl	y, occasional 1" sand	dy silt	X	0.0	Soil sample collected at 09:55 for VOCs and percent moisture content - sample ID EIP-GP164-02.		
P-GP16	,,,				. — — —							
oring Logs'El	18-					-	•				. ·	
Justrial Park/B	20						,			Piezometer screen set from 15" to 25'.		0.010" Slot Screen
07-13-2004 K:\1515/Ellsworth Industrial Park/Boring Logs/EIP-GP184(16).bor	22-											
-2004 K: N 51	24-			]" 		·				1		
07-13	26-				End of boring @ 25'.							

					FRACT 68-W7-0026	. •	LOG	OF	= B(	ORING EIP-G	RING EIP-GP165		
					RICO-B51W						(Page 1 of 1)		
1			strial P re, Illino		<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ge Location	: 15' BGS ologist : Michael Castillo : 5126 Walnut		
		y (in)	ပ		Boring Intervals  VOC Soil Samp  Geologic Samp			ntervals	n)		Temporary Well		
De ii fe	n	Recovery (in)	GRAPHIC	nscs	DES	CRIPTION		Boring Intervals	PID (ppm)	REMARKS			
	0-							ì			, 		
	1									. • • •			
	2- SANDY SILT; Tan fine-grained sand, pebbles (%1). Silt				SANDY SILT; Tan, n fine-grained sand, hi pebbles (%1). Silt at	nedium stiff, moist, igh plasticity, trace t 3.5', stiff.	·				2" PVC Riser		
	4 — 48/48 ML							X	0.2	Soil sample collected at 9:15 for VOCs and percent moisture content - sample ID			
										EIP-GP165-01.			
	6	. !								:			
	8-				SILTY CLAY; Grey, plasticity, trace pebb	medium stiff, dry, highes (%1), grey and o	gh orange						
2).bor	1				mottling from 8' to 9.	, and (,o.,), givey allow							
EIP-GP165(1	10	45/48		CL			:	X	0.2	Soil sample collected at 09:25 for VOCs and percent moisture content - sample ID EIP-GP165-02.	0.010" Slot Screen		
k/Boring Logs	12					·.							
Industrial Par					,			Piezometer screen					
07-13-2004 K:\1515\Ellsworth Industrial Park Boring Logs\ElP-GP165(12).bor	14-									- section 10 to 10.			
2004 K	End of boring @ 15'.							L	<u> </u>	<u> </u>	J H		
07-13-	16-												

					TRACT 68-W7-0026		LOG OF BORING EIP-GP166					
	Work A	rth Indu	strial P	ark Sit	e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geopro : Ryan So	be		Total Depth WESTON Ge Location	: ologist	ge 1 of 1) 22' BGS Michael Castillo 5126 Walnut
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	le Callected		Boring Intervals	PID (ppm)	REMARKS	Temp	orary Well
07-13-2004 K:N51 SElisworth Industrial Park Boring Logs/EIP-GP186(22).bov	10—112—12—14—14—14—14—14—14—14—14—14—14—14—14—14—	48/48		CL	SANDY SILT; Grey, from slough, mediun trace pebbles (%10).	ard, dry, low plasticit Grey, stiff, at 9' to bo			0.0	Soil sample collected at 08:15 for VOCs and percent moisture content - sample ID EIP-GP166-01.  Soil sample collected at 08:30 for VOCs and percent moisture content - sample ID EIP-GP166-02.		——2" PVC Riser ——0.010" Slot Screen
6		<u> </u>										

1		ACTION		TRACT 68-W7-0026	LOG OF BORING EIP-GP167					
				RICO-B51W						(Page 1 of 1)
1		ustrial F ove, Illin		<b>.</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 11 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation	th : 18"BGS I Geologist : Barry Crawford : 4935 Belmont
Depti in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp				Boring Intervals	PID (ppm)	REMARKS
<u> </u>	<del> </del>	<u> </u>	<u>כ</u>		DEOCKII 110			<u> </u>	۵.	
4 6 8	4-1			SANDY SILT; Tan, to medium stiff, some o	race gravel, slightly r days mixed in.	noist, medium plasticit	у.		0.0	Soil sample collected at 10:40 for VOCs and percent moisture content - sample ID EIP-GP7167-01.
12 12 12 12 12 12 12 12 12 12 12 12 12 1										
Park Boring Lt	SILTY CLAY; Grey, wit plasticity.				with gravel (till), mois	st, medium soft, mediu	im -			
07-13-2004 K:N 51 5/Ellsworth Industrial Park Boring Logs/EIP-48P1 67.bor	16-43/48 CL				-			X	0.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP167-02.
13.2004	End of boring @ 18'.							<u> l</u> .	<u> </u>	1

U.S. E		NTRAC	T No.	TRACT 88-W7-0026 RICO-B51W	LOG OF BORING EIP-GP168 (Page 1 of 1)						
	orth Indu ers Gro			е .	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 11 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation		
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp		oN.		Boring Intervals	PID (ppm)	REMARKS	
0- 2- 4- 6- 8-	36/48	55843584358 6843584354 6843584354	ML	SANDY SILT; Tan, v soft, medium plastici	vith some gravel and ty.	clay, moist, medium			0.0	Soil sample collected at 11:40 for VOCs and percent moisture content - sample ID EIP-GP7168-01.	
12-	48/48		CL	SILTY CLAY; Grey, plasticity.	with gravel (till), sligh	itly moist, stiff, low		X	0.0	Soil sample collected at 11:55 for VOCs and percent moisture content - sample ID EIP-GP168-02.	
16.									,		
oring Logs/EII	4 4 4		i.								
Parkal Parkal	- - - - - -										
07-13-2004 K-N 51 SEE Ilsworth Industrial Park Boring Logs EIP-GP168 box	48/48		CL	plasticity, abundant (	gravel for 12" at cent	medium stiff, mediur er of core.	n T	X	0,0	Soil sample collected at 12:20 for VOCs and percent moisture content - sample ID EIP-GP168-03.	
26	1			End of boring @ 25'.						<del></del> _	

U.S. E	PA CO		T No. (	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP169 (Page 1 of 1)						
Ellswo	orth Indi	istrial P	ark Site	;	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 Decemb : IPS : Geoprobe : Ryan Scott : 2"		)3	Total Depth WESTON Ge Location		age 1 of 1) : 17' BGS : Ted Cagney : 4935 Belmont
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
0- 2- 4-	48/48	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FL	FILL; Grey and black FILL; Black SILT, tra	•	,	X	0.0 0.0 0.0 0.0	Soil sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP7169-01.		
8-											2" PVC Riser
12- 14- 16-	44/48		CL	SILTY CLAY; Grey,			X	0.0 0.0 0.0 0.0	Soil sample collected at 11:15 for VOCs and percent moisture content - sample ID EIP-GP169-02.		
18·				gravel, moist. End of boring @ 17		/					
20.	1			·. ·.		•					
22	- - - - -					. <del>-</del>		•			
4 states   24 - 24 - 24 - 26 - 26 - 26 - 26 - 26 -				·							0.010" Slot Screen
CM 5/Ellswo	<b>1</b>										
77-3-2004 K:\ti 51.5 Ellsworth Industrial ParkBoring LogsKEIP-GP169-bor	1				·						

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP170** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 16 December 2003 **Total Depth** : 21' BGS Ellsworth Industrial Park Site **Drilling Company** WESTON Geologist : Ted Cagney Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 4935 Belmont **Driller Name** : Ryan Scott Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Intervals Recovery (in) **Temporary Well** PID (ppm) GRAPHIC Depth in **REMARKS** feet DESCRIPTION 0-2-SILTY CLAY; Brown, trace gravel, dry, stiff, some 0.0 brown and grey mottling between 8 and 9 feet. 6-0.0 Soil sample 40/48 CL collected at 14:40 0.0 for VOCs and 8percent moisture 0.0 content - sample ID EIP-GP7170-01. 10-SANDY CLAY and GRAVEL; moist to wet. 0.0 12-0.0 0:0 14-SILTY CLAY; Brown, trace gravel, slightly moist, 0.0 16-SILTY CLAY; Grey, trace gravel, dry, stiff. 0.0 18-0.0 07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP170.bor Soil sample 42/48 CL collected at 0.0 15:00for VOCs and 20percent moisture 0.0 content - sample ID EIP-GP170-02. 22-MS/MSD soil sample collected. 24 Temporary well screened from 20 26to 30 feet. 28 30 End of boring @ 30'.

U.S. E		NTRAC	T No. 6	FRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP171  (Page 1 of 1)  Date Completed : 16 December 2003 Total Depth : 27' BGS						
	rth Indu ers Grov			9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 Decem : IPS : Geoprobe : Ryan Scot : 2"		)3	Total Depth WESTON Ge Location	ologist	: 27' BGS : Ted Cagney : 4935 Belmont
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	l: Temporary Well
0- 2- 4- 6- 10- 12- 14- 16- 20- 22- 24- 28- 30-	40/48		CL	SILTY CLAY; Brown to dry, stiff.  End of boring @ 27'.	trace sand and grav			0.0 0.0 0.0 0.0 0.0	Soil sample collected at 13:15 for VOCs and percent moisture content - sample ID EIP-GP7171-01.  Soil sample collected at 13:50 for VOCs and percent moisture content - sample ID EIP-GP171-02.		——2" PVC Riser

. و

U.S. El	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		LOC	S OI	F B	ORING EIP-G	P172 (Page 1 of 1)
Ellswor				ee	Date Completed Drilling Company Drilling:Method Driller Name Borehole Diameter	: 14 April : IPS : Geoprol : Ryan Se	be		Total Depth WESTON Ge Location	: 20" BGS ologist : Michael Castillo : 2824 Hitchcock
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
0-						-		I		i I
2	35/48		sc	CLAYEY SAND; Bro mottling, medium stif plasticity. 4" coarse of dolomite.	f, dry, no dilatency, I	high	X	0.0	Soil sample collected at 10:50 for VOCs and percent moisture	
6-	35/48 SC			- <del></del> -	- <del>-</del> - ·			content - sample ID EIP-GP172-01.	——2" PVC Riser	
8-										
10-				CLAYEY SAND; 13" very stiff, 3" coarse s moist.	black at top, tan bek and layer at bottom,	ow,				
7(13).ba	45/48		SC				X	0.0	Soil-sample collected at 11:00 for VOCs and percent moisture content - sample ID EIP-GP172-02.	
14- 14- 14- 14- 14- 14- 14- 14- 14- 14-		,		• • • • • • • • • • • • • • • • • • • •		,.		:		
07-13-2004 K:N 51 SEinsworth Industrial Park Boding Logs Eil P. GP172(13) bot 15					·. ·				Piezometer screen	0.010" Slot Screen
CN 51 SEII Sworth Ind										
X +002-C1-10				End of boring @ 20'.		. – –				

1	PA CO	NTRAC	T No.	68-W7-0026	LOG OF BORING EIP-GP173					,	
.Work A	ssignr	nent No	). 155-l	RICO-B51W	Date Completed	: 14 April	2004		Total Depth		ge 1 of 1) 30" BGS
Ellswore Downe		ustrial P ve, Illino		9	Drilling Company Drilling Method Driller Name Borehole Diameter	: IPS : Geoprol : Ryan So : 2"			WESTON Ge Location	•	Michael Castillo 2824 Hilchcock
Depth in feet	Recovery (in)	SRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	ا بر ا			PID (ppm)	REMARKS	Temp	oorary Well
0-								<b></b>			
2- 4- 6-	48/48		sc	CLAYEY SAND; Tar very stiff, dry, low dil very frequent microfi black organic rich so	atency, trace pebble ractures, high plastic	$\boxtimes$	0.0	Soil sample collected at 09:35 for VOCs and percent moisture content - sample ID EIP-GP173-01 and			
8- 10-	48/48	CLAYEY SAND; Tamicrofractures.			n, well graded, occas	sional			Soil sample collected at 10:05 for VOCs and percent moisture content - sample ID EIP-GP173-02.		2" PVC Riser
14- 16-					·						
20-	36/48	no plasticity, dry, b dilatency, well sorte			and GRAVEL in to tom 18" moist, high d, medium stiff, med	İ	X	0.0	Soil sample collected at 10:20 for VOCs and percent moisture content - sample ID EIP-GP173-03.		
24- 26- 28-									Piezometer screen set from 20 to 30 feet.		0.010" Slot Screen
30-				End of boring @ 30'			<u></u>			] [] 	

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP174** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 13 April 2004 Total Depth : 22' BGS Date Completed. Ellsworth Industrial Park-Site **Drilling Company** : IPS WESTON Geologist : Michael Castillo Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 2824 Hitchcock **Driller Name** : Ryan Scott **Borehole Diameter** : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Temporary Well PID (ppm) GRAPHIC Depth USCS **REMARKS** in feet DESCRIPTION 0-2" PVC Riser 6 CLAYEY SILT; trace sand and sub-rounded pebbles, soft, high plasticity, low dilatency, dry. 8-48/48 ML Soil sample collected at 10:41 for VOCs and percent moisture 10content - sample ID EIP-GP174-01 and EIP-GP174-01MS/MS. 12-SILTY CLAY; Grey, trace pebbles, stiff, high 07-13-2004 K:\1515\Ellsworth Industrial Park Boring Logs\ElP-GP174(17).bor plasticity, low dilatency, dry. 14 Soil sample collected at 10:55 for VOCs and percent moisture content - sample ID 16-ÉIP-GP174-02. 0.010" Slot Screen 18-20 Piezometer screen set from 12 to 22 feet. 22 End of boring @ 22'.

		PA CO	NTRAC	T No. t	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP175 (Page 1 of 1)						
	Eliswor	rth Indu	strial P	ark Site		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 14 April : : IPS : Geoprob : Ryan Sc	ю		Total Depth WESTON Ge Location		age 1 of 1) : 21' BGS : Michael Castillo : 2824 Hitchcock
	Depth In feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
	0-											]
	2— 4— 4—	46/48		ML	CLAYEY SILT; Dark organic material (wo occasional gravel lay (%1), low dilatency.	od), high plasticity,			0.1	Soil sample collected at 08:40 for VOCs and percent moisture content - sample ID EIP-GP175-01.		2" PVC Riser
(21).bor	10-	48/48		ML	CLAYEY SILT; Tan, half, moist in bottom pebbles, high plastic bottom, trace roots a	half, little sub-angu ity, high dilatency in	lar		0.1			
-GP175(	14-											
rk/Boring Logs/EIF	16-						, ·		:			
07-13-2004 K:\\ 515\Elisworth Industrial ParkBoring Logs\EIP-GP175(21).bor	18-	39/48		CL	SILTY CLAY; Grey, dilatency, trace roun plasticity, well sorted	ded pebbles, high	w	X	0.0	Soil sample collected at 09:00 for VOCs and percent moisture content - sample ID EIP-GP175-02.		
07-13-2004 K:VI	20-				End of boring @ 21'.	· 				Piezometer screen set from 10 to 20 feet		

Į (	J.S. EF	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP176 (Page 1 of 1)						
£	Ellswor	th Indu	ustrial P	ark Sit		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 13 April : IPS : Geoprob : Ryan So : 2"	ю		Total Depth WESTON Ge Location	•	: 20' BGS : Michael Castillo : 2824 Hitchcock
	epth in	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp	le Interval		Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
-	feet	Rec	8	SO	DES	CRIPTION		Bor	PIC		_	_
	2	48/48		ML	CLAYEY SILT; Tan, trace roots and sub-a plasticity, some micro dry.	angular pebbles, low		X	0.0	Soil sample collected at 12:25 for VOCs and percent moisture content - sample ID EIP-GP176-01.		
	6				·							2" PVC Riser
	10	-										*
07-13-2004 K:11515Eilsworth Industrial Park Boning Logs/EIP-GP176(16).bor	12	41/48		sc	CLAYEY SAND; Gre pebbles, stiff, low to	y, well graded, trace medium dilatency, m	oist.	X	0.0	Soil sample collected at 12:35 for VOCs 'and percent moisture content - sample ID EIP-GP176-02.		0.010" Slot Screen
ustrial Park Bo	16				<u> </u>		- <b>-</b>					
KM 515/Elisworth Indu	18							; ;	Piezometer screen set from 10 to 20 feet.			
07-13-2004	20-		<b>L</b>	L	End of boring @ 20'.	·			!	<u> </u>		1

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP177** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 13 April 2004 Total Depth : 18' BGS Date Completed Ellsworth Industrial Park Site WESTON Geologist **Drilling Company** : IPS : Michael Castillo Downers Grove, Illinois : Geoprobe Location Drilling Method : 2824 Hitchcock Driller Name : Ryan Scott **Borehole Diameter Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) Temporary Well GRAPHIC (mdd) Depth REMARKS in feet **DESCRIPTION** 0-2" PVC Riser CLAYEY SAND; Tan, trace sub-rounded pebbles, frequent microfractures, dry, low dilatency, low plasticity. SC Soil sample collected 46/48 0.0 at 13:10 for VOCs and percent moisture content - sample ID 6 EIP-GP177-01. 9" SAND and GRAVEL; Tan, saturated, loose. 10-0.010" Slot Screen CLAYEY SAND; Grey, trace fine sub-rounded pebbles, hard, high plasticity, medium dilatency, moist. 3" coarse, saturated SAND layer at 11.5'. 07-13-2004 K:\1515\Ellsworth Industrial Park\Boring Logs\ElP-GP177(18).bor Soil sample collected 12-41/48 SC 0.0 at 13:23 for VOCs and percent moisture content - sample ID EIP-GP177-02. CLAYEY SAND; Grey, dry. Soil sample collected at 13:35 for VOCs 1' SILT layer, grey, trace pebbles, hard, dry, and percent moisture high plasticity. content - sample ID SC 16-40/48 0.0 EIP-GP177-03. 1' GRAVEL layer, white dolomite, fractured, Piezometer screen set from 5 to 15:feet. 18 End of boring @ 18'.

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP178** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 8 April 2004 **Total Depth** : 18' BGS Ellsworth Industrial Park Site **Drilling Company** : IPS WESTON Geologist : Michael Castillo Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 2754 Maple : Ryan Scott **Driller Name** Borehole Diameter : 2" Boring Intervals VOC Soil Sample Collected Geologic Sample Interval Boring Intervals Recovery (in) **Temporary Well SRAPHIC** (mdd) Depth uscs REMARKS P feet DESCRIPTION 0 2" PVC Riser CLAYEY SAND; Tan and grey mottling, some silt, trace small sub-angular pebbles, high plasticity, low dilatency, dry, trace microfractures and organic material. Soil sample collected SC 48/48 at 10:15 for VOCs and percent moisture content - sample ID EIP-GP178-01. 8-SILTY SAND; Tan, some angular gravel, poorly sorted, trace pebbles, wet, loose, high dilatency, trace red staining. Soil sample collected at 10:55 for VOCs and percent moisture 10-20/48 content - sample ID EIP-GP178-02. Late sample time due to no recovery and relocation of boring. 07-13-2004 K:\1515\Elisworth Industrial Park\Boring Logs\EIP-GP178(18).bor 12-0.010" Slot Screen CLAY; TILL, Grey, some tan mottling in top foot, trace angular pebbles, trace microfractures, very stiff, low plasticity, low Soil sample collected dilatency, dry, well sorted. at 10:33 for VOCs and percent moisture 16-48/48 CL content - sample ID EIP-GP178-03. Piezometer screen set from 7 to 17 feet. 18 End of boring @ 18'. 20

				N CONT	FRACT 58-W7-0026	LOG OF BORING EIP-GP179						
١ ٧	Vork A	ssigna	nent No	). 155-F	RICO-B51W						(P	age 1 of 1)
		rth Indu rs Grov		Park Site	9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 April 20 : IPS : Geoprob : Ryan So : 2"	е		Total Depth WESTON Ge Location	ologist	: 23' BGS : Michael Castillo : 2754 Maple
1	epth in eet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	. Tem	nporary Well
	0-						. [		-		ſ	]
	2-	46/48		SC/FL	CLAYEY SAND FILL graded, trace roundedry.	.; Tan, some gravel, ed pebbles, stiff, loos	well e,		0.3	Soil sample collected at 12:33 for VOCs and percent moisture		
	6-		600	SD/FL	SAND FILL; Tan, we moist.	il graded, loose, sligi	htly - — —			content - sample ID EIP-GP179-01.		2" PVC Riser
	8-											
	10-	48/48		ML	pebbles, decreasing	, well sorted, trace rounded g plasticity with depth, I stiffness with depth, low		$\boxtimes$	0.1	Soil sample collected at 12:43 for VOCs and percent moisture content - sample ID EIP-GP179-02.		
	14-		M			<u>-</u>						
ğ	-			sc	CLAYEY SAND; Gre pebbles, saturated, I	oose.			0.0			
VEIP-GP179(18).	16-	48/48		CL	CLAY; TILL, grey, st increasing brown wit pebbles, low dilatend	iff, medium plasticity, th depth, trace sub-ar cy.	ngular	X	0.0	Soil sample collected at 13:00 for VOCs and percent moisture content - sample ID EIP-GP179-03 and		
ng Logs	18-		<u> </u>				· <del>-</del> -	لــا		'EIP-GP179-03 DUP.		0.010" Slot Screen
07-13-2004 K:VI 515'Ellsworth Industrial Park Boring Logs'ElP-GP178(18), bor	20-									Piezometer screen set from 13 to 23 feet.		
worth L	22-											
515/EII.	-		<u></u>		End of boring @ 23'.	•				<u> </u>	] [	<del>]</del>
07-13-2004 K:VI	24-	_										

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP180** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) : 8 April 2004 **Total Depth** : 22' BGS **Date Completed** Ellsworth Industrial Park Site WESTON Geologist : Michael Castillo : IPS **Drilling Company** Downers Grove, Illinois **Drilling Method** : Geoprobe Location : 2754 Maple Driller Name : Ryan Scott Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected **Boring Intervals** Geologic:Sample Interval Recovery (in) **Temporary Well** GRAPHIC PID (ppm) Depth **REMARKS** USCS in feet DESCRIPTION 0. 46/48 0.2 CLAYEY SILT; Tan, trace sub-rounded pebbles and microfractures, hard, medium plasticity, low dilatency, dry. Soil sample collected 2" PVC Riser 6. ML at 14:50 for VOCs and percent moisture content - sample ID EIP-GP180-01. 10-CLAYEY SILT; Grey, increasing silt with depth, trace rounded pebbles, high plasticity, occasional slightly wet 2" sand seams, low dilatency, trace microfractures. Soil sample collected 12-48/48 ML at 15:00 for VOCs and percent moisture content - sample ID 07-13-2004 K:11515'Ellsworth Industrial Park'Boring Logs'EIP-GP180(14).bor EIP-GP180-02. 16-0.010" Slot Screen 18-20 Piezometer screen set from 12 to 22 feet. 22 End of boring @ 22'.

U.S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		LOG	G OF	= B0	ORING EIP-G	P181 (Page 1 of 1)
1	rth Indu			e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 April 2 : IPS : Geoprot : Ryan So	be		Total Depth WESTON Ge Location	: 30' BGS ologist : Michael Castillo : 2754 Maple
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
2- 4- 6-	48/48		ML	CLAYEY SILT; Tan, and microfractures, v dilatency, medium pl	vell sorted, stiff, low	ebbles		0.2	Soil sample collected at 13:45 for VOCs and percent moisture content - sample ID EIP-GP181-01.	
10- 12- 14-	48/48		ML CL	As above, no microfr CLAY; TILL, Grey, tr dilatency.		w		0.2	Soil sample collected at 13:53 for VOCs and percent moisture content - sample ID EIP-GP181-02.	2" PVC Riser
16- 18- 20- 20-				SILTY CLAY; TILL, Content with depth, s	oft, well sorted, high					
07-13-2004 K:N51 SEE Ilsworth Industrial Park Boring Logs/EPI-GP181 (24) bor 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	41/48		CL	plasticity, low dilaten pebbles.	cy,-trace rounded			0.2	Soil-sample collected åt 14:10 for VOCs and percent moisture content - sample iD EIP-GP181-03.	0.010" Slot Screen
07-13-2004 K:n 51 5 Ells					. – – – –	<del>- :</del>			Piezometer screen set from 20 to 30 feet.	

					TRACT 68-W7-0026		LOG	OF	ВО	RING EIP-G	P18:	2
					RICO-B51W						(P	age 1 of 1)
	Ellswor Downe				e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 20 Januar : IPS : Geoprobe : Ryan Scot : 2"			Total Depth WESTON Ge Location	ologist	: 26"BGS : James:Molholm : 2315 Maple
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	il: Piezometer
	0-		:									]
	2- 4- 6-	32/48		CL	SILTY CLAY; Black,	soft, moist, highly pla	stic.		0.0	Soil sample collected at 8:23 for VOCs and percent moisture content - sample ID EIP-GP182-01.		
	8-		:									2" PVC Riser
	10			CL	SILTY CLAY; Tan, w grained sand and gra fragments, firm, low p staining.	avel, trace dolostone			0.0			
ō	-									:		
07-13-2004 K:11515/Ellsworth Industrial Park Boring Logs/EiP-GP182(21).bor	16- - - 18-				SILTY CLAY; Firm, to grained gravel, low p	race sand and mediu lasticity, moist.	m			Soil sample		
al Park Boring Lo	20-	40/48		CL	·· 	·			0.0	for VOCs and percent moisture content - sample ID EIP-GP182-02.		0.010" Slot Screen
Industri	22-									Piezometer well		
Ilsworth	-									screen set from 16 to 26 feet.		
004 K:N 515'E	24-					-						
07-13-2	26-				Refusal. End of borin	boring @ 26'.						

1:	ONSE A			FRACT 68-W7-0026	LOG OF I				RING EIP-G	P183	3
Work A	Assignn	ent No	. 155-F	RICO-B51W						(P	age 1 of 1)
	rth Indu ers Grov				Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 20.Januar : IPS : Geoprobe : Ryan Scot : 2"			Total Depth WESTON Ge Location	ologist	: 20' BGS : James Molholm : 2315 Maple
Depth in feet	Recovery (in)	GRAРНІС	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PiD (ppm)	REMARKS	Well	l: Piezometer
07-13-2004 K:\tillisearth Industrial ParkBoring Logs Eip-GP183(18) bor 20-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	38/48		CL	SILTY CLAY; Black, (roots), soft, highly posterior of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	nd grey, with coarse angular gravel, mode	sand, erate		0.0	Soil sample collected at 9:52 for VOCs and percent moisture content - sample ID EIP-GP183-01.  Piezometer well screen set from 10 to 20 feet.  Soil sample collected at 10:03 for VOCs and percent moisture content - sample ID EIP-GP183-02.  Soil sample collected at 10:16 for VOCs and percent moisture content - sample ID EIP-GP183-03.		2" PVC Riser
20-			<u>L</u>	End of boring @ 20'	:		1	1	L	J. 1	<u>4</u>

RESPONSE ACTION CONTRACT LOG OF BORING EIP-GP184 U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) Date:Completed : 20 January 2004 Ellsworth Industrial Park Site : IPS **Drilling Company Total Depth** : 25' BGS Downers Grove, Illinois WESTON Geologist **Drilling Method** : Geoprobe : James Molholm **Driller Name** : Ryan Scott Location : 2315 Maple Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) Well: Piezometer PID (ppm) GRAPHIC Depth **REMARKS** in feet DESCRIPTION 0 2 6-SILTY CLAY; Tan, with sand and coarse and 2" PVC Riser round gravel, very firm, low moisture, trace iron 8 Soil sample staining. collected at 14:24 for VOCs and CL percent moisture content - sample ID 10 EIP-GP184-01. 12 SILTY CLAY; Grey, firm, moderate plasticity, moist, trace coarse gravel. Soil sample collected at 14:37 SILT; Grey, moist, soft, more plastic. MH for VOCs and னரார்வளின் Park Boring Logs EIP-GP184(22).bor percent moisture SILTY CLAY; Grey, moderately firm, with coarse content - sample ID 16 gravel and trace sand. EIP-GP184-02. 18 SILTY CLAY; Grey, with coarse rounded and subangular gravel, firm, low plasticity, moist. Soil sample collected at 14:54 20 CL for VOCs and 0.010" Slot Screen percent moisture content - sample ID EIP-GP184-03. 22 Piezometer well screen set from 15 24 to 25 feet. Refusal. End of boring @ 25'. 26

		PA COI	NTRAC	T No.	68-W7-0026		LOG	OF	во	RING EIP-G		
	Eliswor Downe	rth Indu	ıstrial P	ark Sit	B	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 20 Januar : IPS : Geoprobe : Ryan Scot	•		Total Depth WESTON Ge Location		: 30' BGS : James Molholm : 2315 Maple
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Wel	l: Piezometer
	2- 4-	34/48		SM	SILTY SAND; Brown SILTY CLAY; Black, grades to brown and with depth.	organic, soft, plastic,	astic. moist.			Soil sample collected at 11:05 for VOCs and percent moisture content - sample ID EIP-GP185-01.		
	8-	44/48		CL SP CL CL	SILTY CLAY; Tan ar moderate plasticity. 2" SAND and GRAV CLAY; Grey, soft, pla SILTY CLAY; Brown gravel, more plastic,	EL seam, wet, poorly astic, moist. and grey, with coars	am, wet, poorly sorted. moist. grey, with coarse			Soil sample collected at 11:12 for VOCs and percent moisture content - sample ID EIP-GP185-02.		——2".PVC Riser
07-13-2004 K:N 515 Ellsworth Industrial Park Boring Logs/ElP-GP185(20).bor	12- 14- 16- 20- 22- 24- 26-	gravel, more plastic			SILTY CLAY; Grey, sand and coarse rou	firm, plastic, with coanded gravel.	rse		0.0	Soil sample collected at 11:35 for VOCs and percent moisture content - sample ID EIP-GP185-03.  Plezometer well screen set from 19 to 29 feet.		0.010* Slot Screen
07-13-20	30-		<u> </u>	L	Refusal @ 30'.			<u> </u>	l		] 	<u>.</u>

	RESPONSE ACTION CONTRACT U.S. EPA CONTRACT No. 68-W7-0026					LOG OF BORING EIP-GP186						
	Work A	\ssignn	nent No	. 1554	RICO-B51W					(Page 1 of 1)		
	Ellswor Downe				e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: Geoprobe : Ryan Scott			Total Depth WESTON Ge Location	: 27' BGS : James Molholm : 2315 Maple	
	Depth in feet	n   §   &   S						Boring Intervals	PID (ppm)	REMARKS	Wel	l: Pieżometer
	2-									Soil sample collected at 15:40 for VOCs and		
	4-	38/48		CL	SILTY CLAY; Tan, fir coarse and rounded	rm, low plasticity, mogravel.	oist, with	X	0.0			
	6-					· – – – –	· — —			percent moisture content - sample ID EIP-GP186-01.		
	8-											2" PVC Riser
	10-											
	12- 14-				SILTY CLAY; Grey, f coarse and rounded	firm, low plasticity, w gravel.	ith			Soil sample		*
.bor	16-	36/48		SC	OLAND/OUT.			0.0	collected at 14:23 for VOCs and percent moisture content - sample ID EIP-GP186-02.			
07-13-2004 K:V1515/Ellsworth Industrial Park Boring Logs/EIP-GP186(17).bor	18-		IN	СН	CLAYEY SILT; Grey, softer, with trace coa	, more plastic, more irse gravel.	moist, /					
	20-					<del>.</del>	•.				1.	
	22-								-  -  -	Piezometer well		0:010" Slot Screen
	24-								;   	screen set from 17 to 27 feet.		
-13-2004 K:VI	26				End of boring @ 27'.	•						
6	28-	l 										

RESPONSE ACTION CONTRACT U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W					LOG OF BORING EIP-GP187						
Ellswo	eth Indu	ıstrial P	ark Sit	ï	Date Completed : 21 January 2004 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"				(Page 1 of 1)  Total Depth : 20' BGS WESTON Geologist : James Molholm Location : 5240 Belmont		
Depth in feet	in   $\delta$   $\delta$   $\delta$   $\delta$					ing Intervals		PID (ppm)	REMARKS	Well: Piezometer	
07-13-2004 K/151 SEllsworth Industrial ParkBoring Logs/Eip-GP187(19).bor	44/48		CG CL ML	<u> </u>	nd silt. 4" Ind brown, some mois coarse gravel, iron  k Brown, with gravel. 2.5'.  oft, very plastic, with lar gravel.  with coarse gravel, very plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, middle plastic, midd	ery n, with		0.0	Soil sample collected at 11:55 for VOCs and percent moisture content - sample ID EIP-GP187-01.  Soil sample collected at 12:11 for VOCs and percent moisture content - sample ID EIP-GP187-02.	2" PVC Riser0.010" Slot Scree	
200- 200- 200-				plasticity, moist.  End of boring @ 20'.	<u>-</u>				set from 10 to 20 feet.		

U.S.	EPA C		CT No.	TRACT 68-W7-0026 RICO-B51W	LOG OF BORING EIP-GP188 (Page 1 of 1							
		lustrial F ove, Illin		e .	Date Completed : 21 January 2004 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"			Total Depth : 25' BGS WESTON Geologist : James Molholm Location : 5240 Beimont				
Depti in feet	Recov	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Ten	Temporary Well	
2	30/4		CL. FL	SILTY CLAY; Brown fragments, organic n FILL; SAND, tan and gravel, wet, large fra	naterial. I orange, black ash,	trace		0.0	Soil sample collected at 13:36 for VOCs and percent moisture			
8	, , , , , , , , , , , , , , , , , , ,		CL	SILTY CLAY; Brown moist, low plasticity.	, with coarse sand, r	roots, /			content - sample ID EIP-GP188-01.	. :	2" PVC Riser	
12							-					
			CL	and coarse sand, tra	and grey, firm, with grace shale fragments.	nd gravel, plastic, soft.  h coarse and subangular nined sand, moderate			Spil sample			
07-13-2004 K:\(1515\)Ellsworth industrial Park\(\text{Bording Logs\)'ElP-GP188(20)\text{bord}\)	1	*	CL	SILT; With wet sand and gra SILTY CLAY; Grey, with coa gravel and medium grained plasticity. 2" seam of sandy	with coarse and sub			0.0	collected at 13:51 for VOCs and percent moisture content - sample ID EIP-GP188-02.			
2004 K:N 51 5/Ellsworth In				·					Piezometer screen set from 15 to 25 feet.			
26	End of boring @ 25'.											

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP189** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 22 January 2004 Elisworth Industrial Park Site **Drilling Company** :IPS **Total Depth** : 21' BGS Downers Grove, Illinois **Drilling Method** : Geoprobe WESTON Geologist : James Molholm **Driller Name** ::Ryan Scott Location : 5240 Belmont **Borehole Diameter** : 2" **Boring Intervals** VOC Soil Sample Collected Geologic Sample Interval **Boring Intervals** Recovery (in) Well: Piezometer PID (ppm) GRAPHIC Depth in REMARKS feet **DESCRIPTION** 0 2" PVC Riser SILTY CLAY; Brown with some grey, firm, moist, low plasticity, with coarse and Soil sample collected at rounded gravel. 10:43 for VOCs and percent moisture content -10sample ID EIP-GP189-01. 12 07-13-2004 Kitt 515/Ellsworth Industrial Park Boring Logs/EIP-GP189(21).bor 0.010" Slot Screen 16 SILTY CLAY; Grey, moderately firm and plastic, with coarse sand and rounded gravel, 1.5" dolostone fragments at 19'. Soil sample collected at 18-10:57 for VOCs and percent moisture content sample ID EIP-GP189-02 0.0 and MS/MSD. 20 Piezometer well screen set from 9 to 19 feet. End of boring @ 21'.

RESPONSE ACTION CONTRACT LOG OF BORING EIP-GP190 U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 22 January 2004 Ellsworth Industrial Park Site Total Depth **Drilling Company** : IPS : 20' BGS Downers Grove, Illinois **WESTON Geologist** Drilling Method ::Geoprobe : James Molholm **Driller Name** : Ryan Scott Location : 5240 Belmont **Borehole Diameter Boring Intervals** VOC Soil Sample Collected **3oring Intervals** Geologic Sample Interval Recovery (in) Well: Piezometer **SRAPHIC** PID (ppm) Depth USCS **REMARKS** feet **DESCRIPTION** 2-2" PVC Riser SILTY CLAY; Tan, moderately soft, medium plasticity, with coarse, rounded, 6and subangular, gravel. Soil sample collected at 13:03 for VOCs and 0.0 percent moisture content sample ID EIP-GP190-01. 4" SILT; Tan, soft, plastic, moist, grades to SILTY CLAY; Brown and brown/grey, with 10coarse gravel, firm, low plasticity. Soil sample collected at 13:15 for VOCs and 38/48 0.0 percent moisture content -2" SAND and GRAVEL seam, quartz sample ID EIP-GP190-02. appearance.
2" SILTY GRAVEL seam, coarse and 12 07-43-2004 K:11515/Ellsworth Industrial Park Boring Logs/EIP-GP190(17), bor subangular, wet. SILTY CLAY; Grey, plastic, semi-firm. Soil sample collected at 13:31 for VOCs and percent moisture content -As above with coarse to medium grained sand, wet. sample ID EIP-GP190-03. 0.0 0.010" Slot Screen 8" SAND AND GRAVEL lens; coarse, SP angular, and rounded. 16-SILTY CLAY; Grey, trace coarse gravel CL and sand, soft, moist, highly plastic. 18 Piezometer well screen set from 10 to 20 feet, 20 End of boring @ 20'.

RESP	ONSE A	CTION	CON	TRACT	·	LOG	OF	BO	RING EIP-G	P191	1
				68-W7-0026 RICO-B51W			· ·				age 1 of 1)
4	rth Indu			е	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 21 January : IPS : Geoprobe : Ryan Scott : 2"			Total Depth WESTON Ge Location	ologist	: 20' BGS : James Molholm : 5240 Belmont
Depth in feet	Recovery (in)	GRAРНІС	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well:
0- 2- 4- 6- 8-	48/48		CL	SILTY CLAY; Brown some coarse gravel.  SILTY CLAY; Dark but the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the silt of the si	rown, firm, organic.	∍ and		0.4	Soil sample collected at 14:35 for VOCs and percent moisture content - sample ID EIP-GP191-01.		2" PVC Riser
77-13-2004 K:11515Eilisworth Industrial Park Boring Logs/Eip-GP191(16),bor.	36/48		GM SP GC CL	SANDY SILT with G gravel, wet, iron stai SAND; fine to mediu and rounded quartz wet. SAND and coarse G sorted; wet. CLAY; Grey, firm, wi grades to softer tan	ning.  m grained, low fines gravel, dolostone fra  RAVEL; with silt, po	, coarse agments, only hrough,	X	0.0	Soil sample collected at 14:45 for VOCs and percent moisture content - sample ID EIP-GP191-02.  Plezometer sceen set from 10 to 20 feet.		0.010" Screen
20- 20- 20-				End of boring @ 20'.	•						

RESPO				TRACT 68-W7-0026		LOG OF BO	ORIN	G I	LOG OF BORING EIP-GP192					
Work A	∖ssignπ	nent No	). 155-F	RICO-B51W						(Page 1 of 1)				
	rth Indu ers Grov			9	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation	oth : 19' BGS I Geologist : Barry Crawford : 2333 Wisconsin				
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp		NO		Boring Intervals	PID (ppm)	REMARKS				
0-			<u></u>	l										
2- 4- 6- 10-			CL	moderately soft.	Y; Grey, slightly mois Y; Tan, increased gra low to medium plastic	avel content, dry to			0.0	Soil sample collected at 14:30 for VOCs and percent moisture content - sample ID EIP-GP7192-01.				
12-														
14-							•	. [						
07-13-2004. Kit 51 belisworth Industrial Park Boring Logstell - 451 92.500.			SP	SAND; tan, well grad rounder with depth.	Jed, loose, moist, fini	ing downwards, grains	  	X		Soil sample collected at 14:45 for VOCs and percent moisture content - sample ID EIP-GP192-02.				
EL SWOL	48/48		ML	SANDY SILT; Tan, s	some gravel through	out, moist.			0.0					
18-			CL	SILTY CLAY; Grey, plasticity, dry, to slig	with trace gravel, (till htly moist.	l), stiff, low to medium								
20-		N. P. 1. P.	<b>L</b>	End of boring @ 19".			41		·	<del></del>				

					TRACT 68-W7-0026		LOG OF B	ORII	NG I	EIP	-GP193
	Work A	Assignn	nent No	. 155-1	RICO-B51W						(Page 1 of 1)
	Eliswo Downe	rth Indu ers Gro			e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 10 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	tal Der ESTON cation	oth : 26' BGS N Geologist : Barry Crawford : 4935 Belmont
-	Depth in feet	Recovery (in)	<b>GRAPHIC</b>	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp		DN .		Boring Intervals	PID (ppm)	REMARKS
ł	0-				1	<u></u>		I			
	2-					·					
	4-	48/48		CL	SANDY CLAY; Tan, iron staining through	with gravel, dry, stiff out.	, low plasticity, some			0.0	Soil sample collected at 15:30 for
	6-	10,10		<u> </u>		· <b></b>	· — — — — —			0.0	VOCs and percent moisture content - sample ID EIP-GP7193-01.
	8										
	10-							·			
	12-										
ı	14-				·						
193.bor	16-					·					4
Logs'EIP-GP	18-						•	•			
Park/Boring	20-						•		!		
orth Industria	22-		//		SANDY SILTY CLAY medium plasticity, sli	/; Grey with trace grangering the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of	avel, medium soft,				
07-13-2004 K:11515Ellsworth Industrial Park Boring Logs EIP-GP193.bor	24-	48/48		CL	, ,,,	- ·			X	0.0	Soil sample collected at 16:15 for VOCs and percent moisture content - sample ID EIP-GP193-02.
07-13-2004	26-	26 End of boring @ 26'.									

