The simplest polynomials are those of the first degree. Here we discuss some properties, and make the connection between the related concepts polynomial, function and equation.

Definition 1. Let $a, b \in \mathbb{R}$ be $a \neq 0$.

- A first degree polynomial with one unknown $x$ is an expression of the form

$$
a x+b
$$

- With this polynomial we can associate a first degree function:

```
x\mapstoax+b
```

- A first degree equation (or linear equation) with one unknown $x$ is an expression of the form

$$
a x+b=0
$$

## Remark 1.

- The word linear initially means 'like a line'. Because a line has an equation of the first degree, the use of the word linear has been extended to 'of the first degree'. So for equations, 'linear' and 'first degree' are synonyms. But for functions, the term linear in mathematics has a narrower and more technical meaning. A function is linear if for all numbers $a$ and $b$ it holds that $f(a x+b y)=a f(x)+b f(y)$. In this sense the function $x \mapsto 2 x$ is linear, but the function $x \mapsto 2 x+1$ is not linear. Therefore we avoid the use of the word linear for functions and always speak about first degree functions. However, some textbooks have different conventions.
- In the expression $a x+b, x$ is considered to be a letter (having the role of variable or unknown), while $a$ and $b$ are considered to be random numbers (or parameters). Instead of $x$, the letters $y, z$ or $t$ are sometimes used, and for $a$ and $b$, the letters $k, l, p, q, m, \alpha, \beta, \ldots$ are also common. So for functions you should always clearly indicate which letter has the role of variable or unknown, and which letters are used as parameters. The notation $x \mapsto a x+b$ says exactly that $x$ is the variable, while $z$ is the variable in $z \mapsto p z+q$, and $a$ is the variable in $a \mapsto 2 a+3$.


## Example 1.

- $7 x+9$ is a first degree polynomial (in $x$ ).
- $x \mapsto 7 x+9$ is a first degree function (with variable $x$ ).
- $7 x+9=0$ is a first-degree equation (with one unknown $x$ ).

Proposition 1. Let $a, b \in \mathbb{R}$ be $a \neq 0$. Then for the first degree function $x \mapsto a x+b$ :

- the graph of the function is a straight line with equation $y=a x+b$ and slope $a$.
- if $a$ is positive, the function is strictly increasing and if $a$ is negative the function is strictly decreasing.
- the (only) intersection point of the graph with the $y$ axis is the point $(0, b)$.
- the (only) intersection point of the graph with the $x$ axis is the point $\left(-\frac{b}{a}, 0\right)$. The number $-\frac{b}{a}$
is also the (only) zero point of the function, and the (only) solution of the equation $a x+b=0$.
We summarize this information in the following graphs (also sign analysis table) for the function $x \mapsto a x+b$

$$
\begin{array}{r||c|c|c}
x & & -b / a & \\
\hline a x+b \text { where } a>0 & - & 0 & + \\
a x+b \text { where } a<0 & + & 0 & -
\end{array}
$$





## Remark 2.

- We usually speak of zero points of a function, solutions of an equation and roots of polynomials, but these terms mean the same thing.
- If $a=0$, the function reduces to $x \mapsto 0 x+b=b$, which is not a first degree function but a constant function. The graph is then a horizontal line with equation $y=b$. This function has no zero points (and therefore no intersection points with the $x$-axis), unless $b=0$. In the latter case there are infinitely many zero points (and therefore intersection points), because then the function is the zero function $x \mapsto 0$.


## Example 2.

1. Find out for which $x \in \mathbb{R}, 8-4 x<0$.

Elaboration: The zero point is 2 . The coefficient $a=-4$ is negative, so the sign analysis table is

$$
\begin{array}{r||l|l|l}
x & & 2 & \\
\hline 8-4 x & + & 0 & -
\end{array}
$$

So the solution set is $V=] 2,+\infty[$.

