
INVITED REVIEW 

Cybium 2000, 24(4): 319-342. 

THE BRANCHIAL BASKET IN TELEOST FEEDING 

by 

Pierre VANDEWALLE (1), Éric PARMENTIER (1) & Michel CHARDON (1) 

ABSTRACT. - In teleosts, feeding is effected principally by suction and food is handled by the branchial 
basket. Preys are carried to the oesophagus by the pharyngeal jaws (PJs). The pharyngobranchial bones 
constitute the upper pharyngeal jaws (UPJs) and the 5th ceratobranchial bones, the lower pharyngeal jaws 
(LPJs). In lower teleosts, these jaws have well-separated spindly parts attached to the neurocranium, 
pectoral girdle, and hyoid bar; they only transport food and LPJ activity predominates. In acanthopteryg-
ians, the PJs become stronger, the left and right ceratobranchials fuse into one LPJ, and the pharyngobran-
chials join together to form two big UPJs articulating with the neurocranium. In labrids and scarids, the 
LPJ is also joined to the pectoral girdle. In acanthopterygians, a new retractor dorsalis muscle gives the 
UPJs the major role in food chewing and transport. Cypriniforms have developed original PJs with strong 
5th ceratobranchials opposed to a postero-ventral neurocranial plate. Small-sized preys and food particles 
are seized by the gill rakers, small skeletal pieces supported by the branchial arches. 

RÉSUMÉ. - Le rôle de la corbeille branchiale dans l’alimentation des téléostéens. 
La prise de nourriture des téléostéens est surtout réalisée par aspiration et le traitement des ali-

ments est assuré par la corbeille branchiale. Les grosses proies sont amenées à l’œsophage par les mâchoi-
res pharyngiennes. Les pharyngobranchiaux constituent les mâchoires supérieures et les cinquièmes 
cératobranchiaux les inférieures. Chez les téléostéens primitifs, ces mâchoires sont grêles et formées 
d’éléments osseux bien séparés, suspendus entre le neurocrâne, la ceinture scapulaire et la barre hyoïdien-
ne; elles n’assurent que le transport de la nourriture et le rôle des mâchoires inférieures est prédominant. 
Chez les Acanthoptérygiens, les mâchoires pharyngiennes deviennent plus fortes, les cératobranchiaux 
gauche et droit fusionnent en une mâchoire pharyngienne inférieure unique tandis que les pharyngobran-
chiaux se solidarisent pour constituer des mâchoires supérieures puissantes articulées au neurocrâne. 
Enfin chez les Labridae et les Scaridae, la mâchoire pharyngienne inférieure est en plus articulée sur la 
ceinture scapulaire. Chez les Acanthoptérygiens, l’apparition d’un muscle rétracteur dorsal donne aux 
mâchoires supérieures le rôle principal dans le traitement et le transport de la nourriture. Les Cyprinifor-
mes ont développé des mâchoires pharyngiennes originales constituées des cinquièmes cératobranchiaux 
très puissants opposés à une plaque ventro-postérieure du neurocrâne. Les aliments de très petites tailles 
sont saisis par les branchiospines, petits éléments squelettiques portés par les arcs branchiaux. 
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In teleosts, suction feeding is the mechanism most commonly used to bring food into 
the buccal cavity (Lauder, 1983a). Suction involves a succession of movements of the differ-
ent head components, creating a backward-moving water stream (Osse, 1969; Vandewalle and 
Chardon, 1981; Lauder, 1983a). 

All fishes can perform suction, which is necessary to breathing (see for example Bal-
lintijn, 1969). Breathing movements are small, however, and prey capture requires fast, ample 
movements. In many cases, the buccal jaws have no contact with the food. 
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Between the buccal cavity and the oesophagus, the branchial basket is believed to play 
an important role in food chewing, processing, and transport. 

The aim of the present simplified synthesis is to present the morphology, movements, 
and biological roles of the elements of the branchial basket during feeding, with emphasis on 
the pharyngeal jaws and gill rakers. 

OSTEOLOGY 

Pharyngeal jaws 
In teleosts, the skeleton of the branchial basket consists of five branchial arches 

(Fig. 1). The first three arches are complete, with a median basibranchial and, on each side, a 
series of bones: a hypobranchial, a ceratobranchial, an epibranchial and a pharyngobranchial. 
The fourth arch consists at least of paired ceratobranchials and epibranchials, and sometimes 
additionally of pharyngobranchials and a basibranchial (Nelson, 1969; Rosen, 1974). Hypo-
branchials are seldom present (Holstvoogd, 1965). The 5th ceratobranchials form the base of 
the lower pharyngeal jaws (LPJs), and the 2nd, 3rd and 4th pharyngobranchials (according to 
the case), that of the upper pharyngeal jaws (UPJs). All endochondral elements may be co-
vered by or connected to toothed dermal plates. The inner concave faces of the epibranchials 
and ceratobranchials, and often those of the hypobranchials, bear two rows of small interlock-
ing skeletal pieces, the gill rakers. 

Lower teleosts 
In elopomorphs, which are primitive teleosts, the branchial basket hangs from the neu-

rocranium by levatores muscles. The pharyngeal jaws (PJs) are small (Forey, 1973; Taverne, 
1974). The independent lower pharyngeal jaws (LPJs) each bear a series of small, independent 
toothed plates. The latter are continued by toothed plates borne by the basibranchials and 
basihyal. The ceratobranchials, hypobranchials, and ceratohyals also bear toothed plates. To 
this ventral toothed-plate array is opposed a dorsal one. Posteriorly, the almost independent 
pharyngobranchials associated with toothed plates constitute the upper pharyngeal jaws 
(UPJs). In front of them, the parasphenoid and vomers bear toothed plates (opposite those of 
the basibranchials and basihyal). Laterally there are also teeth on the palatines, ectopterygoids, 
and entopterygoids. This means that in elopomorphs, the whole buccopharyngeal cavity from 
the mouth to the oesophagus is a large toothed system in which the PJs are not prominent. All 
teeth are simple and sharp. 