	-	ESPONSE ACTION CONTRACT S. EPA CONTRACT No. 68-W7-0026 ork Assignment No. 155-RICO-B51W							VG !	EIP	-GP194
											(Page 1 of 1)
	Eliswo				<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 8 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	ital Der ESTON	oth : 26' BGS N Geologist : Barry Crawford : 2333 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Sample C  Logging Interva		N		Boring Intervals	PID (ppm)	REMARKS
Ì	0-						<del></del>	·	1		
	2-										_
	4- - 6-	48/48		ML	CLAYEY SILT; Tan, SILT; Tan/grey, with	trace gravel, hard, lo trace gravel, moist, s	w plasticity, dry. soft, medium plastic	city.	X	0.0	Soil sample collected:at 15:35 for VOCs and percent moisture
	-		ИИ								content - sample ID EIP-GP7194-01.
	8-	<u> </u>							الـــا		
	10-										
	12-										
	14			!							
194.bor	16-										
ogs/EIP-GP	18-						•	•			
07-13-2004 K:11515/Ellsworth Industrial Park/Boring Logs/EIP-GP194.bor	20						•	•.			
orth industrial	22- -				SILTY CLAY; Grey, of medium plasticity.	with gravel (till), hard	, slightly moist, low	, to			
C/1515/Ellsw	24-	48/48		CL					X	0.0	Soil sample collected at 15:55 for VOCs and percent moisture content - sample ID EIP-GP194-02.
07-13-2004	26	26 End of boring @ 26'.									

	RESPO				TRACT 68-W7-0026	LOG OF BORING EIP-GP195					
	Work A	ssignn	nent No	). <b>155-</b> 1	RICO-B51W						(Page 1 of 1)
	Ellswor Downe				e :	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 9 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	tal Dep ESTON cation	th : 17' BGS I Geologist : Barry Crawford : 2333 Wisconsin
	Depth:	Recovery (in)	жіс		Boring Intervals  VOC Soil Samp  Geologic Samp				Boring Intervals	(mdc	
	in feet	Reco	GRAPHIC	nscs		DESCRIPTIO	N		Borin	PID (ppm)	REMARKS
	0-1			FL	FILL; Asphalt and co	ncrete.					:
	2	48/48		ML	SILT; Tan, with grave Cobbles, white dolor	el and clay, moderat nite, fractured, weath	ely hard, slightly mo nered.	olst.	X	0.0	Soil sample collected at 13:00 for VOCs and percent moisture
	4									content - sample ID EIP-GP7195-01.	
	6				·						
	8-11111							·			
35.bor	10-	;									·
ng Logs/EIP-GP16	12-						·.				
ndustrial Park/Bori	14-				SILTY CLAY; Grey, feet, dry to slightly m	trace gravel (till), 2" noist.	dolomite seam at 1	15			Soil sample collected at 13:15 for
07-13-2004 KM 51,5 Elisworth Industrial Park Boring Logs EIP -GP195, bor	16-	45/48		CL					X	0.0	VOCs and percent moisture content - sample ID EIP-GP195-02.
07-13-2004	18		K 1/ 1	i	End of boring @ 17'.				III		

	ONSE /			FRACT 68-W7-0026	LOG OF BORING EIP-GP196						
Work	Assignn	nent No	. 155-F	RICO-851W						(Page 1 of 1)	
	rth Indu			<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 9 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		W	tal Der ESTON cation	oth : 30°BGS N Geologist : Barry Crawford : 2333 Wisconsin	
Depth in feet	Recovery (in)	SRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp		N		Boring Intervals	PID (ppm)	REMARKS	
0-				<u>.                                    </u>			 				
2-											
4-	<u> </u>			SANDY CLAY; Tan,	with gravel, stiff, ven	hard, low plasticity					
6-	48/48		CL	dry.				X	0.0	Soil sample collected at 10:50 for VOCs and percent moisture content - sample ID EIP-GP7196-01.	
8-				CLAY with SAND an				H		Lii - 51 / 100 51.	
10-	48/48		CL	SANDY SILTY CLAY plasticity, medium st SANDY CLAY; Grey, SILTY CLAY; Grey, low plasticity.	iff. , trace gravel, soft, n	ioist.		X	0.0	Soil sample collected at 11:05 for VOCs and percent moisture content - sample ID EIP-GP196-02.	
12-	1								!		
14-											
16-				SILTY CLAY; Grey v slightly moist, mediu	vith trace gravel (till), m stiff, low plasticity.	very sandy at botto	m,	$\bigcap$			
	32/48		CL	044004.04.44.7			ŀ		0.0		
8 20-				SANDY CLAY; Tan, slightly moist.	trace gravei, smali c	oddies near dottom, ——————					
5607 Guuog							*, *				
20-13-2004 K:VI SI SKEII sworth Industrial Park Boring Logs EiP-GP198.box											
26-		//	CL	SILTY CLAY; Grey, moist.	rey, trace gravel (till), stiff, low plasticity, slightly						
28-	46/48		SC	CLAYEY SAND; Gre	ID; Grey, with trace gravel, moist, loose.					Soil sample collected at 11:55 for VOCs and percent moisture	
4005-30-		CL SILTY CLAY; Grey, trace gravel and sand, stiff, low plasticity. Slightly moist at 30 feet.							L	content - sample ID EIP-GP196-03.  Duplicate soil sample collected.	
120	Slightly moist at 30 feet.  End of boring @ 30'.										

U.S. 1		NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W	LOG OF E	BORIN	NG I	EIP	-GP197 (Page 1 of 1)
	orth Indi ers Gro			e	Date Completed : 8 December 2003 Drilling Company : IPS Drilling Method : Geoprobe Driller Name : Ryan Scott Borehole Diameter : 2"		·WI	tal Dep ESTON cation	
Depth in	Recovery (in)	GRAPHIC	S	Boring Intervals VOC Soll Samp Geologic Samp			Boring Intervals	PID (ppm)	REMARKS
feet	8	8	nscs		DESCRIPTION		Bori	PID	
2	-								
4	4 4 1 4								
6	1 1 1						· :		
8	<u> </u>			SILTY CLAY; Grey, v	with trace gravel (till), dry, soft, low plast	ticity.			
10	48/48		CL	·			X	0.0	Soil sample collected at 13:55 for VOCs and percent moisture content - sample ID
12			_		<b></b>				EIP-GP7197-01.
14							:		
16 16	4		l						
18 18 18	<del>1</del> 4 4 4								
nal Park Borin	4								
22	<del>1</del> 1 1 1			SILTY CLAY; Grey w stiff, low plasticity.	vith sand and trace gravel (till), slightly n	noist,			
07-13-2004 K:1151 SEllsworth Industrial Park Boning Logs'EIP-GP197.bor 107-13-2004 K:1151 SEllsworth I	37/48		, CL				X	0.0	Soil sample collected at 14:15 for VOCs and percent moisture content - sample ID EIP-GP197-02.
26		ИИ	-	End of boring @ 26'.					

	RESPO				TRACT 88-W7-0026		LOG OF B	ORIN	1G I	EIP.	-GP198
- 1					RICO-B51W						(Page 1 of 1)
	Ellswor Downe				Ð	Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: 11 December 2003 : IPS : Geoprobe : Ryan Scott : 2"		WE	tal Dep ESTON cation	oth : 14' BGS I Geologist : Barry Crawford : 2333 Wisconsin
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl		N		Boring Intervals	PID (ppm)	REMARKS
	0			FL	FILL; MIx of organic (CLAYEY SILT; Tan, plasticity, stiff.			ng.			Soil sample collected at 8:45 for
	4-	48/48		ML						0.0	VOCs and percent moisture content - sample ID EIP-GP7198-01.
	6				. •						
GP198.bor	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7										
al Park'Boring Logs'EIP	10-				SILTY CLAY; Grey, v	with gravel (till), dry,	soft, low plasticity.				Soil sample collected at 9:00 for
07-13-2004 K:11515/Ellsworth Industrial Park/Boring Logs/EIP-GP198.bor	12	48/48		CL	·				X	0.0	VOCs and percent moisture content - sample ID EIP-GP198-02.
07-13-2004	14-	End of boring @ 14'.							11	·	

RESPONSE ACTION CONTRACT **LOG OF BORING EIP-GP199** U.S. EPA CONTRACT No. 68-W7-0026 Work Assignment No. 155-RICO-B51W (Page 1 of 1) **Date Completed** : 15 April 2004 Ellsworth Industrial Park Site : IPS **Total Depth** : 20' BGS **Drilling Company** Downers Grove, Illinois WESTON Geologist : Geoprobe : Michael Castillo **Drilling Method** : Ryan Scott Location : 4947 Belmont **Driller Name** Borehole Diameter : 2" **Boring Intervals** VOC Soil Sample Collected Boring Intervals Geologic Sample Interval Recovery (in) **Temporary Well** PID (ppm) GRAPHIC Depth **REMARKS** in feet DESCRIPTION 2" PVC Riser CLAYEY SILT; Olive, stiff, slightly moist, low dilatency, high plasticity, loose, well graded. 0.0 1' GRAVEL layer, trace pebbles (%10). Soil sample collected at 12:15 for VOCs and percent moisture 0.0 content - sample ID CLAYEY SILT; As above. EIP-GP199-01. 0.0 10 12 07-13-2004 K:11515/Ellsworth Industrial Park Boring Logs/EIP-GP199(20).bor 0.010" Slot Screen 16 CLAYEY SILT; Grey, hard, trace pebbles, high plasticity, wet, well sorted. 0.0 Soil sample collected at 12:30 for VOCs CLAYEY SAND; Grey, hard, moist, high and percent moisture 18-48/48 plasticity, high dilatency, occasional content - sample ID medium-grained sand seams, well graded. EIP-GP199-02. SC 0.0 Piezometer screen set from 10 to 20 feet. 20 End of boring @ 20'.

	ONSE A			TRACT 68-W7-0026	•	LOC	O E	= B(	ORING EIP-G	P200	)
				RICO-B51W						(P	age 1 of 1)
1	orth:Indu ers Grov			<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Dlameter	: 15 April : IPS : Geoprol : Ryan So : 2"	be	·	Total Depth WESTON Ge Location	ologist	: 20' BGS : Michael Castillo : 4947 Belmont
Depth in feet	Recovery (in)	GRAPHIC	uscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
07-13-2004 K: 11 St. St. St. St. St. St. St. St. St. St.	37/48		ML SC	CLAYEY SILT; Brow low dilatency, well so pebbles, medium plate high plasticity.  7" coarse angular satisfies.  CLAYEY SILT; TILL stiff, high plasticity.	ey, stiff, dry, low dilate and and pebble layer	ency,		0.1	Soil sample collected at 11:30 for VOCs and percent moisture content - sample ID EIP-GP200-01.  Soil sample collected at 11:50 for VOCs and percent moisture content - sample ID EIP-GP200-02.  Piezometer screen set from 10 to 20 feet.		—— 2" PVC Riser —— 0.010" Slot Screen

4		ACTION NTRAC		TRACT 68-W7-0026		LOG	OF	= B(	ORING EIP-G	P201
Work	\ssignn	nent No	. 155-1	RICO-B51W						(Page 1 of 1)
		ıstrial P.		е	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 April : IPS : Geoprob : Ryan So : 2"	e		Total Depth WESTON Ge Location	: 19' BGS ologist : Michael Castillo : 4947 Belmont
Depth in feet	Recovery (in)	GRAPHIC	USCS	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Temporary Well
2-										2" PVC Riser
6-			SC	2' CLAYEY SAND; T plasticity, trace pebb GRAVEL; Moist, odd	les, slight odor.		$\nabla$		Coll appeals collected	
8-			SC	CLAYEY SAND; As dilatency.	above, slightly moist	, high - — —			Soil sample collected at 09:15 for VOCs and percent moisture content - sample ID EIP-GP201-01.	
10- 501(a)) 12-	41/48		sc	CLAYEY SAND; Bro dilatency, trace sub- plasticity.	wn, very stiff, moist, rounded pebbles, hig	high gh		0.0	Soil sample collected at 09:35 for VOCs and percent moisture content - sample ID EIP-GP201-02.	0.010" Slot Screen
Palla Soll 14						- <del>-</del> -				
77-3-2004 Kitts Stellsworth Industrial Park Boning Logs'ell'-4-201 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70 (19), pod. 4-7-70			SC	CLAYEY SAND; Gre high dilatency, high i occasional coarse sa	plasticity, trace pebb	moist,	X		Soil sample collected at 09:47 for VOCs and percent moisture content - sample ID EIP-GP201-03.	
20-				End of boring @ 19'.	<u> </u>			Plezometer screen set from 5 to 15 feet.		

		PA COI	NTRAC	T No.	68-W7-0026		LOG	OF	= B(	ORING EIP-G	P202	
1	Work A	\ssignn	nent No	). 155-l	RICO-B51W			<u></u>			(Page 1 of 1)	
	Ellswor				e :	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 15 April : IPS : Geoprol : Ryan So : 2"	90		Total Depth WESTON Ge Location	: 24' BGS eologist : Michael Castillo : 4947 Belmont	
	Depth in feet	Recovery (in)	GRAPHIC	nscs	DES	SCRIPTION		Boring Intervals	PID (ppm)	REMARKS	Temporary Well	•
ŀ	0-									L	J I (T.	
	2-	,										
	7 7 7										2" PVC Ris	er
	6-	<del></del>										
	8-											
	10-	41/48		ML	CLAYEY SILT; Brow high plasticity, little p	ebbles at 11' parting	<b>]</b> .		0.0	Soil sample collected		
	12-				Below parting, CLAY trace pebbles, mediu dilatency, well sorted	im plasticity, dry, no	y hard,		0.0	at 10:20 for VOCs and percent moisture content - sample ID EIP-GP202-01.		
4).bar	14-										0.040% 01-1	Corner
IP-GP202(2	16-							!			0.010" Slot	. su een
07-13-2004 K:\\515\Elisworth Industrial Park\Boring Logs\ElP-GP202(24).bor	18											
with Industrial	20-				CLAYEY SAND; Gre low dilatency, trace r	ounded coarse sand	, dry, d,			Soil-sample collected at 10:35 for VOCs	[	
K:\1515\Ellswc	22-	48/48		sc	sand and gravel part Below parting, As ab medium stiff, no plas	ove, CLAYEY SANI	D;	X	0.0	and percent moisture content - sample ID EIP-GP202-02. Piezometer screen		
07-13-2004	24-			L	End of boring @ 24'.	· · · · · · · · · · · · · · · · · · ·				set from 10 to 20 feet.		
Ł		<u> </u>										

U.S.		ONTRA	CT No.	68-W7-0026		LOG	G OF	BC	ORING EIP-G	
Ells	k Assigr worth Ind mers Gr	lustrial l	Park Sit	e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprot : Ryan Sc	be		Total Depth WESTON Ge Location	(Page 1 of 1)  : 30' BGS  ologist : Michael Castillo : Prop. N. of 4935 Belmont
Depl in fee	۱ă	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	ole Collected		Boring Intervals	PID (ppm)	REMARKS	Temporary Well
	1	*	ML	CLAYEY SILT; Tan, plasticity, frequent m and fill in top 1.5'.	very hard, dry, very icrofractures, some	low sand		0.0	Soil sample collected at 14:10 for VOCs and percent moisture content - sample ID EIP-GP203-01.	
10	1						,			2" PVC Riser
	8 4 1 1 1	FIF		CLAYEY SILT; Till, on the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	Grey, hard, slightly r	moist,				
07-13-2004 K-V 51 SEII sworth Industrial Park Boring Logs/EIP-GP203(21).bor 2	33/4	8	мс	occasional large pet	bles.			0.0	Soil sample collected at 14:25 for VOCs and percent moisture content - sample ID EIP-GP203-02.	
Ellsworth Industrial Park 6	1								Piezometer screen set from 20' to 30'.	0:010" Slot Screen
07-13-2004 KN515N	1			End of boring @ 30'	·					

		PA CO	NTRAC	T No. (	TRACT 68-W7-0026 RICO-B51W		LOC	OF	= B(	ORING EIP-G		age 1 of 1)
	Ellswor Downer				e	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprot : Ryan So	be		Total Depth WESTON Ge Location	ologist	: 30' BGS : Michael Castillo : Prop. N. of 4935 Belmont
	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Sampl			Boring Intervals	PID (ppm)	REMARKS	Tem	porary Well
07-43-2004 K:v1515/Eilsworth Industrial Park Boring Logs/EIP-GP204(22).bor	10- 12- 14- 16- 22- 24- 26- 30-	48/48		ML	SILTY CLAY; Grey a high plasticity, trace   8', 1.5" sandy day lay CLAYEY SILT; Grey, plasticity, trace pebbl 21.5', grey, stiff, dry.	nd tan mottling, hard pebbles, large pebbl yer at 9', slightly moi yer at 9', slightly moi , very stiff, dry, high les, sandy silt layer a			0.0	Soil sample collected at 15:00 for VOCs and percent moisture content - sample ID EIP-GP204-01.  Soil sample collected at 15:15 for VOCs and percent moisture content - sample ID EIP-GP204-02.  Plezometer screen set from 20' to 30'.		2" PVC Riser
07.					End of boring @ 30'.	·						

U.S.	EPA CO	NTRA	CT No.	TRACT 68-W7-0026 RICO-B51W	:	LOG	G OF	BC	ORING EIP-G		5 Page 1 of 1)
Ellsv	rorth Inc	ustrial f ove, Illin	Park Sit		Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 29 April : IPS : Geoprot : Ryan So : 2"	e		Total Depth WESTON Ge Location		: 20' BGS : Michael Castillo : Prop. N; of 4935 Belmont
Depti in	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp	ole Interval		Boring Intervals	PID (ppm)	REMARKS	Ten	nporary Well
feet	<del>1 -</del>	5	<u>s</u>	DES	CRIPTION		<u>&amp;</u>	Pi		]	3
2	سيباسياسيا										
6	48/4		ML	CLAYEY SILT; Tan, plasticity, trace pebb microfractures.	hard, dry, medium les, occasional		$\square$	0.0	Soil sample collected at 15:50 for VOCs and percent moisture content - sample ID EIP-GP205-01and . EIP-GP205-01DUP		2" PVC Riser
10 5 6	Trans.	FIF		CLAYEY SILT; Grey trace pebbles, 1" da	r, stiff, molst, high pla	asticity,		:			
Park Boring Logs EIP-GP205(1		***************************************	ML	Grey, saturated, wel	l graded, loose.	· · · · · · · · · · · · · · · · · · ·	X	0.0	Soil sample collected at 16:00 for VOCs and percent moisture 'content - sample ID ÉIP-GP205-02 and MS/MSD.		0.010" Slot Screen
07-13-2004 K:\(1515\)Eilisworth Industrial Park Boring Logs\(Eip \)-GP205((16)\bor 71 17 17 17 17 17 17 17 17 17 17 17 17 1							-		Piezometer screen set from 10' to 20'.		
20 20	)	<u>.l</u>	<u> </u>	End of boring @ 20°	•		•	<del>!</del>	I	j	H .

U.S. E	PA CO	NTRAC	T No.	TRACT 68-W7-0026 RICO-B51W		LOC	3 OI	F B(	ORING EIP-G	P206 (Page 1 of 1)
Ellswo Downe	rth Indu ers Gro			<b>e</b>	Date Completed Drilling Company Drilling Method Driller Name Borehole Diameter	: 16 Janu : IPS : Geopro : Ryan Se	be	04	Total Depth WESTON Ge Location	: 20' BGS iologist : James Molholm : 5000-5014 Chase
Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
2-										
6-	36/48		CL	SILTY CLAY; Grey a rounded gravel, mod	nd Brown, with coan erately soft, moist, p	se and olastic.	X	0.0	Soil sample collected at 7:52 for VOCs and percent moisture content - sample ID EIP-GP99-01.	2" PVC Riser
10 10 11 12 12 12 12 12 12 12 12 12 12 12 12						· <del>-</del> -				
95/EIP-GP 206(	40/48		CL	SILTY CLAY; Grey, t dolostone fragments, plasificity, moderately	race grave and large, slightly soft, moder y moist.	e ate	X	0.0	Soil sample collected at 8:07 for VOCs and percent moisture content - sample ID EIP-GP99-02 and EIP-GP99-02 DUP	0.010" Slot Screen
07-30-2004 K:N5(5)Ellsworth (									Piezometer screen set from 10 to 20 feet.	

	U.S. E	PA CO	NTRAC	CT No.	TRACT 68-W7-0026		LOG	G C	)FE	BORING EIP-G	P207
	Work A	Assigna	nent No	o. 155-	RICO-B51W						(Page 1 of 1)
			ustrial F ve, Illin		le .	Drilling Company : Drilling Method : Driller Name :	26 Janu IPS Geoprol Ryan Sc 2"	ю	004	Total Depth WESTON Ge Location	: 30' BGS ologist : Ted Cagney : 2500°Curties
- 1	Depth in feet	Recovery (in)	GRAPHIC	nscs	Boring Intervals  VOC Soil Samp  Geologic Samp			Boring Intervals	PID (ppm)	REMARKS	Well: Piezometer
	0-			<u> </u>			F				Π:
	2-	48/48		FL	and cobbles, slightly	and grey, trace gravel moist, slightly stiff. n and grey, trace grave		X	0.0	Soil sample collected at 16:00 for VOCs and percent moisture content - sample ID	
	-			CL	slightly moist.		[	_]		EIP-GP207-01.	
	6-										
	8-		//	CL	moist.	n, trace gravel, slightly				Soil sample collected at	
	10-	40/48		sw	SAND and GRAVEL, trace cobbles, dry, to	; Brown, coarse grained ose.	1,	X	0.0	16:10 for VOCs and percent moisture content - sample ID EIP-GP207-02.	2" PVC Riser
	12-										
	14-										
	16-			<del></del>	SAND and GRAVEL coarse grained, dry,	; Brown and Orange, loose, trace large		$\neg$		Soil sample collected at	
(19).bor	18-	40/48		sw	cobbles.			X	0.0	16:25 for VOCs and percent moisture content - sample ID EIP-GP207-03.	
P-GP207	20-				<del>-</del>					; 1	
07-13-2004 K:11 51 S'Ellsworth Industrial Park Boring Logs'EIP-GP207(19), bor	22-						•			Piezometer well screen set from 20 to 30 feet.	
I Park	24-										
h Industria	-			:						i	0.010" Slot Screen
Ellswort	26-			•						,	
K:N SI SV	28-						ŀ				
-2004	30-			,		<u>-</u>					
97-1;	30				End of boring @ 30'.						

# APPENDIX B

# Analytical Data Summary Tables

#### Appendix B

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Fleid Sample ID	GP54-01	GP54-02	GP54-03	GP55-01	GP55-01DUP	GP55-02	GP56-01	GP56-02	GP57-01	GP57-02
						1		<b>!</b>		
Property Address	2500 Curtiss	2500 Curtiss	2500 Curtiss	2500 Curtis	2500 Curtin	2500 Curtisa	2500 Curtiss	2500 Curtina	2500 Curtiss	2500 Curtisa
Sample Date	1/26/2004	1/24/2004	1/26/2004	1/27/2004	1/27/2004	1/27/2004	1/27/2004	1/27/2004	1/27/2004	1/27/2004
Depth Interval	3.5-4.5	12.5- 13.5	25.5- 26.5	14.5- 15.5	14.5- 15.5	24.5- 25.5	3,5-4,5	25.5- 26.5	4.5- 5.5	15.5- 16.5
1.1.1-TRICHLOROETHANE	' 13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
1,1,2,2-TETRACHLOROETHANE	13 U	10 U	12 UJ	TO O	15 U	10 U	12 U	10 U	14 U	12 U
1,1,2-TRICHLOROETHANE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
1,1-DICHLOROETHANE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
1,1-DICHLOROETHENE	13 U	10 U	12 UJ	10 U	. 15 U	10 U	12 Ú	10 U	14 U	12 U
1,2,4-TRICHLOROBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	.14 U.	12 U -
1,2-DIBROMOETHANE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	-14 U	12 U
1,2-DICHLOROBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 Ü	14 U	12 U
1,2-DICHLOROETHANE	13 U	10 U	12 UJ	10 Ų	15 U	10 U	12 U	10 U	14 U	- 12 U -
1,2-DICHLOROPROPANE	13 U	10 U	12 UJ	10 Ų	15 U	10 U	12 U	10 U	14 U	12 U
1,4-DICHLOROBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
2-BUTANONE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 Ú	12 U
4-METHYL-2-PENTANONE	13 U	10 U	12 UJ	10 U	15 Ü	10 U	12 U	10 U	14 U	12 U
ACETONE	13 07	10 UJ	12 J	10 Ω1	15 UJ	4.7	11 J	10 UJ	14 UJ	12 UJ
BENZENE	13 U	10 U	12 UJ	10 Ú	15 U	10 UJ	12 U	10 U	14 U	12 U
BROMODICHLOROMETHANE	13 U	100	12 UJ	10 U	15 U	10 U	12 U	10 U	14 Ü	12 U
BROMOFORM	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
BROMOMETHANE	13 U	10 U .	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
CARBON DISULFIDE	.13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
CARBON TETRACHLORIDE	13 U	10 U -	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
CFC-11	13 U	10 U	12 UJ	10 U	15 U	10 U	. 12 U	10 U	14 U	12 U
CFC-12	13 UJ	10 UJ	12 UJ	10 UJ	15 UJ	10 UJ	12 U	10 U	. 14 U	12 U
CHLORINATED FLUOROCARBON (FREON 113)	13 U	10 U	12 UJ	10 Ų	15 U	10 U	12 U	10 U	14 U	12 U
CHLOROBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 UJ	12 U	10 U	14 U	12 U
CHLORODIBROMOMETHANE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	- 14 U	12 U _
CHLOROETHANE	13 UJ	10 UJ	12 UJ	10 UJ	15 UJ	10 UJ	12 U	10 U	14 U	12 U
CHLOROFORM	13 U	10 U	12 UJ	10 U	15 Ü	10 U	12 U	10 U	14 U	12 U
CHLOROMETHANE	13 U	10 U	12 UJ	10 Ü	15 U	10 U	12 U	10 U	14 U	12 U
CIS-1,2-DICHLOROETHENE	13 U	10 U	12 UJ	10 U	15 U	100	12 U	10 U	14 U	12 U
CIS-1,3-DICHLOROPROPENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
CYCLOHEXANE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
ETHYLBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
ISOPROPYLBENZENE	13 U	10 U	12 UJ	10 U	15 U	10 U	12 U	10 U	14 U	12 U
M-DICHLOROBENZENE	13 U	10 U	12 UJ	10 U	15 U 15 U	10 U	12 U	10 U	14 U	12 U
METHYL ACETATE	13 U	10 U	12 UJ	10 U	15 U	100	12 U	10 U	14 U	12 U
METHYL N-BUTYL KETÖNE	13 U	10 U	12 UJ	10 10		10 10	12 UJ	10 UJ	14 (7)	12 (1)
METHYL TERT-BUTYL ETHER (MTBE)	13 UJ	10 UJ	12 UJ	10 UJ	15 UJ 15 U	10 03	12 U	10 U	14 U	12 U
METHYLCYCLOHEXANE	13 U		12 UJ 2 J	10 U	15 U	10 Ú	12 U	10 U	14 Ü	12 U
METHYLENE CHLORIDE	37	2.1		10 U	15 U	10 U	12 U	10 U	14 U	120
STYRENE (MONOMER)	13 U	10 U	12 UJ	10 U	15 U	100	12 U	10 U	14 0	12 U
TETRACHLOROETHENE (PCE)			12 UJ -	10 U	15 U	10 U	12 U	10 U	14 U	12 0
TOLUENE	13 U	10 U	12 UJ	. 100	-15 U	10 U	12 U	10 U	14 U	12 U
TRANS-1,2-DICHLOROETHENE	13 U	10 U	12 UJ	- 10 U	-13 U 15 U	10 U	12 U	10 U	14 17	12 U
TRANS-1,3-DICHLOROPROPENE			12 UJ	10 U	15 U	10 UJ	12 U	10 U	14 U	12 0
TRICHLOROETHENE (TCE)	13 U	10 U	12 UJ	- 10 U	15 U	10 U.	120	100	14 U	12 U
VINYL CHLORIDE	13 U	100	12 UJ	10 U	- 15 U	100	12 0 .	10 U	14 U	12 U
XYLENES (TOTAL)	J3 U	1 10.0	14 01	100	13 U.	1 100 -	120 .	1 100	1 140	120

All units are in ug/kg

ield Sampia ID	GP58-01	GPS8-01DUP	GP58-02	GP58-03	GP59-01	GP59-02	GP59-03	GP60-01	GP60-02	GP60-03
	Ur3e-ui	OLOG-LIDOL	UF 36-04	GI SE-05	GI SPVI	0.574.		- GI WAI	0.00-4	- <del> </del>
			1		'	ľ				
Paperty Address	2500 Curtiss	2500 Curties	2500 Curtis	2500 Curtiu	2500 Certin	2500 Curtiss	2500 Curtiss	2500 Curtise	2500 Curtiss	2500 Curtis
ample Data	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/26/2004	1/27/2004	1/27/2004	1/27/2004
epth Interval	1.5-2.5	1.5- 2.5	6.5-7.5	16.5- 17.5	1.5- 2.5	5.5-6.5	13.5- 14.5	3.5-4.5	9.5- 10.5	15.5-16.5
LI-TRICHLOROETHANE	10 U	11 U	. 14 U	10 U	10 U	10 U	13 U	10 U	11 U	110
.1,2,2-TETRACHLOROETHANE	100	110	14 U	100	10 U	10 Ų	13 U	10 U	11 U	11'U
.1.2-TRICHLOROETHANE	10 U	11.0	14 U	10 U	10 U	10 U	13 U	10 U	110	. 11 U
,I-DICHLOROETHANE	10 U	110	14 U	10 U	10 U	10 U	13 U	10 U	110	11 U
.1-DICHLOROETHENE	10 U	. 11 U	14 U	10 U	10 U	10 U	13 U	10 U	110	11 U
2.4-TRICHLOROBENZENE	10 U .	.11 U	14 Ü	10 U	10 U	10 U	13 Ü	10 U	11 U	11 U
.2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	11.U	14 U	. 10 U	10 U	10 Ü	13 U	10 U	11 U	טוו
2-DIBROMOETHANE	10 U	.11 U	14 U	10 U	. 10 U	10 U	13 U	10 U	11 U	11 U
,2-DICHLOROBENZENE	10 0 -	110	14 U.	- 10 U	. 10 U	10 U	13 U	10 U	11 U	110
2-DICHLOROETHANE	10 U	11 0	14 U	10 U	1017	. 10 U	. 13 U.	10 U	11 U	เเบ
2-DICHLOROPROPANE	10 D	110	14 U	10 U	10 U	10 U	13 U	100 -	110	11 U
4-DICHLOROBENZENE	10 Ü	11 U	14 U	10 U	10 U	10 U	13 Ü	10 U	. 11 U	11.0
-BUTANONE	100	3.1	14 U	10 U	8.7	10 U	13 U	100	51	11 Ü
-METHYL-2-PENTANONE	100	11.0	14 U	10 U	10 U	10 U	13 Ü	10 U	110	110
CETONE	10 UJ	17 J	14 UJ	2 J	28 J	10 UJ	13 UJ	73	17.3	91.
ENZENE	10 03	11.0	14 U	lou	10 U	10 U	13 U	10 U	ΠÜ	11 U
ROMODICHLOROMETHANE	10 0	11.0	14 U	10 U	10 U	10 U	13 U	10 U	11.0	11 Ü
ROMOFORM	100	110	14 U	10 U	10 U	10 U	13 Ü	10 U	ii Ū	11 0
ROMOMETHANE	100	110	14 U	10 U	10 U	10 U	13 U	10 U	iiŪ	11 Ü
ARBON DISULFIDE	10 0	110	14 U	10 U	10 U	10 U	13 U	10 U	110	11 U
ARBON TETRACHLORIDE	100	11 0	14 U	100	10 U	10 U	13 U	10 0	110	11 U
FC-II	100	110	14 0	100	10 U	10 U	13 0	10 U	110	110
FC-12	1007	11 UJ .	14 07	10 UJ	10 UJ	10 10	13 (1)	10 U	110	11 0
HLORINATED FLUOROCARBON (FREON 113)	100	11 U	14 U	- 10 U	10 U -	10 U	13 U	100	110	110
HLOROBENZENE	100	110	14 U	10 U	10 U	10 U	. 13 Ü	10 U	11 U	110
HLORODIBROMOMETHANE	1 100	110 -	140	100	10 U	- 10 U	13 0	1017	110	110
HLOROETHANE	10 03	נטוו	14 UJ	10 UJ	10 UJ	10 00	13 07	10 U	110	110
HLOROFORM	100	1107	14 U	10 0	10 U	10 U	13 0	100	11 0	II Ü
HLOROMETHANE	100	110	14 U	100	10 U	10 17	13 U	10 U	110	II U
IS-1,2-DICHLOROETHENE	100	1110	14 U	10 U	10 U	10 U	13 U	10 U	11 0	110
IS-1.3-DICHLOROPROPENE	100	11 U	14 U	10 0	10 U	10 U	13 U	100	110	110
YCLOHEXANE	100	110	140	10 U	10 U	10 U	13 0	10 U	110	110
THYLBENZENE	100	110	140	100	10 U	10 U	13 0	10 U	110	11 0
SOPROPYLBENZENE	100	110	140	10 U	100	10 U	13 U	10 0	110	110
4-DICHLOROBENZENE	100	11 U	14 0	10 U	10 U	10 U	13 0	10 U	110	11 U
ETHYL ACETATE	100	110	140	10 0	10 U	10 U	13 0	10 U	110	110
ETHYL N-BUTYL KETONE	100	11 0	14 U	10 U	10 0	10 U	13 U	10 U	11 U	110
		11 UJ	14 UJ	10 (1)	10 01	10 UJ	13 07	10 U	1100	1110
ETHYL TERT-BUTYL ETHER (MTBE)	10 UJ -	11 U	14 U	10 U	10 U	10 U	13 U	10 U	110	110
ETHYLCYCLOHEXANE	10 U		31	2.5	2 J	10 U	37	100	11 0	110
ETHYLENE CHLORIDE		2.1	14 U	. 10 U	- 10 U · -	10 U	13 U	100	110	110
TYRENE (MONOMER)	10 U	11 U	14 U	10 0	10 U	10 U	13 U	10 U	110	110
ETRACHLOROETHENE (PCE)	10 U								11U	110
OLUENE	10 U	11 U	14 U	10 U	10 U	10 U	13 U	10 U		110
RANS-12-DICHLOROETHENE	10 U	11 U	14 U	10 U	10 U	10 U	13 U	10 U	110	
RANS-1,3-DICHLOROPROPENE	10 U	11 U	14 U	10 U	10 U	10 U	13.0	10 U	110	11 U
RICHLOROETHENE (TCE) TNYL CHLORIDE	10 U	11 0	14 U	10 U	10 U	10 U	13 U	10 U	11 U	110

Ellowerk Industrial Park Sile WA NO.: 333-R2CO-851 W Date Brobustine Report Appendix: B Revision: 1 Date: 3 August 2004 Page: 3 of 50

#### Appendix B (Continued)

Field Sample ID  Property Address Sample Date Depth Interval 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	2300 Wisconsin 1/14/2004 5.5-6.5	2300 Wisconsin 1/14/2004	GP61-03	GP62-01	GP62-02	GP61-03	GP63-01	GP63-02	GP64-01	GP64-02
Sample Date Depth Interval 1,1,1-TRICHLOROETHANE 1,1,2-TBIRACHLOROETHANE 1,1,2-TBICHLOROETHANE 1,1,2-TRICHLOROETHANE	1/14/2004 5.5- 6.5		2300 Wisconnin	1						
Sample Date Depth Interval 1,1,1-TRICHLOROETHANE 1,1,2-TBIRACHLOROETHANE 1,1,2-TBICHLOROETHANE 1,1,2-TRICHLOROETHANE	1/14/2004 5.5- 6.5		2300 Wiscomin							l
Depth Interval  1,1,1-TRICHLOROETHANE  1,1,2-TETRACHLOROETHANE  1,1,2-TRICHLOROETHANB	5,5-6.5	1 1/14/2004			2300 Wisconsin	2300 Wisconsin			2300 Wisconstn	2300 Wisconsta
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane 1,1,2-trichloroethane			1/14/2004	1/22/2004	1/22/2004	1/22/2004	1/8/2004	1/8/2004	1/14/2004	1/14/2004
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	1 100	9.5- 10.5	15.5-16.5	3.5-4.5	8.5- 9.5	21.5-27.5	4.5-5.5	8,5- 9.5	3.5-4.5	19.5- 20.5
1,1,2-TRICHLOROETHANE		10 U	10 U	10 U	10 U	10 UJ	_ 10 U	10 U	10 U	10 U
	10 U	10 U	10 U	10.0	10 U	10 UJ	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 Ü	10 UJ	10 U	10 U	10 U	10 U
	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U
1,2-DIBROMOETHANE	10 U	10 U	10 U	. 10 U.	10 U	10 UJ	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	.10 UJ	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 Ü	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10.0	10 U	10 U	10 U	10 UJ	10 U	10 U	10 Ú	10 U
4-DICHLOROBENZENE	10 U	10 U	10 Ų	10 U	10 U	10 UJ	10 U	to U	10 U	. 10 U
2-BUTANONE	3.J	2 J	10 UJ	10 U	10 U	10 UJ	10 U	100	10 UJ	10 DJ
L-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	100	10 U	10 U
ACETONE	17	20	4.1	2 J	6 J	2 J	10 U	7.3	9.1	4.7
BENZENE	10 U	10 U	10 U	10 Ü	10 U	10 UJ	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	100	10 U	100	10 U	IO UJ	10 U	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U	10 U	10 U	10 UJ	JOU	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
CARBON DISULFIDE	. 10 U	10 U	10 U	IOU	10 U	10 UJ	100	10 U	10 Ü	10 U
CARBON TETRACHLORIDE	IOU	. 10 U	10 U	iöù	10 U	10 UJ	10 U	10 U	10 U	10 U
CFC-11	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 Ū	10 U
CFC-12	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U.	_ 10 U	10 U
CHLOROBENZENE	10 U	10 Ü	10 U	10 U	10 U	10 UJ	iou	10 U	10 U	- 10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U ~
CHLOROETHANE	10 U	100	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 0	10 U	10 0	10 U	10 UJ	10 U	10 U	10 U	10 U
CHLOROMETHANE	1011	10 U	10 U	100	10 U	10 UJ	10 U	10 U	10 U	10 U
CIS-1.2-DICHLOROETHENE	100	100	10 U	10 U	10 U	10 01	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	100	iou	10 U	10 U	10 U	10 UJ	10 0	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
ETHYLBENZENE	100	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U
ISOPROPYLBENZENE	100	100	100	10 U	10 U	10 UJ	10 0	10 U	10 U	100
M-DICHLOROBENZENE	10 U	10 U	100	10 0	10 0	10 UJ	10 0	10 U	10 U	10 U
METHYL ACETATE	10 (7)	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ	10 177	10 07	10 03
METHYL N-BUTYL KETONE	10 02	10 U	10 U	10 0	10 U	10 03	10 U	10 U	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	100	10 U	100	10 UJ	10 01	10 UJ	10 0	10 U	10 U	10 U
METHYLCYCLOHEXANE	10 U	10 U	. 10 U	10 U	10 U	10 03	10 ()	10 U	10 U	100
METHYLENE CHLORIDE	100	10 U	10 U	3.1	23	2 J	10 U	100	100	10 U
STYRENE (MONOMER)	100	10 0	10 13	10 U	10 U	10 UJ	10 U	10 U.	10 U	10 U
TETRACHLOROETHENE (PCE)	1 -10 U	- 10 0	10 U	10 U	100	10 UJ	10 U	10 U.	- 1017	10 U
TOLUENE	10 U	100	- 10 U	10 U	10 U	10 03	100	100	100	10 U
TRANS-1,2-DICHLOROETHENE	100	10 U	10 U	10 U	10 U	10 01	10 U	100.	- 10 U.	10 U
TRANS-1,2-DICHLOROPE HENE TRANS-1,3-DICHLOROPROPENE	10 0	10 U	10 U	10 U	10 U	10 03	10 U	100	. 10 U.	10 U
					10 U	10 03	10 U		10 U	
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 0	10 03	10 U	10 U	. 10 U.	- 10 U ~.
VINYL CHLORIDE XYLENES (TOTAL)	10 U	10 U	100	100	100	10 UJ	10 U	100	10 U	100

