
REGULAR 
EXPRESSIONS

Dr. Hatem Moharram



THE REGULAR OPERATIONS

We introduced and defined finite automata and regular languages. We

now begin to investigate their properties. Doing so will help develop a

toolbox of techniques for designing automata to recognize particular

languages. The toolbox also will include ways of proving that certain

other languages are nonregular (i.e., beyond the capability of finite

automata).

In arithmetic, the basic objects are numbers and the tools are

operations for manipulating them, such as + and ×. In the theory of

computation, the objects are languages and the tools include

operations specifically designed for manipulating them. We define

three operations on languages, called the regular operations, and use

them to study properties of the regular languages.

Dr. Hatem Moharram



DEFINITION 1.23

Let A and B be languages. We define the regular operations union,

concatenation, and star as follows:

• Union: A  B = {x| x  A or x  B}.

• Concatenation: A  B = {xy| x  A and y  B}.

• Star: A* = {x1x2 . . . xk| k  0 and each xi  A}.

The union operation takes all the strings in both A and B and lumps them together

into one language.

The concatenation operation attaches a string from A in front of a string from B in all possible
ways to get the strings in the new language.

The star operation is a unary operation instead of a binary operation. It works by attaching any
number of strings in A together to get a string in the new language A*.

The empty string  is always a member of A*, no matter what A is.



EXAMPLE 1.24

Let the alphabet be the standard 26 letters {a, b, . . . , z}. If A = {good,

bad} and B = {boy, girl}, then

A  B = {good, bad, boy, girl},

A  B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {, good, bad, goodgood, goodbad, badgood, badbad,

goodgoodgood, goodgoodbad, gooadgdbood, goodbadbad, . . . }.

Dr. Hatem Moharram



Let N = {1, 2, 3, . . . } be the set of natural numbers.

When we say that N is closed under multiplication, we mean that

for any x and y in N, the product x × y also is in N. In contrast, N
is not closed under division, as 1 and 2 are in N but 1/2 is not.

A collection of objects is closed under some operation if applying that

operation to members of the collection returns an object still in the

collection.

We show that

“the collection of regular languages is closed under all three of

the regular operations”.

Dr. Hatem Moharram



THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1  A2.

THEOREM 1.26

The class of regular languages is closed under the concatenation

operation.

In other words, if A1 and A2 are regular languages then so is A1  A2.

Dr. Hatem Moharram



1.2 NONDETERMINISM

When the machine is in a given state and reads the next input symbol,

we know what the next state will be—it is determined. We call this

deterministic computation. In a nondeterministic machine, several

choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every

deterministic finite automaton (DFA) is automatically a

nondeterministic finite automaton (NFA).

State q1 has one exiting arrow for 0,

but it has two for 1; q2 has one arrow

for 0, but it has none for 1. In an

NFA, a state may have zero, one, or

many exiting arrows for each

alphabet symbol.Dr. Hatem Moharram



The difference between a deterministic finite automaton (DFA) and a

nondeterministic finite automaton (NFA) is:

First, every state of a DFA always has exactly one exiting transition

arrow for each symbol in the alphabet. The NFA violates that rule.

Second, in a DFA, labels on the transition arrows are symbols from the
alphabet. This NFA has an arrow with the label . In general, an NFA may have
arrows labeled with members of the alphabet or . Zero, one, or many arrows
may exit from each state with the label .

Dr. Hatem Moharram



How does an NFA compute?

Suppose that we are running an NFA on an input string and come to a

state with multiple ways to proceed.

After reading that symbol, the machine splits into multiple copies of

itself and follows all the possibilities in parallel, and continues as

before.

If there are subsequent choices, the machine splits again.

If the next input symbol doesn’t appear on any of the arrows exiting

the state occupied by a copy of the machine, that copy of the machine

dies, along with the branch of the computation associated with it.

Finally, if any one of these copies of the machine is in an accept state

at the end of the input, the NFA accepts the input string.



