Introduction to Elementary Particle Physics

Néda Sadooghi

Department of Physics Sharif University of Technology Tehran - Iran

Elementary Particle Physics Lecture 9 and 10: Esfand 18 and 20, 1397 1397-98-II

Leptons and quarks

Leptons

	Leptons												
Lepton Flavor (charged and neutral leptons)	Symbol	Mass in MeV	Charge	Baryonic Number	No color charges	Type of interactions or decays	Lepton flavor number						
Electron	e	0.511	-1	0	0	Electromagnetic	L _e =+1						
Muon	μ	106	-1	0	0	&	Lµ=+1						
Tauon	τ	1777	-1	0	0	Weak interactions	L ₇ =+1						
Electron neutrino	Ve	< 2 x 10 ⁻⁶	0	0	0	Only weak interactions	L _e =+1						
Muon neutrino	V_{μ}	< 0.2	0	0	0		L _µ =+1						
Tau Neutrino	ν _τ	< 18	0	0	0		L ₇ =+1						
The correspo	-	particles to e ⁻ , μ^-	, τ , and	0	0		-1 for all antileptons						

Remarks:

Lepton flavor number conservation:

- Lepton flavor number of leptons $L_e, L_\mu, L_ au = +1$
- Lepton flavor number of antileptons $L_e, L_{\mu}, L_{\tau} = -1$ Assumption: No neutrino mixing

Ex.: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$, $n \rightarrow p + e^- + \bar{\nu}_e$, $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$ **But**, $\mu^+ \rightarrow e^+ + \gamma$ is forbidden

Two other quantum numbers for leptons

- Weak hypercharge Y_W: It is 1 for all left-handed leptons
- Weak isospin T₃:

For each lepton generation, for example $\begin{pmatrix} e^-\\ \nu_e \end{pmatrix} \rightarrow T_3 = \begin{pmatrix} -\frac{1}{2}\\ +\frac{1}{2} \end{pmatrix}$

Type of interaction:

- Charged leptons undergo both EM and weak interactions
- Neutrinos interact only weakly

Quarks

	Quarks												
Flavor	Symbol	Dressed Mass in GeV (Constituent mass)	Charge	Baryonic Number	Color	Other quantum numbers	<mark>Bare</mark> Mass in MeV						
Up	u	0.31	+2/3	+1/3	r,g,b		2						
Down	d	0.31	-1/3	+1/3	r,g,b		5						
Charm	С	1.5	+2/3	+1/3	r,g,b	C = +1	1200						
Strange	s	0.5	-1/3	+1/3	r,g,b	S = -1	100						
Тор	t	180	+2/3	+1/3	r,g,b	T = +1	174000						
Bottom	b	4.5	-1/3	+1/3	r,g,b	B = -1	4200						
The corresp	oonding ant	iparticles		-1/3 for all of them	r,g,b	Minus quantum number for antiparticles							

Remarks

- Hadrons are bound states of constituent (valence) quarks
- Bare (current) quarks are not dressed. We denote the current quark mass by m₀
- Dressed quarks are surrounded by a cloud of virtual quarks and gluons (Sea quarks)
- ► This cloud explains the large constituent-quark mass M
- For hadrons the constituent quark mass M = the binding energy required to make the hadrons spontaneously emit a meson containing the valence quark

For light quarks (u,d,s):	m_0	\ll	М
For heavy quarks (c,b,t):	m_0	\simeq	М

Remarks:

Type of interaction:

- All quarks undergo EM and strong interactions

Mean lifetime (typical time of interaction): In general,

- Particles which mainly decay through strong interactions have a mean lifetime of about 10^{-23} sec
- Particles which mainly decay through electromagnetic interactions, signaled by the production of photons, have a mean lifetime in the range of $10^{-20} 10^{-16}$ sec
- Particles that decay through weak forces have a mean lifetime in the range of $10^{-10}-10^{-8}\ \text{sec}$

Other quantum numbers (see Perkins Chapter 4)

Flavor	Baryon B	Spin J	lsospin I	L	Charm C	Strangeness	Topness	Bottomness B *	El. Charge Q/e
	Б	0	1	<i>I</i> ₃	U	3	1	В	Q/ E
u	+1/3	1/2	1/2	+1/2	0	0	0	0	+2/3
d	+1/3	1/2	1/2	-1/2	0	0	0	0	-1/3
С	+1/3	1/2	0	0	+1	0	0	0	+2/3
S	+1/3	1/2	0	0	0	-1	0	0	-1/3
t	+1/3	1/2	0	0	0	0	+1	0	+2/3
b	+1/3	1/2	0	0	0	0	0	-1	-1/3