Field Sample ID	GP65-01	GP65-02	GP66-01	GP66-02	GP66-02DUP	GP66-03	GP67-01	GP67-02	GP68-01	GP68-02
ricia sample III	GP65-01	GP65-02	GP60-UI	Gree-U1	GP66-02DUP	GF00-03	Gre/401	GF0/-42	Greevi	GF08-02
		į	1							
Property Address	2300 Wisconsin	2300 Wisconsin	2300 Wisconsin	2300 Wisconsto	2300 Wisconsin	2300 Wisconsin	2525 Wisconsin	2525 Wisconsin	2525 Wisconsin	2525 Wisconsin
Sample Date	1/14/2004	1/14/2004	1/8/2004	1/8/2004	1/8/2004	1/8/2004	12/4/2003	12/4/2003	12/3/2003	12/3/2003
Depth Interval	35-65	9.5-10.5	1.5-2.5	6.5-7.5	6.5- 7.5	10.5- 11.5	4.5- 5.5	14.5-15.5	1.5- 2.5	25.5- 26.5
1,1,1-TRICHLOROETHANE	10 U	. 1017	10 U							
1.1.2.2-TETRACHLOROETHANE	10 U -	10 U .	10 Ü	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 11	10 U	10 U	10 U	10 U.	. 10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 0	10 U					
1,1-DICHLOROETHENE	10 U	10 U	ίου	100	10 U	10 U	10 11	10 U	. 10 U .	10 U
1,2,4-TRICHLOROBENZENE	100	- 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	100	10 U	10 UJ	10 0	10 (1)	10 UJ	10 UJ	10 UJ	100	10 UJ
1,2-DIBROMOETHANE	100	10 0	1000	10 U	10 U	10 U	10 0	10 U	10 U	10 U
1,2-DICHLOROBENZENE	1011	10 0	10 U	10 0	10 U	100	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	100	100	100	100	10 U	100	100	10 U	100	10 U
1,2-DICHLOROPROPANE	10 U	10 0	10 U	10 U	10 U	100	10 U	10 U	100	10 U
1.4-DICHLOROPROPANE	10 U	100	10 U	100	10 (7	10 U	1017	10 U	10 U	10 U
2-BUTANONE	2 J	10 UJ	10 U	100	6.7	10 U	100	10 U	100	10 U
4-METHYL-2-PENTANONE	. IOU	10 U	100	100	10 U	100	10 U	100	10 U	10 U
ACETONE	15	. 5.1	. 4J.	14		16	10 U	10 U	10 U	10 U
BENZENE	10 U				23	10 U	10 U	10 U	100	10 U
BROMODICHLOROMETHANE		10 U	10 U	10 U	10 U	100	10 U	100	10 U	10 U
	10 U	10 U		10 U			100.	10 U		10 U
BROMOFORM	10 U	100	10 U	100						
BROMOMETHANE	10 U	10 U	10 U	10.01	ហេប	10 U				
CARBON DISULFIDE	10 U	- 10 U								
CARBON TETRACHLORIDE CFC-11	10 U									
	10 U	10 U	10 U	10 U	10 Ú				10 U	
CFC-12	10 U									
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U
CHLOROBENZENB	10 U				10 U					
CHLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	េប	10 U				
CHLOROETHANE	10 U		10 U	10 U	10 U	10 U				
CHLOROFORM	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	100
CHLOROMETHANE	10 U	10,U	10 U							
CIS-1,2-DICHLOROETHENE	10 U			10 U	10 U					
CIS-1,3-DICHLOROPROPENE	10 U									
CYCLOHEXANE	10 U									
ETHYLBENZENE	10 U.	io U	io U	10 U	10 U	10 U	10 U	10 U	10 U	10 0
SOPROPYLBENZENE	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
M-DICHLOROBENZENE	10 U									
METHYL ACETATE	10 01	10 UJ	10 UJ	10 M	10 UJ	- 10 UJ .	10 UJ	10 UJ	10 U	10 UJ
METHYL N-BUTYL KETONE	10.0	10 U								
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 Ų	10 U	100	J0 U	10 U	10 U	10 U	10 U	10 U
METHYLCYCLOHEXANE	10 U	- 10 U	10 U	10 U						
METHYLENE CHLORIDE	10 U	10 UJ	10 UJ	10 M	10 UJ					
STYRENE (MONOMER)	10 U									
TETRACHLOROETHENE (PCE)	10 U									
TOLUENE	10 U	IQU .	10.0	10 U						
TRANS-1,2-DICHLOROETHENE	10 U									
TRANS-1,3-DICHLOROPROPENE	10 U	IO U	10 0	10 U						
TRICHLOROETHENE (TCE)	10 U	10.0	10 U	JO U	10 U	10 U	10 U	10 U	10 UJ	ΙQŪ
VINYL CHLORIDE	100	10 U								
XYLENES (TOTAL)	10 U	100	10 U	10 U	100	100				

Fleid Sample ID	GP69-01	GP69-02	GP70-01	GP70-01DUP	GP70-02	GP71-01	GP71-02	CP71-03	GP72-01	GP72-01DUP
Piere Sample ID	0,0,4,		<u> </u>	OI /G-VIDQI		<u> </u>		32.02.22		
									1	
Property Address	2525 Wisconsin	2525 Wisconstn	2525 Wisconsin	2525 Wisconsin	2525 Wisconsin	2525 Wisconsin	2525 Wisconsha	2525 Wisconsin	2525 Wisconshi	2525 Wisconsin
Sample Date	12/3/2003	12/3/2003	12/4/2003	12/4/2003	12/4/2003	12/12/2003	12/12/2003	12/12/2003	12/3/2003	12/3/2003
Depth Interval	1.5-2.5	25.5-26.5	1.5- 2.5	1.5-2.5	13.5-14.5	1.5- 2.5	15.5-16.5	22-23	3-4	3-4
1,1,1-TRICHLOROETHANE	10 U .	10 U								
1,1,2,2-TETRACHLOROETHANE	- 10 U	10 U	10 U	10 U	. 100	10 U				
1,1,2-TRICHLOROETHANE	10.U	10 0	:100	10 U						
1,1-DICHLOROETHANE	10 U	10 U	10 U	100	10 U					
1,1-DICHLOROETHENE	10 U	iou								
1,2,4-TRICHLOROBENZENE	10 U	10 Ü	10 U	10 U	10 U	10 U				
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U				
I_2-DIBROMOETHANE	10 U	10 (7	100	100	10 U	10 U				
1,2-DICHLOROBENZENE	10 U									
I,2-DICHLOROETHANE	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U				
1,2-DICHLOROPROPANE	10 U									
1,4-DICHLOROBENZENE	10 U									
2-BUTANONE	10 U	10 Ú	10 U	10 U	10 U	10 U				
4-METHYL-2-PENTANONE	10 U									
ACETONE	10 U	10 U	10 U	14	9.1	6.3	4.3	7.3	10 U	5 U
BENZENE	10 U									
BROMODICHLOROMETHANE.	10 Ü	10 U	100	100	10 U					
BROMOFORM	10.0	10 U								
BROMOMETHANE	10 ft	10 U								
CARBON DISULFIDE	10 U	. 10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 Ü	10 U								
CFC-11	10 U	. 10 U	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U
CFC-12	10 U	10 U	100	10 U	10 U	. 10 U	. 10 U	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10.0	10 U	10 U	.10 U	10 Ü	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 Ü .	10 U	10 U						
CHLORODIBROMOMETHANE	IO U	U 01	TO U	10 U	10 U	100	100	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	IO U	10 U	10 U	10 U	10 U	10 U	- 10 U
CHLOROFORM	10 U									
CHLOROMETHANE	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U				
CIS-1,2-DICHLOROETHENE	10 U									
CIS-1,3-DICHLOROPROPENE	10 U	10 Ú								
CYCLOHEXANE	10 U									
ETHYLBENZENE	10 U									
ISOPROPYLBENZENE	10 U									
M-DICHLOROBENZENE	IQ U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYL ACETATE	10 U	10 U	10 UJ	10.01	10 UJ	10 U				
METHYL N-BUTYL KETONE	10 U									
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U				
METHYLCYCLOHEXANE	10 U									
METHYLENE CHLORIDE	10 UJ	10 UJ	10 UJ	10.01	10 UJ	10 U	10 U	10 U	10 UJ	10 U
STYRENE (MONOMER)	10 U	100	10 U	10 U	10 U					
TETRACHLOROETHENE (PCE)							10 0		100	10 U
TOLUENE	-10 U	10 U	10 U	10 U	10 0	10 U		10 U		
TRANS-1,2-DICHLOROETHENE	10 U									
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U:	10 U				
TRICHLOROETHENE (TCE)	10 UJ	10 UJ	10 U	10 U	- 10 U	10 U	1010	10 U	10 UJ	10 UJ
VINYL CHLORIDE	10 U	10.U	10 U	10 U	10 U	10 U				
XYLENES (TOTAL)	10 U	10 U	10 U	100	10 U	10 U	10 U	100	10 U	100

Field Sample ID	GP72-02	GP72-03	GP73-01	GP73-02	GP74-01	GP74-02	GP75-01	GP75-02	GP76-01
		77.7							
	1				1				
Property Address	2525 Wisconsin	2525 Wisconsin	2525 Wisconsin	2525 Wisconstn	2525 Wisconsin	2525 Wisconstn	2525 Wisconsin	2525 Wisconsin	5411 Walnut
iampia Data	12/3/2003	12/3/2003	12/12/2003	12/12/2003	12/4/2003	12/4/2003	12/3/2003	12/3/2003	4/21/2004
Depth Interval	5-6	27,5- 28.5	8,5-9,5	15.5-16.5	1.5- 2.5	21.5- 22.5	1.5- 2.5	25.5- 26.5	12.5- 13.5
1.1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	1] U	ម្រប	ΙOU	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	.10 U	11 U	10 U	10 U	10 U	10 U
1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	ווע	10 U	10 U	10 U	10 U
1-DICHLOROETHANE	.10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U
1-DICHLOROETHENE _	10 U	10 U	10 U	10 U	11 U	10 U	10 U	IO U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	IO U	10 U	11.0	10 U	100	10 U	10 U
,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	. 10 U	100	10 U	. 110	10 UJ	ΪÓŪ	10 U	10 R
1,2-DIBROMOETHANE	JOU	10 U	10 U	10 U	11 U	10 U -	-10 U	10 U	IO U
,2-DICHLOROBENZENE	10 U	10,0	10 U	10 U	11.0	10 U	10.0	10 U	10 U
,2-DICHLOROETHANE	10 U	10 U	10 UJ	10 UJ	11 U	10 U	10 U	10 U	-10 U
2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U
4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	110	IQU	10 U	10 U	10 U
-BUTANONE	10 U	10 U	10 U	10 Ú	11 U	10 U	10 U	10 U	10 U)
LMETHYL-2-PENTANONE	10 U	10 U	10 U	10 U	110	10 U	10 U	10 U	10 U
CETONE	5 U	70	10 U	51	11 U	10 U	4 U	4 U	10 W
RENZENE	100	10 U	10 U	100	11 U	10 U	10 U	10 U	10 U
ROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	110	10 U	10.0	10 U	10 U
IROMOFORM	10 U	100	10 U	10 U	110	10 U	10 U	10 U	10 UJ
ROMOMETHANE	10 U	10 U	10 U	10 U	11.0	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	10 U	110	10 U	10.U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	110	10 U	10 U	10.0	10 U
CFC-11	10 U -	10 U	10 UJ	10 UJ	11 U	10 Ü	10 U	10 U	10 U
CFC-12	IO U	10 ft	100	. 10 U	11 U	10 U_	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	- 10 U	10 U	. 10 0	110	10 U	10 U .	10 U	10 U
THLOROBENZENE	10 U	10 U	10 U	10 U	110	10 U	10 U	IOU	100
CHLORODIBROMOMETHANE	IOU	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 UJ
CHLOROETHANE	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U
HLOROFORM	10 U	10 U	100	10 U	11 0	10 U	10 U	10 U	10 U
CHLOROMETHANE	10 U	10 U	10 117	10 UJ	110	10 U	10 U	IOU	10 U
CIS-1.2-DICHLOROETHENE	10 U	10 U	10 U	10 U	11.0	10 0	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 Ú.	10 U	10 Ú	10 Ú	11.0	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10U .	10 U	11.0	10 U	10 U	10 U	10 U
THYLBENZENE	10 U	10 U	10 U	10 U	IIU	10 U.	10 U	10 U	10 U
SOPROPYLHENZENE	10 U	- 10 U	10 U	10 U	IIU	10 U.	10 U	10 U	10 U
M-DICHLOROBENZENE	10 U	10 U	10 Ü	10 0	110	10 U	10 U	10 U	· · · 10 U · ·
METHYL ACETATE	10 U	10 U	10 U	10 U	110	10 UJ	10 U	10 U	10 UJ
METHYL N-BUTYL KETONE	10 U	10 U	10 Ü	10 U	110	10 U	10 U	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	10 UJ	10 UJ	110	10 U	. 10 U	10 U	10 UJ
METHYLCYCLOHEXANE	10 U	10 0	10 U	10 U	11 Ü	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 UJ	10 UJ	10 U	10 U	11 UJ	10 UJ	10 UJ	10 UJ	10 U
TYRENE (MONOMER)	1011	10 U	10 U	10 U	11 0	10 U	10 U	10 U	10 U
ETRACHLOROETHENE (PCE)	10 U	10 U	10 U	IO U	11 0	10 U	10 U	10 U	10 U
TOLUENE	100	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	100	10 U	10 U	10 U	11 0	10 U	10 U	10 U	10 U
RANS-1.3-DICHLOROPROPENE	1017	10 U	10 U	10 Ü	11 U	10 0	10 U	10 0	10 U
RICHLOROETHENE (TCE)	100	10 UJ	10 U	10 U	1100	10 U	10 UJ	10 07	10 U
VINYL CHLORIDE	100	_ 10 U	100	10 U	11 0	10 U	10 U	10 11	10 U
(YLENES (TOTAL)	100	100	- 10 U	10 U	110	10 U	10 U	100	10 U

Field Sample ID	GP76-02	GP76-02DUP	GP76-03	GP77-01	GP77-02	GP78-01	GP78-02	GP79-01	GP79-02	GP80-01
гац запра п	01/4-42	GF /G-04DCF	01700		01//45	0175-01	01.75-05	91./2-1	U1/272	0,000,
					ł					1
Property Address -	5411 Walnut	5411 Walnut	5411 Walnut	5411 Walnut	5411 Walnut	5411 Walnut	5411 Walnut	5411 Walmut	5411 Walnut	5411 Wahmt
Semple Date	4/28/2004	4/28/2004	4/28/2004	4/27/2004	4/27/2004	4/28/2004	4/28/2004	4/27/2004	4/27/2004	4/28/2004
Depth Interval	15.5-16.5	15.5-16.5	20.5- 21.5	65-7.5	19.5- 20.5	5.5-6.5	15.5-16.5	3.5-4.5	26.5- 27.5	11.5- 12.5
1.1.1-TRICHLOROETHANE	10 U	10 U	1017	1417	10 U	12 0	10 U.	. 10 U	10 U	. 10 U
1.1.2.2-TETRACHLOROETHANE	100	10 U	10 U	14 U	10 U	12 0	10 U	10 U	10 U	10 U
1.1.2-TRICHLOROETHANE	100	10 U	10 ()	14 U	10 U	12 U	10 U	10 0		10 U
1,1-DICHLOROETHANE	10 U	10 U	10 Ü	20	10 U	12 U	10 0	10 U	10 U	10 U
1.1-DICHLOROETHENE	10 U	10 U	10 0	14 U	100	12 U	100	10 U	10 U	10 U
1.1-DICHLOROBENZENE	100	10 U	100	14 U	100	12 U	10 0	10 U	10 U	10 UJ
						12 G	10 R	10 R	10 %	10 R
1,2-DIEROMO-3-CHLOROPROPANE (DBCP)	10 R	10 R	10 R	14 R	10 R		10 U	10 U	10 K	10 U
1,2-DIBROMOETHANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 0	10 U	100
1,2-DICHLOROBENZENE	10 U				10 U	12 U				
1,2-DICHLOROETHANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
2-BUTANONE	10 UJ	IO UJ	10 UJ	14 UJ	10 UJ	12 UJ	10 UJ	10 UJ	10 U7	10 UJ
4-METHYL-2-PENTANONE	10 U	10 U	10 U .	14 U	10 U	12 U	10 U	10 U	10 U	10 U
ACETONE	10 UJ	10 UJ	10 UJ	14 UJ	10 UJ	12 UJ	. 10 UJ	10 (1)	10 UJ	. 10 UJ
BENZENE	10 Ü		10 U .	14 U	10 U	12 U	.10 U.	10 U	-10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	_10 U	10 U	10 U
BROMOFORM	10 UJ	10 UJ	10 UJ	14 U	10 U	12 UJ	10 UJ	10 U .	_ 10 ft .	_ 10 U
BROMOMETHANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	14 U	J0 Ü	12 U	10 U	IOU	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	14 U	10 Ų	12 U	10 U	10 U	10 U	10 U
CFC-11	10 U	10 U	10 D	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CFC-12	10 U	10 U	10 U	14 U	10 U	12 U	10 U_	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U .	17	10 Ų	12 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	10 UJ	10 UJ	10 UJ	14 U	10 U	12 UJ	to UJ	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CHLOROMETHANE	10 U	10 U	10 U	J4 U		J2 U	100	10 U	10 U	10 U
CIS-1,2-DICHLOROETHENE	10 U	10 U	iou .	14 U	10 U	12 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U .	. 10 U	10 U	14 U	10 U	12 U	10 U	10.U	10 U	10 U
CYCLOHEXANE	10 U	. 10 U	10 U	14 U	10 U	12 Ü	10 U	10 U	.10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U	14 U	10 U	12 Ü	10 U	10 U	10 U	10 U
ISOPROPYLBENZENE	10 U	10 U	10 U	14 U	10 Ü	12 U	10 U	10 Ü	10 U	10 U
M-DICHLOROBENZENE	10 U	10 U	100	14 U	10 U	12 Ü	10 U	10 U	10 U	10 U
METHYL ACETATE	10 UJ	10 UJ	10 UJ	14 UJ	10 UJ	12 UJ	10 ÜJ	10 UJ	10 W.	10 UJ
METHYL N-BUTYL KETONE	10 U	10 U -	10 U	14 U	IOU	12 U.	. 10 U	10 U	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 UJ	10 UJ	14 UJ	- 10 UJ	- 12 UJ	10 UJ	10 UJ	10 UJ	10 UJ
METHYLCYCLOHEXANE	10 U	10 U	100"	14 U	_10 U	12 U	10 U	10 U	10 U -	IO U
METHYLENE CHLORIDE	10 U	10 U	10 U	4.1	10 U	12 U	10 U	10 U -	10 U	. 10 U .
STYRENE (MONOMER)	10 U	JO U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	10 U	10 U -	14 U	10 U	12 U	10 U	. 10 U	10 U	IOU ~
TOLUENE	100	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	IOU
TRANS-1.2-DICHLOROETHENE	10 U	10 U	100	14 U	10 U	12 U	10 U	100	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	14 U	10 U	12 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	100	10 U	10 U	14 U	10 U	12 U	10 U	ioŭ	10 U	10 0
XYLENES (TOTAL)	100	10 U	10 U	14 0	10 U	12 U	10 U	1011	10 U	10 U

Field Sample ID	C7044 44	CDA: At	0700	G7044 44	CD44 44	GP82-03	GP83-01	GP8J-02	GP83-03	GP84-01
Liera Sambie ID	GP80-02	GP81-01	GP81-02 -	GP82-01	GP02-02	GP82-03	GP83-UL	GP80-02	GP83-03	GF84-VI
	]									
Y					2655 Wisconsin	2655 Wisconsin	2655 Wisconsta	2655 Wisconsin	2655 Wisconsin	2655 Wisconsin
Property Address Sample Date	5411 Walnut 4/28/2004	2655 Wisconsin 12/22/2003	2655 Wiscousin 12/22/2003	2655 Wisconsin 12/22/2003	2635 Wisconstn 12/22/2003	2655 Wileconsin 12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/23/2003
Depth Interval							5.5- 6.5	9.5- 10.5	13.5-14.5	5.5- 6.5
1,1,1-TRICHLOROETHANE	19,5- 20.5 10 U	6.5- 7.5 10 U	11.5- 12.5 10 U	5.5- 6.5 1300 U	9.5- 10.5 1300 U	16,5- 17.5 10 U	1400 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	100	10 U	10 U	1300 U	1300 U	10 Ü	1400 U	10 U	10 U	10 U
1,1,2-TETRACHLOROETHANE	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
1.1-DICHLOROETHANE	10 U	10 U	10 ()	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
1.1-DICHLOROETHENE	100	10 U	1011	1300 U	1300 U	10 U	1400 U	10 U	100	10 U
1,2,4-TRICHLOROBENZENE	10 03	100	100	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 R	10.0	. 100	1300 U	1300 U	10 U .	1400 U	10 U	10 U	10 U
1,2-DIBROMOETHANE	10 U	10 U	10 U	1300 U	1300 U	100	1400 U	- 10 U	- 10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U	1300 U	1300 U	100	1400 U	10 U	100	. 10 U
1,2-DICHLOROETHANE	10 U	10 U		1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 0	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	100	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	100	100	100
2-BUTANONE	to to	10 U	10 U	1300 U	1300 UJ	10 U	1400 U	10 UJ	10 TU	10 111
4-METHYL-2-PENTANONE	10 U	10 U	10 U	1300 UJ	1300 UJ	10 U	1400 UJ	10 UJ	10 W	10 10
ACETONE	10 UJ	10 U	10 U	1300 UJ 520 J	1300 UJ	10 U	1400 UJ	3 U	10 U	10 U
BENZENE	10 U	100	10 17	1300 U	1300 U	10 U	1400 U	10 U	10 0	100
BROMODICHLOROMETHANE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	100	10 U
BROMOFORM BROMOFORM	10 U	10 U		1300 U	1300 U	10 U	1400 U	10 U	100	10 U
BROMOFORM BROMOMETHANE	100	10 U	10 U	1300 UJ	1300 U	100	1400 U	10 U	10 0	1077
CARBON DISULFIDE	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	100	10 U
CARBON TETRACHLORIDE	100	10 U	10 U	1300 U	1300 U	. 10 U	1400 U	10 U	10 U	10 U
CFC-11	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	1011	10 U
CFC-12	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 01	10 UI	10.01
CHLORINATED FLUOROCARBON (FREON 113)	100	10 UJ	10 UJ	1300 U	1300 U	10 U3	1400 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	1701	- 10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
CHLOROETHANE	100	10 U	100	1300 (1)	1300 U	10 U	1400 UJ	10 U	100	10 U
CHLOROFORM	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 (1
CHLOROMETHANE	10 U	10 U	10 U	1300 U	1300 U	10 0	1400 U	10 UJ	10 W	10 01
CIS-1,2-DICHLOROETHENE	100	10 U	10 U	1300 U	1300 U	100	1400 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 0	10.17
CYCLOHEXANE	100	10 U	10 U	1300 U	1300 U	100	1400 U	10 U	10 U	10 U
ETHYLBENZENR	100	10 U	10 U	1300 U	1300 U	1017	1400 U	10 U	10 U	.10 U
ISOPROPYLBENZENE	.100	10 U	100	1300 U	1300 U	10 0	1400 U	10 U	10 0	10 U
M-DICHLOROBENZENE	100-	100	100	1300 U	1300 U	100	1400 U	10 U	10 U	10 U
METHYL ACETATE	10 03	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
METHYL N-BUTYL KETONE	10 U	10 U	10 U	1300 UJ	1300 UJ	10 U	1400 W	10 UJ	10 10	10 UJ
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 01	10 07	1300 UJ	1300 UJ	10 UJ	1400 UJ	10 UJ	10 10	10 UJ
METHYLCYCLOHEXANE	10 0	10 03	10 0	1300 U	1300 03	10 U	1400 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	· 10 U	10 U	1300 U	1300 U	10 U	1400 U -	10 U	10 Ü	10 U
STYRENE (MONOMER)	100	10 U	10 U	1300 U	1300 U	100	1400 U	10 U	10 0	10 U.
TETRACHLOROETHENE (PCE)	10 U	10 U	10 0	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	1300 U	1300 U	10 0	1400 U	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	25000	9500 J	10 U	35000	10 U	100	10 U
VINYL CHLORIDE	10 U	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	100	10 U
XYLENES (TOTAL)	100	10 U	10 U	1300 U	1300 U	10 U	1400 U	10 U	10 U	10 U

Projet B. 1 Van	2724.44	CTD94.04	CT05 40	GP86-01	GP66-02	GP87-01	GP87-02	GP95-01	GP95-02	GP95-03
Field Sample ID	GP84-02	GP85-01	GP85-02	G136-01	GP86-02	GP8/-01	GP87-02	. GP95-01	G275-02	GP93-03
		ł						t		
B			244 777	ACCC VID.	**************************************	2000 700	2000 701	****	2400 11/1	3400 TU
Property Address Sample Date	2655 Wisconsin 12/23/2003	2655 Wisconsin 12/23/2003	2655 Wisconsin 12/23/2003	2655 Wisconsin 12/22/2003	2655 Wiscensin 12/22/2003	2655 Wisconsis 12/23/2003	2655 Wisconsin 12/23/2003	2400 Wisconsin 1/15/2004	2400 Wiscensia 1/15/2004	2400 Wisconsin 1/15/2004
		19.5-11.5		11.5-12.5	21.5- 22.5	3.5-4.5	23.5-24.5	9.5-10.5	13.5-14.5	19.5- 20.5
Depth Interval	15.5-16.5	10.5-11.5	20.5- 21.5		10 U	10 U	10 U	10 U	10 U	19.5-24.5
1,1,2,2-TETRACHLOROETHANE	10 U	. 100	10 U	10 U	10 U	1011	10 U	10 U	10 U	100
1.1.2-TRICHLOROETHANE	1101	. 10 U	100	10 U	10 U	10 U	10 U	10 0	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	100	10 U	10 U	10 U	10 U	100	100	10 U
	10 U	10 U	10 U	100	. 10 U	10 U	10 U	10 U	10 U	100
1,1-DICHLOROETHENE 1,2,4-TRICHLOROBENZENE	10 U	100	10 U	100	100	10 U	100	10 U	100	100
1,2-DEROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U
		100		10 U	100	10 U	10 0	100	10 U	10 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	100	10 U	10 U		10 U	10 U	10 U	10 U	100	10 U
	10 U		10 U	10 U		10 U	10 U		10 U	· 10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U	10 U	100	10 0				
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	10 0				
1,4-DICHLOROBENZENE	10 U	10 UJ	10 UJ	10 UJ	10 17	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
2-BUTANONE				10 UJ	10 01	10 03	10 01	10 ()	10 U	10 UJ
4-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ			10 U	10 U	100	7 U	9 U
ACETONE	2 U	2 U	2 U	10 U	10 U					
BENZENE	10 U	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U							
BROMOFORM	10 U	(OU	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	_ 10 U .	. 10 U	10 U	10 U				
CARBON DISULFIDE	10 U	10 U	10 U	10 U	. 10 U	10 U				
CARBON TETRACHLORIDE	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	10 UJ	. 10 UJ	10 UJ .
CFC-11	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ				
CFC-12	10 UJ	10 UJ	10 00	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ -
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 U				
CHLOROBENZENE	10 U	J0 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	100	10 0	10 U	lo n	10 C	10 U	10 U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ				
CHLOROFORM	10 U	10 U	10 U	10 U	10 U	10 U				
CHLOROMETHANE	10 UJ	10 UJ	10 UJ	10 U	10 Ü	10 U				
CIS-1,2-DICHLOROETHENE	to U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	100	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10 U	10 U	10 U .	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 Ų	10 U	[O U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ISOPROPYLBENZENE	10 U	100	10 U	10 U	10 U	10 Ü	10 U	10 Ü	10 U	10 U
M-DICHLOROBENZENE	10 U	10.U	10 U	10 U	10 U	10 U -	10 U	10 U	10 U	10 U
METHYL ACETATE	10 U	10 U	. 10 U.	10 UJ	10 (1)	10 UJ				
METHYL N-BUTYL KETONE	10 UJ	10 (7)	10 UJ	10 UJ	10 UJ	.10 m	10 UJ	10 U	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U				
METHYLCYCLOHEXANE	10 U	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U				
STYRENE (MONOMER)	10 U	10 U	10 U	10 Ü	10 U	10.U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	10 U	10 U	10 U	10 U	10 U				
TOLUENE	10 U	10 U	10 U	10 U	10 U	10 U				
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U				
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U				
XYLENES (TOTAL)	10 U	10 U	10 U	100	U OJ	10 U	10 U	10 U	10 U	10 U

Fleid Sample ID	GP96-01	GP96-02	GP97-01	GP97-02	GP97-03	GP98-01	GP98-02	GP98-02DUP	GP99-01
	1								
Property Address Samole Date	2400 Wisconsin 1/15/2004	2400 Wisconsin 1/15/2004	2400 Wisconstn 1/15/2004	2400 Wisconstn 1/15/2004	2400 Wisconsin 1/15/2004	2406 Wisconsin 1/15/2004	2400 Wisconsin 1/15/2004	2400 Wisconstn 1/15/2004	2400 Wisconstn 1/16/2004
Death Interval									
1.1.1-TRICHLOROETHANE	8.5-9.5 10 U	13.5- 14.5 10 U	5.5- 6.5 10 U	9.5- 10.5 10 U	13.5- 14.5 10 U	5.5- 6.5 11 U	11.5- 12.5 10 U	11.5- 12.5 10 U	5.5- 6.5 10 U
1.1.2.2-TETRACHLOROETHANE	10 U	100	10 U	10 U	10 U	110	100	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	. 10 U	100	- 10 U	- 10 U	11 U	10 U	10 U	100
1.1-DICHLOROETHANE	100	10 U	10 U	10 U	10 U	110	10 U	10 U	100
1.1-DICHLOROETHENE	100	10 U	10 U	100	10 U	11 0	10 U	10 U	100
1,1-DICHLOROBENZENE	10 U	110	10 U	10 U	100				
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	100	1011	10 U	10 U	10 U	11 0	10 U	10 U	10 10
1.2-DIBROMOETHANE	100	10 U	10 U	100	10 U	110	10 U	10 U	100
1,2-DISKOMOBITIANE 1,2-DICHLOROBENZENE	10 U	10 U	10 U						
1.2-DICHLOROETHANE	10 0		10 U	10 U	10 U	11 U	10 U	10 U	10 U
		10 U		10 U	10 U	. 11 U	10 U	10 U	10 U
1.2-DICHLOROPROPANE 1.4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	11 0	10 U	10 U	10 U
	100	10 U	10 U	10 U	10 U	11.U	10 U	10 U	10 U
2-BUTANONE	4.1	10 UJ	10 03	10 UJ	51	11 UJ	10 UJ	10 UJ	10 U
4-METHYL-2-PENTANONE	10 U	11 U	10 U	10 U	10 U				
ACETONE	24 U	6 U	.7.U	2 Ü	23 U	16 U.	8 U	9 U	19 U
BENZENE	. 10 U.	10 U -	10 U	10 U	10 U	11 U	. 10 U .	10 U	10 U
BROMODICHLOROMETHANE	10 U	11 U	IOU	10 U	10 U				
BROMOFORM	10 U	110	10 U	10 U	10 U				
BROMOMETHANE	10 U	11 0	_10 U	10 U	10 U				
CARBON DISULFIDE	10 U	ΠŲ	.10 U	10 U	100				
CARBON TETRACHLORIDE	10 UJ	11 UJ	10 UJ	10 UJ	10 U				
CFC-11	10 UJ	11 UJ	10 UJ	10 UJ	10 UJ				
CFC-12	10 UJ	11 (7)	10 01	10 U)	10 UJ				
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	100	11 U	10 U	10 U	10 U
CHLOROBENZENE	ЮU	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	100	11 U	10 Ū	10 U	10 U
CHLOROETHANE	10 UJ	11 UJ	10 UJ	10 UJ	10 UJ				
CHLOROFORM	10 U	11 U	10 U	10 U	10 U				
CHLOROMETHANE	10 U	10 U	10 U	-10 U	10 U	110	10 U	10 U	10 U
CIS-1,2-DICHLOROETHENE	10 U	10 U	. 10 U	10 U	10 U	11 U	10 U	10 U	100
CIS-1,3-DICHLOROPROPENE	10 U	110	10 U	10 U	10 U				
CYCLOHEXANE	10 U		10 U	10 U	10 U	11 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	11.U	10 U	10 U	10 U				
ISOPROPYLBENZENE	10 U	11 Ų	10 U	10 U	10 U				
M-DICHLOROBENZENE	10 U	110	10 U	10 U	100				
METHYL ACETATE	10 UJ	נט וו	10 UJ	10 UJ	10 U				
METHYL N-BUTYL KETONE	10 U	11 U	10 U	10 U	10 U				
METHYL TERT-BUTYL ETHER (MTBE)	10 U	11 Ú	10 U	10 U	10 UJ				
METHYLCYCLOHEXANE	10 U	10 U	10 U	10 U	10.0	11 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	100	100	ប្រ	រួមប	10 U	10 U
STYRENE (MONOMER)	10 U	11 U_	10 U	10 U	10 Ü				
TETRACHLOROETHENE (PCE)	10 U	10 Ü	10 U	10 U	10 U	មេ	10 U	10.0	10 U
TOLUENE	10 U	10 U	10 U	]0 U	10 U	11 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	11 U	10 U	10 U	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U	11 U	10 U	10 U	10 U				
TRICHLOROETHENE (TCE)	10 U	11 U	10 U	10 U	10 U				
VINYL CHLORIDE	(0 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 UJ
XYLENES (TOTAL)	10 U	100	10 U	. 10 U	10 U	11 U	10 U	10 Ü.	10 U .

