

April 21, 2010

Ms. Nancy Swyers, P.E. Task Order Project Officer U. S. Environmental Protection Agency Region 7 SPFD Division 901 North 5th Street Kansas City, Kansas 66101

 Re: January 2010 Quarterly Sample Results for the One Hour Martinizing Source Area Air Sparging/Soil Vapor Extraction System
 10th Street OU2 Superfund Site, Columbus, Nebraska
 EPA Region 7 AES Contract No. EP-S7-05-05, Task Order No. 0002

Dear Ms. Swyers:

Please find attached the quarterly submittal for the air sparging/soil vapor extraction (AS/SVE) system at the One Hour Martinizing (OHM) source area at the 10th Street Operable Unit 2 (OU2) Superfund Site in Columbus, Nebraska. This report was prepared in fulfillment of the reporting requirements of Task Order 0002. This is an abbreviated report presenting the analytical results obtained from the quarterly sampling event in January 2010. These results include summary data tables, potentiometric surface maps, plume maps, and weekly site visit reports. The site visit frequency was changed to bi-weekly in 2010. The Annual AS/SVE System Performance Report will provide detailed information on volatile organic compound (VOC) concentrations in groundwater at this source area, remediation activities, and AS/SVE system performance information.

During this quarter only the clay vapor extraction system (CVE) was operated due to high water levels. On January 13, 2010 operations technician Herb Scott conducted a site visit and found that the high vacuum granular activated carbon (GAC) unit was blowing a fine carbon dust through the exhaust stack. Mr. Scott attempted repairs; however, on January 15, the high vacuum GAC unit was again emitting carbon dust. The system was down starting January 15 for the remainder of the month because of this issue. Attachment 1 includes the site visit reports and checklists for November and December 2009 and January 2010.

Groundwater sampling procedures were performed in accordance with the *Long-Term Response Action Sampling and Analysis Plan for the 10th Street Site, Columbus, Platte County, Nebraska* (SAP), dated October 20, 2005. Listed below are the deviations for the January 2010 sampling event:

• MW-44A/M, MW-46A/M, and SVE-8 were not sampled due to large amounts of standing water over and around the wells.

10th Street OU2 Superfund Site January 2010 AS/SVE System Quarterly Report Page 2

• For all samples containing potassium permanganate (KMnO₄) as indicated by a pink or purplish tint to the water, two separate sets of alternative research samples were collected in addition to the regular sample. One sample was acidified with ascorbic acid in the field, one was acidified with ascorbic acid in the laboratory within 24 hours, and the regular sample was acidified with hydrochloric acid (HCl) in the field. U.S. Environmental Protection Agency (EPA) requested these additional samples to determine the best method for collecting VOC groundwater samples affected by KMnO₄. The purple color of samples containing KMnO4 causes matrix interference that requires various levels of dilution depending on the amount of color in the sample to be properly analyzed. EPA discovered that the ascorbic acid stops the oxidation reaction of KMnO₄ on contact and neutralizes the sample color, thus providing a real-time snapshot of the contaminant concentration in the sample.

 $KMnO_4$ injections at the OHM source area have been conducted by EPA's Remedial Action (RA) contractor Lee & Ryan. The OHM source area has been treated with four rounds of $KMnO_4$ injections. The injection dates, volume of oxidant, depth of injection, and number of injections are summarized in Table 1. The last round of injections concluded in mid-October 2009. Injection locations are shown on Figure 1.

Table 2 provides the static water level measurements that were taken during the January 2010 sampling event, with potentiometric surface maps provided as Figures 2, 3, and 4. As shown on these figures, groundwater flow is to the east-southeast, with some localized areas of groundwater depressions presumed to be a residual effect from the KMnO₄ injections.

Quality control (QC) sample results are summarized on Tables 3 and 4. Table 3 shows a comparison of samples and associated field duplicate samples taken from the same location. Relative percent difference (RPD) was calculated between the sample and field duplicate results for each detected analyte. The RPD precision criterion in the SAP of RPD less than 20 was slightly exceeded for the samples collected from SVE-6 for trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride. However, no decision error is indicated (i.e. both the original and field duplicate result were either above or below the maximum contaminant level [MCL]), and no qualifiers were added. Table 4 shows SVE-2 sample results and the corresponding rinsate blank. The rinsate blank was nondetect for all VOC analytes.

Wells PCIX-1B, PCIX-2B, MW-45M, and MW-47M contained coloring/tinting of the groundwater due to permanganate injections. As discussed above, these samples with notable permanganate color were preserved in three different ways. Table 6 shows a comparison of results between the preservation methods. The results were highest for the samples acidified in the field with ascorbic acid in all but one instance. The samples preserved in the laboratory upon sample receipt exhibited lower concentrations, and several analytes were not detected in the typical HCl-preserved samples. The data indicate that field preservation using ascorbic acid is the preferred method for collection of VOC groundwater samples with KMnO₄ color interference.

10th Street OU2 Superfund Site January 2010 AS/SVE System Quarterly Report Page 3

Contaminant plume maps are provided as Figures 5 through 11. Plume maps were not prepared for TCE or cis-1,2-DCE at the 50-foot level. The only well reported to contain TCE above the MCL was MW-47M, where TCE was reported at 6.5 micrograms per liter ($\mu g/L$). None of the samples collected at the 50-foot depth interval contained cis-1,2-DCE above the MCL of 70 $\mu g/L$. Samples that did not exhibit traces of KMnO₄ as indicated by pink or purple coloring were collected with regular, field-acidified HCl vials. The four samples that exhibited coloring (MW-45M, MW-47M, PCIX-1B, and PCIX-2B) were collected using three different preservation methods. The results from the samples that were acidified in the field with ascorbic acid are shown in Table 5 and on the associated plume maps.

Groundwater results for tetrachloroethene (PCE), TCE, and cis-1,2-DCE are summarized on Table 5. In the January 2010 event, PCIX-2D and MW-45A showed a rebound in PCE, TCE, and cis-1,2-DCE from October 2009 concentrations, while PCIX-5C showed a rebound in cis-1,2-DCE concentration only. PCIX-2C was the only well that showed significantly lower concentrations, with notable decreases for PCE, TCE, and cis-1,2-DCE.

Vapor samples were not collected during the January 2010 quarterly event because the CVE system was shut down due to the dust emissions from the CVE GAC vessel. In March 2010, the CVE effluent air was re-plumbed to the SVE GAC vessel; influent and effluent samples will be collected from this vessel during the April 2010 quarterly sampling event. A sample was collected from the liquid GAC effluent and submitted for VOC analysis. Analytical results for this sample indicated that it was nondetect for all VOC analytes. The next groundwater sampling event at OHM will occur during the week of April 19, 2010.

Please call Laura Splichal at (816) 444-8270 if you have any questions regarding this submittal.

Sincerely,

Zama Splichal

Laura L. Splichal, CHMM Task Order Manager CDM Federal Programs Corporation

cc: N. Harris - NDEQ
D. Nicoski - EPA
B. Pedicino - EPA
S. Holmes - HGL
M. Schlebusch - CDM
R. Kaspzyk - CDM

10th St_Jan2010 ASSVE Report_031010_v6.doc

Phill. Omfelt

Robert C. Overfelt, P.G, CHMM AES Program Manager HydroGeoLogic, Inc.

10th Street OU2 Superfund Site January 2010 AS/SVE System Quarterly Report Page 4

Tables and Figures:	Table 1: Summary of Chemical Oxidant Injection WorkTable 2: OHM Static Water Level Measurements
	Table 3: Analytical Results of Pump QC Samples
	Table 4: Analytical Results of Pump Rinsate Samples
	Table 5: OHM Groundwater Sample Results
	Table 6: OHM Source Area Research Samples
	Figure 1: OHM Source Area KMnO ₄ Injection Location – Round 4
	Figure 2: Potentiometric Surface – 17 to 20 Feet
	Figure 3: Potentiometric Surface – 30 Feet
	Figure 4: Potentiometric Surface – 50 Feet
	Figure 5: PCE Groundwater Sample Results, 17 to 20 Feet
	Figure 6: TCE Groundwater Sample Results, 17 to 20 Feet
	Figure 7: cis-1,2-DCE Groundwater Sample Results, 17 to 20 Feet
	Figure 8: PCE Groundwater Sample Results, 30 Feet
	Figure 9: TCE Ground water Sample Results, 30 Feet
	Figure 10: cis-1,2-DCE Groundwater Sample Results, 30 feet
	Figure 11: PCE Groundwater Sample Results, 50 Feet
Attachments:	Attachment A -AS/SVE Weekly System Checklists

Tables

Injection Event	Start	End	Number of Points	Volume per Point (mass KMnO ₄)	Percent KMnO ₄ Solution	Injection Depth (feet bgs)							
OHM Injections													
OHM Injection - Round 1	Sep-07	Oct-07	50 points	2,200 (385)	2.09	65-50, 50-35, 35-15							
OHM Injection - Round 2	May-08	Jul-08	72 points	2,200 (275)	1.5	65-40, 40-15							
OHM Injection – Round 3	Sep-08	Oct-08	28 points	2,200 (275)	1.5	65-40, 40-15							
OHM Injection - Round 4	Aug-09	Oct-09	66 points	2,200 (275)	1.5	65-40, 40-15							

Table 1 Summary of Chemical Oxidant Work

bgs = below ground surface

Location	Northing	Easting	TOC Elevation (ft amsl)	Measured Water Depth (ft btoc)	Water Table Elevation (ft amsl)
PCIX-1B	15,054,881.63	2,090,361.17	1,444.84	10.54	1,434.30
PCIX-1C	15,054,881.80	2,090,359.27	1,444.79	10.50	1,434.29
PCIX-1D	15,054,879.49	2,090,360.31	1,444.76	10.47	1,434.29
PCIX-2B	15,054,873.46	2,090,400.28	1,444.75	10.44	1,434.31
PCIX-2C	15,054,873.37	2,090,397.79	1,444.81	10.51	1,434.30
PCIX-2D	15,054,871.88	2,090,399.55	1,444.71	10.38	1,434.33
PCIX-5B	15,054,865.48	2,090,443.00	1,444.37	10.64	1,433.73
PCIX-5C	15,054,865.39	2,090,441.09	1,444.39	10.06	1,434.33
PCIX-5D	15,054,863.31	2,090,442.21	1,444.37	10.07	1,434.30
SVE-1	15,054,877.12	2,090,264.93	1,446.50	12.13	1,434.37
SVE-2	15,054,789.12	2,090,256.04	1,445.92	11.62	1,434.30
SVE-3	15,054,863.37	2,090,340.67	1,444.41	10.15	1,434.26
SVE-4	15,054,810.78	2,090,339.91	1,445.84	11.51	1,434.33
SVE-5	15,054,781.09	2,090,379.14	1,445.58	11.29	1,434.29
SVE-6	15,054,812.00	2,090,426.00	1,444.78	10.52	1,434.26
SVE-7	15,054,781.82	2,090,461.20	1,444.28	10.10	1,434.18
SVE-8	15,054,816.80	2,090,495.67	1,444.03	NM*	NA
SVE-9	15,054,781.10	2,090,515.76	1,444.47	10.27	1,434.20
MW-26A	15,054,755.14	2,090,473.64	1,443.71	10.19	1,433.52
MW-26B	15,054,755.14	2,090,473.64	1,443.62	10.08	1,433.54
MW-44A	15,054,815.75	2,090,469.12	1,444.47	10.39	1,434.08
MW-44M	15,054,818.17	2,090,468.37	1,444.62	10.38	1,434.24
MW-45A	15,054,827.70	2,090,397.64	1,445.50	11.20	1,434.30
MW-45M	15,054,828.75	2,090,399.73	1,445.39	11.14	1,434.25
MW-46A	15,054,815.09	2,090,340.91	1,445.73	NM*	NA
MW-46M	15,054,816.99	2,090,340.52	1,445.81	10.37	1,435.44
MW-47M	15,054,860.98	2,090,339.24	1,445.28	10.98	1,434.30

 Table 2
 OHM Static Water Level Measurements - January 2010

HORIZONTAL DATUM (US SURVEY FEET) = UTM NAD 83, ZONE 14

VERTICAL DATUM (US SURVEY FEET) = NAVD 88

Note: Water levels were measured on January 19, 2010

BTOC - below top of casing

amsl - above mean sea level

Top of casing elevation of MW-44A adjusted because casing was cut down 1 7/8 inches.

NM - not measured

NA - not available

* Unable to measure water level due to extreme weather.

Table 3 Analytical Results of Pump QC Samples - January 2010

		PCIX-10	2		PCIX-5B	3]	PCIX-5D				SVE-6			I	MW-45M	
Compound	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	e	Duplica	ate	RPD	Sample	Duplicate	RPD	Samp	le	Duplicat	e RPD
	(µg/L)	(µg/L)	(%)	(µg/L)	(µg/L)	(%)	(µg/L))	(µg/L)	(%)	(µg/L)	(µg/L)	(%)	(µg/])	(µg/L)	(%)
PCE	24	24	0.0	15	15	0.0	570		570		0.0	54	57	5.4	0.5	U	0.5	U NC
TCE	17	17	0.0	1	0.95	5.1	22	U	20	U	NC	12	9.4	24.3	0.5	U	0.5	U NC
cis-1,2-DCE	16	17	6.1	0.5 U	0.5 U	NC	23		21		9.1	11	8.5	25.6	0.5	UJ	0.5 1	JJ NC
trans-1,2-DCE	2.6	2.6	0.0	0.5 U	0.5 U	NC	22	U	20	U	NC	0.5 U	0.5 U	NC	0.5	UJ	0.5 1	JJ NC
Vinyl Chloride	0.59	0.56	5.2	0.5 U	0.5 U	NC	22	U	20	U	NC	0.92	0.68	30.0	0.5	UJ	0.5 1	JJ NC

RPD precision criterion in the SAP of RPD < 20 was slightly exceeded, but no decision error is indicated and no qualifiers were added.

Results in **bold** text are detected concentrations

Results in **bold** and shaded text exceed the cleanup level specified in the ROD (Federal MCL)

NC - Not calculated because sample results were below detection limits.

RPD - Relative Percent Difference

U - Not detected above the stated reporting limit

 μ g/L - microgram per liter

Table 4 Analytical Results of Pump Rinsate Samples – January 201	Table 4	e 4 Analytical I	Results of Pump	Rinsate Sam	ples – Januar	y 2010
--	---------	------------------	-----------------	-------------	---------------	--------

Compound	R	linsate	Blanks	
	Sam	ple	Rinsa	te ¹
	(µg/	L)	(µg/I	L)
PCE	0.5	U	0.5	U
TCE	4.6		0.5	U
cis-1,2-DCE	17		0.5	U
trans-1,2-DCE	6.5		0.5	U
Toluene	0.5	U	0.5	U
Vinyl Chloride	0.5	U	0.5	U

1 - Rinsate blank was collected after sampling and decontamination of the pump at SVE-2.

Results in **bold** text are detected concentrations

Results in **bold** and shaded text exceed the cleanup level specified in the ROD (Federal MCL).

U - Not detected above the stated reporting limit

Table 5 OHM Groundwater Sample Results

									Analyte Concer	trations (µg/L)								
	Approx.								P	CE								
	Depth		200	07				2	2008					2009			2010	<u>ر</u>
Well	(bgs)	January	April	July	October	January	April	July ^{2,3}	August ^{2,3}	Octo	ber	Jan	uary	April ⁵	July ⁵	October ⁵	January	y ⁵
Shallow Wells										PDBs ⁴	Pump	PDBs ⁴	Pump					
PCIX-1D	18 feet	23,000	75,000 J	42,000	270	220 J	190	ND	138	99 J	76 J	190	370	6.3 J	28	1,300	6.6	
PCIX-2D	18 feet	580	170	900	290	410	66	29.9	66.5	79 J	46 J	33	36	120 J	200	710	3800	J
PCIX-5D	17 feet	140	140	46	71	1,300 J	2,000	14.9	3.33	160 J	450 J	48	480	110	5.7	590	570	
SVE-1	20 feet	30	21	28	83	69	53	11.42	13.6	17 J	34 J	14	48	54 J	49	60	57	
SVE-2	20 feet	3.5	2.2	2	12	7.1	1.9	1	2.44	1.8	2.2	0.5 U	3	0.98 J	2.8	0.64 U	0.5	U
SVE-3	20 feet	180	150	100 L	520	1,100	750	8.31	51.3	19 J	23	13	2,600	1,300	1,100	74	40	
SVE-4	20 feet	30	27 J	16 J	80	36	30	22.2	29.05 J	NS^1	86	NS^1	78	160 J	47	29	29	
SVE-5	20 feet	58	73 J	27	250	52	49	5.27	52.9	43	40	120	100	780 J	590	NS	55	
SVE-6	20 feet	510	1,000 J	410	10 U	40	10	10	30.5	130 J	290 J	180	180	280 J	22	120	54	
SVE-7	20 feet	100	80	34	44	13	4.1	2.46	1.97	2 J	3 J	0.65	0.98	3.5 J	14 J	34	0.52	
SVE-8	20 feet	19	NS	NS	180	NS	48	NS	NS	NS^1	NS	NS ¹	NS	NS	NS	220	NS	
SVE-9	20 feet	5.4	14	4.8	70	28	7.4	5.75	5.38	8.2 J	14 J	11	22	34 J	17 J	220	410	
Intermediate Wells																		
PCIX-1C	30 feet	84	710 J	1,600	18	85	43	0.37	18.67	0.98 J	0.57 J	2.4	62	140 J	52	2.5 U	24	
PCIX-2C	30 feet	490	400	240	100 U	1,400 J	83	151.3	458	96 J	120 J	130	280	750 J	12,000	300	150	
PCIX-5C	30 feet	190	160	98	100	480	670	56.9	55.2	610	670	650	1,300	1,500	4,200	5 U	12	
MW-44A*	30 feet	52	51 J	53	100 U	1,000 U	10 U	103.9	495	870 J	540 J	420	390	460	1,900	640	NS	
MW-45A*	30 feet	910	4,300	2,700 J	13	100 U	5 U	122.9	222	34 J	25 J	170	260	320	250	220	1200	
MW-46A*	30 feet	36	36	21 J	93	45	27	14.68	178	75	80	120	290	230	590 J	150	NS	
PCIX-1B	50 feet	1,600	170 J	480	100 U	100 U	340	47.7	25.22	320 J	2,600 J	220	660	290	110	NS	50	
PCIX-2B	50 feet	120	200	270	100 U	10 U	1,300	11.17	1,059 J	470 J	9,700 J	2.4	6,300	86	4,800 J	NS	40	
PCIX-5B	50 feet	570	620	720	3,200	6,000 J	10,000	0.32	609 J	4.6	0.5 U	130	160	160	91	2.5 U	15	
MW-44M*	50 feet	3,000	5,200	4,200	100 U	1,000 U	5 U	0.22	ND	5.4	0.5 U	3,100	3,500	700	17,000	5 U	NS	
MW-45M*	50 feet	74	140 J	67 J	100 U	1,000 U	5 U	ND	14.4	1.2	0.5 U	6.8	7.5	13	7	NS	59	
MW-46M*	50 feet	120	71	67 J	160	50	99	3.35	9.07	6.5 J	17 J	81	57	36	60	21	NS	
MW-47M*	50 feet	130	110	98	100 U	1,000 U	1,000	2.94	219	17 J	15	22	21	19	70	NS	3.3	

Results in **bold** text are detected concentrations

Results in bold and shaded text exceed the cleanup level specified in the ROD (Federal MCL).

¹ - Could not sample with PDB bag due to misalignment of wellhead

² - July 2008 and August 2008 data was HAPSITE data, thus reporting limits were not available and samples not detected above the reporting limit were listed as non detect (ND).

³ - August 2008 samples were collected using PDBs

⁴ - PDB data is to be used for screening purposes only and was not used in trend graphs or on plume figures.

⁵ - Rental bladder pump was used to sample well.

bgs - Below ground surface

NS - Not sampled NI- Not installed

ND- Not detected

PDB - Passive Diffusion Bag U - Not detected above the stated reporting limit

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

UJ - The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

PCE - tetrachloroethene

N/A R - The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

TCE - trichloroethene

DCE - dichloroethene

Table 5 OHM Groundwater Sample Results (continued)

									Analyte Concen	trations (ug/L)							
	Approx.								Timely to Conten								
	Depth		200	07				20	008					2009			2010
Well	(bgs)	January	April	July	October	January	April	July ^{2,3}	August ^{2,3}	Octob	er	Janu	arv	April ⁵	July ⁵	October ⁵	January 5
Shallow Well		,	<u> </u>			,				PDBs ⁴	Pump	PDBs ⁴	Pump	-			
PCIX-1D	18 feet	79	130	150	83	35	24	14.7	ND	2.5	0.5 U	21	13	0.5 UJ	17	52	5 U
PCIX-2D	18 feet	40	14	170	39	35	6	ND	ND	2.3 J	2.9 J	1.8	3.5	14 J	22 J	63	270
PCIX-5D	17 feet	51	60	20	15	32	23	ND	0.47	12 J	16 J	0.86	7.6	5 U	0.5 U	7.8	22
SVE-1	20 feet	8.6	7.1	5.6	21	27	13	1.92	1.2	4.1 J	6.4 J	1.9	7.7	10 J	3.8 J	5.2	4.7
SVE-2	20 feet	9	7.4	7.6	4.4	5	2.6	0.91	5.73	7.8 J	6.1 J	2.1	7	8.6 J	8.7	6	4.6
SVE-3	20 feet	79	59	57	75	180	120	7.89	13.2 J	2	0.5 U	3.1	190	200	50	45	35
SVE-4	20 feet	8.2	13 J	6.5	13	9.6	7.2	ND	6.01	NS ¹	20	NS ¹	12	19 J	16	12	13
SVE-5	20 feet	30	40	18	22	21	10	4.7	ND	5.8	6.2	4.9	7.4	90 J	72	NS	29
SVE-6	20 feet	58	110	47	10 U	6.4	1 U	1.25	ND	50	52	32	36	27 J	5.2	22	12
SVE-7	20 feet	23	24	16	4.5	2.1 J	1 U	0.52	0.45	0.59	0.5 U	0.5 U	0.5 U	0.73 J	4.4 J	9.1	0.5 U
SVE-8	20 feet	5.6	NS	NS	6.8	NS	9.9	NS	NS	NS ¹	NS	NS ¹	NS	NS	NS	32	NS
SVE-9	20 feet	1.5	4.6	1.6	10	8.8	3	1.73	1.69	4.2 J	6.3 J	2.8	5.2	4.9 J	1.7 J	7.9	12
Intermediate	Wells																
PCIX-1C	30 feet	18	40	27	10 U	70	16	3.44	17.27	17	0.5 U	6.3	12	19 J	25	2.5 U	17
PCIX-2C	30 feet	170	100	60	100 U	100	3.4	18.5	ND	2.7	0.5 U	3.6	5 U	25 J	750	120	42
PCIX-5C	30 feet	48	39	20	1 U	120	230	ND	50.7	220 J	160 J	240	330	450	1,700	5 U	27
MW-44A*	30 feet	32	52	63	100 U	1,000 U	10 U	13.9	50	75	87 J	100	170	330	950	290	NS
MW-45A*	30 feet	93	410	330	10 U	100 U	5 U	ND	ND	2.2	0.5 U	8.8	7.8	20 J	22	2.5 U	71
MW-46A*	30 feet	15	9	9.2	6.5 J	19	5.2	4.73	25	8.9	9.7	27	36	58	88	29	NS
PCIX-1B	50 feet	4	2.3	2.9	100 U	100 U	1 U	ND	ND	2	10 U	2.6	5.4	5 U	2.3	NS	1 U
PCIX-2B	50 feet	7.4	8	16	100 U	10 U	1 U	ND	50.7	26	100 U.	7 J	32 U	6.4	63	NS	2.9
PCIX-5B	50 feet	18	17	22	83	45	63	ND	ND	0.5 U	0.5 U	14	15	6.1	14	2.5 U	1
MW-44M*	50 feet	40	73	110	100 U	1,000 U	5 U	ND	ND	0.5 U	0.5 U	12	7.4 U	11	1,100	5 U	NS
MW-45M*	50 feet	33 J	51	37	100 U	1,000 U	5 U	ND	1.4	0.5 U	0.5 U	0.5 U	N/A R	0.5 U	0.5 UJ	NS	3.2
MW-46M*	50 feet	20	23 J	20	40	14	9.4	ND	1.07	0.5 U	0.5 U	18	16	14	14	11	NS
MW-47M*	50 feet	95	61	100	100 U	1,000 U	1 U	ND	ND	5.2 J	0.5 U	22	25	24	28	NS	6.5
Results in hold an	d shaded text ex	ceed the cleanup level	specified in the ROD (I	Federal MCL)													

Results in bold and shaded text exceed the cleanup level specified in the ROD (Federal MCL).