If a state with an  symbol on an exiting arrow is encountered,

something similar happens. Without reading any input, the machine

splits into multiple copies, one following each of the exiting  -labeled

arrows and one staying at the current state. Then the machine

proceeds nondeterministically as before.

Dr. Hatem Moharram



By continuing to experiment in this way, you will see that N1 accepts

all strings that contain either 101 or 11 as a substring.

as q4 is an accept state, N1

accepts this string.



Nondeterministic finite automata are useful in several respects:

- As we will show, every NFA can be converted into an equivalent

DFA,

- constructing NFAs is sometimes easier than directly constructing

DFAs.

- An NFA may be much smaller than its deterministic counterpart, or

its functioning may be easier to understand.

- Nondeterminism in finite automata is also a good introduction to

nondeterminism in more powerful computational models because

finite automata are especially easy to understand.

Dr. Hatem Moharram



EXAMPLE 1.30

Let A be the language consisting of all strings over {0,1} containing a 1

in the third position from the end (e.g., 000100 is in A but 0011 is not).

The following four-state NFA N2 recognizes A.

One good way to view the computation of this NFA is to say that it

stays in the start state q1 until it “guesses” that it is three places from

the end. At that point, if the input symbol is a 1, it branches to state q2

and uses q3 and q4 to “check” on whether its guess was correct.

Dr. Hatem Moharram



As mentioned, every NFA can be converted into an equivalent DFA;

but sometimes that DFA may have many more states. The smallest

DFA for A contains eight states. Furthermore, understanding the

functioning of the NFA is much easier, as you may see by examining

the following figure for the DFA.

Dr. Hatem Moharram



EXAMPLE 1.33

The following NFA N3 has an input alphabet {0} consisting of a single

symbol. An alphabet containing only one symbol is called a unary
alphabet.

Think of the machine operating by initially guessing whether to test for a multiple of 2 or a

multiple of 3 by branching into either the top loop or the bottom loop and then checking

whether its guess was correct. Of course, we could replace this machine by one that

doesn’t have  arrows or even any nondeterminism at all, but the machine shown is the

easiest one to understand for this language.

This machine demonstrates the convenience

of having  arrows. It accepts all strings of the

form 0k where k is a multiple of 2 or 3.

(Remember that the superscript denotes

repetition, not numerical exponentiation.) For

example, N3 accepts the strings , 00, 000,

0000, and 000000, but not 0 or 00000.



EXAMPLE 1.35

Practice with it to satisfy yourself that it accepts the strings , a, baba,

and baa, but that it doesn’t accept the strings b, bb, and babba. Later

we use this machine to illustrate the procedure for converting NFAs to

DFAs.

Dr. Hatem Moharram



FORMAL DEFINITION OF A

NONDETERMINISTIC FINITE AUTOMATON

In a DFA, the transition function takes a state and an input symbol and

produces the next state.

In an NFA, the transition function takes a state and an input symbol or
the empty string and produces the set of possible next states.

In order to write the formal definition, we need to set up some

additional notation.

Dr. Hatem Moharram



For any set Q we write P(Q) to be the collection of all subsets of Q. Here

P (Q) is called the power set of Q. For any alphabet  we write  to be 

 {}. Now we can write the formal description of the type of the
transition function in an NFA as : Q ×  P(Q).

EXAMPLE 1.38

Recall the NFA N1:

The formal description of N1 is (Q, ,  , q1, F),

where

1. Q = {q1, q2, q3, q4},

2. = {0,1}

3. is given as

4. q1 is the start state, and
5. F = {q4}.



DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple (Q, ,  , q0, F), where:

1. Q is a finite set of states,

2.  is a finite alphabet,
3.  : Q ×  P(Q) is the transition function,

4. q0  Q is the start state, and

5. F  Q is the set of accept states.

Dr. Hatem Moharram



Let N = (Q, ,  , q0, F) be an NFA and w a string over the alphabet.
Then we say that N accepts w if we can write w as w= y1y2 · · · ym,

where each yi is a member of  and a sequence of states r0, r1, . . . ,

rm exists in Q with three conditions:

1. r0 = q0,

2. ri+1  (ri, yi+1), for i = 0, . . . ,m − 1, and

3. rm  F.