Fleid Sample ID	GP99-02	GP99-02DUP	GP100-01	GP100-02	GP101-01	GP101-02	GP102-01	GP102-02	GP102-03	GP103-01
-	7.2.2.									
	i	1						1		
Property Address	2400 Wisconsin	2400 Wisconsin	2518 Wisconsin	2518 Wisconstn	2518 Wisconstr	2518 Wisconsin	2518 Wiscensin	2518 Wisconsta	2518 Wisconsin	2518 Wiscombi
Sample Date	1/16/2004	1/16/2004	4/7/2004	4/7/2004	4/7/2004	4/7/2004	4/6/2004	4/6/2004	4/6/2004	4/7/2004
Depth Interval	13.5-14.5	13.5- 14.5	3.5-4.5	17.5- 18.5	15-45	13.5-16.5	5.5- 6.5	15.5-16.5	19.5- 20.5	5.5-6.5
I,I,I-TRICHLOROETHANE	10 U	10 U	10 U	5.1	10 U					
1,1,2,2-TETRACHLOROETHANE	10 Ú	10 U	10 U	14 Ü	10 U					
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
1;1-DICHLOROETHANE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	14 U	10 U	. 10 U	10 U	_ 10 U	10 U	100.
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 UJ
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 UJ	14 UJ	10 UJ 10 UJ	10 U	10 U	10 U	10 U	10 01
1,2-DIBROMOETHANE	10 U			14 U						100
1,2-DICHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	100
1,2-DICHLOROETHANE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	100
1,2-DICHLOROPROPANE		10 U	10 U	14 U	10 U	10 U	100	10 U	10 0	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	100	10 U	10 U
2-BUTANONE	10 U	10 U	10 11	14 U	10 U	10 (1	10 01	10 UJ	10 UJ	100
4-METHYL-2-PENTANONE	1 10 U	40	10 U	14 U	11 11	10 13	10 U	10 U	10 U	10 UJ
ACETONE BENZENE	100	10 U	10 U	14 U	10 U	10 U	100	10 U	10 U	10 0
BROMODICHLOROMETHANE	10 U	10 U	10 U	14 U	100	10 0	100	10 U	100	10 U
BROMOFORM	10 U	10 U	10 U	14 U	100	10 U	10 UJ	1007	1000	10 U
BROMOMETHANE	10 U	10 U	10 U	14 U	10 0	100	10 U	10 U	10 0	100
CARBON DISULFIDE	100	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 0
CARBON TETRACHLORIDE	100	1011	10 U	14 U	10 U	10 U	10 U	10 U	10 U .	100.
CFC-11	10 (1)	10 (1)	10 U	14 U	10 0	10 U	10 U	10 U	ii. 10U	10 U
CFC-12	10 01	10 03	10 U	14 UJ	10 13	10 (1)	10 R	10 R	10 R	-10 UJ
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 02	63	10 11	10 U ·	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 17	10 Ü	10 0	14 U	iou	10 U				
CHLORODIBROMOMETHANE	100	10 U	10 U	14 Ü	10 U	10 U	iou	10 U	10 U	10 U
CHLOROETHANE	10 (1)	10 UJ	10.00	14 UJ	10 UJ	10 133	10 U	10 17	10 U	10 UJ
CHLOROFORM	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 Ü	10 U	10 U
CHLOROMETHANE	10 U	10 U	10 UJ	14 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
CIS-1,2-DICHLOROETHENE	10 10	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
CIS-1.3-DICHLOROPROPENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10 U	14 U	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U
ETHYLBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
ISOPROPYLBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
M-DICHLOROBENZENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYL ACETATE	10 U	10 U	100	14 U	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U
METHYL N-BUTYL KETONE	10 U	10 U	10 U	14 U	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 01	LO UJ	10 UJ	14 UJ.	to UJ	10 UJ	10 U	10 U	_10 U	10 UJ
METHYLCYCLOHEXANE	100	10 U	10 U	14 U	10 U	10 U	10 U	10 U	100	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
STYRENE (MONOMER)	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 Ü	10 U
TETRACHLOROETHENE (PCE)	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U_	10 U	10 U
TOLUENE	10 U	10 U	100	14 U	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 ft	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	14 U	10 U	10 U	10.0	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	14 U	10 U	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 UJ	10 UJ.	10 Ú	14 U	10 U	10 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)	10 U	: 10 U	10 U	14 U	IOU	10.0	10 U	10 U	10 Ü	10 U

Field Sample ID	GP103-02	GP103-03	GP103-03DUP	GP104-01	GP104-02	GP105-01	GP105-02	GP106-01	GP106-02	GP106-03
Cate Campa to	<u> </u>	- 67,103-03	01 100 43DUI	- G1 104-51	01104-03	01145-41		0,,,,,,,		0
		İ								
Property Address	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2431 Curtis	2431 Curtiss	2431 Curtis	2431 Curtin	2431 Cartiss
Sample Date	4/7/2004	4/7/2004	4/7/2004	4/6/2004	4/6/2004	4/5/2004	4/5/2004	4/5/2004	4/5/2004	4/5/2004
Depth Interval	13.5-14.5	18.5- 19.5	18.5- 19.5	8.5-9.5	27,5- 28.5	1.5- 2.5	145-155	3.5-4.5	9.5-10.5	15.5- 16.5
.I.I-TRICHLOROETHANE	10 U            J	100	10 U	10 U						
1.1.2.2-TETRACHLOROETHANE	10 U           0 U	10 U	10 U	10 U						
1.1.2-TRICHLOROETHANE	10 Ü	10 U	10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U
.I-DICHLOROETHANE	- 10 U -	10 U	10 U	. 10 U	10 U	10 U	10 U	10 Ü	10 U	10 U
1-DICHLOROETHENE	10 U	10 U	10 U	10 U	- 10 U	10 U .	10 U	IOU .	10 U	10 U
2.4-TRICHLOROBENZENE	10 U	10 U	10 U	· 10 U	10 U	10 U	10 U	. 10 U	10 U	. 10 U
.2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U	10 U	100	10 U	10 U.
.2-DIBROMOETHANE	10 U           0 U	10 U	10 U	10 U						
2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 Ü	IOU	10 U	10 U	10 U	10 U
2-DICHLOROETHANE	10 U           0 U	10 U	10 U	10 U						
2-DICHLOROPROPANE	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 0
.4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 Ü	10 U	10 U	100	10 U	100
BUTANONE	100	10 U	10 U	10 UJ	1000	10 U	10 U	37	10 U	10 U
-METHYL-2-PENTANONE	10 U	10 U	10 U	10 UJ	10 07	10 0	10 U	10 U	10 U	10 U
ACETONE	10 177	10 (1)	10 UJ	10 U	10 U	10 U	10 U	12 U	10 U	3 U
SENZENE	10 U	10 U	10 U	10 0	10 0	10 U	10 U	100	10 U	10 U
ROMODICHLOROMETHANE	10 U           0 U	iou	10 U	10 U						
ROMOFORM	10 U	10 U	10 U	1001	10 UJ	10 U	100	10 U	10 U	10 U
ROMOMETHANE	10 U           0 U	10 U	10 Ü	10 U						
CARBON DISULFIDE	10 U	10 U	10 U	10 U	100	100	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	100	10 Û	10 Ü	10 U	10 U .	. 10 U	10 U	10 U	10 U	10 U
CFC-11	100	10 U           0 U	100	10 U	100					
CFC-12	10 01	- 10 03 -	10 UJ	- 10 R	10 R	10 R	10 R	- 10 R	10 R	-10 R
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	- 10 U	10 0	10 U	: 10 U	- 10 U	100	10 U	100
CHLOROBENZENE	10 U	10 U	10 U	100	10 U	100	10 U	10 U	10 U	. 10 U.
CHLORODIEROMOMETHANE	100	10 U           0 U	100	1017	10 U					
CHLOROETHANE	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U	10 0	100
CHLOROMETHANE	10 03	10 03	10 UJ	10 00	10 UJ	10 W	10 UJ	1000	10 01	10 UJ
CIS-1.2-DICHLOROETHENE	10 03	10 U           0 U	1001	10 03	10 U					
CIS-1.3-DICHLOROPROPENE	100	10 U           0 U	10 U	10 U	10 U					
CYCLOHEXANE	10 U	10 U	10 U	10 07	10 UJ	10 U	10 U	100	10 U	100
THYLBENZENE	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SOPROPYLBENZENE	100	10 U           0 U	100	10 U	10 U					
	10 U	100	10 U	100	10 (7	10 U				
A-DICHLOROBENZENE	10 U	10 U	10 U	10 UJ	10 UJ	10 U	10 U	100	10 U	10 U
AETHYL ACETATE	10 U	100	10 U	1001	10 UJ	10 U	10 U	100	10 U	10 U
METHYL N-BUTYL KETONE					10 U	10 U	10 U	100	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 UJ	10 UJ.	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLCYCLOHEXANE										
ETHYLENE CHLORIDE	10 U	2 U	10 U	10 U	10 U	- 10 U				
TYRENE (MONOMER)	10 U           0 U	10 U	10 U	10 U						
ETRACHLOROETHENE (PCE)	10 U           0 U	10 U	100	- 10 U						
OLUENE	10 U           0 U	10 U	10 U	10 U						
RANS-1,2-DICHLOROETHENE	10 U           0 U	10 U	10 U	10 U						
RANS-1,3-DICHLOROPROPENE	10 U	100	100	10 U	10 U	10 fi	10 U	10 U	10 Ú	10 U
RICHLOROETHENE (TCE)	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U           0 U	10 U	10 U	10 U						
(YLENES (TOTAL)	10 U	100	[0 U	10 Ü	10 U	IO U				

Elleworth Industrial Park Blie
WA NO.: 233-RICC-BS1 W
Duta Brahantien Report
Appundia: B
Revision: 1
Date: 5 August 2004
Page: 13 of 50

## Appendix B (Continued)

T7. 14 C 1	anuar au	CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	GP107-02	GP108-01	GP108-02	GP108-03	GP109-01	GP109-02	GP109-02DUP	GP110-01
Field Sample ID	GP107-01	GP107-01DUP	GP107-02	GP108-01	GP108-02	GP108-03	GF109-01	GP105-02	GP109-020UP	GFILE
									!	
Property Address	2431 Curths	2431 Curtiss	. 2431 Curties .	2431 Cortiu	2431 Curtisu	2431 Curtiss	2732 Wisconsin	2732 Wisconsin	2732 Wisconsin	2732 Wisconsin
Sample Date	4/5/2004	4/5/2004	4/5/2004	4/5/2004	4/5/2004	4/5/2004	12/17/2003	12/17/2003	12/17/2003	1/16/2004
Depth Interval	2.5-10.5	2.5- 10.5	21.5- 22.5	3.5-4.5	9.5-10.5	20.5- 21.5	1.5- 2.5	9.5-10.5	9.5- 10.5	1.5-2.5
1,1,1-TRICHLOROETHANE	10 U	12	IOU	11 Ü	- 10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	11 U	IOU	11 U	10 U	10 U	10 U . '	10 U .	10 U	10 U
1,1,2-TRICHLOROETHANE	100	11 0	10 U ·	11 0	10 U	10 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	11 0	10 U	iiu	10 U	10 U	10 U	10 U .	10 U	10 U
1.1-DICHLOROETHENE	10 U	11 0	10 U	110	10 11	10 U	10 UJ	10 UJ	10 UJ	-10 UJ
1,2,4-TRICHLOROBENZENE	10 U	11 0	10 U	11.0	10 U	10 U	10 U	- 10 U	10 U	. 10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 (7	11 0	10 U	110	100	1017	10 U	10 U	10 U	10 U
1,2-DIBROMOETHANE	10 U	110	10 U	11.0	10 U	10 U	10 U	10 U	10 U	10 U
1.2-DICHLOROBENZENE	10 U	11 U	10 U	110	10 U	10 U	10 U	10 U	10 U	10 Ù
1,2-DICHLOROETHANE	10 U	11 U	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	เเบ	10 U	110	10 0	10 U	10 U	10 Ŭ	10 U	10 Ú
1.4-DICHLOROBENZENE	10 0	11 0	10 U	11 Ü	10 U	10 U	10 U	10 U	10 U	10 U
2-BUTANONE	100	11 0	10 U	110	10 U	100	10 UJ	10177	10 UJ	10 U
4-METHYL-2-PENTANONE	100	110	10 U	110	100	10 Ü	10 UJ	10 UJ	10 03	iou
ACETONE	- 10 U- 1	11 U	10 U	110	10 U	10 U	10 UJ	10 UJ	10 UJ	711
BENZENE	100	11 U	10 U	110	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	100	110	10 U	110	10 U	10 U	10 U	10 U	10 U	10 U
BROMOFORM	10 U	110	10 U	110	100	1011	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	110	100-	110.	100	. 100	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 0	110	100	110	100	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	110	10 U	110	10 U	100	10 U	10 U	10 U	10 U
CFC-11	10 U	11 U	10 U	110	100	100	10 U	10 U -	10 U	10 U
CFC-12	10 R	11 R	10 R	II R	10 R	10 R	10 0	10 U	10 U	10 UJ
CHLORINATED FLUOROCARBON (FREON 113)	100	11.0	10 0	11 U	10 U	1017	10 133	10 UJ	. 10117	10 U
CHLOROBENZENE	100	110	100	110	10 U	10 U	10 U	10 U	10 17	10 U
CHLORODIBROMOMETHANE	100	11 0	100	110	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROETHANE	iou	11 U	10 U	110	10 10	10 ()	10 U	1017	10 U	10 111
CHLOROFORM	100	110	100	110	10 0	10 U	10 U	100	100	10 U
CHLOROMETHANE	10 U	11 03	10 UJ	11 07	10 UJ	10 (1)	10 0	10 U	10 U	10 U
CIS-1,2-DICHLOROETHENE	100	11 0	10 U	110	10 U	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	11 U	100	1 110	10 U	100	10 ()	10 U	10 U	10 U
CYCLOHEXANE	10 U	110	10 U	110	10 U	10 U	10 U	iou	10 U	10 0
ETHYLBENZENE		110	10 U	110	10 U	10 U	10 Ü	10 U	10 U	10 U
ISOPROPYLBENZENE	100	. 110	100	1110	10 U	10 U	10 (7	10 U	1017	1017
M-DICHLOROBENZENE	- 10 U		10 U	11 0	10 U	10 Ü	10 U	10 U	101/	10 U
METHYL ACETATE	- 10 U	110	100	110	10 U	10 U	10 U	10 U	10 U	10 U
METHYL N-BUTYL KETONE	100	110	100	11 11	10 U	10 U	10 UJ	10 00	10 10	1010
METHYL TERT-BUTYL ETHER (MTBE)	100	110	100	ii U	. 10 U	10 U	10 03	10 UJ	10 UJ	10 10
METHYLCYCLOHEXANE	10 U	110	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	11 0	10 U	11 U	10 U	10 U	10 U	31	31	10 U
STYRENE (MONOMER)	10 U	110	100	11 0	10 U	10 U	100	10 0	10 U	10 U
TETRACHLOROETHENE (PCE)	100	38	10 U	1.0	10 U	10 U	10 U	10 U.	10 U	10 U
TOLUENE	10 U	110	10 Ü	110	10 0	10 U	100	10 U	10 U.	100
TRANS-1.2-DICHLOROETHENE	10 U	11 U	100	110	100	10 U	10 03	10 UJ	10 (1)	10 U
TRANS-1,3-DICHLOROPROPENE	100	110	10 U	11.0	10 U	100	10 03	10 U	1000	10 U
TRICHLOROETHENE (TCE)	100	110	10 U	110	10 U	10 U	100	10 U	10 U	10 U
VINYL CHLORIDE	100	110	100	110	100	10 U	10 U	100	10 U	10 UJ
XYLENES (TOTAL)	100	110	1 100	110	100	100	10 0	10 U	10 U	70 U

Field Sample ID	GP110-02	GP111-01	GP111-02	GP112-01	GP112-02					
			G1111-44	GF112-01	GF112-02	GP112-02DUP	GP113-01	GP113-02	GP113-03	GP114-01
				1					_	
ha										dan . 20 .
Preperty Address Sample Date	2732 Wisconsin	2732 Wisconsin	2732 Wiscourtn	- 2732 Wisconsin	2732 Wisconstn 1/16/2004	2732 Wisconstn 1/16/2004	2732 Wisconsin	2732 Wisconsin 12/17/2003	2732 Wisconsin	5224 Katrune 12/15/2003
Deoth Interval	1/16/2004	12/17/2003	12/17/2003	1/16/2004 2.5-3.5	-9.5-10.5	9.5- 10.5	12/17/2003 1.5- 2.5	17,5- 18.5	21.5- 22.5	9.5- 19.5
1.1.1-TRICHLOROETHANE	19.5- Z0.3	10.5-11.5 10 U	23.5- 24.5 10 U	2.3-3.5 11 U	10 U -	10 U	1.5- 2.5 10 U	17,3- 18.5 10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	110	10 U	- 10 U	- 100	.10 U	10 U	10 U
1,1,2-TEICHLOROETHANE	10 U	10 U	10 U	110	100	10 U	10 U	10 U	io U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	110	10 U	10 U	100		10 0	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	11 U	10 U	10 U	10 0	100	10 U	10 UJ
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 Ü	110	10 U	10 U	100	100	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	110	10 U	10 U	10 U	10 U	10 U	10 10
1.2-DIBROMOETHANE	10 U	10 U	1010	110	10 U	10 U	10 0	100	10 U	10 U
1,2-DISKOMOETHANE	10 U	10 U	10 U	110	10 U	10 U	10 U	100	10 U	10 U
	100		10 U		10 U	10 Ü	10 U	10 U	10 U	10 (1)
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	10 U	10 U	10 U	110	U01	10 U	10 U	10 U	100	10 U
I 4-DICHLOROBENZENE			.10 U	110	10 U	10 U	10 U	100	100	10 U
2-BUTANONE	- 10 U	10 UJ	. 10 UJ	110	10 U	10 U	10 U	10 (1)	10 07	10 171
4-METHYL-2-PENTANONE	10 U	- 10 M	. 10 03	11 U	100	10 U	10 UJ	10 03	10 UJ	10 UJ
ACETONE	511		10 (1)	6U	411	- 500	3.1	4.1	4.1	9 (1)
BENZENE	10 U	3 J	10 U	11 U	100	1013	10 Ü	10 U	10 U	10 U
BROMODICHLOROMETHANE						10 U	10 U	10 U	100	10 U
BROMOFORM	10 U	10 U	10 U	11 U	10 U			100	- 10 U	-10 U
BROMOMETHANE	10 U	10 U	10 U	11 U	10 U	10 U	10 U			
CARBON DISULFIDE	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
CFC-11		10 U	10 U	11 U	100	10 0		10 U	10 U	10 UJ
CFC-11	10 UJ	10 U	10 U	11 W	10 UJ	10 (3)	10 U	10 U	10 U	10 (1)
CHLORINATED FLUOROCARBON (FREON 113)	10 UJ	10 U	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENF							10 U	10 U	100	10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	11 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROETHANE	10 UJ	10 U	10 U	11 11	10 UJ	10 UJ	10 U	100	10 U	10 U
CHLOROFORM						10 U	10 U	10 U	1011	10 U
CHLOROMETHANE	10 U	10 U	10 U	11 U	10 U	100	10 UJ	10 UJ	10 UJ	10 UJ
	10 U	10 W			10 U	101)	10 03	10 01	10 ()	10 13
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	110	10 U	10 U	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10.0	110	10 U	10 U	100	100	10 U	100
ETHYLBENZENE		10 U				10 U			10 U	
ISOPROPYLBENZENE	10 U	10 U	10 U	11 0	10 U	10 U	10 U	10 U	10 U	10 U
M-DICHLOROBENZENE	100	10 U			10 U	10 U	10 U	10 U	10 U	10 D
METHYL ACETATE	10 U	10 U	10 U	11 U	10 U	100	10 U	10 U	10 U	10 01
METHYL N-BUTYL KETONE	10 U	1000	100	11 U	10 U	10 U	10 13	1000	10 UJ	10 UJ
METHYL TERT-BUTYL ETHER (MTBE)	1001	10 UJ	10 UJ	110	100	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
METHYLCYCLOHEXANE	10 U	10 U	10 (J	11 U	1001	10 U	10 U	10 U	10 03	10 UJ
METHYLENE CHLORIDE	100	2 /	2 J	110	10 U	10 U	31	3 J	100	10 U
STYRENE (MONOMER)	10 U	10 U	100	110	100	10 U	10 U	10 U	100	10 U
TETRACHLOROETHENE (PCE)	100	10 U	10 U	11 0	10 U	10 U	10 U	10 U	10 U	10 U
TOLUENE (PCE)	100	10 U	10 U	11 0	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	110	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	- 10 U	- 10 U	- 11 U	10 U	10 0	10 U	10 U	100	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	- 10 U -	- 11 U	10 U	100	10 U	UOU	10 U	10 U
VINYL CHLORIDE	1001	100	- 100 -	11 UJ	10 U -	10 UJ	10 U	, 10 U	100	10 U
XYLENES (TOTAL)	10 00	10 ()	100	1103			10 0 -	10 U	10 U	10 U

Field Sample ID	GP114-02	GP114-03	GP114-03DUP	GP115-01	GP115-02	GP116-01	GP116-02	GP117-01	GP117-02	GP118-01
			1							
						<b>I</b>		1		
Property Address	5224 Katrums	5224 Katruna	5224 Katrune	5224 Katrune	5224 Katruno	5224 Katruma	5224 Ketrume	5224 Katrune	5224 Katrune	5224 Katrune
Sample Date	12/15/2003	12/15/2003	12/15/2003	12/15/2003	12/15/2003	12/15/2003	12/15/2003	12/18/2003	12/18/2003	12/17/2003
Depth Interval	17.5-18.5	30.5-31.5	30.5-31.5	5.5-6.5	17.5- 18.5	7.5-8.5	17.5- 18.5	1,5- 2.5	15.5- 16.5	35-45
1,1,1-TRICHLOROETHANE	10 U	12 U								
1,1,2,2-TETRACHLOROETHANE	10 U	10 Ü	10 U	12 U						
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U -	IOU	10 U _	10 U	10 U	10 U	10 U	12 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U -	10 U	10 U	10 U	10 U	12 U
1,1-DICHLOROETHENE	10 U	10 UJ	10 UJ	10 U	10 U	12 U				
1,2,4-TRICHLOROBENZENE	10 U	. 10 U .	10 U	12 U						
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 Ų	10 UJ	10 UJ	10 U	10 U	12 U
1,2-DIBROMOETHANE	10 U	12 U								
1,2-DICHLOROBENZENE	10 U	12 U								
1,2-DICHLOROETHANE	10 UJ	10 UJ	10 UJ	10 M	10 01	10 UJ	10 UJ	10 U	10 U	12 U
1,2-DICHLOROPROPANE	10 U	IO U	100	100	10 U	J2 U				
1,4-DICHLOROBENZENE	10 U	. 10 0	10 U	10 U	12 U					
2-BUTANONE	10 UJ	10 UJ .	10 UJ	10 UJ	10 UJ	10 UJ	10 01	10 U	10 U	5 J
4-METHYL-2-PENTANONE	10 UJ	[0 UJ	10 U	10 U	12 UJ					
ACETONE	_501	5 UI	6 UJ	3 ÚJ	7 UJ	13 UJ	5 U J	101	10 UJ	20 J
BENZENE	10 U	10 U	10 U	- 10 U	10 U	10 U	10 U	10 U	10 U	12 U
HROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	. 100 -	IO U	10 U	10 U	10 U	12 U
BROMOFORM	10 U	10 U	100	10 U	12 U					
BROMOMETHANE	10 U	10 U -	10 U	10 U .	10 U	12 U				
CARBON DISULFIDE	10 U	10 U	100	10.0	100	10 U	10 U	10 U	10 U	12 U
CARBON TETRACHLORIDE	10 U	12 U								
CFC-11	10 UJ	10 U	100	12 U						
CFC-12	10 UJ	10 UJ	10 UJ	10 UJ	[0 0]	10 UJ	10 (7.3	10 U	10 0	12 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	100	10 U	[ 10 U	10 U	10 U	10 UJ	10,07	12 U
CHLOROBENZENE	10 U	12 U								
CHLORODIBROMOMETHANE	10 U	12 U								
CHLOROETHANE	10 U	12 U								
CHLOROFORM	10 U	12 U								
CHLOROMETHANE	10 UJ	12 UJ								
CIS-1,2-DICHLOROETHENE	10 U	12 U								
CIS-1,3-DICHLOROPROPENE	10 U	12 U								
CYCLOHEXANE	10 U	10 U	_ 10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	12 U
ETHYLBENZENE	10 U	- 10 U	10 U	JQ U	10 U	10 U	10 U	10 U	10 U	12 U
ISOPROPYLBENZENE	10 U	10 U	10 U	- 10 U	10 U	10 U	10 U	ט 10 ט	10 U	12 U
M-DICHLOROBENZENE	10 Ų	10 U	12 U							
METHYL ACETATE	10 U	10 UJ.	10 UJ	10 U	10 U	12 U				
METHYL N-BUTYL KETONE	10 UJ	10 UJ	10 UJ	10 UJ	IOUI	10 UJ	10 UJ	10 U	10 U	12 UJ
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	12 UJ								
METHYLCYCLOHEXANE	10 U	12 U								
METHYLENE CHLORIDE	10 U	4 J								
STYRENE (MONOMER)	10 U	_ 12 Ü								
TETRACHLOROETHENE (PCE)	10 Ü	10 U	100	. 10 U	12 U					
TOLUENE	10 U	10 U _	10 U	12 Ü						
TRANS-1,2-DICHLOROETHENE	10 U	12 U								
TRANS-1,3-DICHLOROPROPENE	10 U	12 U								
TRICHLOROETHENE (TCE)	10 U	12 U								
VINYL CHLORIDE	10 U	12 U								
XYLENES (TOTAL)	10 U	100	10 U	10 U	100	12 U				

Field Sample ID	GP118-02	GP119-01	GP119-02	GP120-01	GP120-02	GP121-01	GP121-01DUP	GP121-02	GP122-01	GP122-02
		i								
Property Address	5224 Katrune	5225 Walnut	5225 Walnut	5225 Walnut	5225 Wahnut	5225 Walnut	5225 Walqut	5225 Walnut	5225 Walnut	5225 Walnut
Sample Date	12/17/2003	12/16/2003	12/16/2003	12/18/2003	12/18/2003	12/22/2003	12/22/2003	12/22/2003	12/18/2003	12/18/2003
Depth Interval	11.5- 12.5	3-4	15.5- 16.5	4.5- 5.5	17.5- 18.5	9.5- 10.5	9.5- 10,5	19.5- 20.5	7,5- 8,5	13.5-14.5
1,1,1-TRICHLOROETHANE	IOU	12 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	100	12 U	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U
1,1,2-TRICHLOROETHANE	10 U	12 U	10 Ü	10 U	10 U	10 U	10 U	10 U .	10 U	10 U
1,1-DICHLOROETHANE	10 U	12 U	10 U	10 U	. 10 U	10 U	" 10 U	100	10 U	10 U
1,1-DICHLOROETHENE	10 U	12 U	10 U	10 U	10,0	10 U				
1,2,4-TRICHLOROBENZENE	10 U	12 U	10 U	10 U	10 U	10 U	_ 10 U	· 10 U	10 U	10 U
1,2-DIBROMO-3-CHILOROPROPANE (DBCP)	10 U	12 U	10 U	10 U	10 U	10 U	10 U	1Q U	10 U	10.U_
1,2-DIBROMOETHANE	10 U	12 U	10 U	10 U	10 U	10 Ü	10 U	10 0	10 U	10 U
1,2-DICHLOROBENZENE	10 U	12 U	10 U	10 U	100 -	10 U	10 U	10 U	10 Ü	10 U
1,2-DICHLOROETHANE	JO U	12 UJ	10 UJ	10 Ü	10 U					
1,2-DICHLOROPROPANE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1.4-DICHLOROBENZENE	10 U	12 U	10 U	10 U	10 U	10 U	JO U	100	10 U	10 U
2-BUTANONE	10 UJ	12 UJ	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 UJ	. 12 UJ	10 UJ	10 U	. 10 U	. 100	10 U	100	10 U	10 U
ACETONE	6.1	12 UJ	4UJ	12 J	4 L	10 U	10 U	2.3	10 UJ	10 01
BENZENE	10 U	12 U	10 U	10 U	. 10 U .	10 U	10 U	10 U	10 Ω	10 U
BROMODICHLOROMETHANE	10 U	12 U	10 U	10 U	10 U	10 U	เอบ	10 U	10 U	10 U
BROMOFORM	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	12 U	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U
CFC-11	10 U	12 UJ	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 Ų
CFC-12	10 U	12 UJ	10 UJ	10 U	10 U	10 U	· 10 U	10 U	10 Ų	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	12 U	10 U	10 UJ	10 UJ	10 UJ	10 UJ	10 01	10 UJ	10 UJ
CHLOROBENZENE	10 U	12 U	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U
CHLOROETHANE	.10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	- 10 U	12 U	. 10 U	- 10 U	10 0	10U	10 U	10 U	10 U	10 U
CHILOROMETHANE	10 UJ	12 UJ	10 UJ	10 UJ	10 UJ	. 10 U	10 U	10 U	10 UJ	10 UJ
CIS-1.2-DICHLOROETHENE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	12 U	10 U	10 U	10 U	10 U - :	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	12 U	10 U	10 U	10 U	10U	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	12 U	10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	(O U
ISOPROPYLBENZENE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü
M-DICHLOROBENZENE	10 U	12 U	10 U -	10 U	10 U	100	10 U	10.0	100	10 U
METHYL ACETATE	10 U	12 U	10 U	10 U	10 U	10 U	10 V	10 U	-10 U	10 U
METHYL N-BUTYL KETONE	10 UJ	12 UJ	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 Ų
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	12 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
METHYLCYCLOHEXANE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYLENE CHILORIDE	3.7	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü	10 U
STYRENE (MONOMER)	10 U	2 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	3 J
TOLUENE	10 U	J2 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	12 U	. 10 U	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	12 U	10 U	10 U	100	10 U				
VINYL CHLORIDE	10 U	12 U	10 U	'-" - 10 U	- 10 U	10 U -	10 U	.10 U	10 U	10 U
XYLENES (TOTAL)	. 10 U	12 U	- 10 U · ·	_ 1 10 U 1 _ 1	10 U :	. 10 U	10 U	TO U	10 U	10 U

Field Sample ID	GP123-01	GP123-02	GP124-01	GP124-02	GP124-03	GP125-01	GP125-02	GP125-03	GP125-03DUP	GP126-01
	.0.,,,,,,,		4.12.4							· · · · · · · · · · · · · · · · · · ·
			1							!
Property Address	5225 Walnut	5225 Watnut	5225 Wahnut	5225 Wahrut	5225 Walnut	2424 Wisconsin	2424 Wisconsin	2424 Wiscomstn	2424 Wisconsin	2424 Wisconsin
Sample Date	12/18/2003	12/16/2003	12/16/2003	. 12/16/2003	12/16/2003	4/16/2004	4/16/2004	4/16/2004	4/16/2004	4/26/2004
Depth Interval	3.5- 4.5	11.5-12.5	1.5- 2.5	6.5- 7.5	12.5-13.5	6.5- 7.5	15.5-16.5	23.5-24.5	23.5-24.5	35-45
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U_	10 U				
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	- 10 U	10 U	10 U	10 U	10 U	10.0
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	IO U	10 U	10 U	. 10 U	. 10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	- 10 U -	10 R
1,2-DIBROMOETHANE	10 U	10 U	10 U	10.0	10 U	10 U	10 U	10 U	10 U	, lo U
1,2-DICHLOROBENZENE	10 U	100	10 U	10 U	10 U	10 U	10 (7	10 U	10 U	10 U
1,2-DICHLOROETHANE	- 10 U	10 U	10 UJ	10 UJ	10 UJ	10 U				
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	100	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-BUTANONE	10 U	10 U	10 UJ	10 01	10 UJ	10 U	10 U	10 U	10 U	10 (1)
4-METHYL-2-PENTANONE	10 U	100	10 UJ	. 10 UJ	10 UJ	10 U				
ACETONE	10 UJ	4.7	6 UJ	6 UJ	23 UJ	10 U	10 U	10 U	10 U	10 UJ
BENZENE	10 U	10 U	10 U	10 U	10 U	- 10 U	. 10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10.0	10 U	10 U	10 U	10 U -	10 U	. 10 U	10 U	10 U
BROMOFORM	JO U	10 U	10 U	10 U	10 U	10 U	- 10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100
CARBON TETRACHLORIDE	10 U	10 U	ĮOŲ	10 U	10 U	10 U	100	10 U	10 U	
CFC-11	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U				
CFC-12	10 U	10 U	10 UJ	10 UJ	10 UJ	10 U				
CHLORINATED FLUOROCARBON (FREON 113)	10 UJ	10 UJ	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	10 U	- 10 U	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	tou	10 U	10 U	L 10 U	เดบ	10 U	10 U	10 U
CHLOROMETHANE	IQ UJ	10 UJ	- 10 UJ	10 UJ	10 01	10 U				
CIS-1,2-DICHLOROETHENE	_ 10 U	10 U	10 U	- 10 U -	_ 10 U	10 U	100	10 U	iou	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10.0
CYCLOHEXANE	10 U	10 U	10 U	10 U	- 10 U	. 10 U	10 ft	10 U	10 Ü	10 U
ETHYLBENZENE	· 10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 П
ISOPROPYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
M-DICHLOROBENZENE	10 🗘	10 U	10 U	10 U	10 U .	10 U				
METHYL ACETATE	10.0	10 U	10 U	10 U	100	. 10 U	10 U	10 U	10 U	10.03
METHYL N-BUTYL KETONE	10 0	10 U	10 UJ	- 10 UJ	10 UJ	100	10 Ü	10 U	10 Ü	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 W	10 Ų J	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U	10 U	10 UJ
METHYLCYCLOHEXANE	10 Ų	10 U	10 U	10 U		1010	10 U	. 10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	100	10 U	10 U	1 J	10 U	10 U	_ 10 U	10 U	10 U
STYRENE (MONOMER)	10 U	10 U	10 U	10.0	10 U	10 U	- 10 Û	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	10 Ū	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U.	J0 U	. 10 U.
TRANS-J.2-DICHLOROETHENE	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	-10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	. 10 U
VINYL CHLORIDE	10 U	10 tJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)	10 U	10 U	10 U	IO U	10 U	10 U	10 U	100	10 U	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP126-02	GP127-01	GP127-02	GP128-01	GP123-02	GP129-01	GP129-01DUP	GP129-02	GP129-03	GP130-01
			32.257.42				V. 12 VI VI			. 02,100 01
	i									
Property Address	2424 Wisconsin	2424 Wiscensin	2424 Wisconsin	2424 Wisconsin	2424 Wisconstn	2424 Wisconsin	2424 Wisconsin	. 2424 Wiscomin .	2424 Wisconsin	. 2424 Wisconsin
Sample Date	4/26/2004	. 4/26/2004	4/26/2004	4/26/2004	4/26/2004	4/27/2004	- 4/27/2004	4/27/2004	4/27/2004	4/27/2004
Depth Interval	10.5-11.5	3.5-4.5	17.5- 18.5	8.5-9.5	- 18.5- 19.5	2.5- J.5	2.5 3.5	10.5- 11.5	23.5- 24.5	3.5- 4.5
1,1,1-TRICHLOROETHANE	10 U	9.7	10 U	1800	10 U	10 U "	3 J	4700	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10.0	10 U	10 U	10 U	IQU	10 U	1500 U	10 U	10 Ų
I_I-DICHLOROETHANE	10 U	10 U	10 U	110	10 Ü	5 I	13	1500 U	10 U	10 U
1_1-DICHLOROETHENE	10 Ų	10 UJ	10 U	83	10 Ų	10 U	10 U	1500 UJ	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	100	10 U	1500 UJ.	10 U	10 U				
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 R	10 U	10 R	1500 U	10 R	10 R				
1,2-DIBROMOETHANE	10 U	1500 U	10 U	10 U						
1,2-DICHLOROBENZENE	10 U	10 U	101	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 0	10 U	10 U	10 U	10 U	1500 UJ	100	10 U
1,2-DICHLOROPROPANE	10 U	J\$00 U	10 U	10 U						
1.4-DICHLOROBENZENE	10 U	1500 U	. 10 U	10 U						
2-BUTANONE	10 (1)	10 U	10 U	J0 U	10 UJ	10 01	10 UJ	1500 U_	10 UJ	10 W
4-METHYL-2-PENTANONE	10 U	1500 U.	_ 10 U	100.						
ACETONE	10.01	- 10 UJ	10 01	10 UJ	10 UJ	10 UJ	10 UJ	740 J.	10 UJ	10 UJ
BENZENE	10 U	1500 U	10 Ü	10 U						
BROMODICHLOROMETHANE	10 U	- 10 U .	- 10 U	- 10 U	10 U	10 U	10 U	1500 U	10 U	100
BROMOFORM	10 U	10 U	- 10 U	10 U	10 U .	10 U	10 U	1500 U	10 U	10 U
BROMOMETHANE -	10 U	10 Ü	1500 U	10 U	10 U					
CARBON DISULFIDE	- 10 U	10 U	10 U	10 U	10 U	10 U	10 U	1500 U	10 U	IO U
CARBON TETRACHLORIDE	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
CFC-11	10 U	1500 U	10 U	10 U						
CFC-12	10 U	1500 U	10 U	10 U						
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
CHLOROBENZENE	10 U	1500 U	10 U	10 U						
CHLORODIBROMOMETHANE	10 U	1500 U	10 U	10 U						
CHLOROETHANE	10 U	10 U	10 U	2.J	10 U	10 10	10 U	1500 UJ	10 U	3 J
CHLOROFORM	10 U	10 U	IOU	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
CHLOROMETHANE	IOU	10 U	_ 1500 U	10 U	10 U					
CIS-1,2-DICHLOROETHENE	10 U	10 U	10 U	5 J	10 U .	. 10 U	_ 10 U	1500 U	10 U	10 Ú
CIS-1.3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U .	. 10 U	-10 U	1500 U	10 U	- 10 U
CYCLOHEXANE	10 U	1500 U	10 U	10 U						
ETHYLBENZENE	10 Ú	10 U	10 U	. 10 U	- 10 U	10 U	10 U	1500 U	10 U	10 U
ISOPROPYLBENZENE	10 U	10 U	10 U	10 U .	. 10 U	10 U	10 U	1500 U	10 U	10 U
M-DICHLOROBENZENE	10 U	1500 U	10 U	10 U						
METHYL ACETATE	10 UJ	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ	1500 UJ	10 UJ	10 UJ
METHYL N-BUTYL KETONE	10 U	1500 U	10 U	10 U						
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 U	10 U	10 U	10 177	10 UJ	10111	1500 U	10 UJ	10111
METHYLCYCLOHEXANE	10 U	10 U	10 Ŭ	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
METHYLENE CHLORIDE	100	10 U	10 U	10 U	100	41	10 U	1500 U	3 J	10 U
STYRENE (MONOMER)	10 U	10 U	10 U	10 U	100	10 U	10 U	1500 U	10 U	10 U
TETRACHLOROETHENE (PCE)	100	10 U	10 U	10 U	100	10 U	10 U	1500 U	10 U	10 U
TOLUENE	100	10 U	1500 U	10 U	10 (1					
TRANS-1.2-DICHLOROETHENE	100	100	10 U	10 U	1011	10 U	10 1	1500 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	100	10 U	10 0	10 U	10 U	10 U	10 U	1500 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	4.5	10 U	10 U	10 U	1500 U	10 U	10 U
VINYL CHLORIDE	10 0	10 U	1500 U	10 U						
XYLENES (TOTAL)	10 U	10 U	17.01	100	10 U	10 U	100	_ 1500 U _	10 U	10 U

Elisanch Industrial Park 3 WA NO., 233-R3CO-B51V Data Brahmtine Report Apparatic: B Berrision: 1 Date: 3 August 2004 Page: 19 of 50