In the course of evolution, the number of toothed bones appears to have decreased 
while the PJs became increasingly important. In osteoglossomorphs (Nelson, 1968; Green-
wood, 1973; Taverne, 1977, 1978), the organisation of the branchial skeleton is much like that 
of elopomorphs (Fig. 1). The fifth ceratobranchials associated with the ventral toothed plates 
of the LPJs are opposed to the dorsal toothed plates, the first of which constitutes with the 
pharyngobranchials the UPJs. The teeth are pointed and still numerous, despite their absence 
on the ceratohyals, epihyals, ceratobranchials, and epibranchials; the median dorsal and ven-
tral dentition is particularly developed (Taverne, 1977; Lauder and Liem, 1983). Samford and 
Lauder (1989) even view osteoglossomorphs as possessing three successive jaws: the buccal 
jaws, the parasphenoid-basihyal toothed apparatus, and the PJs. 

The protacanthopterygians or lower Euteleostei include families such as the salmonids 
and esocids (Greenwood et al., 1966). Their PJs are much like those of the osteoglossomorphs 
or elopomorphs, but their dentition is reduced in the buccal cavity and on the branchial arches 
(especially on the basibranchials) (Norden, 1961; Rosen, 1974; Weitzman, 1974). The  
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Fig. 1. - Dorsal view of the hyoid and branchial skeleton of Notopterus notopterus (adapted from Taverne, 
1978). The left branchiospines and tooth plates are removed. BB: basibranchial; BBT: basibranchial tooth 
plate; BH: basihyal; CB: ceratobranchial; CH: ceratohyal; EB: epibranchial; EBT: epibranchial tooth 
plate; EH: epihyal; GR: gill rakers; GT: gular teeth; HB: hypobranchial; HH: hypohyal; PB: pharyngo-
branchial; PBT: tooth plate of the pharynobranchial; TBB: tooth plate of the basibranchials; TCB: tooth 
plates of the ceratobranchial elements; TPB: tooth plates of the pharyngobranchial elements. 

pharyngeal dermal toothed plates are often fused with the endochondral branchial elements 
(Rosen, 1974; Weitzman, 1974; Lauder and Liem, 1983). This reinforces the cohesion of the 
PJs, although the pharyngobranchials are but loosely bound together. 
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Fig. 2. - A: Ventral view of the upper pharyngeal jaw of Tilapia tholloni (adapted from Goedel, 1974); 
B: Dorsal view of the lower pharyngeal jaw of Tilapia louka (adapted from Thys Van den Audenaerde, 
1970). CBT: ceratobranchial tooth plate; PB: pharyngobranchial; PBT: pharyngobranchial tooth plate. 

Higher teleosts 
In acanthopterygians, which possess a protrusive mouth (Greenwood et al., 1966), we 

observe greater development of the PJs and the disappearance of teeth in the buccal cavity. 
Primitive acanthopterygians such as the centrarchids, haemulids, and serranids show 

few to no teeth on the parasphenoid, vomer, entoglossal, and basihyal, and above all there 
remain only a few teeth on the pterygoid bones (Benmouna et al., 1984a; Comes et al., 1988; 
Johnson and Fritzsche, 1989). The left and right LPJs are fused with their toothed plates, but 
remain free with respect to each other; they are attached to the rest of the branchial basket by 
their anterior ends. The UPJs consist of the second and third pharyngobranchials, each bearing 
a toothed plate, and of one posterior toothed plate (Liem, 1970; Rosen, 1973; Vandewalle et 
al., 1992). The three latter bones can be associated with toothed plates borne by the second 
and/or third pharyngobranchials (Dineen and Stokely, 1956; Rosen, 1973; Wainwright, 
1989a). The discrete elements of this functional ensemble are but loosely bound together and 
hang from the skull by the first pharyngobranchial and the levatores muscles. The teeth are 
sharp and uni- or bicuspid. They differ in size according to the skeletal element, being much 
smaller on the posterior toothed plate than on the pharyngobranchials (Lauder and Liem, 
1983; Vandewalle et al., 1992). 

In more specialised acanthopterygians such as the cichlids and embiotocids, there are 
no longer any teeth in the buccal cavity (Vandewalle, 1972; Liem and Osse, 1975; Liem, 
1978). The left and right LPJs are fused into a large triangular toothed plate (Nelson, 1967; 
Thys van den Audenaerde, 1970; Liem, 1973; Barel et al., 1977; Witte and Van Oijen, 1990) 
(Fig. 2). This single LPJ is opposed to paired UPJs. In cichlids, each UPJ consists of a small, 
toothed second pharyngobranchial and a large ensemble formed by the third and fourth pha-
ryngobranchials. [Note that Liem (1978) describes a fourth pharyngobranchial in cichlids, 
while Lauder and Liem (1983) describe a posterior toothed plate in its place]. In embiotocids, 
the UPJs consist of only the third and fourth pharyngobranchials (Nelson, 1967a; Liem, 1986). 

The UPJs of cichlids and embiotocids articulate with a posterior ventral apophysis of 
the parasphenoid through their third pharyngobranchials. Their teeth are often specialised 
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(unicuspid, bicuspid, tricuspid, molar-like, and so on) and adapted to the diet: microphagous 
and planctivorous species generally have small, crowded teeth while molluscivorous species 
have large, rounded teeth for crushing shells (Witte and Van Oijen, 1990). The size of the PJ 
bones is also related to the diet. They are more slender in piscivorous than in molluscivorous 
cichlids (Hoogerhoud and Barel, 1978). 

In labrids and scarids, the fifth ceratobranchials are fused into an often-large single 
LPJ articulating posteriorly with the cleithra via a synovial joint (Quignard, 1962; Liem and 
Greenwood, 1981; Gobalet, 1989; Monod et al., 1994; Bullock and Monod, 1997). The UPJs 
consist of large pharyngobranchials (Monod, 1951; Nelson, 1967a). They articulate through a 
diarthrosis with the pharyngeal process of the parasphenoid (Kaufman and Liem, 1982; Liem 
and Sanderson, 1986). The teeth can be specialised as in cichlids (Yamakoa, 1978). 

Hemiramphids (Aterinomorpha) have also developed strong PJs, and notably a single 
toothed LPJ articulating with the pectoral girdle opposite the distinct 2nd and large 3rd pha-
ryngobranchials (Rosen and Parenti, 1981; Vandewalle, in prep.). 

Ostariophysi 
A parallel evolution is observed in the Ostariophysi. In characiforms, the mouth, usu-

ally not protrusive, bears many teeth, including palatial teeth (Bertin, 1958a; Roberts, 1969). 
The PJs are constituted by independent fifth ceratobranchials bearing toothed plates, facing 
toothed pharyngobranchials loosely bound to one another (Weitzman, 1962; Roberts, 1969; 
Miquelarena and Aramburu, 1983). The branchial basket hangs under the neurocranium 
(Weitzman, 1962; Roberts, 1966). The teeth are conical and differ in size and number. 

