ADDITIONAL SITE CHARACTERIZATION RESULTS FOR SOUTHERN PORTION OF CRESENT MILLS INDUSTRIAL SITE 15690 CALIFORNIA HIGHWAY 89 CRESENT MILLS, CALIFORNIA

Prepared for:

Sierra Institute for Community and Environment 4438 Main Street / PO Box 11 Taylorsville, California 95983

Prepared by:

Sierra Streams Institute 13075 Woolman Lane Nevada City, California 95959

February 2018

Sierra Institute for Community and Environment 4438 Main Street / PO Box 11 Taylorsville, California 95983

Attention: Jonathan Kusel Ph.D.

Project: Crescent Mills Industrial Site

15690 California Highway 89 Crescent Mills, California

Transmittal: Report of Additional Site Characterization Results for Southern Portion

of Crescent Mills Industrial Site

Dear Mr. Kusel:

Sierra Streams Institute prepared this report documenting Additional Site Characterization Results for the Southern Portion of Crescent Mills Industrial Site located at 15690 California Highway 89 in Crescent Mills, California. Soil sampling and analysis was performed to provide additional pre-purchase information regarding environmental and geotechnical conditions at the site. The site is a former lumber mill facility and is comprised of three parcels identified by the Plumas County Assessor's Parcel Numbers (APNs) as 111-050-065, 111-050-066, and 111-050-067. This report summarizes the results of Sierra Streams Institute's recent assessment of southern portion of the Site and evaluates environmental conditions of near surface soil and geotechnical suitability of soil and wood waste stockpiles.

If you have any questions regarding this report, please contact the undersigned.

Sincerely,

Sierra Streams Institute

Kyle Leach, P.G. 7108 Project Geologist

copies: Plumas County Community Development Commission: Attn:

Plumas County Environmental Health Department / Attn: Jerry Sipe

USEPA / Attn: Eric Byous

TABLE OF CONTENTS

1	INTRO	DDUCTION	4
2	PURP	OSE AND SCOPE	4
3	SITE	DESCRIPTION	4
4		HISTORY	_
5		MARY OF PREVIOUS SITE INVESTIGATIONS	
6		RONMENTAL SOIL SAMPLING	
7 8		YTICAL LABORATORY ANALYSIS ECHNICAL SOIL SAMPLING	_
9		ECHNICAL LABORATORY ANALYSIS	_
10		YTICAL LABORATORY RESULTS	
11		YTICAL LABORATORY RESULTS DISCUSSION	-
12		ECHNICAL LABORATORY RESULTS1	-
13		ECHNICAL RESULTS DISCUSSION1	
14		CLUSIONS AND RECOMMENDATIONS	
TABLE	-0		
IABLE	=5		
TABLE	= 1	TOTAL METALS ANALYTICAL RESULTS	
TABLE		TOTAL PETROLUEM HYDROCARBONS ANALYTICAL RESULTS	
TABLE		PAHS, PCP & TCP ANALYTICAL RESULTS	
TABLE	Ξ4	DIOXINS AND FURANS ANALYTICAL RESULTS	
FIGUF	RES		
FIGUF	RE 1	SITE LOCATION MAP	
FIGUE		SITE MAP	
FIGUE		SAMPLE LOCATION MAP	
FIGUE	RE 4	TRENCH LOCATION MAP	
	_ •		

LABORATORY REPORTS

1 INTRODUCTION

This report presents the results of additional site characterization investigation conducted in the southern portion of the Crescent Mills Industrial Site (the Site) located at 15690 California Highway 89 in Crescent Mills, California. The site is a former lumber mill facility and is comprised of three parcels identified by the Plumas County Assessor's Parcel Numbers (APNs) as 111-050-065, 111-050-066, and 111-050-067. Soil sampling and analysis was performed by Sierra Streams Institute in October 2017 to complete characterization of the southern portion of the site and for use in a human health risk assessment for the site. Geotechnical soil samples were obtained from soil and wood waste stockpiles to determine if an on-site source of structural fill was available for use during proposed site remediation activities.

2 PURPOSE AND SCOPE

The purpose of the additional soil sampling and analysis was to further characterize soil conditions in the southern portion of the site and to determine the extent of any constituents of concern exceeding established Regional Screening Levels (RSLs) or site specific background arsenic concentrations. A subsurface investigation of soil and wood waste stockpiles was also conducted to identify potential on-site sources of fill material which could be used during site remediation and redevelopment. Eleven soil samples and one duplicate soil sample were obtained from near surface soils in the southern portion of the site and analyzed for potential constituents of concern. Fifteen trenches and potholes were advanced in the large soil stockpiles in the southern portion of the site. Bulk samples of soil obtained from selected stockpile locations were analyzed for geotechnical soil characterization.

3 SITE DESCRIPTION

The Site is located on the southwestern portion of Indian Valley, to the west of Indian Creek, a perennial stream which flows generally from north to south in the vicinity of the Site. According to the 1994 United States Geological Survey, Crescent Mills 7.5 Minute Quadrangle topographic map, the ground surface elevation of the Site is approximately 3,510 feet above mean sea level. Site topography in this portion of Indian Valley is relatively flat, with drainage from the Site to the east towards Indian Creek. Surface drainage at the Site is likely directed towards the creek through overland flow and below the ground surface through storm drains. Figure 1 is a Site Location Map

The Site is currently vacant with the exception of lumber mill remains including stockpiles of wood waste and soil, asphalt paving, concrete floor slabs, building foundations, and residual construction and industrial debris. The property is secured with a perimeter fence. The Site is zoned as light industrial and commercial by the Plumas County Assessor's office (Plumas County GIS Division, 2017).

The southern area of the site which is the subject of this investigation is occupied by three wood waste and soil stockpiles, former mill roads extending from the northern areas of the site to and around the stockpiles, an earth berm and ditch drainage structures which direct site runoff to a pond identified as the southern log deck recycling pond, located along the southeast edge of the site. The pond was dry at the time of the October 2017 investigation.

Stockpile 5 consisted of a tall stockpile approximately 25 to 30 feet high of predominantly shredded wood waste located in the northwest portion of the southern site area. Portions of the stockpile appear to have been recently excavated and hauled off leaving near vertical faces on the north and west sides.

Stockpile 6 was a large stockpile approximately 8 to 15 feet high covering much of the southern portion of the southern site area. The majority of the stockpile generally consisted of silt and fine sand with varying quantities of decomposing wood waste. A mounded area in the southwestern portion of the stockpile consisted of a sandy gravel with varying amounts of wood waste.

Stockpile 6N was located immediately north of Stockpile 6 in the northern portion of the southern site area. This stockpile was 10 to 12 feet high and generally consisted of varying amounts of sandy gravel and wood waste with abundant bark fragments and with occasional weathered metal and other debris. The wood waste exposed in Stockpile 6N appeared less decomposed than wood waste in Stockpile 6. Figure 2 is a Site Map.

4 SITE HISTORY

The Site history was summarized by CH2M Hill (1991) and E&E (2014a). The Site was initially developed as a lumber mill in the late 1940s to early 1950s. Before the lumber mill was built, the property was likely used for agriculture. The Site was reportedly purchased by LP in the early 1970s and the mill was expanded. Prior to the acquisition by LP, the property reportedly contained a planing mill, several dry kilns, a boiler, office buildings, dry lumber storage sheds, several USTs, and a teepee burner for burning wood waste (which is currently located off Site). The structures were predominantly on the north and west portions of the property. After purchasing

the Site, LP added several features to the property including a log deck recycle pond, a sawmill facility, additional dry kilns, a planing mill, and a woodwaste disposal area which was reportedly located outside of the current property boundaries adjacent to the creek. LP reportedly operated the Site as a lumber mill until it was closed in 1986. Based on available aerial imagery of the Site, structures appeared to have been gradually removed after the lumber mill closed. The current Site owner, Greg Lehman, purchased the property from LP in 1998. In 2002, the California Department of Transportation (Caltrans) purchased the eastern portion of the Site along Indian Creek from Mr. Lehman for a wetland and riparian mitigation area. Aerial imagery indicated that the Site was cleared of structures, except for building foundations and residual debris, and remained relatively unchanged from 1998 to present.

5 SUMMARY OF PREVIOUS SITE INVESTIGATIONS

Five previous investigations have been conducted at the site from 1991 to 2017:

- Property Transfer Environmental Site Assessment (CH2M Hill, 1991);
- Supplemental Site Investigation Report (Geocon, 2002);
- Phase 1 Environmental Site Assessment (E&E, 2014a);
- Targeted Brownfields Assessment Report (E&E, 2014b), and
- Targeted Site Investigation (Geosyntec, 2017).

The results of previous site investigation activities in the southern portion of the site generally indicated TPH-motor oil and arsenic were the primary constituents of concern detected. TPH-diesel, PCP, PAHs, Dioxins and Furans were also considered potential constituents of concern.

Results of previous site investigations are presented in the 2017 Geosyntec Targeted Site Investigation and are summarized in the Sampling and Analysis Plan for the current investigation. Results of all site investigations to date will be included in a Remedial Action Plan for the site.

6 ENVIRONMENTAL SOIL SAMPLING

Trenching and soil sampling was performed in the southern portion of the Site in order to provide additional information regarding the extent of contamination related to previous site use as a lumber mill and related activities.

Additional surface samples were obtained from 11 locations in the southern portion of the site including 8 samples from mill road surfaces and one each from the former log storage area, the southern log deck recycling pond and from the wood waste stockpile 5. These locations included areas not previously sampled, particularly the area north of decision unit (DU) 20 and east of DU 18 as identified in the 2017 Targeted Site Investigation. Sample locations were determined based on a review of previous sample locations, analytical results and field observations of surface conditions and conversations with persons familiar with site history. Figure 3 is a Sample Location Map.

Soil sampling analytical laboratory analysis was conducted according to the procedures described in the October 2017 Sampling and Analysis Plan (SAP) prepared by Sierra Streams Institute for the investigation and approved by EPA prior to implementation. A pre-cleaned trowel was used to collect approximately 10 to 12 ounces of soil from each sampling point. Surface samples were generally collected from a depth of 0-6 inches below ground surface after removal of any loose organic material except for one sample, (SP5-S11) which was obtained from the face of a near vertical sidewall of wood waste stockpile 5. Discrete samples collected for analytical laboratory analysis were screened with a number 10 stainless steel screen and thoroughly homogenized to ensure sample uniformity. Homogenization was performed by thoroughly mixing the sample prior to obtaining a portion for submittal to the analytical laboratory. Soil was placed directly into clean 4-ounce glass containers provided by the laboratory. Sample containers were sealed, labeled and placed in a chilled cooler for transport to the laboratory.

QA/QC Samples

One field duplicate soil sample was obtained as a collocated sample with sample SMR-5. The duplicate sample was obtained from the screened soil obtained from location SMR-5 and identified on the laboratory chain of custody as SMR-12.

One equipment blank sample was obtained at the end of the sampling day by collecting De-ionized (DI) water rinsate poured over sampling equipment (pick, trowel and sieve) after the decontamination procedures outlined in the sampling and analysis plan were performed.

7 ANALYTICAL LABORATORY ANALYSIS

All discrete soil samples obtained from mill road surface soil areas were analyzed for Title 22 Metals by EPA 6010A/7471B and Total petroleum hydrocarbons as diesel and motor oil (TPH-d and TPH-o) by EPA 8015. Additional analysis was performed on six unbiased selected samples (alternating samples with numeric suffix 1, 3 etc) including, PAH's and PCP/TCP by EPA Method 8270 and Dioxins and Furans by EPA Method 1613/8290.

QA/QC samples were analyzed for Title 22 Metals by EPA 6010A/7471B and TPH-d and TPH-o by EPA 8015.

8 GEOTECHNICAL SOIL SAMPLING

Seven trenches (excavations extending to the base of stockpiles) and eight potholes (excavations extending into the upper portion of stockpiles) were advanced in soil and wood waste stockpiles located in areas of the southern portion of the Site where only limited previous sampling has been performed.

Trenches and potholes were advanced with a rubber tired backhoe through the soil/ wood waste stockpiles to expose the extent and variability of the stockpiled material. Groundwater was not encountered in any of the trenches or potholes. Visual observations of the soil were performed to identify potential sources of structural or non-structural fill with suitable grain size distribution and relatively low organic content. Bulk samples were obtained from potentially suitable fill material and analyzed for geotechnical characterization as described below.

Soil exposed in backhoe trenches was visually observed and logged by the Unified Soil Classification System to identify homogeneous soil layers which appeared to be potential fill sources. Three general soil types were observed within the trenches and exposures of these soil types with the best potential for use as fill were selected based on field observations. Bulk geotechnical samples were obtained from trench sidewalls, composited in the field, placed in sealed plastic buckets and transported to a Geotechnical Laboratory for analysis.