#### Appendix B (Continued)

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP130-02	GP130-03	GP131-01	GP131-02	GP132-01	GP132-02	GP133-01	GP133-02	GP134-01	GP134-02
Property Address	2424 Wjaconaln	2424 Wisconsin	Wooded Property	Weeded Property South of 2537 Curtus	Wooded Property	Weeded Property South of 2537 Curtin	Wooded Property South of 2537 Curtis	Weeded Property South of 2537 Curting	Wooded Property South of 2537 Curtiss	Wooded Property South of 2537 Curtin
Sample Date	4/27/2004	4/27/2004	12/1/2003	12/1/2003	12/1/2003	12/1/2003	12/2/2003	12/2/2003	4/6/2004	4/6/2004
Depth Interval	11.5- 12.5	20,5- 21,5	7,8- 8.5	21.5- 22.5	13.5- 14.5	24- 25	1.5- 2.5	16.5- 17.5	1.5- 2.5	17.5- 18.5
1,1,1-TRICHLOROETHANE	150	10 U	10 U	10 Ü	10 U	10 U	11.0	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	_12 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	12 U	10 U	10 U	10 (1	10 U	100	11.0	10 U	10 U	10 U
I, I-DICHLOROETHANE	120	10 U _	10 Ü	10 U	10 U	10 U	110	10 U	10 U	10 U
I, I-DICHLOROETHENE	18	10 U	. 10 U	10 U	10 U	10 U	110	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	12 U	10 U	10 U	10 U	10 U	10 U	110	_10_U	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	12 R	10 R	10 UJ	10 UJ -	10 01	10 UJ	11 UJ	10 UJ	10 U	10 U
1,2-DIBROMOETHANE	12 U	10 U	10 U	10 U	10 U	_ 10 U	11 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	12 Ų	10 Ų	10 U	10 U	.10 ft	10 U	110	10 U	10 U	10 U
1,2-DICHLOROETHANE	12 U	10 U	10 U	10 U	10 U	10 U	เเบ	10 U	10 U	10 U
1,2-DICHLOROPROPANE	12 U	10 U	10 U	10,0	10 U	100	11 U	10 U	10 U	IOU
1,4-DICHLOROBENZENE	I2 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U	10 U
2-BUTANONE	12 UJ	10 UJ	to UJ	10 UJ	10 ŲJ	10 UJ	63	10 U1	10 UJ	10 UJ
4-METHYL-2-PENTANONE	12 U	10 U	10 UJ	10 UJ	10 UJ	10 UJ	11 UJ	10 UJ	10 D1	10 UJ -
ACETONE	12 UJ	10 UJ	4 J	3 J	10 UJ	10 3	24 J	10 UJ	10 U	6.1
BENZENE	12 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U	10 U
BROMODICHLOROMETHANE	12 U	10 U	10 U	10 U	100	10 U	110	10 U	10 U	10 U
BROMOFORM -	12 U	10 U	10 U	10 U	IOU.	10 U	110	10 U	10 UJ	10 UJ
BROMOMETHANE	12 U	10 U	10 U	10 U	10 U	10 U	טוו	10 U	10 U	10 U
CARBON DISULFIDE	, 12 U	10 U	10 U	10 U	10 U	10 U	11 0	10 U	10 U	10 U
CARBON TETRACHLORIDE	- 84	10 U	10 U	10 U	100	10 U	. 110	10 U	10 U	10 U
CFC-11	12 Ú .	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U
CFC-12	12 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 R	10 R
CHLORINATED FLUOROCARBON (FREON 113)	12 U	10 U	. 10 U	10 U	10 U	10 U	טוו ו	10 U	10 Ü	10 U
CHLOROBENZENE	12 U	10 U	100	10 U	10 U	10 U	110	10 U	10 U	10 U
CHLORODIBROMOMETHANE	· 12 U	10 U	10 U	10 U.	10 U	10 U	11 U	10 U	[O U	10 U
CHLOROETHANE	13	10 U	10 U	10 U	10 U	. 10 U	. 11 U	10 U	. 10 U	10 U
CHLOROFORM	12 U	10 U	10 U	10 U	10 Ü	10 U	11 0	10 U	10 U	10 U
CHLOROMETHANE	12 U	10 U	10 U	. 10 U	10 U	10 U	. 11 U	· 10 U	10 UJ	10 UJ
CIS-1.2-DICHLOROETHENE	12 U	10 U	10 U	10 Ü	10 U	10 U	110	10 U _	IO Ü	10 U
CIS-1,3-DICHLOROPROPENE	12 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U	- 10 U
CYCLOHEXANE	12 U	10 U	10 UJ	10 UJ	10 UJ	10 UI	11 UJ	10 UJ.	10 UJ	. 10 UJ
ETHYLBENZENE	12 U	10 U	10 U	10 U	10 U	10 U	- 110	10 U	10 U .	10 U
ISOPROPYLBENZENE	12 U	10 U	10 Ų _	10 U	10 U	10 U	11 U	10 Ü	10 U	IOU .
M-DICHLOROBENZENE	12 U	10 U	10 U	10 U	10 U	10 U	เเบ	10 U	10 U	. 10 U
METHYL ACETATE	12 UJ	10 UJ	IO UJ	10 UJ	10 UJ	lo UJ	11 UJ	10 UJ	_10 ft	10 UJ
METHYL N-BUTYL KETONE	12 U	10 U	10 UJ	to UJ	10 UJ	10 UJ	11 ()	10.01	_10 ft1.	10 UJ
METHYL TERT-BUTYL ETHER (MTBE)	12 UJ	10 (1)	10 U	10 U	10 U	10 U	11 U	10 U	10 U	. 10 U
METHYLCYCLOHEXANE	12 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U
METHYLENE CHLORIDE	3 J	10 U	10 UJ	10 UJ	10 UJ	2 J	4.3	2 J	10 U	10 U
STYRENE (MONOMER)	12 U	10 U	10 U	10 U	10 U	100	11 U	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	12 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	_10 U
TOLUENE	12 U	10 U	10 U	10 U	100	10 U	110	10 U	10 U	10 Ų
TRANS-1,2-DICHLOROETHENE	12 U	10 Ü	10 U	10 U	10 tr	10 U	11 0	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	12 U	10 U	10 U	10 U	10 U	10 U	11 U	10.U	10 U	10 Ų
TRICHLOROETHENE (TCE)	12 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U	10 U
VINYL CHLORIDE	12 U	10 U	10 U	10 U	10 U	10 U	IIU	10 U	10 U	10 U
XYLENES (TOTAL)	12 U	10 17	10 U	10 U	10 U	10 U	110	10 U	IOU	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Pield Sample ID	GP135-01	GP135-02	GP136-01	GP136-02	GP136-02DUP	GP137-01	GP137-02	GP137-02DUP
NAME OF COLUMN 10	GP135-41	GF135-02	GF136-01	GF136-02	GF130-02DUF	GF13/41	GF137-92	GF137-02DQF
			1	1 1			1	
Property Address	5000-5014 Chase	. 5000-5014 Chase	5000-5014 Chase	5000-5014 Chare	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase
Sample Date	1/12/2004	1/12/2004	1/12/2004	1/12/2004	1/12/2004	1/13/2004	1/13/2004	1/13/2004
leoth Interval	4.5-5.5	10.5-11.5	3.5-4.5	8.5-9.5	1.5- 9.5	5.5- 6.5	9-10	9- 10
.1.1-TRICHLOROETHANE	10 U	10 U	100	10 U	. 10 U	26	10 U	10 U
1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	- 10 U
1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
.1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1-DICHLOROETHENE	10 U	1010	10 U	10 Ü	10 U	10 U	10 U	10 U
2.4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
.2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U
2-DIBROMOETHANE	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U
2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 17
4-DICHLOROBENZENE	10 U	10 U	10 U	100	10 U	10 U	100	10 U
-BUTANONE	10 UJ	. 10 07	10 10	10 111	10 (1)	10 U	10 UJ	10 UJ
-METHYL-2-PENTANONE	10 U	100	10 U.	10 U	- 10 U.	10 03	10 UJ	10 03
CETONE	51	47	3 J	4.7	4.1	10 UJ	603	8 111
ENZENE	1011	100	10 U	. 10 U				
ROMODICHLOROMETHANE	10 U	10 U	10 0	100	10 U	10 0	100	10 U
ROMOFORM	10 U	10 U	10 U	100	10 Ü	100	100	100
		100		10 0	100	100	10 U	10 0
ROMOMETHANE ARBON DISULFIDE	10 U	100	10 U	100	10 U	10 U	10 U	10 U
	10 U	10 U	10 U	10 U	10 U	31	10 U	10 U
ARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U
FC-[]		1011		10 U	10 U	10 UJ	10 U	10 UJ
FC-12	10 U	10 U	10 U	100	10 U	10 U	10 17	10 U
HLORINATED FLUOROCARBON (FREON 113)	10 U				10 U	10 U	10 U	100
HLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U
HLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	1011	1017
HLOROETHANE	10 U		10 U			10 U	100	10 U
HLOROFORM	10 U	10 U	10 U	10 U	10 U		10 U	
HLOROMETHANE	10 U	10 U	10 U	10 U	. 10 U	10 U		10 U
IS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	3.J	10 U	10 U
IS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	. 10U -	10 U	10 U
YCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 U	- 10 U	10 U
THYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U - = -
SOPROPYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1-DICHLOROBENZENE	10 U	10 U	10 U	IQ U	10 U	10 U	10 U	10 U
ETHYL ACETATE	10 UJ	10 03	10 UJ	10 UJ	10 W	10 UJ	10 UJ	10 UJ
AETHYL N-BUTYL KETONE	IO UJ	IO UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
AETHYL TERT-BUTYL ETHER (MTBE)	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYLCYCLOHEXANE	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	100	10 U				
TYRENE (MONOMER)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ETRACHLOROETHENE (PCE)	10 U	3 J	10 U	10 Ω				
OLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U .	10 U	10 0	10 U	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U	- 10 U	10 U	10 U	10 U	10 U	10 U
/INYL CHLORIDE	10 U	10 U	. U 01.	10 U				
(YLENES (TOTAL)	100	10 U	.10 ft	10 U	10 U	1 100	100	10 U

Appendix B

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP137-03	GP138-01	GP138-02	GP138-03	GP139-01	GP139-02	GP140-01	GP140-01	GP141-01	GP141-02
	5000 5014 G	5000 FOLA C	5000-5014 Chass	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	Preperty South of Curties and Gleaview Streets and East of Belmont	Property South of Carties and Glauvier Streets and East of Belmont
roperty Address	5000-5014 Chase	5000-5014 Chass		1/13/2004	1/12/2004	1/12/2004	1/13/2004	1/13/2004	1/26/2004	1/26/2004
Sample Date	1/13/2004	1/13/2004	1/13/2004	23.5-24.5	5.5-6.5	13.5-14.5	2.5-3.5	15.5-16.5	.5- 1.5	25-35
Depth Interval	19.5- 20.5	3.5-4.5	1.5-9.5				10 U	10 U	15 UJ	16 U
,1,1-TRICHLOROETHANE	45.	10 U	15 03	16 U						
,1,2,2-TETRACHLOROETHANE	10 0	10 U	10 U			10 U	10 U	10 U	15 00	16 U
1.2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	. 10 U					
1-DICHLOROETHANE	10 U	10 Ú	10 U	10 U	15 UJ	16.0				
,1-DICHLOROETHENE	3 J	10 U	15 W	16 U						
2.4-TRICHLOROBENZENE	10 U	10 U	100	10 U	. 10 U	10 U	10 U	10 U	15 UI	16 U
,2-DIBROMO-3-CHLOROPROPANE (DBCP)	100	10 U	15 U)	16 U						
2-DIBROMOETHANE	10 U	10 Ü	10 U	10 U	15 07	16 U				
,2-DICHLOROBENZENE	10 U	10 Ü	10 U	15 UJ	160					
2-DICHLOROETHANE	10 U	10 U .	10 U	15 07	16 U					
,2-DICHLOROPROPANE	10 U	- 10 U	10 U	10 U	15 UJ	16 U				
.4-DICHI_OROBENZENE	10 U	100	10 U	10 U	. 10 U	10 U	10 U	10 U	15 UJ	16 U
2-BUTANONE	10 01	10 UT	10 UT	10 UJ	10 W	10 UJ	10 UJ	10 W	_ 15 W	16 U
-METHYL-2-PENTANONE	10 UJ	10 UJ	10 UJ	10 UJ	10 U	10 U	10 UJ	10 07	15 UJ	16 U
ACETONE	7 UJ	10.03	2 UJ	6UJ	10 U	4.7	3 UJ	6 UJ	15 UJ	16 UT
SENZENG	100	10 U	15 UJ	16 U						
BROMODICHLOROMETHANE	10 U	15 UJ	16 U							
BROMOFORM	10 U	10 U.	10 U	10 U	15 UJ	16 U				
BROMOMETHANE	10 U	15 UJ	16 U							
CARBON DISULFIDE	10 U	10 U	10 U ~	. 10 ft	10 U	.10 U	10 U	10 U	15 W	16 U
CARBON TETRACHLORIDE	5 J	10 Ü	10 Ü	10 U	15 W	16 U				
JFC-11	10 U	IO U	10 U	10 U	10 U	10 U	10 U	10 U	15 W	16 U
FC-12	10 UJ	10 UJ	10 W	10 UJ	10 U	10 U	.10 UJ	10 UJ	15 W	16 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	15 ÚĴ	16 Ü
CHLOROBENZENE	10 U	15 W	16 U							
CHLORODIBROMOMETHANE	10 U	10 U _	_ 10 U -	15 UJ	16 U					
CHLOROETHANE	10 Ü	10 U	10 U	10 U	10 U	10 0	- 10 U	10 U	15 UJ	. 16 U
CHLOROFORM	10 U	10 Ú	10 U	15 UJ.	6J					
CHLOROMETHANE	100	100	10 U	10 Ü	10 U	10 U	10 U	10 U	IS UJ	16 U
CIS-1,2-DICHLOROETHENE	20	10 U	10 U	10 U	10 U	10 U -	100	10 U	. 15 W	16 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U -	10 U	10 U	10 U	15 UJ	16 U
CYCLOHEXANE	10 U	10 U	10 U .	10 U	15 UJ	16 U				
THYLBENZENE	1011	10 U	15 UJ	16 U						
SOPROPYLBENZENE	- 10 Ü	: 10 U .	10 1	10 U	10 U	10 U	10 Ü	10 U	15 UJ	16 U
M-DICHLOROBENZENE	10 U	15 UJ	16 U							
METHYL ACETATE	10 UJ	10 U	10 1/1	10 UJ	10 177	10 UJ	10 UJ	10 UJ	15 UJ	16 U
METHYL N-BUTYL KETONE	10 10	10 UJ	10 UJ	10 01	10 00	10 UJ	10 UJ	10 UJ	15 UJ	16 U
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U	15 UJ	16 UJ
METHYLCYCLOHEXANE	10 U	iou	10 U	10 Ü	15 UJ	16 U				
METHYLENE CHLORIDE	100	10 0	10 U	31	16 U					
STYRENE (MONOMER)	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 0	15 07	16 U
TETRACHILOROETHENE (PCE)	240	10 0	10 0	10 U	100	100	10 U	10 U	4 J	16 U
TOLUENE	10 U	10 U	10 0	10 U	100	100	10 U	10 U	15 00	16 U
		10 U		10 U	10.0	10 U	10 U	10 U	15 UJ	16 U
TRANS-1,2-DICHLOROETHENE	10 U	10 0	10 U	10 U	100	10 U	10 U	100	15 UJ	16 U
TRANS-1,3-DICHLOROPROPENE	19.1	100								
			10 U	10 U	io U	100	10 U	lou	15 UJ	16 U
TRICHLOROETHENE (TCE) VINYL CHLORIDE	1011	10 U	10 U	10 U	IO U	iοÜ	10 U	10 U	15 UJ	16 U

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Viula e I. VD	GP141.03	CDIAD OI	GP142-02	GP143-01	GP143-01DUP	GP143-02	GP143-03	GP144-01	GP144-02	GP145-01
Field Sample ID	GP141-03	GP142-01	GP142-02	GP143-01	GP143-01DUP	GP143-02	GF143-03	GP144-01	GF144-02	GF145-01
	1								ا ـ ـ ـ ـ ا	
	Property South of	Property South of	Property South of	Property South of		Property South of Curties and Glauview	Property South of Curties and Gleaview	Property South of Curtiss and Glenview	Property South of Curties and Glauview	Property South of Curties and Glesvie
	Curtiss and Gleaview Streets and East of	Curties and Gleaview Streets and East of	Curties and Gleaview Streets and East of	Curties and Glassies Streets and East of	Property South of Curtiss and Glasview Streets and	Streets and East of	Streets and East of	Streets and East of	Streets and Bast of	Streets and East of
Property Address	Beltroot	Belmont	Belmont .	Behannt	East of Belinous	Beltrant	Belanent	Religion to	Beltweet	Beltacar
Sample Date	1/26/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2904	1/26/2004
Depth Interval	19.5- 20.5	11.5-12.5	24.5- 25.5	75-85	7.5- 8.5	11.5- 12.5	28- 29	1.5- 2.5	19- 20	2.5- 3.5
1,1,1-TRICHLOROETHANE	12 U	10 U	10 U	110	100	11.5-12.5	10 U	10 U	10 U	13 U
1,12,2-TETRACHLOROETHANE	12 0	100	10 U	11 0	10 []	11 0	1011	10 U	10 U	13 U
1.1.2-TRICHLOROETHANE	120	10 U	1011	110	10 U	11.0	10 U	10 U	10 U	13 U
1,1-DICHLOROETHANE	12 U	1011	100 -	11 U	10 U	11.0	10 11	10 U	iou	13 U
1,1-DICHLOROETHENE	12 0	100	10 U	11 0	10 U	110	10 U	- 10 Ú	10 U	13 U
1.2.4-TRICHLOROBENZENE	12 0	10 U	10 U	110	10 U	11.0	- 10 U -	_ 10 U	10 U	13 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	12 U	100	1017	1117	1017	110: -	- 10U	jou	10 U	13 U
,2-DIBROMOETHANE	12 U	10 U	10 U	110	10 U	11 U	- 10 U	10 U	10 U	13 U
1,2-DICHLOROBENZENE	12 U	10 0	10 U	110	- 10 U	11.0	10 U	10 U	10 Ü	13 U
1,2-DICHLOROETHANE	12 Ü	10 U	10 U	เเบ	10 U	11.0	. 10 U.	. 10 U	10 U	13 U
2-DICHLOROPROPANE	12 U	100	10 U	110	10 U	11.0	10 U	10 U	10 Ü	13 U
1,4-DICHLOROBENZENE	12 U	10 Ú	10 U	11.0	ÌOÙ	11'U	10 U-	10 U	10 U	13 U
2-BUTANONE	12 Ü	10 U	10 U	li U	10 U	11.0	10 U.	. 10 U	10 U	13 U
METHYL-2-PENTANONE	12 U	10 Ŭ	10 U	IIU	10 U	11 U	10 U	10 U	10 U	13 U
ACETONE	12 UJ	10 W	10 UJ	11 UJ	10 UJ	11 07	to UJ	10 UJ	1010	13 UJ
BENZENE	12 U	10 U	10 U	IIU	10 U	11 U	10 U	10 U	10 U	13 U
BROMODICHLOROMETHANE	12 U	10 U	10 Ü	11 U	IOU	110	10 U	10 U	10 U	13 Ü
BROMOFORM	12 U	10 U	ioU	11 U	10 U	11 U	10 Ü	- 10 U	_10 U	13 U
BROMOMETHANE	12 U	10 Ü	10 U	11 U	10 U	11 0	10 U	10 U	10 U	13 U.
CARBON DISULFIDE	12 U	10 U	10 U	11 U	10 Ü	110	10 U	10 U	10 U	13 U
CARBON TETRACHLORIDE	12 U	10 U	10 U	11 U	ΙΟŪ	11 U	10 U	10 U	10 U	13 U
GEC-11	12 U	10 U	10 U	11 U	10 U	110	10 U	10 U	_ 10 U_	13 U
CFC-12	12 UJ	10 U	10 U	11 U	10 U	11 U	100	10U	10 U	.13 U
CHLORINATED FLUOROCARBON (FREON 113)	12 U	10 U	10 U	11 U	10 Ų	11 U	10 Ú	_ 10 U	10 U	. 13 U
CHLOROBENZENE	12 U	10 Ų	10 U	11 U	10 U	11.0	10 Ų	10 U	- 10 U	13 Ü
CHLORODIBROMOMETHANE	12 U	10 U	10 U	11 U	10 U	11 U	10 U	10 U	IOU	13 U.
CHLOROETHANE	12 W	10 U	10 U	110	10 U	110	10 U	100 -	10 U	13 U
CHLOROFORM	12 U	10 U	10 U	11 U	10 U	11 U	10.0	10 U	10 U	24
CHLOROMETHANE	12 U	10 U	10 U	Ιίυ	10 U	11 0	10 U	10 U	10 U	13 U
CIS-1,2-DICHLOROETHENE	12 Ü	10 U	10 U	11 U	10 Ų	110	100	10 U	10 U	13 U
CIS-1,3-DICHLOROPROPENE	12.0	100	10 U	ט וו	10 U	11 U	10 Ų	100	- 10 U	. :13 U
CYCLOHEXANE	12 U	10 U	10 Ų	טוו	10 Ų	11 U	10 U	10 U -	10 U	13 U.
ETHYLBENZENE	12 U	10 U	10 U	11.0	10 U	11 U	10 U	10 U	10 U	13 U
SOPROPYLBENZENE	12 U	10 U	10 U	11.0	10 U	11 0	10 U	10 U	10 U	13 U
M-DICHLOROBENZENE	12 U	10 U	10 Ų	11 U	10 U	11 U	10 U	10 Ü	10 U	13 U
METHYL, ACETATE	12 U	10 U	10 U	11 U	10 U	11 U	10 U	10 U	10 U	13 U
METHYL N-BUTYL KETONE	12 U	10 U	10 U	11 U	10 U	11 U	10 U	10 U	10 U	13 U
METHYL, TERT-BUTYL, ETHER (MTBE)	12 W	10 U	10 U	11 U	10 U	11 U	10 U	10 U	10 U	13 W
METHYLCYCLOHEXANE	12 U	10 U	10 U	il U	10 U	11 U	10 U	100	10 U	. 13 U
METHYLENE CHLORIDE	3.3	10 U	10 U	11 U	10 U	11 U	100	10 U	10 U	3 J
TYRENE (MONOMER)	12 U	10 Ü	10 U	11 U	10 U	11 U	10 U	10 U	10 U -	13 U
ETRACHLOROETHENE (PCE)	12 U	10 U	10 U	11 U	10 U	11 U	10 U	10 U	2.5	13 U
TOLUENE	12 U	ĮO U	100	11.0	10 U	11 U	10 U	10 U	10 U	13 U
RANS-1,2-DICHLOROETHENE	12 U	10 U	10 U	11 0	10 U	110	10 U	10 U	10 U	13 U
RANS-1,3-DICHLOROPROPENE	12 U	10 U	10 U	11 U	10 Ü	11 U	10 U	10 Ü	10 U	13 U
TRICHLOROETHENE (TCE)	12 U	10 U	10 U	11 U	10 U	11.0	10 U	10 U	10 U	13 U
VINYL CHLORIDE	12 U	10 U	IO U	11 U	10 U	110	10 U	10 U	10 U	13 U
XYLENES (TOTAL)	12 U	10 U	10 U	11.0	IO U	11 U	10 U	10 U	100.	13 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP145-02	GP145-02DUP	GP146-01	GP146-02	GP147-01	GP147-02	GP147-03	GP148-01	GP148-02	GP150-01	GP150-02
	Property South of Curties and Glasview Streets and Rest of	Property Seeth of Curtim	Property South of Curties and Glauview Streets and East of	Property South of Curties and Gleaview Streets and East of	Property South of Cartin and Gleaview Streets and East of	Property South of Curties and Gleaview Streets and East of	Property South of Curton and Glenview Streets and East of	Property South of Curtim and Gleavious Streets and East of	Property South of Curtim and Glenview Streets and East of	0.250	
Property Address	Belmant	East of Belmont	Behavent	Belmont	Belmont	Beknost	Belmont	Belancet	Belmont	2265 Maple	2265 Maple
Sample Data	1/26/2004	1/26/2004	1/23/2004	1/23/2004	1/26/2004	1/26/2004	1/26/2004	1/23/2004	1/23/2004	4/9/2004	4/9/2004
Depth Interval	11.5-12.5	11.5-12.5	8.5-2.5	20-21	5.5- 6.5	13.5-14.5	23.5- 24.5	35-45	35-45	1.5- 2.5	4.5- 5.5
.1.1-TRICHLOROETHANE	12 U	12 UJ	10 U	100	11 0	12 Ú	101/	12 U	10 10	10 U	10 U
1.2.2-TETRACHLOROETHANE	12 0	12 UJ	10 U	ίου	11 U	12 U	10 U	12 U	10 W	10 Ü	10 U
1.2-TRICHLOROETHANE	12 Ü	12 UJ	ioti	1017	11.0	12 Ü	10 U	12 U	10 LU	10 U	10 U
I-DICHLOROETHANE	12 U .	12 UJ	10 Ü	10 Ú	11 U	12 U	10 U	12 U	10 LU	10 U	10 U
1-DICHLOROETHENE	12 U	12 W	10 U	10 U	11 07	12 U	10 U	- 12 U	10 UJ	10 U	10 U
2.4-TRICHLOROBENZENE	12 Ü	12 ÚJ	10 U	10 Ŭ	11 U	12 UJ	10 U .	12 U	10 UJ	-10 U	10 U
.2-DIBROMO-3-CHLOROPROPANE (DBCP)	12 U	12 UJ	10 Ü	10 U	11 U	12 U	. 10 U	12 U	10 10	10 UJ	10 U
2-DIBROMOETHANE	12 U	12 UJ	10 U	10 U	11 U	12 U	10 U	12 U	. 10 UJ	10 U	10 U
2-DICHLOROBENZENE	12 U	12 UJ	10 U	ίοŬ	11 U	12 U	10 Ü	12 U	. 10 UJ	10 U	10 U
2-DICHLOROETHANE	12 U	12 UJ	10 U	ioù	110	12 Ü	10 U	12 U	10 UJ	10 U	10 U
2-DICHLOROPROPANE	12 U	12 UJ	10 U	10 U	11 U	12 U	10 U	12 U	. 10 W	10 U	10 U
4-DICHLOROBENZENE	12 U	12 UJ	10 Ú	10 U	11 U	12 UJ	10 Ü	12 U	10 UJ	. 10 U .	10 U
BUTANONE	12 U	12 UJ	10 U	10 U	11 U	12 UJ	10 U	I2 U	_ 10 UJ _	10 U	10 U
-METHYL-2-PENTANONE	12 U	12 UJ	10 U	IOU	ΙΊŪ	12 U	10 U	12 U	10 UJ	10 U	. 10 U
CETONE	12 UJ	71	10 UJ	10 W	13 J	20 J	10 UJ	12 UJ	2 J	10 UJ	10 UJ
ENZENE	12 U	12 UJ	10 U	10 U	110	12 U	10 U	12 U	10 W -	10 U	10 U
ROMODICHLOROMETHANE	12 U-	12 U7	10 U	10 U	11 U	12 U	10 U	12 Ü	10 W	10 U	10 U
ROMOFORM	12 U	12 177	10 U	10 U	110	12 U	10 U	12 Ú	- 10 UJ	. 10 Ú	- 10 Ü
ROMOMETHANE	12 U	12 UJ	10 U	10 U	ΪΙŪ	12 U	10 U	12 U	10 UJ	10 U	10 U
CARBON DISULFIDE	12 U	12 UJ	10 U	10 U	11 U	12 U	10 U	12 U	10 UJ	10 Ü -	10 U
CARBON TETRACHLORIDE	12 U	12 UJ	10 U	10 U	11 U	12 U	10,U	12 U	10 UJ -	10 U	10 U
FC-11	12 U	12 UJ	10 Ü	10 U	11 U	12 U	10 U	12 U	10 UJ	10 U	10 U
FC-12	12 U	12 W	10 U	10 U	11 U	12 U	10 U	12 U	. IO UJ	10 UJ	10 UJ
HLORINATED FLUOROCARBON (FREON 113)	12 U	12 UJ	100	10 U	טוו	12 U	10 U	12 U	. 10 UJ	. 10 U	10 0
HLOROBENZENE	12 U	12 00	10 U	10 Ü	11.0	12 Ü	10 U	12 U	10 UJ	.10 U .	10 U
THLORODIBROMOMETHANE	12 U	12 W	10.0	10 U	11 U	12 U	10 U	12 Ü	. 10 W	10 U	10 U
THLOROETHANE	12 U	12 UJ	10 U	10 U	11 U	12 U	10 U	12 U	10 UJ	10 UJ	10 UJ
HLOROFORM	12 U	12 UJ	10 Ü	10 U	11 U	12 U	10 U	12 U	10 UJ	10 U	10 U
HLOROMETHANE_	12.U	12 W	IQU	10 U	11 U	12 U	10 Ü	-12 U	IO UJ	10 W	10 UJ
TS-1,2-DICHLOROETHENE	12 U	12 W	10 U	10 U	11.0	12 U	_10 U	~12 U	10 UJ	10 U	10 U
TIS-1,3-DICHLOROPROPENE	12 U	12 W	10 U	10 U	11 U	12 U	10 U	12 U	10 UJ	10 U	10 U
YCLOHEXANE	12 U	12 W	10 U	10 U	110	12 U	to U	12 U	10 UJ	10 U	10 U
THYLBENZENE	12 U	12 W	10 Ü	10 U	11.0	12 U	10 U	12 U	10 UJ	10 U	JQ U_
SOPROPYLBENZENE	12 U	12 W	10 U	10 U	ווט	12 Ú	10 U	12 U	10 UJ	10 U	100
1-DICHLOROBENZENE	12 U	12 UJ	10 U	10 U	11.0	12 U	10 U	12 U	10 UJ	10 U	IOU
METHYL ACETATE	12 U	12 UJ	10 U	10 Ú	110	12 U	10 U	12 U	10 CJ	10 U	100
ÆTHYL N-BUTYL KETONE	12 U	12 UJ	10 U	10 U	110	12 U	10 U	12 U	10 W	10 U	10 U
AETHYL TERT-BUTYL ETHER (MTBE)	12 UJ	12 UJ	10 U	10 U	וועז	12 U	10 UJ	12 U	10 (1)	10 UJ	10 UJ
METHYLCYCLOHEXANE	12 U	17.03	10 U	10 Ü	11.0	12 U	10 U	12 U	10 00	10 U	10 U
METHYLENE CHLORIDE	12 U	37	10 U	10 Ü	11.0	12 U	2 J	12 U	2 J	10 U	10 U
STYRENE (MONOMER)	12 U	12 UJ	10 Ú	10 U	110	12 U	100	12 U	10 W	10 U	10.0
ETRACHLOROETHENE (PCE) OLUENE	12 U	12 UI	10 U	10 U	11 0	12 U	10 U	12 U	10 U7	10 U	10 U
	12 U	12 W	10 U	10 U		12 U	10.0	12 U	10 UJ	10 U	10 U
RANS-1,2-DICHLOROETHENE	12.0 ~	12 W	10 U	10 U	110	12 U	10 U	12 U	10 UJ	10 U	10 U
RANS-1.1-DICHLOROPROPENE	12 U	12 W	10 U	10 U	110	12 U	10 U	12 U	10 07	10 U	10 U
(RICHLOROETHENE (TCE)	12 Ü	12 W	10 U	10 U	110	12 U	10 U	12 U	10 UJ	10.U	10 U
VINYL CHLORIDE XYLENES (TOTAL)	12 U	12 UJ 12 UJ	10 0	10 U	110	12 U	10 U	12 U	10 UJ	10 U	10 U

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Fleid Sample ID	GP151-01	GP151-02	GP152-01	GP152-01DUP	GP152-02	GP153-01	CP153-02	GP154-01	GP154-02	GP155-01	GP155-01DUP
	1						<u> </u>			·	
		1									
			1			Ī					
•			Į l		1	ł					
reperty Address	2265 Maple	2265 Maple	2265 Maple	2265 Maple	2265 Maple	5024 Chase	5024 Chase	5024 Chase	5024 Chase	5024 Chase	5024 Chase
ample Date	4/9/2004	4/9/2004	4/9/2004	4/9/2004	4/9/2004	1/12/2004	1/12/2004	1/9/2004	1/9/2004	1/9/2004	1/9/2004
lepth Interval	3,5-4.5	10.5-11.5	5.5-6.5	5.5- 6.5	15.5- 16.5	8,5-9,5	17.5- 18.5	8.5- 9.5	18.5-19.5	55-65	5.5- 6.5
1.1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü
1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
I-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2.4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DIBROMO-3-CHLOROPROPANE (DBCP)		10 UJ	10 UJ								
2-DIBROMOETHANE 2-DICHLOROBENZENE	10 U	10 U	10 U	10 Ú	10 U						
2-DICHLOROBENZENB 2-DICHLOROETHANE	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U	100	100	10 U
2-DICHLOROFTHANE 2-DICHLOROPROPANE	10 U	10 U	100	10 U	10 U	10 0	10 U	10 U	10 U	10 Ü	10 U
4-DICHLOROBENZENB	100	10 U	1 100	10 U	10 U	10 0	10 U	100	10 U	10 U	10 U
-DICHLOROBENZENS BUTANONE	10 U	10 U	100	10 U	100	10 UJ	10 UJ	10 W	100	10 UJ	10 UJ
METHYL-2-PENTANONE	100	10 U	100	10 U	10 U	10 U	10 U	1000	10 U7	10 03	10 UJ
CETONE	1000	10 07	1000	10 07	10 UJ	100	3 3	61	43	1003	10 UJ
ENZENE	100	10 U	10 0	10 U	100	10 0	10 U				
ROMODICHLOROMETHANE	100	10 U	10 0	10 U	100	10 0	100	100	10 U	10 U	10 U
ROMOFORM	100	10 0	10 0	10 0	100	10 U	10 U	100	10 U	10 U	10 U
ROMOMETHANE	10 U	10 U	10 0	10 U	10 U	10 U	10 U	10 10	10 07	10 tu	10 UJ
ARBON DISULFIDE	10 0	10 Ŭ	10 0	10 Ü	100	10 U					
ARBON TETRACHLORIDE	10 U	10 U	Ιου	10 Ū	10 U	10 0	10 U	10 U	10 U	10 U	iou
FC-11	10 Ü	10 U	10 U	10 Ü	10 U	10 U	10 U	100	10 U	10 U	10 U
FC-12	10 UJ	10 UJ	10 U)	10 UJ	1010	10 17	10 U	IOU	10 U	10 U	10 U
HLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U
HLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROETHANE	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U	10 U	10 U .	10 U
HLOROFORM	10 U	10 U	10 U	10 Ü	10 U						
HLOROMETHANE	10 (0)	10 (1)	10 UJ	10 UJ	10 UJ	10 U					
IS-1,2-DICHLOROETHENE	10 U	10 U	10 Ú	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü
IS-1,3-DICHLOROPROPENE	10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ú
YCLOHEXANE	10 Ü	10 U	10 Ü	100	10 U	10 U	10 Ü	10 U	10 Ų	IOU	10 U
THYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	io U	10 U	10 U	10 U	10 U
OPROPYLBENZENE -	10 U	10 U	10 U	10 U	10 Ú	10 U					
I-DICHLOROBENZENE	10 U	TO Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U	ţō U	10 U
ETHYL ACETATE	10 ()	10 U	10 U	10 U	100	10 UJ	10 UJ	10 UJ	10 (1)	to UJ	10 UJ
ETHYL N-BUTYL KETONE	10 U	10 U	10 U	10 U	10 U	10 M	10 (1)	10 UJ	10 UJ	10 UJ	10 UJ
ETHYL TEXT-BUTYL ETHER (MTBE)	10 (7)	10 M	10 UJ	10 UJ	10 (7)	10 U	10 U	10 UJ	10 M	10 W	10 UJ
ETHYLCYCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLENE CHLORIDE	10 U	10 U	10 U	10 U	40	10 U					
TYRENE (MONOMER)	10 U	10 U	10 U	100	10 U	100	10 U				
ETRACHLOROETHENE (PCE)	10 U	10.0	10 U	10 U	10 U	10 U	10 U	10 U	38	10 U	10 U
OLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10.0	10 U	10 U	10 U	10 U
RANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
INYL CHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)	10 U	10 U	10 U	10 U	10 Ŭ	10 Ü	iou	10 U	10 U	ได้บั	

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP155-02	GP155-03	. GP156-01	GP156-02	GP157-01	GP157-02	GP157-03	GP158-01	GP158-02	GP159-01
				•					-	
Property Address	5024 Chase	-5024 Chase	5024 Chase	5024 Cham	5023 Chase	5023 Chase	5023 Chase	5023 Chase	5023 Chase	. 5023 Chase
Sample Date	1/9/2004	1/9/2004	1/9/2004	1/9/2004	1/7/2004	1/7/2004	1/7/2004	1/8/2004	1/8/2004	1/8/2004
Depth Interval	11.5-12.5	15.5- 16.5	4.4-5.5	11.5-12.5	3.5-4.5	11.5- 12.5	15.5- 16.5	2.5-3.5	17.5- 18.5	4.5-5.5
1.1.1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 Ü	10 U	11 U	6.1	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 Ü	10 Ü	10 U	10 U	10 Ü	10 U	11.0	10 U	10 U
,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	IIU	10 U	10 U
, 1-DICHLOROETHANE	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	110	10 U	10 U
,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 Ü	10 U	10 U
2.4-TRICHLOROBENZENE	10 Ü	10 U	_ 10 U	10 0	10 U	10 U	10 U	110	10 U	10 U
,2-DIBROMO-1-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ	11 UJ	10 UJ	10 UJ
2-DIBROMOETHANE	J0 U	10 U	100	10.0	10 U	10 U	10 U	31 Ų	10 U	10 U
2-DICHLOROBENZENE	10.U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
,2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	lo U	10 U	11 U	10 U	10 U
2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11.0	10 U	10 U
4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
2-BUTANONE	10 W	10 UJ	10 UJ	10 UJ	10 U	10 U	10 U	4.7	10 U	10 U
-METHYL-2-PENTANONE	10 UJ	10 UJ	. 10 W	10 UJ	10 U	10 U	10 U	11 Ų .	10 U	10 U
ACETONE	81	7.3	10 UJ	10 UJ	3 J	5 J	6 J	. 22	10 U	10 U
BENZENE	10 U	10 U	10 U	10 U	10 U	10.U	10 U	IL U	10 U	J0 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
ROMOFORM	10 U	10 Ü	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
ROMOMETHANE	10 (1)	10 UJ	10 03	10 UJ	10 U	10 Ų	10 Ü	11 U	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10,U	11 U	10 U	10 U
FC-11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
FC-12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	ΙŲ	10 U	10 U
HLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	100	-10 U	. 10 U	IOU	I) Ü	1002	10 U
HLOROBENZENE	10 U	10 U	10 U	10 U	10 U	เอบ	10 U	IJŪ	10 U	10 U
HLORODIBROMOMETHANE	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	- II U -		
CHLOROETHANE	10 U	100	10 U	10 U.	10 U	10 U	-10 U	IIU	10 U	10 U
THLOROFORM	10 U	10 U.	10 U	JOU	10 U	10 U	100	. II U	_ 10 U	10 U
THLOROMETHANE	10 U	_10 Ü	10 U	. 10 U	10 U	10 U	10 U	· I1 U .	. 10 U	10 U
LIS-1,2-DICHLOROETHENE	10 Ü	10 U	10 U	10 U .	10 Ü	10 Ü	10 U	11 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 Ü	10 U	11 U	10 U	10 U
THYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
SOPROPYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
M-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
METHYL ACETATE	10 UJ	10 UJ	10 UJ	10 (7)	10 UJ	10 UJ	10 UJ	11 UI	10 UJ	10 ŪJ
METHYL N-BUTYL KETONE	10 UJ	10 UJ	10 W	10 UJ	100	10 U	10.0	110	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10.03	10 UJ	10 01	េយ	10 U	10 U	10 U	110	10 U	10 U
METHYLCYCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 0	10 U	10 U
METHYLENE CHLORIDE	10 D	10 U	10 U	10 U	10 U	10 U	10 U	11 0	10 U	10 U
TYRENE (MONOMER)	10 U	100	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
ETRACHLOROETHENE (PCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü	11 0	10 U	10 U
RANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11.0	10 U	10 U
RANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 Û
/INYL CHLORIDE										

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Fleid Seemis ID	GP159-02	GP160-01	CP160-02	GP160-03	GP161-01	GP161-01DUP	GP161-02	GP162-01	GP162-02	GP163-01
		91 100-01	G1 140-V2	- GE 160-65	- G. 141-41	01101-01001			07145-92	01,000,
•					}					
•		!								
Property Address	5023 Chase	5023 Chase	5023 Chase	5023 Chase	5126 Walnut	5126 Walnut	5126 Walnut	5126 Walmut	5126 Walnut	5126 Wakuut
Sample Date	1/8/2004	1/8/2004	1/8/2004	1/8/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004
Depth Interval	12.5-13.5	7.5-8.5	12.5-13.5	17.5-18.5	6.5-7.5	6.5-7.5	19.5- 20.5	6.5-7.5	13.5- 14.5	4.5- 5.5
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	8.7	10 U	10 U	10 U	11 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	100	10 U	10 U	10 U	10 U	10 U	. 10 U	11 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
I_I-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	110	10 W	10 UJ
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 W	10 UJ	10 UJ	11 W	10 W	10 UJ
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 UJ	10 UJ	រួចឃ	10 W	10 R	Į0 Ř	10 R	IIR	10 R	10 R
1,2-DIBROMOETHANE	10 U	10 U	10 Ų	10 Ü	10 U	10 U	10 U	11 U	10 U	10 U
1,2-DICHLOROBENZENE	10.0	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
1,2-DICHLOROETHANE	100	J0 U	10 U	ŲΟĮ	10 U	10 0	10 U	11 U	10 U	10 U
1,2-DICHLOROPROPANE	100	10 U	10 U	100	10 U	10 U	10.U	110	10 U	10 U
1,4-DICHLOROBENZENE	100	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
2-BUTANONE	100	10 U	10 U	100	10 U7	10 UJ	10 UJ	11 UJ	10 UJ	10 W
4-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
ACETONE	4.7	3 3	3 ]	31	ได้บั	10 UJ	10 00	11 W	10 UJ	10 UJ
BENZENE	100	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U	J0 U	10 U	10 U	10 U	11 U	10 U	10 Ų
BROMOMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	lo U	10 U
CARBON DISULFIDE	10 U	10 U	10 U	100	10 U	10 U	10 U	11 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 0	10 U	10 U
CFC-11	10 U	10 U	10 U	10.0	10 U	10 U	10 U	110	10 U	10 U
CFC-12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113) CHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 W	110	10 M	10 UJ
CHLORODIBROMOMETHANE	10.0	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
CHLOROETHANE CHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 0	10 Ü
CHLOROFORM	10 U	10 U	10 U	1017	10 U	10 U	10 U	110	10 U	10 U
CHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	100	10 U	110	10 U	10 U
CIS-1,2-DICHLOROETHENE	10 U	10 U	100	10 U	10 U	10 U	10 U	110	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	100	10 U	10 U	10 U	10 U	110	100	10 U
CYCLOHEXANE	10 U	100	10 U	10 U	10 U	100	10 W	110	10 10	10 UJ
ETHYLBENZENE	100	10 U	10 U	10 U	10 0	10 U	10 U	110	10 U	10 0
SOPROPYLBENZENE	100	10 U	10 U	100	100	100	10 U	110	100	100
M-DICHLOROBENZENE	10 U	100	10 U	10 0	100	10 0	10 U	110	10 U	10 U
METHYL ACETATE	10 UJ	10 00	10 UJ	10 UJ	10 03	10 07	10 00	11 07	10 UJ	10 00
METHYL N-BUTYL KETONE	10 U	10 07	10 U	10 03	100	10 0	10 U	110	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	10 U	100	10 10	10 107	10 10	1100	10 00	10 W
METHYLCYCLOHEXANE	10 U	10 U	10 U	100	10 U	10 U	10 10	11 0	10 00	10 W
METHYLENE CHLORIDE	10 U	10 U	10 U	2 1	30	2 Ü	10 U	iiŭ	10 U	10 U
STYRENE (MONOMER)	10 U	100	10 U	100	10 U	10 U	10 U	11 0	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	100	10 U	100	10 0	10 U	10 Ü	110	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	100	10 0	10 U	10 U	110	10 U	10 U
TRANS-1,3-DICHI,OROPROPENE	10 U	10 U	10 U	10 U	10 0	10 U	1017	1111	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	100	10 U	100	10 U	110	10 U	10 U
VINYL CHLORIDE	10 U	100	10 U	100	100	iou	10 U	110	10 U	10 U
XYLENES (TOTAL)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	110	10 Ú	10 U