In catfishes, all the pharyngobranchials present contribute to the UPJs, except for the 
first ones. As in characiforms, they are loosely bound to one another (Mahy, 1974; Arratia, 
1987; Adriaens and Verraes, 1998). 

Cyprinids have evolved a special protrusion mechanism (Ballintijn et al., 1972; 
Vandewalle, 1978), different from that of the acanthopterygians. The buccal jaws are com-
pletely toothless (Ramaswami, 1955a, 1955b; Vandewalle, 1975). Teeth are borne only by the 
well-developed fifth pharyngobranchials (PJs), which alone constitute the left and right PJs 
(Fig. 3). These PJs are associated with a chewing pad borne by the basioccipital (Ramaswami, 
1955a, 1955b; Sibbing, 1982) and acting as a UPJ (Fig. 3). The pharyngobranchials are thus 
excluded form the PJs. Teeth are rare, often sharp and strong, but sometimes molariform 
(Ramaswami, 1955a, 1955b; Vandewalle, 1975; Sibbing, 1982). 

Gill rakers 
Gill raker (branchiospine) morphology (Fig. 1) is related to diet and can vary not only 

from one species to another but even from one branchial arch to another within a species 
(Bertin, 1958b; Roberts, 1969; Whitehead and Teugels, 1985). 

The hypo-, cerato- and epibranchials of elopomorphs bear rows of branchiospines, de-
creasing in size from the outside to the inside. Most of them are denticulate. 

In osteoglossomorphs, the branchiospines are very similar in morphology and disposi-
tion to those of elopomorphs. There are just two rows of branchiospines per arch, except on 
the fifth arch, where there is only one row (Fig. 1) (Taverne, 1977, 1978). 

In clupeomorphs, gill raker organisation is very complicated (Kirchoff, 1958; Monod, 
1961). The gill rakers are often long and crowded, particularly on the ceratobranchials. On the 
epibranchials they may be transformed, forming part of a suprabranchial organ (Monod, 
1961). In Sierrathrissa leonensis for example, no ceratobranchial or epibranchial bears more 
than 9 of them (Whitehead and Teugels, 1985). 



324 VANDEWALLE ET AL. 

 

 

Fig. 3. - Schematic lateral views of the neurocranium and pharyngeal jaws of Esocidae (modified from 
Lauder, 1983b), Haemulidae (modified from Wainwright, 1989a), Cichlidae and Labridae (modified from 
Liem and Greenwood, 1981), and Cyprinidae (modified from Sibbing, 1982). AD 5: adductor 5 muscle; 
GH: geniohyoideus muscle; HB: hyoid bar; LEXT: elevator externus muscle; LP: levator posterior mus-
cle; LPJ: lower pharyngeal jaw; NCR: neurocranium; OP: obliquus posterior muscle; PE: pharyngohy-
oideus externus muscle; PI: pharyngohyoideus internus muscle; RC: rectus communis muscle; RD: retrac-
tor dorsalis muscle; RP: retractor posterior muscle; SC: scapular girdle; STH: sternohyoideus muscle; 
UPJ: upper pharyngeal jaw. 
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In salmonids, the branchiospines show considerable variation (Berg, 1948; Scott and 
Crossman, 1973). They are more numerous and longer in planktivorous species (e.g., Core-
gonus alba) than in euryphagous ones (e.g., Salmo trutta). They generally bear denticles, the 
number and size of which are related to the diet (Hessen et al., 1988). 

In acanthopterygians the gill rakers also vary considerably. Only some examples are 
presented here. In some serranid species, the gill rakers are denticulate; their length decreases 
from the first to the fourth arch and they are larger on the outer than on the inner side 
(Benmouna et al., 1984a). 

In mugilids, the general organisation of the gill rakers is quite constant, but original. 
The angle between the inner and outer gill raker rows varies from 45° to 180°. Each gill raker 
bears two rows of secondary gill raker processes, which are conical, cylindrical, or flattened. 
On certain arches, the secondary processes in turn bear tertiary expansions constituted by 
projections of epithelial cells (Guinea and Fernandez, 1992). 

In cichlids, the branchiospines are simple or bear a single toothed plate (Vandewalle, 
1971, 1972). Moreover, there is a serried row of microbranchiospines on the lateral (external) 
sides of the 2nd, 3rd, and 4th branchial arches (Greenwood, 1953; Gosse, 1956; Beveridge et 
al., 1988). 

Microbranchiospine-like structures have also been found in several other percoids 
(Greenwood, 1976; Stiassny, 1981). 

The generally simple branchiospines of the ostariophysans vary only in size and num-
ber (Weitzman, 1962; Gauba, 1969; Lammens and Hoogenboezem, 1991). In characins, how-
ever, they are sometimes shaped like small, toothed balls (Roberts, 1969), and in some species 
there is only one row per arch (Roberts, 1966; Miquelarena and Aramburu, 1983). 

In gonorynchiforms, considered to be closely akin to the Ostariophysi (Rosen and 
Greenwood, 1970; Nelson, 1994), the branchiospines are simple, but those of the last two 
arches contribute to supporting a suprabranchial organ quite similar to that of clupeids 
(Monod, 1949, 1963; Thys van den Audenaerde, 1961). 

MUSCULATURE 

Pharyngeal jaws 
Generally speaking, the muscles related to the PJs vary little among teleosts. Some 

differences, however, have a major functional impact, making it necessary to consider two 
types of branchial musculature: that of lower teleosts and that of acanthopterygians. The list of 
branchial muscles presented below for the lower teleosts is based on a survey of the literature 
(Vetter, 1878; Dietz, 1912; Holstvoogd, 1965; Bishai, 1967; Nelson, 1967b; Greenwood, 
1971; Winterbottom, 1974; Lauder and Liem, 1980; Lauder, 1983b). 

Lower teleosts 
There are four levatores externi inserting at one end on an epibranchial and at the 

other end on the neurocranium. There are two to three levatores interni extending from the 
second and third pharyngobranchials to the neurocranium. In most cases, these muscles lift the 
UPJs and shift them forward at the same time. In esocids, however, at least the first two leva-
tores muscles draw the UPJs backward (Holstvoogd, 1965; Lauder, 1983b). Generally the 
levatores externi, the upper insertion of which is more external than the lower one, adduct the 
left and right UPJs. Two transversi dorsales, binding two left epibranchials to their right sym-
metricals, draw them together. 
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There can be an adductor between the ceratobranchial and the epibranchial of a same 
arch. The fifth adductor, always present, binds the fourth epibranchial to the fifth ceratobran-
chial. It lifts the posterior part of one LPJ (left or right). 

