A Categorical Description of Relativization

Kazuto Yoshimura

Japan Advanced Institute of Science and Technology School of Information Science

February 18, 2013

Outline

2 Preliminaries

Objective

Concept

Non-Computability in Categories

Objective

Concept

Non-Computability in Categories

How to deal with non-computability in computable analysis? -- > Relativizations to oracles (computability with oracles)

Objective

Concept

Non-Computability in Categories

How to deal with non-computability in computable analysis? -- > Relativizations to oracles (computability with oracles)

Objective To give a categorical description of "relativization to oracles"

Goal

We propose to reformulate the following proposition on a categorical setting

Goal

We propose to reformulate the following proposition on a categorical setting

Proposition

For a given represented space (X, δ_X) , if δ_X is addmissible, then

oracle co-r.e. closedness coincides with topological closedness

for every subset of X

Type-2 Theory of Effectivity

- A framework of computable analysis
- It provides us "de facto standard" terminologies

- (Type-2) Computability is defined for partial functions on Cantor space
- Oracle computability is also defined

- (Type-2) Computability is defined for partial functions on Cantor space
- Oracle computability is also defined

Represented Space

- (Type-2) Computability is defined for partial functions on Cantor space
- Oracle computability is also defined

Represented Space

- a representation of a set *X*:
 - a partial surjection from Cantor space to X

 $\int_{\delta}^{\delta} \operatorname{supp}(\delta) \subseteq 2^{\omega}$

- (Type-2) Computability is defined for partial functions on Cantor space
- Oracle computability is also defined

Represented Space

- a representation of a set *X*:
 - a partial surjection from Cantor space to X

X $\uparrow \delta$ $\operatorname{supp}(\delta) \subseteq 2^{\omega}$

• a represented space: a set equipped with a representation

Example 1

Each $u \subseteq 2^{\omega}$ can be regarded as a represented space w.r.t. the representation δ_u defined as follows:

$$\delta_u(p) = \begin{cases} p & \text{if } p \in u \\ \text{undefined} & \text{otherwise} \end{cases}$$

where $p \in 2^{\omega}$

Example 2

We define a representation δ_{Ω} of 2 as follows:

$$\delta_{\Omega}(p) = \begin{cases} 0 & \text{if } p(i) = 0 \ (\forall i \in \omega) \\ 1 & \text{otherwise} \end{cases}$$

where $p \in 2^{\omega}$

 $(X, \delta_X), (Y, \delta_Y)$: represented spaces

 $(X, \delta_X), (Y, \delta_Y)$: represented spaces

Relatively Computable Function

Each $f: X \to Y$ is said to be computable w.r.t. δ_X, δ_Y if there is a computable partial function g on 2^{ω} which makes the following diagram commute

 $(X, \delta_X), (Y, \delta_Y)$: represented spaces

Relatively Computable Function

Each $f: X \to Y$ is said to be computable w.r.t. δ_X, δ_Y if there is a computable partial function g on 2^{ω} which makes the following diagram commute

Oracle computability can also be extended in the same manner

 (X, δ_X) : represented space *u*: a subset of *X*

 (X, δ_X) : represented space *u*: a subset of *X*

Co-r.e. Closedness

- We denote by ch_u: X → 2 its characteristic function i.e. the unique function such that u = ch_u⁻¹[{0}]
- *u* is said to be (oracle) co-r.e. closed if ch_u is (oracle) computable w.r.t. δ_X, δ_Ω

 (X, δ_X) : represented space *u*: a subset of *X*

Co-r.e. Closedness

- We denote by ch_u: X → 2 its characteristic function i.e. the unique function such that u = ch_u⁻¹[{0}]
- *u* is said to be (oracle) co-r.e. closed if ch_u is (oracle) computable w.r.t. δ_X, δ_Ω

Topological Closedness

- One can think (X, δ_X) as a topological space w.r.t. the quotient topology induced from Cantor topology via δ_X
- *u* is said to be closed if it is closed w.r.t. the quotient topology