Samples obtained from backhoe trenches were obtained from trench sidewalls at depths selected based on visual observations of the material. Samples were composited from depths distributed within the upper, middle and lower portions of each homogeneous soil layer selected to be sampled. Trench sidewall samples were obtained after clearing off surface exposures of the sidewall with a pre-cleaned sample trowel. Each bulk soil sample was approximately 2 gallons in volume.

Backhoe trench locations and soil sample locations were geospatially identified using a GPS unit capable of sub meter accuracy. Each composite sample was identified with an alphanumeric numbering system referring to the corresponding site feature, trench or soil sample number and/or distinguishing soil type. Figure 4 is a Trench Location Map

9 GEOTECHNICAL LABORATORY ANALYSIS

Three bulk Geotechnical Samples were analyzed for Grain Size Analysis by ASTM Method D422 with #200 sieve wash, Atterberg Indicies; Plasticity index and group symbol by ASTM D-2487 and for Organic Content by ASTM D2974.

Soil samples obtained from the soil / wood waste stockpiles were not submitted for analytical laboratory testing based on the results of geotechnical evaluation (discussed below) which did not identify suitable structural fill material in the stockpiles.

10 ANALYTICAL LABORATORY RESULTS

Analytical results of soil samples from the site were compared with screening levels utilized in the 2017 Geosyntec Targeted Site Investigation including Regional Screening Levels (RSLs) and Human Health Risk Assessment Screening Levels (HHRA SLs). Arsenic concentrations were compared with the site specific background concentration determined for the site (9.8 milligrams per kilogram (mg/kg) as discussed in the Geosyntec Targeted Site Investigation. Soil sample results for each of the COC are included in attached Tables 1 through 4 and are summarized below:

Total Metals

With the exception of arsenic, no metals were detected at concentrations exceeding applicable RSLs in any of the soil samples obtained during the southern site area investigation. Total arsenic was detected in all soil samples at concentrations that ranged from 2.4 mg/kg to 13 mg/kg. The mean arsenic concentration was 6.5 mg/kg. All of the results exceed the RSL for arsenic at industrial sites of 0.36 mg/kg. However, only one sample exceeded the site specific background level of arsenic (9.8 mg/kg) and the mean concentration was below the site specific background level.

Hydrocarbons

TPH-d was not detected in any of the samples at concentrations exceeding the laboratory reporting limit of 1.0 mg/kg. TPH-mo was detected in all 11 samples and the duplicate sample at concentrations ranging from 19.1 mg/kg to 596 mg/kg with a mean concentration of 108.3 mg/kg. These results are all below the Environmental screening level (ESL) for TPH-mo of 5,100 mg/kg.

PAHs

Analytical results of the six samples analyzed for PAHs indicated no PAH analytes were detected at concentrations exceeding laboratory reporting limits. Laboratory Practical Quantitation Limits (PQLs) ranged from 5.0 micrograms per kilogram (ug/kg) to 10 ug/kg. All PQLs were below the RSL for Benzo(a)pyrene of 290 ug/kg.

PCP and TCP

Analytical results of the six samples analyzed for Pentachlorophenol (PCP) and 2,4,6 Trichlorophenol (TCP) indicated no PCP or TCP were detected at concentrations exceeding laboratory reporting limits. Laboratory PQLs for PCP ranged from 1,600 ug/kg to 3,300 ug/kg) PQLs for TCP ranged from 330 ug/kg to 660 ug/kg. These PQLs were below the PQL for TCP of 210,000ug/kg and the PQL for PCP of 4,000ug/kg.

Dioxins and Furans

Analytical results of dioxin and furan analytes were compared with the HHRA screening level for 2,3,7,8 TCDD and with laboratory calculated toxic

equivalency (TEQ) values. TEQs are a weighted quantity measure based on the toxicity of each member of the dioxin and dioxin-like compounds category relative to the most toxic members of the category. The HHRA Screening level for TEQ used for the site is 200 picograms per gram (pg/g). The HHRA SL for 2,3,7,8 TCDD was also 200 pg/g.

TEQ results ranged from 0.773 pg/g to 12.6 pg/g and results for 2,3,7,8 TCDD ranged from 0.336 pg/g to 1.16 pg/g, all well below the HHRA Screening levels used for the site.

QA/QC Samples

Results of the rinsate blank sample RWS-1 indicated no metals were detected at concentrations exceeding laboratory reporting limits except for a low concentration of zinc detected at 0.098 milligrams per liter (mg/L). TPH-mo was not detected at concentrations exceeding laboratory reporting limits. TPH-d was detected at 153 micrograms per liter (ug/L). The laboratory report noted: *The sample chromatogram does not match the standard diesel chromatogram. All peaks were integrated within the diesel range. The result is an estimated value.*

11 ANALYTICAL LABORATORY RESULTS DISCUSSION

Metals results indicated the only potential metal of concern was arsenic. One sample obtained from near surface mill road soil, sample SMR-8 at 13 mg/kg arsenic, exceeded the site specific background arsenic concentration of 9.8 mg/kg. All 10 other samples were below background and the mean arsenic concentration was 6.5 mg/kg. Therefore arsenic in near surface soil does not appear to be a significant concern in the southern area of the site.

Hydrocarbon results indicated TPH-diesel was not detected in near surface soils above the laboratory reporting limit of 1.0 mg/kg which is less than the environmental screening level (ESL) for TPH-d of 230 mg/kg. TPH-motor oil was detected in all samples at concentrations below the applicable ESL for TPH-mo. Therefore THP

does not appear to be a significant concern for near surface soils in the southern area of the site.

PAH results for all six samples analyzed were all below laboratory practical quantitative limits of 5.0 to 10.0 micrograms per kilogram ($\mu g/kg$) which is less than the regional screening level (RSL) for benzo(a)pyrene of 290 $\mu g/kg$. Therefore additional analysis of the other five soil samples for PAHs was not deemed necessary and PAHs do not appear to be a significant concern for near surface soils in the southern area of the site.

Dioxins and Furans results for 2,3,7,8 TCDD and the calculated TEQ did not exceed the HHRA SL of 200 pg/g in any of the six samples analyzed. Therefore additional analysis of the other five soil samples for dioxins and furans was not deemed necessary and dioxins and furans do not appear to be a significant concern for near surface soils in the southern area of the site.

QA/QC results

Comparison of detected analyte results for the duplicate sample SMR-12 with the original sample SMR-5 indicate arsenic at 7.7 mg/kg vs. 7.8 mg/kg and TPH-mo at 30 mg/kg vs. 25.3 mg/kg. These result variabilities are within an acceptable range indicating the duplicate sample is within laboratory and field quality control limits.

Two analytes were detected at very low concentrations in the field rinsate QA/QC sample RSW-1. Zinc was detected at 0.098 mg/L compared with soil detections of zinc ranging from 33 mg/kg to 90 mg/kg. No other metals were detected above laboratory reporting limits. TPH-diesel was detected at 153 ug/L in the rinsate sample but was not detected in any of the soil samples. These relatively low detections do not indicate a significant QA/QC concern.

12 GEOTECHNICAL LABORATORY RESULTS

Geotechnical results for sample SP6N-GM-comp, obtained from composited material from the upper 6 feet of the Stockpile 6N (northern south area stockpile) indicated the soil was classified as; very dark grey (7.5YR 3/2) Poorly Graded Gravel with Silt. Sieve analysis was performed on the sample twice, once before bark was

removed and once after bark fragments were removed by flotation. The laboratory determined that 11.60% by weight of the sample was bark fragments. The Atterberg Indicies determined for material passing the #200 sieve were: Plasticity Index; Non-plastic (NP) and Group Symbol ML; inorganic silts and very fine sands. The organic content of the sample after bark removal was 8.5% or 20.1% with bark included.

Geotechnical results for sample SP6-GM comp, obtained from the upper 4 feet of the mounded gravelly portion of large southern Stockpile 6 indicated the soil was classified as: very dark Brown (10YR 2/2) Well Graded Gravel with Sand. The Atterberg Indicies determined for material passing the #200 sieve were: Plasticity Index; 12 and Group Symbol MH; inorganic silts. The organic content of the sample was 5.4%

Geotechnical results for sample SP6-T1, T4 comp, obtained from composited soil from the sidewalls of trenches T-1 and T-4 at depths of 0-10 feet in Stockpile 6 indicated the soil was classified as very dark Brown (10YR 2/2) Silty Sand. The Atterberg Indicies determined for material passing the #200 sieve were: Plasticity Index; Non-plastic (NP) and Group Symbol ML; inorganic silts and very fine sands The organic content of the sample was 4.5%.

13 GEOTECHNICAL RESULTS DISCUSSION

Based on observations of the 15 trenches and potholes advanced into Stockpiles SP6 and SP6N, three general soil types were evaluated to determine if they were suitable for use as structural fill or cover soil during the proposed site remediation. The three general soil types are described below.

The bulk of the larger Stockpile SP6, generally consisted of fine sand and silt with decomposed organic layers of varying thickness within the relatively inorganic sands and silts. Exposures of this soil which appeared to have the lowest organic content are represented by sample SP6-T1, T4 comp. This soil is consistent with the reported source of bottom ash from TP burners which historically burned sawdust and wood waste from the mill site. The waste was reportedly dumped on the adjacent property to the east (formerly part of the mill site). Periodic flooding may have resulted in

fluvial deposition of fine sand and silt which along with decomposition of organics appear to have resulted in the current composition of the material. The soil was later excavated by Caltrans during a wetland mitigation project and stockpiled in the present location. Wood ash products are not typically suitable for reuse due to low specific gravity and low sheer strength and may also have high alkalinity.

A smaller mounded area in the southwestern portion of the stockpile consisted of well graded gravel with silt and sand and layered organic matter of varying thickness up to several inches. Exposures of this soil which appeared to have the lowest organic content are represented by sample SP6- GM comp. The source of this soil is unknown but may have been from other areas of the wetland mitigation project.

Stockpile SP6N consisted of a variable mixture of poorly graded gravel with silt and wood waste fragments consisting of primarily bark. The wood waste and organics appear less weathered than organics in SP6. Debris such as metal and processed wood included in the stockpile suggest an on-site source, possibly material graded from northern areas of the site. Exposures of this soil which appeared to have the lowest organic content are represented by sample SP6N- GM comp.

Based on the organic content results indicating the three samples with between 4.5% organics and 8.5% (20.1% including bark) organics and considering these samples represent the areas of the stockpile with the least visible organics, none of the soil evaluated in this assessment appears to be suitable for use as structural fill. Structural fill generally should be free of organic matter since future decomposition could result in settling and structural failure. According to Caltrans Standard Specifications (2015); All fill must be free of organic material.

If the site remediation plan identifies areas where a soil cover is needed and where structural fill is not required such as landscaped areas or vegetated buffers, soil from stockpile SP6 may be acceptable for such purposes. If this use is proposed, additional soil sampling and analysis would be required to determine if contaminants present in other areas of the site impact the stockpiled soil. Sampling and analysis should be performed in accordance with California Department of Toxic Substances Control (DTSC)s *Information Advisory Clean Imported Fill Material* (October 2001).

Additional analysis may also be necessary to determine if the soil is suitable to support vegetation or if added soil amendments would be required.

14 CONCLUSIONS AND RECOMMENDATIONS

Environmental sampling and analysis of 11 near surface samples and one duplicate sample indicate significant concentrations of constituents of concern were not detected in areas tested in the southern portion of the site including; mill road surfaces, the former log storage area, the southern log deck recycling pond and from wood waste stockpile 5. Analytical results from the southern area soil investigation should be included in a human health risk assessment for the site.

The three bulk composite samples obtained from soil and wood waste stockpiles in the southern portion of the site were selected from exposures within the 15 trenches and potholes which appeared to have the lowest organic content. However, results of the geotechnical evaluation and in particular the organic content of all three samples testing indicate the fill from these stockpiles is not suitable for use as structural fill. Selected fill may be acceptable for use in landscaped or vegetated buffer areas provided additional environmental sampling and analysis indicates the soil meets DTSC criteria for clean fill. If soil is proposed to be used as non-structural fill, additional analysis for agricultural constituents should be performed to determine if the soil will support landscape or native plants.