Condition 1 says that the machine starts out in the start state.
Condition 2 says that state ri+1 is one of the allowable next states

when N is in state ri and reading yi+1.

condition 3 says that the machine accepts its input if the last state is

an accept state.

Dr. Hatem Moharram



EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same

class of languages. Such equivalence is both surprising and useful.

It is surprising because NFAs appear to have more power than DFAs,

so we might expect that NFAs recognize more languages.

It is useful because describing an NFA for a given language

sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same

language.

Dr. Hatem Moharram



THEOREM 1.39

Every nondeterministic finite automaton has an equivalent

deterministic finite automaton.

Theorem 1.39 states that every NFA can be converted into an equivalent DFA. Thus

nondeterministic finite automata give an alternative way of characterizing the

regular languages.

COROLLARY 1.40

A language is regular if and only if some nondeterministic finite

automaton recognizes it.

we define E(R) to be the collection of states that can be reached from

members of R by going only along  arrows, including the members of

R themselves. Dr. Hatem Moharram



EXAMPLE 1.41

Let N4 be the machine that appears in Example 1.35. For clarity, we

have relabeled the states of N4 to be {1, 2, 3}. Thus in the formal

description of N4 = (Q, {a,b}, , 1, {1}), the set of states Q is {1, 2, 3}.

To construct a DFA D that is equivalent to N4,

1- determines D’s states:
N4 has three states, {1, 2, 3}, so we construct D

with eight states, one for each subset of N4’s

states. We label each of D’s states with the

corresponding subset. Thus D’s state set is

{ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

.
Dr. Hatem Moharram



2- determines the start and accept states of D:

The start state is E({1}), the set of states that are

reachable from 1 by traveling along  arrows, plus 1

itself. An  arrow goes from 1 to 3, so E({1}) = {1, 3}.

The new accept states are those containing N4’s

accept state; thus {{1},{1,2},{1,3},{1,2,3}}.

3- determines D’s transition function:

Each of D’s states goes to one place on input a and one place on input

b. We illustrate the process of determining the placement of D’s

transition arrows with a few examples.

Dr. Hatem Moharram



In D, state {2} goes to {2,3} on input a because in N4, state 2 goes to

both 2 and 3 on input a and we can’t go farther from 2 or 3 along 

arrows. State {2} goes to state {3} on input b because in N4, state 2

goes only to state 3 on input b and we can’t go farther from 3 along 

arrows. {2}  
𝒂

{2,3} , {2}  
𝒃

{3}

State {1} goes to  on a because no a arrows exit it. It

goes to {2} on b. {1}  
𝒂
, {1}  

𝒃
{2}

Note that the procedure in Theorem 1.39 specifies

that we follow the  arrows after each input symbol is

read.

State {3} goes to {1,3} on a because in N4, state 3 goes to 1 on a and 1

in turn goes to 3 with an  arrow. State {3} on b goes to .

{3}  
𝒂

{1,3} , {3}  
𝒃

Dr. Hatem Moharram



State {1,2} on a goes to {2,3} because 1 points at no states with a
arrows, 2 points at both 2 and 3 with a arrows, and neither points

anywhere with  arrows. State {1,2} on b goes to {2,3}.

{1,2}  
𝒂

{2,3} , {1,2}  
𝒃

{2,3}

Continuing in this way, we obtain the following diagram for D.

{1,3}  
𝒂

{1,3} , {1,3}  
𝒃

{2}

{2,3}  
𝒂

{1,2,3} , {2,3}  
𝒃

{3}

{1,2,3}  
𝒂

{1,2,3} , {1,2,3}  
𝒃

{2,3}

Dr. Hatem Moharram



We may simplify this machine by observing that no arrows point at

states {1} and {1, 2}, so they may be removed without affecting the

performance of the machine.