Preliminaries on Category Theory

We introduce:

- three examples of categories
- one example of functors
- the notion of factorization system

Preliminaries on Category Theory

We introduce:

- three examples of categories
- one example of functors
- the notion of factorization system

Notations

E	:	arbitrarily fixed category
$Iso_{\mathbb{E}}$:	the class of all isomorphisms
$\operatorname{Epi}_{\mathbb{E}}$:	the class of all epimorphisms
$Mono_{\mathbb{E}}$:	the class of all monomorphisms

Preliminaries on Category Theory: 1/6

Example 1

Set

- object: small sets
- morphism: functions

Preliminaries on Category Theory: 1/6

Example 1

Set

- object: small sets
- morphism: functions

Example 2

Ср

- object: subsets of Cantor space
- morphism: computable total functions

Preliminaries on Category Theory: 1/6

Example 1

Set

- object: small sets
- morphism: functions

Example 2

Ср

- object: subsets of Cantor space
- morphism: computable total functions

Example 3

Rep

- object: represented spaces
- morphism: computable total functions

Preliminaries on Category Theory: 2/6

A functor U from Cp to Rep can be defined as follows:

- object: $u \mapsto (u, \delta_u)$
- morphism: $g \mapsto g$

Preliminaries on Category Theory: 3/6

epi-mono factorizability of Set

For each morphism $X \xrightarrow{f} Y$ in Set, there exists a pair of a epimorphism (surjective function) e and a monomorphism (injective function) m which makes the following diagram commute

Preliminaries on Category Theory: 3/6

epi-mono factorizability of Set

For each morphism $X \xrightarrow{f} Y$ in Set, there exists a pair of a epimorphism (surjective function) e and a monomorphism (injective function) m which makes the following diagram commute

Factorization System

- A factorization system (\mathscr{S}, \mathscr{T}) on \mathbb{E} is defined as a pair of two classes of morphisms in \mathbb{E}
- A factorization system (S, T) is said to be proper if S ⊆ Epi_E and T ⊆ Mono_E

Preliminaries on Category Theory: 4/6

Example: On Set

- $\bullet~(Epi_{\mathsf{Set}}, \mathsf{Mono}_{\mathsf{Set}})$ forms a proper factorization system on Set
- this fact can be generalized to an arbitrary topos

Preliminaries on Category Theory: 4/6

Example: On Set

- $\bullet~(Epi_{\mathsf{Set}}, \mathsf{Mono}_{\mathsf{Set}})$ forms a proper factorization system on Set
- this fact can be generalized to an arbitrary topos

Example: On Cp

- \mathscr{S}_{Cp} : the class of all surjective morphisms in Cp
- there is an uniquely determined class of morphisms \mathscr{T}_{Cp} s.t. ($\mathscr{L}_{Cp}, \mathscr{T}_{Cp}$) forms a proper factorization system on Cp
- all morphisms from \mathscr{T}_{Cp} are injective

Preliminaries on Category Theory: 4/6

Example: On Set

- $\bullet~(Epi_{\mathsf{Set}}, \mathsf{Mono}_{\mathsf{Set}})$ forms a proper factorization system on Set
- this fact can be generalized to an arbitrary topos

Example: On Cp

- \mathscr{S}_{Cp} : the class of all surjective morphisms in Cp
- there is an uniquely determined class of morphisms \mathscr{T}_{Cp} s.t. ($\mathscr{S}_{Cp}, \mathscr{T}_{Cp}$) forms a proper factorization system on Cp
- all morphisms from \mathscr{T}_{Cp} are injective

Example: On Rep

One can also define a proper factorization system ($\mathscr{S}_{Rep}, \mathscr{T}_{Rep}$) on Rep in the same manner with the case of Cp