TABLES

Table 1 Southern Area Soil Sample Analytical Results-Title 22 Metals in Soil

								Metals (U	S. EPA 6	010B/747	1A) (mg/kg)		
Sample ID	Sample Location	Sample Depth (ft. bgs)	Sample Type	Matrix	Date Sampled	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper
HHRA SL		•					0.36		210	7.3			
RSL			_			470	11.77	220,000			1,800,000	350	47,000
SMR-1	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	6.8	120	<1.0	<1.0	14	7.9	93
SMR-2	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	2.4	60	<1.0	<1.0	24	7.1	52
SLS-3	Southern Log Storage	0-5	Discreet	Soil	10/9/2017	<2.0	4.3	85	<1.0	<1.0	11	5.0	64
SMR-4	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	5.4	71	<1.0	<1.0	12	8.3	62
SMR-5	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	7.8	69	<1.0	<1.0	13	8.1	84
SLDRP-6	Southern Log Deck Recycling Pond	0-5	Discreet	Soil	10/9/2017	<2.0	4.3	110	<1.0	<1.0	21	9.7	190
SMR-7	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	8.1	94	<1.0	<1.0	14	10	160
SMR-8	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	13	90	<1.0	<1.0	12	8.4	170
SMR-9	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	5.8	110	<1.0	<1.0	14	10	340
SMR-10	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<2.0	4.3	56	<1.0	<1.0	8.7	6.9	67
SP5-S11	Wood waste Stockpile 5	0-5	Discreet	Soil	10/9/2017	<2.0	9.1	70	<1.0	<1.0	9.6	6.0	95
SMR-12	Field Duplicate of SMR-5	0-5	Discreet	Soil	10/9/2017	<2.0	7.7	65	<1.0	<1.0	13	8.0	88

Table 1-Cont. Southern Area Soil Sample Analytical Results-Title 22 Metals in Soil

								Meta	ls (U.S. 1	EPA 60101	3/7471A) (mg/kg)		
Sample ID	Sample Location	Sample Depth (ft. bgs)	Sample Type	Matrix	Date Sampled	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
HHRA SL						320	4.5				1,500		1,000	
RSL						- 22		5,800	3,100	5,800		1.2		350,000
SMR-1	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	14	0.18	<1.0	8.4	<1.0	< 0.12	<1.0	35	43
SMR-2	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	4.8	< 0.10	<1.0	13	<1.0	<0.12	<1.0	34	33
SLS-3	Southern Log Storage	0-5	Discreet	Soil	10/9/2017	9.7	0.20	<1.0	6.7	<1.0	<0.12	<1.0	25	38
SMR-4	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	19	0.18	<1.0	10	<1.0	<0.12	<1.0	27	41
SMR-5	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	10	0.18	<1.0	11	<1.0	<0.12	<1.0	31	41
SLDRP-6	Southern Log Deck Recycling Pond	0-5	Discreet	Soil	10/9/2017	12	0.23	<1.0	15	<1.0	<0.12	<1.0	46	90
SMR-7	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	10	0.16	<1.0	11	<1.0	<0.12	<1.0	37	57
SMR-8	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	6.6	<0.10	<1.0	-11	<1.0	<0.12	<1.0	29	43
SMR-9	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	9.3	0.26	<1.0	14	<1.0	<0.12	<1.0	32	65
SMR-10	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	4.3	< 0.10	<1.0	5.8	<1.0	<0.12	<1.0	27	38
SP5-S11	Wood Waste Stockpile 5	0-5	Discreet	Soil	10/9/2017	19	0.43	<1.0	6.5	<1.0	<0.12	<1.0	24	38
SMR-12	Field Duplicate of SMR-5	0-5	Discreet	Soil	10/9/2017	9.8	0.20	<1.0	11	<1.0	<0.12	<1.0	32	42

Table 2 Southern Area Soil Sample Analytical Results- Hydrocarbons in Soil

						U.S.	PH EPA 18015M /kg)
Sample ID	Sample Location	Sample Depth (ft. bgs)	Sample Type	Matrix	Date Sampled	THP as Diesel	THP as Motor Oil
ESL						230	5100
SMR-1	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	154
SMR-2	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	68.4
SLS-3	Southern Log Storage	0-5	Discreet	Soil	10/9/2017	<1.00	151
SMR-4	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	40.6
SMR-5	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	25.3
SLDRP-6	Southern Log Deck Recycling Pond	0-5	Discreet	Soil	10/9/2017	<1.00	47.1
SMR-7	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	32.5
SMR-8	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	56.6
SMR-9	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	78.5
SMR-10	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<1.00	19.1
SP5-S11	Wood Waste Stockpile 5	0-5	Discreet	Soil	10/9/2017	<1.00	596
SMR-12	Field Duplicate of SMR-5	0-5	Discreet	Soil	10/9/2017	<1.00	30.0

Table 3 Southern Area Soil Sample Analytical Results- PAHs, TCP & PCP in Soil

_		Souther	n Area S	oil Sampl	e Analytical	Results- P	AHs, TC	P&PC	P in So	11			
		Sample				વ	J.S. EPA N	PAHs lethod 82		μg/kg)		TCP & U.S. Metho (µg/	EPA 1 8270
Sample ID	Sample Location	Depth (ft. bgs)	Sample Type	Matrix	Date Sampled	Вепzо(а)ругепе	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Fluorene	Indeno(1,2,3-cd)pyrene	2,4,6 Trichlorophenol	Pentachlorophenol
RSL						290		.,.				210,000	4,000
SMR-1	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<10	<10	<10	<10	<10	<10	<660	<3300
SMR-2	Southern Mill Road	0-5	Discreet	Soil	10/9/2017		-			9.0	-		
SLS-3	Southern Log Storage	0-5	Discreet	Soil	10/9/2017	<10	<10	<10	<10	<10	<10	<660	<3300
SMR-4	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	4	2		12	91	0	- 1	526
SMR-5	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<5	<5	<5	<5	<5	<5	<330	<1600
SLDRP-6	Southern Log Deck Recycling Pond	0-5	Discreet	Soil	10/9/2017			· ·	1000		¥		(4)
SMR-7	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<5	<5	<5	<5	<5	<5	<330	<1600
SMR-8	Southern Mill Road	0-5	Discreet	Soil	10/9/2017								
SMR-9	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	<5	<5	<5	<5	<5	<5	<330	<1600
SMR-10	Southern Mill Road	0-5	Discreet	Soil	10/9/2017			×	-	90			
SP5-S11	Wood Waste Stockpile 5	0-5	Discreet	Soil	10/9/2017	<10	<10	<10	<10	<10	<10	<660	<3300
SMR-12	Field Duplicate of SMR-5	0-5	Discreet	Soil	10/9/2017	.]		_	_				

Table 4 Southern Area Soil Sample Analytical Results- Dioxins and Furans in Soil

								Dioxi	ns and F	urans (U.	S. EPA M	ethod 829	0) (pg/g)		
Sample ID	Sample Location	Sample Depth (ft. bgs)	Sample Type	Matrix	Date Sampled	тео	2,3,7,8-TCDD	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF
HHRA SL						200	200		(4)	1.60	:::::::::::::::::::::::::::::::::::::::	1.00	-		: - :1	2.0
SMR-1	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	7.28	1.01	165	27	2.4	0.931	3.56	20.7	2.37	4.08	0.779
SMR-2	Southern Mill Road	0-5	Discreet	Soil	10/9/2017		-			0.00				,		1.4
SLS-3	Southern Log Storage	0-5	Discreet	Soil	10/9/2017	12.6	1.16	217	48.9	2.31	1.25	5.53	38.4	3.11	5.11	0.563
SMR-4	Southern Mill Road	0-5	Discreet	Soil	10/9/2017									- 1	,	
SMR-5	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	1.8	0.336	62.9	8.41	1.54	0.696	1.23	6.7	0.486	2.09	0.593
SLDRP-6	Southern Log Deck Recycling Pond	0-5	Discreet	Soil	10/9/2017		2		(2)					_		
SMR-7	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	2.32	0.965	48.5	10.3	0.948	0.863	0.81	4.46	0.862	2.29	1.21
SMR-8	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	(2)			(4)		0.00	140				320
SMR-9	Southern Mill Road	0-5	Discreet	Soil	10/9/2017	0.773	0.433	23.6	3.8	0.795	0.733	0.699	2.99	0.64	1.64	1.08
SMR-10	Southern Mill Road	0-5	Discreet	Soil	10/9/2017		_		-			1 **	-			100
SP5-S11	Wood Waste Stockpile 5	0-5	Discreet	Soil	10/9/2017	4.16	0.33	112	19.2	1.14	1.12	2.65	17	1.15	4.57	1.59
SMR-12	Field Duplicate of SMR-5	0-5	Discreet	Soil	10/9/2017	-	_	,					-	,		

Table 4 - Cont. Southern Area Soil Sample Analytical Results-Dioxins and Furans in Soil

					Dioxins	and Furans	s (U.S. I	PA Met	hod 8290) (pg/g)						
Sample ID	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8 TCDD TEQ	2,3,7,8 TCDF	осър	OCDF	Total HpCDD	Total HpCDF	Total HxCDD	Total HxCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF
HHRA SL		-	-				j.=:		-		-					
SMR-1	0.89	1.46	1.83	2.28	1.01	1.43	629	31.6	279	74.3	74.1	103	0.89	71.2	1.01	30.6
SMR-2							-							151		525
SLS-3	1.57	2.22	3.8	3.17	1.16	2.67	553	33	351	144	98	153	2.91	126	1.16	36.3
SMR-4		-	_	160	121		5-0	4		- 1		- 4		140	121	(4)
SMR-5	0.636	0.543	0.545	0.692	0.336	0.444	272	18.6	109	24.6	28.1	22.6	1.2	18.1	0.336	9.72
SLDRP-6	14:1				540		-					u		- 100		, tel
SMR-7	0.762	0.895	0.851	0.789	0.965	0.483	299	21.7	86.7	28.1	20.9	16.5	0.762	11.9	1.92	5.26
SMR-8		-		-	F#0	-						-		340		(3.0)
SMR-9	0.71	0.534	0.742	0.577	0.433	0.466	113	7.51	44.9	9.58	13.6	7	0.71	5.28	0.433	5.37
SMR-10	(2)	-	_							Į,	1.	u u	-	141		040
SP5-S11	0.925	0.527	1.16	0.894	0.33	0.74	254	15.1	191	51.6	62.1	63.6	0.925	42.1	0.33	21.1
SMR-12	365		_	-	(5)		(040)		_				-	(*)		(*)

Notes ESL = Environmental Screening Level

U.S. EPA = United States Environmental Protection Agency

RSL = Regional Screening Levels US EPA Region 9 (2015)

Human Health Risk Assessment Screening Levels (HHRA SL) Note 3 - DTSC, revised 2018 for commercial/industrial soil. HHRA screening levels applied when available.

ft bgs = feet below ground surface < = Analyte not detected. Method Detection Limits shown.

- = Not Analyzed

NA = not applicable

mg/kg = milligrams per kilograms

pg/g = picograms per gram

PAHs = polycyclic aromatic hydrocarbons PCP = pentachlorophenol

TCP = 2,4,6-trichlorophenol TPH = total petroleum hydrocarbons

TPH = total petroleum hydrocarbons
VOCs = volatile organic compounds
PeCDD = pentachlorodibenzo-p-dioxin
PeCDF = pentachlorodibenzo-p-dioxin
TCDD = tetrachlorodibenzo-p-dioxin
TCDF = tetrachlorodibenzo-p-dioxin
TCDF = tetrachlorodibenzo-p-dioxin
OCDF = 1,2,3,4,6,7,8,9-cetachlorodibenzofuran
OCDD = 1,2,3,4,6,7,8,9-cetachlorodibenzodioxin
HydrDE = howelde orbitansofuran

HxCDF = hexachlorodibenzofuran HxCDD = hexachlorodibenzo-p-dioxin

2,3,7,8-TCDD TEQ = 2,3,7,8-tetachlorodibenzo-p-dioxin Toxic Equivalency
HpCDD = heptachlorodibenzo-p-dioxin
HpCDF = heptachlorodibenzo-p-dioxin
TEQ = toxic equivalency quotient

HxCDD = hexachlorodibenzo-p-dioxin HxCDF = hexachlorodibenzofuran PAHs = polycyclic aromatic hydrocarbons OCDD = 1,2,3,4,6,7,8,9-octachlorodibenzodioxin OCDF = 1,2,3,4,6,7,8,9-octachlorodibenzofuran
PeCDD = pentachlorodibenzo-p-dioxin
PeCDF = pentachlorodibenzofuran pg/g = picograms per gram
REC = recognized environmental condition
TCDD = tetrachlorodibenzo-p-dioxin
TCDF = tetrachlorodibenzofuran