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP163-02	GP1 <del>64-</del> 01	GP164-02	GP165-01	GP165-02	GP166-01	GP166-02	GP167-01	CP167-02	CP168-01
	1			1						Į.
	1								'	
	i	1		1						l
roperty Address	5126 Walnut	5126 Walnut	5126 Walnut	5126 Walnut	5126 Walnut	5126 Wahrut	5126 Walnut	- 4935 Belment	4935 Belment	. 4935 Belinge
ample Date	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	[2/]1/2003	12/11/2003	12/11/2003
epth Interval	10.5-11.5	2.5- 3.5	13.5- 14.5	3.5- 4.5	95-10.5	8.5- 9.5	19.5- 20.5	6.5-7.5	15.5-16.5	55-65
1,1-TRICHLOROETHANE	10 U	10 U	10 U	] 10 Ų	10 U	10 U	10 U	- 10 U -	10 U	IOU.
1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	. IOU .	10 U
1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	.:10 U
1-DICHLOROETHANE	10 U	10 Ü	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U
1-DICHLOROETHENE	10 UJ	10 U	10 UJ	10 U	10 U	10 U	. 10 UJ	10 U	10 ปี	10 U
2,4-TRICHLOROBENZENE	10 W	10 W	10 UJ	10 UJ	10 UJ	10 M	10 UJ	10 U	- 10 U	10 U
2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 R	10 R	10 R	10 R	10 R	10 R	10 R	10 03	10 03	10 U
2-DIBROMOETHANE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U
2-DICHLOROBENZENE	10 Ü	10 U	10.0	10 U	10 U	10 U	10 U_	10 U	- 10 U	10 U
2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 W	10 UJ	10 UJ
2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	- 10 U	10 U
4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	- 10 U
BUTANONE	10 UJ	- 10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U
METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 W	10 UJ	10 U
CETONE	21 J	10 W	10 ÚJ	10 UJ	10 UJ	10 UJ	10 UJ	- 10 W	10 W	10 U
ENZENE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U
ROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U-	10 U		
ROMOFORM	10 U	100	10 U	10 Ų	10 U	10 U	10 U	10 UJ	10 UJ	10 U-
ROMOMETHANE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U
ARBON DISULFIDE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
FC11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 UJ	10 UJ
FC-12	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLORINATED FLUOROCARBON (FREON 113)	10 UJ	10 U	10 ÚJ	IOU	10 U	10 U	10 W	10 U	10 U	10 U
HLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10,0	10 Ü	10 U	10 U
HLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10.0	10 U	10 U	10 Ü	10 U	10 U
HLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROFORM	IOU	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ
IS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	IOU
2S-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	100	- 10 U	10 U
YCLOHEXANE	10 W	10 U	10 UI	10 U	10 U	10 U	10 UJ	_ 10 U	10 U	10 U
THYLBENZENE	10 U	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U
OPROPYLBENZENE	10 U	10 Ų	10 U	. 10U	100	10 U				
1-DICHLOROBENZENE	10 U	10 U	10 U	10 Ü	10 U	10 U	10 U	- 10 U	10 U	10 U
METHYL ACETATE	10 m	10 UJ	10 UJ	10 UJ	10 UJ	~ 10 UJ	10 UJ	_ 10 W	10 UJ	10 U
ETHYL N-BUTYL KETONE	10 U	10 Ü	10 U	10 Ü	10 U	10 U	10 U	10 W	10 UJ	10 U
ETHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 UJ	10 UJ	10 UJ	10 ÚJ	10 UJ	10 UJ -	- 10 Ü	10 U	10 UJ
ETHYLCYCLOHEXANE	10 UJ	10 U	10 U1	10 U	10 U	- 10 U	10 UJ	_ 10 U	10 U	10 U.
TETHYLENE CHLORIDE	10 U	7 U	10 U	4 U	4 U	5 U	10 U	10U	10 U	10 U.
TYRENE (MONOMER)	10 U	10.0	10 U	10 U	. 10 U	10 U	. 100	10 U		10 U
ETRACHLOROETHENE (PCE)	10 U	10 U	10 U	10 U	10 U	10 U	_10 U	10 U	10 U	10 U
OLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,2-DICHLOROETHENE	. 10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,3-DICHLOROPROPENE	100	10 U.	10 U	10 U	JOU .	10 U.	. 10 U	100	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U -	10 U	10 U	JO Ü	10 U	10 U	100	10 U	10 U
INYL CHLORIDE	10 U	10 U	10 U	tou	10 Ü	10 U	10 U	10 U	10 U	10 Ü
(YLENES (TOTAL)	10 U	10 U	10 Ü	10 Ü	100	10 Ü	10 U	10 U	100	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Fleid Sample ID	GP168-02	GP168-03	GP168-03DUP	GP169-01	GP169-02	GP170-01	GP170-01DUP	GP170-02	GP171-01	GP171-02
	1									
				1						
Property Address	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmint	4935 Belmont	4935 Belmont
Sample Date	12/11/2003	12/11/2003	12/11/2003	12/16/2003	12/16/2003	12/16/2003	.12/16/2003	12/16/2003	12/16/2003	12/16/2003
Depth Interval	11.5-12.5	22.5- 23.5	22.5- 23.5	1.5- 2.5	14.5- 15.5	6.5-7.5	6.5-7,5	18.5- 19.5	8.5- 9.5	24.5- 25.5
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	12 U	. 10 U	10 U	10 U	10 U	10 U	10 U
,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	เดบ
,1,2-TRICHLOROETHANE	10 U	10 U	10 U	12 U	10 U	100	10 U	10 U	100	10 U
1-DICHLOROETHANE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
,1-DICHLOROETHENE	10 U	10 U	ίου	12 U	10 U	10 U	10 U	10 U	. 10 U	10 U
2.4-TRICHLOROBENZENE	100 .	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U.	10 U	10 U	12 U	10 U	100	10 U	10 U	10 U	10 U
2-DIBROMOETHANE	10 U	10 U	. 10 U	12 U	10 U	100	10 U	10 U	10 U	10 U
2-DICHLOROBENZENE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DICHLOROETHANE	10 UJ	10 UJ	10 UJ	12 UJ	10 W	10 UJ				
2-DICHLOROPROPANE	100	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
4-DICHLOROBENZENE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
BUTANONE	10 U	10 U	10 U	12 UJ	10 UJ	10 U1	10 UJ	10 W	10 W	10 UJ
-METHYL-Z-PENTANONE	10 Ü	10 U	10 U	12 UJ	10 UJ	2J .	10 UJ	10 W	10 W	10 UJ
CETONE	31	10 U	5 J	12 UJ	13 UJ	נטון	3 UJ	4 W .	10 W	8 W
ENZENE	10 U	10 U	100	" 12 U	10 U	J0 U	10 U	10 U .	10 U	10 U
ROMODICHLOROMETHANE	10 U	10 U	" 10 U	12 U	10 U	10 U	- 10 Ü	10 U	10 U	10 U
ROMOFORM	10 U	10 U	100	12 U	10 U -	10 U	10 U	. 10 U	10 U	10 U
ROMOMETHANE	10 U	J0 U	10 U	12 U	io U	- 10U	10 U	10 U	to U	10 U
ARBON DISULFIDE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10U	10 U	- 10 U
FC-11	10 UJ	10 UJ	10 UJ	12 UJ	10 UJ	10 UJ	10 UJ	_ 10 UJ	i to UJ:	10 UJ
FC-12	10 U	10 U	10 U	12 UJ	10 UJ	10 UI	10 UJ	10 UJ	10 UJ	I0 UJ
HLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	12 U	10 U	10 U	10 U	. 10 Ü	10 Ü	- 10 U
HLOROBENZENE	10 U	10 U	10 Ŭ	12 U	10 U	10 U	10 0	10 U	10 U	10 U
THLORODIBROMOMETHANE	10 U	10 U	10 U	12 Ü	10 U	10 U	10 U	IOU	10 U	10 U
HLOROETHANE	10 U	10 U	10 U	12 U	10 U	U OL	10 U	100	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROMETHANE	10 UJ	10 UJ	10 UJ	12 UJ	10 UJ	10 (1)	- 10 UJ	10 UJ	10 W	IO O1
CIS-1,2-DICHLOROETHENE	10 U	10 U	10 U	12 U	10.0	10 U				
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	- 10 U	_ 10 U	10 U
YCLOHEXANE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	- 10 Ü	~10 U	-10 U
THYLBENZENE	10 U	10.U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
SOPROPYLBENZENE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 Ü	10 U
A-DICHLOROBENZENE	10 U	10 U	10 U	12 Ü	10 U	10 U	10 U	IO U	10 U	10 U
METHYL ACETATE	10 U	J0 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
AETHYL N-BUTYL KETONE	10 U	10 U	10 U	12 UJ	10 03	10 UJ	10 UJ	10 UJ	10 (1)	10 UJ
AETHYL TERT-BUTYL ETHER (MTBE)	10 (J)	10 UJ	10 UJ	12 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 W	10 UJ
METHYLCYCLOHEXANE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	
METHYLENE CHLORIDE	10 U	10.0	10 U	12 U	3.7	10 U	10 U	10 U		UU
TYRENE (MONOMER)	10 U	10 U	10 U	12 U	10 U	10 U	100	10 U		.10 U.
ETRACHLOROETHENE (PCE)	10 U	10 U	10 U	12 U	10 U	100	10 U	10 U	10 U	
OLUENE	10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	12 U	10 U			10 U	100	
RANS-1,3-DICHLOROPROPENE	. 10 U	10 U	10 U	12 U	10 U	10 U	10 U	10 U		10 U
RICHLOROETHENE (TCE)	10 U	10 U	10 U	12 U	10 U	10 U	10 0	10 U	10 U	10 U
/INYL CHLORIDE	10 U	10 U	10 U	12 U 12 U	10 U	10 U	100	10 U	10 U	100

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Samula ID	GP172-01	GP172-02	GP173-01	GP173-01DUP	GP173-02	GP173-03	GP174-01	GP174-02	GP175-01	GP175-02
race order to	- Gri/2-Gr	G2172-02	V11/24	011/0-31001	1	011.0.00	5,7,7,5			
	1									
Property Address	287.4 Hitchouck	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchoock	2824 Hitchcock
Sample Date	4/14/2004	4/14/2004	4/14/2004	4/14/2004	4/14/2004	4/14/2004	4/13/2004	4/13/2004	4/14/2004	~~~~~4/1,4/2004
Depth Interval	3.5- 4.5	10.5- 11.5	3.5-4.5	3.5-4.5	8.5- 9.5	20.5- 21.5	8.5-9.5	14.5-15.5	3.5-4.5	18.5- 19.5
1,1,1-TRICHLOROETHANE	110	Ìίΰ	ΠŪ	10 U	10 U	11 U	10 U	10 U	13 U	10 U
1,1,2,2-TETRACHLOROETHANE	11.0	110	ווע	10 Ü	10 U	טוו	10 U	10 U	13 U	10 U
1,1,2-TRICHLOROETHANE	110	11 0	יווע	10 U	10 U	11.0	10 U	LO U	13 U	10 U
1,1-DICHLOROETHANE	110	11 U	11.0	10 U	100	ווט	10 U	10 U	13 U	10 U
1,1-DICHLOROETHENE	11 U	11 U	i) U	10 U	10 U	11 U	10 U	10 U	13 U	10 U
1,2,4-TRICHILOROBENZENE	11 0	110	110	10 U	10 U	11 U	10 U	10 U	13 U	10 U -
1,2-DIBROMO-3-CHILOROPROPANE (DBCP)	11 U	11 U	11 U	10 U	10 U	110"	10 U	10 U	13 U	To n
1,2-DIBROMOETHANE	11 U	11 U	11 U	10 U	10 U	11 U	10 U	10 U	13 U	10 U
2-DICHLOROBENZENE	11 U	11 U	110	10 U	10.0	11.0	10 U	10 U	13 U	10 U
1,2-DICHLOROETHANE	11 U	11 U	110	10 U	10 Ü	11 0	10 U	10 U	13 U	10 U
1;2-DICHLOROPROPANE	11 U	110	110	10 U	10 U	11 U	10 U	10 U	13 U	10 U
1,4-DICHLOROBENZENE	11 U	110	11 U	10 Ü	10 U	11 U	10 U	10 U	13 U	10 U
2-BUTANONE	11 U	11 U	11 0	10 U	10 U	110	10 U	10 U	13 U	10 U
L-METHYL-2-PENTANONE	11 U	11 U	11 0	10 U	10 V	11 U	10 U	10 U	13 U	10 U
ACETONE	27	11 U	1]	12	10 U	110	10 U	9.1	13 U	10 U
BENZENE	11 0	11 U	11 0	10 U	10 U	11 U	10 U	10 U	13 U	10 U
BROMODICHLOROMETHANE	11 U	11.0	11 U	10 U	10 U	11 U	10 U	10 U	13 U	10 U
BROMOFORM	11.0	11 0	110	10 U	10 U	11 U	10 U	10 U	13 U	10 U
BROMOMETHANE	עוו	11 U	11 U	10 U	10 U	11.0	10 U	10 U	13 U	10 U
CARBON DISULFIDE	11 U	11 U	11 0	10 U	10 U	11.0	10 U	10 U	13 Ü	10 U
CARBON TETRACHLORIDE	11.0	11 0	110	10 U	10 U	11.0	100	10 U	13 U	10 U
CFC-11	110	110	110	10 U	10 U	11 0	1000	10 07	13 U	10 U
CFC-12 CHLORINATED FLUOROCARBON (FREON 113)	11 U	110	110	10 Ü	10 U	110	10 U	10 U	13 U	10 U
CHLOROBENZENE	11 U	110	110	10 U	10 U	110	10 U	100	13 U	10 U
CHLORODIBROMOMETHANE	11 U	110	110	10 U	10 U	110	10 U	100	13 U	10 U
CHLOROETHANE	11 0	11 U	110	10 U	10 U	110	10 U	100	13 U	10 U
CHLOROFORM	11 0	110	110	10 U	10 U	11 0	10 U	10 U	13 U	10 U
CHLOROMETHANE	110	110	110	10 U	100	11 0	10 U	100	13 U	10 U
CIS-1,2-DICHLOROETHENE	110	11 U	110	10 U	10 U	11 Ü	10 U	10 U	13 U	10 U
CIS-1.3-DICHLOROPROPENE	11 0	110	110	10 U	10 U	110	10 U	10 U	13 U	10 U
CYCLOHEXANE	iiū	11 U	ii Ü	10 U	10 U	11 Ü	10 U	10 Ü	13 U	10 Û
ETHYLBENZENE	110	11 U	11 U	10 U	10 U	110	10 U	10 U	13 U	_10 U
SOPROPYLBENZENE	iiù	11 U	ΪΪŪ	10 U	10 U	110	10 U:	10 U	- 13 U	10 U
M-DICHLOROBENZENE	11 U	iiù	11 0	10 U	100	110	10 U	10 U.	13 U	10 Ü
METHYL ACETATE	110	iiu	11 U	. 10 U	10 U	11_U	10 U	10 Ü	13 U	10 U
METHYL N-BUTYL KETONE	11 U	11 Ú	11 U	10 U	10 U	110	10 U	10 U	13 Ü	10 U
METHYL TERT-BUTYL ETHER (MTBE)	110	11.0	11 U	10 0	10 U	11 U	10 U	10 U	13 U	10 U
METHYLCYCLOHEXANE	11 U	11 U	.11 U	10 U	10 U	110	10 U	10 U	13 U	10 U
METHYLENE CHLORIDE	11 U	ווע	- 110	10 U	10 U	110	10 U	10 U	13 U	10 U
STYRENE (MONOMER)	110	11 U	11.0	- 10 U	10 U	11 U	10 U	10 U	13 U	10 U
TETRACHLOROETHENE (PCE)	110	11 U	11 0	10 U	10 U	11 U	10 U	10 U	13 U	10 Ü
TOLUENE	11 U	11 U	11 U	10 U	10 U	11 U	10 U	10 U	13 U	10 U
TRANS-1,2-DICHLOROETHENE	110	11 U	11 Ü	IO U	10 U	11.0	10 U	10 U	13 U	10 U
TRANS-1,3-DICHLOROPROPENE	11.0	- 11 U	11 U	10 U	10 U	11 0	10 U	10 U	13 U	10 U
TRICHLOROETHENE (TCE)	110	11 U	11 U	(0 Ü	10 U	11 U	10 U	10 U	13 U	10 U
VINYL CHLORIDE	11 U	11 U	11 U	10 U	100	11 U	10 U	10 U	13 U	10 U
XYLENES (TOTAL)	11 U	110	ו יי טוו	10 U	10 Ü	นัก	10 U	10 U	13 U	10 U

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

72.140	07466.00		·							
Field Sample ID	GP176-01	GP176-02	GP177-01	GP177-02	GP177-03	GP178-01	GP178-02	GP178-03	GP179-01	GP179-02
			ŀ			1			1 1	
Property Address	2824 Hitchcock	2824 Hütchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2754 Maple	2754 Maple	2754 Maple	2754 Maple	2754 Maple
Sample Date	4/13/2004	4/13/2004	4/13/2004	4/13/2004	4/13/2004	4/8/2004	4/8/2004	4/8/2004	4/8/2004	4/34 MADE
Depth Interval	1,5-2,5	13.5-14.5	45-55	11.5-12.5	15.5- 16.5	5.5-6.5	9.5- 10.5	15.5-16.5	3.5-4.5	10.5-11.5
1,1,1-TRICHLOROETHANE	10 U            U	10 Ü	10 U	10 U						
1,1,2,2-TETRACHLOROETHANE	10 U            Ŭ	10 U	10 U	10 U						
1,1,2-TRICHLOROETHANE	10 U	10 Ü	12 Ü	10 U	10 U	10 U .				
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	ΙΟŪ	10 U	12 Ü	10 Ü	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	100	10 U	12 U	io U	10 U	10 Ü
1,2,4-TRICHLOROBENZENE	10 U	ioti	12 Ü	IO U	10 Ü	10 U				
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	100	12 U	IO U	10 U	10 U				
1.2-DIBROMOETHANE	10 U            U	10 U	10 U	10 U						
1,2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	IO U	10 U	12 U	10 U	_10 U	10 U
1,2-DICHLOROETHANE	10 U	Jo U	10 U	10 U	IO U	10 U	12 U	10 U	10 U	10 U
1,2-DICHLOROPROPANS	10 U            U	10 U	10 U	10 Ü						
I.4-DICHLOROBENZENE	10 U            U	10 U	10 U	10 U						
2-BUTANONE	10 U	100	10 U	10 U	10 U	10 (7)	12 UJ	10 UJ	low	10 UJ
4-METHYL-2-PENTANONE	10 U	10.03	12 UJ	10 UJ	10 (1)	[0 (J)				
ACETONE	10 U	7,1	10 U	7.3	100	10 U	12 U	10 U	10 U	10 U
BENZENE	10 U            U	IQ U	10 U	10 U						
BROMODICHLOROMETHANE	10 U            U	10 U	10 U	10 U						
BROMOFORM	10 U	100	10 U	10 U	10 U	10 U7	12 UJ	10 UJ	10 UJ	10 01
BROMOMETHANE	100	10 U            U	10 U	10 U	10 U					
CARBON DISULFIDE	10 U	10 U	10 U	100	10 U	10 U	12 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 0	10 U	10 U	10 U	12 U	10 U	10 U	10 U
CFC-11	10 U	10 Ú	10 U	10 U	10 U	10 U	12 U	10 U	10 U	10 U
CFC-12	10 UJ	10 R	12 R	10 R	IOR	10 R				
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	JO U	10 U	12 U	10 UJ	10 (1)	10 UJ
CHLOROBENZENE	10 U            U	10 U	10 U	10 U						
CHLORODIBROMOMETHANE	10 U	100	10 U	10 U	10 U	10 U	12 U	ប្រប	10 U	10 U
CHLOROETHANE	10 U	J0 U	10 U	10 U	100	10 U	12 U	10 U	10 U	10 U
CHLOROFORM	10 U            U	10 U	10 U	100						
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	10 U	100	10 U	10 U	10 U	10 U	12 UJ 12 U	10 UJ	10 (7)	10 UJ
CIS-1,2-DICHLOROPENE	10 U	100	12 U	10 U	10 U	10 U				
CYCLOHEXANE	100	10 0	10 U	10 U	100	10 00	12 07	10 U	10 0	100
ETHYLBENZENE	10 0	100	10 U	10 U	10 U	100	12 U	10 U	100	10 U
ISOPROPYLBENZENE	10 U	100	10 U	10 U	100	100	12 U	10 U	100	10 U
M-DICHLOROBENZENE	10 U	100	100	100	100	10 U	12 U	10 U	100	10 U
METHYL ACETATE	10 U	100	10 0	10 U	10 U	10 00	ເຊ້ິ້ນັ	10 (7)	រើម	10 U
METHYL N-BUTYL KETONE	10 U	100	10 0	10 U	10 0	10 07	12 07	10 01	10 00	10 UJ
METHYL TERT-BUTYL ETHER (MTBE)	100	100	100	10 Ü	100	100	12 U	10 U	100	10 U
METHYLCYCLOHEXANE	10 U	100	10 U	10 U	10 U	10 U	12 Ü	10 U	100	10 U
METHYLENE CHLORIDE	10 U	10 U	10 U	10 U	100	5.7	12 Ü	10 U	iõŭ	10 U
STYRENE (MONOMER)	ΙΟŪ	10 U	10 U	10 U	10 Ŭ	10 U	12 U	10 U	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U            U	10 U	10 U	10 U						
TOLUENE	10 U	10 U	10 U	10 Ü	10 U	10 U	12 Ü	10 U	iou	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	iou	10 U	10 U	10 U	12 U	10 U	100	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 0	10 U	100	10 U	12 U	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	10 Ŭ	10 U	10 U	10 U	10 U	12 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U            U	10 U	10 U	10 U						
XYLENES (TOTAL)	10 U	10 U	10 U	10 U	IOU	10 U	12 U	10 Ü	10 U	10 U

#### Soil Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

										<u> </u>
Field Sample ID	GP179-03	GP179-03DUP	GP180-01	GP180-02	GP181-01	GP181-02	GP181-03	GP182-01	GP182-02	GP183-01
	i				1		1			1
	1 1				4					i
	· [									I
					1			}		
Property Address	2754 Maple	2754 Maple	2754 Maple	2754 Maple	2754 Maple	2754 Maple	2754 Maple	2315 Maple	2315 Maple	2315 Maple
Sample Data	4/8/2004	4/8/2004	4/8/2004	4/8/2004	4/8/2004	4/8/2004	4/8/2004	1/20/2004	1/20/2004	1/20/2004
Depth Interval	15.5-16.5	15.5- 16.5	55-65	11.5-12.5	45-55	10.5- [1.5	20.5- 21.5	3.5-1,5	18.5- 19.5	3.5-4.5
I, I, 1-TRICHLOROETHANE	10 U	10.0	10 U	13 U	10 U	11 U				
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	110
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	110
1,1-DICHLOROETHANE	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	13 U	10 U	110
1,1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	110
1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	110
	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	100	10 U	10 U	10 U	10 U	10 U	100	13 U	10 U	11 0
1.2-DICHLOROETHANE	100	10 U	1017	10 U	1011	10 U	100	13 U	10 U	110
1,2-DICHLOROPROPANE	100	10 U	100	10 U	10 U	10 U	10 U	13 U	10 U	110
1.4-DICHLOROBENZENE	100	10 U	10 U	10 U	100	10 U	10 U	13 0	10 U	11 0
2-BUTANONE	10 10	10 13	10 (1)	10 UJ	10 07	10 07	100	13 U	10 U	11 Ü
4-METHYL-2-PENTANONE	10 00	10 UJ	10 UJ	10 W	10 03	10 07	10 03	13 U	10 U	11 0
ACETONE	10 U	10 U	10 U	10 U	10 0	10 0	10 0	91	27	10.7
BENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11.0
BROMODICHLOROMETHANE	iou	10 U	10 U	10 U	10 0	10 10	10 0	13 0	10 U	11 0
BROMOFORM	10 U	10 UJ	10 UJ	10 10	10 U7	10 UJ	10 UJ	13 U	10 U	11.0
BROMOMETHANE	10.0	10 17	10 U	13 U	10 U	11 0				
CARBON DISULFIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 Ü	10 U	11 0
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 0	13 Ü	10 U	11 U
CFC-11	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U
CFC-12	10 R	10 R	10 R	10 R	10 R	10 R	10 R	13 U	10 U	11 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 ÜJ	10 01	10 UJ	10 U7	10 UJ	10 UJ	13 Ü	10 U	11 U
CHLOROBENZENE	10 U	10 U	10 U	JO U	10 U	10 U	10 U	13 U	10 U	11 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10 Ü	10 U	10 U	13 U	10 U	11 U
CHLOROETHANE	10 Մ	100	10 U	13 U	10 U	11 U				
CHLOROFORM	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U
CHLOROMETHANE	10 UJ	10 UJ	10 UJ	10 07	10 UJ	10 UJ	10 UJ	13 ប	10 U	11 U
CIS-1,2-DICHLOROETHENE	100	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	100	13 U	10 U	11 U
CYCLOHEXANE	10 U	10 U	10 U	10 Ú	10 U	10 U	10 U	13 U	10 U	11 U
ETHYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U
ISOPROPYLBENZENE M-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U
METHYL ACETATE	10 07	10 UJ	10 UJ	10 U	10 UJ	10 U	10 U	13 U	10 U	11 U
METHYL N-BUTYL KETONE	1007	10 UJ	10 10	10 (1)	10 111	10 (3)	10 03	13 U	10 U	11 U
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	10 (1)	10 (1)	10 U	10 U	10 U	13 U	10 W	2 J
METHYLCYCLOHEXANE	100	100	10 U	10 U	100	10 U	10 U	13 U	10 11	11 U
METHYLENE CHLORIDE	10 U	10 U	100	10 U	3 0	. 100	- 10 U	13 Ü	10 U	11 U
STYRENE (MONOMER)	10 0	10 U	1017	10 U	10 U	100	10 U	13 U	100	110
TETRACHLOROETHENE (PCE)	10 U	10 Ü	10 U	13 U	10 U	110				
TOLUENE	10 U	10 U	10 U	10 0	10 U	100	10 0	13 U.	10 U	11 0
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 Ü	10 U	100	13 U	10 U	_ :11.U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11'U :
TRICHLOROETHENE (TCE)	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	13 Ü	10 U	11 U
VINYL CHLORIDE	10 U	10 U	10 U	_ 10 U	10 U	10 U	10 U	13 U	10 U	11 U
XYLENES (TOTAL)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	13 U	10 U	11 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP183-02	GP183-03	GP184-01	GP184-02	GP184-02DUP	GP184-03	GP185-01	GP185-02	GP185-03	GP186-01
	1									
•						ŀ				
								i	1	•
Property Address	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple
Sample Date	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004	1/20/2004
Depth Interval	11.5-12.5	15.5-16.5	8.5- 9.5	14.5- 15.5	145-155	19.5- 20.5	2-3	7.5-8.5	17.5- 18.5	4.5-5.5
1.1.1-TRICHLOROETHANE	10 U	10 UJ	15 U	110	10 U	10 U				
1.1.2.2-TETRACHLOROETHANE	100	10 U	10 U	10 U	10 U	10 UJ	15 U	ווע	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	JOU -	10 U	10 U	10 U	10 UJ	15 U	11 U	10 Ü	_10 U
1,1-DICHLOROETHANE	10 U	10 U	10 Ü.	10 U	10 U	10 U	15 U	110	10 U	_10 U
I,1-DICHLOROETHENE	10 U	10 U	15 U	11 U	10 U	10 U				
1,2,4-TRICHLOROBENZENE	10 U	10 UJ	15 U	11 4	10 U	10 U				
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	10 UJ	15 U	11 0	10 Ü	10 U
1,2-DIBROMOETHANE	10 U	10 UJ	15 U	11 U	10 U	10 U				
1,2-DICHLOROBENZENE	10 U	10 U	10 U	100	10 U	10 UJ	15 U	11 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	10 U	15 U	11.0	10 U	10 U				
1,2-DICHLOROPROPANE	10 U	10 UJ	15 U	110	10 U	10 U				
I,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	100	10 UJ	15 U	11 U	10 U	10 U
2-BUTANONE	10 U	10 U	5 J	110	10 U	10 U				
4-METHYL-2-PENTANONE	10 U	10 UJ	150	11 U	10 U	. 10 U				
ACETONE	3.1	2 J	10 UJ	2 J	2 J	3 J	J6 J	11 W .	3 J	10 UJ
BENZENE	10 U	10 UJ	15 U	110	10 U	10 U				
BROMODICHLOROMETHANE	10 U	I 10 UI	15 U	11.0	10 U	10 U				
BROMOFORM	10 U	10 03	15 U	110	10 U	10 U				
BROMOMETHANE	. 10 U	10 U	10 U	10 U	10 U	10 U	15 U	110	10 U	10 U
CARBON DISULFIDE	10 U	10 U	10 Ü	10 U	10 U	10 U	15 U	110	10 U	10 U
CARBON TETRACHLORIDE	10 U	1000	15 U	110	10 U	10 U				
CFC-11	10 U	10 U	J0 U	10 U	10 U	IQ Ü	15 U	110	10 U	10 U
CFC-12	10 U	10 U	10 U	10 U	10 Ü	100	15 U	11 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	100	10 U	15 U	11 U	10 0	10 U
CHLOROBENZENE	J0 U	10 U	100	10 U	10 U	10 UJ	15 U	ווע	10 U	10 U
CHLORODIBROMOMETHANE	10 U	10 Ü	10 U	10 U	10 U	10 UJ	15 U	11 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 0	100	10 U	15 U	11 0	10 U	10 U
CHLOROFORM	10 U	IOU	15 U	เกษ	10 U	10 U				
CHLOROMETHANE	10 U	10 U	15 U	11 U	10 U	10 U				
CIS-1,2-DICHLOROETHENE	10 U	10 U	15 U	11 U	10 U ·	10 U				
CIS-1,3-DICHLOROPROPENE	10 U	10 UJ	15 U	11 U	10 U	10 U				
CYCLOHEXANE	10 U	10 UJ	15 U	11 0	10 U	10 U				
ETHYLBENZENE	10 U	10 UJ	15 U	iiŪ	10 U	10 U				
ISOPROPYL BENZENE	10 U	10 UJ	15 U	110	10 U	10 U				
M-DICHLOROBENZENE	10 U	10 UJ	15 Ü	ΪĮŪ	10 U	10 U				
METHYL ACETATE	10 U	10 U	10 U	ΙΟŪ	10 Ū	10 U	15 Ü	iiū	10 U	10 U
METHYL N-BUTYL KETONE	10 U	10 UJ	15 U	11 Ü	10 Ü	10 U				
METHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	5 J	10 U	10 U	10 10	4.7	11 U	10 UJ	10 U
METHYLCYCLOHEXANE	10 U	10 UJ	15 U	11 U	10 U	10 U				
METHYLENE CHLORIDE	10 U	10 Ü	10 Ü	100	10 U	10 U	15 U	11 0	10 Ü	10 U
STYRENE (MONOMER)	10 U	10 U7	15 U	110	10 U	10 U				
TETRACHLOROETHENE (PCE)	10 U	10 UJ	15 U	ΙΪ́Ū	10 U	10 U				
TOLUENE	10 U	10 UJ	15 U	11 U	10 U	10 U				
TRANS-1,2-DICHLOROETHENE	100	10 U	10 U	10 U	10 U	10 U	15 (1	ijŬ	10 U	10 U
TRANS-1,3 DICHLOROPROPENE	100	10 U	10 U	10 U	10 U	10 U7	15 U	11 0	10 U	10 U
TRICHLOROETHENE (TCE)	10 0	10 U	10 U	10 U	. 10 U	10 UJ	15 Ü	110	10 U	10 0
VINYL CHLORIDE	10 U	10 17	15 0	110	10 U	10 U				
XYLENES (TOTAL)	10 U	10 0	130	110	10 U	10 U				

