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Objective

.

Concept

.

.

.

. ..

.

.

Non-Computability in Categories

.

.

. ..

. .

How to deal with non-computability in computable analysis?
−− > Relativizations to oracles (computability with oracles)

.

Objective

.

.

.

. ..

.

.

To give a categorical description of “relativization to oracles”

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 3 / 33



Objective

.

Concept

.

.

.

. ..

.

.

Non-Computability in Categories

.

.

. ..

. .

How to deal with non-computability in computable analysis?
−− > Relativizations to oracles (computability with oracles)

.

Objective

.

.

.

. ..

.

.

To give a categorical description of “relativization to oracles”

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 3 / 33



Objective

.

Concept

.

.

.

. ..

.

.

Non-Computability in Categories

.

.

. ..

. .

How to deal with non-computability in computable analysis?
−− > Relativizations to oracles (computability with oracles)

.

Objective

.

.

.

. ..

.

.

To give a categorical description of “relativization to oracles”

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 3 / 33



Goal

We propose to reformulate the following proposition
on a categorical setting

.

Proposition

.

.

.

. ..

.

.

For a given represented space (X, δX), if δX is addmissible, then

oracle co-r.e. closedness coincides with topological closedness

for every subset of X
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Preliminaries on TTE

.

Type-2 Theory of Effectivity

.

.

.

. ..

.

.

A framework of computable analysis
It provides us “de facto standard” terminologies
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Preliminaries on TTE: 1/5

.

.

. ..

.

.

(Type-2) Computability is defined for partial functions on Cantor
space
Oracle computability is also defined

.

Represented Space

.

.

.

. ..

.

.

a representation of a set X:
a partial surjection from Cantor space to X

X

supp(δ) ⊆ 2ω
δ

OOOO

a represented space:
a set equipped with a representation
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Preliminaries on TTE: 2/5

.

Example 1

.

.

.

. ..

.

.

Each u ⊆ 2ω can be regarded as a represented space
w.r.t. the representation δu defined as follows:

δu(p) =

p if p ∈ u
undefined otherwise

where p ∈ 2ω
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Preliminaries on TTE: 3/5

.

Example 2

.

.

.

. ..

.

.

We define a representation δΩ of 2 as follows:

δΩ(p) =

0 if p(i) = 0 (∀i ∈ ω)
1 otherwise

where p ∈ 2ω
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Preliminaries on TTE: 4/5

(X, δX), (Y, δY): represented spaces

.

Relatively Computable Function

.

.

.

. ..

.

.

Each f : X → Y is said to be computable w.r.t. δX, δY

if there is a computable partial function g on 2ω

which makes the following diagram commute

X
f // Y

supp(δX)

δX

OO

∃g
// supp(δY)

δY

OO

.

.

. ..
.

.

Oracle computability can also be extended in the same manner
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Preliminaries on TTE: 5/5

(X, δX): represented space
u: a subset of X

.

Co-r.e. Closedness

.

.

.

. ..

.

.

We denote by chu : X → 2 its characteristic function
i.e. the unique function such that u = ch−1

u
[{0}]

u is said to be (oracle) co-r.e. closed
if chu is (oracle) computable w.r.t. δX, δΩ

.

Topological Closedness

.

.

.

. ..

.

.

One can think (X, δX) as a topological space w.r.t. the quotient
topology induced from Cantor topology via δX

u is said to be closed if it is closed w.r.t. the quotient topology
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Preliminaries on Category Theory

.

.

. ..

.

.

We introduce:
three examples of categories
one example of functors
the notion of factorization system

.

Notations

.

.

.

. ..

.

.

E : arbitrarily fixed category
IsoE : the class of all isomorphisms
EpiE : the class of all epimorphisms
MonoE : the class of all monomorphisms
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Preliminaries on Category Theory: 1/6

.

Example 1

.

.

.

. ..

.

.

Set

object: small sets
morphism: functions

.

Example 2

.

.

.

. ..

.

.

Cp
object: subsets of Cantor space
morphism: computable total functions

.

Example 3

.

.

.

. ..

.

.

Rep

object: represented spaces
morphism: computable total functions
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Preliminaries on Category Theory: 2/6

.

.

. ..

.

.

A functor U from Cp to Rep can be defined as follows:
object: u 7→ (u, δu)
morphism: g 7→ g
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Preliminaries on Category Theory: 3/6

.

epi-mono factorizability of Set

.

.

.

. ..

.

.

For each morphism X
f−→ Y in Set, there exists a pair of a epimorphism

(surjective function) e and a monomorphism (injective function) m
which makes the following diagram commute

X
f //

e
��?

??
??

??
Y

·
m

??�������

.

Factorization System

.

.

.

. ..