HpCDD = heptachlorodibenzo-p-dioxin HpCDF = heptachlorodibenzofuran

FIGURES

Figure 1: Site Location Map

Figure 2: Site Map

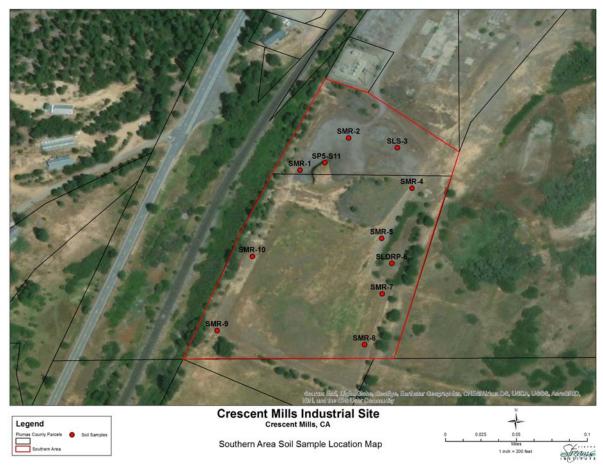


Figure 3: Soil Sample Location Map



Figure 4: Trench Location Map

EXCELCHEMEnvironmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449

ELAP Certificate No.: 2119

18 October 2017

Kyle Leach

Sierra Streams Institute

431 Uren St., Suite C

Nevada City, CA 95959

RE: Plumas BF

Work order number:1710070

Enclosed are the results of analyses for samples received by the laboratory on 10/11/17 17:00. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

John Somers, Lab Director

Sierra Streams Institut	e Pro	roject:	Plumas BF	
431 Uren St., Suite C	Pro	oject Number:	Plumas Brownfield	Date Reported:
Nevada City, CA 9595	9 Pro	roject Manager:	Kyle Leach	0/18/17 10:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SMR-1	1710070-01	Soil	10/09/17 14:00	10/11/17 17:00
SMR-2	1710070-02	Soil	10/09/17 14:10	10/11/17 17:00
SLS-3	1710070-03	Soil	10/09/17 14:20	10/11/17 17:00
SMR-4	1710070-04	Soil	10/09/17 14:30	10/11/17 17:00
SMR-5	1710070-05	Soil	10/09/17 14:35	10/11/17 17:00
SLDRP-6	1710070-06	Soil	10/09/17 14:45	10/11/17 17:00
SMR-7	1710070-07	Soil	10/09/17 14:55	10/11/17 17:00
SMR-8	1710070-08	Soil	10/09/17 15:10	10/11/17 17:00
SMR-9	1710070-09	Soil	10/09/17 15:20	10/11/17 17:00
SMR-10	1710070-10	Soil	10/09/17 15:30	10/11/17 17:00
SP5-S11	1710070-11	Soil	10/10/17 13:00	10/11/17 17:00
SMR-12	1710070-12	Soil	10/09/17 14:40	10/11/17 17:00
RWS-1	1710070-13	Water	10/09/17 15:50	10/11/17 17:00

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 1 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SMR-1 1710070-01 (Soil)

Total Petroleum Hydrocarbons by FID	d Notes	Method	Date Analyzed	Date Prepared	Batch	Units	Reporting Limit	Result	Analyte
TPH as Diesel ND 1.00 mg/kg A[J0123 10/13/17 10/16/17 EPA 8015Mod TPH as Motor Oil 154 10.0 mg/kg A[J0123 10/13/17 10/16/17 EPA 8015Mod TPH as Motor Oil 154 10.0 mg/kg 1672 10/13/17 10/16/17 EPA 1613B 1.2.3,7.8-PeCDD 74.1 pg/g 1672 10/12/17 10/13/17 EPA 1613B 1.2.3,7.8-PeCDD 0.89 5.02 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m				=					
TPH as Motor Oil 154 10.0 " " " " " " " " " " " " " " " " " "								ons by FID	Total Petroleum Hydrocarbo
Page Page	Mod	EPA 8015Mod	10/16/17	10/13/17	A[J0123	mg/kg	1.00	ND	ΓPH as Diesel
Total HxCDD	D-06	"	"	"	"	"	10.0	154	ГРН as Motor Oil
1,2,3,7,8-PeCDD 1,23,4,7,8-PeCDF 1,46 5,02 1,03,7,8-PeCDF 1,83 5,02 1,0 1,01 1,01 1,01 1,01 1,01 1,01 1,									EPA 1613B
1,2,3,7,8-PeCDD 0.89 5.02 """"""""""""""""""""""""""""""""""""	13B	EPA 1613B	10/13/17	10/12/17	1672	pg/g		74.1	Total HxCDD
1,2,3,7,8-HxCDF		"	"	"	"		5.02	0.89	1,2,3,7,8-PeCDD
2,3,4,6,7,8-HxCDF 1.83 5.02 """"""""""""""""""""""""""""""""""""	J	"	"	"	"	"	5.02		1,2,3,7,8-PeCDF
10	J	"	"	"	"	"	5.02	1.83	
OCDF 31.6 10 """"""""""""""""""""""""""""""""""""		"	"	"	"	"	1	1.01	2,3,7,8-TCDD
1,2,3,7,8,9-HxCDF 10tal HpCDD 279 2,3,4,7,8-PeCDF 2,28 5,02 1 10tal HxCDF 103 104 105 105 105 105 105 105 105 105 105 105		"	"	"	"	"	10	629	OCDD
Total HpCDD 2,3,4,7,8-PeCDF 2,28 5.02 """""""""""""""""""""""""""""""""""		"	"	"	"	"	10	31.6	OCDF
Total HpCDD 2,3,4,7,8-PeCDF 2,28 5.02 """""""""""""""""""""""""""""""""""		"	"	"	"	"	5.02	0.779	1,2,3,7,8,9-HxCDF
2,3,4,7,8-PeCDF 2.28 5.02 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"		279	
Total HxCDF 103 """""""""""""""""""""""""""""""""	J	"	"	"	"	"	5.02	2.28	-
Total PeCDF 71.2 """""""""""""""""""""""""""""""""""	X	"	"	"	"	"		103	
Total TCDD 1.01 Total TCDF 30.6 Totals HpCDF 74.3 TEQ 7.28 """""""""""""""""""""""""""""""""""		"	"	"	"	"		0.89	Total PeCDD
Total TCDF 30.6 """""""""""""""""""""""""""""""""""	X	"	"	"	"	"		71.2	Total PeCDF
Totals HpCDF 74.3 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"		1.01	Total TCDD
TEQ 7.28 " " " " " " " " " " " " " " " " " " "	X	"	"	"	"	"		30.6	Total TCDF
TEQ 7.28 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"		74.3	Totals HpCDF
1,2,3,6,7,8-HxCDF 2.37 5.02 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"		7.28	-
1,2,3,6,7,8-HxCDF 2.37 5.02 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"	5.02	165	1,2,3,4,6,7,8-HpCDD
1,2,3,6,7,8-HxCDD 20.7 5.02 " " " " " " " " " " " " " " " " " " "	J	"	"	"	"	"	5.02	2.37	-
1,2,3,4,7,8-HxCDF 3.56 5.02 " " " " " " " " " " " " " " " " " " "		"	"	"	"	"		20.7	1,2,3,6,7,8-HxCDD
1,2,3,4,7,8,9-HpCDF 2.4 5.02 " " " " "	J	"	"	"	"	"	5.02	3.56	
1,2,3,4,7,8,9-HpCDF 2.4 5.02 " " " " "		"	"	"	"	"	5.02	0.931	1,2,3,4,7,8-HxCDD
******	J	"	"	"	"	"	5.02	2.4	
		"	"	"	"	"	5.02	27	· · · · · · •
2,3,7,8-TCDF 1.43 1 " " " " "		"	"	"	"	"		1.43	-
1,2,3,7,8,9-HxCDD 4.08 5.02 " " " "	J	"	"	"	"	"	5.02	4.08	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 2 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SMR-2 1710070-02 (Soil)

Analyte	Result	Limit Limit	Units	Batch	Prepared	Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	69.4	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab

She Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 3 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SLS-3 1710070-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbo	ons by FID							
PH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
PH as Motor Oil	151	10.0	"	"	"	"	"	D-06
CPA 1613B								
EQ	12.6		pg/g	1672	10/12/17	10/13/17	EPA 1613B	
CDF	33	10.2	"	"	"	"	"	
otal HpCDD	351		"	"	"	"	"	
3,7,8-TCDF	2.67	1.02	"	"	"	"	"	
3,7,8-TCDD	1.16	1.02	"	"	"	"	"	
3,4,7,8-PeCDF	3.17	5.12	"	"	"	"	"	J
CDD	553	10.2	"	"	"	"	"	
otal HxCDD	98		"	"	"	"	"	
otal HxCDF	153		"	"	"	"	"	
otal TCDF	36.3		"	"	"	"	"	
otal TCDD	1.16		"	"	"	"	"	
otal PeCDF	126		"	"	"	"	"	
otal PeCDD	2.91		"	"	"	"	"	
3,4,6,7,8-HxCDF	3.8	5.12	"	"	"	"	"	J
2,3,4,7,8-HxCDF	5.53	5.12	"	"	"	"	"	
otals HpCDF	144		"	"	"	"	"	
2,3,4,7,8-HxCDD	1.25	5.12	"	"	"	"	"	J
2,3,6,7,8-HxCDF	3.11	5.12	"	"	"	"	"	J
2,3,4,6,7,8-HpCDD	217	5.12	"	"	"	"	"	
2,3,7,8-PeCDF	2.22	5.12	"	"	"	"	"	J
2,3,4,7,8,9-HpCDF	2.31	5.12	"	"	"	"	"	J
2,3,6,7,8-HxCDD	38.4	5.12	"	"	"	"	"	
2,3,7,8,9-HxCDD	5.11	5.12	"	"	"	"	"	J
2,3,7,8,9-HxCDF	0.563	5.12	"	"	"	"	"	
2,3,7,8-PeCDD	1.57	5.12	"	"	"	"	"	J
2,3,4,6,7,8-HpCDF	48.9	5.12	"	"	"	"	"	

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 4 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SMR-4 1710070-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	40 6	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab

Son Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 5 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SMR-5 1710070-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbor	ns by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	25.3	10.0	"	"	"	"	"	D-06
EPA 1613B								
1,2,3,7,8-PeCDF	0.543	5.01	pg/g	1672	10/12/17	10/13/17	EPA 1613B	
2,3,4,7,8-PeCDF	0.692	5.01	"	"	"	"	"	
2,3,7,8-TCDF	0.444	1	"	"	"	"	"	
OCDD	272	10	"	"	"	"	"	
1,2,3,7,8-PeCDD	0.636	5.01	"	"	"	"	"	
TEQ	1.8		"	"	"	"	"	
1,2,3,4,6,7,8-HpCDF	8.41	5.01	"	"	"	"	"	
Total HpCDD	109		"	"	"	"	"	
Total HxCDD	28.1		"	"	"	"	"	
OCDF	18.6	10	"	"	"	"	"	
1,2,3,7,8,9-HxCDF	0.593	5.01	"	"	"	"	"	
1,2,3,7,8,9-HxCDD	2.09	5.01	"	"	"	"	"	J
1,2,3,6,7,8-HxCDF	0.486	5.01	"	"	"	"	"	
1,2,3,6,7,8-HxCDD	6.7	5.01	"	"	"	"	"	
1,2,3,4,7,8-HxCDF	1.23	5.01	"	"	"	"	"	J
1,2,3,4,7,8,9-HpCDF	1.54	5.01	"	"	"	"	"	
1,2,3,4,6,7,8-HpCDD	62.9	5.01	"	"	"	"	"	
2,3,7,8-TCDD	0.336	1	"	"	"	"	"	
Total HxCDF	22.6		"	"	"	"	"	
1,2,3,4,7,8-HxCDD	0.696	5.01	"	"	"	"	"	
Total PeCDF	18.1		"	"	"	"	"	
Total TCDD	0.336		"	"	"	"	"	
Total TCDF	9.72		"	"	"	"	"	X
Totals HpCDF	24.6		"	"	"	"	"	
2,3,4,6,7,8-HxCDF	0.545	5.01	"	"	"	"	"	
Total PeCDD	1.2		"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 6 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SLDRP-6 1710070-06 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	47.1	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 7 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SMR-7 1710070-07 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbo	ons by FID							
PH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	32.5	10.0	"	"	"	"	"	D-06
EPA 1613B								
OCDF	21.7	10.1	pg/g	1672	10/12/17	10/13/17	EPA 1613B	
otal HpCDD	86.7		"	"	"	"	"	
otal HxCDF	16.5		"	"	"	"	"	
otal PeCDD	0.762		"	"	"	"	"	
otal PeCDF	11.9		"	"	"	"	"	
Total TCDD	1.92		"	"	"	"	"	
CDD	299	10.1	"	"	"	"	"	
otals HpCDF	28.1		"	"	"	"	"	
EQ	2.32		**	"	"	"	"	
otal TCDF	5.26		**	"	"	"	"	
2,3,4,7,8,9-HpCDF	0.948	5.05	**	"	"	"	"	
2,3,4,6,7,8-HpCDD	48.5	5.05	"	"	"	"	"	
otal HxCDD	20.9		**	"	"	"	"	
2,3,4,6,7,8-HpCDF	10.3	5.05	**	"	"	"	"	
3,7,8-TCDF	0.483	1.01	**	"	"	"	"	
2,3,4,7,8-HxCDD	0.863	5.05	"	"	"	"	"	
2,3,4,7,8-HxCDF	0.81	5.05	"	"	"	"	"	
2,3,6,7,8-HxCDD	4.46	5.05	"	"	"	"	"	J
2,3,6,7,8-HxCDF	0.862	5.05	**	"	"	"	"	
2,3,7,8,9-HxCDF	1.21	5.05	"	"	"	"	"	
2,3,7,8-PeCDD	0.762	5.05	"	"	"	"	"	
2,3,7,8-PeCDF	0.895	5.05	"	"	"	"	"	
3,4,6,7,8-HxCDF	0.851	5.05	"	"	"	"	"	
3,4,7,8-PeCDF	0.789	5.05	"	"	"	"	"	
,2,3,7,8,9-HxCDD	2.29	5.05	"	"	"	"	"	J
3,7,8-TCDD	0.965	1.01	"	"	"	"	"	J