CLOSURE UNDER THE REGULAR OPERATIONS

we can use the regular operations to build up expressions describing

languages, which are called regular expressions. An example is:

(0  1)0*

the symbols 0 and 1 are shorthand for the sets {0} and {1}. So (0  1)

means ({0}  {1}). The value of this part is the language {0,1}.

The part 0* means {0}*, and its value is the language consisting of all

strings containing any number of 0s.

the concatenation symbol often is implicit in regular expressions. Thus (0  1)0
actually is shorthand for (0  1)  0.

the value is the language consisting of all strings starting with a 0 or a 1 followed
by any number of 0s.

Dr. Hatem Moharram



EXAMPLE 1.51

Another example of a regular expression is (0  1)* .

It starts with the language (0  1)=({0}  {1})= {0,1} and applies the

operation.

The value of this expression, (0  1)*, is the language consisting of all

possible strings of 0s and 1s.

If  = {0,1}, we can write  as shorthand for the regular expression (0 

1).

Dr. Hatem Moharram



More generally, if  is any alphabet, the regular expression  describes

the language consisting of all strings of length 1 over this alphabet,

and * describes the language consisting of all strings over that

alphabet.

Similarly, * 1 is the language that contains all strings that end in a 1.

The language (0 *)  (* 1) consists of all strings that start with a 0 or

end with a 1.

Dr. Hatem Moharram



In arithmetic, we say that × has precedence over + to mean that when

there is a choice, we do the × operation first. Thus in 2+3×4, the 3×4 is

done before the addition. To have the addition done first, we must add

parentheses to obtain (2 + 3) × 4.

In regular expressions:

1- the star operation * is done first,

2- concatenation  , and finally

3- union ,

unless parentheses change the usual order.

Dr. Hatem Moharram



DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet ,

2. 

3. 

4. (R1  R2), where R1 and R2 are regular expressions,

5. (R1  R2), where R1 and R2 are regular expressions, or

6. (R1)*, where R1 is a regular expression.

In items 1 and 2, the regular expressions a and  represent the

languages {a} and {}, respectively.

In item 3, the regular expression  represents the empty language.

In items 4, 5, and 6, the expressions represent the languages obtained by taking

the union or concatenation of the languages R1 and R2, or the star of the language

R1, respectively.

FORMAL DEFINITION OF A REGULAR EXPRESSION

Dr. Hatem Moharram



Don’t confuse the regular expressions  and :

The expression  represents the language containing a single string—

namely, the empty string.

whereas  represents the language that doesn’t contain any strings.

let R+ be shorthand for RR*. In other words, whereas R* has all strings

that are 0 or more concatenations of strings from R, the language R+

has all strings that are 1 or more concatenations of strings from R.

So R+   = R*.

In addition, we let Rk be shorthand for the concatenation of k R’s with

each other.

When we want to distinguish between a regular expression R and the

language that it describes, we write L(R) to be the language of R.



EXAMPLE 1.53

In the following instances, we assume that the alphabet is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. *1* = {w| w has at least one 1}.

3. *001* = {w| w contains the string 001 as a substring}.

4. 1*(01+)* = {w| every 0 in w is followed by at least one 1}.

5. ()* = {w| w is a string of even length}.

Dr. Hatem Moharram



6. ( )* = {w| the length of w is a multiple of 3}.

7. 01  10 = {01, 10}

8. 0*0  1*1  01= {w| w starts and ends with the same symbol}.

9. (0  )1*= 01* 1* = {0, 01, 011,0111,……., 1,11,111,…}

The expression 0 describes the language {0,}, so the concatenation

operation adds either 0 or  before every string in 1.

10. (0  )(1 )= {,0,1,01}

11. 1* = . Concatenating the empty set to any set yields the empty set.

12. *={}. the star operation can put together 0 strings, giving only the empty string.

