Creation and Annihilation Operators:

"Second Quantization"

Landau \& Lifschitz, Quantum Mechanics, section 64

How to cope w/many bosons, fermions

- Laser, lots of photons
- Metal, lots of electrons
- Superfluid, lots of He4 bosons

Change to occupation number basis (Fock Space)

$$
\begin{aligned}
& \text { Position Space: } \\
& \text { If = } \sum_{n}-\underbrace{-\frac{\hbar^{2}}{2 m \nabla_{n}^{2}}+\underbrace{V\left(\vec{r}_{n}\right)}_{\begin{array}{c}
\text { Two particle } \\
\text { operator }
\end{array}}+\sum_{i i j} \underbrace{\left.\frac{e^{2}}{U n_{i} i-r_{i}} \vec{r}_{i}-\vec{r}_{j}\right)}}_{\begin{array}{c}
\text { Single Particle } \\
\text { Operators }
\end{array}}
\end{aligned}
$$

'Second quantization' (grandiose name, nothing new)

* Designed for few-body interactions
* Good for interactions between otherwise free particles
* Links to Greens functions, propagators, density matrices

Change to Fock space $=$ Occupation Number space

Pick a complete, orthonormal single particle basis

$$
\psi_{1}(x), \psi_{2}(x), 00
$$

[Eigenstates of Momentum, energy, position, or...]
Change coordinates from $\Psi\left(\vec{x}_{1}, \ldots, \vec{x}_{N}\right)$ to $\Phi\left(N_{1}, \ldots, N_{m}\right)$
Occupation Number Space

$$
\begin{gathered}
|\Psi\rangle=\sum_{N_{1} N_{2}, N_{3} \ldots} \Phi\left(N_{1}, N_{2} \ldots .\left|N_{1}, N_{2}, \ldots\right\rangle\right. \\
\left|N_{1}, N_{2}, \ldots\right\rangle=\left\{\widetilde{N_{0} r_{m}}\right\} \sum_{\tilde{P}} \widetilde{\sigma}(\widetilde{P})_{\text {if fermion }}^{N_{1}\left(\vec{x}_{\tilde{P}_{1}} \text { times } \psi_{1}\left(\vec{x}_{P_{2}}\right) \ldots\right.} \overbrace{\psi_{2}\left(\vec{X}_{\widetilde{P}_{N_{1}+1}}\right) \ldots}^{N_{2} \text { times }}
\end{gathered}
$$

Warning: I permute over particles. Everyone else permutes over single-particle WFs. Relation below.

Fermions: $N_{i}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$ (Pauli exclusion principle: interacting)
\rightarrow Noduplicates
\rightarrow Normalization $=\frac{1}{\sqrt{N!}}$

Bosons:
Q: What is Norm if $N_{1}=N, N_{2}=\ldots=0$?
Q: What about all distinct?

$$
\widetilde{\text { Norm }}=\frac{1}{\sqrt{N!N_{1}!N_{2}!\cdots}} \text { (JPS notation) }
$$

Others permute over 'distinct' relabelings of single-particle states:

$$
\sum_{p} \psi_{p_{1}}\left(x_{1}\right) \psi_{p_{2}}\left(x_{2}\right) \ldots
$$

This is tidier (fewer copies of same state), but less general (doesn't work for WFs that aren't single-particle products).

Q: How many copies are repeated for I N1, N2, ... >? What is the normalization in the standard notation?
Norm $=\sqrt{\frac{N_{1}!N_{2}!\cdots}{N!}}$

Back to second quantization. How to write one-body $\mathrm{V}(\mathrm{x})$ in occupation number basis?
Note: Actually always want sum_i V(x_i): identical particles have identical interactions.

Diagonal Terms:

$$
\left\langle N_{1}, N_{2}, \ldots\right| V\left(x_{1}\right)\left|N_{1}, N_{2}, \ldots\right\rangle
$$

Q: What is <2,1| V(x1) $\mid 2,1>$? < $2,1 \mid$ sum_i $V\left(x _i\right) \mid 2,1>?$
A: Standard notation: $\left\langle x_{1}, x_{2} \mid 2,1\right\rangle=\frac{1}{\sqrt{3}}\left[\psi_{1}\left(x_{1}\right) \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{3}\right)\right.$ $+\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \psi_{1}\left(x_{3}\right)$ $\left.+\psi_{2}\left(x_{1}\right) \psi_{1}\left(x_{2}\right) \psi_{1}\left(x_{3}\right)\right]$

$$
\begin{aligned}
\langle 2,1| v\left(x_{1}\right)|2,1\rangle= & \frac{1}{3} \int d x_{1} d x_{2} d x_{3}\left\{\psi_{1}^{*}\left(x_{1}\right) \psi_{1}^{*}\left(x_{2}\right) \psi_{2}^{*}\left(x_{3}\right) v\left(x_{1}\right) \psi_{1}\left(x_{1}\right) \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{3}\right)\right. \\
& +\psi_{1}^{*}\left(x_{1}\right) \psi_{1}^{*}\left(x_{2}\right) \psi_{2}^{*}\left(x_{3}\right) v\left(x_{1}\right) \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \psi_{1}\left(x_{3}\right)
\end{aligned} 0_{0}^{0}+[7 \text { moreterms }] \quad \frac{1}{3} \underbrace{\int d x_{1} \psi_{1}^{*}\left(x_{1}\right) v\left(x_{1}\right) \psi_{1}^{*}\left(x_{1}\right)}_{v_{11}}+0+0+\text { bore } .
$$