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 8 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SMR-8 1710070-08 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	56.6	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 9 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SMR-9 1710070-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
					-			
Гotal Petroleum Hydrocarbo	ns by FID							
ΓPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
ГРН as Motor Oil	78.5	10.0	"	"	"	"	"	D-06
EPA 1613B								
Total HpCDD	44.9		pg/g	1672	10/12/17	10/13/17	EPA 1613B	
Total HxCDF	7		"	"	"	"	"	
Total PeCDD	0.71		"	"	"	"	"	
Total PeCDF	5.28		"	"	"	"	"	
Total TCDD	0.433		"	"	"	"	"	
Total TCDF	5.37		"	"	"	"	"	
ГЕО	0.773		"	"	"	"	"	
Totals HpCDF	9.58		"	"	"	"	"	
Total HxCDD	13.6		"	"	"	"	"	
1,2,3,6,7,8-HxCDD	2.99	5.06	"	"	"	"	"	J
1,2,3,4,7,8-HxCDF	0.699	5.06	"	"	"	"	"	
1,2,3,4,7,8-HxCDD	0.733	5.06	"	"	"	"	"	
1,2,3,4,7,8,9-HpCDF	0.795	5.06	"	"	"	"	"	
1,2,3,4,6,7,8-HpCDF	3.8	5.06	"	"	"	"	"	J
1,2,3,6,7,8-HxCDF	0.64	5.06	"	"	"	"	"	
OCDF	7.51	10.1	"	"	"	"	"	J
1,2,3,4,6,7,8-HpCDD	23.6	5.06	"	"	"	"	"	
1,2,3,7,8,9-HxCDD	1.64	5.06	"	"	"	"	"	J
1,2,3,7,8,9-HxCDF	1.08	5.06	"	"	"	"	"	
1,2,3,7,8-PeCDD	0.71	5.06	"	"	"	"	"	
1,2,3,7,8-PeCDF	0.534	5.06	"	"	"	"	"	
2,3,4,6,7,8-HxCDF	0.742	5.06	"	"	"	"	"	
2,3,4,7,8-PeCDF	0.577	5.06	"	"	"	"	"	
2,3,7,8-TCDD	0.433	1.01	"	"	"	"	"	
2,3,7,8-TCDF	0.466	1.01	"	"	"	"	"	
OCDD	113	10.1	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 10 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SMR-10 1710070-10 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	19.1	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab.

De Donne

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 11 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

SP5-S11 1710070-11 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbo								
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
EPA 1613B								
Total PeCDD	0.925		pg/g	1672	10/12/17	10/14/17	EPA 1613B	
Total PeCDF	42.1		"	"	"	"	"	X
OCDF	15.1	10	"	"	"	"	"	
2,3,4,7,8-PeCDF	0.894	5.01	"	"	"	"	"	J
ΓEQ	4.16		"	"	"	"	"	
Total HpCDD	191		"	"	"	"	"	
Total HxCDD	62.1		"	"	"	"	"	
Totals HpCDF	51.6		"	"	"	"	"	
,2,3,7,8,9-HxCDF	1.59	5.01	"	"	"	"	"	
,2,3,4,6,7,8-HpCDD	112	5.01	"	"	"	"	"	
,2,3,4,6,7,8-HpCDF	19.2	5.01	"	"	"	"	"	
,2,3,4,7,8,9-HpCDF	1.14	5.01	"	"	"	"	"	
,2,3,4,7,8-HxCDD	1.12	5.01	"	"	"	"	"	
,2,3,4,7,8-HxCDF	2.65	5.01	"	"	"	"	"	J
,2,3,6,7,8-HxCDD	17	5.01	"	"	"	"	"	
,3,7,8-TCDF	0.74	1	"	"	"	"	"	
,2,3,7,8,9-HxCDD	4.57	5.01	"	"	"	"	"	J
Total TCDD	0.33		"	"	"	"	"	
,2,3,7,8-PeCDD	0.925	5.01	"	"	"	"	"	
,2,3,7,8-PeCDF	0.527	5.01	"	"	"	"	"	
,3,4,6,7,8-HxCDF	1.16	5.01	"	"	"	"	"	
OCDD	254	10	"	"	"	"	"	
,3,7,8-TCDD	0.33	1	"	"	"	"	"	
otal HxCDF	63.6		"	"	"	"	"	X
Total TCDF	21.1		"	"	"	"	"	X
,2,3,6,7,8-HxCDF	1.15	5.01	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 12 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SP5-S11 1710070-11RE1 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Motor Oil	596	30.0	mg/kg	A[J0123	10/13/17	10/17/17	EPA 8015Mod	D-06

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 13 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

SMR-12 1710070-12 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	ND	1.00	mg/kg	A[J0123	10/13/17	10/16/17	EPA 8015Mod	
TPH as Motor Oil	30.0	10.0	"	"	"	"	"	D-06

Excelchem Environmental Lab

Son Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 14 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

RWS-1 1710070-13 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocar	bons by FID							
TPH as Diesel	153	50.0	ug/l	A[J0117	10/13/17	10/13/17	EPA 8015Mod	D-18
TPH as Motor Oil	ND	500	"	"	"	"	"	

Excelchem Environmental Lab.

De Donne

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 15 of 20

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

Total Petroleum Hydrocarbons by FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A[J0117 - EPA 8015Mod										
Blank (A[J0117-BLK1)				Prepared: 1	0/12/17 Aı	nalyzed: 10	/13/17			
TPH as Diesel	ND	50.0	ug/l							
TPH as Motor Oil	ND	500	"							
LCS (A[J0117-BS1)				Prepared: 1	0/12/17 Ar	nalyzed: 10	/13/17			
TPH as Diesel	4130	50.0	ug/l	5000		82.5	70-130			
LCS (A[J0117-BS2)				Prepared: 1	0/12/17 Ar	nalyzed: 10	/13/17			
TPH as Motor Oil	3520	500	ug/l	5000		70.4	70-130			
LCS Dup (A[J0117-BSD1)				Prepared: 1	0/12/17 Ar	nalyzed: 10	/13/17			
TPH as Diesel	4490	50.0	ug/l	5000		89.7	70-130	8.36	30	
LCS Dup (A[J0117-BSD2)				Prepared: 1	0/12/17 Ar	nalyzed: 10	/13/17			
TPH as Motor Oil	3500	500	ug/l	5000		70.1	70-130	0.499	30	
Batch A[J0123 - EPA 8015Mod										
Blank (A[J0123-BLK1)				Prepared: 1	0/13/17 Ar	nalyzed: 10	/16/17			
TPH as Diesel	ND	1.00	mg/kg							
TPH as Motor Oil	ND	10.0	"							
LCS (A[J0123-BS1)				Prepared: 1	0/13/17 Ar	nalyzed: 10	/16/17			
TPH as Diesel	72.4	1.00	mg/kg	100		72.4	70-130			·
LCS (A[J0123-BS2)				Prepared: 1	0/13/17 Aı	nalyzed: 10	/16/17			
TPH as Motor Oil	70.0	10.0	mg/kg	100		70.0	70-130			

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 16 of 20

Sierra Streams InstituteProject:Plumas BF431 Uren St., Suite CProject Number:Plumas BrownfieldDate Reported:Nevada City, CA 95959Project Manager:Kyle Leach10/18/17 10:45

Total Petroleum Hydrocarbons by FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A[J0123 - EPA 8015Mod										
LCS Dup (A[J0123-BSD1)				Prepared: 1	0/13/17 A	nalyzed: 10	/16/17			
TPH as Diesel	74.5	1.00	mg/kg	100		74.5	70-130	2.85	30	
LCS Dup (A[J0123-BSD2)				Prepared: 1	0/13/17 A	nalyzed: 10	/16/17			
TPH as Motor Oil	72.8	10.0	mg/kg	100		72.8	70-130	3.89	30	
Matrix Spike (A[J0123-MS1)		Source: 1710070)-10	Prepared: 1	0/13/17 A	nalyzed: 10	/16/17			
TPH as Diesel	72.6	1.00	mg/kg	100	ND	72.6	70-130			
Matrix Spike Dup (A[J0123-MSD1)		Source: 1710070)-10	Prepared: 1	0/13/17 A	nalyzed: 10	/16/17			
TPH as Diesel	72.0	1.00	mg/kg	100	ND	72.0	70-130	0.751	30	

Excelchem Environmental Lab.

She Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 17 of 20

Sierra Streams Institute	Project:	Plumas BF	
431 Uren St., Suite C	Project Number:	Plumas Brownfield	Date Reported:
Nevada City, CA 95959	Project Manager:	Kyle Leach	10/18/17 10:45

EPA 1613B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1672 - EPA 1613B										
MB (1672-Blank)				Prepared: 1	10/12/17 Aı	nalyzed: 10	/13/17			
1,2,3,6,7,8-HxCDF	0.469	5	pg/g				-			
2,3,4,6,7,8-HxCDF	0.59	5	"				-			
1,2,3,7,8-PeCDF	0.44	5	"				-			
1,2,3,7,8-PeCDD	0.508	5	"				-			
1,2,3,7,8,9-HxCDF	0.793	5	"				-			
1,2,3,7,8,9-HxCDD	0.827	5	"				-			
1,2,3,6,7,8-HxCDD	0.878	5	"				-			
1,2,3,4,7,8-HxCDF	0.504	5	"				-			
1,2,3,4,7,8-HxCDD	0.843	5	"				-			
1,2,3,4,7,8,9-HpCDF	0.774	5	"				-			
2,3,7,8-TCDD	0.365	1	"				-			
1,2,3,4,6,7,8-HpCDD	0.937	5	"				-			
2,3,7,8-TCDF	0.358	1	"				-			
1,2,3,4,6,7,8-HpCDF	0.542	5	"				-			
Total PeCDF	0.582		"				_			
2,3,4,7,8-PeCDF	0.582	5	"				-			
Total TCDD	0.365		"				-			
Total PeCDD	0.508		"				_			
Total HxCDF	0.793		"				_			
Total HxCDD	0.878		"				-			
Total HpCDD	0.937		"				-			
TEQ	0		"				-			
OCDF	1.32	10	"				_			
OCDD	1.01	10	"				_			
Total TCDF	0.358		"				-			
LCS (1672-LCS)				Prepared: 1	10/12/17 Ar	nalyzed: 10	/13/17			
1,2,3,4,7,8,9-HpCDF	49.3	69	%				-			
1,2,3,7,8-PeCDD	54.3	71	"				-			
OCDD	118	144	"				_			
2,3,7,8-TCDF	12.5	15.8	"				_			
2,3,7,8-TCDD	11.3	15.8	"				-			
2,3,4,7,8-PeCDF	53.8	80	"				-			
2,3,4,6,7,8-HxCDF	55.6	78	"				-			
1,2,3,7,8-PeCDF	51.5	67	"				-			
1,2,3,7,8,9-HxCDF	58.1	65	"				-			
1,2,3,7,8,9-HxCDD	63	81	"				-			
1,2,3,6,7,8-HxCDF	54.1	65	"				-			
1,2,3,6,7,8-HxCDD	61.2	67	"				-			
1,2,3,4,7,8-HxCDD	58	82	"				_			

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 18 of 20

Sierra Streams Institute	Project:	Plumas BF	
431 Uren St., Suite C	Project Number:	Plumas Brownfield	Date Reported:
Nevada City, CA 95959	Project Manager:	Kyle Leach	10/18/17 10:45

EPA 1613B - Quality Control

Australia	D14	Reporting	11	Spike	Source	0/DEC	%REC	DDD	RPD	Nistan
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes

Batch 1672 - EPA 1613B

LCS (1672-LCS)			Pre	epared: 10/12/17 Analyzed: 10/13/17	
OCDF	119	170	%	-	
1,2,3,4,6,7,8-HpCDF	51.5	61	"	-	
1,2,3,4,6,7,8-HpCDD	63.6	70	"	-	
1,2,3,4,7,8-HxCDF	56.1	67	"	-	

Excelchem Environmental Lab.