Preliminaries on Category Theory: 5/6

 $(\mathscr{S},\mathscr{T}):$ proper factorization system on $\mathbb E$

Preliminaries on Category Theory: 5/6

 $(\mathscr{S},\mathscr{T}):$ proper factorization system on $\mathbb E$

Definition: Image

For each $X \xrightarrow{f} Y$ in \mathbb{E} and each $(\cdot \xrightarrow{u} X) \in \mathcal{T}$, in the following factorization of fu

we call *t* an image of *u* by *f* if $s \in \mathscr{S}$ and $t \in \mathscr{T}$

We usually denote by f[u] an image of u by f
Preliminaries on Category Theory: 5/6

 $(\mathscr{S},\mathscr{T}):$ proper factorization system on $\mathbb E$

Definition: Image

For each $X \xrightarrow{f} Y$ in \mathbb{E} and each $(\cdot \xrightarrow{u} X) \in \mathcal{T}$, in the following factorization of fu

we call *t* an image of *u* by *f* if $s \in \mathscr{S}$ and $t \in \mathscr{T}$

We usually denote by f[u] an image of u by f

Example: In Set, Cp or Rep

One can see the equality range(f[u]) = f[range(u)]

Preliminaries on Category Theory: 6/6

For each $(\cdot \xrightarrow{t} X), (\cdot \xrightarrow{t'} X) \in \text{Mono}_{\mathbb{E}}$, we define: $t \le t' \iff$ there is a (necessarily unique) morphism j which makes the following triangle commute $\cdot \xrightarrow{j}$

Preliminaries on Category Theory: 6/6

For each $(\cdot \xrightarrow{t} X), (\cdot \xrightarrow{t'} X) \in \text{Mono}_{\mathbb{E}}$, we define: $t \le t' \iff$ there is a (necessarily unique) morphism j which makes the following triangle commute $\cdot \underbrace{j}_{t} \cdot \underbrace{k}_{t'}$

Example: In Set, Cp or Rep $t \le t'$ iff range $(t) \subseteq$ range(t')

Fundamental Class

We introduce:

- our mathematical settings
- the notion of *fundamental class*

Notations

E	:	finitely complete category
$(\mathscr{S}, \mathscr{T})$:	proper factorization system on \mathbb{E}

Assumptions

• \mathscr{S} is stable under pullback

Assumptions

• *S* is stable under pullback i.e. in any pullback diagram:

Assumptions

• *S* is stable under pullback i.e. in any pullback diagram:

Assumptions

• *S* is stable under pullback i.e. in any pullback diagram:

one has $s' \in \mathscr{S}$ whenever $s \in \mathscr{S}$

• \mathbb{E} has \mathscr{T} -intersection i.e. if $\{(\cdot \xrightarrow{t_i} X)\}_{i \in I}$ is a family on \mathscr{T} , there exists $(\cdot \xrightarrow{t} X) \in \mathscr{T}$ s.t. for each $(\cdot \xrightarrow{t'} X) \in \mathscr{T}$, $t' \leq t$ iff $t' \leq t_i$ $(\forall i \in I)$

Assumptions

• *S* is stable under pullback i.e. in any pullback diagram:

one has $s' \in \mathscr{S}$ whenever $s \in \mathscr{S}$

• \mathbb{E} has \mathscr{T} -intersection i.e. if $\{(\stackrel{t_i}{\to} X)\}_{i \in I}$ is a family on \mathscr{T} , there exists $(\stackrel{t}{\to} X) \in \mathscr{T}$ s.t. for each $(\stackrel{t'}{\to} X) \in \mathscr{T}$, $t' \leq t$ iff $t' \leq t_i (\forall i \in I)$

In the case of our examples Set, Cp and Rep, the above two assumptions are certainly hold

• We borrow the notion of fundamental class from a previous reserch, *a functional approach to general topology*

We borrow the notion of fundamental class from a previous reserch, *a functional approach to general topology* Each fundamental class can be thought of as defining a topology-like structure on E