The LPJs are adducted by two transversi ventrales extending between the left and right 
fourth and fifth ceratobranchials. Usually, the rectus communis joins the fifth ceratobanchial 
to the third hypobranchial, but interspecies variation is observed (Dietz, 1912; Nelson, 1969; 
Greenwood, 1971; Winterbottom, 1974). The main role of the rectus communis is to lower the 
LPJ. Sometimes recti ventrales join one ceratobranchial to the preceding hypobranchial. 

The pharyngocleithrales interni and externi extend from the pectoral girdle to the 
LPJs. The pharyngocleithrales interni draw the PJs backward and the pharyngocleithrales 
externi draw them downward. At the same time these muscles pull the PJs apart. 

It seems that the obliqui ventrales joining the first hypobranchials and ceratobranchials 
exert little influence on the PJs. 

The sternohyoideus extending from the urohyal to the pectoral girdle may pull the 
hyobranchial system backward, while the geniohyoidei joining the lower jaw with the hyoid 
bars may pull this system forward. 

In summary, the PJs are lifted by the levatores muscles, lowered by the pharyngo-
cleithralis externus and rectus communis, pulled forward by the geniohyoideus and levatores, 
and pulled backward by some levatores, the pharyngocleithralis internus, and the sternohy-
oideus. They are brought together by the adductores and pulled apart by the simultaneous 
activity of the levatores and the pharyngocleithralis externus. The observed complex move-
ments of the PJs depend on the ordered contraction of many branchial muscles. 

Higher teleosts 
The branchial musculature of acanthopterygians differs from that of the lower teleosts 

by the following features (Liem, 1970, 1973, 1978, 1986; Vandewalle, 1972; Yamakoa, 1978, 
1980; Lauder, 1983a, 1983b; Benmouna et al., 1984b; Vandewalle et al., 1992) (Fig. 3). All 
the levatores externi and interni are turned forward; they lift, protract, and pull apart the UPJs. 
The fourth levator externus is more developed than the others. Part of it may be fused with 
part of the obliquus posterior (which joins the fifth ceratobranchial with the fourth epibran-
chial and thus works as a levator of the fifth ceratobranchial (Aerts, 1982; Liem, 1986; Gallis, 
1993, 1994). 

A levator posterior extends from the back of the skull to the fourth epibranchial and, 
thanks to this nearly vertical orientation, works as a perfect levator (Fig. 3). Like the fourth 
levator externus, it is sometimes fused with part of the obliquus posterior and thus also be-
comes a levator of the fifth ceratobranchial (Claeys and Aerts, 1984; Liem, 1986). Such is 
notably the case in labrids, where this muscle is often so highly developed that it inserts at the 
top of the skull (Yamaoka, 1978). 

A big retractor posterior extends from at least the third pharyngobranchial to the ven-
tral surface of the first vertebrae. It lifts and pulls each UPJ backward (Fig. 3). The existence 
of this muscle seems related to the forward orientation of all the levatores externi. 

Last of all, the pharyngohyoideus (homologous to the rectus communis, according to 
Lauder (1983b), extends from the fifth ceratobranchial to the urohyal; the length of its fibres 
and the mobility of the urohyal increase the possibilities of movement of the LPJs (lowering, 
pulling apart the left and right parts, and even forward displacement). 

Wainwright (1989b) reports that in some acanthopterygians such as the haemulids, the 
protractopectoralis muscle inserts on the neurocranium and on the fifth ceratobranchial, not on 
the pectoral girdle; it thus occupies the place of a levator posterior. 
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Fig. 4. - A: Lateral side of the gill arch; B: Medial side of the gill arch (adapted from Hoogenboezem et 
al., 1991). ABS: abductor branchiospinalis muscle; CB: ceratobranchial bone; CN: channel; CT: compact 
connective tissue; CU: raker cushion; GR: gill raker; IB: interbranchiospinalis muscle; IBS: constrictor 
canalis interbranchiospinalis muscle; LR: lateral gill raker; RA: raker articulation. 

Despite a general plan common to all teleosts, the acanthopterygians possess some 
special muscles, the size of which suggests a more important role of the PJs in food handling. 
Among the upper teleosts, furthermore, the development of the pharyngeal muscles is related 
to diet. A fish-eating cichlid, for example, has far less bulky branchial muscles than a mollus-
civorous one (Hoogerhoud and Barel, 1978). 

In hemiramphids, the branchial musculature differs from that of the acanthopterygians 
only by a retractor dorsalis of the 2nd pharyngobranchials, inserting at the back of the neuro-
cranium (Vandewalle et al., in prep.). 
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Ostariophysi 
In Ostariophysi, the particularities of the branchial skeleton are associated with an ori-

ginal musculature. The branchial muscles of characiforms are much like those of the lower 
teleosts (Gijsen and Chardon, 1976). Cypriniforms, on the contrary, with their powerful PJ 
constituted only by the fifth ceratobranchials, have evolved an original musculature (Takahasi, 
1925; Holstvoogd, 1965; Winterbottom, 1974; Vandewalle, 1975; Sibbing, 1982) (Fig. 3). 
There is an enormous retractor posterior ensemble between the PJs and the posterior process 
of the basioccipital, and a bulky levator branchialis 5 between the PJ and the neurocranium. 
Ventrally, there is a large transversus muscle, the contraction of which brings the PJs toward 
each other and at the same time rotates them axially so that the teeth are properly turned to-
ward the skull (Sibbing, 1982). 

Gill rakers 
There are muscles associated with the gill rakers, despite past partial confusion with 

the branchial filament muscles (Bijtel, 1949; Hoogenboezem et al., 1991). Descriptions are 
rare and the most thorough studies concern cyprinids (Hoogenboezem et al., 1991; Van den 
Berg et al., 1994a). Despite discrepancies between the two cited papers, we may consider for 
each gill raker the following muscles (Fig. 4): 

- The adductor branchiospinalis is a thin sheet of fibres inserting on the side of each 
external gill raker (Hoogenboezem et al., 1991) and, at the other end, on the base of the cor-
responding branchial filament (Van den Berg et al., 1994a). There is no such muscle on the 
internal branchiospines; it would seem to be only partly distinct from the abductor filamenti. 
The abductor branchialis lowers the gill raker. 