De down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 19 of 20

Sierra Streams Institute	Project:	Plumas BF	
431 Uren St., Suite C	Project Number:	Plumas Brownfield	Date Reported:
Nevada City, CA 95959	Project Manager:	Kyle Leach	10/18/17 10:45

Notes and Definitions

X	The concentration found is estimated maximum possible concentration due to chlorinated diphenyl ethers present in the sample
J	Concentration found below the lower quanitiation limit but greater than zero.
D-18	The sample chromatogram does not match the standard diesel chromatogram. All peaks were integrated within the

diesel range. The result is an estimated value.

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ND Analyte not detected at reporting limit.

NR Not reported

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 20 of 20

Excelche Environmental L					Ph		Ro	cklin	, CA.	957	. Unit 65 16-54		49			СН	ΑI	N-C	OF-	-CL	IST	00	Υ	RE	CO	RD	Α (ND	Αľ	NΑ	LY	SIS	R	EQ	UE	ST				
Project Manager: Kyle Li Company/Address:								5	-	24	ζ.	60	90)		Elec	ectronic Data Deliverables Request: No Email Address: Klead US										وه	gmail.	Con											
Siera	treams	lush Nev	h	te.	/ 5,	95	કા)	<u>.</u>								AN	Αl	LYS	SIS	RE	Ql	JES	ST					_		_			ag	e_	I	of .	2	-		
Project Number/P.O#:	_	(Proj	ect N ה			or	ě			۵														H	We	<u>t</u>	1	9	100	1		//Standard	Bind	
Plumas	grown	reld									ช f	<i>></i>		,	Ц	8015			664	5					B			_			Tota	al .	1	ctano	28			r/Star	Due Date:	
Project Location: Crescent	Mill	5							pler:	,	ature:	v	X	// ~		(602/8021/8015)			h 5520)1664	CBs (808	Je (8141)	51)	_		the meth	(8260)		3 (8260B	(8260B)				jeldahl	h, condu	0628/8191		1		Work Order	
	Sam	pling		Со	ntai	iner		1	Me Pres	etho sen			Ma	atrix		0	5m)		SM-18t	1A) - P	Pesticio	des (81	(8270C	e e	circle)	Ethanol)B)	CAVED	enates				nonia, K	ulfide, p	Suc		100	1/24hr/		
Sample ID	Date	Time	VOA	SLEEVE	# GLASS Pes	PLASTIC	Summa or Tedlar	нсі	HNO3	ICE	NONE		WATER	SOIL	1	BTEX - TPH as Gas	TPH as Diesel (8015m)	TPH as Oil (8015m)	Total Oil & Grease (SM-18th	Pesticides (608/8081A) - PCBs (8082)	Organophoshorous Pesticide (8141)	Chlorinated Herbicides (8151)	Semi VOC Full List (8270C)	VOC Full list (8260B)	MTBE (8021/8260B) circle the method	Methanol (8015M) Ethanol (8260)	5 Oxygenates (8260B)	Lead Scavengers DCA/EDB (8260B)	Tphg/BTEX/5 Oxygenates (8260B)	Metals =	Metals =	Metals =	Nitrate, Nitrite, Ammonia, Kjeldahl	Chloride, Sulfate, Sulfide, ph. conductance	DIOXINS/ FIXERS			Requested 14T: 12hr/24hr/48hr	LAB US ONLY	
SMR-1	wd1	2:000	Í	0,7	X	_	\"	_		X	Ī	1	_	4	Ì		X	X																	χ	-		×		
3MR-2	water				X					X			'	1			X	X																				X		
SMR-2 SLS-3	10/9/17	220	Γ		×					X		Т	1	x	T	7	X	X																	X			ኦ		48 S
SMR-4	idalin	230			X					X		T	1	ĸ	T		1	X								1	7	10	07	0								7		
SMR-S	10/9/17		T		X				Π,	V		T		X	T		X	X																	X			4		
SLORP-6			Γ		X	Г	Г	П		X		7	1	K.	1		X	X							BIŃ	,	2	10	, (7 (=					Г		y		
SMR-7	10/9/17		Г		¥	Г				V	T	1	1		1		X	X						1	OIIV	' _		19		<u>~</u> ,	י				X	Γ		Y		
	10/9/1	- "	T		X	Г				7		†	-	X	1		χ	X																	Г			¥		
	10/0/17	3:20	T	Г	X	Г		П		\langle	1	7	_	x	7	•	Y	X									_								X	Π		X	w W	100
5MR-10	11/0/11	7:30	T		×		Г			X	1	1	1,	X	1	1	X	X																				X		
COTCII	21/20		T		X			П	$\overline{}$	X	\top	†	3	4	1		X	X																	X			Х		
SMR-12	10/01/1		T		X				\rightarrow	X	\top	†	-11	X	1	1	X	X																				X		
Relinquished by:	L	•	10	Date	17	5	S C	,	Rec	eiv	ed by				_			Rer	mar 5	ks/C	Con 1 T	ditio A1	on o	NQ	ed 2 a	le:	site	1ts	e b	الم	10	1	8/ ıf	17	ves	- I	0/1	19	an	
Religiquished by:			-	Date /////	e 17	17	Tim ',O	e 0	Rec	eiv W	ed by	y La	bor	ator	y: 			Bill			, ,	r													_	_		_		

Excelchem Environmental Labs

Plumas BF Plumas Brownfield

Sierra Streams Institute 431 Uren St., Suite C Nevada City, CA 95959

Project Number: Project Manager:

Kyle Leach

Date Reported: 10/18/17 10:45

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager:	Project Number:	Project:
Kyle Leach	Plumas Brownfield	Plumas BF

Date Reported: 10/18/17 10:45

Excelchem Environmental Labs

Sierra Streams Institute 431 Uren St., Suite C Nevada City, CA 95959

Excelche Environmental L	abs				Ph:	016	Ro	cklin,	CA.	957	. Unit / 65 16-543		19		(СН	ΑI	N-C)F	-CL	IST	0	Υ	RE	СО	RD	A	ND	A١	ΙΑΙ	_YS	SIS	RE	EG	QUES	T			
Project Manager: Ly Le Company/Address: 55/ 43 Ne Project Number/P.O#: Pluma Project Location: Ches Ch.	lea.	L						Phoi S Fax		2	65	6	x 9	Ó		Elec	ctro	nic	Da	ta D		eral	bles	Re	que	st:							Em	nai	il Addre	ess:	٥8	e	gne. l. a
551 43 Ne	1 Ure	ust Cors	c	A '	95	95	9	l ux								ΑN	ΑL	.YS	SIS	RE	Ql	JES	ST									P	age	e .	2 o	f 2	-2	_	
Project Number/P.O#:	5 6	38						Proje	ect N			1	3ŕ	-		(015)			364	0					P						Wet			tonce	ance		Standard	8	e Date:
Project Location:	+ hi	ills						Sam	pler :	Signa	aturg	r	_	P	7	(602/8021/8015)			th 5520)16	CBs (8082	de (8141)	51)	6		the metho	(8260)		B (8260B)	(8260B)				(jeldahl	and conductance	pu, conduc		48hr/72h	18	ork Order:
	Sam	pling		Со	ntai	ner			Pres	etho		1	Ма	atrix		٥	015m)	m)	8 (SM-18)	081A) - P	us Pestici	cides (81	st (8270C	(80)	0B) circle) Ethanol	(60B)	DCAVED	ygenates				nmonia, F	Sulfide	'apilinge'		2hr/24hr/	No. of the last of	1000 1000 1000
Sample ID	Date	Time	VOA	SLEEVE	1L GLASS	PLASTIC	Summa or Tedlar	НСІ	нуоз	ICE	NONE		WATER	SOIL	AIR	BTEX - TPH as G	TPH as Diesel (8015m)	TPH as Oil (8015m)	Total Oil & Grease (SM-18th 5520)1664	Pesticides (608/8081A) - PCBs (8082)	Organophoshorous Pesticide (8141)	Chlorinated Herbicides (8151)	Semi VOC Full List (8270C)	VOC Full list (8260B)	MTBE (8021/8260B) circle the method	Methanol (8015M) Ethanol (8260)	5 Oxygenates (8260B)	Lead Scavengers DCA/EDB (8260B)	Tphg/BTEX/5 Oxygenates (8260B)	Metals =	Metals =	Metals =	Nitrate, Nitrite, Ammonia, Kjeldahl	Chloride Sulfate	Chorace, Surface,		Requested TAT: 12hr/24hr/48hr/72h		LAB USE ONLY:
RW5-1	149/17	3:50	Ĺ		_	χ			_	X		т.	×	+	1			X																		\mp	X	BON 18 18 18	
. ,																																				‡ ‡		日本地域のおりの 1000年日	
											+			+	+										/											+	+		
		r									+				+																					+			
Relinquished by:	1		10	Date	11	5					ed by		hor	ator	<u></u>	_		Rei	mar	ks/(Coņ	ditio	n o	f Sa	impl	e:								_					
Refinquished by:				Date http://			Time	\neg			ed by Tayl			ator	y.			Bill	To																				

Sierra Streams Institute Project: Plumas BF
431 Uren St., Suite C Project Number: Plumas Brownfield Date Reported:
Nevada City, CA 95959 Project Manager: Kyle Leach 10/18/17 10:45

Sample Integrity

WORK ORDER: 1710070

Date Received: 10/11/2017

Section 1 – Sample Arrival Info.

Sample Transport: Walk-In

Describe type of packing materials: None

Has chilling process begun? No Samples Received: Ambient

Temperature of Samples (°C): 12 Ice Chest Temperature(s) (°C): n/a

Section 2 – Bottle/Analysis Info.					
	Yes	No	N/A	Comments	
Did all bottles arrive unbroken and intact?	×			-	
Did all bottle labels agree with COC?	×			-	
Were correct containers used for the tests requested?	X			-	
Were correct preservations used for the tests requested?	×			(=)	
Was a sufficient amount of sample sent for tests indicated?	X			-	
Were bubbles present in VOA Vials?: (Volatile Methods Only)			X		

Used Summa#:		•
Unused Summa#:	NT/A	
Cleaning Summa#:	N/A	
Regulator#:		
Was there any visual damage to summa ca	inisters or flow regulators? Explain.	

Section 4 – COC Info.	Completed	Info	From	Complete	ed		
	Yes	No	Comment		Yes	No	Comments
Was COC Received	×		-	Analysis Requested	X		-
Date Sampled	×		-	Samples arrived within holding time	×		-
Time Sampled	×		-	Any hold times less than 72 hrs		×	
Sample ID	×		-	Client Name	×		-
Rush TAT	×	•	5 Day TAT	Address/Telephone #	×		-

Section 5 – Comments / Discrepancies			
Was Client notified of discrepancies: N/A	•	Notified by: N/A	
Explanations / Comments: -			
-			
-			
-			

Samples Labeled by:	AT	Filled out by: Amber 7aylor	Date: 10/11/2017
Bin #s:	25		Time: 13:20
COC Scanned/Attached by:	AT		
Sample labels reviewed by:	AT	7	

Excelchem Environmental Lab.