Only terms with P1 = P2 contribute...

$$
\begin{aligned}
& \langle 2,1| v\left(x_{1}\right)|2,1\rangle=\frac{1}{3}\left(2 V_{11}+V_{22}\right) \\
& \langle 2,1| \sum V\left(x_{i}\right)|2,1\rangle=2 v_{11}+V_{22} \\
& \left\langle N_{11} N_{2}, \ldots\right| \sum V\left(x_{i}\right)\left|N_{1}, N_{2}, \ldots\right\rangle=\sum N_{i} v_{i i}
\end{aligned}
$$

Q: What is $<2,0 \mid \mathrm{V}(\mathrm{x} 1) \mathrm{I} 0,2>$?
A: Zero. $\mathrm{V}(\mathrm{x} 1)$ cant keep psi_1(x2) psi_2(x2) from giving zero.

Q: What is $<2,0|\mathrm{~V}(\mathrm{x} 1)| 1,1>$? [$\mathrm{N} 1-=1, \mathrm{~N} 2+=1$]
$A: \int d x_{1} d x_{2} \psi_{1}^{*}\left(x_{1}\right) \psi_{1}^{*}\left(x_{2}\right) V\left(x_{1}\right) \frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi\left(x_{2}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \int \psi_{1}^{*}\left(x_{1}\right) V\left(x_{1}\right) \psi_{2}\left(x_{1}\right) \\
& =\frac{1}{\sqrt{2}} V_{12} \\
& \langle 2,0| \sum V\left(r_{i}\right)|1,1\rangle=\frac{2}{\sqrt{2}} V_{12}=\sqrt{2} V_{12}
\end{aligned}
$$

One-body operator allows one number swap. In the end...

$$
\begin{aligned}
&\left\langle\ldots N_{i}, \ldots, N_{k}-1\right. \ldots \mid \\
&\left.\left|\sum V\left(x_{i}\right)\right| \ldots N_{i}-1, \ldots, N_{k}, \ldots\right\rangle \\
&= \sqrt{N_{i} N_{k}} V_{i k}
\end{aligned}
$$

Useful annihilation operator:

$$
a_{k}\left|N_{1}, \ldots, N_{k}, \ldots\right\rangle=\sqrt{N_{k}}\left|N_{1}, \ldots, N_{k}-1, \ldots\right\rangle
$$

annihilates one particle in state k .
Big matrix in k-sector, only one non-zero entry:

$$
\left\langle N_{k}-\| a_{k} \mid N_{k}\right\rangle=\sqrt{N_{k}}
$$

Hermitian conjugate is creation operator:

$$
a_{i}^{+}: \underbrace{\left\langle N_{i}\right| a_{i}^{+}\left|N_{i}-1\right\rangle}_{\begin{array}{c}
\text { Creates particle } \\
\text { instate } i
\end{array}}=\left\langle N_{i}-\| a_{i} \mid N_{i}\right\rangle^{*}=\sqrt{N_{i}}
$$

Uses of creation and annihilation operators:

* Can write one-body operators

$$
\sum_{i} V\left(x_{i}\right) \Rightarrow \sum_{i+} V_{i k} a_{i}^{+} a_{k} \quad \sum_{i} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2} \Rightarrow \sum_{p} \frac{p^{2}}{2 m} a_{p}^{+} a_{p}
$$

* Can write two-body operators

$$
\sum_{i j} U\left(x_{i}, x_{j}\right) \Rightarrow 1 / 2 \sum_{i k e n}\langle i k| u\left|e_{m}\right\rangle a_{i}^{+} a_{k}^{+} a_{l} a_{m}
$$

* Can write Hamiltonian

$$
\begin{aligned}
& H=\sum_{\alpha} \sum_{\text {Fire- -particle }} a_{\alpha,}^{+} a_{\beta} a_{1, \delta}+u_{\alpha \beta \gamma \delta} a_{\alpha}^{+} a_{\beta}^{+} a_{\gamma} a_{\delta} \\
& \text { energy basis }
\end{aligned}
$$

* Interactions scatter particles from $\gamma_{1} \delta$ to α, β with amplitude $U_{\alpha \beta \gamma \delta} \beta$