- The interbranchiospinalis, inserting via tendons on two successive external gill ra-
kers, is described by Hoogenboezem et al. (1991) in 30-cm Abramis brama specimens, but 
Van den Berg et al. (1994a) failed to find it in two 14.9-cm (SL) Blicca bjoerkna specimens, 
Rutilus rutilus, and Abramis brama. This muscle may control the distance between successive 
external gill rakers. 

- The constrictor canalis interbranchiospinalis is very complex morphologically 
(Hoogenboezem et al., 1991; Van den Berg et al., 1994a). It extends from the ventral side of 
the ceratobranchial to the bottom of a channel and up inside the walls of the same channel 
(Hoogenboezem et al., 1991). According to Van den Berg et al. (1994a), its functions might 
be (a) to act as an abductor branchiospinalis, (b) to contract the soft tissues of the branchio-
spines so as to squeeze out the mucus from the caliciform cells, and (c) to straighten the chan-
nels. 

MOVEMENTS AND FUNCTIONS 

Among the branchial basket structures, the PJs are particularly related to a macropha-
gous diet, while the branchiospines are essential to a microphagous diet. In a same species the 
diet usually changes during growth and a same food item may be macroscopic for the fry and 
microscopic for the adult fish. Monophagous teleosts are few, and the diet often changes 
according to the season and to food availability (Boikova, 1986). 

Cineradiographic and electromyographic techniques are required to observe PJ 
movements. Such observations are extremely difficult because of the deep positions of the 
very thin muscles embedded in the very delicate and highly vascularised branchial lamellae. 

As it is generally assumed that the PJs play a greater role in food handling in higher 
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than in lower teleosts, this role has been studied more frequently in the former, and neglected 
in the latter. 

Pharyngeal jaws 
Lower teleosts 
Lauder (1982, 1983b) divides food capture in Esox niger into four distinct phases: in-

itial strike, buccal manipulation, pharyngeal manipulation, pharyngeal transport (including 
deglutition). During the initial strike, some muscles (third and fourth levatores, fifth adduc-
tor, …) work variably, in a manner suggestive of a preparatory phase and a positioning of the 
PJs. During the two manipulation phases, the third and fourth levatores and the pharyngo-
cleithrales exerni and interni are active, while the fifth adductor is no longer working. As a 
result, the lower and upper pharyngeal jaws move apart, especially in front, as for a forward-
oriented gape. These movements probably allow a good orientation of the prey relative to the 
PJs, ready to seize it, before pharyngeal transport. 

The three periods just described are brief and devoid of cyclic events. Pharyngeal 
transport, on the contrary, lasts long (several minutes) and comprises repeated and rather 
similar cycles of muscle activity; it is the most important phase in food capture in Esox. 

During transport, the sternohyoideus does not work, and the geniohyoideus and pha-
ryngocleithralis are but occasionally active. The first and second levatores externi work simul-
taneously with the pharyngocleithralis externus, so that the upper and lower pharyngeal jaws 
are pulled backward at the same time (or nearly so). The third and fourth levatores externi are 
the antagonists of the former muscles, and protract the UPJ. However, taking into account the 
orientation of the levatores externi, these longitudinal movements of the UPJ seem limited. In 
Elops saurus, only the first levator is not inclined forward (Winterbottom, 1974), while in 
Salvelinus fontinalis, all the levatores are inclined backward (Lauder and Liem, 1980). It thus 
seems that the backward displacements of the PJs are passive (Lauder, 1983b).  

The only variability observed in Esox muscle activity is a possible asymmetry in the 
activities of the third and fourth left and right levatores (Lauder, 1983b). 

According to Lauder (1983b), the UPJs and LPJs of Esox move together backward and 
to the midline, then forward and sideward, but the longitudinal movements of the LPJs may be 
greater, as suggested by the muscles. The movements predominating in food transport seem to 
be those of the LPJs, and anatomical observations suggest the same for other lower teleosts 
(Lauder, 1983b). Prey progression results from the difference in amplitude of the longitudinal 
movements of the upper and lower pharyngeal jaws. The PJs simply transport the prey to the 
oesophagus, without crushing or otherwise transforming it. 

In the osteoglossomorph Notopterus chitala, intermediate jaws (parasphenoid and 
basihyal) seem to initiate transport the prey to the oesophagus (Sanford and Lauder 1989, 
1990); the PJs are probably associated with them. The parasphenoid, attached to the neurocra-
nium, may merely hold the prey fast while the basihyals transport it by means of broad longi-
tudinal displacements. It is thus probable that the LPJs, placed just behind the basihyals, play 
the main role in prey transport, as in Esox. 

Higher teleosts 
Lauder (1983b) considers the same four phases in food capture in primitive acantho-

pterygians as in Esox, but Wainwright (1989a) believes there is no pharyngeal manipulation in 
haemulids and that in 90% of cases only seizing and transport are present. Food would thus be 
brought directly to the PJs. 

Pharyngeal muscle activities are recorded during the first phases of prey capture. They 
are probably needed to place the PJs in the right position for seizing the prey. 
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Fig. 5. - Summary “block diagram” of muscle activity during pharyngeal transport in Lepomis microchi-
rus. The left and right edges of the bars mark the mean time of onset and offset of muscle activity and the 
thin line indicates one standard error of this mean (adapted from Lauder, 1983c). Black bars indicate 
activity in 67-100% of all experiments, shaded bars indicate activity in 34-66% of them, and white bars 
indicate activity in 1-33% of them. AD 5: adductor branchialis 5 muscle; LEXT 1, 2: levatores externi 
muscles 1, 2; LEXT 3, 4: levatores externi muscles 3, 4; LP: levator posterior muscle; PE: pharyngo-
cleithralis externus muscle; PI: pharyngocleithralis internus muscle; RC: rectus communis muscle; 
RD: retractor dorsalis muscle. 

During the transport phase, rather regular periodic activities of the branchial muscles 
are observed. The retractor dorsalis is particularly active (Fig. 5), while the sternohyoideus is 
often silent (Lauder, 1983b, 1983c; Wainwright, 1989a, 1989b). 