• We borrow the notion of fundamental class from a previous reserch, *a functional approach to general topology*

• Each fundamental class can be thought of as defining a topology-like structure on $\mathbb E$

Definition

Each $\mathscr{F} \subseteq \mathscr{T}$ is said to be a fundamental class on \mathbb{E} if:

- F contains all isomorphisms
- \mathscr{F} is closed under composition
- \mathscr{F} is stable under pullback

Example: On Set

Both Isoset and Monoset form fundamental classes

Example: On Set

Both Isoset and Monoset form fundamental classes

Example: On Cp

We define a fundamental class $\Pi^0_{1,Cp}$ on Cp as follows: $t \in \Pi^0_{1,Cp} \iff \operatorname{range}(t) \text{ is co-r.e. closed in } u$ where $(\cdot \xrightarrow{t} u) \in \mathscr{T}_{Cp}$

Example: On Set

Both Isoset and Monoset form fundamental classes

Example: On Cp

We define a fundamental class $\Pi^0_{1,Cp}$ on Cp as follows: $t \in \Pi^0_{1,Cp} \iff \operatorname{range}(t) \text{ is co-r.e. closed in } u$ where $(\cdot \xrightarrow{t} u) \in \mathscr{T}_{Cp}$

Example: On Rep

We define a fundamental class $\Pi^0_{1,\text{Rep}}$ on Rep as follows: $t \in \Pi^0_{1,\text{Rep}} \iff \text{range}(t) \text{ is co-r.e. closed in } u$ where $(\cdot \stackrel{t}{\rightarrow} u) \in \mathscr{T}_{\text{Rep}}$

Description

We give a description of each of:

- oracles
- relativization to oracles
- generation of topologies

Description: 1/3

Definition Each $\alpha \in \mathbb{E}$ is said to be an imaginary if $(\alpha \xrightarrow{!} 1) \in \mathscr{S} \cap \text{Mono}_{\mathbb{E}}$

Description: 1/3

Definition Each $\alpha \in \mathbb{E}$ is said to be an imaginary if $(\alpha \xrightarrow{!} 1) \in \mathscr{S} \cap \text{Mono}_{\mathbb{E}}$

Example: In Cp

Each $\alpha \in Cp$ is an imaginary if and only if α is a singleton i.e. it is being of the form $\alpha = \{*\}$ where $* \in 2^{\omega}$

Description: 1/3

Definition Each $\alpha \in \mathbb{E}$ is said to be an imaginary if $(\alpha \xrightarrow{!} 1) \in \mathscr{S} \cap \text{Mono}_{\mathbb{E}}$

Example: In Cp

Each $\alpha \in Cp$ is an imaginary if and only if α is a singleton i.e. it is being of the form $\alpha = \{*\}$ where $* \in 2^{\omega}$

Example: In Rep

Each $(X, \delta_X) \in \text{Rep}$ is an imaginary if and only if X is a singleton

Description: 2/3

- $[\mathscr{T}] = \{\mathscr{F} \subseteq \mathscr{T} : \mathscr{F} \text{ is a fundamental class on } \mathbb{E}\}$
- $[\mathscr{T}]$ can be regarded as a partially ordered system w.r.t. \subseteq

Description: 2/3

• $[\mathscr{T}] = \{\mathscr{F} \subseteq \mathscr{T} : \mathscr{F} \text{ is a fundamental class on } \mathbb{E}\}$

• $[\mathscr{T}]$ can be regarded as a partially ordered system w.r.t. \subseteq

We define a closure operator $\mathscr{I} : [\mathscr{T}] \to [\mathscr{T}]$ as follows

$$\mathscr{IF} = \{t \in \mathscr{T} : \exists \alpha : \text{ imaginary s.t. } t \times \text{id}_{\alpha} \in \mathscr{F}\}$$

where \mathscr{F} is a fundamental class on $\mathbb E$

Description: 2/3

• $[\mathscr{T}] = \{\mathscr{F} \subseteq \mathscr{T} : \mathscr{F} \text{ is a fundamental class on } \mathbb{E}\}$