General Formulae for quarks and hadrons

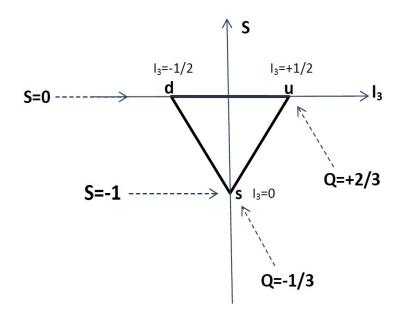
Baryon number:

$$B = +\frac{1}{3}[(n_u - n_{\bar{u}}) + (n_d - n_{\bar{d}}) + (n_c - n_{\bar{c}}) + (n_s - n_{\bar{s}}) + (n_t - n_{\bar{t}}) + (n_b - n_{\bar{b}})]$$

Charm	С	=	$+(n_c-n_{\bar{c}})$
Strangeness	S	=	$-(n_s-n_{\bar{s}})$
Topness	Т	=	$+(n_t - n_{\overline{t}})$
Bottomness	B^*	=	$-(n_b-n_{\overline{b}})$

► Hypercharge:

$$Y = B + C + S + T + B^*$$

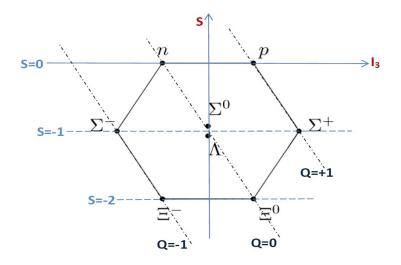

Electric charge (Gell-Mann–Nishijima Formula)

$$\frac{Q}{e} = I_3 + \frac{1}{2}Y$$

Interactions

Conserved quantity	Strong nuclear	Electromagnetic	Weak nuclear
Energy/Momentum	Yes	Yes	Yes
Charge	Yes	Yes	Yes
Baryon number	Yes	Yes	Yes
Lepton number	Yes	Yes	Yes
l (Isospin)	Yes	No	$\Delta I = 1, 1/2$
S (Strangeness)	Yes	Yes	$\Delta S = 0, 1$
C (Charm)	Yes	Yes	$\Delta C = 0, 1$
P (Parity)	Yes	Yes	No
C (C Parity)	Yes	Yes	No
CP (or T)	Yes	Yes	No (K ⁰ decay)
СРТ	Yes	Yes	Yes

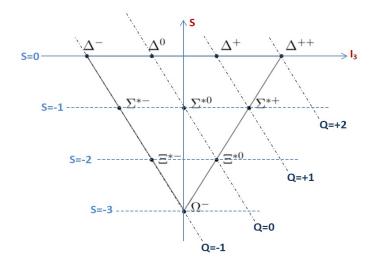
Quark patterns



Hadrons Baryons and Mesons Eightfold way (Baryon Octet), Baryon decuplet Pseudoscalar and vector mesons

Baryon Octet (u,d,s)

Bai	ryon Octet	Q/e	S	Isospin	l ₃	(mean) Mass/MeV	J ^P
n	udd	0	0	+1/2	-1/2	N (939)	
р	uud	+1	0	+1/2	+1/2	Nucleon Isospindublet	
Σ	dds	-1	-1	+1	-1	Σ (1193)	Spin-Parity = +1/2 +
Σ^{0}	uds	0	-1	+1	0	Σ Isospintriplet	for all members of
Σ*	uus	+1	-1	+1	+1		
Λ	uds	0	-1	0	0	Λ (1116)	Baryon-Octet
						Isospinsinglet	
Ξ	dss	-1	-2	+1/2	-1/2	Ξ (1318)	
Ξ0	uss	0	-2	+1/2	+1/2	Ξ Isospindublet	


Baryon Octet (u,d,s)

Baryon decuplet (u,d,s)

Bary	on Decuplet	Q/e	S	I	l ₃	(mean)Mass/MeV	JP	
Δ	ddd	-1	0	+3/2	-3/2	∆ (1232)		
Δ^{o}	ddu	0	0	+3/2	-1/2	Isospinquadruplet		
Δ^{+}	duu	+1	0	+3/2	+1/2			
Δ^{++}	uuu	+2	0	+3/2	+3/2		Spin-parity= +3/2	
Σ*-	dds	-1	-1	+1	-1	Σ (1384)	for all members of	
Σ^{*^0}	dus	0	-1	+1	0	Isospintriplet	baryon decuplet	
Σ**	uus	+1	-1	+1	+1		baryon decupier	
=*-	dss	-1	-2	+1/2	-1/2	Ξ (1533)		
Ξ* ⁰	uss	0	-2	+1/2	+1/2	Isospindublet		
Ω^{-}	SSS	-1	-3	0	0	Ω (1672)		
						Isospinsinglet		

Baryon decuplet (u,d,s)