A characteristic broad overlapping of the periods of activity of most muscles (Lauder, 
1983b, 1983c; Wainwright, 1989a, 1989b) means that the movements of the upper and lower 
pharyngeal jaws are neither simultaneous nor in phase opposition, but simply asynchronous 
with the same frequency. The PJs thus do not move in opposite directions during part of the 
cycle. The UPJs are lifted (by the levator posterior and the third and fourth levatores externi), 
then pulled backward (by the retractor dorsalis), while the LPJs are retracted (by the pharyn-
gocleithralis internus). Then the UPJs and LPJs are adducted (by the fifth adductor), but the 
LPJs are pulled forward (by the pharyngohyoideus and maybe by the geniohyoideus) while 
the UPJs are always shifted backward (by the retractor dorsalis). At the end of the cycle the 
LPJs are lowered (by the pharyngocleithralis externus) while the UPJs are protracted either by 
the first and second levatores externi or probably, in part, by inertia (Lauder, 1983b, 1983c). 
Before a new cycle begins, the PJs are actively repositioned (by the first and second levatores 
externi, the pharyngocleithralis externus and pharyngohyoideus) to their former anterior place, 
apart from each other (Lauder, 1983c). Contrary to observations on Esox, the UPJs play the 
predominant role in transporting food (Lauder, 1983b).  

Lauder (1983b, 1983c) and Wainwright (1989b) think that, despite some asymmetries 
in the activities of the first and second levatores externi, the pattern of food transport is rather 
constant whatever the sort of prey (except in snail-crushing Lepomis microlophus). Vande-
walle et al. (1992), on the contrary, observed major modulations of food transport movements 
in Serranus scriba. In this species, the movements of the PJs for transporting food into the 
oesophagus are either in phase opposition or asynchronous or simultaneous (Fig. 6).  
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Fig. 6. - A: Graphic representation of the antero-posterior movements of the left pharyngeal jaws of 
Serranus scriba; B: Displacement of a prey (a small fish, Xiphophorus maculatus) (adapted from Vande-
walle et al., 1992b). The maximum error on displacements is 0.4. The arrows indicate prey capture and 
swallowing. The vertical lines delimit the six successive anteroposterior movements of the left UPJ during 
prey transport. A: anterior; P: posterior. 

In most cases, the cycles of the UPJs have a greater amplitude than those of the LPJs, 
a fact also observed by Lauder (1983b) in the centrarchid Micropterus salmoides. The effi-
ciency of the transport movements is variable: transport is faster if the movements of the PJs 
are in phase opposition, especially if the prey is protected by hard teguments. Transport is also 
possible when the left and right UPJs move in opposite directions or with different amplitudes, 
or even when only one UPJ is working (Vandewalle et al., 1992). Such different movement 
patterns imply equally different muscle activity patterns.  

Vandewalle et al. (1992) further report that the three skeletal elements of the UPJs of 
Serranus scriba retain some reciprocal freedom, so that their displacements are not always 
identical and their reciprocal orientations are somewhat variable. The general shape of the 
UPJs is thus variable, showing an upward or a downward curvature, probably in response to 
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Fig. 7. - Diagrammatic lateral view of pharyngeal jaw orbits derived from measurements obtained from 
cineradiographic film sequences of the labrid Tautoga onitis during mastication and swallowing. The 
anterior end is to the left. The orbits drawn indicate the motion of a point on the posteroventral corner of 
the upper pharyngeal jaw. During mastication: 1: resting positions; 1-4: shearing (activity period of the 
levator externus 4 and internus muscles); 4-5: transitional phase (activity period of the levator externus 4 
and levator posterior muscles); 5-6: crushing (activity period of the levator externus 4, levator posterior 
and retractor dorsalis muscles); 6-1: recovery (activity period of the pharyngocleithrum externus muscle). 
During swallowing: 1-3: protraction; 3-4: retraction; 4-1: recovery. LPJ: lower pharyngeal jaw; 
UPJ: upper pharyngeal jaw (adapted from Liem and Sanderson, 1986). 

prey particularities and behaviour. Such possibilities for deformation are likely to be shared by 
all teleosts provided with well-separated and loosely connected PJ elements. 

The PJs of primitive acanthopterygians, protacanthopterygians, and osteoglosso-
morphs generally perform food transport only, through varied movements. All these possibili-
ties of movement are related to the reciprocal freedom of the left and right, upper and lower 
pharyngeal jaws, and to their independence with respect to the skull and pectoral girdle. Preys 
are swallowed whole, without traces of injury or mechanical trituration by the PJs. The cen-
trarchid Lepomis microlophus seems to be an exception in this regard. Lauder (1983c) reports 
that this species can break the shells of certain snails between the PJs before bringing them 
into the oesophagus, but other types of prey are just transported. 

In higher acanthopterygians, the LPJs are fused together and the UPJs consist of very 
tightly bound elements articulating on the ventral surface of the skull. In cichlids, Liem 
(1978), Aerts et al. (1986), Claes and De Vree (1989, 1991), and Claes et al. (1991) describe 
cyclic movements of the PJs during feeding, but these movements follow very different pat-
terns according to the type of food. In Oreochromis niloticus, an earthworm, for example, is 
transported to the oesophagus by regular movements of the PJs (Claes and De Vree, 1991; 
Claes et al., 1991); the movements of the upper and lower pharyngeal jaws are in opposite 
directions or nearly so, and they barely alter the shape and structure of the prey (Claes and De 
Vree, 1991). When the same species is fed hard pellets, major masticating movements are 
observed. The pellets are crushed and sheared by opposite movements of the upper and lower 
PJs before being swallowed (Aerts et al., 1986; Claes and De Vree, 1991). Gallis (1994), 
furthermore, shows flexible muscle activity patterns during crushing in response to changes in 
demand. Haplochromis (= Dimidiochromis) compressiceps chews small fish by in-phase 
movements of the PJs (Liem, 1978). This seems to be an exception. In both Oreochromis 
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niloticus and Astatotilapia (= Haplochromis) burtoni, movements in phase opposition are 
involved in chewing the same sort of prey (Liem, 1986; Claes and De Vree, 1989). Cich-
lasoma minckleyi crushes mollusc shells by the same movements (Liem and Kaufman, 1984). 
Mastication may be performed preferentially by one UPJ and then by the opposite one (Claes 
and De Vree, 1989). Liem (1978) also reports activity periods of the pharyngeal muscles 
suggesting that the left and right UPJs are not always moved simultaneously. The amplitude of 
the handling cycles depends on the sort of prey, but the longitudinal movements of the UPJs 
are, as in lower acanthopterygians, more ample than those of the LPJs (Claes and De Vree, 
1991). 