Dr. Hatem Moharram



Regular Expressions Regular Set

(010*) L= { 0, 1, 10, 100, 1000, 10000, … }

(0*10*) L={1, 01, 10, 010, 0010, …}

(0  ε)(1  ε) L= {ε, 0, 1, 01}

(a  b)
*

Set of strings of a’s or b’s of any length including the null string. So L= { ε, a, 
b,aa,ab,ba,bb,…….}

(a  b)*abb Set of strings of a’s or b’s ending with the string abb, So L = {abb, aabb, babb, 
aaabb, ababb, …………..}

(11)* Set consisting of even number of 1’s including empty string, So L= {ε, 11, 1111, 
111111, ……….}

(aa)*(bb)*b Set of strings consisting of even number of a’s followed by odd number of b’s , so 
L= {b, aab, aabbb, aabbbbb, aaaab, aaaabbb, …………..}

(aa  ab  ba 
bb)

*
String of a’s and b’s of even length can be obtained by concatenating any 
combination of the strings aa, ab, ba and bb including null, so L= {aa, ab, ba, bb, 
aaab, aaba, …………..}

Dr. Hatem Moharram



If we let R be any regular expression, we have the following identities:

R   = R.
Adding the empty language to any other language will not change it.

R   = R.
Joining the empty string to any string will not change it.

However, exchanging  and  in the preceding identities may cause the

equalities to fail.

R   may not equal R.
For example, if R = 0, then L(R) = {0} but L(R  ) = {0, }.

R   may not equal R.
For example, if R = 0, then L(R) = {0} but L(R  ) = .



EQUIVALENCE WITH FINITE AUTOMATA

Any regular expression can be converted into a finite automaton that

recognizes the language it describes, and vice versa.

THEOREM 1.54

A language is regular if and only if some regular expression describes

it.

Recall that a regular language is one that is recognized by some finite

automaton.

Dr. Hatem Moharram



Say that we have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A. If an NFA

recognizes A then A is regular.

1. R = a for some a . Then L(R) = {a}, and the following NFA

recognizes L(R).

Formally, N = {{q1, q2}, , , q1, {q2}}, where we describe  by saying

that (q1, a) = {q2} and that (r, b) = ; for r  q1 or b  a.

2. R = . Then L(R) = {}, and the following NFA recognizes L(R).

Formally, N = { {q1}, , , q1, {q1}}, where (r, b) =  ; for any r and b



3. R = . Then L(R) = , and the following NFA recognizes L(R).

Formally, N ={{q}, , , q,  }, where (r, b) =  for any r and b.

Dr. Hatem Moharram



4. R = R1  R2.
Let N1 = (Q1, ,  1, q1, F1) recognize R1, and N2 = (Q2, ,  𝟐, q2, F2)

recognize R2. Construct N = (Q, , , q0, F) to recognize R1  R2.

1. Q = {q0}  Q1  Q2.

2. The state q0 is the start state of N.

3. The set of accept states F = F1F2.

4. Define  so that for any q Q and any a  ,

Dr. Hatem Moharram



5. R = R1  R2.
Let N1 = (Q1, ,  1, q1, F1) recognize R1, and N2 = (Q2, ,  𝟐, q2, F2)

recognize R2. Construct N = (Q, , , q1, F2) to recognize R1  R2.

1. Q = Q1  Q2.
2. The state q1 is the same as the start state of R1.

3. The accept states F2 are the same as the accept states of R2.

4. Define  so that for any q Q and any a  ,

Dr. Hatem Moharram



6. R = R*1

Let N1 = (Q1, , 1, q1, F1) recognize R1. Construct N = (Q, , , q0, F) to

recognize R*1.

1. Q = {q0} Q1.
2. The state q0 is the new start state of R.

3. F={q0}  F.

4. Define  so that for any q Q and any a  ,

Dr. Hatem Moharram



We build up from the smallest

subexpressions to larger subexpressions

until we have an NFA for the original

expression, as shown in the following

diagram.