Results in **bold** text are detected concentrations

¹ - Could not sample with PDB bag due to misalignment of wellhead

² - July 2008 and August 2008 data was HAPSITE data, thus reporting limits were not available and samples not detected above the reporting limit were listed as non detect (ND).

³ - August 2008 samples were collected using PDBs

⁴ - PDB data is to be used for screening purposes only and was not used in trend graphs or on plume figures.

⁵ - Rental bladder pump was used to sample well.

bgs - Below ground surface

NS - Not sampled

NI- Not installed

ND- Not detected

PDB - Passive Diffusion Bag

U - Not detected above the stated reporting limit

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

UJ - The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

PCE - tetrachloroethene

N/A R - The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

TCE - trichloroethene

DCE - dichloroethene

Table 5 OHM Groundwater Sample Results (continued)	Table 5	ОНМ	Groundwater	Sample	Results ((continued)
--	---------	-----	-------------	--------	-----------	-------------

								Α	nalyte Concentrat	ions (µg/L)							
	Approx.								cis-1,2-D								
	Depth		20	07				2	008					2009			2010
Well	(bgs)	January	April	July	October	January	April	July ^{2,3}	August ^{2,3}	Octo	ber	Janu	ary	April ⁵	July ⁵	October ⁵	January ⁵
Shallow Well	s									PDBs ⁴	Pump	PDBs ⁴	Pump				
PCIX-1D	18 feet	64	140	280	300	54	37	254.9	ND	4.3 J	0.5 U	16	8.1	2.3 J	21 J	26	5 U
PCIX-2D	18 feet	140	30	360	81	57	16	ND	ND	6.5 J	8.5 J	5.7	17	30 J	45 J	39	310
PCIX-5D	17 feet	39	43	22	18	38	13	ND	ND	25	27	0.97	8.8	5 U	0.5 U	11	23
SVE-1	20 feet	1.5	1.5	1 U	1.2	1.5	2.6	0.51	0.67	0.8	0.95	0.5 U	0.9	1.2 J	0.72	1.2	0.66
SVE-2	20 feet	10	13	12	3.5	4.6	2.8	ND	6.98	10 J	7.9 J	4	9.5	18 J	14	15	17
SVE-3	20 feet	55	38	39	15	61	37	6.01	ND	1.1	0.5 U	1.2	45	98	21	56	50
SVE-4	20 feet	2.9	4	2	8.1	4.7	3.8	ND	2.6	NS^1	8.9 J	NS ¹	6.1	8.5 J	8.9 J	5	5.1
SVE-5	20 feet	22	38	15	11	13	7.2	3.89	ND	3.8	5	3.5	5.7	28	38	NS	22
SVE-6	20 feet	90	99	58	10 U	5.9	2.6	1.5	151.3	35 J	18 J	46	52	9.4 J	2.8 J	19	11
SVE-7	20 feet	28	31	20	5.7	3.7 J	2.2	0.47	0.75	0.96	0.91 J	0.5 U	0.5 U	1 J	2	4.2	0.5 U
SVE-8	20 feet	13	NS	NS	1.8	NS	30	NS	NS	NS^1	NS	NS ¹	NS	NS	NS	29	NS
SVE-9	20 feet	5.3	14	5	16	18	6.3	0.76	1.41	8.4 J	13 J	3.9	10	12 J	3.6	16	22
Intermediate	Wells																
PCIX-1C	30 feet	28	100	41	10 U	45	11	18.23	45.6 J	22	N/A R	47	4	13 J	19	2.5 U	16
PCIX-2C	30 feet	150	59	46	100 U	29	8.1	31.3	ND	1 U	N/A R	9	5 U	40 J	170	120	92
PCIX-5C	30 feet	61	38	25	1 U	46	170	ND	163	320 J	140 J	280	130	120	180 J	5 UJ	64
MW-44A*	30 feet	130	150	150	100 U	1,000 U	10 U	53.7	222	340	410 J	280	400	570 J	1,500	5 U	NS
MW-45A*	30 feet	61	190	140	10 U	100 U	5 U	16.8	ND	4.7	0.5 U	20	18	33	27 J	2.5 U	75
MW-46A*	30 feet	15	2.9	2.7	3.3 J	5.3	3.3	2.8	ND	39 J	3.2 J	12	15	21	45 J	14	NS
PCIX-1B	50 feet	3.3	1 U	1 U	100 U	100 U	1 U	ND	ND	1 U	10 U	1	1.7 U	5 U	0.5 U	NS	1 U
PCIX-2B	50 feet	12	3.6	1.2	100 U	10 U	1 U	0.9	56.2	36	100 U	39	32 U	13	52 J	NS	33
PCIX-5B	50 feet	1 U	1 U	1 U	50	11	9.7	ND	ND	0.5 UJ	N/A R	0.5 U	0.87	0.51	1.5 J	2.5 U	0.5 UJ
MW-44M*	50 feet	17	23	100	100 U	1,000 U	5 U	ND	ND	0.5 UJ	0.5 UJ	4.6	7.4 U	5 U	65	5 UJ	NS
MW-45M*	50 feet	1.3	2.5	1.8	100 U	1,000 U	5 U	ND	1.78	0.5 UJ	N/A R	0.5 U	0.5 U	0.5 U	N/A R	NS	2.7
MW-46M*	50 feet	1.5	1.3	2.1	2.1	1 U	1 U	ND	ND	0.5 UJ	0.5 U	8.2	3.3	3.2	7.3	3.2	NS
MW-47M*	50 feet	2	1.5	1.8	100 U	1,000 U	1 U	ND	ND	0.5 UJ	0.5 UJ	1.5	1.8	1.5 J	4.2	NS	1 U

Results in **bold** text are detected concentrations

¹ - Could not sample with PDB bag due to misalignment of wellhead

² - July 2008 and August 2008 data was HAPSITE data, thus reporting limits were not available and samples not detected above the reporting limit were listed as non detect (ND).

³ - August 2008 samples were collected using PDBs

⁴ - PDB data is to be used for screening purposes only and was not used in trend graphs or on plume figures.

⁵ - Rental bladder pump was used to sample well.
 bgs - Below ground surface

NS - Not sampled NI- Not installed

ND- Not detected

PDB - Passive Diffusion Bag

U - Not detected above the stated reporting limit

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

UJ - The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

PCE - tetrachloroethene

N/A R - The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

TCE - trichloroethene DCE - dichloroethene

Table 5 OHM Groundwater Sample Results (continued)

									Analyte Conc	entrations (µg/L)								
	Approx.								trans-	-1, 2-DCE								
	Depth		20	07				2	2008					2009			2010	
Well	(bgs)	January	April	July	October	January	April	July ^{2,3}	August ^{2,3}	Octol	er	Janu	ary	April ⁵	July ⁵	October ⁵	January ⁵	
Shallow Well	s									PDBs ⁴	Pump	PDBs ⁴	Pump					
PCIX-1D	18 feet	4.5	12	6.8	4.7	1 U	1 U	214.5	ND	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	10 U	5	U
PCIX-2D	18 feet	2.1	1 U	9.6	1.7	1 U	1 U	ND	ND	0.5 U	N/A R	0.5 U	0.5 U	0.5 UJ	0.56 J	2.5 U	15	U
PCIX-5D	17 feet	1 U	1.2	1 U	1 U	1.1	1 U	ND	ND	0.5 UJ	5 U	0.5 U	5 U	5 U	0.5 U	2.5 U	22	U
SVE-1	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	0.28	0.62	0.5 U	0.5 U	0.5 U	0.5 U	0.61 J	0.5 U	0.5 U	0.5	U
SVE-2	20 feet	5.2	8.1	6.7	1.7	2.7	1.9	ND	4.22	5.8 J	3.8 J	1.9	3.3	5.2 J	2.5	4.9	6.5	
SVE-3	20 feet	7.8	7.7	5.4	1.4	6.4	3.8	3.59	ND	0.64	0.5 U	0.5 U	13 U	25 U	5 U	5 U	6.1	
SVE-4	20 feet	4	4.3 J	2.5	1 U	1 U	1 U	ND	0.59	NS ¹	2.7 J	NS ¹	1.4	1.2 J	2.8 J	2.7 J	2.9	
SVE-5	20 feet	3	5.2	4.4	1 U	1 U	1 U	0.81	ND	0.5 U	0.5 U	0.5 U	0.5 U	5 U	5 U	NS	6.9	
SVE-6	20 feet	1.6	2.1	1.1	10 U	1 U	1 U	1.02	146	0.5 U	N/A R	0.5 U	0.5 U	2.5 UJ	0.5 U	0.5 U	0.5	U
SVE-7	20 feet	1 U	1 U	1 U	1 U	1 UJ	1 U	0.25	0.69	0.5 U	N/A R	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5	U
SVE-8	20 feet	1 U	NS	NS	1 U	NS	1 U	NS	NS	NS ¹	NS	NS^1	NS	NS	NS	2 U	NS	
SVE-9	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	0.44	1.31	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	1 U	1.5	U
Intermediate	Wells																	
PCIX-1C	30 feet	4.8	4.9	1.3	10 U	4.8	1 U	0.29	0.93	0.5 U	N/A R	0.66	0.5 U	0.5 UJ	0.5 U	2.5 U	2.6	
PCIX-2C	30 feet	4.5	2.5	1.3	100 U	2.4	1 U	ND	ND	1 U	N/A R	0.5 U	5 U	5 UJ	5 U	5 U	5	U
PCIX-5C	30 feet	1 U	1 U	1 U	1 U	1.2	3.2	ND	160	2 J	1.8	2.7	5 U	50 U	5 U	5 UJ	0.89	
MW-44A*	30 feet	1.4	2.1	1.7 J	100 U	1,000 U	10 U	44.9	215	10 U	13 UJ	2.5	3.6	3.5 J	5.2	5 U	NS	
MW-45A*	30 feet	2.6	6.2	3.9	10 U	100 U	5 U	14	ND	0.5 U	0.5 U	0.5 U	0.7 U	5 U	0.5 U	2.5 U	4.6	U
MW-46A*	30 feet	8.3	5.2	4.3	1 U	3	1 U	0.5	ND	0.5 U	0.5 U	1.7	2.1	14	14 J	8.2	NS	
PCIX-1B	50 feet	1 U	1 U	1 U	100 U	100 U	1 U	ND	ND	1 U	10 U	0.5 U	1.7 U	5 U	0.5 U	NS	1	U
PCIX-2B	50 feet	1 U	1 U	1 U	100 U	10 U	1 U	0.56	56.2	5 U	100 U	0.5 U	32 U	5 U	1.2	NS	1	U
PCIX-5B	50 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 UJ	N/A R	0.5 U	0.5 U	0.5 U	0.5 U	2.5 U	0.5	U
MW-44M*	50 feet	1 U	1 U	2	100 U	1,000 U	5 U	ND	ND	0.5 UJ	0.5 UJ	3.2 U	7.4 U	5 U	5 U	5 UJ	NS	
MW-45M*	50 feet	1 U	1 U	1 U	100 U	1,000 U	5 U	ND	1.65	0.5 UJ	N/A R	0.5 U	0.5 U	0.5 U	N/A R	NS	1	U
MW-46M*	50 feet	1 U	1 U	1 U	1	1 U	1 U	ND	ND	0.5 UJ	0.5 U	2.8	1.3	1.4	3.2	1.7	NS	
MW-47M*	50 feet	1 U	1 U	1 U	100 U	1,000 U	1 U	ND	ND	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.76	NS	1	U
esults in hold and	d shaded text ex	ceed the cleanup level	specified in the ROD	(Federal MCL)														

Results in **bold** and shaded text exceed the cleanup level spec Results in **bold** text are detected concentrations d in the ROD (Federal MCL).

¹ - Could not sample with PDB bag due to misalignment of wellhead

² - July 2008 and August 2008 data was HAPSITE data, thus reporting limits were not available and samples not detected above the reporting limit were listed as non detect (ND).

³ - August 2008 samples were collected using PDBs

⁴ - PDB data is to be used for screening purposes only and was not used in trend graphs or on plume figures.

⁵ - Rental bladder pump was used to sample well.

bgs - Below ground surface

NS - Not sampled

NI- Not installed

ND- Not detected

PDB - Passive Diffusion Bag

U - Not detected above the stated reporting limit

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

UJ - The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

PCE - tetrachloroethene

N/A R - The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

TCE - trichloroethene

DCE - dichloroethene

Table 5 OHM Groundwater Sample Results (continued)

		Analyte Concentrations (µg/L)																
	Approx.					-			Vi	nyl Chloride								
	Depth		20	07				2	2008	-				2009			2010)
Well	(bgs)	January	April	July	October	January	April	July ^{2,3}	August ^{2,3}	Octo	ber	Janua	ary	April ⁵	July ⁵	October ⁵	January	y ⁵
Shallow Well	ls									PDBs ⁴	Pump	PDBs ⁴	Pump					
PCIX-1D	18 feet	1 U	3	4.7	1 U	4.1	1 U	ND	ND	0.56	N/A R	2	5 U	0.5 UJ	3.4	10 U	5	U
PCIX-2D	18 feet	1 U	1 U	2.2	14	6	1 U	ND	ND	4.5 J	6.9 J	0.5 U	9.1	9.1 J	33	7.6	19	
PCIX-5D	17 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	5 U	0.5 U	5 U	5 U	0.5 U	2.5 U	22	U
SVE-1	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5	U
SVE-2	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5	U
SVE-3	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 UJ	0.5 U	13 U	25 U	5 U	5 U	0.5	U
SVE-4	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	NS ¹	0.5 U	NS^1	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5	U
SVE-5	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	5 U	5 U	NS	0.5	U
SVE-6	20 feet	1 U	1 U	1 U	10 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	2.5 UJ	0.5 U	3	0.92	
SVE-7	20 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5	U
SVE-8	20 feet	1 U	NS	NS	1 U	NS	1 U	ND	ND	NS ¹	NS	NS^1	NS	NS	NS	2 U	NS	
SVE-9	20 feet	1 U	1 U	4	1 U	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	2 U	1 U	1.5	U
Intermediate	Wells																	
PCIX-1C	30 feet	26	73	29	10 U	2.2	9.6	20.6	ND	17	N/A R	32	3.1	5.4 J	17	2.5 U	0.59	
PCIX-2C	30 feet	11	4.8	4	100 U	7	1.2	ND	ND	1 U	N/A R	0.5 U	5 U	5 UJ	49	6.4	9.9	
PCIX-5C	30 feet	1 U	1 U	1 U	1 U	1 U	9.7	ND	ND	35 J	18 J	7	5 U	50 U	5 U	5 UJ	0.5	U
MW-44A*	30 feet	1 U	1 U	1 U	100 U	1,000 U	10 U	ND	ND	10 U	13 UJ	2 U	2.2	3.1	6.7	5 U	NS	
MW-45A*	30 feet	1 U	6.2	6.7	10 U	100 U	5 U	ND	ND	0.5 U	0.5 U	0.63	0.7 U	5 U	0.7	2.5 U	4.6	U
MW-46A*	30 feet	1 U	1 U	1 U	1 UJ	1 U	1 U	ND	ND	0.5 U	0.5 U	0.5 U	0.75 U	2.5 U	0.5 U	1 U	NS	
PCIX-1B	50 feet	1 U	1 U	1 U	100 U	100 U	1 U	ND	ND	1 U	10 U	0.5 U	1.7 U	5 U	0.5 U	NS	1	U
PCIX-2B	50 feet	1 U	1 U	1 U	100 U	10 U	1 U	ND	ND	13	100 U	17	32 U	5 U	6.4	NS	2.5	
PCIX-5B	50 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	N/A R	0.5 U	0.5 U	0.5 U	0.5 U	2.5 U	0.5	U
MW-44M*	50 feet	1 U	1 U	1 U	100 U	1,000 U	5 U	ND	ND	0.5 U	N/A R	3.2 U	7.4 U	5 U	5 U	5 UJ	NS	
MW-45M*	50 feet	1 U	1 U	1 U	100 U	1,000 U	5 U	ND	ND	0.5 U	N/A R	0.5 U	N/A R	0.5 UJ	N/A R	NS	1	U
MW-46M*	50 feet	1 U	1 U	1 U	1 U	1 U	1 U	ND	ND	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	NS	
MW-47M*	50 feet	1 U	1 U	1 U	100 U	1,000 U	1 U	ND	ND	0.5 UJ	N/A R	0.5 U	0.5 U	0.5 U	0.5 U	NS	1	U

Results in bold and shaded text exceed the cleanup level specified in the ROD (Federal MCL).

Results in **bold** text are detected concentrations

¹ - Could not sample with PDB bag due to misalignment of wellhead

² - July 2008 and August 2008 data was HAPSITE data, thus reporting limits were not available and samples not detected above the reporting limit were listed as non detect (ND).

³ - August 2008 samples were collected using PDBs

⁴ - PDB data is to be used for screening purposes only and was not used in trend graphs or on plume figures.

⁵ - Rental bladder pump was used to sample well.

bgs - Below ground surface

NS - Not sampled NI- Not installed

ND- Not detected

PDB - Passive Diffusion Bag

U - Not detected above the stated reporting limit

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the required detection limits or quality control criteria were not met.

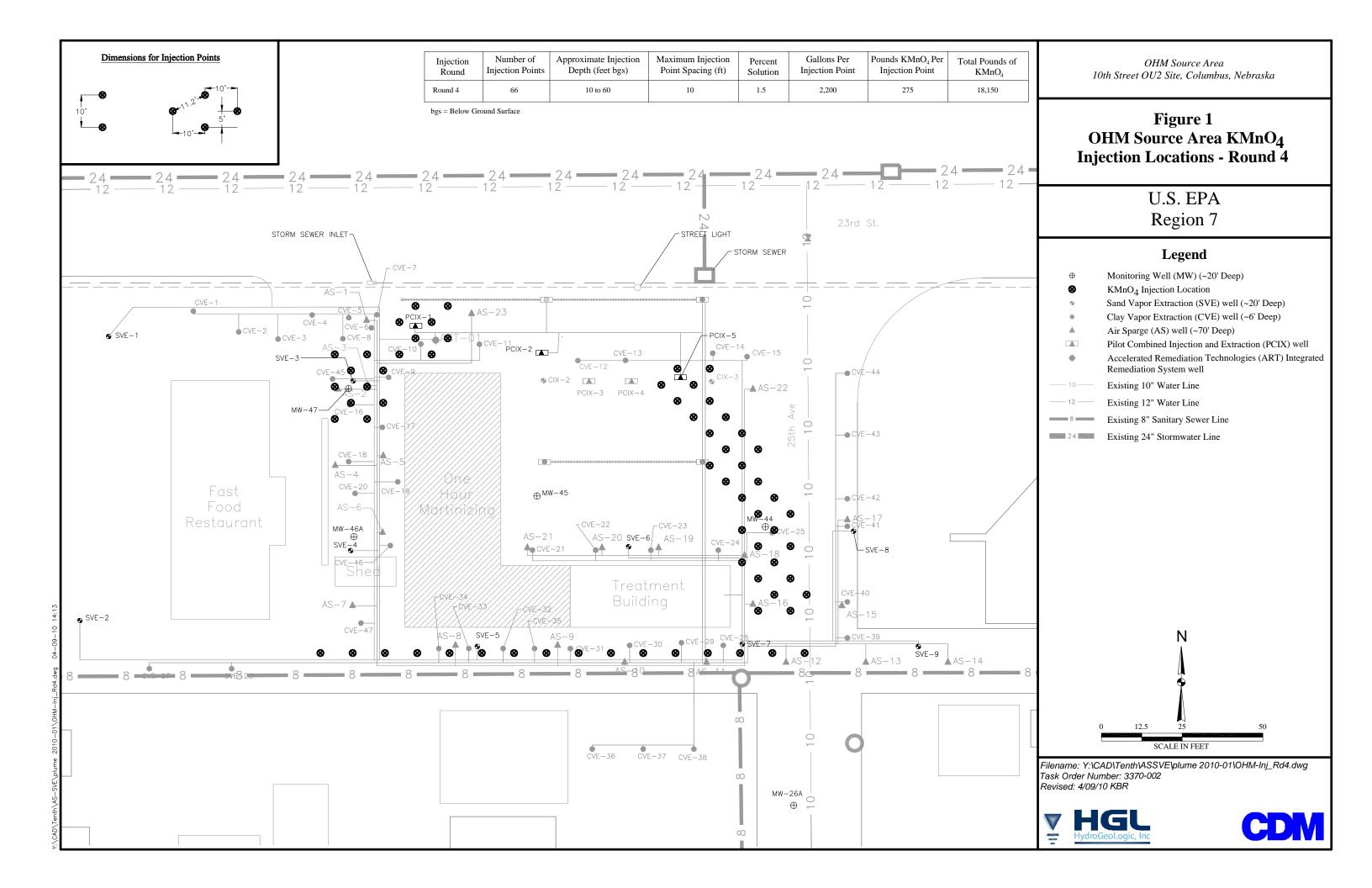
UJ - The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

