Introduction to Elementary Particle Physics

Néda Sadooghi
Department of Physics
Sharif University of Technology
Tehran - Iran

Elementary Particle Physics
Lecture 9 and 10: Esfand 18 and 20, 1397
1397-98-II

Leptons and quarks

Lectrue 9

Leptons

Leptons							
Lepton Flavor (charged and neutral leptons)	Symbol	Mass in MeV	Charge	Baryonic Number	No color charges	Type of interactions or decays	Lepton flavor number
Electron	e	0.511	-1	0	0	 Weak interactions	$\mathrm{L}_{\mathrm{e}}=+1$
Muon	μ	106	-1	0	0		$\mathrm{L}_{\mu}=+1$
Tauon	τ	1777	-1	0	0		$\mathrm{L}_{\mathrm{T}}=+1$
Electron neutrino	v_{e}	$<2 \times 10^{-6}$	0	0	0	Only weak interactions	$\mathrm{L}_{\mathrm{e}}=+1$
Muon neutrino	ν_{μ}	<0.2	0	0	0		$\mathrm{L}_{\mu}=+1$
Tau Neutrino	ν_{τ}	<18	0	0	0		$L_{T}=+1$
The corresponding antiparticles to $\mathrm{e}^{-}, \mu^{-}, \tau^{-}$, and to all neutrinos				0	0		-1 for all antileptons

Lectrue 9

Remarks:

- Lepton flavor number conservation:
- Lepton flavor number of leptons $L_{e}, L_{\mu}, L_{\tau}=+1$
- Lepton flavor number of antileptons $L_{e}, L_{\mu}, L_{\tau}=-1$ Assumption: No neutrino mixing
Ex.: $\pi^{+} \rightarrow \mu^{+}+\nu_{\mu}, \quad n \rightarrow p+e^{-}+\bar{\nu}_{e}, \quad \mu^{+} \rightarrow \boldsymbol{e}^{+}+\nu_{e}+\bar{\nu}_{\mu}$
But, $\mu^{+} \rightarrow \boldsymbol{e}^{+}+\gamma$ is forbidden
- Two other quantum numbers for leptons
- Weak hypercharge Y_{w} : It is 1 for all left-handed leptons
- Weak isospin T_{3} :

For each lepton generation, for example $\binom{e^{-}}{\nu_{e}} \rightarrow T_{3}=\binom{-\frac{1}{2}}{+\frac{1}{2}}$

- Type of interaction:
- Charged leptons undergo both EM and weak interactions
- Neutrinos interact only weakly

Lectrue 9

Quarks

Quarks							
Flavor	Symbol	Dressed Mass in GeV (Constituent mass)	Charge	Baryonic Number	Color	Other quantum numbers	Bare Mass in MeV
Up	u	0.31	+2/3	+1/3	r,g,b	--	2
Down	d	0.31	-1/3	+1/3	r, g, b	--	5
Charm	c	1.5	+2/3	+1/3	r,g,b	$C=+1$	1200
Strange	s	0.5	-1/3	+1/3	r,g,b	S $=-1$	100
Top	t	180	+2/3	+1/3	r,g,b	$\mathrm{T}=+1$	174000
Bottom	b	4.5	-1/3	+1/3	r, g, b	$B=-1$	4200
The corresponding antiparticles				$-1 / 3$ for all of them	r, g, b	Minus quantum number for antiparticles	

Lectrue 9

Remarks

- Hadrons are bound states of constituent (valence) quarks
- Bare (current) quarks are not dressed. We denote the current quark mass by m_{0}
- Dressed quarks are surrounded by a cloud of virtual quarks and gluons (Sea quarks)
- This cloud explains the large constituent-quark mass M
- For hadrons the constituent quark mass $M=$ the binding energy required to make the hadrons spontaneously emit a meson containing the valence quark

For light quarks ($u, \mathrm{~d}, \mathrm{~s}$):
For heavy quarks (c,b,t):
$m_{0} \ll M$
$m_{0} \simeq M$

Lectrue 9

Remarks:

- Type of interaction:
- All quarks undergo EM and strong interactions
- Mean lifetime (typical time of interaction): In general,
- Particles which mainly decay through strong interactions have a mean lifetime of about $10^{-23} \mathrm{sec}$
- Particles which mainly decay through electromagnetic interactions, signaled by the production of photons, have a mean lifetime in the range of $10^{-20}-10^{-16} \mathrm{sec}$
- Particles that decay through weak forces have a mean lifetime in the range of $10^{-10}-10^{-8} \mathrm{sec}$

Lectrue 9

Other quantum numbers (see Perkins Chapter 4)