.

.

A factorization system (S ,T ) on E is defined as a pair of two
classes of morphisms in E
A factorization system (S ,T ) is said to be proper if S ⊆ EpiE
and T ⊆ MonoE
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Preliminaries on Category Theory: 4/6

.

Example: On Set

.

.

.

. ..

.

.

(EpiSet,MonoSet) forms a proper factorization system on Set
this fact can be generalized to an arbitrary topos

.

Example: On Cp

.

.

.

. ..

.

.

SCp: the class of all surjective morphisms in Cp
there is an uniquely determined class of morphisms TCp

s.t. (SCp,TCp) forms a proper factorization system on Cp
all morphisms from TCp are injective

.

Example: On Rep

.

.

.

. ..

.

.

One can also define a proper factorization system (SRep,TRep) on Rep
in the same manner with the case of Cp
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Preliminaries on Category Theory: 5/6
(S ,T ): proper factorization system on E

.

Definition: Image

.

.

.

. ..

.

.

For each X
f−→ Y in E and each (· u−→ X) ∈ T , in the following

factorization of f u

X
f u //

s
��?

??
??

??
Y

·
t

??�������

we call t an image of u by f if s ∈ S and t ∈ T

We usually denote by f
[
u
]

an image of u by f

.

Example: In Set, Cp or Rep

.

.

.

. ..

.

.

One can see the equality range( f
[
u
]
) = f

[
range(u)

]
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Preliminaries on Category Theory: 6/6

.

.

. ..

.

.

For each (· t−→ X), (· t′−→ X) ∈ MonoE, we define:
t ≤ t′ ⇐⇒ there is a (necessarily unique) morphism j

which makes the following triangle commute

· j //

t ��?
??

??
??

·

t′����
��

��
�

X

.

Example: In Set, Cp or Rep

.

.

.

. ..

.

.

t ≤ t′ iff range(t) ⊆ range(t′)
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Fundamental Class

.

.

. ..

.

.

We introduce:
our mathematical settings
the notion of fundamental class

.

Notations

.

.

.

. ..

.

.

E : finitely complete category
(S ,T ) : proper factorization system on E
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Fundamental Class: 1/3

.

Assumptions

.

.

.

. ..

.

.

S is stable under pullback

i.e. in any pullback diagram:

· f ′ //

s′

��

·
s

��·
f

// ·
one has s′ ∈ S whenever s ∈ S

E has T -intersection
i.e. if {(· ti−→ X)}i∈I is a family on T , there exists (· t−→ X) ∈ T

s.t. for each (· t′−→ X) ∈ T , t′ ≤ t iff t′ ≤ ti (∀i ∈ I)

.

.

. ..

.

.

In the case of our examples Set, Cp and Rep, the above two
assumptions are certainly hold
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Fundamental Class: 2/3

.

.

. ..

.

.

We borrow the notion of fundamental class from a previous
reserch, a functional approach to general topology

Each fundamental class can be thought of
as defining a topology-like structure on E

.

Definition

.

.

.

. ..

. .

Each F ⊆ T is said to be a fundamental class on E if:
F contains all isomorphisms
F is closed under composition
F is stable under pullback
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Fundamental Class: 3/3

.

Example: On Set

.

.

.

. ..

.

.

Both IsoSet and MonoSet form fundamental classes

.

Example: On Cp

.

.

.

. ..

.

.

We define a fundamental class Π0
1,Cp on Cp as follows:

t ∈ Π0
1,Cp ⇐⇒ range(t) is co-r.e. closed in u

where (· t−→ u) ∈ TCp

.

Example: On Rep

.

.

.

. ..

.

.

We define a fundamental class Π0
1,Rep on Rep as follows:

t ∈ Π0
1,Rep ⇐⇒ range(t) is co-r.e. closed in u

where (· t−→ u) ∈ TRep
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Description

.

.

. ..

.

.

We give a description of each of:
oracles
relativization to oracles
generation of topologies
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Description: 1/3

.

Definition

.

.

.

. ..

.

.

Each α ∈ E is said to be an imaginary

if (α
!−→ 1) ∈ S ∩MonoE

.

Example: In Cp

.

.

.

. ..

. .

Each α ∈ Cp is an imaginary if and only if α is a singleton
i.e. it is being of the form α = {∗} where ∗ ∈ 2ω

.

Example: In Rep

.

.

.

. ..

.

.

Each (X, δX) ∈ Rep is an imaginary if and only if X is a singleton
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Description: 2/3

[
T
]
= {F ⊆ T : F is a fundamental class on E}[

T
]

can be regarded as a partially ordered system w.r.t. ⊆

.

.

. ..

.

.