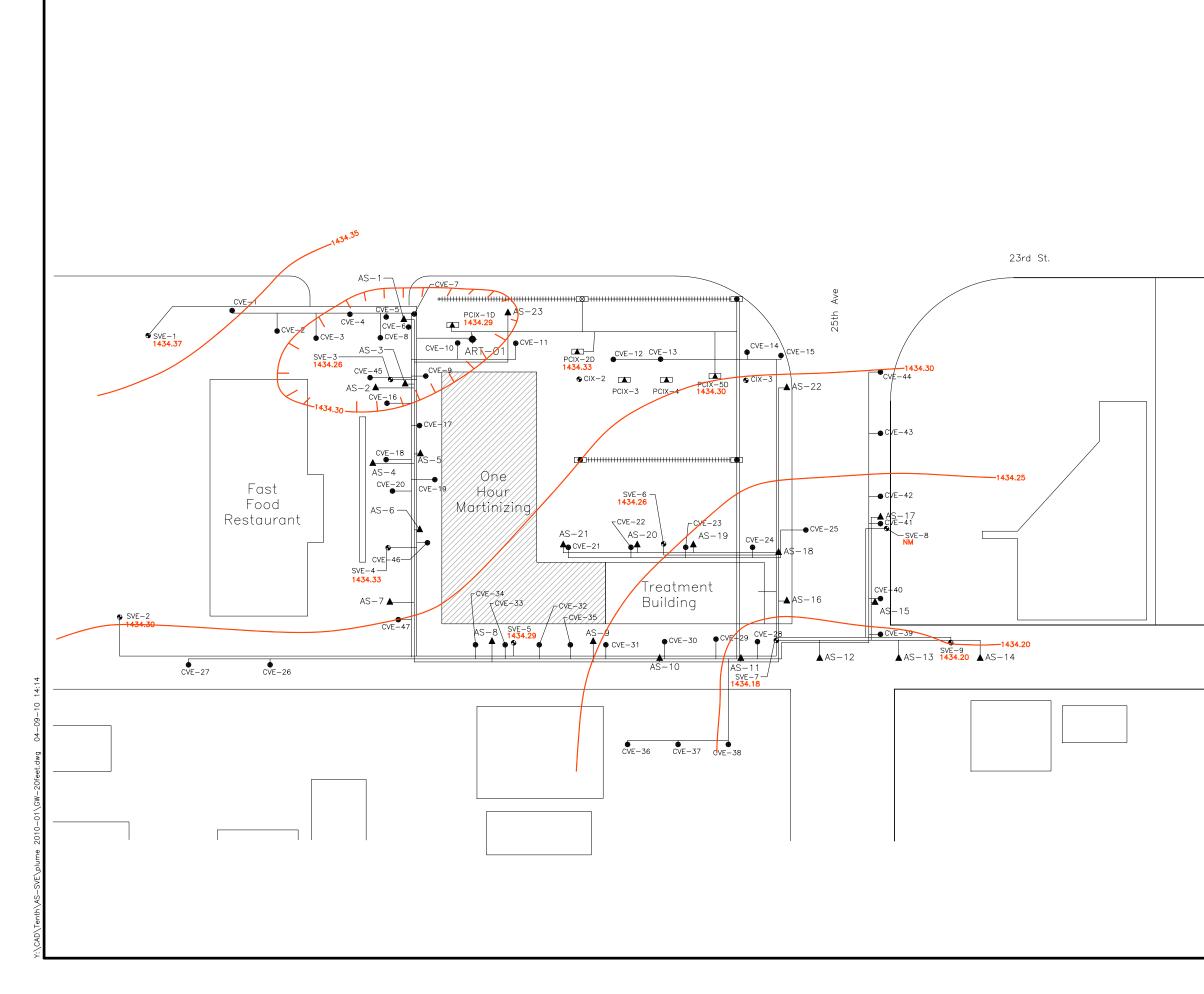
PCE - tetrachloroethene

N/A R - The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

TCE - trichloroethene

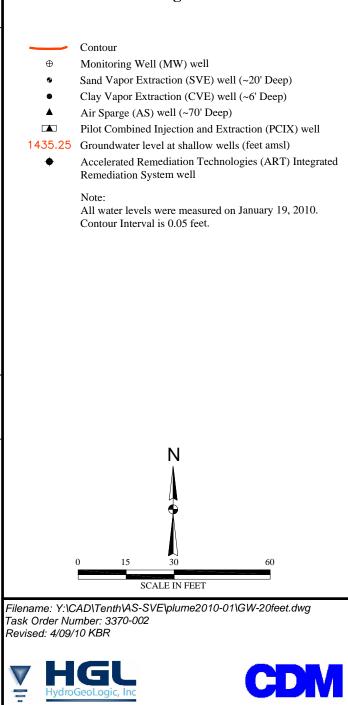
DCE - dichloroethene

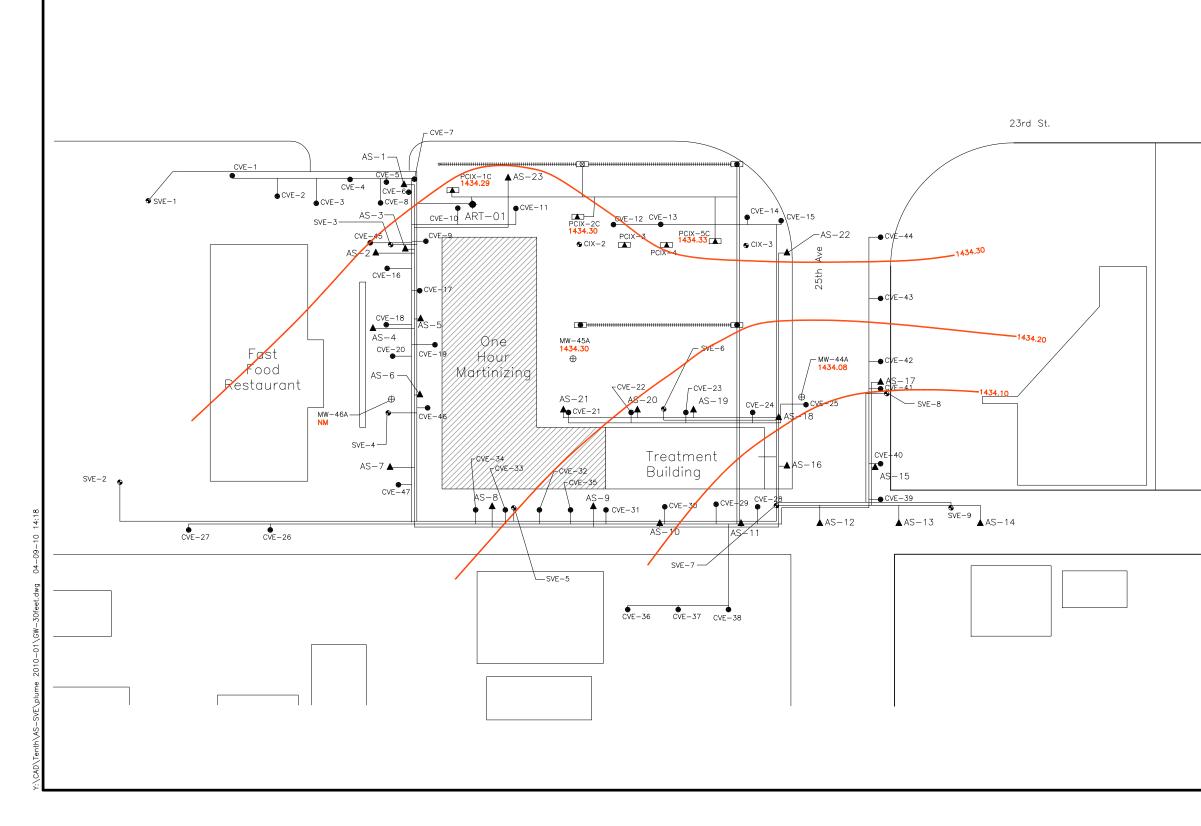

Well ID	Analyte	Asorbic Acid in Field	Ascorbic Acid in Lab	HCl in Field	Units
MW-45M	PCE	59	22	0.5 U	μg/L
MW-45M	TCE	3.2	1 U	0.5 U	μg/L
MW-45M	cis-1,2-DCE	2.7	1 U	0.5 U	μg/L
MW-45M	trans-1,2-DCE	1 U	1 U	0.5 U	μg/L
MW-45M	Vinyl Chloride	1 U	1 U	0.5 U	μg/L
MW-45M FD	PCE	56	21	0.5 U	μg/L
MW-45M FD	TCE	3.1	1 U	0.5 U	μg/L
MW-45M FD	cis-1,2-DCE	2.6	1 U	0.5 U	μg/L
MW-45M FD	trans-1,2-DCE	1 U	1 U	0.5 U	μg/L
MW-45M FD	Vinyl Chloride	1 U	1 U	0.5 U	μg/L
MW-47M	PCE	3.3	2.8	2.3	μg/L
MW-47M	TCE	6.5	2.1	0.5 U	μg/L
MW-47M	cis-1,2-DCE	1 U	1 U	0.5 U	μg/L
MW-47M	trans-1,2-DCE	1 U	1 U	0.5 U	μ g/L
MW-47M	Vinyl Chloride	1 U	1 U	0.5 U	μg/L
PCIX-1B	PCE	50	33	1	μg/L
PCIX-1B	TCE	1 U	1 U	0.5 U	μg/L
PCIX-1B	cis-1,2-DCE	1 U	1 U	0.5 U	μg/L
PCIX-1B	trans-1,2-DCE	1 U	1 U	0.5 U	μ g/L
PCIX-1B	Vinyl Chloride	1 U	1 U	0.5 U	μg/L
PCIX-2B	PCE	40	43	35	μg/L
PCIX-2B	TCE	2.9	1 U	0.5 U	μg/L
PCIX-2B	cis-1,2-DCE	33	1.6	0.5 U	μg/L
PCIX-2B	trans-1,2-DCE	1 U	1 U	0.5 U	μg/L
PCIX-2B	Vinyl Chloride	2.5	1 U	0.5 U	μg/L


Table 6 January 2010 OHM Source Area Research Samples

Results in **bold** text are detected concentrations

Results in **bold** and shaded text exceed the cleanup level specified in the ROD (Federal MCL).


Figures



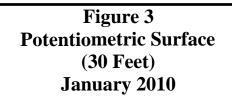
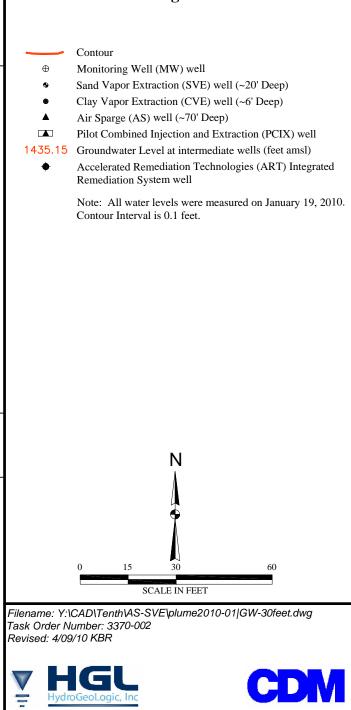
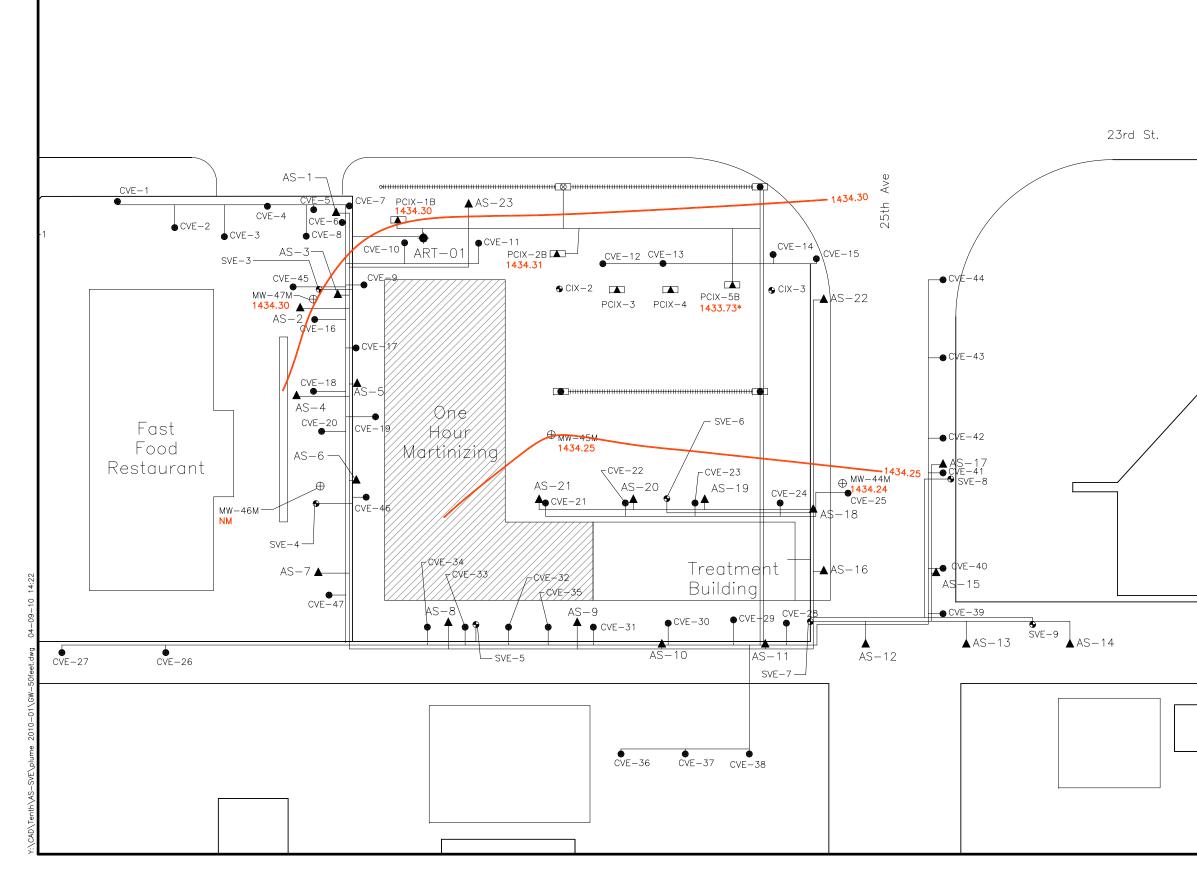
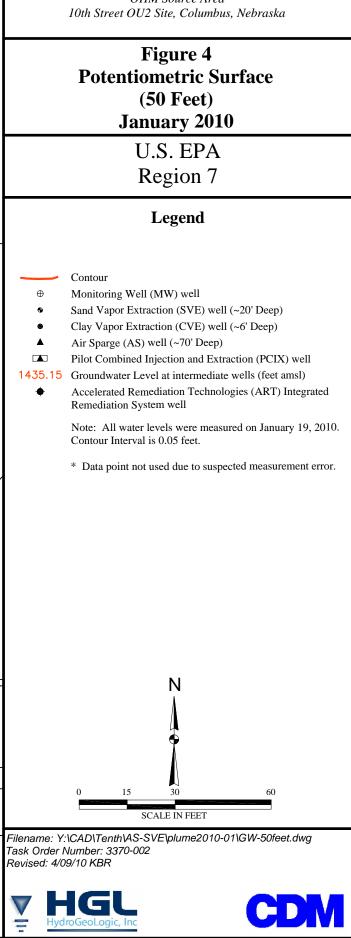
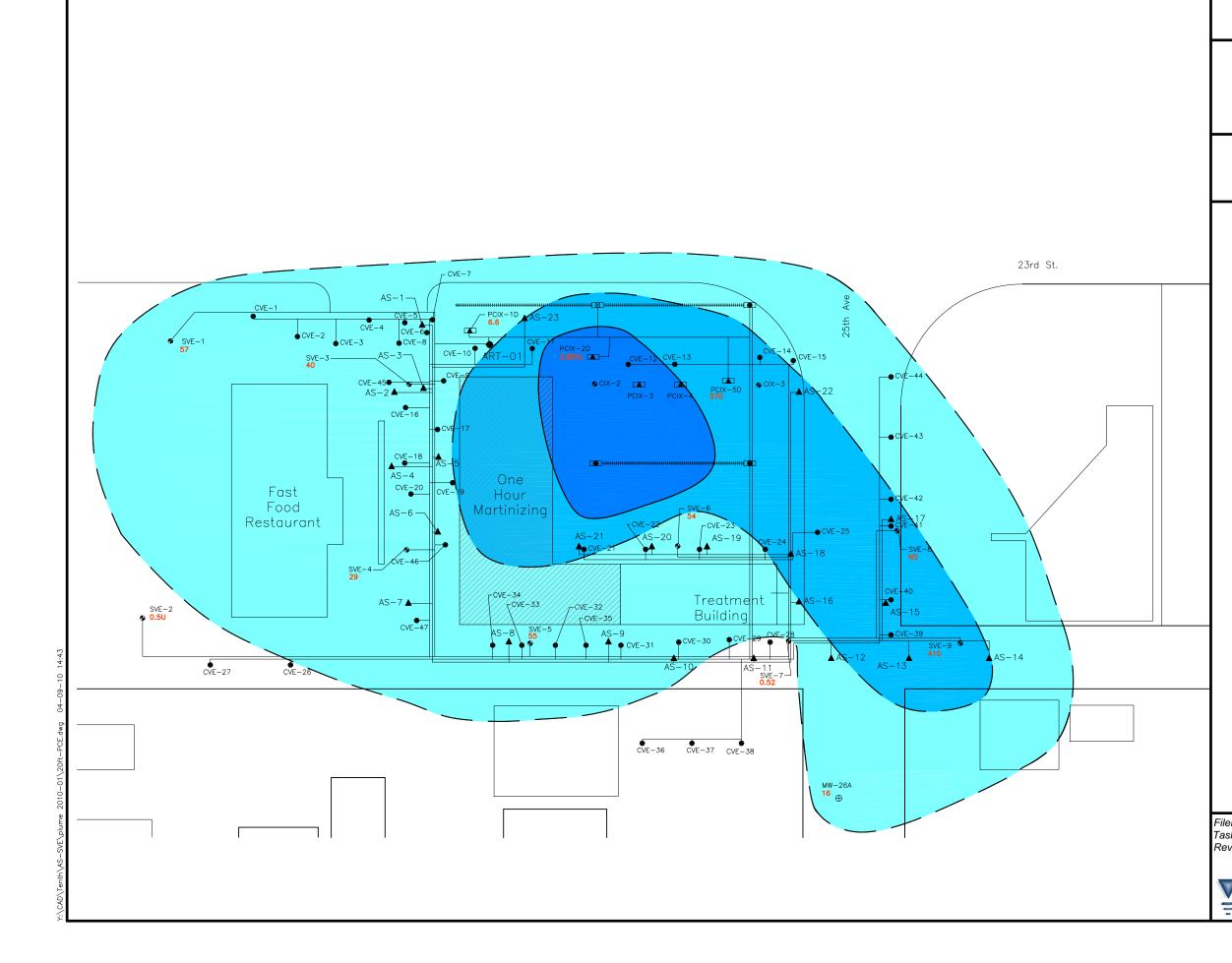


Figure 2 Potentiometric Surface (17 to 20 Feet) January 2010

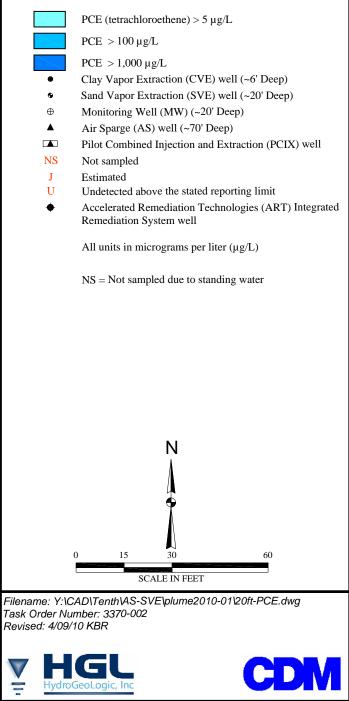

U.S. EPA Region 7






U.S. EPA Region 7

OHM Source Area



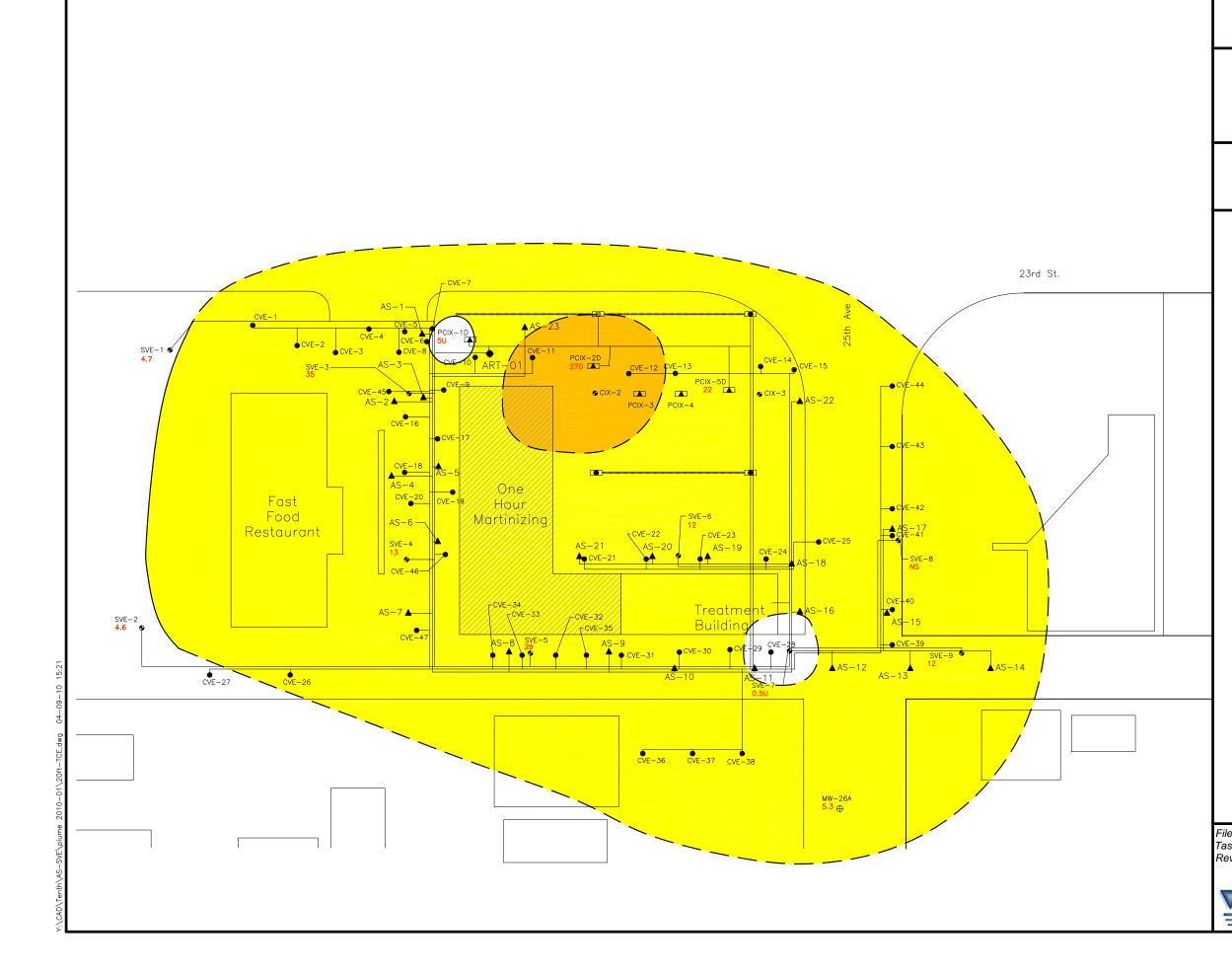
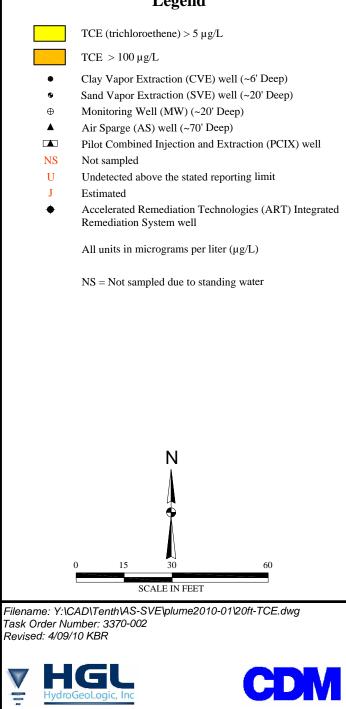