Note that this procedure generally doesn’t

give the NFA with the fewest states.

In this example, the procedure gives an

NFA with eight states, but the smallest

equivalent NFA has only two states.

EXAMPLE 1.56

We convert the regular expression (ab  a)* to an NFA in a sequence

of stages.

Dr. Hatem Moharram



EXAMPLE 1.58

convert the regular expression (ab)*aba to an NFA.

A few of the minor steps are not shown.



Generalized nondeterministic finite automata GNFA are simply

nondeterministic finite automata wherein the transition arrows may

have any regular expressions as labels, instead of only members of

the alphabet or .

The GNFA reads blocks of symbols from the input, not necessarily just

one symbol at a time as in an ordinary NFA.

The GNFA moves along a transition arrow connecting

two states by reading a block of symbols from the

input, which themselves constitute a string described

by the regular expression on that arrow.

A GNFA is nondeterministic and so may have several

different ways to process the same input string. It

accepts its input if its processing can cause the

GNFA to be in an accept state at the end of the input.



We can easily convert a DFA into a GNFA in the

special form.

1- We add a new start state with an  arrow to the

old start state and a new accept state with 

arrows from the old accept states.

2- If any arrows have multiple labels (or if there

are multiple arrows going between the same two

states in the same direction), we replace each with

a single arrow whose label is the union of the

previous labels.

3- We add arrows labeled  between states that

had no arrows.
Dr. Hatem Moharram



Now we show how to convert a GNFA into a

regular expression.

We do so by selecting a state, ripping it out

of the machine, and repairing the

remainder so that the same language is

still recognized. Any state will do, provided
that it is not the start or accept state. Let’s
call the removed state qrip.

take the machine from qi to qj either directly or
via qrip.

Dr. Hatem Moharram



In the old machine, if

1. qi goes to qrip with an arrow labeled R𝟏,

2. qrip goes to itself with an arrow labeled R2,

3. qrip goes to qj with an arrow labeled R3, and

4. qi goes to qj with an arrow labeled R4,

then in the new machine, the arrow from qi to qj gets the label

(R1)(R2)*(R3) (R4).

Dr. Hatem Moharram



We use the procedure CONVERT(G), which takes a GNFA and returns

an equivalent regular expression.

CONVERT(G):

1. Let k be the number of states of G.

2. If k = 2, then G must consist of a start state, an accept state, and a

single arrow connecting them and labeled with a regular expression R.

Return the expression R.

3. If k > 2, we select any state qrip  Q different from qstart and qaccept

and let G’ be the GNFA (Q’,, ’, qstart, q𝒂𝒄𝒄𝒆𝒑𝒕), where

Q’ = Q − {qrip},

and for any qiQ’−{qaccept} and any qjQ’−{qstart}, let

’(qi, qj) = (R1)(R2)*(R3)(R4),

for R1 = (qi, qrip), R2 = (qrip, qrip), R3 = (qrip, qj), and R4 = (qi, qj).

4. Compute CONVERT(G’) and return this value.



EXAMPLE 1.66

In this example, we use the preceding algorithm to convert a DFA into

a regular expression. We begin with the two-state DFA in Figure

1.67(a).

adding a new start state

and a new accept state

we remove state 2 and update

the remaining arrow labels.

Dr. Hatem Moharram



EXAMPLE 1.68

In this example, we begin with a three-state DFA. The steps in the

conversion are shown in the following figure.

Dr. Hatem Moharram



Dr. Hatem Moharram



NONREGULAR LANGUAGES

In this section, we show how to prove that certain languages cannot

be recognized by any finite automaton.

Let’s take the language B = {0n1n| n 0}. If we attempt to find a DFA that
recognizes B, we discover that the machine seems to need to remember how
many 0s have been seen so far as it reads the input. Because the number of 0s
isn’t limited, the machine will have to keep track of an unlimited number of
possibilities. But it cannot do so with any finite number of states.

because the language appears to require unbounded memory doesn’t

mean that it is nonregular. It does happen to be true for the language

B; but other languages seem to require an unlimited number of

possibilities, yet actually they are regular.