Liem (1986) describes regular chewing cycles in embiotocids, with particularly cons-
tant muscular activity patterns whatever the food. The horizontal components of the move-
ments of the upper and lower PJs are equal during chewing. Shearing and crushing result from 
in-phase movements, but during swallowing, the horizontal movements of the LPJs are clearly 
smaller than and somewhat in advance relative to those of the UPJs. This results in the back-
ward displacement of the prey. 

In cichlids and embiotocids there is thus pharyngeal reduction of food, distinct from 
food transport and swallowing. This is to be related to the partial fusion of at least the fourth 
levator and/or the levator posterior with the obliquus posterior (Aerts, 1982; Claeys and Aerts, 
1984; Liem, 1986). These muscles transformed into levatores of the mandible, would allow 
more power for pressing the prey between the PJs and consequently crushing it (Liem, 1978, 
1986; Liem and Kaufman, 1984). 

In labrids and scarids, viewed as the most specialised teleosts (Liem and Greenwood, 
1981; Lauder and Liem, 1983b; Monod et al., 1994), the joint between the LPJ and the pecto-
ral girdle causes stabilization of the LPJ, decreasing its freedom and causing its movements to 
be influenced by those of the girdle. The LPJ becomes a lever (Liem and Greenwood, 1981) 
and the muscles moving it (such as the levator posterior; Yamaoka, 1978) may be highly 
developed. The pharyngeal apparatus is a powerful crushing device, and movements of the 
neurocranium may contribute to crushing (Liem and Sanderson, 1986). Crushing cycles con-
sist of “figure 8” movements with equal horizontal amplitudes for the lower and upper PJs 
(Fig. 7). The UPJ and LPJ are in phase when crushing or shearing. Characteristic large down-
ward movements of the LPJ are observed (Liem, 1986). Swallowing movements are much like 
those of embiotocids (Liem, 1986; Liem and Sanderson, 1986). 

The main feeding strategy of acanthopterygians is to suck in preys and handle them at 
the level of the PJs, but other feeding behaviours exist. For example, some cichlids crush 
molluscs with the buccal jaws (Witte and Van Oijen, 1990) and several sparids crush hard 
preys with their buccal jaws before transporting them to the oesophagus with the PJs (Vande-
walle et al., 1995). 

Ostariophysi 
In characiforms the branchial apparatus is much like that of lower teleosts, and it 

seems to function similarly in prey catching (Lauder, 1983a). In cyprinids, food is manipu-
lated by the PJs with the help of the posterior floor of the neurocranium. Chewing sequences 
comprise trains of rhythmic cycles and end by swallowing movements. Sibbing (1982, 1991) 
divides each chewing cycle of Cyprinus carpio into three periods: a preparatory stroke, a 
feeding period called a power stroke, and a recovery stroke during which the skeletal elements 
are positioned as at the beginning of the cycle. During the preparatory stroke, the jaws are 
brought to a low position (principally by the pharyngocleithralis externus and rectus com-
munis) convenient for seizing food; at this time, the gap between the floor of the skull and the 
jaws is wide. The period of food manipulation consists of a crushing phase and a grinding 
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phase. During the crushing phase, the PJs are lifted (by the levator posterior, retractor pos-
terior, and transversus ventralis) and pressed against the basioccipital, closing the entry of the 
oesophagus and squashing the food. In the grinding phase the PJ are pulled backward (mainly 
and at least by the pharyngocleithralis internus, the retractor posterior, and the epaxial muscu-
lature), while the neurocranium rotates forward. In some chewing cycles crushing predomi-
nates, in others, grinding. At the end, the reset phase brings the PJs forward again and the 
skull downward (by relaxation of most muscles and contraction of the pharyngocleithralis 
externus). One or more chewing phases are followed by the swallowing stroke, during which 
the constrictor pharyngis and pharyngocleithralis externus show particular activity, while 
characteristic constrictions of the posterior pharynx and low-amplitude chewing-like move-
ments are observed (Sibbing et al., 1986). 

In Cyprinus carpio, the PJ activity pattern varies according to the type of food. Not 
only the number and frequency of cycles may vary, but also the identity of the muscles at 
work. According to Sibbing (1982), the primary function of the pharyngeal apparatus is in-
deed chewing, but other roles are important in food mixing, lubrication, and transport. 

Gill rakers 
Filter feeding, (defined as feeding on prey of much smaller size than the predator 

(Weihs and Webb, 1983), relies on a backward water current in the buccal cavity. The current 
is induced by swimming while holding the mouth wide open and/or by active movements of 
the buccal and opercular pumps (Ballintijn, 1969; Vandewalle and Chardon, 1981) that modu-
late the filtration rate. In Brevoortia tyrannus, the swimming speed increases approximately 
hyperbolically with increasing prey density (Durbin et al., 1981). When Engraulis mordax 
feeds on Artemia nauplii, it alternates two- to three-second active swimming periods during 
which the mouth is open with brief, passive glides during which the mouth is closed (Leong 
and O’Connel, 1969). Many filter-feeder cyprinids, on the contrary, swim slowly or not at all 
during filtration, which results from powerful ventilation-like movements (Sibbing, 1991). 

The highly variable number and shape of gill rakers in teleosts are related to the diet 
(Zander, 1906; Bertin, 1958b; Kirchhoff, 1958; Mathes, 1963). Hyatt (1979) reports that the 
branchial sieve of benthic feeders is generally made of short gill rakers, while the gill rakers of 
zooplanktivorous fishes are long. For example, the branchiospines of Crenicichla multispi-
nosa and Abramis brama (Vandewalle, 1971; Hoogenboezem et al., 1991) are shorter than 
those of Clupea harengus (Kirchhoff, 1958). Lammens (1985), however, shows that the 
bream, Abramis brama, easily traps zooplankton. 

It is generally believed that the size of the preys or particles trapped is related to the 
size of the sieve mesh. Fish with smaller interraker distances are expected to be able to trap 
smaller items (Gibson, 1988). Durbin and Durbin (1975) observed in Brevoortia tyrannus that 
the size of most preys caught was equal to or larger than the mean pore size of the sieve 
(80 µm), but two percent of the preys were clearly smaller. 