Figure 5

PCE Groundwater Sample Results (17 to 20 Feet) January 2010


U.S. EPA Region 7

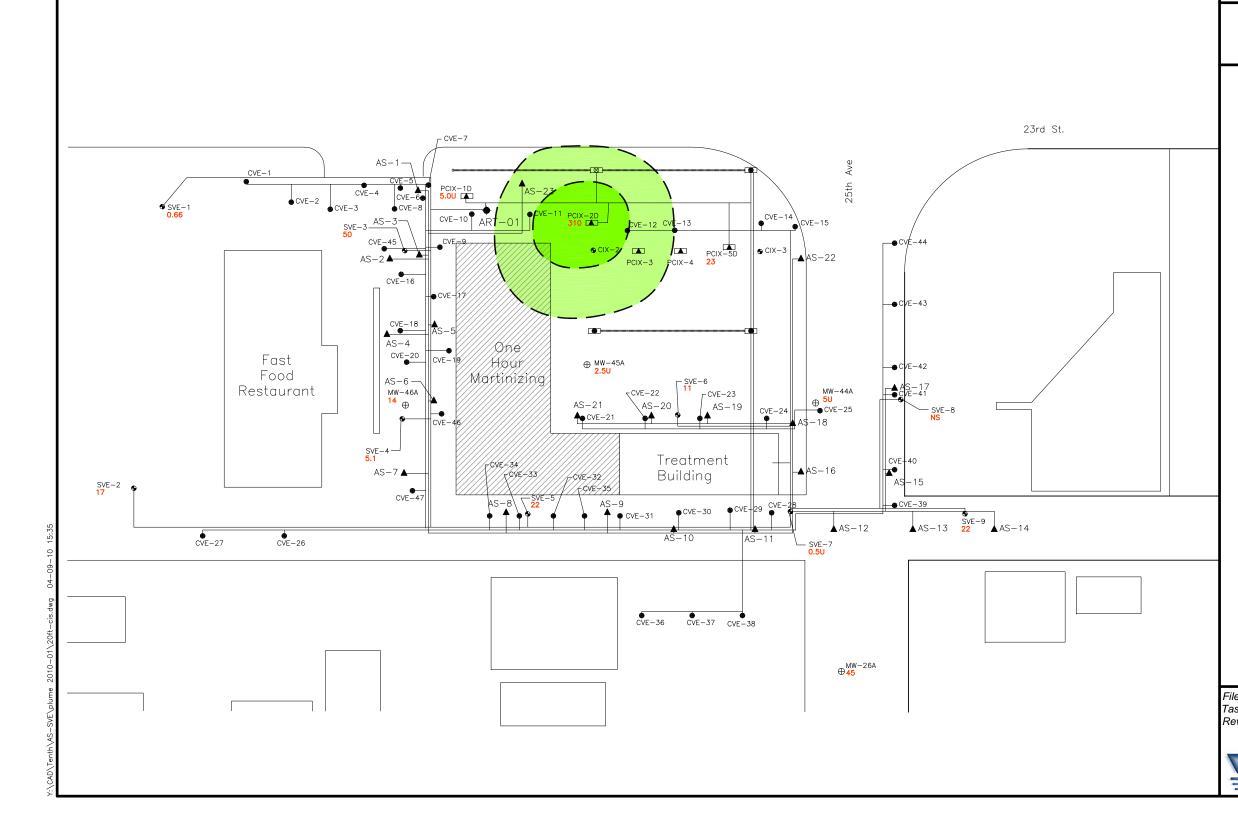
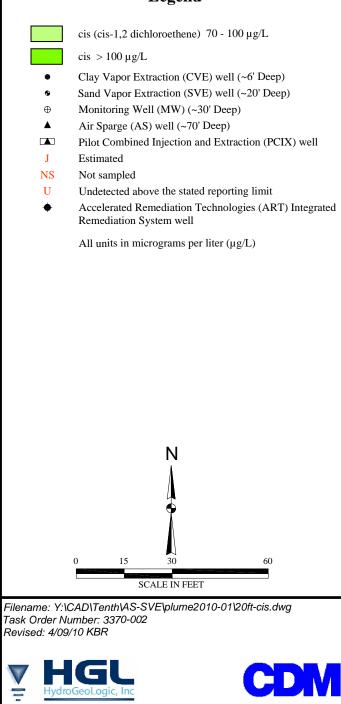


Figure 6 **TCE Groundwater Sample Results** (17 to 20 Feet) January 2010

U.S. EPA Region 7



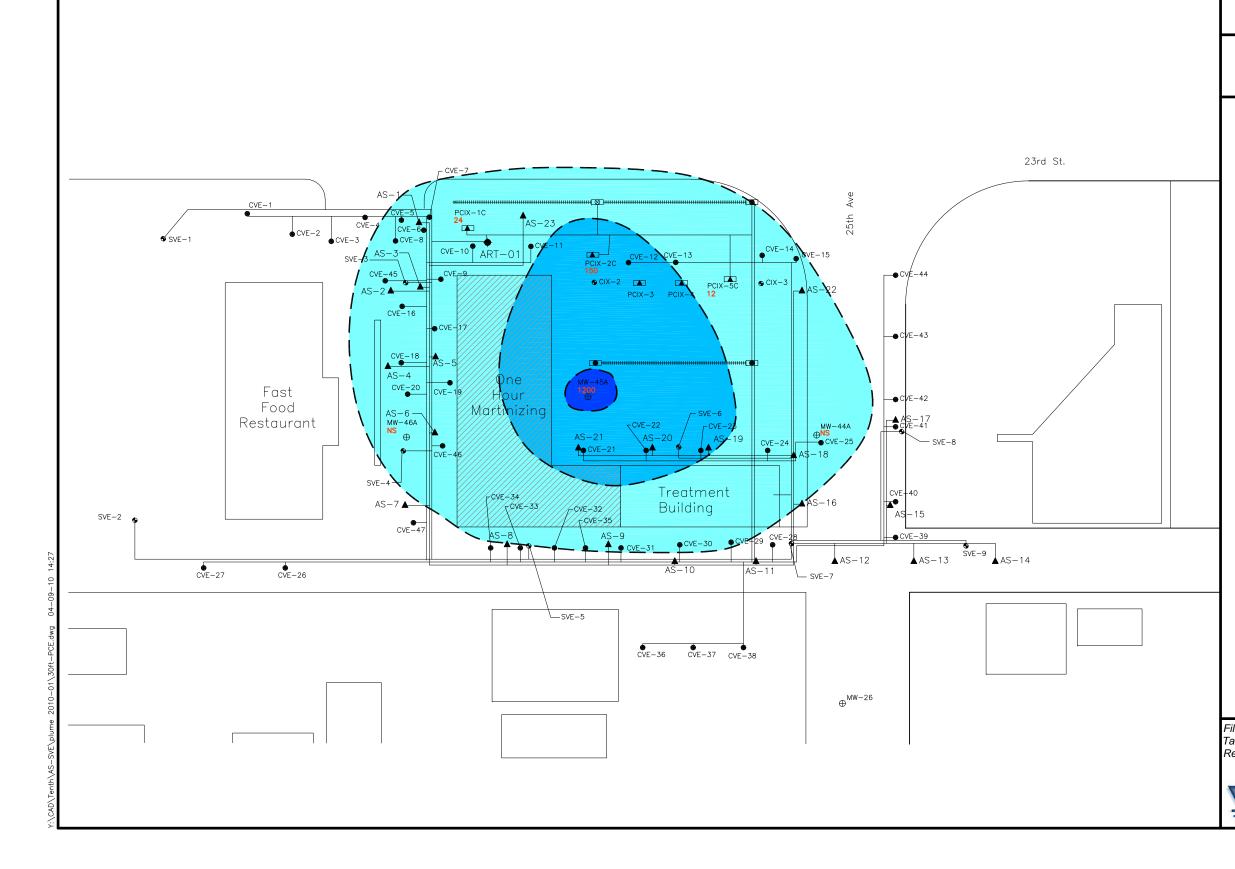
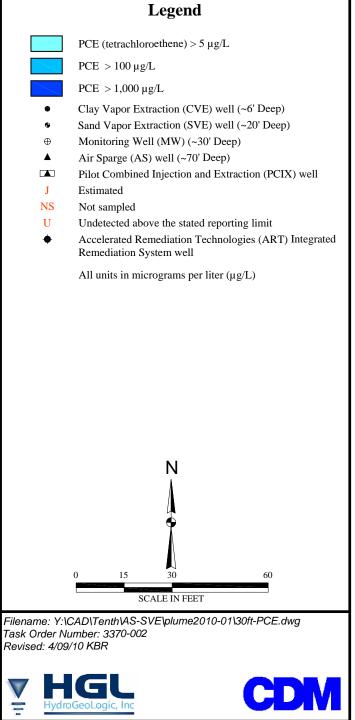


Figure 7

cis-1,2-DCE Groundwater Sample Results (17 to 20 Feet) January 2010


U.S. EPA Region 7

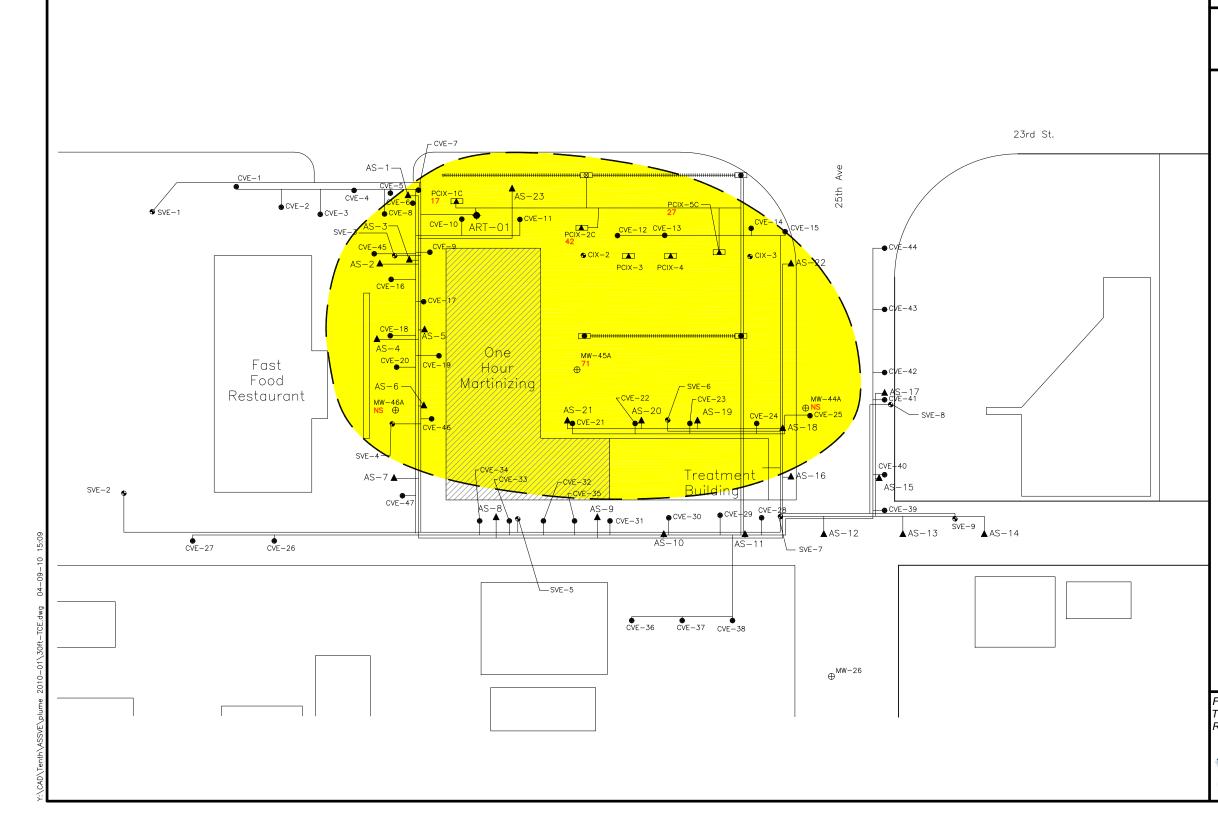
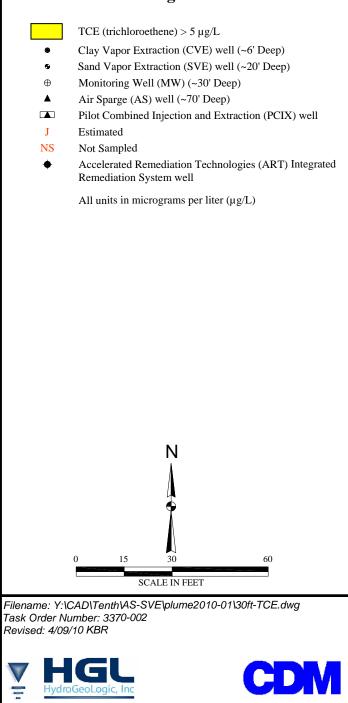


Figure 8 PCE Groundwater Sample Results (30 Feet) January 2010

U.S. EPA Region 7



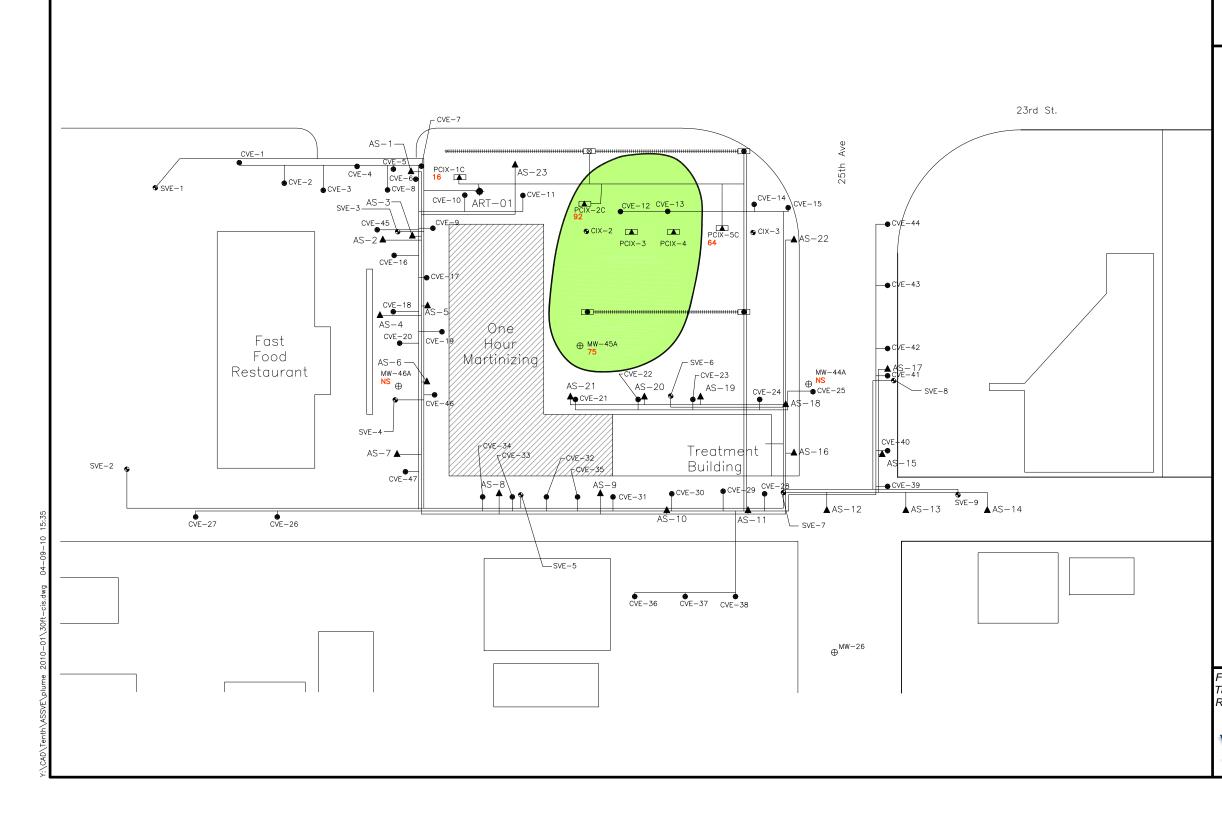
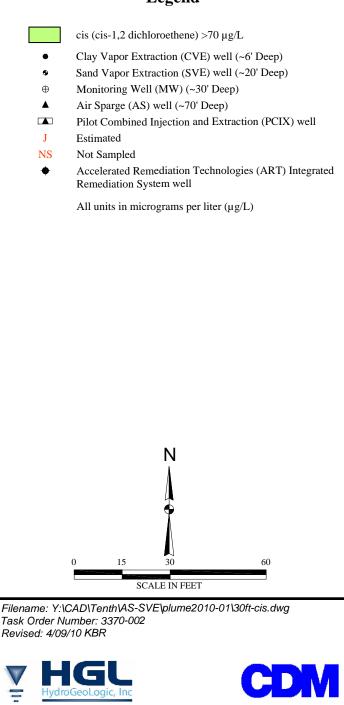


Figure 9

TCE Groundwater Sample Results (30 Feet) October 2009


U.S. EPA Region 7

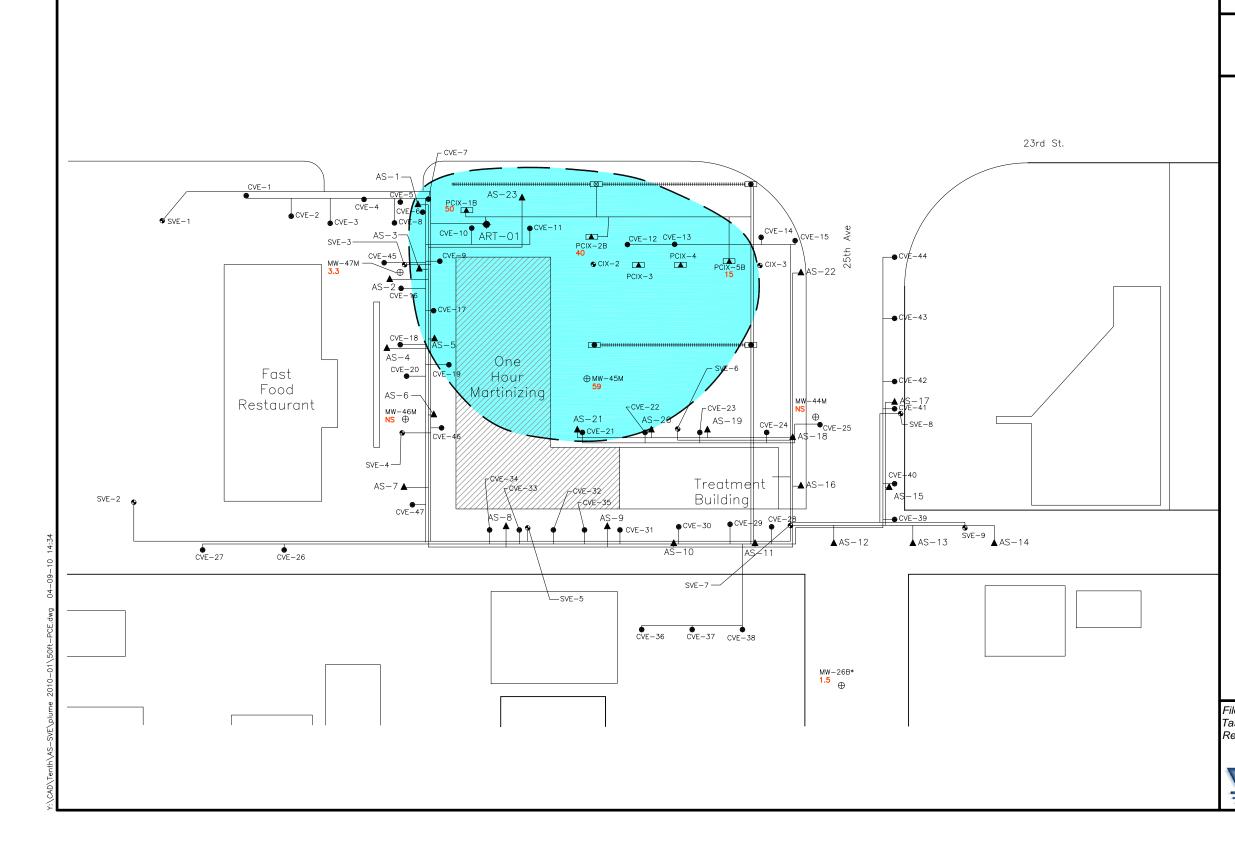


Figure 10 cis-1,2-DCE Groundwater Sample Results (30 Feet) October 2009

U.S. EPA Region 7

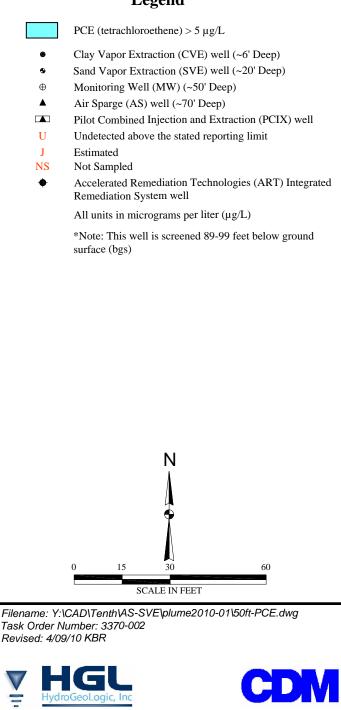


Figure 11

PCE Groundwater Sample Results (50 Feet) January 2010

U.S. EPA Region 7

Attachment 1

AS/SVE Weekly System Checklists

Weekly Inspection Report

To: Marc Schlebusch, CDM

- From: Stephen Holmes, HGL
- **Re:** Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, August 5 to November 6, 2009.
- Date: December 6, 2009

Introduction

On November 6, Stephen Holmes of HydroGeoLogic Inc., (HGL) re started the system and conducted a weekly site visit. The air sparging/soil vapor extraction system is located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska. The system has been down since August 17th until November6 2009 for the following reasons:

- 1. Groundwater recirculation pilot test during the week of August 10, 2009
- 2. ISCO injections August, September and October 2009
- 3. October Quarterly Monitoring event.
- 4. Excessive oil consumption in air compressor #1 and an unusual cycling in the #2 air compressor.

At the time of the system restart the only component of the system configured for continuous unsupervised operation is the high vacuum CVE system. The air sparging system is being run on supervised basis only so personnel can be on site to monitor for groundwater upwelling. The attached check list details what air sparge wells are valved on during sparging activities. The ART well was taken off line during the groundwater recirculation pilot study in August. Finally the low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Air Sparging/Soil Vapor Extraction System Equipment	Status Arrival	Status Departure
Air Compressor No. 1	Off	Automatic*
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Automatic
High Vacuum System Blower	Off	Automatic
High Vacuum System Heat Exchanger	Off	Automatic
High Vacuum Water Transfer Pump	Off	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Open	Open
Building Thermostat	58°F	50°F

* Compressor shut off at compressor control panel and the air line to sparge galleries was valved off in the building.

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The air sparging operation conditions were documented during a 10 minute period of supervised sparging
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.
- The high vacuum lines were dewatered.

Non-routine Maintenance

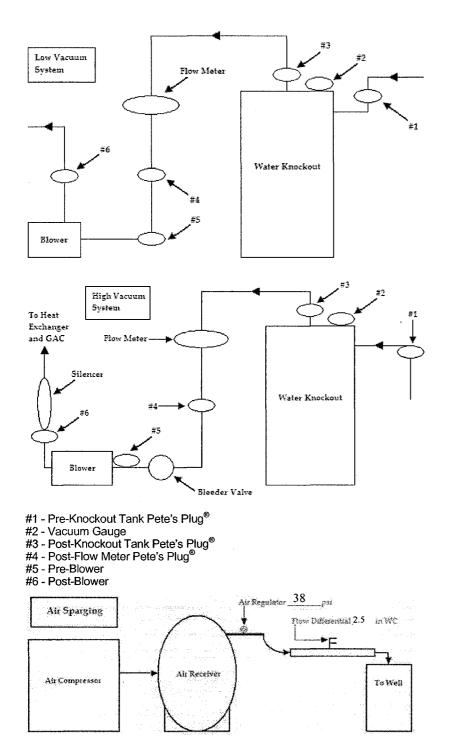
On September 25, 2009 the following non-routine maintenance items were conducted by an Omaha Pneumatic air compressor technician:

- Air Compressor #1
 - Check and clean high and low site oil scavenge line check valves.
 - Check and clean minimum pressure check valve.
 - o Add 4 quarts oil
 - Clean air cooler and radiator
 - Identify oil leak at the oil filter sight glass. Ordered part for replacement.
 - Adjusted drive belts.
- Air Compressor #2
 - By pass auto float control on air filter by passed until a replacement auto float could be ordered and installed
 - Cleaned air cooler and radiator.
 - Adjusted drive belts.
- Turned system's heater on and closed air compressor air gates turned off exhaust fans.

On October 8, 9, and 12 the following non-routine maintenance items were conducted by HGL employee Herb Scott:

- The high vacuum exhaust line was re-plumbed through the north GAC vessel
- An air diversion door was cut into the heat exchanger duct work to allow warm air to be diverted into the system building during winter months.
- Water meters installed during the groundwater recirculation water pilot study were removed from PCIX 2 and SVE-3.
- Valved on air sparge wells at well heads as detailed in the attached system check sheet.
- Conducted supervised air sparging activities for approximately one hour.

On November 6^{th the} following non-routine maintenance items were conducted by HGL employee Stephen Holmes:


- The oil filter sight glass on the #1 air compressor was replaced.
- The auto float control on the air filter was replaced.

New System Problems or Newly Discovered Items Needing Repair

• None

Other Activities

None.