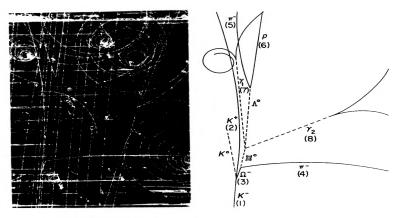
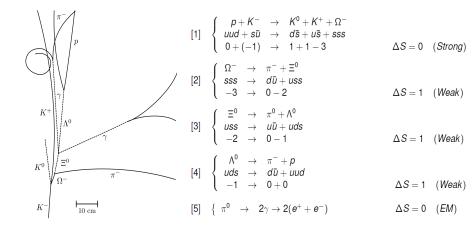


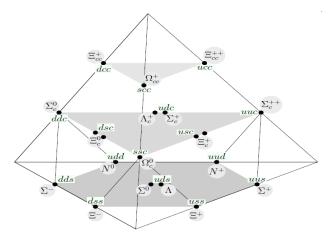
Fig. 4.11. The first Ω^- event (Barnes *et al.* 1964), courtesy Brookhaven National Laboratory). It depicts the following chain of events:

$$K^{-} + p \rightarrow \Omega^{-} + K^{+} + K^{0}$$

$$\rightarrow \Xi^{0} + \pi^{-} (\Delta S = 1 \text{ weak decay})$$


$$\rightarrow \pi^{0} + \Lambda (\Delta S = 1 \text{ weak decay})$$

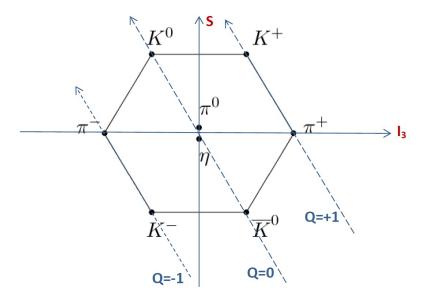
$$\rightarrow \pi^{-} + p (\Delta S = 1 \text{ weak decay})$$


$$\rightarrow \gamma + \gamma \text{ (electromagnetic decay)}$$

$$\rightarrow \psi$$

$$e^{+}e^{-} = e^{+}e^{-}$$

Baryon Multiplet (u,d,s,c)


 Antibaryons (opposite charges and quark flavor quantum numbers) are not in the same multiplets as the baryons

Pseudo-scalar Mesons (u,d,s)

Pse	Pseudoscalar Mesons			S	1	l ₃	Mass	Decay	JP
							(MeV)		
K ^o	ds)	0	+1	+1/2	-1/2	498	$K^0 \rightarrow \pi^+ \pi^-$	
K⁺	u s		+1	+1	+1/2	+1/2	494	$K^{+} \rightarrow \mu^{+} \nu_{\mu}$	
π	dū]	-1	0	+1	-1	140	$\pi^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu}$	
π^0	uū or dd	Octet	0	0	+1	0	135	$\pi^0 \rightarrow 2\gamma$	Spin-Parity= 0
π^{+}	ud] (+1	0	+1	+1	140	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$	All pseudoscalar
ĸ	sū		-1	-1	+1/2	-1/2	494	$K \rightarrow \mu^{-} \bar{\nu}_{\mu}$	mesons are spin
\bar{K}^{o}	sd		0	-1	+1/2	+1/2	498	$\overline{K}^{0} \rightarrow \pi^{+} \pi^{-}$	singlet
η or η 8	dd, uu, ss	עך	0	0	0	0	549	η → 2γ	
η' or η ₀	dd, uu, ss	Singlet	0	0	0	0	958	η΄ → ηππ →2γ	

 Antimesons (opposite charges and quark flavor quantum numbers) are in the same multiplets as the mesons

Pseudo-scalar Mesons (u,d,s)

Vector Mesons (u,d,s)

Vector Mesons		Q/e	S	I	l ₃	Mass (MeV)	Decay	J ^P
K* ⁰	ds	0	+1	+1/2	-1/2	892	К* →К π	
K**	นริ	+1	+1	+1/2	+1/2			
ρ	dū	-1	0	+1	-1		ρ → 2π	Spin-parity= 1
$ ho^{o}$	uū or dd	0	0	+1	0	776		All vector
$ ho^{\star}$	ud	+1	0	+1	+1			mesons are spin
<i>K*</i> ⁻	sū	-1	-1	+1/2	-1/2	892	К* →К π	triplet
<i>k</i> * ⁰	sd	0	-1	+1/2	+1/2			triplet
ϕ or ϕ_8	dd, uū, ss	0	0	0	0	1019	$\omega \rightarrow 3\pi$	
ω or $\mathbf{\phi}_0$	dd, uū, ss	0	0	0	0	783	$\phi \rightarrow K\overline{K}$	