De down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 3 of 3

ELAP No.: 1838

CSDLAC No.: 10196 ORELAP No.: CA300003

October 20, 2017

Kyle Leach Sierra Streams Institute 431 Uren St., Suite C Nevada City, CA 95959

Tel: (530) 265-6090

Fax:

Re: ATL Work Order Number: 1703679

Client Reference: Plumas Brownfields, Crescent Mills

Enclosed are the results for sample(s) received on October 13, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Sierra Streams Institute Project Number : Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To : Kyle Leach Nevada City , CA 95959 Reported : 10/20/2017

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SMR-1	1703679-01	Soil	10/09/17 14:00	10/13/17 10:14
SMR-2	1703679-02	Soil	10/09/17 14:10	10/13/17 10:14
SLS-3	1703679-03	Soil	10/09/17 14:20	10/13/17 10:14
SMR-4	1703679-04	Soil	10/09/17 14:30	10/13/17 10:14
SMR-5	1703679-05	Soil	10/09/17 14:35	10/13/17 10:14
SLDRP-6	1703679-06	Soil	10/09/17 14:45	10/13/17 10:14
SMR-7	1703679-07	Soil	10/09/17 14:55	10/13/17 10:14
SMR-8	1703679-08	Soil	10/09/17 15:10	10/13/17 10:14
SMR-9	1703679-09	Soil	10/09/17 15:20	10/13/17 10:14
SMR-10	1703679-10	Soil	10/09/17 15:30	10/13/17 10:14
SP5-S11	1703679-11	Soil	10/09/17 15:40	10/13/17 10:14
SMR-12	1703679-12	Soil	10/09/17 14:40	10/13/17 10:14
RWS-1	1703679-13	Water	10/09/17 15:50	10/13/17 10:14

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-1 Lab ID: 1703679-01

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Arsenic	6.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Barium	120	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Chromium	14	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Cobalt	7.9	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Copper	93	2.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Lead	14	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Nickel	8.4	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Vanadium	35	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	
Zinc	43	1.0	1	B7J0522	10/18/2017	10/19/17 11:43	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

ı		Result	PQL				Date/Time	
ı	Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
-	Mercury	0.18	0.10	1	B7J0524	10/18/2017	10/19/17 16:38	

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2,4,6-Trichlorophenol	ND	660	2	B7J0452	10/17/2017	10/17/17 15:12	D1
Pentachlorophenol	ND	3300	2	B7J0452	10/17/2017	10/17/17 15:12	D1
Surrogate: 1,2-Dichlorobenzene-d4	57.3 %	38 - 93		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: 2,4,6-Tribromophenol	74.3 %	27 - 124		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: 2-Chlorophenol-d4	54.8 %	36 - 96		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: 2-Fluorobiphenyl	65.5 %	44 - 100		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: 2-Fluorophenol	45.7 %	32 - 89		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: 4-Terphenyl-d14	61.3 %	49 - 123		B7J0452	10/17/2017	10/17/17 15:12	
Surrogate: Nitrobenzene-d5	51.3 %	38 - 104		B7J0452	10/17/2017	10/17/17 15:12	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-1 Lab ID: 1703679-01

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Acenaphthene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Acenaphthylene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Benzo(a)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Benzo(a)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Benzo(b)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Benzo(g,h,i)perylene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Benzo(k)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Chrysene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Dibenz(a,h)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Fluorene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Indeno(1,2,3-cd)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Naphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Phenanthrene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 14:37	D1
Surrogate: 1,2-Dichlorobenzene-d4	57.0 %	29 - 109		B7J0451	10/17/2017	10/17/17 14:37	
Surrogate: 2-Fluorobiphenyl	72.1 %	39 - 108		B7J0451	10/17/2017	10/17/17 14:37	
Surrogate: Nitrobenzene-d5	77.3 %	0 - 146		B7J0451	10/17/2017	10/17/17 14:37	
Surrogate: 4-Terphenyl-d14	58.1 %	39 - 123		B7J0451	10/17/2017	10/17/17 14:37	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-2 Lab ID: 1703679-02

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Arsenic	2.4	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Barium	60	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Chromium	24	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Cobalt	7.1	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Copper	52	2.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Lead	4.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Nickel	13	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Vanadium	34	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	
Zinc	33	1.0	1	B7J0522	10/18/2017	10/19/17 11:44	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0524	10/18/2017	10/19/17 16:40	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SLS-3 Lab ID: 1703679-03

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Arsenic	4.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Barium	85	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Chromium	11	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Cobalt	5.0	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Copper	64	2.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Lead	9.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Nickel	6.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Vanadium	25	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	
Zinc	38	1.0	1	B7J0522	10/18/2017	10/19/17 11:45	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.20	0.10	1	B7J0524	10/18/2017	10/19/17 16:42	

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2,4,6-Trichlorophenol	ND	660	2	B7J0452	10/17/2017	10/17/17 15:39	D1
Pentachlorophenol	ND	3300	2	B7J0452	10/17/2017	10/17/17 15:39	D1
Surrogate: 1,2-Dichlorobenzene-d4	48.4 %	38 - 93		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: 2,4,6-Tribromophenol	61.6 %	27 - 124		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: 2-Chlorophenol-d4	45.7 %	36 - 96		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: 2-Fluorobiphenyl	56.7 %	44 - 100		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: 2-Fluorophenol	37.1 %	32 - 89		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: 4-Terphenyl-d14	53.3 %	49 - 123		B7J0452	10/17/2017	10/17/17 15:39	
Surrogate: Nitrobenzene-d5	44.3 %	38 - 104		B7J0452	10/17/2017	10/17/17 15:39	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SLS-3 Lab ID: 1703679-03

Semivolatile Organic Compounds by EPA 8270/SIM

	Result	PQL	75 11 11	5		Date/Time	N
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Acenaphthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Acenaphthylene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Benzo(a)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Benzo(a)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Benzo(b)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Benzo(g,h,i)perylene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Benzo(k)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Chrysene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Dibenz(a,h)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Fluorene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Indeno(1,2,3-cd)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Naphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Phenanthrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:05	D1
Surrogate: 1,2-Dichlorobenzene-d4	50.3 %	29 - 109		B7J0451	10/17/2017	10/17/17 15:05	
Surrogate: 2-Fluorobiphenyl	65.5 %	39 - 108		B7J0451	10/17/2017	10/17/17 15:05	
Surrogate: Nitrobenzene-d5	72.4 %	0 - 146		B7J0451	10/17/2017	10/17/17 15:05	
Surrogate: 4-Terphenyl-d14	53.2 %	39 - 123		B7J0451	10/17/2017	10/17/17 15:05	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-4 Lab ID: 1703679-04

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Arsenic	5.4	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Barium	71	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Chromium	12	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Cobalt	8.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Copper	62	2.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Lead	19	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Nickel	10	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Vanadium	27	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	
Zinc	41	1.0	1	B7J0522	10/18/2017	10/19/17 11:46	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Mercury	0.18	0.10	1	B7J0524	10/18/2017	10/19/17 16:44		

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-5 Lab ID: 1703679-05

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Arsenic	7.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Barium	69	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Chromium	13	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Cobalt	8.1	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Copper	84	2.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Lead	10	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Nickel	11	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Vanadium	31	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	
Zinc	41	1.0	1	B7J0522	10/18/2017	10/19/17 11:47	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Mercury	0.18	0.10	1	B7J0524	10/18/2017	10/19/17 16:45		

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Analyte	(ug/kg)	(ug/kg)	Dilution	Daten	Ттератец	Anaryzeu	rotes
2,4,6-Trichlorophenol	ND	330	1	B7J0452	10/17/2017	10/17/17 13:26	
Pentachlorophenol	ND	1600	1	B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 1,2-Dichlorobenzene-d4	41.4 %	38 - 93		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 2,4,6-Tribromophenol	55.9 %	27 - 124		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 2-Chlorophenol-d4	40.9 %	36 - 96		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 2-Fluorobiphenyl	52.0 %	44 - 100		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 2-Fluorophenol	36.4 %	32 - 89		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: 4-Terphenyl-d14	51.2 %	49 - 123		B7J0452	10/17/2017	10/17/17 13:26	
Surrogate: Nitrobenzene-d5	38.0 %	38 - 104		B7J0452	10/17/2017	10/17/17 13:26	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-5 Lab ID: 1703679-05

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Acenaphthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Acenaphthylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Benzo(a)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Benzo(a)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Benzo(b)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Benzo(g,h,i)perylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Benzo(k)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Chrysene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Dibenz(a,h)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Fluorene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Naphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Phenanthrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:30	
Surrogate: 1,2-Dichlorobenzene-d4	54.3 %	29 - 109		B7J0451	10/17/2017	10/17/17 16:30	
Surrogate: 2-Fluorobiphenyl	71.9 %	39 - 108		B7J0451	10/17/2017	10/17/17 16:30	
Surrogate: Nitrobenzene-d5	74.7 %	0 - 146		B7J0451	10/17/2017	10/17/17 16:30	
Surrogate: 4-Terphenyl-d14	60.4 %	39 - 123		B7J0451	10/17/2017	10/17/17 16:30	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SLDRP-6 Lab ID: 1703679-06

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Arsenic	4.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Barium	110	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Chromium	21	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Cobalt	9.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Copper	190	2.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Lead	12	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Nickel	15	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Vanadium	46	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	
Zinc	90	1.0	1	B7J0522	10/18/2017	10/19/17 11:48	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

		Result	PQL				Date/Time	
	Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
•	Mercury	0.23	0.10	1	B7J0524	10/18/2017	10/19/17 16:47	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-7 Lab ID: 1703679-07

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Arsenic	8.1	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Barium	94	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Chromium	14	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Cobalt	10	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Copper	160	2.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Lead	10	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Nickel	11	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Vanadium	37	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	
Zinc	57	1.0	1	B7J0522	10/18/2017	10/19/17 11:50	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.16	0.10	1	B7J0524	10/18/2017	10/19/17 16:49	

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2,4,6-Trichlorophenol	ND	330	1	B7J0452	10/17/2017	10/17/17 16:35	
Pentachlorophenol	ND	1600	1	B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 1,2-Dichlorobenzene-d4	50.7 %	38 - 93		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 2,4,6-Tribromophenol	67.8 %	27 - 124		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 2-Chlorophenol-d4	50.6 %	36 - 96		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 2-Fluorobiphenyl	61.1 %	44 - 100		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 2-Fluorophenol	43.1 %	32 - 89		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: 4-Terphenyl-d14	56.4 %	49 - 123		B7J0452	10/17/2017	10/17/17 16:35	
Surrogate: Nitrobenzene-d5	46.9 %	38 - 104		B7J0452	10/17/2017	10/17/17 16:35	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-7 Lab ID: 1703679-07

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Acenaphthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Acenaphthylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Benzo(a)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Benzo(a)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Benzo(b)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Benzo(g,h,i)perylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Benzo(k)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Chrysene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Dibenz(a,h)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Fluorene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Naphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Phenanthrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 16:58	
Surrogate: 1,2-Dichlorobenzene-d4	45.4 %	29 - 109		B7J0451	10/17/2017	10/17/17 16:58	
Surrogate: 2-Fluorobiphenyl	59.5 %	39 - 108		B7J0451	10/17/2017	10/17/17 16:58	
Surrogate: Nitrobenzene-d5	63.7 %	0 - 146		B7J0451	10/17/2017	10/17/17 16:58	
Surrogate: 4-Terphenyl-d14	51.1 %	39 - 123		B7J0451	10/17/2017	10/17/17 16:58	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-8 Lab ID: 1703679-08

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Arsenic	13	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Barium	90	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Chromium	12	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Cobalt	8.4	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Copper	170	2.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Lead	6.6	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Nickel	11	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Vanadium	29	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	
Zinc	43	1.0	1	B7J0522	10/18/2017	10/19/17 11:51	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0524	10/18/2017	10/19/17 16:51	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-9 Lab ID: 1703679-09

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Arsenic	5.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Barium	110	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Chromium	14	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Cobalt	10	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Copper	340	2.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Lead	9.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Nickel	14	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Vanadium	32	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	
Zinc	65	1.0	1	B7J0522	10/18/2017	10/19/17 11:54	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.26	0.10	1	B7J0524	10/18/2017	10/19/17 16:53	

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2,4,6-Trichlorophenol	ND	330	1	B7J0452	10/17/2017	10/17/17 17:03	
Pentachlorophenol	ND	1600	1	B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 1,2-Dichlorobenzene-d4	49.8 %	38 - 93		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 2,4,6-Tribromophenol	68.5 %	27 - 124		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 2-Chlorophenol-d4	49.6 %	36 - 96		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 2-Fluorobiphenyl	60.7 %	44 - 100		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 2-Fluorophenol	42.8 %	32 - 89		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: 4-Terphenyl-d14	57.8 %	49 - 123		B7J0452	10/17/2017	10/17/17 17:03	
Surrogate: Nitrobenzene-d5	48.4 %	38 - 104		B7J0452	10/17/2017	10/17/17 17:03	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-9 Lab ID: 1703679-09