Sampling Point	+/- Inches WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-44.0 WC
#2	-4.1 Hg
#3	-44.0 WC
#4	-44.1 WC
#5	-46 WC
#6	+74.7 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	8/05/2009	11/06/2009	12717.8	12719.6	1.8
Air Compressor No. 2	8/05/2009	11/06/2009	13545.9	13682.2	136.3
Low Vacuum Blower No. 1	8/05/2009	11/06/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	8/05/2009	11/06/2009	4953.6	4953.6	0.0
High Vacuum Blower	8/05/2009	11/06/2009	27131.4	27266.2	190.6

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	8/05/2009	11/06/2009	13651.8	14376.3	724.5

Attachments

Weekly System Checklist

				OHM AS/SVE System System Checklis
System Checklist			Data: 11	1-6-09
System Checklist	tom			~ /
One Hour Martinizing AS/SVE Sys Columbus, Nebraska	tem			
	a. e .			
System Operator: 5, 161 m	/ >			
Weather: _ linuar Qua warm		_		
Temperature: Outside (°E): 45		Inside (°	F): 70	
System Operating Upon Arrival:	YES	NO	, <u></u>	
If "No," what is the nature of the alarm?	NO Alau	un 5/57	15tem Land	5 MANUAlly
System Operating Upon Arrival: If "No," what is the nature of the alarm? Subit Down Dure to Enforce	n aus	Gaudin	cely_ago	Aitwing Activiti
	·····			
ART Well			<u> </u>	
Air Pressure Gauge 1 (Sparge Line):		psi	Comments	s/Observations:
Air Pressure Gauge 2 (Sparge Line):		psi	n	4
Air Flow (Sparge Line):		scfm	[]K)	+ W111 5 0 f f
Water Pressure (Recirc. Line): Water Flow Rate (Recirc. Line):		psi	· 7	· · · · ·
CVE Vacuum:		gpm in WC	1	7 0+F
Packer Pressure:		psi	and	KOT HOOMAN
		f" 		•
System Operating Configuration			ur jo	System
	Liond	da)	ACR.	But MANUALY off at Confrontson.
Compressor #1 Compressor #2	Hand Hand		Auto	ar Cemprossor.
Low-Vac Blower #1	Hand		Auto	Moter RUNS
Low-Vac Blower #2	Hand	Ø.	Auto	
Low-Vac Transfer Pump	Hand	Off	Auto	<u>1</u> 2
High-Vac Blower	Hand	Off	ALA	
Heat Exchanger	Hand	Off	Auto	
High-Vac Transfer Pump	Hand	Off	Auto	
System Banal Hours				····
System Panel Hours			·····,,	
Compressor #1:	2719.6	hrs		
Compressor #2:	3682.2	hrs		
Low-Vac Blower #1:	1865,1	hrs		
Low-Vac Blower #2:	195316	hrs		
High-vac Blower: Totalized Liquid Flow:	14271.,2	hrs gallons		
	11770.5	gaiona		
Air Sparging System			Date: //	-6-09
	ompressor	#1	Compress	or #2
Air Pressure:	المطمسين المتنا	#1 DSİ	Compress	_psi (Hecker
Percent Capacity:		%		% Dersin.
Output Air Temperature:		°F		_°F 10
				SPAUge Window
	Statu	IS		U TRUSP Window
Air Dryer #1 Running/Tested:	(OK	OFF		n
	6 J	Differential	Pressure:	psi
Air Filter #1 Tested:	UK			
Air Filter #1 Tested: Air Filter #2 Tested: Air Filter #3 Tested:	0k	Differential	Pressure: Pressure:	psi

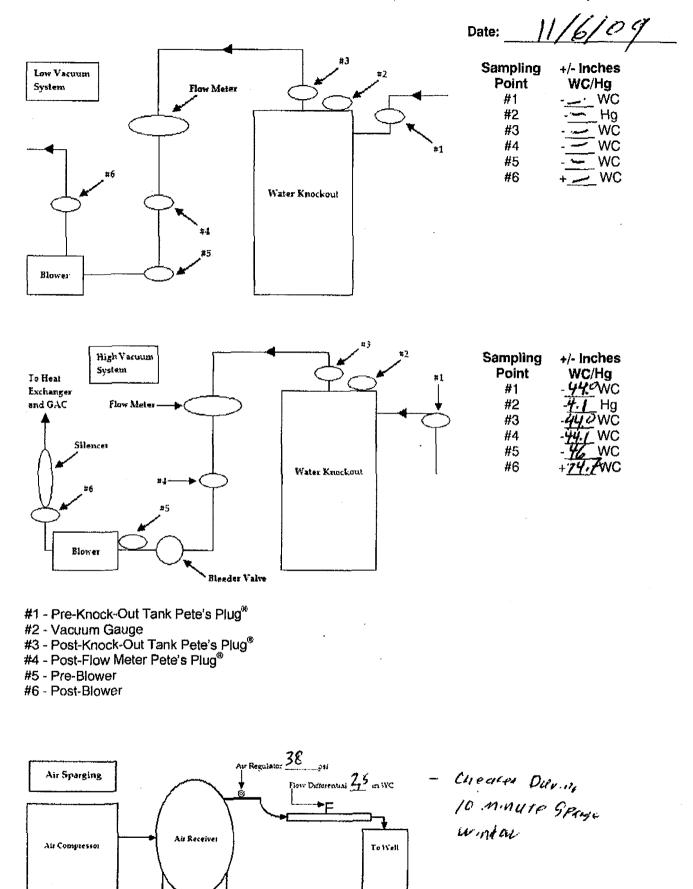
.

OHM AS/SVE System System Checklist

Low-Vac System Data			Date:	76/09
Low-Vac System Vacuum at Knock-Ou Low-Vac System Vacuum before Knoc Low-Vac Air Flow: Low-Vac Effluent Total at GAC Tank: Low-Vac Effluent PID Data:	Inlet:	(: fpm		_ inches of Hg _ inches of water _ inches of water _ inches of water
Heat Exchanger	Outlet:		ppm	
High-Vac Influent Temperature: High-Vac Effluent Temperature: High-Vac Differential Pressure:		118 	°F °F inches of	fwater

High-Vac System

High-Vac at Knock-out Tank: High-Vac Blower Input Vacuum:	4.1	_ inches of Hg inches of water
High-Vac Air Flow:	3000	fpm <u>(4,</u>) inches of water
High-Vac Blower Exhaust Pressure at GAC Tank:	2.2	psi
High-Vac Blower Exhaust Temperature at Heat Exchanger Influent:	118	°F
High-Vac Exhaust Pressure at Heat Exchanger:	+72.4	inches of water
	•	


High-Vac GAC Tank Data

High-Vac Effluent Input C1:	2.2 psi	0.0 ppm
High-Vac Effluent Midpoint C2:	psi	ppm
High-Vac Effluent Midpoint C3:	psi	vppm
High-Vac Effluent Outlet:	NA psi	<u> </u>
	(weet to Ins MI	1 SAMPID PONT

Ventilation System Data

Air Compressor #1	Fan Air Gates	ON OPEN	GER2 CLOSED
Air Compressor #2	Fan Air Gates	ON OPEN	(LOSED)
Heat Exchanger	Fan	ON	OFF
High Vac Blower Room	Fan	ON	(F)
Building Dampers		OPEN	CLOSED
Building Thermostat Set Point		50	°F

OHM AS/SVE System System Checklist

OHM AS/SVE System System Checklist

Air Compressor #1 Oil Level:	<u>Ok</u>	Quantity Added: QT
Air Compressor #2 Oll Level:	<u>O</u> K	Quantity Added: QT
High-Vac Blower Oil Level:	TOK.	Quantity Added: QT

Repairs Made, Additional Comments and Notes

- 1 Replaced Dil Filter Signi Eless on Compressor #1
- · REPACEA AUTO Float Prain Control OU COMPRESSON DE
- 1 10 Minutes OF Monitored His SPAUGE SEE AIV SPAUGE Detail Sweet For Ligt OF OPPur Valves. No UPWEILING OFSERVES
- · Dewatered the High Vac SUE Lines

· Cleaner In Buildin,

Date: _____

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator: _____

Weekly Data Collection Monthly Well Inspection (circle one)

		Clay Vap	or Extraction System Field Measurements
	Valve	Vacuum	
Well	(O/C/P)	(in Hg)	Comments
CVE-1			
CVE-2			
CVE-3	·····		· · · · · · · · · · · · · · · · · · ·
CVE-4			
CVE-5	· · · · · · · · · · · · · · · · · · ·		
CVE-6		-	
CVE-7	···· · · · · · · · · · · · · · · · · ·		
CVE-8			
CVE-9		<u></u>	
CVE-10		· · · · · · · · · · · · · · · · · · ·	
CVE-11			
CVE-12	•	<u> </u>	
CVE-13		 -	
CVE-14		 	
CVE-15		ļ	
CVE-16	· · · · · · · · · · · · · · · · · · ·		
CVE-17			
CVE-18		····-	
CVE-19		 	
CVE-20			
CVE-21			
CVE-22			
CVE-23			
CVE-24			
CVE-25			
CVE-26			
CVE-27			
CVE-28			
CVE-29			
CVE-30			
CVE-31		· · · · · · · · · · · · · · · · · · ·	
CVE-32			
CVE-33			
CVE-34			
CVE-35			
CVE-36			
CVE-37			
CVE-38			
CVE-39			
CVE-40	,		
CVE-41			
CVE-42			
CVE-42 CVE-43			
CVE-43			
CVE-45			
CVE-46		<u> </u>	
CVE-47		 	
PCIX-2D		L	

Date: _____

Date: CLT 8-9 and Oct 12

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator:

Weekly Data Collection Monthly Well Inspection (circle one)

Sand Vapor Extraction System Field Measurements						
Well	Valve (O/C/P)	Vacuum (in Hg)	Comments			
SVE-1						
SVE-2						
SVE-3						
SVE-4						
SVE-5						
SVE-6						
SVE-7						
SVE-8						
SVE-9						
CIX-2						

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator:

Herb Scott

Weekly Data Collection Monthly Well Inspection (circle one)

	Valve	Pressure					
Well	(O/C/P)	(psi)	Comments				
AS-1	Ö						
AS-2	0						
AS-3	0						
AS-4	0						
AS-5	0						
AS-6	0						
AS-7	0						
AS-8	0						
AS-9	Ø						
AS-10	<u> </u>						
AS-11	-8						
AS-12	$\overline{\boldsymbol{v}}$						
AS-13	0						
AS-14	0		Streen Plussed - can't bet Film tupuyy screen				
AS-15	6		LBCA = Leak Botween casing and Annulus				
AS-16	6		CMEA				
AS-17	0						
AS-18	6		LBCA				
AS-19	0						
AS-20							
AS-21			- · · · · · · · · · · · · · · · · · · ·				
AS-22	0						
AS-23	0						
PCIX-1A	C						
PCIX-2A	C						
PCIX-5A	C						

Clay Sand AS.system checklists.7708.doc

Weekly Inspection Report

- To: Marc Schlebusch, CDM
- From: Stephen Holmes, HGL
- **Re:** Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, November 6 to November 12, 2009.
- Date: December 6, 2009

Introduction

On November 12, Stephen Holmes of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached November 12, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration. The air sparging system is being run on supervised basis only so personnel can be on site to monitor for groundwater upwelling. The attached check list details what air sparge wells are valved on during sparging activities. The ART well was taken off line during the groundwater recirculation pilot study in August. Finally the low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

Upon arrival the high vacuum system was running and the alarm light was off; however, air compressor #1 was running and it was left turned off on the air compressor control panel. It is unknown how the compressor restarted during this reporting period.

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

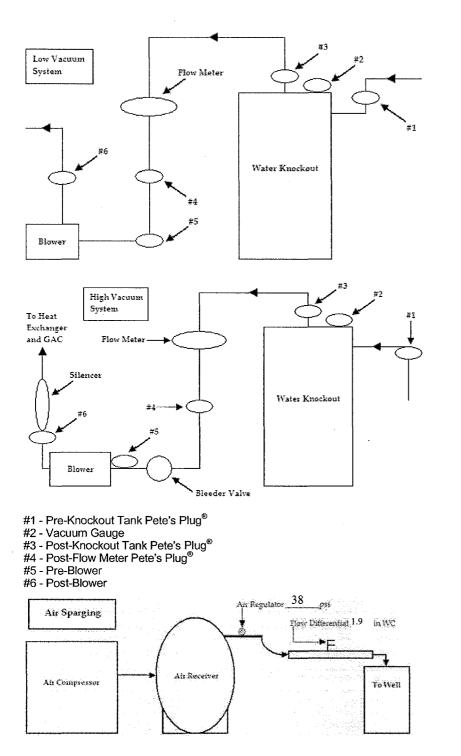
Air Sparging/Soil Vapor Extraction	Status	Status
System Equipment	Arrival	Departure
Air Compressor No. 1	Automatic*	Automatic*
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Automatic	Automatic
High Vacuum System Blower	Automatic	Automatic
High Vacuum System Heat Exchanger	Automatic	Automatic
High Vacuum Water Transfer Pump	Automatic	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Open	Open
Building Thermostat	50°F	50°F

* Compressor shut off at compressor control panel and the air line to sparge galleries was valved off in the building.

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The air sparging operation conditions were documented during a 10 minute period of supervised sparging
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.
- The oil was changed in the high vacuum blower
- Ran supervised sparge operations approximately 50 minutes.

Non-routine Maintenance


• None

New System Problems or Newly Discovered Items Needing Repair

• Air leaks were observed at the well heads of AS-8 and AS-9. Consequently, both AS wells were valved off at the well head.

Other Activities

• None.

Sampling	+/- Inches
Point	WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-40.1 WC
#2	-4.0 Hg
#3	-40.6 WC
#4	-41.0 WC
#5	-41.8 WC
#6	+98.2 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	11/06/2009	11/12/2009	12719.6	12861.1	141.5
Air Compressor No. 2	11/06/2009	11/12/2009	13682.2	13682.2	136.3
Low Vacuum Blower No. 1	11/06/2009	11/12/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	11/06/2009	11/12/2009	4953.6	4953.6	0.0
High Vacuum Blower	11/06/2009	11/12/2009	27266.2	27408.5	142.3

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	11/06/2009	11/12/2009	14376.3	14549.8	173.5

Attachments

Weekly System Checklist

System Checklist One Hour Martinizing AS/SVE Sy	votom		Date: 11-12-09
Columbus, Nebraska	yalem		
System Operator: <u>5. [+6] W</u> Weather: <u>(104 d y a hr 24</u> Temperature: Outside (°E): 52	1 <u>p 5</u>	· · · · · · · · · · · · · · · · · · ·	
			F): <u>90</u> 6
System Operating Upon Arrival: If "No," what is the nature of the alarm	? Han lac	NO	Ner Rynmin; Gna
Compassion of 1 Bunning	·		
ART Well			
Air Pressure Gauge 1 (Sparge Lin Air Pressure Gauge 2 (Sparge Lin		psi psi	Comments/Observations:
Air Flow (Sparge Line):		scim	ARTWEIL Off Line.
Water Pressure (Recirc. Line):		psi	Off Line.
Water Flow Rate (Recirc. Line): CVE Vacuum:		gpm in WC	
Packer Pressure:		psi	
System Operating Configuration	1		
Compressor #1	Hand	Off	Auto
Compressor #2	Hand	QPP	Auto
Low-Vac Blower #1	Hand	Qff	Auto
Low-Vac Blower #2 Low-Vac Transfer Pump	Hand Hand	Off Off	Auto Auto
High-Vac Blower	Hand	Off	Auto
Heat Exchanger	Hand	Öff	Auto
High-Vac Transfer Pump	Hand	Off	Aud
System Panel Hours			
Compressor #1:		. 11.961	1.4
Compressor #2:	13682.2 hrs		
Low-Vac Blower #1:	1885-9 hrs	5	
Low-Vac Blower #2:	<u>4453,6</u> hrs		
High-Vac Blower: Totalized Liquid Flow:	27408.5 hrs	llons [.]	
	<u> </u>		
Air Sparging System			Date: 11-12-09
The second se	Compressor #1		Compressor #2
Air Pressure:	<u>86</u> psi		psi
Percent Capacity:	<u> </u>		<u> </u>
Output Air Temperature:	<i> 60</i> °F		• •••• ••
	Status		
Air Dryer #1 Running/Tested:	OK OF		
Air Filter #1 Tested:	N i		Pressure:psi
Air Filter #2 Tested: Air Filter #3 Tested:			Pressure: psi Pressure: 4 psi
			Pressure: <u>4</u> psi

:

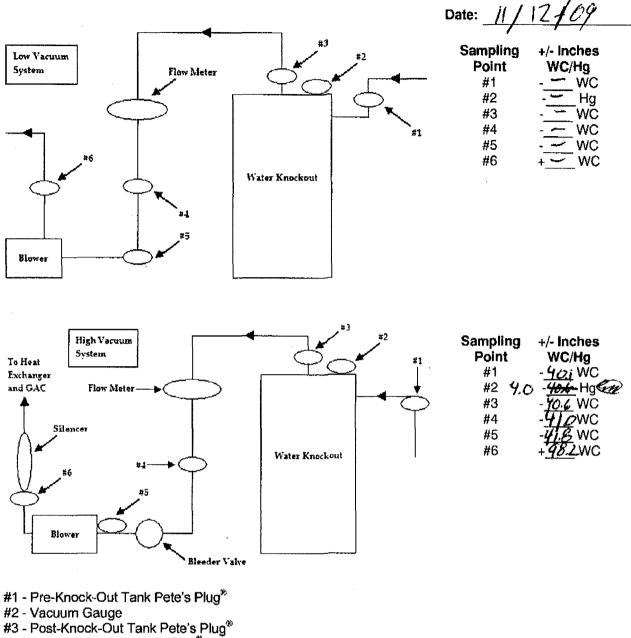
Date: 11-12-09

Low-Vac System Data			
Low-Vac System Vacuum at Knock-O	ut Tank:	******	inches of Hg
Low-Vac System Vacuum before Kno	ck-Out Tank:	,	inches of water
Low-Vac Air Flow:	fpm	<u>`</u>	inches of water
Low-Vac Effluent Total at GAC Tank:	<u></u>		inches of water
Low-Vac Effluent PID Data:		· · · · · · · · · · · · · · · · · · ·	_
	Inlet:	ppm	
	Outlet:	mqq	

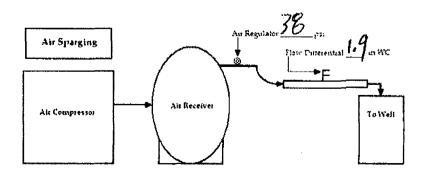
Heat Exchanger

High-Vac Influent Temperature:	°F
High-Vac Effluent Temperature:	℃
High-Vac Differential Pressure:	6,6inches of water

High-Vac System


High-Vac at Knock-out Tank:	4,0	inches of Hg	
High-Vac Blower Input Vacuum:	-41.8	inches of water	
High-Vac Air Flow:	2,500	fpm 41.0	inches of water
High-Vac Blower Exhaust Pressure at GAC Tank:	3,7	psi	-
High-Vac Blower Exhaust Temperature at Heat Exchanger Influent:	155	°F	
High-Vac Exhaust Pressure at Heat Exchanger:	+97	_ inches of water	

High-Vac GAC Tank Data


High-Vac Effluent Input C1:	<u> </u>	0.0 ppm
High-Vac Effluent Midpoint C2:	psi	ppm
High-Vac Effluent Midpoint C3:	psi	ppm
High-Vac Effluent Outlet:	<u>MA</u> psi	<u>MA</u> ppm
		<i></i>

Ventilation System Data

Air Compressor #1	Fan Air Gates	OPEN	
Air Compressor #2	Fan Air Gates	ON OPEN	CLOSED
Heat Exchanger	Fan	×	OFF
High Vac Blower Room	Fan	ON	OFF
Building Dampers	-	OPEN	CLOSED
Building Thermostat Set Point	•	<u>5</u> 6	_°F

- #4 Post-Flow Meter Pete's Plug*
- #5 Pre-Blower
- #6 Post-Blower

Date: 11-12-09 Maintenance Activities Quantity Added: Air Compressor #1 Oil Level: OK) OT Quantity Added: Ω. Air Compressor #2 Oil Level: High-Vac Blower Oll Level: Quantity Added: Khangeon OK,

Repairs Made, Additional Comments and Notes

PRAN SPATSING OPERATIONS 7 50 MINUTES SCIOSER HIV STARSP WEITS 8 AM . 9 PUPTO A: 1 LEANS at the well Here > Changet O, 1. 11 Hour Kiene - 4 Citers 0 = 27400 Hrs D conFirm call with Laura S, and It's BAA Krause. Restain System Logic / Can't crewite Sustem W/O complessor Coming on Brad Will Resuma and Maleo a give Wisit out 11-14-09 To tess. Thy any Allan System to oreate w AVromptossa in ott switch / ter COM laum 5. Oplay to Kun System with Contro 55005 Valuet Af

Date: _____

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator: _____

Weekly Data Collection Monthly Well Inspection (circle one)

· · · · · · · · · · · · · · · · · · ·		Clay Vap	or Extraction System Field Measurements
	Valve	Vacuum	
Well	(O/C/P)	(in Hg)	Comments
CVE-1			
CVE-2	·		
CVE-3		 _	
CVE-4			
CVE-5	-{	<u> </u>	
CVE-5			
CVE-0 CVE-7			
CVE-7 CVE-8			
CVE-9		· · · · · · · · · · · · · · · · · · ·	
CVE-10			
CVE-11			
CVE-12			
CVE-13			
CVE-14		ļ	
CVE-15			
CVE-16			
CVE-17			
CVE-18			
CVE-19			
CVE-20			
CVE-21			
CVE-22			
CVE-23			
CVE-24			
CVE-25		1	
CVE-26	1		
CVE-27	+		**************************************
CVE-28			
CVE-29			
CVE-30		<u> </u>	
CVE-31			
CVE-32			
CVE-33			
CVE-34		<u>}</u>	
CVE-35			
CVE-35 CVE-36			······································
CVE-30 CVE-37			
CVE-38			
CVE-39	- <u> </u>		
CVE-40		╂	
CVE-41			
CVE-42		·	
CVE-43		ļ	
CVE-44	_ _	· <u></u>	
CVE-45		ļ	
CVE-46		ļ	
CVE-47		<u> </u>	
PCIX-2D			

11/12/09

Date:

System Checklist	
One Hour Martinizing AS/SVE Syste	m
Columbus, Nebraska	

System Operator: ____

Weekly Data Collection Monthly Well Inspection (circle one)

Sand Vapor Extraction System Field Measurements ÷.... Valve Vacuum Well (O/C/P)Comments (in Hg) SVE-1 SVE-2 SVE-3 SVE-4 SVE-5 SVE-6 SVE-7 SVE-8 SVE-9 CIX-2

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator:

5. 1km

Weekly Data Collection Monthly Well Inspection (circle one)

	- X.,		Air Sparging Field Measurements	
Well	Valve (O/C/P)	Pressure (psi)	Comments	
AS-1	Ø			
AS-2	0			
AS-3	0			
AS-4	0			
AS-5	D D			
AS-6	0			
AS-7	t de la companya de l			
AS-8	<u> </u>		Closer tole to ALC Leak at were lear	
AS-9	<u> </u>		CLOSED DUE to A: V LEOK OT WELL HOR	
AS-10				
AS-11	0			
AS-12	0	<u> </u>		
AS-13	0			
AS-14	C		Closed purto His Legil Betulen Lesins an Banulus	ber ;
AS-15	6		1.bcA	
AS-16	C		LBCA	
AS-17	0			
AS-18	C	~	LBCA	
AS-19	0			
AS-20	<u> </u>			
AS-21	0			
AS-22	0			
AS-23	0			
PCIX-1A				
PCIX-2A				
PCIX-5A	1	}		

Date: 11/12/04

Weekly Inspection Report

To: Marc Schlebusch, CDM

From: Stephen Holmes, HGL

Re: Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, November 12 to November 21, 2009.

Date: December 6, 2009

Introduction

On November 21, Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached November 21, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration. The air sparging system is being run on supervised basis only so personnel can be on site to monitor for groundwater upwelling. The attached check list details what air sparge wells are valved on during sparging activities. The ART well was taken off line during the groundwater recirculation pilot study in August. Finally the low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

Upon arrival the high vacuum system was running and the alarm light was off.