Definition 2. Let $a, b, c \in \mathbb{R}$ where $a \neq 0$ or $b \neq 0$ (so $a$ and $b$ cannot both be zero).
A first degree equation (or linear equation) with two unknowns $x, y$ is an expression of the form

$$
a x+b y+c=0
$$

## Proposition 2.

The set of all points $(x, y)$ in the plane that satisfy the equation $a x+b y+c=0$ forms a line:

- if $b=0$, the equation becomes $a x+c=0$, from which it follows that $x=-\frac{c}{a}$. Note that there is no condition on $y, y$ can take all possible values. Consequently, all points $(x, y)$ in the plane that satisfy this equation form the vertical line $x=-\frac{c}{a}$.
- If $b \neq 0$, we can also write the equation as

$$
y=-\frac{1}{b}(a x+c) \text { or } y=-\frac{a}{b} x-\frac{c}{b}
$$

We already noticed that the graph of a real function $x \mapsto m x+q$ is the same as the solution set of the equation $y=m x+q$.
So all points $(x, y)$ in the plane that satisfy the equation $y=-\frac{a}{b} x-\frac{c}{b}$ form a line with gradient $-\frac{a}{b}$ and intersection with the $y$-axis $-\frac{c}{b}$.

Remark 3. We always looked at only one linear equation. Solving multiple equations simultaneously (with possibly more than two unknowns) is called systems of linear equations and belongs to the so-called linear algebra.

Excursus 1 (Equations, unknowns, functions and intersections).
We can look at the relationship between a number of concepts and problems studied further in mathematics in this very simple case. In general, there is a strong relationship between:

- finding the zero points of functions
- solving equations
- the intersection geometrical figures
- the unknowns in equations versus the variables in functions

Consider expressions of the form

$$
a x+b y+c=0
$$

Such an expression can be regarded as an equation with the two unknowns $x$ and $y$ : it is then a condition which a pair of real numbers $\left(x_{0}, y_{0}\right)$ can satisfy or not, and the solution set of the equation, i.e. the set of all pairs $\left(x_{0}, y_{0}\right)$ so that $a x_{0}+b y_{0}+c=0$, form a straight in the plane. Examples are


We can make the following considerations about this equation $a x+b y+c=0$ :

- $a x+b y+c=0$ is the general equation of a line, and we can find the intersection points of that line with the $x$-axis (the $x$-axis is the line with equation $y=0$ ). Algebraically, that comes


## down to solving the system of equations

$$
\left\{\begin{array}{l}
a x+b y+c=0 \\
y=0
\end{array}\right.
$$

This system is equivalent to

$$
\left\{\begin{array}{l}
a x+c=0 \\
y=0
\end{array}\right.
$$

If $a \neq 0$ then there is a unique solution, namely $x=-\frac{c}{a}$ and $y=0$. If $a=0$ and $c \neq 0$, then there are no solutions, and if $a=0$ and also $c=0$, then the system is equivalent to

$$
\{0 x+1 y=0
$$

and that set has infinitely many solutions (the solution set is $\{(x, 0) \mid x \in \mathbb{R}\}$ ).

- If $b \neq 0$ then we can solve the equation for $y$, and write $y=-\frac{a}{b} x-\frac{c}{b}$. The solutions of this equation are the points of the graph of the first degree function (in one variable $x$ ):

$$
x \mapsto-\frac{1}{b}(a x+c)
$$

Thus we have rewritten the equation of these lines in the form

$$
y=m x+q, \text { where } m, q \in \mathbb{R}
$$

- Solving a linear equation in one variable $a x+b=0$ thus corresponds to finding the zero points of the function $x \mapsto a x+b$, and also to finding the intersection points of the line $y=a x+b$ with the $x$-axis.
- Every equation $y=m x+q$ can be written in the form $a x+b y+c=0$, but not every equation of the form $a x+b y+c=0$ can be written as $y=m x+q$. This is almost always possible, namely when $b \neq 0$. The case $b=0$ corresponds exactly to the vertical lines, and these are also exactly the lines that are not the graph of a function.
- An equation of the form $a x+b y+c=d$ is also linear, but yields nothing new, because it can be rewritten as $a x+b y+(c-d)=0$.
- Linear equations with three unknowns represent planes in space, and linear equations in $n$ unknowns represent so-called hyperplanes in $n$-dimensional space. Systems of such equations are a central focus of study in linear algebra.