Flavor	Baryon	Spin	Isospin		Charm	Strangeness	Topness	Bottomness	El. Charge
	B	J	I	I_{3}	C	S	T	B^{*}	Q / e
u	$+1 / 3$	$1 / 2$	$1 / 2$	$+1 / 2$	0	0	0	0	$+2 / 3$
d	$+1 / 3$	$1 / 2$	$1 / 2$	$-1 / 2$	0	0	0	0	$-1 / 3$
c	$+1 / 3$	$1 / 2$	0	0	+1	0	0	0	$+2 / 3$
s	$+1 / 3$	$1 / 2$	0	0	0	-1	0	0	$-1 / 3$
t	$+1 / 3$	$1 / 2$	0	0	0	0	+1	0	$+2 / 3$
b	$+1 / 3$	$1 / 2$	0	0	0	0	0	-1	$-1 / 3$

Lectrue 9

General Formulae for quarks and hadrons

- Baryon number:

$$
B=+\frac{1}{3}\left[\left(n_{u}-n_{\bar{u}}\right)+\left(n_{d}-n_{\bar{d}}\right)+\left(n_{c}-n_{\bar{c}}\right)+\left(n_{s}-n_{\bar{s}}\right)+\left(n_{t}-n_{\bar{t}}\right)+\left(n_{b}-n_{\bar{b}}\right)\right]
$$

Charm
Strangeness
Topness
Bottomness

$$
\begin{aligned}
C & =+\left(n_{c}-n_{\bar{c}}\right) \\
S & =-\left(n_{s}-n_{\bar{s}}\right) \\
T & =+\left(n_{t}-n_{t}\right) \\
B^{*} & =-\left(n_{b}-n_{\bar{b}}\right)
\end{aligned}
$$

- Hypercharge:

$$
Y=B+C+S+T+B^{*}
$$

- Electric charge (Gell-Mann-Nishijima Formula)

$$
\frac{Q}{e}=I_{3}+\frac{1}{2} Y
$$

Lecture 9

Interactions

Conserved quantity	Strong nuclear	Electromagnetic	Weak nuclear
Energy/Momentum	Yes	Yes	Yes
Charge	Yes	Yes	Yes
Baryon number	Yes	Yes	Yes
Lepton number	Yes	Yes	Yes
I (Isospin)	Yes	$\Delta I=1,1 / 2$	
S (Strangeness)	Yes	Yes	$\Delta S=0,1$
C (Charm)	Yes	Yes	$\Delta C=0,1$
P (Parity)		Yes	No
C (C Parity)	Yes	Yes	No
CP (or T)	Yes	Yes	No $\left(K^{0}\right.$ decay)
CPT	Yes	Yes	Yes

Lecture 10

Quark patterns

Hadrons

Baryons and Mesons

Eightfold way (Baryon Octet), Baryon decuplet
Pseudoscalar and vector mesons

Lecture 10

Baryon Octet (u,d,s)

Baryon Octet		Q/e	5	Isospin	I_{3}	(mean) Mass/MeV	J^{p}
n	udd	0	0	+1/2	-1/2	N (939) Nucleon Isospindublet	Spin-Parity $=+1 / 2^{+}$ for all members of Baryon-Octet
p	und	+1	0	+1/2	+1/2		
Σ	dds	-1	-1	+1	-1	$\begin{gathered} \Sigma(1193) \\ \Sigma \text { Isospintriplet } \end{gathered}$	
Σ	uds	0	-1	+1	0		
Σ	uus	+1	-1	+1	+1		
Λ	uds	0	-1	0	0	Λ (1116) Isospinsinglet	
三	dss	-1	-2	+1/2	-1/2	$\begin{gathered} \\ \equiv(1318) \\ \equiv \\ \text { Isospindublet } \end{gathered}$	
こ0	uss	0	-2	+1/2	+1/2		

Lecture 10

Baryon Octet (u,d,s)

Lecture 10

Baryon decuplet (u,d,s)

Bar	Decuplet	Q/e	S	1	I_{3}	(mean)Mass/MeV	J^{p}
Δ	ddd	-1	0	+3/2	-3/2	$\Delta(1232)$ Isospinquadruplet	$\begin{aligned} & \text { Spin-parity }=+3 / 2^{+} \\ & \text {for all members of } \\ & \text { baryon decuplet } \end{aligned}$
Δ^{0}	ddu	0	0	+3/2	-1/2		
Δ^{+}	duu	+1	0	+3/2	+1/2		
Δ^{++}	uuu	+2	0	+3/2	+3/2		
Σ^{*-}	dds	-1	-1	+1	-1	Σ (1384) Isospintriplet	
$\Sigma^{* O}$	dus	0	-1	+1	0		
Σ^{*+}	uus	+1	-1	+1	+1		
ミ*-	dss	-1	-2	+1/2	-1/2	三 (1533) Isospindublet	
\#*O	uss	0	-2	+1/2	+1/2		
Ω	sss	-1	-3	0	0	$\begin{gathered} \Omega(1672) \\ \text { Isospinsinglet } \end{gathered}$	

Lecture 10

Baryon decuplet (u,d,s)

Lecture 10

Fig. 4.11. The first Ω^{-}event (Barnes et al. 1964), courtesy Brookhaven National Laboratory). It depicts the following chain of events:

$$
\left.\begin{array}{rl}
K^{-}+p \rightarrow \Omega^{2}+K^{+}+K^{0} \\
\Omega^{-} \\
\Xi^{0}+\pi^{-}(\Delta S=1 \text { weak decay) }
\end{array}\right)
$$