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

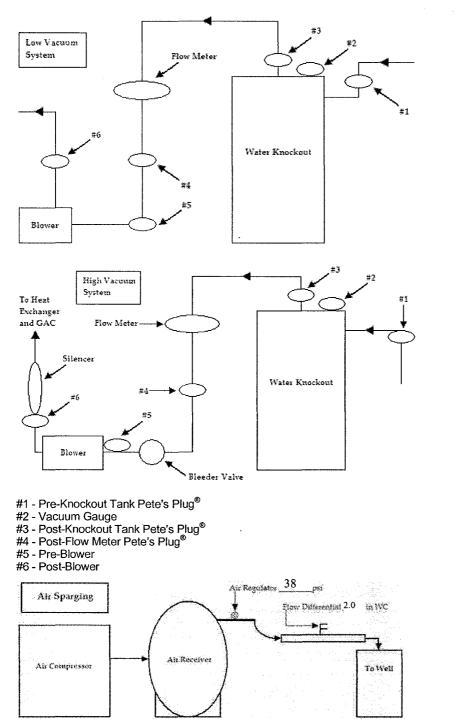
Air Sparging/Soil Vapor Extraction System Equipment	Status Arrival	Status Departure
Air Compressor No. 1	Automatic*	Automatic*
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Automatic	Automatic
High Vacuum System Blower	Automatic	Automatic
High Vacuum System Heat Exchanger	Automatic	Automatic
High Vacuum Water Transfer Pump	Automatic	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	· Off	Off
Building Dampers	Open	Open
Building Thermostat	50°F	70°F

* Compressor shut off at compressor control panel and the air line to sparge galleries was valved off in the building.

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The air sparging operation conditions were documented during a 10 minute period of supervised sparging
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.
- Ran supervised sparge operations approximately 90 minutes.

Non-routine Maintenance


- Installed sampling port on the effluent of the air GAC tank
- Reinforced connection to air GAC influent connection.

New System Problems or Newly Discovered Items Needing Repair

• None

Other Activities

• None.

Sampling Point	+/- Inches WC/Hg	
#1	DNC	
#2	DNC	
#3	DNC	
#4	DNC	
#5	DNC	
#6	DNC	
NC = Did not	collect. The lo	w

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-33.8 WC
#2	-4.0 Hg
#3	-35.3 WC
#4	-35.4 WC
#5	-36.7 WC
#6	+113.5 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	11/12/2009	11/21/2009	12861.1	13077.6	216.5
Air Compressor No. 2	11/12/2009	11/21/2009	13682.2	13682.2	0.0
Low Vacuum Blower No. 1	11/12/2009	11/21/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	11/12/2009	11/21/2009	4953.6	4953.6	0.0
High Vacuum Blower	11/12/2009	11/21/2009	27408.5	27624.2	215.7

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	11/12/2009	11/21/2009	14549.8	DNC	-

Attachments

Weekly System Checklist

OHM AS/SVE System
System Checklist

r

System Checklist	Date: // 7-/ /24
One Hour Martinizing AS/SVE Syst	em
Columbus, Nebraska	COV
System Operator:	7011
Weather: Goov	
Temperature: Outside (°F):	Inside (°F):
System Operating Upon Arrival:	YES NO
If "No," what is the nature of the alarm?	

ART Well

 Air Pressure Gauge 1 (Sparge Line):
 psi
 Comments/Observations:

 Air Pressure Gauge 2 (Sparge Line):
 psi
 psi

 Air Flow (Sparge Line):
 scfm
 psi

 Water Pressure (Recirc. Line):
 psi
 gpm

 CVE Vacuum:
 in WC
 psi

 Packer Pressure:
 psi
 psi

System Operating Configuration

Compressor #1 Compressor #2	Hand	0#	Auto Auto	
Low-Vac Blower #1	Hand Hand		Auto Auto Auto	
Low-Vac Transfer Pump	Hand	SH .	Auto	
High-Vac Blower Heat Exchanger	Hand Hand	Off c	Auto	
High-Vac Transfer Pump	Hand	Off E	Auto	

System Panel Hours

Compressor #1:	1307776 hrs	
Compressor #2:	17682.4 hrs	
Low-Vac Blower #1:	1885,9 hrs	
Low-Vac Blower #2:	4997.6 hrs	
High-Vac Blower:	276242hrs	
Totalized Liquid Flow:	gallons	

Air Sparging System

a openging official			
	Compressor #1	Compressor #2	
Air Pressure:	psi	psi	
Percent Capacity:	99_%	%	
Output Air Temperature:		°F	
	Status		
Air Dryer #1 Running/Tested:	OR OFF	0.0	
Air Filter #1 Tested:	Differen	ntial Pressure: C- psi	
Air Filter #2 Tested:		ntial Pressure: Ø psi	
Air Filter #3 Tested:			
All Filler #5 rested:	Dillerer	ntial Pressure: psi	

Date:

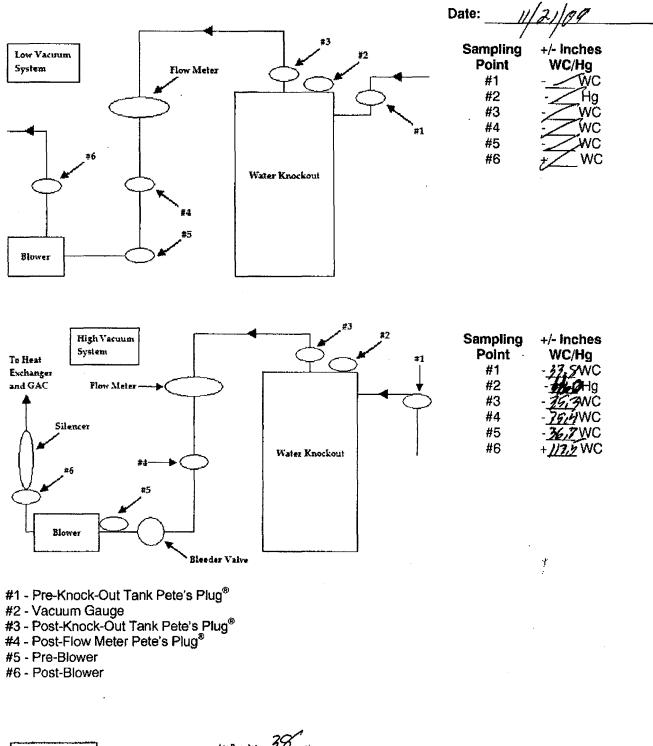
Low-Vac System Data	Date: _///2//09
Low-Vac System Vacuum at Knock-Out Tank: Low-Vac System Vacuum before Knock-Out Tank: Low-Vac Air Flow: Low-Vac Effluent Total at GAC Tank: Low-Vac Effluent PID Data:	inches of Hg inches of water inches of water inches of water
Inlet: Outlet:	ppmppm

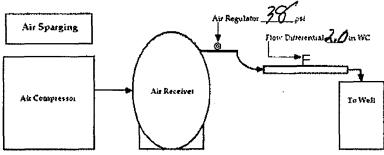
Heat Exchanger

High-Vac Influent Temperature:150.17°FHigh-Vac Effluent Temperature:110.0°FHigh-Vac Differential Pressure:10.0inches of water

High-Vac System

High-Vac at Knock-out Tank: High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank: High-Vac Blower Exhaust Temperature at Heat	4.8 1.0 72-00 3.8	_inches of Hg _inches of water _fpm _ <i>D,6.0</i> _psi	inches of water
High-Vac Blower Exhaust Temperature at heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger:	150,0	_°F _ inches of water	


High-Vac GAC Tank Data


High-Vac Effluent Input C1:	<u></u> psi	ppm
High-Vac Effluent Midpoint C2:	psi	ppm
High-Vac Effluent Midpoint C3:	psi	ppm
High-Vac Effluent Outlet:	psi	ppm

Ventilation System Data

Fan Air Gates	ON OFF OPEN CLOSED
Fan Air Gates	ON OFF OPEN CLOSED
Fan	OFF OFF
Fan	Coff
	OPEN CLOSED
	<u>_70</u> °F
	Air Gates Fan Air Gates Fan

•

OHM AS/SVE System System Checklist

		Date:	6	1/12/09
Maintenance Activities				
Air Compressor #1 Oil Level:	GR	Quantity Added:	Ø	QT
Air Compressor #2 Oil Level:	O K	Quantity Added:	Ø	QT
High-Vac Blower Oil Level:	ØR	Quantity Added: _	ø	QT

Repairs Made, Additional Comments and Notes

SPANSED WAS Well'S 32 | HV 30 Minutes Justalled Gamplin fort on Efficient Lincox New GAC TAN/1 (4), Reinforces Enguent connection to New Mir GACTMIL

Weekly Inspection Report

- To: Marc Schlebusch, CDM
- From: Stephen Holmes, HGL
- **Re:** Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, November 21 to November 24, 2009.
- Date: December 6, 2009

Introduction

On November 24, Stephen Holmes of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached November 24, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration. The air sparging system is being run on supervised basis only so personnel can be on site to monitor for groundwater upwelling. The attached check list details what air sparge wells are valved on during sparging activities. The ART well was taken off line during the groundwater recirculation pilot study in August. Finally the low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

Upon arrival the high vacuum system was not running and the alarm light was off. The system's rain sensor had turned the system off.

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

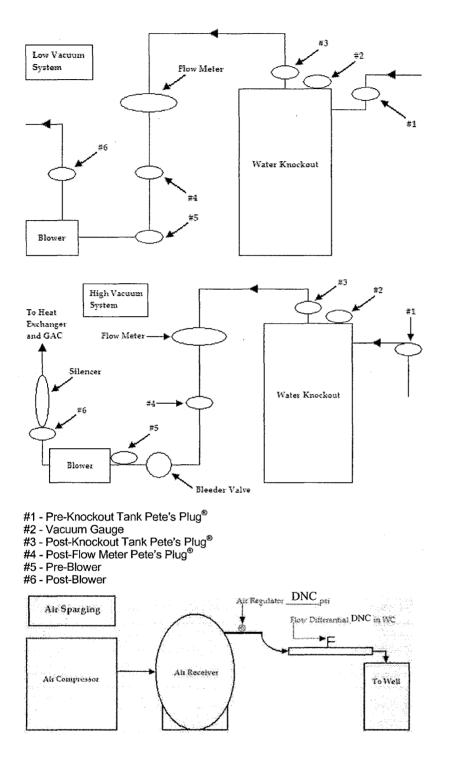
Air Sparging/Soil Vapor Extraction System Equipment	Status Arrival	Status Departure
Air Compressor No. 1	Automatic*	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Automatic	Automatic
High Vacuum System Blower	Automatic	Automatic
High Vacuum System Heat Exchanger	Automatic	Automatic
High Vacuum Water Transfer Pump	Automatic	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Open	Open
Building Thermostat	70°F	70°F

* Compressor shut off at compressor control panel and the air line to sparge galleries was valved off in the building.

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The air sparging operation conditions were documented during a 10 minute period of supervised sparging
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.
- Dewatered high vacuum system lines.
- Ran supervised sparge operations approximately 1.4 hours.

Non-routine Maintenance


• The system logic was reprogrammed to allow the high and low vacuum systems to operate with the air compressor panel switches in the off position.

New System Problems or Newly Discovered Items Needing Repair

• At the end of supervised sparging activities, a minor groundwater upwelling event was observed and neutralized with a mixture of vinegar and hydrogen peroxide.

Other Activities

• None.

Sampling Point	+/- Inches WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-44.1 WC
#2	-4.0 Hg
#3	-41.3 WC
#4	-41.4 WC
#5	-42.4 WC
#6	+83.6 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	11/21/2009	11/24/2009	13077.6	13132.1	54.5
Air Compressor No. 2	11/21/2009	11/24/2009	13682.4	13682.2	0.0
Low Vacuum Blower No. 1	11/21/2009	11/24/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	11/21/2009	11/24/2009	4953.6	4953.6	0.0
High Vacuum Blower	11/21/2009	11/24/2009	27624.2	27678.7	54.5

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	11/12/2009	11/24/2009	14549.8	14574.6	24.8

Attachments

Weekly System Checklist

				OHM AS/SVE System System Checklist
System Checklist			Date: 11/2	-
One Hour Martinizing AS/SVE Sy	vstem			<u>, </u>
Columbus, Nebraska				
•	PL			
System Operator: <u>5. Ito Im</u>	77			
Weather: <u>(Ioury and co</u>		la al da (9)	<u> </u>	
Temperature: Outside (°F): 38 System Operating Upon Arrival:	YES	Inside (°	F): <u>64</u>	
If "No," what is the nature of the alarm		VM (SA)	wts on 5vg	Fren NOT RUNNIN
Gitter Rate Senson Shut 5;	IST (IM DO	un-		
ART Well				······································
Air Pressure Gauge 1 (Sparge Line	~····	nci	Comments/Ol	soon ations.
Air Pressure Gauge 2 (Sparge Line		psi psi	•	
Air Flow (Sparge Line):		scfm	HRTWA	1 Off Ling
Water Pressure (Recirc. Line):	4	psi	·	•
Water Flow Rate (Recirc. Line):		gpm		
CVE Vacuum:		in WC		
Packer Pressure:		psi		
System Operating Configuration				
Compressor #1	Hand	67	Auto	
Compressor #2	Hand	A	Auto	
Low-Vac Blower #1	Hand	D	Auto	
Low-Vac Blower #2	Hand	O t	Auto	
Low-Vac Transfer Pump	Hand	Off	Auto	
High-Vac Blower	Hand	Off	Auto	
Heat Exchanger	Hand	Off Off	Auto	
High-Vac Transfer Pump	Hand	01		
System Panel Hours				
Company #1.	12737.1	hrs		
Compressor #1: Compressor #2:	12682 2	hrs		
Low-Vac Blower #1:	1985.9	hrs		
Low-Vac Blower #2:	4953.6	hrs		
High-Vac Blower:	27678.7	hrs		
Totalized Liquid Flow:	14574.6	gallons		
Air Sparging System			Date:	
An Sparging System				
	Compressor	• #1	Compressor	#2
Air Pressure:		psi)sí
Percent Capacity:		% %E		6 F
Output Air Temperature:	178	°F		F
	Stat			
Air Dryer #1 Running/Tested:	QX	OFF		Ø
Air Filter #1 Tested:	QX		I Pressure:	psi psi
Air Filter #2 Tested:	ලීලී		al Pressure:	psi <u>0.5</u> psi
Air Filter #3 Tested:	C	Duretentie		<u> </u>

11/24/09 Date:

Low-Vac System Data

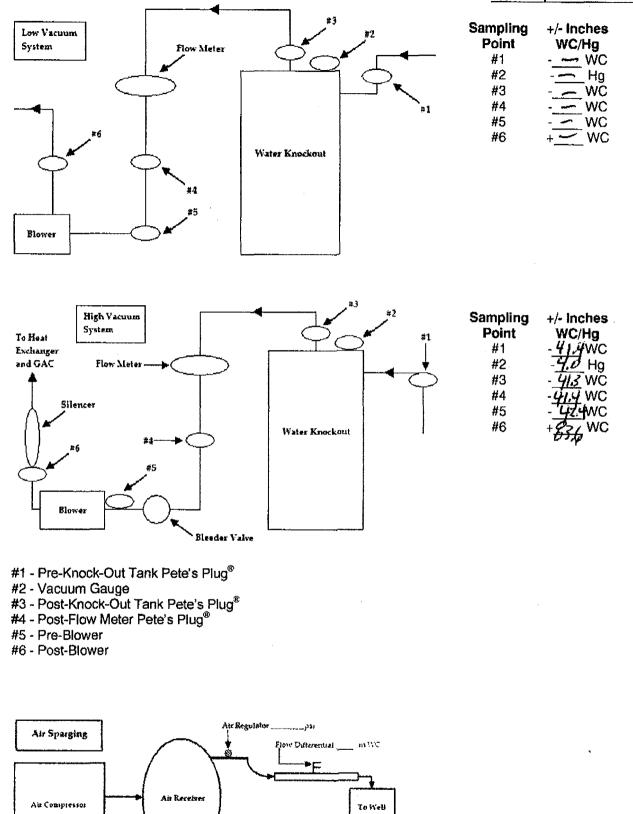
Low-Vac System Vacuum at Knock-O	ut Tank:		inches of Hg
Low-Vac System Vacuum before Kno	ck-Out Tank:		inches of water
Low-Vac Air Flow:	fpm		inches of water
Low-Vac Effluent Total at GAC Tank: Low-Vac Effluent PID Data:			_ inches of water
	Inlet:	ppm ppm	

Heat Exchanger

High-Vac System

High-Vac at Knock-out Tank: High-Vac Blower Input Vacuum:	4,0 42.4	_ inches of Hg _ inches of water
High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank:	2,500	_ fpm inches of water psi
High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger:	140	_°F _ inches of water

High-Vac GAC Tank Data


High-Vac Effluent Input C1:	<u>3.4</u> psi	0.6 ppm
High-Vac Effluent Midpoint C2:	psi	íppm
High-Vac Effluent Midpoint C3:	psi	ppm
High-Vac Effluent Outlet:	<u>O</u> ,O psi	ppm

Ventilation System Data

Air Compressor #1	Fan Air Gates	ON OPEN	OFF ELOSED	
Air Compressor #2	Fan Air Gates	ON OPEN	CLOSED	
Heat Exchanger	Fan	ON	GED	
High Vac Blower Room	Fan	ON	67	
Building Dampers		OPEN	CLOSED	
Building Thermostat Set Point		_70	°F	

OHM AS/SVE System System Checklist

Date: 11-24-09

11 hist All

Maintenance Activities		Date: <u>////////</u>
Air Compressor #1 Oil Level:	OF	Quantity Added: QT
Air Compressor #2 Oil Level:	OF	Quantity Added: QT
High-Vac Blower Oil Level:	OF	Quantity Added: QT

Repairs Made, Additional Comments and Notes Brad Krause on Site Activos a min system Logic to Allow Him Vac Blance to Kan Wo long. By passed Air Compressor #1 \$ #2 Auto' mode for the line of eode that controls the High Une compresser. I the High Vac Heat Exchanger. This allows the system to the be run without the Air Compressors -1 Do water & H. 34 Voc Lines 1.4 · MONITIVE, H.V SPATAP OPERATION 5 2 to 25 1415 SPASE 1

Weekly Inspection Report

To: Marc Schlebusch, CDM

From: Herb Scott

- **Re:** Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, November 24, 2009 to December 3, 2009.
- **Date:** January 11, 2010

Introduction

On December 3, Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached December 3, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration and was operating normally upon arrival. The air sparging system is not being operated due to groundwater upwelling. The low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

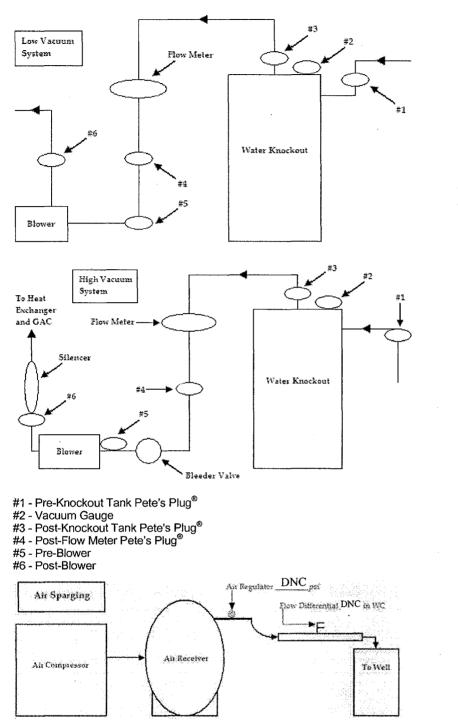
Air Sparging/Soil Vapor Extraction	Status	Status
System Equipment	Arrival	Departure
Air Compressor No. 1	Off	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Off
High Vacuum System Blower	Automatic	Automatic
High Vacuum System Heat Exchanger	Automatic	Automatic
High Vacuum Water Transfer Pump	Automatic	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Closed	Closed
Building Thermostat	70°F	70°F

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.

Non-routine Maintenance


• None

New System Problems or Newly Discovered Items Needing Repair

• None.

Other Activities

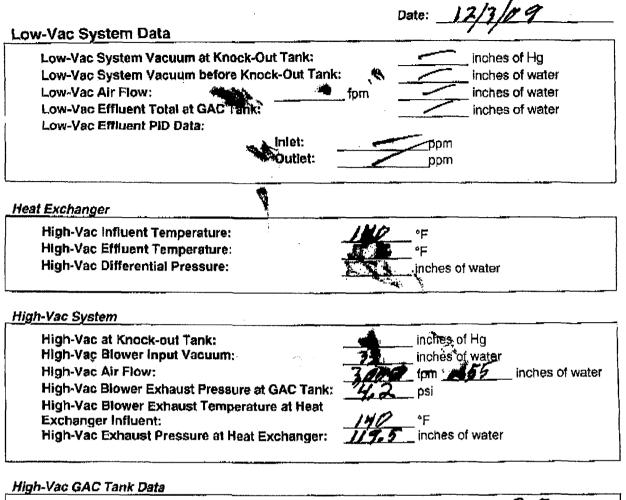
• None.