Dr. Hatem Moharram



For example, consider two languages over the alphabet = {0,1}:

C = {w| w has an equal number of 0s and 1s}, and

D = {w| w has an equal number of occurrences of 01 and 10 as

substrings}.

At first glance, a recognizing machine appears to need to count in

each case, and therefore neither language appears to be regular. As

expected, C is not regular, but surprisingly D is regular!

we show how to prove that certain languages are not regular.

Dr. Hatem Moharram



THE PUMPING LEMMA FOR REGULAR LANGUAGES

The pumping lemma states that all regular languages have a special

property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped” if

they are at least as long as a certain special value, called the pumping
length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.
Dr. Hatem Moharram



THEOREM 1.70

Pumping lemma: If A is a regular language, then there is a number p
(the pumping length) where if s is any string in A of length at least p,

then s may be divided into three pieces, s = xyz, satisfying the

following conditions:

1. for each i  0, xyiz  A,

2. |y| > 0, and

3. |xy|  p.

Recall the notation where |s| represents the length of string s, yi means that i
copies of y are concatenated together, and y0 equals .

When s is divided into xyz, either x or z may be , but condition 2 says that y  .

Observe that without condition 2 the theorem would be trivially true. Condition 3

states that the pieces x and y together have length at most p.

Dr. Hatem Moharram



EXAMPLE 1.73

Let B be the language {0n1n|n  0}. We use the pumping lemma to

prove that B is not regular. The proof is by contradiction.
Solution:

Assume to the contrary that B is regular. Let p be the pumping length given by the

pumping lemma. Choose s =0p1p. Because s B and |s | >p, the pumping lemma

guarantees that s can be split into three pieces, s = xyz, where for any i  0 the

string xyiz is in B. We consider three cases to show that this result is impossible.

1. The string y consists only of 0s. In this case, the string xyyz has more 0s than

1s and so is not a member of B, violating condition 1 of the pumping lemma. This

case is a contradiction.

2. The string y consists only of 1s. This case also gives a contradiction.

3. The string y consists of both 0s and 1s. In this case, the string xyyz may have

the same number of 0s and 1s, but they will be out of order with some 1s before

0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is regular, so B is not

regular.

Dr. Hatem Moharram



EXAMPLE 1.74

Let C = {w| w has an equal number of 0s and 1s}. We use the pumping

lemma to prove that C is not regular.

Solution
Assume to the contrary that C is regular. Let p be the pumping length given by the pumping
lemma. Let s be the string 0p1p. With s being a member of C and having length more than p,
the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any i 0
the string xyiz is in C. We would like to show that this outcome is impossible.
But wait, it is possible! If we let x and z be the empty string and y be the string 0p1p, then xyiz
always has an equal number of 0s and 1s and hence is in C. So it seems that s can be pumped.
Here condition 3 in the pumping lemma is useful. It stipulates that when pumping s, it must be
divided so that |xy|p. That restriction on the way that s may be divided makes it easier to
show that the string s = 0p1p we selected cannot be pumped. If |xy|  p, then y must consist
only of 0s, so xyyz  C. Therefore, s cannot be pumped. That gives us the desired contradiction.

Dr. Hatem Moharram



EXAMPLE 1.75

Let F = {ww| w  {0,1}*}. We show that F is nonregular, using the

pumping lemma.

Solution

Assume to the contrary that F is regular. Let p be the pumping length

given by the pumping lemma. Let s be the string 0p10p1. Because s is a

member of F and s has length more than p, the pumping lemma

guarantees that s can be split into three pieces, s = xyz, satisfying the

three conditions of the lemma. We show that this outcome is

impossible.

Condition 3 is once again crucial because without it we could pump s
if we let x and z be the empty string. With condition 3 the proof follows

because y must consist only of 0s, so xyyz  F.

Dr. Hatem Moharram