• $[\mathscr{T}]$ can be regarded as a partially ordered system w.r.t. \subseteq

We define a closure operator $\mathscr{I} : [\mathscr{T}] \to [\mathscr{T}]$ as follows

$$\mathscr{IF} = \{t \in \mathscr{T} : {}^{\exists}\alpha : \text{ imaginary s.t. } t \times \text{id}_{\alpha} \in \mathscr{F}\}$$

where \mathscr{F} is a fundamental class on \mathbb{E}

Example: On Cp

For every $(\cdot \xrightarrow{t} u) \in \mathscr{T}_{Cp}$, the following equivalence hold:

 $t \in \mathscr{I}\Pi^0_{1,C_p} \iff \operatorname{range}(t) \text{ is oracle co-r.e. closed in } u$

Description: 3/3

We define a closure operator $\mathscr{L} : [\mathscr{T}] \to [\mathscr{T}]$ as follows

 $\mathscr{LF} = \bigcap \{ \mathscr{F}' \in [\mathscr{T}] : \mathscr{F} \subseteq \mathscr{F}', \mathscr{F} \text{ is closed under } \mathscr{T}\text{-intersection} \}$

where \mathscr{F} is a fundamental class on \mathbb{E}

Description: 3/3

We define a closure operator $\mathscr{L} : [\mathscr{T}] \to [\mathscr{T}]$ as follows

 $\mathscr{LF} = \bigcap \{\mathscr{F}' \in [\mathscr{T}] : \mathscr{F} \subseteq \mathscr{F}', \mathscr{F} \text{ is closed under } \mathscr{T}\text{-intersection} \}$

where \mathscr{F} is a fundamental class on \mathbb{E}

Example: On Cp

For every $(\cdot \xrightarrow{t} u) \in \mathscr{T}_{Cp}$, the following equivalence hold:

 $t \in \mathscr{L}\Pi^0_{1,Cp} \iff \operatorname{range}(t) \text{ is topologically closed in } u$

Reformulate: Goal

Proposition

For a given represented space (X, δ_X) , if δ_X is addmissible, then

oracle co-r.e. closedness coincides with topological closedness

for every subset of X

Reformulate: Goal

Proposition

For a given represented space (*X*, δ_X), if δ_X is addmissible, then

oracle co-r.e. closedness coincides with topological closedness

for every subset of X

Question

Let \mathscr{F} be a fundamental class on \mathbb{E} .

When does the equality $\mathscr{IF} = \mathscr{LF}$ hold?

Main Results

We introduce our two main results

- The first one: concerning the inclusion $\mathscr{IF} \subseteq \mathscr{LF}$
- The second one: concerning the equality $\mathscr{IF} = \mathscr{LF}$

The First One: 1/2

\mathcal{F} : fundamental class on \mathbb{E}

Definition

Each $X \xrightarrow{f} Y$ in \mathbb{E} is said to be \mathscr{F} -closed if for every $(\cdot \xrightarrow{u} X) \in \mathscr{F}$ its image f[u] belongs to \mathscr{F} again

The First One: 1/2

\mathcal{F} : fundamental class on \mathbb{E}

Definition

Each $X \xrightarrow{f} Y$ in \mathbb{E} is said to be \mathscr{F} -closed if for every $(\cdot \xrightarrow{u} X) \in \mathscr{F}$ its image f[u] belongs to \mathscr{F} again

Definition

Each $X \in \mathbb{E}$ is said to be \mathscr{F} -compact if the second projection $X \times Y \xrightarrow{\pi_2} Y$ is always \mathscr{F} -closed for every $Y \in \mathbb{E}$

The First One: 1/2

\mathcal{F} : fundamental class on \mathbb{E}

Definition

Each $X \xrightarrow{f} Y$ in \mathbb{E} is said to be \mathscr{F} -closed if for every $(\cdot \xrightarrow{u} X) \in \mathscr{F}$ its image f[u] belongs to \mathscr{F} again