Sampling	+/- Inches
Point	WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-30.5 WC
#2	-3.5 Hg
#3	-31.7 WC
#4	-32.0 WC
#5	-33.9 WC
#6	+115.0 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

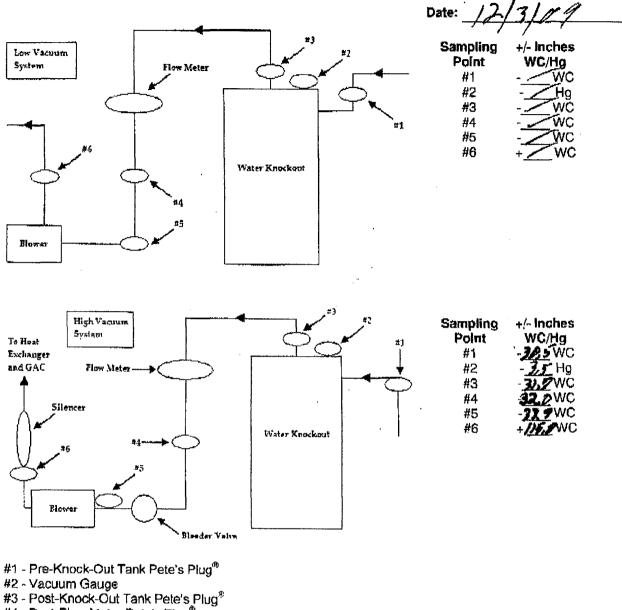

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	11/24/2009	12/03/2009	13132.1	13133.5	1.5
Air Compressor No. 2	11/24/2009	12/03/2009	13682.4	13682.2	0.0
Low Vacuum Blower No. 1	11/24/2009	12/03/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	11/24/2009	12/03/2009	4953.6	4953.6	0.0
High Vacuum Blower	11/24/2009	12/03/2009	27678.7	27875.8	197.1

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	11/24/2009	12/03/2009	14574.6	15005.4	430.8

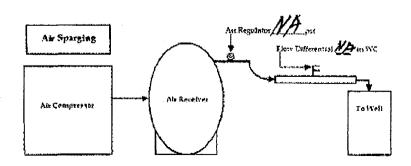
Attachments

Weekly System Checklist

OHM AS/SVE System System Checklist System Checklist Date: **One Hour Martinizing AS/SVE System** Columbus, Nebraska System Operator: Weather: Ce l Inside (°F): Tempereture: Outside (°F) System Operating Upon Arrival: NO If "No," what is the nature of the alarm? **ART Well** Air Pressure Gauge 1 (Sparge Line): **Comments/Observations:** psi Air Pressure Gauge 2 (Sparge Line): psi Air Flow (Sparge Line): scfm Water Pressure (Recirc. Line): psi Water Flow Rate (Recirc. Line): gpm **CVE Vacuum:** in WC Packer Pressure: DSÍ System Operating Configuration **Compressor #1** Auto Hand Compressor #2 Hand Auto Low-Vac Blower #1 Auto Hand Low-Vac Blower #2 Hand Auto Low-Vac Transfer Pump Hand Auto High-Vac Blower Auto Hand Of Auto Heat Exchanger Hand Off High-Vac Transfer Pump Hand Off Auto System Panel Hours Compressor #1: Compressor #2: hrs Low-Vac Blower #1: hrs Low-Vac Blower #2: hrs **High-Vac Blower:** hrs **Totalized Liquid Flow:** 🗲 gallons Date: Air Sparging System Compressor #1 Compressor #2 Air Pressure: psi DSİ Percent Capacity: % % **Output Air Temperature:** 7₽ °F Status Air Dryer #1 Running/Tested: OFF Air Filter #1 Tested: Differential Pressure: psi Air Filter #2 Tested: Differential Pressure: psi Air Filter #3 Tested: Differential Pressure: ØΚ psi



High-Vac Effluent Input C1:	<u>4,2</u> psi	0.0 ppm
High-Vac Effluent MidpoInt C2:	psi	ppm
High-Vac Effluent Midpoint C3:	psi	ppm
High-Vac Effluent Outlet:	Q. psi	ppm


Ventilation System Data

Air Compressor #1	Fan Air Gates	ON OFF OPEN CLOSED
Air Compressor #2	Fan Air Gates	ON OFF
Heat Exchanger	Fan	ON OFF
High Vac Blower Room	Fan	ON OFF
Building Dampers		OPEN CLOSED
Building Thermostat Set Point		<u></u> °F

OHM AS/SVE System System Checklist

- #4 Post-Flow Meter Pete's Plug®
- #5 Pre-Blower
- #6 Post-Blower

	OHM AS/SVE System System Checklist
Maintenance Activitles	Date: 12/3/09
Air Compressor #1 Oll Level: Air Compressor #2 Oil Level: High-Vac Blower Oil Level:	OK Quantity Added: QT OK Quantity Added: QT OK Quantity Added: QT OK Quantity Added: QT

Repairs Made, Additional Comments and Notes

•

Weekly Inspection Report

To: Marc Schlebusch, CDM

- From: Herb Scott
- Re: Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, December 3, 2009 to December 10, 2009
- **Date:** January 11, 2010

Introduction

On December 10, Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached December 10, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration and was operating normally upon arrival. The air sparging system is not being operated due to groundwater upwelling. The low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

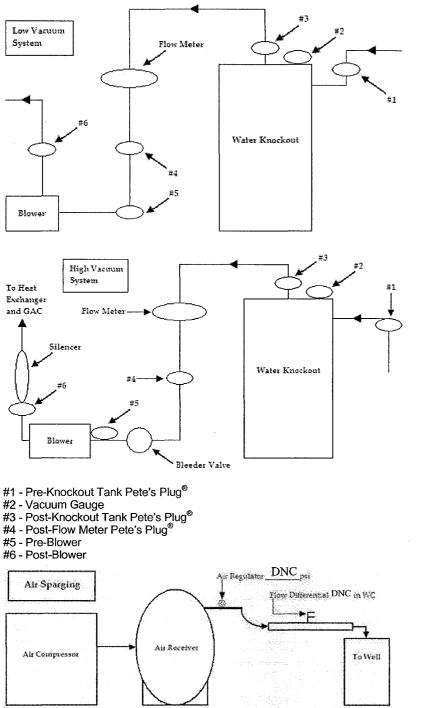
Air Sparging/Soil Vapor Extraction	Status	Status
System Equipment	Arrival	Departure
Air Compressor No. 1	Off	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Off
High Vacuum System Blower	Automatic	Automatic
High Vacuum System Heat Exchanger	Automatic	Automatic
High Vacuum Water Transfer Pump	Automatic	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Closed	Closed
Building Thermostat	70°F	70°F

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented.

Non-routine Maintenance


• None.

New System Problems or Newly Discovered Items Needing Repair

• None.

Other Activities

• None.

Sampling	+/- Inches
Point	WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	-30.3 WC
#2	-3.5 Hg
#3	-31.4 WC
#4	-32.0 WC
#5	-33.7 WC
#6	+115.0 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

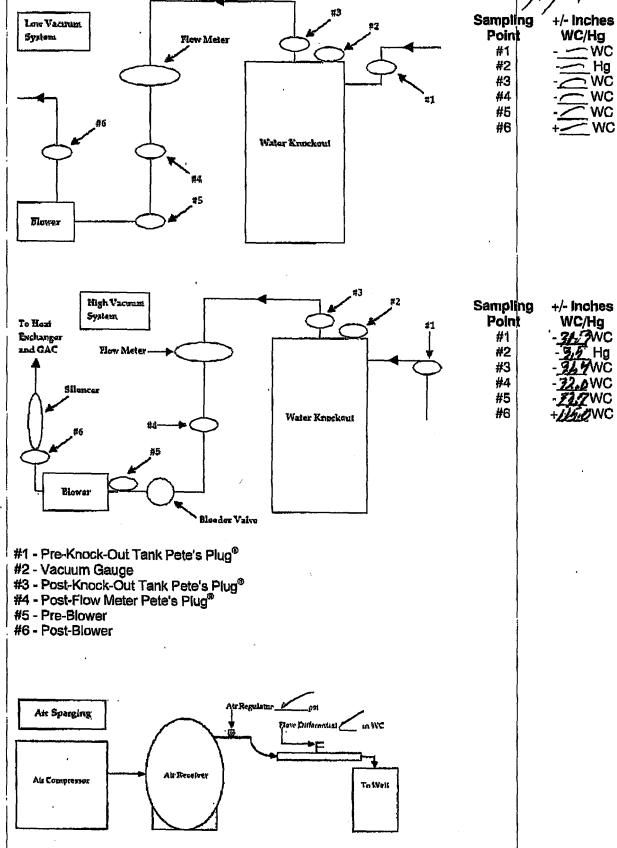
Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	12/03/2009	12/10/2009	13133.5	13133.5	0.0
Air Compressor No. 2	12/03/2009	12/10/2009	13682.2	13682.2	0.0
Low Vacuum Blower No. 1	12/03/2009	12/10/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	12/03/2009	12/10/2009	4953.6	4953.6	0.0
High Vacuum Blower	12/03/2009	12/10/2009	27875.8	28033.7	157.9

Equipment	Starting Date	Ending Date	Starting Totalized Volume	Ending Totalized Volume Gallons	Volume this Period
Liquid Knockout Treatment System	12/03/2009	12/10/2009	15005.4	15081.1	75.7

Attachments

Weekly System Checklist

/2010 08:15 4027512242	CINDY :HE	RB SCOTT	PAGE
			OHM AS/SVE Sys System Checi
System Checklist		Date:	410109
One Hour Martinizing AS/SVE Sys	tem		
[•] Columbus, Nebraska	•		
System Operator: H Furth			· · ·
Weather: Cof A			
Temperature: Outside (°F):6_	Inside (°	F): <u>6</u> Z	
System Operating Upon Arrival: If "No," what is the nature of the alarm?	NO		
		······································	
ART Well		······	
Air Pressure Gauge 1 (Sparge Line) Air Pressure Gauge 2 (Sparge Line) Air Flow (Sparge Line): Water Pressure (Recirc. Line): Water Flow Rate (Recirc. Line):	psi psi scfm psi gpm	Comments/0	bservations:
CVE Vacuum:			1
Packer Pressure:	psi		
System Operating Configuration			
Compressor #1	Hand OF	Auto	
Compressor #2	Hand COT	Auto	
Low-Vac Blower #1	Hand Off2	Auto	
Low-Vac Blower #2	Hand 🕮	Auto	
Low-Vac Transfer Pump	Hand Off	Auto	
High-Vac Blower	Hand Off	(Lines	
Heat Exchanger High-Vac Transfer Pump	Hand. Off Hand Off	Auto	
		<u>L</u>	
System Panel Hours	•		
Compressor #1:	17133.5 hrs		
Compressor #2: Low-Vac Blower #1:	<u>13692.2</u> hrs		
Low-Vac Blower #1:	1985,9 hrs 1953,6 hrs		[
High-Vac Blower:	28033.9 hrs		
Totalized Liquid Flow:	15081 gallons		
Air Sparging System		Date:	
· · · · · · · · · · · · · · · · · · ·	Comprocess #4	Comoração.	#2
Air Pressure:	Compressor #1	Compressor	uci Si
Percent Capacity:			*
Output Air Temperature:			
	Status		
Air Dryer #1 Running/Tested: Air Filter #1 Tested:	OK OFF	I Dunessine -	
		al Pressure:	psi
	OK Differentia	Droceurs	
Air Filter #2 Tested; Air Filter #3 Tested;	OK Differentia	al Pressure: al Pressure:	psi psi


.

,

5/2010 08:16 4027512242	CI	NDY :HER	RB SCOTT	. 1		PAGE	
						/SVE Syste tern Checkl	
Low-Vac System Data			Date: _	12/	nd <i>aq</i>		
Low-Vac System Vacuum at Knock Low-Vac System Vacuum before K		k.			nches of Hg nches of wat	or.	
Low-Vac Air Flow:		fpm		· · · ·	nches of wat		
Low-Vac Effluent Total at GAC Tan	k:			I	nches of wat	er	
Low-Vac Effluent PID Data:	Inlet:	_	~~				
	Outlet:	$\overline{}$	-	om om			
		· · · · · · · · · · · · · · · · · · ·					
Heat Exchanger							
High-Vac Influent Temperature:		120	2^F				
High-Vac Effluent Temperature:		-80	°F	_			
High-Vac Differential Pressure;		_9.0	Inch	es of w	ater		
High-Vac System							
High-Vac at Knock-out Tank;		3,5	inch	es of H	q		
High-Vac Blower Input Vacuum:		37.	and the second second second second second second second second second second second second second second second	es of w			
High-Vac Air Flow:		310	💋 fpm	<u>Or 7</u>		s of water	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure		340				s of water	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent:	nture at Heat	3400 417 120	fpm psi 2_°F	<u>07</u>	5 inches	s of water	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera	nture at Heat	3400 417 120 118	fpm psi 2_°F		5 inches	of water	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent:	nture at Heat	34 QU 417 12 (118)	fpm psi 2_°F	<u>07</u>	5 inches	s of water	<u> </u>
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea	nture at Heat	34 PC 417 12C 1181	fpm psi 2_°F	Or 7	5 inches	s of water	<u>.</u>
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2:	nture at Heat	<u>34</u> 00 417 120 1181	2 fpm psi 7 °F 7 inch 7 ps	es of w	5 inches	ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3:	nture at Heat	<u>34</u> 00 417 120 1181	psi psi P P psi psi psi psi psi psi psi psi psi	es of w	5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2:	nture at Heat	34 00 417 120 1181	2 fpm psi 7 °F 7 inch 7 ps	es of w	5 inches	ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3:	nture at Heat	<u>34</u> <u>4</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	psi psi P P psi psi psi psi psi psi psi psi psi	es of w	5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Heat <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet;	nture at Heat	12.0 1/8/ 	psi psi 2 °F 7 inch 7 ps ps ps ps ps	es of w	5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u>	iture at Heat t Exchanger:	12.C 1181 41 0	fpm psi PF inch ps ps ps ps ps ps	es of w	5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u> Air Compressor #1	ture at Heat t Exchanger: Fan Air Gates	12. 1/8/ 4/ 01 ON OPEN	psi psi 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u>	iture at Heat t Exchanger: Fan	12.0 1/8/ 	psi psi 2 °F 7 inch 7 ps ps ps ps ps		5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Heat <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u> Air Compressor #1 Air Compressor #2	ture at Heat t Exchanger: Fan Air Gates Fan Air Gates	IZC IISI M M M ON OPEN ON OPEN	psi psi psi psi psi psi psi psi psi psi		5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Hea <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u> Air Compressor #1	ture at Heat t Exchanger: Fan Air Gates Fan	J2C J/87 M M ON OPEN ON	psi psi 2 °F 7 inch 2 °F 7 ps ps ps ps ps 0 ps		5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Heat <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; <u>Ventilation System Data</u> Air Compressor #1 Air Compressor #2	ture at Heat t Exchanger: Fan Air Gates Fan Air Gates	IZC IISI M M M ON OPEN ON OPEN	psi psi psi psi psi psi psi psi psi psi		5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Heat High-Vac Exhaust Pressure at Heat High-Vac Effluent Input C1: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet; Ventilation System Data Air Compressor #1 Air Compressor #2 Heat Exchanger High Vac Blower Room	ture at Heat t Exchanger: Fan Air Gates Fan Air Gates Fan	IZC IVSI IVSI AL ON OPEN ON OPEN ON OPEN ON ON			5 inches	ppm ppm	
High-Vac Air Flow: High-Vac Blower Exhaust Pressure High-Vac Blower Exhaust Tempera Exchanger Influent: High-Vac Exhaust Pressure at Heat <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: <u>Ventilation System Data</u> Air Compressor #1 Air Compressor #2 Heat Exchanger	ture at Heat t Exchanger: Fan Air Gates Fan Air Gates Fan	J2C J/87 AL AL AL AL AL AL AL AL AL AL AL AL AL	psi psi 2 F inch 2 Psi psi psi psi psi psi psi psi psi Psi Psi Psi Psi Psi Psi Psi Psi Psi P		5 inches	ppm ppm	

•

.

I REAVE ON SYSTEM CHECKLIST.71008.dog

6/2010 08:16 4027512242	CINDY :HERB SCOTT	PAGE
Air Compressor #2 Oil Level:	Date: /2/// OK: Quantity Added: Quantity Added: OK: Quantity Added:	OHM AS/SVE System System Checklist M/J QT QT QT
Repairs Made, Additional Comments a	nd Notes	
· · ·		
	· · · · · · · · · · · · · · · · · · ·	
* .		
•		
		:
ANNA ON SYSTEM CHECKLIBT.71008.000		Page 4 of

Weekly Inspection Report

To: Marc Schlebusch, CDM

From: Herb Scott

Re: Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, December 10, 2009 to December 22, 2009

Date: January 11, 2010

Introduction

On December 22, Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached December 22, 2009 system checklist.

The high vacuum CVE component of the system is the only system component operating in a continuous unsupervised configuration and was not operating normally upon arrival. The air exchanger blower motor had failed causing the system to shut down.

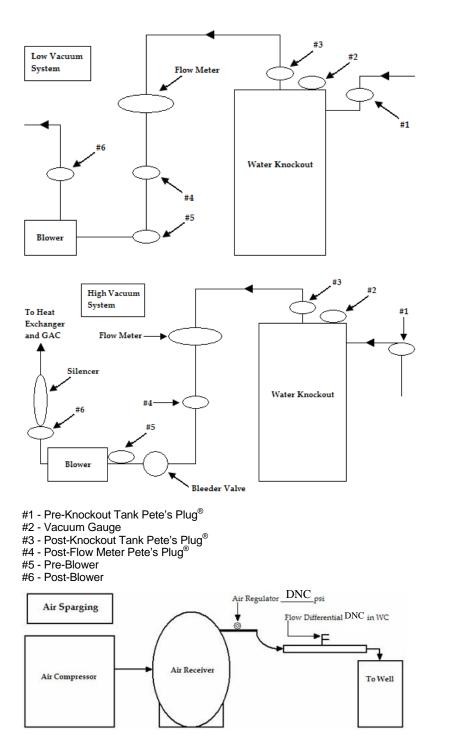
The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Air Sparging/Soil Vapor Extraction System Equipment	Status Arrival	Status Departure
Air Compressor No. 1	Off	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Off
High Vacuum System Blower	Automatic	Off
High Vacuum System Heat Exchanger	Automatic	Off
High Vacuum Water Transfer Pump	Automatic	Off
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Closed	Closed
Building Thermostat	70°F	70°F

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was not documented as the system is down.

Non-routine Maintenance


• The system was down upon arrival. Troubleshooting efforts revealed that the motor on the heat exchanger had failed causing the system to shut down. With EPA approval a new motor was ordered and arrangements were made with IES electric to have the replacement motor installed the week of January 4, 2010. All efforts were made to keep the system components from freezing up while the system was down awaiting the replacement motor to arrive.

New System Problems or Newly Discovered Items Needing Repair

• None.

Other Activities

• None.

Sampling	+/- Inches	
Point	WC/Hg	
#1	DNC	
#2	DNC	
#3	DNC	
#4	DNC	
#5	DNC	
#6	DNC	
NC = Did not	collect The lo	` w/

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	12/10/2009	12/22/2009	13133.5	13133.5	0.0
Air Compressor No. 2	12/10/2009	12/22/2009	13682.2	13682.2	0.0
Low Vacuum Blower No. 1	12/10/2009	12/22/2009	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	12/10/2009	12/22/2009	4953.6	4953.6	0.0
High Vacuum Blower	12/10/2009	12/22/2009	28033.7	28225.7	192.0

	Starting	Ending	Starting Totalized Volume	Ending Totalized Volume	Volume this Period
Equipment	Date	Date		Gallons	
Liquid Knockout Treatment System	12/10/2009	12/22/2009	15081.1	15081.1	0.0

Attachments

Weekly System Checklist

Weekly Inspection Report

To: Marc Schlebusch, CDM

From: Herb Scott

Re: Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, December 22, 2009 to January 4, 2010

Date: January 11, 2010

Introduction

On January 4, 2010 Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached January 4, 2010 system checklist.

In the current system operating configuration the high vacuum CVE component of the system is the only system component operating in a continuous unsupervised manner. The air sparging system is not being operated due to groundwater upwelling. The low vacuum system remains off line to prevent excessive amounts of water from being processed through the system during times of high groundwater levels at the site.

Upon arrival the high vacuum CVE component of the system was manually shut down. The air exchanger blower had failed during the previous reporting period and the system was down awaiting replacement parts to arrive.

Air Sparging/Soil Vapor Extraction	Status	Status
System Equipment	Arrival	Departure
Air Compressor No. 1	Off	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Off
High Vacuum System Blower	Off	Automatic
High Vacuum System Heat Exchanger	Off	Automatic
High Vacuum Water Transfer Pump	Off	Automatic
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Closed	Closed
Building Thermostat	70°F	70°F

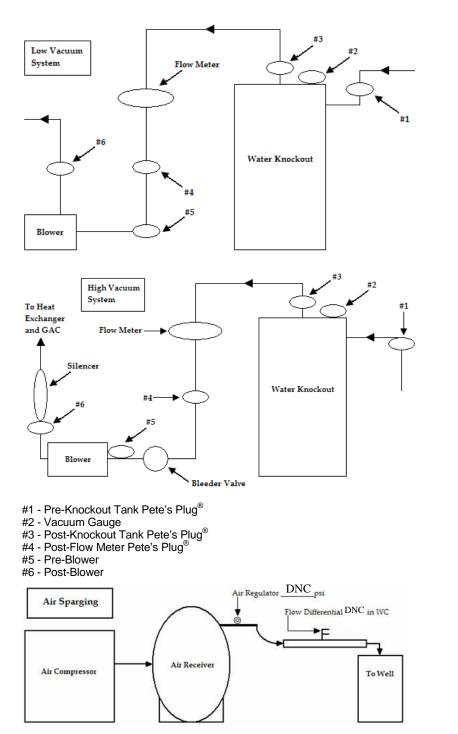
The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.

• The high vacuum system temperature, pressure, and flow volume data was documented upon system start up.

Non-routine Maintenance


- IES Electric Marv Zoucha replaced and tested the fan motor on the heat exchanger.
- Purchased a portable 1500 Watt heater to thaw out the liquid knockout tank and associated plumbing. .
- Reassembled plumbing to the liquid knock out tanks and restarted the system.
- Adjusted the operating vacuum in the high vacuum system to -3.0 hg at the knockout tank and resumed operation of the system.

New System Problems or Newly Discovered Items Needing Repair

• None.

Other Activities

• None.

Sampling Point	+/- Inches WC/Hg
#1	DNC
#2	DNC
#3	DNC
#4	DNC
#5	DNC
#6	DNC

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

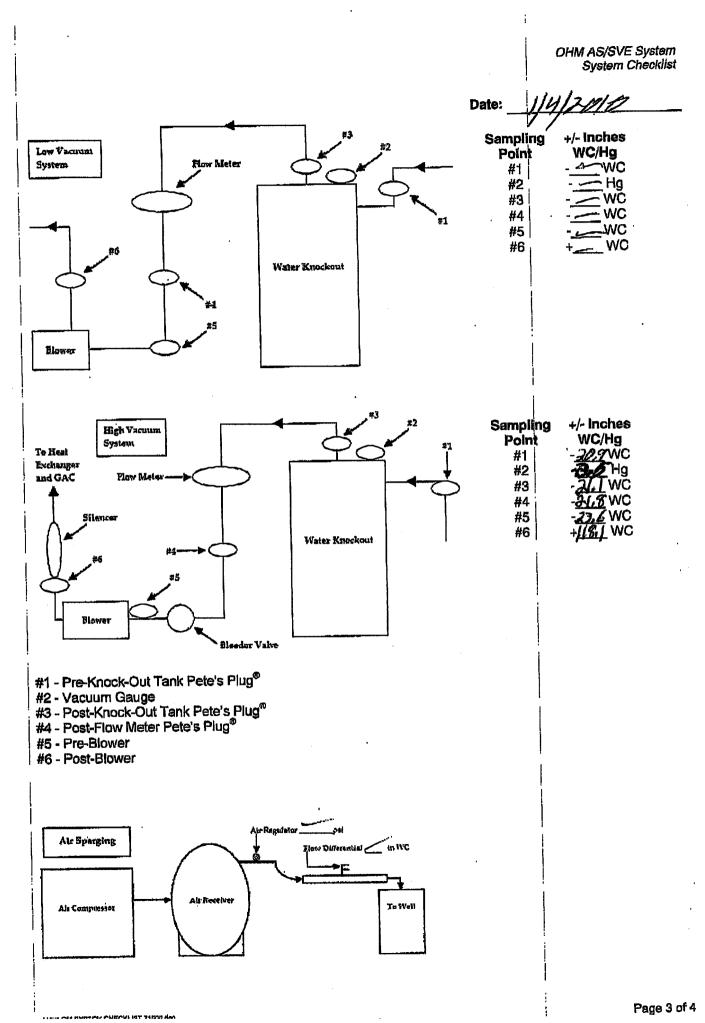
Sampling Point	+/- Inches WC/Hg
#1	-20.9 WC
#2	-3.0 hg
#3	-21.1 WC
#4	-21.8 WC
#5	-23.6 WC
#6	+118.1 WC

System Operating Hours and Gallons Water Treated System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	12/22/2009	1/04/2010	13133.5	13133.5	0.0
Air Compressor No. 2	12/22/2009	1/04/2010	13682.4	13682.2	0.0
Low Vacuum Blower No. 1	12/22/2009	1/04/2010	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	12/22/2009	1/04/2010	4953.6	4953.6	0.0
High Vacuum Blower	12/22/2009	1/04/2010	28225.7	28225.7	0.0

	Starting	Ending	Starting Totalized Volume	Ending Totalized Volume	Volume this Period
Equipment	Date	Date		Gallons	
Liquid Knockout Treatment System	12/22/2009	1/04/2010	15081.1	15081.1	0.0

Attachments


Weekly System Checklist

			OHM AS/SVE Syste
			System Checkli
System Checklist		Date:	10412010
One Hour Martinizing AS/SVE Sy	ustem		v jou ju
Columbus, Nebraska	otom	la la la la la la la la la la la la la l	1
	- OL		, ,
System Operator:	COTT		, [
Weather: <u>CIVA</u>			· · · · · · · · · · · · · · · · · · ·
Temperature: Outside (°F):7	Inside (°F): <u>56 </u>	
System Operating Upon Arrival: If "No," what is the nature of the alarm	2 drad alasse	¥	
······································			
			· · · · · · · · · · · · · · · · · · ·
ART Well	····		
Air Pressure Gauge 1 (Sparge Lin		Comments/O	bservations:
Air Pressure Gauge 2 (Sparge Lin			,
Air Flow (Sparge Line): Water Pressure (Recirc. Line):	scim		
Water Flow Rate (Recirc. Line): Water Flow Rate (Recirc. Line):	psi gpm		
CVE Vacuum:			
Packer Pressure:	psi		; , ,
		<u></u>	
System Operating Configuration	1		l
Compressor #1	Hand Off	Auto	
Compressor #2	Hand Off	Auto	i ,
Low-Vac Blower #1	Hand Off	Auto	,
Low-Vac Blower #2	Hand Of	Auto	
Low-Vac Transfer Pump High-Vac Blower	Hand Off Hand Off	Auto	
Heat Exchanger	Hand Off	AULU-	
High-Vac Transfer Pump	Hand Off	Auto	
T			
System Panel Hours			i i i
Compressor #1:	131335 hrs		
Compressor #2:	17682,2 hrs		
Low-Vac Blower #1:	1885.9 hrs		!
Low-Vac Blower #2:	1953.6 hrs		
High-Vac Blower:	28 225, 7 hrs		
Totalized Liquid Flow:	15081.1 gallons		
Air Sparging System		Date:	· · · · · · · · · · · · · · · · · · ·
	·······		
	Compressor #1	Compressor	
Air Pressure;	psi		oʻsi
Percent Capacity: Output Air Temperature:			%
andar will tembergrate:			
	Status		
	OFF OFF		
Air Dryer #1 Running/Tested:			
Air Filter #1 Tested:	Differential		psi
		Pressure:	psi psi psi

ł

.