Lecture 10

[1] $\left\{\begin{aligned} p+K^{-} & \rightarrow K^{0}+K^{+}+\Omega^{-} \\ u u d+s \bar{u} & \rightarrow d \bar{s}+u \bar{s}+s s s \\ 0+(-1) & \rightarrow 1+1-3\end{aligned}\right.$
[2] $\left\{\begin{array}{lll}\Omega^{-} & \rightarrow & \pi^{-}+\bar{\Xi}^{0} \\ s s S & \rightarrow & d \bar{u}+u s s \\ -3 & \rightarrow & 0-2\end{array}\right.$
$\Delta S=0 \quad$ (Strong)
[3] $\left\{\begin{aligned} \bar{Z}^{0} & \rightarrow \pi^{0}+\Lambda^{0} \\ u S S & \rightarrow u \bar{u}+u d s \\ -2 & \rightarrow 0-1\end{aligned}\right.$
$\Delta S=1 \quad$ (Weak)
[4] $\left\{\begin{array}{rll}\Lambda^{0} & \rightarrow & \pi^{-}+p \\ u d s & \rightarrow & d \bar{u}+u u d \\ -1 & \rightarrow 0+0\end{array}\right.$
$\Delta S=1 \quad$ (Weak)
[5] $\left\{\pi^{0} \rightarrow 2 \gamma \rightarrow 2\left(e^{+}+e^{-}\right)\right.$
$\Delta S=1 \quad$ (Weak)
$\Delta S=0 \quad(E M)$

Lecture 10

Baryon Multiplet (u,d,s,c)

- Antibaryons (opposite charges and quark flavor quantum numbers) are not in the same multiplets as the baryons

Lecture 10

Pseudo-scalar Mesons (u,d,s)

Pseudoscalar Mesons			Q/e	S	1	I_{3}	Mass	Decay	J^{p}
K^{0}	$d \bar{s}$	$\} \text { Octet }$	0	+1	+1/2	-1/2	498	$K^{0} \rightarrow \pi^{+} \pi^{-}$	Spin-Parity=0 All pseudoscalar mesons are spin singlet
K^{+}	$u \bar{s}$		+1	+1	+1/2	+1/2	494	$K^{+} \rightarrow \mu^{+} \nu_{\mu}$	
π	$d \bar{u}$		-1	0	+1	-1	140	$\pi \rightarrow \mu \bar{v}_{\mu}$	
π^{0}	$u \bar{u}$ or $d \bar{d}$		0	0	+1	0	135	$\pi^{0} \rightarrow 2 \gamma$	
π^{+}	$u \bar{d}$		+1	0	+1	+1	140	$\pi^{+} \rightarrow \mu^{+} v_{\mu}$	
K	$s \bar{u}$		-1	-1	+1/2	-1/2	494	$K \rightarrow \mu^{-} \bar{v}_{\mu}$	
\bar{K}^{0}	$s \bar{d}$		0	-1	+1/2	+1/2	498	$\bar{K}^{0} \rightarrow \pi^{+} \pi^{-}$	
η or η_{8}	$d \bar{d}, u \bar{u}, s \bar{s}$		0	0	0	0	549	$\eta \rightarrow 2 \gamma$	
η^{\prime} or η_{0}	$d \bar{d}, u \bar{u}, s \bar{s}$	Singlet	0	0	0	0	958	$\eta^{\prime} \rightarrow \eta \pi \pi \rightarrow 2 \gamma$	

- Antimesons (opposite charges and quark flavor quantum numbers) are in the same multiplets as the mesons

Lecture 10

Pseudo-scalar Mesons (u,d,s)

Lecture 10

Vector Mesons (u,d,s)

Vector Mesons		Q/e	S	I	I_{3}	Mass	Decay	$J^{\text {P }}$
$K^{* O}$	$d \bar{s}$	0	+1	+1/2	-1/2	892	$K^{*} \rightarrow K \pi$	Spin-parity= 1 All vector mesons are spin triplet
K^{*+}	$u \bar{s}$	+1	+1	+1/2	+1/2			
ρ	$d \bar{u}$	-1	0	+1	-1	776	$\rho \rightarrow 2 \pi$	
ρ^{0}	$u \bar{u}$ or $d \bar{d}$	0	0	+1	0			
ρ^{+}	$u \bar{d}$	+1	0	+1	+1			
K^{*}	$s u$	-1	-1	+1/2	-1/2	892	$K^{*} \rightarrow K \pi$	
$\bar{K}^{*}{ }^{0}$	$s \bar{d}$	0	-1	+1/2	+1/2			
ϕ or ϕ_{8}	$d \bar{d}, u \bar{u}, s \bar{s}$	0	0	0	0	1019	$\omega \rightarrow 3 \pi$	
ω or ϕ_{0}	$d \bar{d}, u \bar{u}, s \bar{s}$	0	0	0	0	783	$\phi \rightarrow K \bar{K}$	