According to King and McLeod (1976), the branchial sieve mesh is the interval be-
tween gill rakers on each arch. This view is not in complete agreement with the 
two-dimensional interarch slit model (Zander, 1906), also called interdigitation model (Sib-
bing, 1991). In the latter, widely accepted model (for example Greenwood, 1953; Matthes, 
1963), the measure of the mesh is the distance between a gill raker of the lateral row of one 
arch and the opposite one of the mesial row of the following arch. The interarch slit model 
rests functionally on the ability to modulate the breadth of the branchial slits according to the 
size of potential preys. In some species, the filtering efficiency is improved by microbranchio-
spines that can trap much smaller items (Greenwoood, 1953; Gosse, 1956). 
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Fig. 8. - The “channel model”, food particles are presumably retained in a channel formed by two adjacent 
gill rakers. CN: channel; GA: gill arch; GR: gill raker; LGR: lateral gill raker; MGR: mesial gill raker 
(adapted from Hoogenboesem et al., 1991). 

The interdigitation model, however, does not explain satisfactorily why the bream 
captures preys smaller than the interarch slit. This is why Hoogenboezem et al. (1991) have 
proposed the “channel model” (Fig. 8). Each gill arch displays transverse ridges, each consist-
ing of a cushion-like structure and a bony distal end. The space between two adjacent ridges 
forms a channel with a rounded bottom. The extremity of each lateral gill raker can move 
individually and can enter the mesial channel facing it on the next arch, and vice versa. With 
this structural ensemble are associated muscles (see above) that can straighten the channels 
and shift the lateral gill rakers down and laterally. The mobility of the gill rakers and the fact 
that the arches can be brought closer together might explain, notably, how the bream traps 
smaller particles, perhaps choosing food items individually. This interpretation gives no role 
to mucus in food retention. 

According to Van den Berg et al. (1994b), the model would apply only to facultative 
filter-feeders that filter only small amounts of water, because it implies small-amplitude 
movements of the branchial arches to modulate the mesh size. It should not apply to true 
filter-feeding cyprinids possessing a very thin-meshed sieve, performing ample movements of 
the branchial arches, and filtering a large volume of water. For these, another model should be 
investigated. Van den Berg et al. (1994b) hypothesise that the particles trapped in the reduced 
channels stimulate the mucous cells of the walls of the channel and are encapsulated in a 
mucous layer, so that they stick to the wall and need no longer be retained by the lateral bran-
chiospines. The mesh might also be reduced by the boundary layer created around the gill 
rakers as water is flowing through the sieve. 

Sorting particles of food value is possible only if the gill rakers are particularly well 
equipped with taste buds and able to react individually. In the case of cyprinids, the vo-
mero-palatine organ (on the buccal roof) can sort and aggregate in mucus strands very small 
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food particles, such as diatoms, so that the branchial sieve can trap them (Sibbing and Uribe, 
1985). 

To end this paragraph we will add more confusion to the debate by evoking the ex-
periments of Drenner et al. (1987), showing that gill raker or microbranchiospine ablation 
does not modify at all the ability of cichlid Tilapia galilea (= Sarotherodon galileus) to trap 
particles when filter feeding. 

CONCLUDING REMARKS 

1. Structural and functional comparisons of the branchial basket in teleosts reveal 
broad morphological diversity, albeit showing major evolutionary trends. From the Cretaceous 
period to the present, archaic teleosts such as the extant Elops saurus, whose 
bucco-pharyngeal dermal bones all bear teeth or toothed dermal plates, have coexisted with 
other teleost lineages showing various degrees of specialisation of the hyobranchial skeleton. 
The success of these taxa or lineages is very unequal, and one evolutionary trend has proved 
much more successful: the acanthopterygians, which became progressively dominant in ma-
rine waters during the cenozoid and now predominate in African rift lakes. In acanthopteryg-
ians, the PJs appear to have improved in various ways, particularly with new articulations of 
the PJs on the skull and scapular girdle and concomitant muscle specialisations. The most 
specialized orders or families (Cichlidae, Embiotocidae, Labridae) are particularly rich in 
species. Liem and Osse (1975) attribute the incredible adaptative radiation of cichlids in Afri-
can lakes to the separation of functions in handling food between the buccal and pharyngeal 
jaws, allowing major adaptative transformations of both. The Ostariophysi are another group 
that has proven successful in fresh waters. Their main advantage could be the Weberian appa-
ratus, more than any otherwise interesting but diverse transformations of the pharyngeal jaws, 
especially in cyprinids. 

2. In lower teleosts, the main movements enabling the transport of food from the buc-
cal cavity to the oesophagus are those of the ventral part of the hyobranchial apparatus. A new 
motor pattern appears in higher teleosts. A new muscle, the retractor dorsalis, gives the main 
role to the UPJs. In modern acanthopterygians, there are probably two motor patterns, one for 
food transport and a second for food manipulation. Cyprinid fishes show an original mecha-
nism, supported by a new organisation of the branchial basket skeleton and musculature. 

3. The notion “pharyngognathi” deserves discussion. The term was first used by 
Müller (1844) for a new taxonomic group including fishes whose pharyngeal bones are fused 
at the midline. More recently, Bertin and Arambourg (1958) used “pharyngognath” as an 
adjective, and Liem and Greenwood (1981) describe “pharyngognathy” in many families of 
higher teleosts, among which “the monophyletic assemblage” of the Pomacentridae, Cichli-
dae, Embiotocidae, and other Labroidei. These authors do not recognise pharyngognathy in 
the Nandidae, which possess hyal and parasphenoid teeth. But what about the Serranidae and 
Hemiramphidae? In fact, there is no morphological discontinuity in the food handling and 
transport apparatus from lower acanthopterygians such as serranids to modern perciforms such 
as scarids. This is why we propose to call “pharyngognathi”, on a functional basis, all teleosts 
handling and transporting food with the PJs. Such a clearly polyphyletic assemblage would 
comprise the labrids, cichlids, serranids, maybe the lophiids… and also the cyprinids. 

4. All teleosts have gill rakers that play a role in filtering water, to protect the thin se-
condary branchial lamellae and in some cases to catch small preys. Perhaps one should view 
all teleosts as facultative filter-feeders (sensu Van den Berg et al., in press a). The branchio-
spine sieve is liable, in any teleost lineage, to transform into a more efficient filtering sieve, by 
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complexification, lengthening of the gill rakers, or reduction of the interraker distance. The 
very mechanism of filter-feeding remains poorly understood. It seems to be different in diffe-
rent species. In some cases, it seems to allow sorting of edible particles. 
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