/2010 08:16 4027512242 (CINDY :HERB SCOTT	PAGE
Low-Vac System Data	Date:	OHM AS/SVE System System Checkli AJZ-CIIC
Low-Vac System Vacuum at Knock-Out Tank:		inches of Hg
Low-Vac System Vacuum before Knock-Out Ta Low-Vac Air Flow:		inches of water
Low-Vac Effluent Total at GAC Tank:		inches of water inches of water
Low-Vac Effluent PID Data:		inches of water
inlet:		
Outlet:	ppm	1
		· ·
Heat Exchanger		
High-Vac Influent Temperature:	125 °F	
High-Vac Effluent Temperature:	60 °F	,
High-Vac Differential Pressure:	inches of V	water
High-Vac System	······································	
High-Vac at Knock-out Tank:	inches of I	-
High-Vac Blower Input Vacuum:	2.3,6 inches of v	water
High-Vac Blower Input Vacuum: High-Vac Air Flow:	<u>23,6</u> Inches of v <u>49700</u> fpm <u>0</u>	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank	<u>23,6</u> Inches of v <u>49700</u> fpm <u>0</u>	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat	<u>3.3.6</u> inches of v <u>47///</u> fpm_ <u>2</u> :: <u>4.9</u> psi	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent:	$\frac{23.6}{49.9}$ inches of v inches of v fpm $\frac{2}{9.9}$ psi $\frac{125}{5}$ °F	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat	$\frac{23.6}{49.9}$ inches of v inches of v fpm $\frac{2}{9.9}$ psi $\frac{125}{5}$ °F	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent:	$\frac{23.6}{49.9}$ inches of v inches of v fpm $\frac{2}{9.9}$ psi $\frac{125}{5}$ °F	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger:	$\frac{3.3.6}{47.7}$ inches of w $\frac{47.7}{7}$ fpm 2 psi $\frac{125}{7.40.7}$ oF $\frac{1.40.7}{7}$ inches of w	water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac GAC Tank Data</u>	<u>23,6</u> inches of w <u>47///</u> fpm <u>2</u> psi <u>125</u> °F <u>140,7</u> inches of w <u>4,9</u> psi	water inches of water water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1:	$\frac{3.3.6}{47.7}$ inches of w $\frac{47.7}{7}$ fpm 2 psi $\frac{125}{7.40.7}$ oF $\frac{1.40.7}{7}$ inches of w	water water water
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac GAC Tank Data</u> High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2:	<u>23,6</u> inches of v <u>47///</u> fpm_ <u>2</u> inches of v <u>125</u> °F <u>140,7</u> inches of v <u>4,7</u> psi <u>4,7</u> psi <u>5</u>	water water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac Exhaust Pressure at Heat Exchanger</u> High-Vac Effluent Input C1: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet:	<u> </u>	water inches of water water <i>DiC</i> ppm ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac Exhaust Pressure at Heat Exchanger</u> High-Vac Effluent Input C1: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: <u>Ventilation System Data</u>	$\frac{3.3.6}{47.7}$ inches of w $\frac{47.7}{19}$ psi $\frac{42.7}{125}$ °F $\frac{125}{140.7}$ inches of w $\frac{47.7}{140.7}$ psi psi psi psi psi psi psi	water inches of water water <i>DiC</i> ppm ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: <u>High-Vac Exhaust Pressure at Heat Exchanger</u> High-Vac Effluent Input C1: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet:	$ \begin{array}{c} \overline{A} \overline{3} \overline{6} & \text{inches of } \\ \overline{4} \overline{7} \overline{7} & \text{fpm} \underline{2} \\ \overline{4} \overline{7} & \text{psi} \\ \overline{125} & \circ F \\ \overline{140} \overline{7} & \text{inches of } \\ \overline{140} \overline{7} & \text{inches of } \\ \overline{140} \overline{7} & \text{psi} \\ \overline{140} \overline{7} & \text{psi} \\ \overline{150} & psi$	water inches of water water <i>DiC</i> ppm ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates	A 3.6 inches of w 4 fpm psi 125 °F 141 inches of w 125 °F 141 inches of w 125 °F 141 inches of w 125 °F 141 psi psi psi psi psi 0 0 0 0 0 0 0 0 0 0 0 0 0 0	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Compressor #2 Fan	A 3.6 inches of w 4 fpm fpm 4 9 psi 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 psi 125 °F 147 psi psi psi 0 psi 0 0FF 0N 0FF 0N 0FF 0N 0FF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates	A 3.6 inches of w 4 fpm psi 4 9 psi 125 °F 140 inches of w 125 °F 140 psi psi psi psi psi 0N 0FF 0PEN 0FF 0N 0FF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates Air Compressor #2 Fan Air Gates	A 3.6 inches of w 4 7 fpm_psi 125 °F 147 °F 147 orches of w 125 °F 147 orches of w 125 °F 147 psi 125 °F 147 psi 125 °F 147 psi 125 °F 147 psi psi psi 00 psi 00 OFF 00 OFF 00 OFF 00 OFF 00 OFF 00 OFF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Compressor #2 Fan	A 3.6 inches of w 4 7 fpm 4 9 psi 125 °F 149 °F 149 or 125 °F 149 psi 125 °F 149 psi 125 °F 149 psi 125 °F 149 psi psi psi 00 psi 00 OFF	water inches of water water <i>DiC</i> ppm ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates Air Compressor #2 Fan Air Gates Heat Exchanger Fan	A 3.6 inches of w 4 fpm_psi 4 9 psi 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 psi psi psi 9 psi 0N 0FF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates Air Compressor #2 Fan Air Gates	A 3.6 inches of w 4/7//// fpm 9/7//// psi 9/7/// psi 1/25 °F 1/4/// inches of w 1/25 °F 1/4/// psi psi psi psi psi 0N OFF ON OFF ON OFF ON OFF ON OFF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates Air Compressor #2 Fan Air Gates Heat Exchanger Fan	A 3.6 inches of w 4 fpm_psi 4 9 psi 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 psi psi psi 9 psi 0N 0FF	water inches of water water ppm ppm
High-Vac Blower Input Vacuum: High-Vac Air Flow: High-Vac Blower Exhaust Pressure at GAC Tank High-Vac Blower Exhaust Temperature at Heat Exchanger Influent: High-Vac Exhaust Pressure at Heat Exchanger: High-Vac Effluent Input C1: High-Vac Effluent Midpoint C2: High-Vac Effluent Midpoint C3: High-Vac Effluent Outlet: Ventilation System Data Air Compressor #1 Fan Air Gates Air Compressor #2 Fan Air Gates Heat Exchanger Fan High Vac Blower Room Fan	A 3.6 inches of w 4 7 fpm 9 9 psi 125 °F 147 inches of w 125 °F 147 inches of w 125 °F 147 psi 125 °F 147 psi 125 °F 147 psi 125 °F 147 psi 148 psi 149 psi 149<	water inches of water water ppm ppm

Maintenance Activities Air Compressor #1 Oil Level;	OR Quantity A		OHM AS/SVE System System Chacklist
Air Compressor #2 Oll Level: High-Vac Blower Oil Level:	OK Quantity A	dded:	
	<i></i>		
Repairs Made, Additional Comme	nts and Notes		
	•		
			- - - -
		•	
4			
	, ,		:
			1
			Page 4 of

.

Weekly Inspection Report

To: Marc Schlebusch, CDM

From: Herb Scott

Re: Weekly OHM Source Area Air Sparging/Soil Vapor Extraction Inspection Report, January 4, 2010 to March 3, 2010.

Date: March 15, 2010

Introduction

On March 3, 2010 Herb Scott of HydroGeoLogic Inc., (HGL) conducted the weekly site visit. Routine maintenance items and or non-routine maintenance items were completed on the air sparging/soil vapor extraction system located on the corner of 23rd Street (Highway 30) and 25th Avenue in Columbus, Nebraska, and noted on the attached March 3, 2010 system checklist.

The High Vacuum system was started and shut down during this time period. See Non-Routine Maintenance items for details.

The air sparging/soil vapor extraction system was configured upon arrival and departure as follows:

Air Sparging/Soil Vapor Extraction System Equipment	Status Arrival	Status Departure
Air Compressor No. 1	Off	Off
Air Compressor No. 2	Off	Off
Low Vacuum System Blower No. 1	Off	Off
Low Vacuum System Blower No. 2	Off	Off
Low Vacuum System Water Transfer Pump	Off	Off
High Vacuum System Blower	Off	Auto
High Vacuum System Heat Exchanger	Off	Auto
High Vacuum Water Transfer Pump	Off	Auto
Ventilation System Equipment		
Ventilation Fan No. 1 (Air Compressor No. 1)	Off	Off
Ventilation Fan No. 2 (Air Compressor No. 2)	Off	Off
Ventilation Fan No. 3 (High Vacuum Heat Exchanger)	Off	Off
Ventilation Fan No. 4 (High Vacuum Blower)	Off	Off
Building Dampers	Closed	Closed
Building Thermostat	70°F	70°F

Routine Maintenance

- The system operating configuration was documented.
- System panel hours were documented.
- The low vacuum system temperature, pressure, and flow volume data were not documented because the low vacuum system is offline. The system is offline to prevent excessive amounts of water from being processed through the system caused by running the vacuum system during a time of high groundwater levels at the site.
- The high vacuum system temperature, pressure, and flow volume data was documented upon system start up.

Non-routine Maintenance

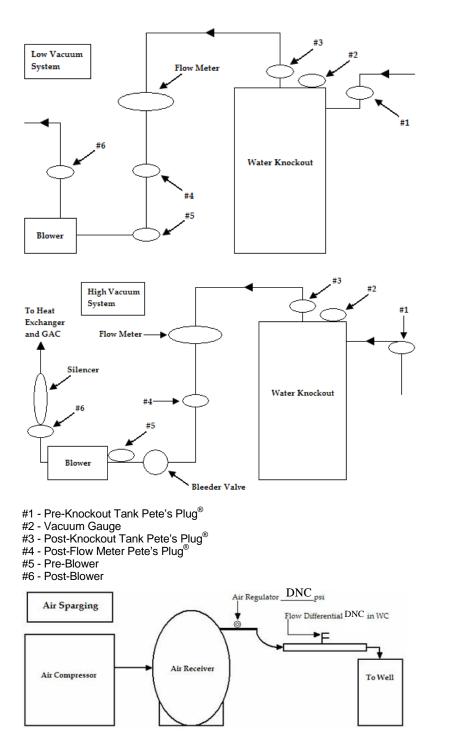
Herb Scott went up to 10th street site Wednesday 1/13/10 to check on the system since there were frozen lines that I thawed before startup the week before. When I arrived I found that the High Vac GAC tank was leaking a fine carbon dust out of the manhole on top of the filter. The system was running so there is no way of telling how long this leak was occurring. Everything on the west end of the building is covered by the dust and then it tapers off the farther east in the building you get. Herb vacuumed the floor the best he could but a major cleanup needs to take place. Everything needs moved and cleaned. The dust was an estimated 1/2" thick on top of the GAC tank that was leaking.

Herb opened up the tank and it is appoximately 2/3rds full of carbon. Herb took apart the 6" effluent line from the GAC tank and found it to be clear. Herb Doesn't know why there would be enough pressure on the effluent side of the GAC to blow dust out the manhole. Herb put the manhole back on and made sure that it was very secure.

After changing the oil in the High Vacuum blower and greasing the motor Herb started the system again. The pressure on the inlet side of the GAC was 4.9 lb.and the effluent side was 0.0 lb. The blower belts started squeaking due to the pressure in the GAC so I shut the system down and tightened the belts. A few minutes after restarting the system the inlet pressure to the GAC dropped to 4.0 lb (I don't know why). The manhole remained sealed and the system operated just fine.

Maintenance items that were performed on the High Vacuum system during the visit are:

Tightened belts on blower (We need new belts. Durapower 5VX - 800. Matched set of 4) Changed blower oil Greased motor Cleaned all sand out of the knockout tank Cleaned knockout pump screen Vacuumed most of the floor Inspected 6" Effluent line from the GAC. Inspected liquid GAC tank lines to make sure they were fully functional.


On 1/15/2010 Herb Scott received notification that there was fine black dust coming out of the roof vent. When I got up to Columbus OHM I found that it had blown off in the building again also. Herb shut the system off.

On 3/3/2010 Herb Scott performed the following maintenance items. Turned off Electric heater. Cleaned more of the facitlity. Re-piped the High Vacuum system to exit through the middle Low Vacuum system GAC. Started High Vacuum system.

New System Problems or Newly Discovered Items Needing Repair

• None.

Other Activities

Sampling Point	+/- Inches WC/Hg		
#1	DNC		
#2	DNC		
#3	DNC		
#4	DNC		
#5	DNC		
#6	DNC		
NC - Did not	collect The lo		

DNC = Did not collect. The low vacuum system is off line to prevent excessive amounts of water being processed through the system because of high groundwater levels at the site.

Sampling Point	+/- Inches WC/Hg
#1	- 31.9WC
#2	-3.9 hg
#3	-31.4 WC
#4	-33.4 WC
#5	-34.3 WC
#6	+42.2 WC

System Operating Hours and Gallons Water Treated

System operating hours and volume of water pumped and treated from the liquid knockout tanks for the reporting period are summarized below.

Equipment	Starting Date	Ending Date	Starting Hours	Ending Hours	Operation Hours this Period
Air Compressor No. 1	1/04/2010	3/3/2010	13133.5	13134.4	0.9
Air Compressor No. 2	1/04/2010	3/3/2010	13682.2	13682.2	0.0
Low Vacuum Blower No. 1	1/04/2010	3/3/2010	1885.9	1885.9	0.0
Low Vacuum Blower No. 2	1/04/2010	3/3/2010	4953.6	4953.6	0.0
High Vacuum Blower	1/04/2010	3/3/2010	28225.7	28490.8	265.1

	Starting	Ending	Starting Totalized Volume	Ending Totalized Volume	Volume this Period
Equipment	Date	Date		Gallons	
Liquid Knockout Treatment System	1/04/2010	3/3/2010	15081.1	Missed	0.0
				reading	

Attachments

Weekly System Checklist

System Checklist System Checklist Date: **One Hour Martinizing AS/SVE System** Columbus, Nebraska System Operator: toy V 210 Weather: wollin Temperature: Outside (°F): 49 Inside (°F): N System Operating Upon Arrival: YES run due To If "No," what is the nature of the alarm? 24 C peable Mg **ART Well** Air Pressure Gauge 1 (Sparge Line): psi Comments/Observations: Air Pressure Gauge 2 (Sparge Line): psi Air Flow (Sparge Line): ទលាំយ Water Pressure (Recirc. Line): psi Water Flow Rate (Recirc. Line): gpm CVE Vacuum: in WC Packer Pressure: pși System Operating Configuration Compressor #1 Hand Ωf Aut Compressor #2 Hand Auto Low-Vac Blower #1 Hand Auto Low-Vac Blower #2 Hand Auto Low-Vac Transfer Pump Hand High-Vac Blower Hand Off Heat Exchanger Hand Off **High-Vac Transfer Pump** Hand Off **System Panel Hours** Compressor #1: hrs Compressor #2: hrs Low-Vac Blower #1: hrs Low-Vac Blower #2: hrs High-Vac Blower: hrs Mandin gallons **Totalized Liquid Flow:** Missed Date: Air Sparging System

Compressor #2 Compressor #1 Air Pressure: psi psi % Percent Capacity: % °٣ **Output Air Temperature: Status OK** OFF Air Dryer #1 Running/Tested: Air Filter #1 Tested: OK Differential Pressure: psi psi OK Differential Pressure: Air Filter #2 Tested: ÖK **Differential Pressure:** Air Filter #3 Tested: psi

LAND ON BYSTEM CHECKLIST. 71808 JUS

Page 1 of 4

11

ow-Vac System Data		Date:	3/3/10	
Low-Vac System Vacuum at Knock-Or Low-Vac System Vacuum before Knoc Low-Vac Air Flow: Low-Vac Effluent Total at GAC Tank: Low-Vac Effluent PID Data:			inches of Hg inches of water inches of water inches of water	
,	iniet: Outlet:	ppm ppm		

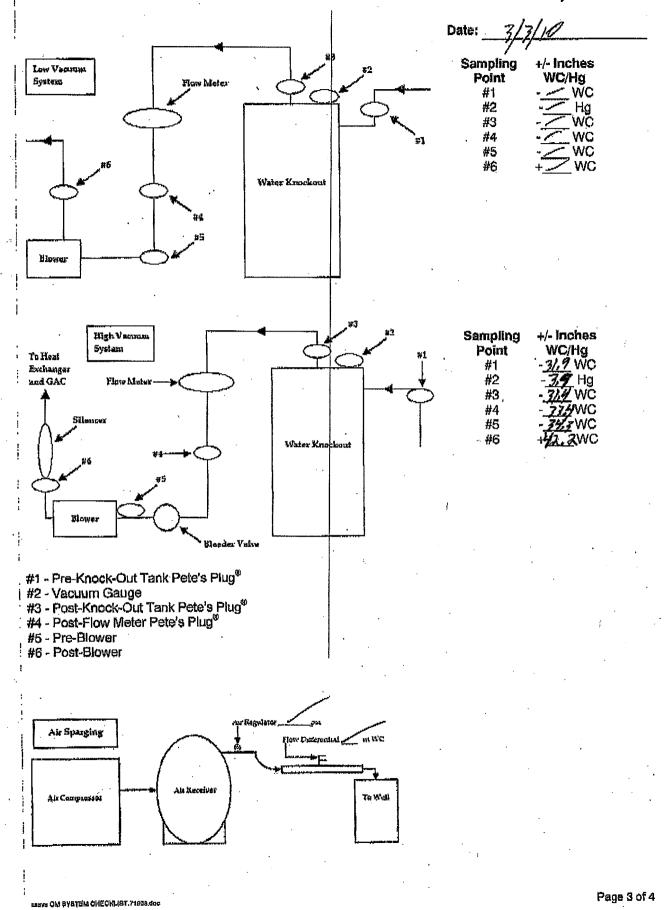
Heat Exchanger

High-Vac Influent Temperature:	<i>90</i> °F
High-Vac Effluent Temperature:	<u>64</u> °F
High-Vac Differential Pressure:	8.8 inches of water

High-Vac System

High-Vac at Knock-out Tank:	3.5 inches of Hg	
High-Vaç Blower Input Vacuum:	0,5 inches of water	
High-Vac Air Flow:	4500 fpm 1,25 inches of	water
High-Vac Blower Exhaust Pressure at GAC Tank:		
High-Vac Blower Exhaust Temperature at Heat Exchanger Influent:	<u>90</u> •F	•
High-Vac Exhaust Pressure at Heat Exchanger:	40.5 inches of water	1

High-Vac GAC Tank Data


High-Vac Effluent Input C1:	<u>lil</u> psi	ppm	
High-Vac Effluent Midpoint C2:	psi	ppm	
High-Vac Effluent Midpoint C3:	psi	ppm	
High-Vac Effluent Outlet:	psi	ppm	

Ventilation System Data

Air Compressor #1	Fan Air Gates	ON OPEN	CLOSED	
Air Compressor #2	Fan Air Gates	ON OPEN	CLOSED	;
Heat Exchanger	Fan	ON	OFF	
High Vac Blower Room	Fan	ON	OFE	
Building Dampers		OPEN	CLOSED	
Building Thermostat Set Point		_80	 ₽	

LISUVE OM BYBTEM CHECKLIST. 73 HOR due

Page 2 of 4

NI JUAN

7677TC/706

17:TT 0T07/CT/S0

OHM AS/SVE System System Checklist Date: 3/3/10 **Maintenance Activities** ÆŔ Air Compressor #1 Oll Level: Quantity Added: QT -ØŔ Q۲ Air Compressor #2 Oil Level: Quantity Added: ~OK Quantity Added: High-Vac Blower Oil Level: QT Repairs Made, Additional Comments and Notes Turned off heater Cheaned Facility Put High Vac Effhant Through Low Vac GAC. StarVed High Var System Page 4 of 4 ANAVA OM SYSTEM OHECKLIBT.71600.dog

LI JOAN

HANG GARLE LANTO

. 7+

Date:

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator:

Ĵ

Weekly Data Collection Monthly Well Inspection (circle one)

		Self Van	SP Extraction System Field Measurements
	Valve	Vacuum	
Well	(O/C/P)	(in H <u>g)</u>	Comments
CVE-1			
CVE-2			
CVE-3			
CVE-4			
CVE-5			
CVE-6			
CVE-7		·	
CVE-8			
CVE-9			
CVE-10			
CVE-11			
CVE-12			
CVE-13	······		
CVE-14			
CVE-15	· · · · · · · · · · · · · · · · · · ·		
CVE-16			
CVE-10	+		
CVE-18	<u> </u> 		
CVE-19	·		
	. <u> </u>	<u> </u>	
CVE-20		- C	
CVE-21	l		
CVE-22 CVE-23			
		· · · · · · · · · · · · · · · · · · ·	
CVE-24	· · · · · · · · · · · · · · · · · · ·		
	·	· [······	
CVE-26			
CVE-27	·····		
CVE-28			
CVE-29			
CVE-30			
CVE-31			
CVE-32		<u> </u>	
CVE-33			
CVE-34		<u> </u>	
CVE-35			
CVE-36		<u> </u>	
CVE-37			
CVE-38			
CVE-39			
CVE-40			
CVE-41			
CVE-42			
CVE-43			
CVE-44	1		
CVE-45	1		
CVE-46	-		
CVE-47			
PCIX-2D			
E CINED			

.

Glay Sum AB. cystem chooligie.7709.dog

Page 1 of 2

Z#ZZIG/Z0# /Z:TI 0102/GT/E0

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

System Operator:

!

Weekly Data Collection Monthly Well Inspection (circle one)

		s Santavap	or extraction System nuele Measurements
Well	Valve (O/C/P)	Vacuum (in Hg)	Comments
SVE-1			
SVE-2			
SVE-3			
SVE-4			
SVE-5			
SVE-6			
SVE-7			
SVE-8		•	
SVE-9			
CIX-2			

System Checklist One Hour Martinizing AS/SVE System Columbus, Nebraska

Date:

Date:

System Operator:

Weekly Data Collection Monthly Well Inspection (circle one)

			An Sparging Field Measurements
Well	Valve (O/C/P)	Pressure (psi)	Comments
AS-1			
AS-2			
AS-3			
AS-4			
AS-5			
A\$-6			
AS-7	:		
AS-8			
AS-9			
AS-10			
AS-11			
AS-12			
AS-13			
AS-14	(Man.a.		
AS-15			
AS-16			
AS-17	·		
AS-18			
AS-19			
AS-20			
AS-21			
AS-22			
AS-23	ļ		
PCIX-1A			
PCIX-2A			
PCIX-5A	L	1	

City Band AS.system ciwekiiste,7708.doo

Page 2 of 2