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP186-02	GP187-01	GP187-02	GP188-01	GP188-02	GP189-01	GP189-01DUP	GP189-02	GP190-01	GP190-02
						. '				
			1		j				1	
Property Address	. 2315 Maple	5240 Belmont	5240 Belmont	5240 Belmant	5240 Belmont	5240 Belment	5240 Belmout	5240 Belmont	5240 Belment	5240 Belmout
Sample Date	1/20/2004	1/21/2004	1/21/2004	1/21/2004	1/21/2004	1/22/2004	. 1/22/2004 .	1/22/2004	1/22/2004	1/22/2004
Depth Interval	14.5- 15.5	1.5- 2.5	16.5- 17.5	3.5-4.5	17.5- 18.5	9.5- 10.5	9.5- 10.5	18.5- 19.5	-7-8	11.5- 12.5
1,1,1-TRICHLOROETHANE	10 Ü	12 U	36	51	100	10 U	10 U	10 U	3.1	10 U_
1,1,2,2-TETRACHLOROETHANE	_ 10 UJ _	12 U	10 U	. 14 UJ	10 U	10 U	10 U	10 UI	10 U	10 U
1,1,2-TRICHLOROETHANE	. 10 Û	- 12 Ü	. 10 U	14 UJ .	10 U	- 10 U	10 U	100	10 U	. 100
1,1-DICHLOROETHANE		12 U	4 J.	14 UJ	10 U	10 U	10 U	10 U	4 J	10 U
1,1-DICHLOROETHENE	10 U	12 U	10 U	14 UJ	100 -	100	10 U -	10 UJ	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 UJ	12 Ü	10 U	14 UJ	. 10 U	10 U	. JO U	10 UJ	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 UJ	12 U	10 U .	. 14 W	10 U	10 U -	. 10 U	10 U7	10 U	10 U
1,2-DIBROMOETHANE	10 01	12 U	10 U	14 UJ	10 U	- 10 U	10 U	10 UJ	10 U	10 U
1,2-DICHLOROBENZENE	10 m	12 U	10 U	14 UJ	. 10 U	10 U	. 10 U	10 W	10 U	10 U
1,2-DICHLORGETHANE	10 U	12 U	10 U	.14 UJ	េប	10 U	10 U	10 U	10 U	10 U .
1,2-DICHLOROPROPANE	10 U	12 U	10 U	14 UJ	10 U	10 U	10 U	10 U	10 U	10 U
I,4-DICHLOROBENZENE	10 03	12 U	10 U	14 UJ	10 U	10 U	10 U	. 10 LY	. 10 U	10 U
2-BUTANONE	10 U	12 U	10 U	14 UJ	10 U	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 W	12 U	10 U	14 UJ	IO U	to U	10 U	10 W	10 U	10 U
ACETONE	10 W	7.3	3.7	14 UJ	10 UJ	4 J	4.7	2 J	10 UJ	· 4J
BENZENE	10 U	12 U	10 U	14 UJ	10 U	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	12 U	10 U	14 W	ίου	10 U	10 U	10 U	10 U	10 U
BROMOFORM	10 U	12 U	10 U	14 UJ	10 U	10 U	10 U	10 U	10 Ü	10 U
BROMOMETHANE	10 U	12 U	10 Ü	14 UJ	10 U	10 U	10 U	10 U	10 U	10 U
CARBON DISULFIDE	10 U	- 12 U	. 10 U.	.14 U/ .	- 10 U	10 U	. 10 U		_ 10 U	10 U
CARBON TETRACHLORIDE	10 U	12 U	. 1017	14 LU	10 U	. 10 U	. 10 U.	-10 U	10 U	10 U
CFC-II	10 U	. 12 U -	10 U	. 14 UJ	10 U	. 10 U	10 U	-10 U	10 U	10 Lf
CFC-12	10 U	12 U	.10 U	14 UJ	10 U	10 U	. 10 Ü .	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U .	12 Ü	10 U.	. 14 UJ.	10 U	10 U	10 U	10 U _	10 U	10 U
CHLOROBENZENE	10 W _	12 U	10 U.	14 UJ	10 0	10 U	10 U	10111	10 U	. 10 U
CHLORODEROMOMETHANE	10 U	12 Ú	10 U	- 14 UJ	100	.10 U		10 U	_10 U	: _ 10 U:
CHLOROETHANE	10 U	12 U	10 U	.14 W	10U	- 10 U	10 U	- 10 U	10 Û	10 U
CHLOROFORM	10 U	12 U	100	14 UJ	10 U -	10 Ü	- 10 Ü	10 U	- IOU-	10 U
CHLOROMETHANE	10 U	12 U	10 U	. 14 UJ	10 0	10 U.	10 U	10 U.	10 U	10 U
CIS-12-DICHLOROETHENE	10 U	12 U	100	14 0	10 U	10 U	10 U	10 U	100	10 U
CIS-1.3-DICHLOROPROPENE	100	12 U	100	14 107	10 U	10 U	10 U	10 U	10 U	10 U
CYCLOHEXANE	10 U	12 U	100	14 UJ	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 UJ	12 U	10 0	14 UJ	10 Ü	10 U	10 U	10 UJ	10 0	10 U
SOPROPYLBENZENE	10 UJ	12 U	1017	14 07	10 U	10 U	10 U	10 UJ	10 U	10 U
M-DICHLOROBENZENE	10 UJ	12 U	10 0	14 UJ	100	100	10 U	10 UJ	10 0	10 U
METHYL ACETATE	10 U	12 U	10 U	14 UJ	10 0	10 U	10 U	10 U	10 U	10 U
METHYL N-BUTYL KETONE	10 171	12 U	100	14 UJ	1017	10 U	10 U	10177	10 U	10 U
METHYL TERT-BUTYL ETHER (MTBE)	10 13	12 U	10 10	14 111	1017	10 (1)	10111	10.01	10 U	10 (1)
METHYLCYCLOHEXANE	10 U	12 U	10 U	14 UJ	100	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	10 0	12 U	100	14 UJ	100	10 U	10 U	10 U	10 U	3 1
STYRENE (MONOMER)	10 177	12 0	10 Ü	14 UJ	10 U	10 U	10 U	10 01	10 U	10 U
TETRACHLOROETHENE (PCE)	10 UJ	12 U	100	14 07	100	10 0	10 U	10 UJ	100	10 U
TOLUENE	10 UJ	12 U	100	14 07	10 U	10 U	10 U	10 03	100	10 U
TRANS-1,2-DICHLOROETHENE	10 0	12 U	100	14 UJ	100	100	10 U	10 0	10 U	10 U
TRANS-1.3-DICHLOROPROPENE	10 U	12 0	10 17	14 UJ	10 U	100	10 ()	10 U	100	10 U
TRICHLOROETHENE (TCE)	10 U	12 U	100	14 UJ	100	100	10 U	10 U	100	10 U
VINYL CHLORIDE	10 0	12 U	100	14 07	10 U	10 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)	10 10	12 U	100	14 UJ	100	100	10 U	10 07	10 U	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Pield Sample ID	GP190-03	GP191-01	GP191-02	GP192	GP192-02	GP193	GP193-02	GP194	GP194-02	GP195
									1	
	İ			ļ				ł		
Property Address	5240 Belmont	5240 Belmont	5240 Belmont	2333 Wisconshi	2333 Whomida	2333 Whicansin	2333 Wisconshi	2333 Wisconsts	2333 Wisconsin	2333 Wisconinin
Sample Date	1/22/2004	1/21/2004	1/21/2004	12/9/2003	12/9/2003	12/10/2003	12/10/2003	12/9/2003	12/9/2003	12/9/2003
Denth Interval	14.5-15.5	35-45	13.5-14.5	55-65	15.5-16.5	45-55	23.5- 24.5	5.5-6.5	23.5- 24.5	2.5- 3.5
1,1,1-TRICHLOROETHANE	10 UJ	11 U	4.1	10 U	10 U	100	10 U	10 U	10 U	10 U
1.1.2.2-TETRACHLOROETHANE	10 UJ	110	10 03	100	100	10 U	10 0	-10 U	100	100
1.1.2-TRECHLOROETHANE	10 U	110	10 UJ	100	100	100	100	10 U	10 U	100
I.1-DICHLOROETHANE	10 W	110	7 3	10 U	100	1017	10 U	10 ()	10 U	10 U
1.1-DICHLOROETHENE	10 UJ	110	10 UJ	100	10 U	100	10 U	100	10 U	10 U
1.2.4-TRICHLOROBENZENE	10 UJ	110	10 UJ	100	10 U	10 U	10 U	10 0	10 U	10 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	110	10 (1)	10 U	1011	1017	10 U	10 (7	10 U	10 U
1.2-DIBROMOETHANE	10 UJ	11 0	10 (1)	100	10 U	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 UJ	11 0	10 03	10 U	10 U	100	10 U	1017	10 17	10 U
1,2-DICHLOROSENZENE	10 UJ	110	10 UJ	10 U	10 U	10 U	10 U	100	10 U	100
1.2-DICHLOROPROPANE	10 U	110	10 UJ	10 U	10 U	10 U	10 U	10 U	10 1	10 U
1.4-DICHLOROBENZENE	10 UJ	110	10 03	100	10 U	10 U	10 U	100	100	10 11
2-BUTANONE	10 UJ	110	10 UJ	10 U	10 0	10 U	10 U.	10 U	10 U	10 U
-METHYL-2-PENTANONE	10 U	110	10 UJ	10 U	10 U	10 U	10 U	10 U	100	. 10 U
ACETONE	47	11 07	2.7	10 U	10 U	10 U	10 U	- 10 U	100	5 J
BENZENE	- 1 10 tu	11 17	10 U	10 U	10U -	10 U	10 U	10 U	10 U	10 [J
BROMODICHLOROMETHANE	10 10	11.0	10 03	10 0	10 U	_10 U	1011	10 U	10 U	10 U
BROMOFORM	10 UJ	110	10 UJ	100	10 U	- 100	10 U	10 U	- 10 U	10 U
BROMOMETHANE	10 UJ	_ 11 U	10 UJ	10 U	100	- 10 U	- 10 U	10 U	100	_ 10 U
CARBON DISULFIDE	1010 _	110	_ 10 UJ	10 U	_ 10U -	10 U	- 10 U	10 U	100	10 U_
CARBON TETRACHLORIDE	10 (0)	1111	10 UJ	100	100	10 U	10 U.	. 10 U	_10 U	10 U
CFC-11	10 UJ	110	10 UJ	10 U.	100	1017	100			100
CFC-12	10 W	110	- 10 UJ	_ 10 U	10 U	100	10 U	100-	- 10 U -	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 UJ	110	10 UJ	10 U	100	10 U	10 U	- 10 U	10 U	- 10 U
CHLOROBENZENE	io uu.	110	10 UJ	10 U	10 U	10 U	10 U	iou	100	100
CHLORODIBROMOMETHANE	10 UJ	11.0	10 03	10 U	10 U	10 U	10 U	100	100	10 U
CHLOROETHANE	iour	110	10 UJ	10 U	10 U	10 U	10 U	10 U	100	1011
CHLOROFORM	10 10	110	10 UJ	100	100	10 U	10 U	10 U	- 100	10 U
THLOROMETHANE	10 LU	110	.10 03	100	10 U	10 U	- 10 U	_ 10 U	100	10 U
CIS-1,2-DICHLOROETHENE	10 U	110	10 UJ.	10 U	10 U	- 10 U	10 U	100	100	
CIS-1,3-DICHLOROPROPENE	10 W	110	10 UJ	10 U	. 10U	10 U	10 U	10 U	100	10 U
CYCLOHEXANE	10 W	11 U	10 UI	- 10 U	. 10 U	10 U	10 U	10 U	10 U	10 U
THYLBENZENE	10 LU	11 U	10 00	10 Ü	10 U.	10 U	10 U	10 U	10 U	. 10 U
SOPROPYLHENZENE	. 10 tu	. 110	. 10 UJ	10 U	10 U	-10 U	10 U	10 U	10 U	10 U
M-DICHLOROBENZENE	10 UJ	110	10 UI	10 U	10 U	10 U.	10 U.	10 U	10 U	10 U
METHYL ACETATE	10 UJ	11 Ü	10 W	10 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYL N-BUTYL KETONE	10 W	11 0	10 W	iou	10 U .	10 U-	10 U	10 U	10 U	10 U
METHYL TERT-BUTYL ETHER (MITBE)	10 10	110	10 W	10 Ü	10 U	100	10 U	10 U	10 U	iDU
METHYLCYCLOHEXANE	.10 UJ	11 U	. 10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	2 J	. 11 U	3.1	10 U	10 U	10 U	10 U	10 0	10 U	10 U
TYRENE (MONOMER)	10 UJ	11 U	10 UJ	10 U	1017	10 U				
TETRACHLOROETHENE (PCE)	10 UJ	110	10 UJ	100	10 Ü	10 U	10 U	10 U	100	10 U
TOLUENE	10 UJ		10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRANS-1.2-DECHLOROETHENE	10 UJ	11 Ŭ	10 UJ	10 U	10 U	10 U	10 U	10 U	10 Ü	10 U
TRANS-1.3-DICHLOROPROPENE	10 17	110	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U1	110	10 UJ	10 U	10 U	10 U	100	10 0	100	10 U
VINYL CHLORIDE	10 01	11 Ü	10 01	10 U	10 U	10 U	10 U	100	100	10 U
XYLENES (TOTAL)	10 UJ	110	10 UJ	10 U	10 U	10 U	10 U	10 U	IOU	10 Ú

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Plate Carmin III	CD104 05	Chro/	CD10/ 03	CTHO C 42	CONTRACT ASSOCIATION	CO.CO	CT0105 00			dines ( :
Field Sample ID	GP195-02	GP196	GP196-02	GP196-03	GP196-03DUP	GP197	GP197-02	GP198-01	GP198-02	GP199-01
			i '					i		
			i				•			
Property Address	2333 Wisconsin	2333 Wlacomatn	2333 Wisconsin	2333 Wisconsin	2333 Wisconsin	2333 Wisconsin	2333 Wisconsin	2333 Wisconsin	2333 Wisconsin	4947 Belmont
Sample Data Death Interval	12/9/2003	12/10/2003	12/10/2003	12/10/2003	12/10/2003	12/10/2003	12/10/2003	12/11/2003	12/11/2003	4/15/2004
.1.1-TRICHLOROETHANE	14.5- 15.5 10 U	5.5- 6.5 10 U	9.5- 10.5 10 U	27.5- 28.5 10 U	27.5- 28.5 10 U	9.5- 10.5	23.5- 24.5	1,5-2.5	11.5- 12-5	7.5-8.5
1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	100	10 U	10 U 10 U	10 U	10 U	10 U
1.2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U
.!-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100	100	10 U
,1-DICHLOROETHENE	iõÜ	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U :	10 U
2.4-TRICHLOROBENZENE	10 U	10 17	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 Ú	10 U	100	10 U	10 W	10 UJ	- 10 U:
.2-DIBROMOETHANE	10 U	10 U	10 U	10 U	10 U	100	10 U	10 U	10 0	10 U
2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 Ü	100	10 U	10 U	10 U	10 U
2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 LO	10 LU	10 U
2-DICHLOROPROPANE	10 U	10 U	10 U	IO U	10 U	10 U	10 U	10 U	10 U	-10 U _
4-DICHLOROBENZENE	10 U	10 U	100	10 U	10 U	10 U	10 U	10 Ú	10 U	10 U
BUTANONE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	IO UJ	10 UJ	10 U
-METHYL-2-PENTANONE	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	10 (1)	10 UJ	10 U:
CETONE	10 U	100	100	10 U	100	10 U	10 U	10 UJ	6J ::	16 -
IENZENE	10 U	JOU	10 U	10 U	10 U	10 U	100	LO U	10 Ü ::	10 U
ROMODICHLOROMETHANE	10 U	10 U		10 U	10 U	100	10 U	10 U	10 U	10 U
ROMOFORM	10 U	10 U	10 U	10 U	10 U	100	10 U	10 UJ	10 W	10 Ü
ROMOMETHANE	10 U	10 U	10 U	10 U	10 U	100	10 Ü	10 U	10 U	10 U
ARBON DISULFIDE	10 U	10 U	10 U	10 U	10 (1	10 U	10 U	10 U	-10 U	10 U:
ARBON TETRACHLORIDE	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
FC-11 FC-12	10 U	េប	10 U	10 U	10 U	10 U	10 U	10 LU	10 W	IO U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10.0	10 U	10 U	10 U	10 U	10 U	-10 U	2. 10 U
THLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10.0	10 U	10 U	10 U	10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 Ü	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U
HLOROETHANE	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U
HLOROFORM	10 U	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U
HLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
IS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U .	100 -	10 U	- 10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
YCLOHEXANE	Ιου	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
THYLBENZENE	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SOPROPYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü	10 U	10 U
1-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 Ü	10 U	10 U
AETHYL ACETATE	10 Ü	10 U	10 U	10 U	10 U	10 U	10 Ü	10 UI	10 UJ	10 U
METHYL N-BUTYL KETONE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 UJ	10 U
ÆTHYL TERT-BUTYL ETHER (MTBE)	10 U	10 U	10 Ų	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ETHYLCYCLOHEXANE	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U	10 Ü
ETHYLENE CHLORIDE	10 U	10 U	10 U	100	10 U	10 U	10 Ų	10 U	10 U	10 U
TYRENE (MONOMER)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ETRACHLOROETHENE (PCE). OLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 (1	10 U	10 U
	10 U	10 U	10 U	10 U	10 U	10 0	IO U	10 U	10 U	2 J
RANS-1,2-DICHLOROETHENE RANS-1,3-DICHLOROPROPENE	10 U	10.0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
/INYL CHLORIDE	10 U	10 U	10.0	10 U	10 U	10 U	10 U	10 U	10 U	10 U
(YLENES (TOTAL)	100	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP199-02	GP200-01	GP200-01DUP	GP200-02	GP201-01	GP201-02	GP201-03	GP202-01	GP202-02	GP203-01
									1	·
										Property North of
Property Address	4947 Belmont 4/15/2004	4947 Beimont 4/15/2004	4947 Belmont	4947 Belmont 4/15/2004	4947 Belmont 4/15/2004	4947 Belmont 4/15/2004	4947 Belment 4/15/2004	4947 Belmont 4/15/2004	4947 Belmont 4/15/2004	4935 Belmont 4/29/2004
Sample Date Depth Interval	17.5- 18.5	8.5- 9.5	4/15/2004 8.5- 9.5	13.5-14.5	6.5-7.5	10.5-11.5	165-17.5	10.5-11.5	21.5-22.5	3.5-4.5
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	100	10 U	IO U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	100	10 U	23 U	10 U	10 U	10 00	- 10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 17	23 U	- 10 U	- 10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	IOU	10 U	23 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 Ü	10 U	10 UJ	10 U	23 U	10 U	10 U	10 U	10 (1)
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	IO U	10 U	23 U	10 U	10 U	10 UJ	10 UJ
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 UJ	IO R
1,2-DIBROMOETHANE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 UJ	10 U
1,2-DICHLOROBENZENE	10 U	10 Ų	10 U	10 U	10 U	23 U	_10 U	10 U	10 UJ	10 U
1,2-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	100	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 Ü	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	IQ U	23 U	10 U	10 U	10 W	10 U
2-BUTANONE	10 U	10 U	10 U	10 U	10 U	14.7	10 U	10 U	10 U	10 UJ
4-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 W	10 U
ACETONE	10 U	10 U	6.1	9.1	10 U	27	10 U	10 U	13 J	10 UJ
BENZENE BENZENE	2 J	2 J	2 J	11	120	220	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE BROMOFORM	10 U	10 U	10 U	10 U	10 U	23 U 23 U	10 U	10 U	10 Ü	100
BROMOMETHANE	10 U	10 U	10 U	100	10 U	23 0	10 U	10 0	10 U	100
CARBON DISULFIDE	10 U	100	10 U	100	10 U	23 0	10 0	10 U	10 U	10 0
CARBON TETRACHLORIDE	10 U	100	10 U	100	10 U	23 U	10 U	100	10 U	100
CFC-11	10 U	10 U	10 U	10 U	10 U	23 Ü	10 U	10 U	10 U	10 U
CFC-12	10 U	10 Ü	10 U	100	10 U	23 U	10 U	10 U	10 U	10 U
CHLORINATED FLUOROCARBON (FREON 113)	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 U	10 UJ
CHLOROBENZENE	10 U	10 U	10 U	10 UJ	10 U	23 U	10 U	10 U	10 UJ	10 U
CHLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	10 0	23 U	10 U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 U	10 U
CHLOROFORM	IOU .	10 Ų	10 U	10 U	10 U	23 U	10 U	10 U	10 U	10 U
CHLOROMETHANE	10 U	10 Ü	10 U	10 U	10 U	23 U	10 U	100	10 U	10 U
CIS-1,2-DICHLOROETHENE	10.0	10 U	10 U	100	10 U	23 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 Ų	IQ U	10 U	10 U	23 U	10 Ü	10 U	10 U	10 U
CYCLOHEXANE	10 U	10 U	10 U	10 U	930	187	10 U	10 U	10 U	10 UJ
ETHYLBENZENE	2.J	10 U	IO U	10 U	970	5.J	10 U	10 U	10 U7	10 U
ISOPROPYLBENZENE	2.J	10 U	10 U	10 U	160	23 U	10 U	10 U	10 UJ	10 U
M-DICHLOROBENZENE METHYL ACETATE	10 U	10 U	10 U	10 U	10 U	23 U 23 U	10 U	10 U	10 UJ 10 U	10 U
METHYL N-BUTYL KETONE	100	100	10 U	10 U	10 Ü	23 U	10 U	10 U	10 U	100
METHYL TERT-BUTYL ETHER (MTBE)	100	10 0	10 U	100	10 Ü	23 U	10 U	10 U	10 U	10 U
METHYLCYCLOHEXANE	10 U	2 J	2.1	21	640	23 U	10 U	10 U	100	10 UJ
METHYLENE CHLORIDE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	100	10 U	10 U
STYRENE (MONOMER)	100	10 U	100	10 U	10 U	23 U	10 U	10 U	10 UJ	10 U
TETRACHLOROETHENE (PCE)	10 U	10 Ŭ	10 U	10 U	10 U	23 U	10 U	10 U	10 10	10 U
TOLUENE	41	5.7	51	41	12	101	10 Ú	10 U	10 UJ	10 U
TRANS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	23 U	10 Ü	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	23 U	10 Ŭ	10 U	10 U	ioù
TRICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U	10 U	10 U	23 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)	10 U	10 U	10 U	10 U	100	22 J	10 U	10 U	10 UJ	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Pield Sample ID	GP203-02	GP204-01	GP204-02	GP205-01	GP205-01DUP	GP205-02	GP206-01	GP206-02
<del></del>		4, 244,			OI AND VIDOR	- VI 203-04	<u> </u>	
	1					·		
						!		
	Property North of		Property North of	Property North of	Property North of 4935	Property North of	1	ì
Property Address	4935 Belmont	4935 Belmont	4935 Behmutt	4935 Belmont	Behment	4935 Belmont	5000-5014 Chase	5000-5014 Chase
Sample Date	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	4/29/2004	1/13/2004	1/13/2004
Depth Interval	18.5- 19.5	7.5- 8.5	19,5- 20.5	6.5- 7,5	6.5- 7.5	13.5-14.5	1.5- 2.5	9.5- 10.5
.1.1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ü
.1;2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	IO U	10 U	10 U .
,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U _
,1-DICHLOROETHENE	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	_10 U _	10 U
2,4-TRICHLOROBENZENE	10 UJ	10 បវ	10 UJ 10 R	10 03	10 UJ	10 UJ	10 U	10 U
2-DEBROMO-3-CHLOROPROPANE (DBCP)	10 R	10 R		10 R	10 R	10 R		10 U
,2-DEROMOETHANE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U:
,2-DICHLOROBENZENE ,2-DICHLOROETHANE	10 U	· 10 U	10 U	100	10 U	10 U	100	10 U
,2-DICHLOROPROPANE	10 U	100	10 U	10 U	10 U	10 U	100	10 U
4-DICHLOROBENZENE	100	10 U	10 U	10 U	100	10 U	10 U	100
-BUTANONE	10 UJ	100	10 UJ	10 03	10 UJ	10 UJ	10 UJ	100
-METHYL-2-PENTANONE	100	10 U	10 U	10 U	1001	10 U	10 UJ	10 U
CETONE	10 UJ	10 0	10 UJ	100	10 UJ	10 00	1000	3 W
ENZENE	10 0	10 U	10 (7	10 U	10 03	10 U	10 U	10 U
ROMODICHLOROMETHANE	10 U	100	10 U	10 U	100	100	10 U	100
ROMOFORM	100	100	10 U	10 U	100	10 U	- 10 U	10 U
ROMOMETHANE	10 U	10 U	10 0	100	10 U	10 U	- 10 U	10 U
ARBON DISULFIDE	10 U	100	10 0	100	100	100	100	10 U
ARBON TETRACHLORIDE	10 U	100	10 U	100	100	10 U	10 U	iou
FC-11	100	10 U	10 U	10 U	10 U	10 U	100	- 10 U
FC-12	10 U	100	10 U	10 U	100	10 0	10 W	10 U7
HLORINATED FLUOROCARBON (FREON 113)	10 (1)	10 07	10 UJ	10 171	10 (7)	10 UJ	10 U	10 U
HLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	_ 10 U	10 U
HLORODIBROMOMETHANE	10 U	10 U	10 U	10 U	100	10 U	10 U	10 U
HLOROETHANE	10 U	10 U	10 U	10 U	10 U	. 10 U.	10 U.	10 U
HLOROFORM	100	10 Ú	10 U	10 U	10 U	10 U	-10 U	10 U
HLOROMETHANE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U
CIS-1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U
IS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U	10 U	100	10 U
CYCLOHEXANE	10 UJ	10 UJ	10 UJ	10 07	iò UJ	10 UJ	10 U	10 U
THYLBENZENE	10 U	10 U	10.U	10 U	10 U	10 U	100	100
SOPROPYLBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
A-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ÆTHYL ACETATE	10 UJ	10 (7)	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
METHYL N-BUTYL KETONE	10.0	10 U	10 0	10 U	10 U	10 U	10 03	10 UJ
METHYL TERT-BUTYL ETHER (MTBE)	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	J0 U
METHYLCYCLOHEXANE	10 UJ	10 UJ	fô m	10 UJ	10 UJ	10 UJ	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U	10 0	10 U	10 U	10 U	10 U	10 U
TYRENE (MONOMER)	10 U	10 U	100	10 U	10 U	10 U	10 U	10 U
ETRACHLOROETHENE (PCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
OLUENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-12-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
RANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	- 10 U	10 U	10 U	10 U	10 U
RICHLOROETHENE (TCE)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 Ū
/INYL CHLORIDE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
XYLENES (TOTAL)			100	10 U	100	10 U	10 U	10 U

#### Soil Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GP206-03	GP207-01	GP207-02	GP207-03
	1			
Property Address	5000-5014 Chase	2500 Cardas	2500 Curtisa	_ 2500 Curtis
Sample Date	1/13/2004	1/26/2004	1/26/2004	1/26/2004
Depth Interval	13.5-14.5	2.5- 3.5	8.5-9.5 10 U	16.5-17.5
1.1.1-TRICHLOROETHANE	10 U	11 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	100	110	10 U	10 U
1.1-DICHLOROETHANE	10 U	11 0	10 0	10 U
1,1-DICHLOROETHENE	10 U	11 0	10 0	10 U
1.2.4-TRICHLOROBENZENE	10 Ŭ	11 0	10 U	10 U
1.2-DEPROMO-3-CHLOROPROPANE (DBCP)	10 U	11 U	10 U	10 U
1,2-DIBROMOETHANE	10 U	11 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	11 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	. 1) U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	11 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	11 U	10 Ü	10 U
2-BUTANONE	10 UJ	11 U	10 U	10 U
4-METHYL-2-PENTANONE	10 W	11 U	10 U	10 U
ACETONE	4 UJ	9.3	10 (1)	10 UJ
BENZENE	10 U	11 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	11 U	10 U	10 U
BROMOFORM	10 U	11 U	10 U	10 U
BROMOMETHANE	10 U	11 U	10 U	10 U
CARBON DISULFIDE CARBON TETRACHLORIDE	100	11 0	10 U	10 U
CFC-11	100	11.0	10 U	10 U
CFC-12	10 UJ	11 0	10 UJ	10 UJ
CHLORINATED FLUOROCARBON (FREON 113)	10 0	11 U	10 U	10 U
CHLOROBENZENE	10 U	11 U	10 U	. 10 U
CHLORODIBROMOMETHANE	10 U	IJŪ	10 U	10 U
CHLOROETHANE	10 U	נט וו	10 UJ	נט פו
CHLOROFORM	10 U	11 U	10 U	10 U
CHLOROMETHANE	10 U	11 U	10 Ü	10 U
CIS-1,2-DICHLOROETHENE	10 U	11 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	11 U	10 U	10 U
CYCLOHEXANE	10 U	110	10 U	10 U
ETHYLBENZENE	10 U	110	10 U	10 U
ISOPROPYLBENZENE	10 U	11 U	10 U	10 U
M-DICHLOROBENZENE	10 U	11 0	10 U	10 U
METHYL ACETATE METHYL N-BUTYL KETONE	10 03	11 U	10 0	100
METHYL TERT-BUTYL ETHER (MTBE)	10 U	11 0	10 UJ	10 U
METHYLCYCLOHEXANE	10 U	11 U	10 07	10 0
METHYLENE CHLORIDE	10 U	110	2.1	3 1
STYRENE (MONOMER)	10 U	110	10 U	10 U
TETRACHLOROETHENE (PCE)	10 U	iiù	10 U	10 U
TOLUENE	10 Ü	II U	10 U	10 U
TRANS-1,2-DICHLOROETHENE	10 U	11 U	10.0	10 U
TRANS-1,3-DICHLOROPROPENE	10 Ú	11 U	10 U	10 U
TRICHLOROETHENE (TCE)	10 U	11 U	10 U	- 10 U
VINYL CHLORIDE	10 U	11 U	10 U	- 10 U
XYLENES (TOTAL)	10 U	11 U	10 U	10 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW100-01	GPW101-01	GPW102-01	GPW102-01DUP	GPW103-01	GPW105-01	GPW106-01	GPW115-01	GPW125-01	GPW127-01	GPW128-01
	1										
•											
											ı
Property Address	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2518 Wisconsin	2431 Curties	2431 Curtiss	5224 Katrine		2424 Wisconsin	
Sample Date	4/8/2004	4/8/2004	4/7/2004	4/7/2004	4/8/2004	4/6/2004	4/5/2004	12/15/2003	4/27/2004	4/27/2004	4/26/2004
Depth Interval	15-25	20- 30	20- 30	20- 30	12- 22	20- 30	17- 24	26- 26	10-20	7-17	7-17
1,1,1-TRICHLOROETHANE	0.26 J	0,5 U	0.5 U	0.5 U	0.5 U	2.2	0.5 U	0,76	30	100 J	1200
1,1,2,2-TETRACHLOROETHANE	0.5 U	0,5 U	0.5 U	.0,5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 UJ	0.5 U
1,1,2-TRICHLOROETHANE	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.48 J				
,1-DICHLOROETHANE	0.33 J	0.23 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.69	2	18 J	370
,1-DICHLOROETHENE	0.5 Ú	0.5 U	0.5 U	.0.5 U	0.5 U	_ 0,5 UJ	0.5 UJ	0.5 U	0.5 UJ	3.6 J	42 J
1,2,3-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 UJ 0.5 U	0,5 UJ	0,5 U	0.5 U	0.5 UJ	0.5 U
2-DIBROMOETHANE	. 0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U				
1.2-DICHLOROBENZENE	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 UJ	0.5 U					
1.2-DICHLOROETHANE	0.5 10	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 1.1	0.5.U =	0.5 UI	. 0.88
1.2-DICHLOROPROPANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 W	0.5 U					
1.4-DICHLOROBENZENE	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 UJ	0.5 U					
BUTANONE	3 U	5 U	50	5 U	5 U	5 U	5 U	6.4	5 U	5R	5U
4-METHYL-2-PENTANONE	5 U	5 U	5 Ü .	.5 U	5 U	5 Ü	5 U	5 Ü	5 U	5 R	5 U
ACETONE	12	5 Ü	5 U	5 U	5 U	9.3	2.4 J	31	5 UJ	5 R	5 U
BENZENE	0.36 J	0.5 U	0.5 U	0.18 J	0.5 UJ	0.5 R	0,5.U				
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	.0.5 U	_ 0.5 U	0.5 U	0,5 U	0.5 UJ	0.5 U
BROMOFORM	0.5 U	0,5 U	0.5 Ü	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 W	0,5 U
BROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U					
CARBON DISULFIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	-0.5 U	.0.5 U	0.5 U	0.5 U	0.5 UR	0,5 U
CARBON TETRACHLORIDE	.0.5 U	0,5 Ü	0.5 U	0.5 U	0.5 U	0,23 J	0.5 U	0.5 U	2.8	8,5 7	0.5 U
CFC-II	-0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 U
CFC-12	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 W	. 0.5 U	0.5.UJ_	. 0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.77	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	34	0.5 UJ	0.5 U
CHLOROBENZENE	0.5 U	0,5 U	0.5 U	0,5 UJ	0.5 UJ	0.5 U					
CHLOROBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UI	0.5 U					
CHLORODIBROMOMETHANE CHLOROETHANE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 U 5.6
CHLOROFORM	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 UJ	0.33 J
CHLOROMETHANE	0.32 J	0.5 U	0.38 U	0.36 U	0.5 U	0.5 U	0.5 U	0,5 U	0.16 UJ	0.5 UJ	0.21 UJ
CIS-12-DICHLOROETHENE	0.5 U	0.5 U	0.5 U	0.5 0	0.5 UI	4.1					
CIS-1.3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U					
CYCLOHEXANE	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
ETHYLBENZENE	0.19 J	0.5 U	0.5 U.	0.5 U	0.5 U.	0.5 U	0.5 U -:	. 0.5 U	0.5 U	0.5 R	0.5 U
ISOPROPYLBENZENE	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 R	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U					
METHYL ACETATE	0.5 U	0.5 Ü	0.5 U	0.5 U	.0.5 U .	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 R	0.5 Ü
METHYL N-BUTYL KETONE	5 U	. 5 U	5 U	5 Ų	5 U	5 U	5 U	. 5 U	5 U	5 R	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0.5 U	0,5 U	0.5 U	0.5 R	0.5 U					
METHYLCYCLOHEXANE	0.5 U	0.5 U .	0.5 U	- 0.5 U	- 0.5 R	0.5 U					
METHYLENE CHLORIDE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 UJ	0,52 U
STYRENE (MONOMER)	0.5 U	0.5 U	0,5 U	0.5 U	0.5 R	0.5 U					
TETRACHLOROETHENE (PCE)	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.41 J	0.5 U	0,5 U	0.5 U	0.5 UJ	0.5 Ü
TOLUENE	0.96	0,51	.0.5 U	0.5 U	0.21 J	.0.5 U	.0.5 U	0,17 J	0.5 UJ	0.5 R	0.5 U
TRANS-1,2-DICHLOROETHENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 UJ	0.5 Ú
TRICHLOROETHENE (TCE)	0.5 U	.0.5 U	0.5 U	0,5 U	0.29 J	0.5 UJ	19				
VINYL CHLORIDE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
XYLENES (TOTAL)	0.55	0.41 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U

#### Groundwater Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW129-01	GPW130-01	GPW133-01	GPW134-01	GPW135-01	GPW135-02	GPW137-01	GPW138-01	GPW138-01DUP	GPW139-01
ricia Sample 10	OT WILD-UI	GI W130-01	Gt # 133-01	Gr W 134-01	GZ W 133-01	GF W 133-02	GF W 137-01	GT 44 130-01	GI WISS-UIDUI	GI W137-01
				j	1	İ		1		
			Wooded Property	Wooded Property				1		1
		1	South of 2537	South of 2537	1	ĺ				ì
Property Address	. 2424 Wisconsin	2424 Wisconsin	Curties	Curtin	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	5000-5014 Chase	.5000-5014 Chase .	5000-5014 Chase
Sample Date	4/27/2004	4/27/2004	12/2/2003	4/7/2004	1/12/2004	1/12/2004	1/13/2004	1/13/2004	1/13/2004	1/12/2004
Depth Interval	10-20	10-20	16-16	16-26	10-20	20- 30	10-20	10-20	10- 20	10- 20
1.1.1-TRICHLOROETHANE	620 J	360	0.5.U.	_0.5.U	0.5 U	0.5 U	230	0.5 U	0.5 U.	0.5 U
1,1,2,2-TETRACHLOROETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-TRICHLOROETHANE	0.38 J	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 LJ .	9.9	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHANE	.64.1	180 .	. 0.5 U	0.5 U	0.5 U	0.5 U	32	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	40 UJ	19	0.5 U	0.5 U	0.5 U	0.5 U	8.9	0.5 U	. 0,5 U	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-TRICHLOROBENZENE	0.5.UJ	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 UJ -	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
1,2-DICHLOROBENZENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROETHANE	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
1,2-DICHLOROPROPANE	0.5 W	0.5 Ü	0.5 U	0.5 U						
1,4-DICHLOROBENZENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
2-BUTANONE	5 R .	5 U	5 U	5 U	~ 5U	5 U	5.U	5.U	- 5 U	5 U
4-METHYL-2-PENTANONE	5 R	5 U	5 U	5 U	5 U	5 U	5 U	3 U	5 U	5 Ü
ACETONE	5 R	5 U	5 U	5 U	50	5 U	5 U	5 U	5 U	5 U
BENZENE	0.18 J	0.5 U	0,5 U	0.16 J	0.5 U	.0.5 U .				
BROMODICHLOROMETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	.0.5 U
CARBON DISULFIDE	0.25 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
CARBON TETRACHLORIDE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	18	0,5 U	0.5 U	0.5 U
CFC-11	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 Ŭ.
CFC-12	0.5 W	0.5 U	0.5 U	0.5 UJ	0.5 UJ	-0.5 UJ	0.5 W	0,5 U	0.5 UJ	0.5 UJ
CHLORINATED FLUOROCARBON (FREON 113)	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
CHLOROBENZENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	.0.5.U.	. 0,5 U	0.5 U
CHLOROBROMOMETHANE	0.5 W	0.5 U	0,5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLORODIBROMOMETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROETHANE	5.4 J	52	0.5 U	0.5 U	0.5 U	_ 0.5 U	_ 0.5 U	0.5.U	. 0.5 U	0.5 U
CHLOROFORM	0.32 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.28 J	0.5 U	0.5 Ü	0.5 U
CHLOROMETHANE	0.5 UJ	0.5 U	0.5 U	0,28 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.45 J
CIS-1,2-DICHLOROETHENE	.0.28 J	0.93 J	. 0.5 U	.0.5.U	. 0,5 U	0.5 U .	200.	0.5 U	0.5 U	0.5 U .
CIS-1,3-DICHLOROPROPENE	0.5 W	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	0.5 R	0.5 U	0,5 U	0.5 Ų	0.5 U	0.5 U				
ETHYLBENZENE	0.5 R	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U.	0.5 U	0.5 U	0.5 U
ISOPROPYLBENZENE	0.5 R	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 U	0.5 U
METHYL ACETATE	0,5 R .	0.5 U	0.5 UJ	. 0.5 U	.0.5 UJ	0.5 UJ	. 0,5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
METHYL N-BUTYL KETONE	5 R	5 U	5 U	5 U	5 U	5 U	5 U	3 U	5 U	5 Ü
METHYL TERT-BUTYL ETHER (MTBE)	0.5 R	0.5 U	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 ป	0.5 U
METHYLCYCLOHEXANE	0,5 R	0.5 U	. 0.5 U	0.5 U	0.5 Ŭ	0.5 U.	0,5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0.5 UJ	0.29 UJ	0.5 U -	0.5 U	0,5 Ü					
STYRENE (MONOMER)	0.5 R	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE (PCE)	0.5.UJ	_0.5 U	0.5 U	. 0.5 U	. 0.5 U	. 0.5 U	340 .	18	17	0.5 U
TOLUENE	0.2 J	0.5 U	0:5 U	0.2 J	0.5 U	0.15 J	0.5 Ų	0.5 U	0,5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	2.9	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 UJ	0.5 U	0.5 ปี	0.5 U	0.5 U	0.5.UJ	0.5 U	0.5 U .	0.5 Ū	0.5 U
TRICHLOROETHENE (TCE)	0.26 J	0.22 J	0.5 U	0.5 U	0.5 U	0.5 Ų	210	0.5 U	0.16 J	0.5 U
VINYL CHLORIDE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
XYLENES (TOTAL)	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW140-01	GPW143-01	GPW145-01	GPW147-01	GPW148-01	GPW150-01	GPW152-01	GPW153-01	GPW156-01	GPW157-01	GPW160-01
		Property South of Curtise and Glenview Streets	Property South of Curtiss and Glenview Streets	Property South of Curtiss and Gleaview Streets	Property South of Curtiss and Glonview Streets						
Property Address	5000-5014 Chase	and East of Relment	and East of Relmont	and East of Belmont	and East of Relmont	2265 Maple	2265 Maple	5024 Chase	5024 Chase	5023 Chase	5023 Chase
Sample Date	1/13/2004	1/23/2004	1/26/2004	1/26/2004	1/23/2004	4/13/2004	4/9/2004	1/12/2004	1/9/2004	1/8/2004	1/9/2004
Depth Interval	20-30	20-30	11-21	7-17	15- 25	9-9	9.5- 9.5	20- 30	26-30	20-30	20-30
1,1,1-TRICHLOROETHANE	13	0.5 UJ	.0.5 U	0.5 U	0.5 LD	0.5 U	0.5 U	0.22 J	0.39 J	0.5 U	5.1
1,1,2,2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú
1,1,2-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHANE	2.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 U	0.5 U	0.5 Ų	0.5 U	0.5 U	0.5 U	0,5 U.	. 0.5.U	0.5 U	- 0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
1,2,4-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	. 0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE	0,5 U	0.5 Ü	0.5 U	0,5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROBENZENE	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú	0,5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROETHANE	0.3 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-DICHLOROPROPANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 Ú	0.5 U	0,5 U	0.5 U
2-BUTANONE	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-METHYL-2-PENTANONE ACETONE	5 U	5 U	5 U 6.3 U	5 U 4.5 U	5 U	5 U	5 U	<b>3.</b> 9	5 U	5 U	5 U
BENZENE	0.5 U	0.5 U	. 0.18 J	0.19 J	. 0.5 Ü .	0.21 J	0.5 U	- 0.17 J	0.5 U	021	0.5 U
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.18 J	0.191	0.5 U	0.21 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	0.5 U	0.064 J	0.5 U	0.5 U	0.073 J	0.35 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 U	0.5 UJ	. 0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U-	- 0.5 U
CARBON DISULFIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CARBON TETRACHLORIDE	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.47 J
CFC-11	0.5.U	0.5 UJ	. 0.5 U	0.5 U	0.5 UJ	0.5 U	. 0.5 U	0,5 Ŭ	0.5 UJ	0.5 U	0.5 LU
CFC-12	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
CHLORINATED FLUOROCARBON (FREON 113)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U
CHLOROBENZENE	0.5 U	0,5 U	0.5 Ü	0,5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5.U
CHLORODIBROMOMETHANE	0,5 Ü	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	- 0.5 U
CHLOROETHANE	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM .	0.5 U	0.5.UJ	0.5 UJ	. 0.5 UJ	0.5 UJ	0.5 U	. 0.5.U.	0.5 U.	0.5 U	0.5 U	0.5 U
CHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.22 U	0.23 U	0,5 U	0.5 U	0.5 U	0.5 U
CIS-1,2-DICHLOROETHENE	6,1	0.5 U	0.079 J	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
CIS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE ETHYLBENZENE	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ISOPROPYLBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.19 J 0.5 U	0.5 U	0,5 U	0.5 U	0,5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	-0.5 U	0.5 U	.0.5 U	0,5 Ü	0.5 U	. 0.5 U.	0.5 U	0.5 U	0.5 U	0.5 U
METHYL ACETATE	0.5 U	0.5 UJ	0.5 UJ	0.5 UI	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 []	0.5 UJ	0.5 UJ
METHYL N-BUTYL KETONE	30	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 Ü	0.45 J	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLCYCLOHEXANE	0.5 U	0.08 J	0.088 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.6 U	0.4 U	0.5 U	0.5 U	0.18 U	0.5 U
STYRENE (MONOMER)	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE (PCE)	8.4	0.5 U	0.5 U	.0.5 U	0.5 U	0.19 J	0.21 J	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0,19 J	0.5 U	0,93	0.52 J	0.5 U	1.3 J	0.5 U	0.39 J	0.17 J	0.63	0.27 J
TRANS-1,2-DICHLOROETHENE	0.29 J	0,5 U	0,5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 U	0.5 ปี	0.5 U	0.5 U	0.5 U	0.5 Ū
TRICHLOROETHENE (TCE)	1.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U
VINYL CHLORIDE	0.5 U	0.5 Ü	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
XYLENES (TOTAL)	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.98	0,5 U	0.5 U	0.5 U	0.29 J	0.5 U

# Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

					a Grove, minor							
Field Sample ID	GPW161-01	GPW161-01DUP	GPW164-01	GPW165-01	GPW167-01	GPW168-01	GPW169-01	GPW171-01	GPW172-01	GPW173-01	GPW175-01	GPW177-01
	ł				'		•			ļ		
	1		ļ	ľ								
Property Address	5126 Walnut	5126 Walnut	5126 Walnut	5126 Walnut	4935 Belmont	4935 Belmont	4935 Belmont	4935 Belmont	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock	2824 Hitchcock
Sample Date	4/29/2004	4/29/2004	4/29/2004	4/29/2004	12/12/2003	12/12/2003	12/16/2003	12/16/2003	4/15/2004	4/15/2004	4/15/2004	4/14/2004
Depth Interval	10-20	10- 20	15- 25	5- 15	26- 26	28- 28	28- 28	28-28	10-10	10-10	18-10	5-5
1.1.1-TRICHLOROETHANE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 UJ
1.1.2.2-TETRACHLOROETHANE	0.5 UJ	0.5 U	0,5 UJ	0.5 UJ	0.5 U	0,5 U	0.5 U	0,5 U	0.5.U.	. 0,5.U.	0.5 U	0.5 U
1,1,2-TRICHLOROETHANE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHANE	0.5 UJ	. 0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U
1.1-DICHLOROETHENE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 UJ
1,2,3-TRICHLOROBENZENE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
1,2,4-TRICHLOROBENZENE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
1.2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.	. 0.5.U	0.5.U	0.5 U
1,2-DIBROMOETHANE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
1,2-DICHLOROBENZENE	0.5 UJ	0,5 U	0.5 UJ	0.5 W	0.5 U	0.5 Ü	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROETHANE	0.5 UJ	0,5 U	0.5 UJ	-0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ
1.2-DICHLOROPROPANE	0.5 UJ	0.5 U	0.5 W	0.5 W	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú
1.4-DICHLOROBENZENE	0.5 UI	0.5 U	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-BUTANONE	5 R	5 U	5 R	5 R	5 U.	5 U -	5 U	_ 5U	. 5.U.	5 U	5 U	5 UJ
4-METHYL-2-PENTANONE	5 R	5 U	5 R	5 R	5 U	5 U	5 U	5 U	5 U	50	5 U	5 UJ
ACETONE	5 R	5 U	5 R	5 R	26	5 U	5 U	5 U	5 U	5 U	11	3 W
BENZENE	0.5 R	- 0,5 U	0.5 R	0.5 R	0.5 U	0.5 U.	0.5 U	0.5.U	0.5 U.	0.5 U	0.5 Ü	0.5 U
BROMODICHLOROMETHANE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
BROMOFORM	0.5 U)	0.5 Ü	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 UJ	0.5 U	.0.5 UJ	. 0,5 UJ	0.5.U.	0.5 U.	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ
CARBON DISULFIDE	0.5 UR	0.5 U	0.5 UR	0.5 UR	0.5 U	0.5 U	0.5 Ų	1.1	0.5 U	0.5 U	0.5 Ü	_0.5 Ü
CARBON TETRACHLORIDE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U -	0.5 U	0.5 UJ
CFC-11	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ
CFC-12	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ.	-0.5 UJ	0.5 Ų	0.5.U	. 0.5 U .	0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.5 UJ	0.5 ป	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ū	0.5 ปี	0.5 U	0.5 W
CHLOROBENZENE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
CHLOROBROMOMETHANE	0.5 UJ	0.5 Ų	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-0.5 U	0,5.U	-0.5 U
CHLORODIBROMOMETHANE	0.5 UJ	0.5 U	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROETHANE.	0.5 UJ	0.5 U	0.5 (1)	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 UJ	0.5 Ü	0,5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ū	0.5 U	0.5 U	0,5 U	0,5 U
CHLOROMETHANE	0.5 UJ	0.5 U	0.5 W	0.5 UJ	0.5 U	0.5 U	0.5 U	0.37 U	0.5 U	0.19 J	0,26 U	0.5 U
CIS-1,2-DICHLOROETHENE	0.5 UJ	0,5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.77	0.5 U
CIS-1,3-DICHLOROPROPENE	0.5 UJ ,	0,5 U	0.5 UT	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
CYCLOHEXANE	0.5 R	0.5 U	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U	0.5 U
ETHYLBENZENE	0,5 R	0,5 U	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
ISOPROPYLBENZENE	0.5 R	0.5 U	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
M-DICHLOROBENZENE	0.5 UJ	0.5 U	0.5 W	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 Ü	. 0.5 U	0.5 U
METHYL ACETATE	0,5 R	0,5 U	0.5 R	0.5 R	0.5 UJ	0.5 W	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ
METHYL N-BUTYL KETONE	5 R	5 U	5 R	5 R	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ
METHYL TERT-BUTYL ETHER (MTBE)	0,5 R	0.5 ป	0.5 R	0.991	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.	0.5 U	0.5 U	0.5 UJ
METHYLCYCLOHEXANE	0,5 R	0.5 U	0.5 R	0.5 R	0.5 U	0.5 Ú	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0,5 UJ	. 0,5 U	0.5 UI	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.24 J	0.28 U
STYRENE (MONOMER)	0.5 R	0.5 U	0.5 R	0.5 R	0.5 U	0,5 U	0.5 U	-0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE (PCE)	0.5 UJ	0,5 U	0.5 W	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0.61 J	0,53	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	0.5 UJ	0.5 U	0.5 UI	0.5 UI	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 UJ	0.5 U	0.5 UJ	0.5 W	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRICHLOROETHENE (TCE)	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U
VINYL CHLORIDE	0.5 UJ	0.5 U	0.5 UJ	. 0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
XYLENES (TOTAL)	0.5 R	0.5 U	0.5 R	0.5 R	0.5 U	0.5 U	0.5 Ü	0,5 U	0.5 U	0.5 U	0.5.U	0.5 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW177-01DUP	GPW178-01	GPW179-01	GPW180-01	GPW181-01	GPW182-01	GPW183-01	GPW184-01 .	GPW185-01	CPW185-01DUP
Property Address	2824 Hitchcock	2754 Maple	. 2754 Manle	2754 Maple	2754 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple	2315 Maple
Sample Date	4/14/2004	4/9/2004	4/9/2004	4/9/2004	4/9/2004	1/21/2004	1/21/2004	1/21/2004	1/21/2004	1/21/2004
Depth Interval	5-5	7- 17	12- 22	12- 22	20- 30	16-26	10-20	15-25	19-29	19- 29
1,1,1-TRICHLOROETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 Ü	0.5 U	0.5 U	0.5 U	0.5 U
1.1.2.2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	. 0,5.U	0.5 U	0.5 U	0.5 Ü .	0.5 U
1,1,2-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0,5 U	0.5 U
1,1-DICHLOROETHANE	0.5 Ü	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 Ú	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2.4-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	. 0.5.U	. 0.5 U	0.5 U	0.5 Ú	0.5 U
1.2-DIBROMOETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0,5 U	0.5 U	0,5 U
1,2-DICHLOROBENZENE	0.5 U	0,5 U	0.5 Ų	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROETHANE	0,5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U_	0.5 U	0,5 Ü	0.5 U	0.5 U
1,2-DICHLOROPROPANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 U	0.5 U	0.5.U	0.5 Ü
1,4-DICHLOROBENZENE	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-BUTANONE	5 UJ	5 U .	5 U .	. 5R	5 U	4.2 J	6.8	2.1 J	3 J	3.4 J
4-METHYL-2-PENTANONE	'5 UJ	5 U	'5 U	5 U	5 U	5.Ü	5 U -	5 U	. 5.U	5 U
ACETONE	5 UJ	5 U	3 U	5 R	5 U	20	21	13	14	16
BENZENE	0.5 U	0.15 J	0.13 J	0.5 U	0.5 U	0.25 J	0.26 J	0.061 J	0,13 J	0.14 J
BROMODICHLOROMETHANE	0.5 U	0,5 U	0.5 U	0.5 Ü	0.5 U	0.5 UJ	0.5 U -	0.5 U	_ 0.5 U	0.5 U
BROMOFORM	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.091 J	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U .	0.5 U	0.5 Ü
CARBON DISULFIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.42 J	0.5 U	. 0.5 U .	0.5.U.	0.5 U
CARBON TETRACHLORIDE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-11	0,5 UJ	.0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-12	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 Ū	0.5 U	0.5 U .	. 0.5 U	0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
CHLOROBENZENE	.0.5.U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROBROMOMETHANE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U.	0,5 U	. 0.5 U	0.5 U.	0,5 U
CHLORODIBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 Ü	0.5 U
CHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.046 J
CHLOROFORM	0.5 U	6.7	0.28 J	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
CHLOROMETHANE	0.18 U	0.26 J	0.27 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,2-DICHLOROETHENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	0.5 U	0.5 U	0.5 U	0.5 U	.0.5 U	0.5 UJ	0.5 U	_0.5 U	0.5 U	0.28 J
ETHYLBENZENE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ISOPROPYLBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
METHYL ACETATE	0.5 UJ	0.5 U	0.5 U	0.5 U	-0.5 U	1.4 J	1.5 J.	0.5 UJ	_ 0.5 UJ	0.5 UJ
METHYL N-BUTYL KETONE	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 UJ	0.5 U	0.5 U	0.5 Ü	0.5 U	2.9	5.5	0.5 U	1.8	1.8
METHYLCYCLOHEXANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.082 J	0.5 U	0.11 J	0.5 U
METHYLENE CHLORIDE	0.37 U	0.5 U	0.5 U	0.19 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5.U
STYRENE (MONOMER)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE (PCE)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0.5 U	0.27 J	- 0.64	0.16 J	0.5 U	0.51 J	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	0.5 Ú	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRICHLOROETHENE (TCE)	.0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VINYL CHLORIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	0.5.U
XYLENES (TOTAL)	0.5 U	0.5 U	0.42 J	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.5 U	·· 0:5 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW186-01	GPW187-01	GPW188-01	GPW189-01	GPW190-01	GPW191-01	GPW191-01DUP	GPW194-01	GPW199-01	GPW202-01
	1			l i				1		
						<u> </u>				
Property Address	2315 Maple:	5240 Maple	5240 Maple -	5240 Maple	5240 Maple	5240 Maple	5240 Maple	2333 Wisconsin	4947 Belmont	4947 Belmont
Sample Date	1/21/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	1/23/2004	12/9/2003	4/15/2004	4/15/2004
Depth Interval	17- 27	10- 20	15-25	9-19	10- 20	10- 20	10- 20	26- 26	10-10	5-5
1,1,1-TRICHLOROETHANE	0.5 U	. 18 J	0.73 J	0.5 U	0.16 J	0.92 J	0.98 J	0.5 U	0.5 U	0.5 U
1,1,2,2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
1,1,2-TRICHLOROETHANE	0.5 U	0.5 Ü	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,1-DICHLOROETHANE	0.5 U	2	0.5.U	0.5 U	2	0.87	0.95	0.5 U	. 0,5.U.	0.5 U
1,1-DICHLOROETHENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
1,2,4-TRICHLOROBENZENE	.0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 UJ	0.5 UJ
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 UJ	0.5 U	0,5 U	0.5 U
1,2-DICHLOROBENZENE	.0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U.	. 0.5 U
1,2-DICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,2-DICHLOROPROPANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.4-DICHLOROBENZENE	0,5 U	0.5 U.	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5.U	. 0.5 U
2-BUTANONE	1.8 J	5 U	5 U	50	5 Ü	5 U	5 U	5 U	5 U	5 U
4-METHYL-2-PENTANONE ACETONE	5 U 8.4	5 U 7.2	5 U .	5 U	3 U	5 U	5 U	5 U	5 U 5.U	5 U
BENZENE	0.087 J	7.2 0.5 U	0.5 U	4.5 J 0.5 U	3.7 J 0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	17 0,5 U
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	0.5 W	0.5 U	0.5 U	0.5 U	0.5 U	0.048 7	0.5 LD .	0.5 U.	0.5 U	0.5 U
BROMOMETHANE	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 []	0.5 U	0.5 U	0.5 U
CARBON DISULFIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CARBON TETRACHLORIDE	0.5 U	0.5 Ŭ	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-11	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5.UJ	0,5 UJ	0.5 UJ	0.5 U	0.5 U
CFC-12	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-0.5 U	0.5 U	0.5 U	0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü
CHLOROBENZENE	0.5 U	0.5 U	. 0.5 U	. 0.5 U.	.0,5 U	.0,5 U	0.5 U.	0,5 U _	0.5 U.	. 0.5 U
CHLOROBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 U	0.5 U	0.5 Ų	0.5 U	0.5 U
CHLORODIBROMOMETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 UJ	0.5 Ü	0.5 Ü	0.5 U
CHLOROETHANE	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0,5 UJ	0.5 ŲJ	0,5 U	0.21 J	0.5 U
CHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.24 U	0.24 U
CIS-1,2-DICHLOROETHENE	0,5 U	0.21 J	0.5 U	0.5 U	0.5 U	0.043 J	0,5 U	0.5 UJ	0.5 U	0.5 UJ
CIS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U.	.0.5 U	0.5 U	.0.5 U	0.5 U .	0.5 UJ	0.5 U	0.5 U
CYCLOHEXANE ETHYLBENZENE	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ISOPROPYLBENZENE	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0,5 U 0,5 U	0.5 U	0.5 U	0.5.U	0.5 UI	0.5 U	0.5 U
METHYL ACETATE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U 0.5 UJ	0.5 U	0.5 U 0.5 UJ	0.5 U	0.5 UJ	0.5 U
METHYL N-BUTYL KETONE	5 U	5 U	5 U	5 Ü	5 Ü	5 U	0,5 U	0.5 U	. 5.Ü	0.5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0.5 U	0.5 U	0.5 U	0.85	0.5 U	0.5 U	0.5 U	7.4	0.5 U
METHYLCYCLOHEXANE	0.5 U	0.038 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0.5 Ú	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.28 J
STYRENE (MONOMER)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
TETRACHLOROETHENE (PCE)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0,5 U	0.5 U	0.5 U	0.11 J	0.5 U	0.5 U	0.5 U	0.22 J	0.5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	0.5.U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ
TRANS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
TRICHLOROETHENE (TCE)	0.5 U	1,4	0.5 U	0.5 U	0.5 U	0.32 J	0.29 J	0.5 U	0.5 U	0,5 U
VINYL CHLORIDE	0.5.U .	0.5 U	0.5.U	0.5 U	0.5 U	0.5 U	0.5.U.	_ 0.5 U	0.5 UJ	. 0.5 UJ.
XYLENES (TOTAL)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U

## Groundwater Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

	CITATION OF	GPW204-01	GPW206-01	GPW207-01	GPW60-01	GPW61-01	GPW62-01	GPW63-01	GPW64-01	GPW65-01	GPW66-01	GPW66-01DUP
Field Sample ID	GPW203-01	GPW204-01	GPW200-01	GFW207-01	GPW60-01	GFW81-01	GFW02-01	GF W 63-01	GF W04-01	GF W 405-01	GF W 00-01	OF WOO-OID OF
			1			}	1			1		
			1				}	ł	1	1	1 1	
	Property North of	Property North of			1		ł		1	1	1	
Property Address	4935 Belmont	4935 Belmont	5000-5014 Chase	2500 Curtiss	2500 Curtiss	2300 Wisconsin						2300 Wisconsin
Sample Date	4/29/2004	4/29/2004	1/12/2004	1/27/2004	1/27/2004	1/14/2004	1/23/2004	1/9/2004	1/14/2004	1/14/2004	1/9/2004	1/9/2004
Depth Interval	20- 30	2-30	10-20	20- 30	20- 30 .	20- 30	15-25	20-30	15- 25	20- 30	20-30	20- 30
1,1,1-TRICHLOROETHANE	0.5 UJ	0.5 UJ	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5.U	0.5 U
1,1,2,2-TETRACHLOROETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-TRICHLOROETHANE	0.5 UJ	0,5 UJ	0.5.U	. 0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 Ú	0.5 U
1,1-DICHLOROETHANE	0.5 UJ	0,5 W	0,62	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-TRICHLOROBENZENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U -	- 0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 UI	0.5 UJ	0.5.U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.5 UI	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.	0.5 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-DICHLOROPROPANE	. 0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 Ü
I:4-DICHLOROBENZENE	0.5 UJ	0.5 103	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U .	0.5 U -	0.5 U	0.5 U
2-BUTANONE	5 R	5 R	5 U	3 U	5 U	2.4 J	1.5 1	5 U	5 U	5 U	3 Ü	5 U
4-METHYL-2-PENTANONE	5 R:	5 R	5 U	5 U	3 U	3 U	5 U	5 Ü	5 Ü	5 U	5 U	5 Ü
ACETONE	5 R .	. 5R	5.U	6.1 U	5.7 U	18 J	6,9 Ü	3 U	3 U	5 U	. 5U	5 U
BENZENE	0.5 R	0.5 R	0.5 U	0.17 J	0.32 J	0.5 U	0.071 J	0.5 U	0,5 U	0.5 U	0,5 U	0.5 U
BROMODICHLOROMETHANE	0.5 UJ	0.5 UJ	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 Û .	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	0.5 UJ	0.5 UJ	0.5 U.	0.13 U	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 Ų	0.5 U	0.5 U	0,5 U
CARBON DISULFIDE	0.5 UR	0,5 UR	0.5 U	0.37 J	0.18 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CARBON TETRACHLORIDE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-11	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 UJ	0.5 U	0,5 U	0.5 UJ	0.5 UJ
CFC-12	0,5 UJ	0.5 UJ	0,5 UJ	0.5 U	0.5 ป	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ
CHLORINATED FLUOROCARBON (FREON 113)	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
CHLOROBENZENE	0.5 UJ	0.5 UJ	0,5 ป	0.5 U	0,5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROBROMOMETHANE CHLORODIBROMOMETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLORODIBROMOMETHANE CHLOROETHANE	0.5 UJ	0.5 W	. 0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U3 .	0.5 U	. 0.5 U	0.5 U	. 0.5 U _	0.5 U
CHLOROMETHANE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.43 J	0.5 U	0.5 U	0.56	0.5 U	0.5 U	0.5 U
CIS-1.2-DICHLOROETHENE	0.5 UJ	0.5 UJ	1.1	0.5 U	6.7	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1.3-DICHLOROPROPENE	0.5.UJ	0.5 111	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	0.5 R	0.5 R	0.5 U	0,5 Ü	0.5 U	0.5 U	0.5 U	0,5 Ü	-0.5 U	0.5 U	0.5 U	0.5 U
ETHYLBENZENE	0.05 J	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú	0.5 U	0.5 U
ISOPROPYLBENZENE	0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
M-DICHLOROBENZENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5.U.	0.5 U	0.5 U	.0.5 U	.0.5 U	0.5 U	0,5 U
METHYL ACETATE	- 0.5 R	0.5 R	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 ŲJ
METHYL N-BUTYL KETONE	5 R	5 R	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 R	_ 0.5 R	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLCYCLOHEXANE	0,5 R	0.5 R	0,5 U	0.12 J	0.5 Ų	0.5 U	0.074 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.38 J	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.5 U
STYRENE (MONOMER)	.0.5 R	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
TETRACHLOROETHENE	0.5 UJ	0.5 UJ	0.92	0.3 U	1.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0.66 J	0.5 R	0.5 U	0.41 J	0.55	0.5 U	0.19 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0,1 J	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.
TRICHLOROETHENE (TCE)	0.5 UJ	0.5 UJ	0.33 J	0.5 U	130 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U
VINYL CHLORIDE	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW76-01	GPW77-01	GPW78-01	GPW79-01	GPW79-01DUP	GPW82-01	GPW83-01	GPW85-01	GPW85-01DUP	GPW86-01	GPW95-01
ride Sample 10	G1 W 70-01	G. 1177-02	G1 W/6-01	GI W/2-VI	GI WIN-NIDOL	G1 1102-01	Gr Hab-ox	- G2 (1 G2 - 1)	GI WAS VIDE	- G1 1122 - C1	G. VIZZ
·			i	]						1	1
			1	]				i		ĺ	i i
Property Address	5411 Welput	5411 Wainut	5411 Walnut	5411 Walnut	5411 Walnut	2655 Wisconsin	2655 Wisconsin	2655 Wisconsin	2655 Wisconsin	2655 Wisconsin	2400 Wisconsin
Sample Date	4/28/2004	4/28/2004	4/28/2004	4/28/2004	4/28/2004	12/23/2003	12/23/2003	12/23/2003	12/23/2003	12/23/2003	1/15/2004
Depth Interval	15-25	7-17	7- 17	10- 20	10- 20	28- 28	28- 28	28- 28	28- 28	28- 28	14.2- 14.2
1,1,1-TRICHLOROETHANE	0.5 UJ	0.37 J	0.5 UJ	0.39 J	0.43 J	0.5 W	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U
1,1,2,2-TETRACHLOROETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U
1,1,2-TRICHLOROETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5.UJ	0.5 UJ	0.5 UJ	0,5 Ų	0.5 U	0.5 U	0.5 U	0.5 UJ
1,1-DICHLOROETHANE	0.5 UJ	7.8 J	0.5 UJ	6.7 J	9.1 J	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE	0.5 UI	0.5 UJ .	. 0.5 UJ	0.5.UJ	0.5 UJ 0.5 UJ	0.5 UJ	0.5.UJ 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 U	0.5 UJ	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 UJ	0.5 UJ	0.5 UJ 0.5 UJ	0.5 UJ	0,5 CJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE	0.5 UJ	0.5 0.1	0.5 UJ	0.5 W	0,5 UJ	.0.5 UJ -	_ 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROBENZENE	0.5 03	0.5 U	0.5 UJ	0.5 10	0.5 UJ	0.5 U	- 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROPROPANE	.0.5 UJ	0.5.03	0.5 UJ	0.5 UJ	. 0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.4-DICHLOROBENZENE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-BUTANONE	5 R	5 R	5 R	5 R	5 R	5 U	5 Ú	5 U	5 U	3 U	5 U
4-METHYL-2-PENTANONE	.5 R	5 R	. 5 R	5 R	5 R .	5 U	5 U	5 U	5 U	5 U	5 U
ACETONE	5 R	5 R	5 R	5 R	5 R	24	11	5.8	4.8 J	14	5 Ü
BENZENE	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	0.5 U	0.5 U	0.5 UJ	-0.5 U	0.5 U
BROMODICHLOROMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U
BROMOFORM	0.31 J	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U -	0.5 Ü	0.5 U	0.5 UJ
BROMOMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CARBON DISULFIDE	0.5 UR	0.5 UR	0.5 UR	0.5 UR.	0.5 UR	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CARBON TETRACHLORIDE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5.Ü	0.5 U
CFC-11	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U
CFC-12	0.5 UJ	13 J	0.5 UJ	0.54 J	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ
CHLORINATED FLUOROCARBON (FREON 113)	0.5 UJ	1.3 J	0.5 UJ	0.28 J	0.5 UI	0.5 UJ	0.5 U	0.5 U	0.5 U	.0.5 U	
CHLOROBENZENE	0.5 UJ	0,5 UJ	0.5 UJ	0.5 UJ	0,5 UJ	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROBROMOMETHANE	0.5 UJ 0.5 UJ	0.5 UJ	0.5 UI	0.5 UJ 0.5 UJ	0.5 UJ 0.5 UJ	0.5 UJ	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 UJ
CHLORODIBROMOMETHANE CHLOROETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UI	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROMETHANE	0.5 U)	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	.0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,2-DICHLOROETHENE	0.5 W	0.5 UJ	0.5 UJ	0.5 LU	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1.3-DICHLOROPROPENE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ŭ	0.5 UJ
CYCLOHEXANE	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ETHYLBENZENE	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0,5 U	0.5 U
ISOPROPYLBENZENE	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
M-DICHLOROBENZENE	0,5 UJ	0.5 UJ	0.5 UJ	0.5.UJ	0.5 UJ .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü
METHYL ACETATE	0.5 R	0.5 R	0.5 R	0,5 R	0.5 R	0.5 W	0.5 UJ	0.5 UJ	0.5 ŲJ	0.5 UJ	0.5 UJ
METHYL N-BUTYL KETONE	5 R	5 R	5 R	5 R	5 R	5 U	5 U	5 U	5 U	5 U	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 R	0.5 R	0,5 R	0.5 R	0.5 R	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLCYCLOHEXANE	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
METHYLENE CHLORIDE	0.5 UJ	0,5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
STYRENE (MONOMER)	0,5 R	0.5 R	0.5 R	0.5 R	0.5 R	0.5 UJ	0,5 U .	0,5 U	0.5 UJ	0.5 U	_0.5 U
TETRACHLOROETHENE	0.5 W	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0,5 U	0.5 UJ	0.5 U	0.5 U
TOLUENE	0.5 R	0.2 J	0.24 J	0.2 J	0.29 J	0.5 UJ	0.19 J	0.5 U	0.5 UJ	0.18 J	0.17 J
TRANS-1,2-DICHLOROETHENE	0.5 UJ	0,5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 W	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Trichloroethene (TCE)	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	31	5,6	0.5 U	0.5 UJ 0.5 U	0.5 U	0.5 U
VINYL CHLORIDE	0.5 UJ	0.5 UJ.	0.5 UJ	0.5 UJ	0.5 UJ	0,5 UJ	0,5 U	0.5 U	0.5 U	0.5 U	- 0.5 U
XYLENES (TOTAL)	0.5 R	0.5 R	0.5 R	0.5 R	0.5 R	0,5 UJ	1 0.30	1 U.S U	U.3 UJ	J 0.3 U	1~ U.3 U .

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPW97-01	GPW98-01	GPW99-01	GPWFB-01	GPWFB-02	GPWFB-03	GPWFB-04	GPWFB-05	GPWFB-6	GPWFB-7	GPWFB-8
rutu dampie io	- GI W 7/-51_	01 1175-01	GI WAR	01 112-01	0.11.2-02		- GI I G				•
									1		
•											
				N/A	D14	314	NA.	NIA	NA '	. NÀ	. NA
Property Address			2400 Wisconsin	NA 12/23/2003	NA 1/12/2004	NA 1/16/2004	NA 1/23/2004	NA 1/27/2004	4/8/2004	4/14/2004	4/29/2004
Sample Date Denth Interval	1/16/2004	1/16/2004 21.3- 21.3	1/16/2004 29.5- 29.5		1/12/2004		1/23/2004	1/2//2004	4/6/2004	4/14/2004	4/25/2004
1.1.1-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UI	0.5 U	0.5 U	0.5 UJ	0.5 Ü
1.1.2.2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-TRICHLOROETHANE	0.5 U	0.5 U.	0.5 UJ	. 0.5 Ü	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-DICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U .
.1-DICHLOROETHENE	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
,2,3-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ü	0,5 U	0.5 U	0.5 U
2,4-TRICHLOROBENZENE	0.5 Ų	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DIBROMOETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 U
2-DICHLOROBENZENE	0.5 Ų	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	.0.5.U	. 0.5 U	0.5 U
1,2-DICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U_
2-DICHLOROPROPANE	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
,4-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U 5.U	0.5 U _	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U
2-BUTANONE	5 U	5 U	4.5 J	5 U		5 U	5 Ü	5 U	5 U	5 UI	5 U
-METHYL-2-PENTANONE	5 0	5 U	5 U 22 J	5 U	5 U	5 U	. 5 U	5 U	5 U	500	5 U
ACETONE BENZENE	0.5 U	10 J 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	0.5 1.77	0.12 J	0.5 U	0.5 U	0.5 U
ROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U.	_0.5 UJ _	0.5.U
CARBON DISULFIDE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.077 J	0.5 U	0.5 U	0.5 U	0.27 J
CARBON TETRACHLORIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 UJ	0.5 U
CFC-11	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U .	.0.5 U	0.5 UJ	0.5 U
CFC-12	0.5 W	0,5 UJ	0.5 W	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UI	0.5 U
CHLOROBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5.U
CHLOROBROMOMETHANE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U
CHLORODIBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROETHANE	0.5 U	-0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U
CHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U
CIS-1,2-DICHLOROETHENE CIS-1.3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U.
CYCLOHEXANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ETHYLBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SOPROPYLBENZENE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	. 0.5 U.	0.5 UJ	0.5 U.	0.5 U	0.5 U	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYL ACETATE	0.5 UJ	0.5 UJ	0.73 J	0.5 W	0.5 UJ	0.5 UJ	0.5 UJ	0.5 W	0.5 U	0.5 UJ	0.5 U
METHYL N-BUTYL KETONE	SU.	5 U	5 U	5 Ü	5 U	5 U	5 U	5 U	5 U	5 UJ	5 Ü
VETHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0,5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 UJ	_ 0.5 U
METHYLCYCLOHEXANE	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE	0.5 UJ	0.5 UJ	0.5 UI	0.23 J	0.5 U	0.5 UJ	0,5 U	0.5 U	0,5 U	0.5 UJ	0,75 U
STYRENE (MONOMER)	0.5 UJ	0.5 UJ	. 0.5 UJ .	0.5 U	0.5.U	0.5 UJ	0.5 U.	0.5 U _	0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0.5 U	0.19 J	0.29 J	0.5 U	0.5 U	0.5 U	0.5 U	0,079 J 0.5 U	0.5 U	0.5 U	0.5 U
TRANS-12-DICHLOROETHENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene (TCE) VINYL CHLORIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
XYLENES (TOTAL)	0.5 UJ	0.5.07	0.5 UT	0.5 U	0.5 Ú	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

#### Groundwater Analytical Data Summary Table Elisworth Industrial Park Site Downers Grove, Illinois

Procest Address	Field Sample ID	GPWTB-01	GPWTB-010	GPWTB-011	GPWTB-012	GPWTB-013	GPWTB-014	GPWTB-015	GPWTB-02	GPWTB-03	GPWTB-04
Semple   1977/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000											
Semple   Note   1977/000   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1718/2004   1	,	Į į		ļ	į.		Į		[		į,
Semple   1977/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000	i				i	ļ			Î ,		
Semple   1977/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000   1717/000	L	j !		l							
Dept Server											
ILLIERGROEGEMANE		12/2/2003		1/14/2004	1/14/2004	3/16/2004	1/21/2004	1/23/2004	12/10/2003	12/10/2003	12/15/2003
		0511		0511	0511	0411	0511	05111	0511	0511	0511
ILL-PINGEGROSPHANE											
1.1DICHGOROSTHANE											
1.1.DICH_GORDETENE   0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0											
13.3-TRICHOROSPEZENE			0.5.U								
1.2DBROMO-CHELOROPORPAKE (DBCT)	1,2,3-TRICHLOROBENZENE		0.5 U	0.5 U						0.5 U	
13-DBROMOETHANE	1,2,4-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U .	0.5 U	0.5 U	0.5 U
1.2DICLOROBENZEME				0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0,5 U	0.5 U
12-DICHOROPETHANE											
1.2-DICELORORENZEME											
1.4DICABORSENZENE											
2-BUTANONE											
AMETHYL-PEPNTANONE											
ACETONE 2.4.1 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U											
BENZENE											
SROMOFICHANE											
BROMOMETHANE											
BROMOMETHANE											
CARBON DISLUFIDE  0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U											
CARBON TETRACHLORDE  0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5											
CFC-12											
CHLORNATED FLURROCARBON (FREQN 113)  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U  0.5 U	CFC-11	0,5 U	0.5 U	0.5 U	0.5 U	0.5 UJ		0.5 UJ			
CHLOROBENZENE  0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5	CFC-12	_0,5 U		0.5 Ų	0.5 UJ	0.5 UJ	0.5 Ü	0.5 U	0.5 U	0.5 UJ	0.5 UJ
CHLOROBROMOMETHANE  0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5									0.5 U		
CHLORODIBROMOMETHANE  0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5											
CHLOROETHANE  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U											
CHLOROFORM  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U  0.5U											
CHLOROMETHANE 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U											
CIS-12-DICHLOROFTHENE											
CISL   D-DICHLOROPROPENE   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0											
CYCLOREXANE  0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U											
ETHYLBENZENE 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U											
SOPROPYLBENZENE											
M-DICHLOROBENZENE   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U											
METHYL ACETATE   0.5 U											
METHYL N-BUTYL KETONE			0.5 UJ								
METHYLCYCLOHEXANE   0.3 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.	METHYL N-BUTYL KETONE	5 U		5 U							
METHYLENE CHAORDE   0.68   0.5 U   0.5 U   0.5 U   0.29 J   0.75 U   0.64 U   0.23 J   0.69 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75 U   0.75					0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
STYRENE (MONOMER)   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U   0.5 U											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
TOLUENE         0.5 U         <											
TRANS-12-DICHLOROFITHENE         0.5 U         0.5											
TRANS-13-DICHLOROPROPENE         0.5 U         0.5											
Tricklorostase (TCE)         0.5 U         0.5 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
VNYL CHLORIDE 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U											
EXPLEMENTATION IN THE TOTAL INSTITUTE OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C	XYLENES (TOTAL)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U

#### Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPWTB-05	GPWTB-06	GPWTB-07	GPWTB-08	GPWTB-09	GPWTB-16	GPWTB-17	GPWTB-18	GPWTB-20
			1						
			i	1		i			
Property Address	NA.	NA.	NA.	NA I	NA.	ŇA	ŇA	ŇA	ŇA
Sample Date	12/16/2003	12/23/2003	1/8/2004	1/9/2004	1/12/2004	1/27/2004	4/6/2004	4/7/2004	4/9/2004
Depth Interval	1210/2003	1223200	1/0/2004	1/2/2000	212204		4/0/2007	3///2007	4/3/2004
1.1.1-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
1.1.2.2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5.U	. 0.5 Ü	0.5 U	0.5 U	0,5 U	0.5 U
1,1,2-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	- 0.5 U
1,1-DICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 U	0.5 U	0,5 U	0.5 U	0.5.U	0,5 U	0.5 UJ	0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 U	0,5 UJ	0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 Ü
1,2,4-TRICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 U	.0.5 U	. 0.5 Ų	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
1,2-DIBROMOETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
1,2-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-DICHLOROETHANE	0.5 UJ	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
1,2-DICHLOROPROPANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú
1,4-DICHLOROBENZENE 2-BUTANONE	3.U .	5 U	5 U	5 U	3 U	5 U	5 U	5 U	3 Ū
4-METHYL-2-PENTANONE	3 U	5 U	3 Ŭ	30	30	5 U	SUJ .	5.U	3 U
ACETONE	30	5 U	5 Ŭ	30	5 U	2.9 J	5 U	5 U	5 Ŭ
BENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U · ·	0.5 U	0.5 U
BROMOFORM	0.5 U	0.5 U	0.5 Ú	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 Ü	0.5 U
CARBON DISULFIDE	0.5 U	0,5 Ų	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0,5 U
CARBON TETRACHLORIDE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-11	0,5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 Ú	0,5 U	0.5 U	0.5 U	0.5 U
CFC-12	0,5 UJ	0.5 Ų	0.5 UJ	0.5 UJ	0,5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ
CHLORINATED FLUOROCARBON (FREON 113)	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
CHLOROBENZENE	0,5 U	0,5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
CHLOROBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	0.5 U
CHLORODIBROMOMETHANE CHLOROETHANE	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROFORM	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
CHLOROMETHANE	0.42 U	0.5 U	0.5 Ú	0.44 J	0.5 U	0.5 U	0.5.U	0.5 U	0.16 U
CIS-1,2-DICHLOROETHENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	0,5 U	0.5 U	0.5 U	.0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ETHYLBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5.U.
ISOPROPYLBENZENE	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYL ACETATE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0,5 W	0.5 U	. 0.5 U	0.5 U
METHYL N-BUTYL KETONE	. 5U	5 U	5 U	5 Ü	5 U	5 U	5 UJ	5U	SU
METHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
METHYLCYCLOHEXANE	0,5 U	0.5 U	0.5 U 0.72	0.5 U	0.5 U	0.5.U	0.5 U	0.5 U 2.3 U	0.5 U
METHYLENE CHLORIDE STYRENE (MONOMER)	0.97 0.5 U	0,56 0.5 U	0.72 0.5 U	0.67 U	0.53 0.5 U	0.5 U	3.6 0.5 U	0.5 U	2.9 U
TETRACHLOROETHENE	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TOLUENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
TRANS-1,2-DICHLOROETHENE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú
Trichlaroethene (TCE)	0.5 U	0.5 U	0.5 U	0.5 U	.0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
VINYL CHLORIDE	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 U	0,5 U	0,5 U	0.5 U .	0.5 U
XYLENES (TOTAL)	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

# Groundwater Analytical Data Summary Table Ellsworth Industrial Park Site Downers Grove, Illinois

Field Sample ID	GPWTB-21	GPWTB-22	GPWTB-23	GPWTB-24	GPWTB-25	GPWTB-26
	-					
	ľ					
B	. NA	NA.	NA.	NA ·	NA.	NA.
Property Address Samole Date	4/13/2004	4/14/2004	4/15/2004	4/27/2004	4/28/2004	4/29/2004
Depth Interval	7/13/2004	4/14/2004	4/13/2004	4/2//2004	4/20/2044	4/23/2004
1,1,1-TRICHLOROETHANE	0.5 Ü	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 U
1,1,2,2-TETRACHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1.1.2-TRICHLOROETHANE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,1-DICHLOROETHANE	0.5 U	0.5 Ü	0.5 U	0.5 UJ	0.5 U	0.5 U
1,1-DICHLOROETHENE	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 Ú	0.5 U
1,2,3-TRICHLOROBENZENE	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U
1,2,4-TRICHLOROBENZENE	0.5 UJ	0.5 U	0.5 W	0.5 UJ	0.5 U	0.5 U
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U.
1,2-DIBROMOETHANE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,2-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 U	0.5 U
1,2-DICHLOROETHANE	0.5 U	0.5 UJ	0.5 U_ 0.5 U	0.5 UJ	0.5 U	0.5 U
1,2-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
2-BUTANONE	5 U	5.01	- 5U .	. 5 R	5 U	50
4-METHYL-2-PENTANONE	50	5 UJ	3 U	5 R	5 U	5 U
ACETONE	30	5 UJ	3 U	5 R	30	5 Ü
BENZENE	- 0.5 U	0.5 U	0.5 U.	. 0.5 R	. 0.5.U	0.5 U
BROMODICHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
BROMOFORM	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
BROMOMETHANE	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5.U	0.5 U
CARBON DISULFIDE	0.5 U	0.5 U	-0.5 U	0.5 UR	0.5 U	0.5 U
CARBON TETRACHLORIDE	0.5 U	0,5 UJ	0.5 U	0,5 UJ	0,5 U	0.5 U
CFC-11	0,5 U	0.5 UJ	0.5 U	0.5 UJ .	0.5 U	0.5 U
CFC-12	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
CHLORINATED FLUOROCARBON (FREON 113)	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 ป	0,5 U
CHLOROBENZENE	0.5 U	0.5 U	0.5 U	. 0,5 UJ	0.5 U	0.5 U
CHLOROBROMOMETHANE"	0.5 U	0.5 U	0.5 U	0.5 ŲJ	0.5 U	0,5 U
CHLORODIBROMOMETHANE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0,5 U
CHLOROFORM	0.5 U	0.5 U	0.5 U	0.5 UJ 0.5 UJ	0,5 U	0.5 U
CHLOROMETHANE	0.3 U	0.17 U	0.26 U	0.24 LU	0.5 U	0.5 U
CIS-1.2-DICHLOROETHENE	0.5 U	0.17 U	0.5 U	0.5 UJ	0.5 U	0.5 U
CIS-1.3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5.U	0.5 U
CYCLOHEXANE	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
ETHYLBENZENE	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
ISOPROPYLBENZENE	_ 0.5.U	0.5 U	. 0.5 U	. 0.5 R	0.5 U	0.5 U
M-DICHLOROBENZENE	0.5 U	0.5 U	0,5 U	0.5 UJ	0.5 U	0.5 U
METHYL ACETATE	0.5 U	0.5 UJ	0.5 UJ	0.5 R	0.5 U	0.5 U
METHYL N-BUTYL KETONE	5 U	5 UJ	5 U	5 R	5 U	5 U
METHYL TERT-BUTYL ETHER (MTBE)	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U	0.5 U
METHYLCYCLOHEXANE	0.5 U	0.5 U	0.5 U	0,5 R	0.5 U	0.5 U
METHYLENE CHLORIDE	1.2 U	5.2 J	0,5 U	3.8 J	3.2	2.3 0.5 U.
STYRENE (MONOMER)	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
TETRACHLOROETHENE TOLUENE	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
TRANS-1.2-DICHLOROETHENE	0.5 U	.0.5 17	0.5 U	0.5 UJ	. 0.5 U	0.5 U .
TRANS-1.3-DICHLOROPROPENE	0.5 U	0.5 U	0.5 U	0.5 (0	0.5 U	0.5 U
Trichleroethene (TCE)	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
VINYL CHLORIDE	0.5 U	0.5 U	0.5 R	0.5 UJ.	- 0.5 U	0.5 U
XYLENES (TOTAL)	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U

### APPENDIX C

MIP Boring Logs on CD

## APPENDIX D

Chain-of-Custody on CD

### APPENDIX E

### Analytical Raw Data on CD