Definition

Each $X \in \mathbb{E}$ is said to be \mathscr{F} -compact if the second projection $X \times Y \xrightarrow{\pi_2} Y$ is always \mathscr{F} -closed for every $Y \in \mathbb{E}$

One can give an alternative description of Heine-Borel compactness using the above generalized notion of compactness

The First One: 2/2

Theorem

If \mathbb{E} is well-powered, then the following two conditions are equivalent:

(i) $\mathscr{IF} \subseteq \mathscr{LF};$

(ii) all imaginaries are \mathscr{LF} -compact.

The First One: 2/2

Theorem

If \mathbb{E} is well-powered, then the following two conditions are equivalent:

(i) *J*F ⊆ *L*F;
(ii) all imaginaries are *L*F-compact.

One can interpret as follows:

$$\begin{array}{c|c} \mathbb{E} & \mathscr{F} \\ \hline \mathbf{Cp} & \Pi_1^0 \end{array}$$

The condition (ii), and thus also (i), is certainly fulfilled in this case

The Second One: 1/2

The Second One: 1/2

A functor $G : \mathbb{E} \to \mathbb{E}'$ with certain properties is supposed to be given

The Second One: 1/2

A functor $G : \mathbb{E} \to \mathbb{E}'$ with certain properties is supposed to be given

Theorem

One has $\mathscr{IF} = \mathscr{LF}$ if the following three conditions hold:

- (i) all imaginaries of \mathbb{E} are \mathscr{LF} -compact;
- (ii) $\operatorname{id}_X \in {}^{G} \mathscr{I} \mathscr{F}$ for every $X \in \mathbb{E}$;

(iii) ${}^{G}\!\mathscr{I}\mathscr{F}$ is included in $\mathscr{I}\mathscr{F}$.
The Second One: 1/2

A functor $G : \mathbb{E} \to \mathbb{E}'$ with certain properties is supposed to be given

Theorem

One has $\mathscr{IF} = \mathscr{LF}$ if the following three conditions hold:

- (i) all imaginaries of \mathbb{E} are \mathscr{LF} -compact;
- (ii) $\operatorname{id}_X \in {}^{G} \mathscr{I} \mathscr{F}$ for every $X \in \mathbb{E}$;

(iii) ${}^{G}\!\mathscr{I}\mathscr{F}$ is included in $\mathscr{I}\mathscr{F}$.

One can interpret as follows:

$$\begin{array}{c|c} \mathbb{E} & \mathscr{F} & \mathbb{E}' & G: \mathbb{E} \to \mathbb{E}' \\ \hline \text{Cp} & \Pi_1^0 & \text{Rep} & U: \text{Cp} \to \text{Rep} \end{array}$$

The three conditions (i)-(iii) are certainly fulfilled in this case

The Second One: 2/2

For each morphism $(\cdot \xrightarrow{t} u) \in \mathscr{T}_{Cp}$, one has the following equivalence: $t \in {}^{U}\mathscr{I}\Pi_{1}^{0} \iff \operatorname{range}(t) \text{ is oracle r.e.-closed in } u$

Conclusion

• We reformurated the proposition concerning with the equivalence of oracle co-r.e. closedness and topological closedness on a categorical setting

Conclusion

- We reformurated the proposition concerning with the equivalence of oracle co-r.e. closedness and topological closedness on a categorical setting
- One can obtain a result which generalize the original proposition in an application of our main theorem

Conclusion

- We reformurated the proposition concerning with the equivalence of oracle co-r.e. closedness and topological closedness on a categorical setting
- One can obtain a result which generalize the original proposition in an application of our main theorem
- Further problem:

Construct the functor $G : \mathbb{E} \to \mathbb{E}'$ depending only on \mathbb{E}

Thank you for listening.