We define a closure operator I :
[
T
]→ [T ] as follows

I F = {t ∈ T : ∃α: imaginary s.t. t × idα ∈ F }

where F is a fundamental class on E

.

Example: On Cp

.

.

.

. ..

.

.

For every (· t−→ u) ∈ TCp, the following equivalence hold:

t ∈ IΠ0
1,Cp ⇐⇒ range(t) is oracle co-r.e. closed in u

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 24 / 33



Description: 2/3

[
T
]
= {F ⊆ T : F is a fundamental class on E}[

T
]

can be regarded as a partially ordered system w.r.t. ⊆

.

.

. ..

.

.

We define a closure operator I :
[
T
]→ [T ] as follows

I F = {t ∈ T : ∃α: imaginary s.t. t × idα ∈ F }

where F is a fundamental class on E

.

Example: On Cp

.

.

.

. ..

.

.

For every (· t−→ u) ∈ TCp, the following equivalence hold:

t ∈ IΠ0
1,Cp ⇐⇒ range(t) is oracle co-r.e. closed in u

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 24 / 33



Description: 2/3

[
T
]
= {F ⊆ T : F is a fundamental class on E}[

T
]

can be regarded as a partially ordered system w.r.t. ⊆

.

.

. ..

.

.

We define a closure operator I :
[
T
]→ [T ] as follows

I F = {t ∈ T : ∃α: imaginary s.t. t × idα ∈ F }

where F is a fundamental class on E

.

Example: On Cp

.

.

.

. ..

.

.

For every (· t−→ u) ∈ TCp, the following equivalence hold:

t ∈ IΠ0
1,Cp ⇐⇒ range(t) is oracle co-r.e. closed in u

Kazuto Yoshimura (Japan Advanced Institute of Science and TechnologySchool of Information Science)A Categorical Description of Relativization February 18, 2013 24 / 33



Description: 3/3

.

.

. ..

.

.

We define a closure operator L :
[
T
]→ [T ] as follows

L F =
∩
{F ′ ∈ [T ] : F ⊆ F ′,F is closed under T -intersection}

where F is a fundamental class on E

.

Example: On Cp

.

.

.

. ..

.

.

For every (· t−→ u) ∈ TCp, the following equivalence hold:

t ∈ LΠ0
1,Cp ⇐⇒ range(t) is topologically closed in u
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Reformulate: Goal

.

Proposition

.

.

.

. ..

.

.

For a given represented space (X, δX), if δX is addmissible, then

oracle co-r.e. closedness coincides with topological closedness

for every subset of X

.

Question

.

.

.

. ..

.

.

Let F be a fundamental class on E.

When does the equality I F = L F hold?
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Main Results

We introduce our two main results
The first one: concerning the inclusion I F ⊆ L F

The second one: concerning the equality I F = L F
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The First One: 1/2

F : fundamental class on E

.

Definition

.

.

.

. ..

.

.

Each X
f−→ Y in E is said to be F -closed

if for every (· u−→ X) ∈ F its image f
[
u
]

belongs to F again

.

Definition

.

.

.

. ..

. .

Each X ∈ E is said to be F -compact if the second projection
X × Y

π2−→ Y is always F -closed for every Y ∈ E

.

.

. ..

.

.

One can give an alternative description of Heine-Borel compactness
using the above generalized notion of compactness
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The First One: 2/2

.

Theorem

.

.

.

. ..

.

.

If E is well-powered, then the following two conditions are equivalent:
(i) I F ⊆ L F ;
(ii) all imaginaries are L F -compact.

.

.

. ..

.

.

One can interpret as follows:

E F
Cp Π0

1

The condition (ii), and thus also (i), is certainly fulfilled in this case
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The Second One: 1/2

A functor G : E→ E′ with certain properties is supposed to be given

.

Theorem

.

.

.

. ..

.

.

One has I F = L F if the following three conditions hold:
(i) all imaginaries of E are L F -compact;
(ii) idX ∈ GI F for every X ∈ E;
(iii) GI F is included in I F .

.

.

. ..

.

.

One can interpret as follows:

E F E′ G : E→ E′
Cp Π0

1 Rep U : Cp→ Rep

The three conditions (i)-(iii) are certainly fulfilled in this case
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The Second One: 2/2

.

.

. ..

.

.

For each morphism (· t−→ u) ∈ TCp, one has the following equivalence:

t ∈ UIΠ0
1 ⇐⇒ range(t) is oracle r.e.-closed in u
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Conclusion

We reformurated the proposition concerning with the equivalence
of oracle co-r.e. closedness and topological closedness on a
categorical setting

One can obtain a result which generalize the original proposition
in an application of our main theorem

Further problem:
Construct the functor G : E→ E′ depending only on E
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Thank you for listening.
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