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Acenaphthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Acenaphthylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Benzo(a)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Benzo(a)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Benzo(b)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Benzo(g,h,i)perylene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Benzo(k)fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Chrysene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Dibenz(a,h)anthracene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Fluoranthene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Fluorene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Naphthalene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Phenanthrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Pyrene	ND	5.0	1	B7J0451	10/17/2017	10/17/17 14:04	
Surrogate: 1,2-Dichlorobenzene-d4	49.4 %	29 - 109		B7J0451	10/17/2017	10/17/17 14:04	
Surrogate: 2-Fluorobiphenyl	63.7 %	39 - 108		B7J0451	10/17/2017	10/17/17 14:04	
Surrogate: Nitrobenzene-d5	66.6 %	0 - 146		B7J0451	10/17/2017	10/17/17 14:04	
Surrogate: 4-Terphenyl-d14	57.4 %	39 - 123		B7J0451	10/17/2017	10/17/17 14:04	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-10 Lab ID: 1703679-10

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Arsenic	4.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Barium	56	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Chromium	8.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Cobalt	6.9	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Copper	67	2.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Lead	4.3	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Nickel	5.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Vanadium	27	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	
Zinc	38	1.0	1	B7J0522	10/18/2017	10/19/17 11:56	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0524	10/18/2017	10/19/17 16:59	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SP5-S11 Lab ID: 1703679-11

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Arsenic	9.1	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Barium	70	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Chromium	9.6	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Cobalt	6.0	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Copper	95	2.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Lead	19	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Nickel	6.5	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Vanadium	24	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	
Zinc	38	1.0	1	B7J0522	10/18/2017	10/19/17 11:57	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.43	0.10	1	B7J0524	10/18/2017	10/19/17 17:00	

Semivolatile Organic Compounds by EPA 8270C

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2,4,6-Trichlorophenol	ND	660	2	B7J0452	10/17/2017	10/17/17 16:07	D1
Pentachlorophenol	ND	3300	2	B7J0452	10/17/2017	10/17/17 16:07	D1
Surrogate: 1,2-Dichlorobenzene-d4	49.8 %	38 - 93		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: 2,4,6-Tribromophenol	69.8 %	27 - 124		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: 2-Chlorophenol-d4	48.2 %	36 - 96		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: 2-Fluorobiphenyl	62.7 %	44 - 100		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: 2-Fluorophenol	41.7 %	32 - 89		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: 4-Terphenyl-d14	55.1 %	49 - 123		B7J0452	10/17/2017	10/17/17 16:07	
Surrogate: Nitrobenzene-d5	46.7 %	38 - 104		B7J0452	10/17/2017	10/17/17 16:07	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SP5-S11 Lab ID: 1703679-11

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Acenaphthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Acenaphthylene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Benzo(a)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Benzo(a)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Benzo(b)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Benzo(g,h,i)perylene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Benzo(k)fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Chrysene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Dibenz(a,h)anthracene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Fluoranthene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Fluorene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Indeno(1,2,3-cd)pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Naphthalene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Phenanthrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Pyrene	ND	10	2	B7J0451	10/17/2017	10/17/17 15:34	D1
Surrogate: 1,2-Dichlorobenzene-d4	49.9 %	29 - 109		B7J0451	10/17/2017	10/17/17 15:34	
Surrogate: 2-Fluorobiphenyl	64.2 %	39 - 108		B7J0451	10/17/2017	10/17/17 15:34	
Surrogate: Nitrobenzene-d5	70.9 %	0 - 146		B7J0451	10/17/2017	10/17/17 15:34	
Surrogate: 4-Terphenyl-d14	51.9 %	39 - 123		B7J0451	10/17/2017	10/17/17 15:34	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID SMR-12 Lab ID: 1703679-12

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Arsenic	7.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Barium	65	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Chromium	13	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Cobalt	8.0	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Copper	88	2.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Lead	9.8	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Nickel	11	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Vanadium	32	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	
Zinc	42	1.0	1	B7J0522	10/18/2017	10/19/17 11:58	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Mercury	0.20	0.10	1	B7J0524	10/18/2017	10/19/17 17:02		

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Client Sample ID RWS-1 Lab ID: 1703679-13

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:35	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:35	
Barium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Chromium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Copper	ND	0.0090	1	B7J0455	10/17/2017	10/17/17 17:35	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:35	
Molybdenum	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:35	
Nickel	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:35	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:35	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:35	
Vanadium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:35	
Zinc	0.098	0.025	1	B7J0455	10/17/2017	10/17/17 17:35	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/20/17 15:25	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

MDL

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

PQL

Result

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

Spike

Source

% Rec

RPD

1										
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Dotah D710455 EDA 2010 A W										
Batch B7J0455 - EPA 3010A_W										
Blank (B7J0455-BLK1)					Prepared	d: 10/17/2017	Analyzed: 10/	17/2017		
Antimony	ND	0.010	0.0088							
Arsenic	ND	0.010	0.0078							
Barium	ND	0.0030	0.0026							
Beryllium	ND	0.0030	0.0016							
Cadmium	ND	0.0030	0.0024							
Chromium	ND	0.0030	0.0020							
Cobalt	ND	0.0030	0.0016							
Copper	ND	0.0090	0.0038							
Lead	ND	0.0050	0.0047							
Molybdenum	ND	0.0050	0.0030							
Nickel	ND	0.0050	0.0046							
Selenium	ND	0.010	0.0093							
Silver	ND	0.0030	0.0024							
Thallium	ND	0.015	0.0085							
Vanadium	ND	0.0030	0.0022							
Zinc	ND	0.025	0.0057							
LCS (B7J0455-BS1)					Prepared	d: 10/17/2017	Analyzed: 10/	17/2017		
Antimony	0.929102	0.010	0.0088	1.00000		92.9	80 - 120			
Arsenic	0.941062	0.010	0.0078	1.00000		94.1	80 - 120			
Barium	0.969431	0.0030	0.0026	1.00000		96.9	80 - 120			
Beryllium	0.952237	0.0030	0.0016	1.00000		95.2	80 - 120			
Cadmium	0.923200	0.0030	0.0024	1.00000		92.3	80 - 120			
Chromium	0.964497	0.0030	0.0020	1.00000		96.4	80 - 120			
Cobalt	0.960800	0.0030	0.0016	1.00000		96.1	80 - 120			
Copper	0.947343	0.0090	0.0038	1.00000		94.7	80 - 120			
Lead	0.953769	0.0050	0.0047	1.00000		95.4	80 - 120			
Molybdenum	0.936200	0.0050	0.0030	1.00000		93.6	80 - 120			
Nickel	0.929993	0.0050	0.0046	1.00000		93.0	80 - 120			
Selenium	0.907008	0.010	0.0093	1.00000		90.7	80 - 120			
Silver	1.18499	0.0030	0.0024	1.00000		118	80 - 120			
Thallium	0.946903	0.015	0.0085	1.00000		94.7	80 - 120			
Vanadium	0.953132	0.0030	0.0022	1.00000		95.3	80 - 120			
Zinc	0.930909	0.025	0.0057	1.00000		93.1	80 - 120			
Matrix Spike (B7J0455-MS1)		Se	ource: 17036	540-01	Prepared	d: 10/17/2017	Analyzed: 10/	17/2017		
Antimony	2.45296	0.010	0.0088	2.50000	ND	98.1	60 - 130			
Arsenic	2.51904	0.010	0.0078	2.50000	ND	101	69 - 123			

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0455 - EPA 3010A_W (continued)

Matrix Spike (B7J0455-MS1) - Conti	Source: 1703640-01			Prepared: 10/17/2017 Analyzed: 10/17/2017						
Barium	2.59554	0.0030	0.0026	2.50000	0.106382	99.6	67 - 129			
Beryllium	2.52702	0.0030	0.0016	2.50000	ND	101	74 - 120			
Cadmium	2.37069	0.0030	0.0024	2.50000	ND	94.8	69 - 116			
Chromium	2.49293	0.0030	0.0020	2.50000	0.014934	99.1	74 - 120			
Cobalt	2.43594	0.0030	0.0016	2.50000	0.002840	97.3	70 - 116			
Copper	2.53772	0.0090	0.0038	2.50000	0.01129	101	76 - 123			
Lead	2.42425	0.0050	0.0047	2.50000	ND	97.0	69 - 117			
Molybdenum	2.53677	0.0050	0.0030	2.50000	0.026825	100	68 - 120			
Nickel	2.38734	0.0050	0.0046	2.50000	0.011243	95.0	70 - 115			
Selenium	2.39006	0.010	0.0093	2.50000	ND	95.6	66 - 120			
Silver	2.66866	0.0030	0.0024	2.50000	ND	107	73 - 123			
Thallium	2.34797	0.015	0.0085	2.50000	ND	93.9	57 - 124			
Vanadium	2.52252	0.0030	0.0022	2.50000	0.010942	100	72 - 123			
Zinc	2.38635	0.025	0.0057	2.50000	0.023691	94.5	73 - 111			
Matrix Spike Dup (B7J0455-MSD1)		Source: 1703640-01			Prepared: 10/17/2017 Analyzed: 10/17/2017					
Antimony	2.42439	0.010	0.0088	2.50000	ND	97.0	60 - 130	1.17	20	
Arsenic	2.47205	0.010	0.0078	2.50000	ND	98.9	69 - 123	1.88	20	
Barium	2.56504	0.0030	0.0026	2.50000	0.106382	98.3	67 - 129	1.18	20	
Beryllium	2.49000	0.0030	0.0016	2.50000	ND	99.6	74 - 120	1.48	20	
Cadmium	2.33304	0.0030	0.0024	2.50000	ND	93.3	69 - 116	1.60	20	
Chromium	2.44862	0.0030	0.0020	2.50000	0.014934	97.3	74 - 120	1.79	20	
Cobalt	2.39427	0.0030	0.0016	2.50000	0.002840	95.7	70 - 116	1.73	20	
Copper	2.50095	0.0090	0.0038	2.50000	0.01129	99.6	76 - 123	1.46	20	
Lead	2.39216	0.0050	0.0047	2.50000	ND	95.7	69 - 117	1.33	20	
Molybdenum	2.50298	0.0050	0.0030	2.50000	0.026825	99.0	68 - 120	1.34	20	
Nickel	2.35861	0.0050	0.0046	2.50000	0.011243	93.9	70 - 115	1.21	20	
Selenium	2.34170	0.010	0.0093	2.50000	ND	93.7	66 - 120	2.04	20	
Silver	2.62202	0.0030	0.0024	2.50000	ND	105	73 - 123	1.76	20	
Thallium	2.34150	0.015	0.0085	2.50000	ND	93.7	57 - 124	0.276	20	
Vanadium	2.48646	0.0030	0.0022	2.50000	0.010942	99.0	72 - 123	1.44	20	
Zinc	2.35433	0.025	0.0057	2.50000	0.023691	93.2	73 - 111	1.35	20	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source Result % Rec		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D-4-L D710522 EDA 2050D C										
Batch B7J0522 - EPA 3050B_S										
Blank (B7J0522-BLK1)					Prepared	: 10/18/2017	Analyzed: 10/	19/2017		
Antimony	ND	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	ND	1.0	0.18							
Molybdenum	ND	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	0.06							
Zinc	ND	1.0	0.15							
LCS (B7J0522-BS1)					Prepared	: 10/18/2017	Analyzed: 10/	19/2017		
Antimony	44.0054	2.0	0.51	50.0000		88.0	80 - 120			
Arsenic	43.7278	1.0	0.12	50.0000		87.5	80 - 120			
Barium	47.6076	1.0	0.12	50.0000		95.2	80 - 120			
Beryllium	44.0730	1.0	0.03	50.0000		88.1	80 - 120			
Cadmium	43.4271	1.0	0.14	50.0000		86.9	80 - 120			
Chromium	47.0347	1.0	0.26	50.0000		94.1	80 - 120			
Cobalt	46.2982	1.0	0.07	50.0000		92.6	80 - 120			
Copper	45.7400	2.0	0.19	50.0000		91.5	80 - 120			
Lead	44.7014	1.0	0.18	50.0000		89.4	80 - 120			
Molybdenum	45.8167	1.0	0.12	50.0000		91.6	80 - 120			
Nickel	44.5192	1.0	0.18	50.0000		89.0	80 - 120			
Selenium	42.3748	1.0	0.40	50.0000		84.7	80 - 120			
Silver	46.9070	1.0	0.12	50.0000		93.8	80 - 120			
Thallium	44.5632	1.0	0.38	50.0000		89.1	80 - 120			
Vanadium	46.2541	1.0	0.06	50.0000		92.5	80 - 120			
Zinc	44.4701	1.0	0.15	50.0000		88.9	80 - 120			
Matrix Spike (B7J0522-MS1)		S	ource: 17036		Prepared	: 10/18/2017	7 Analyzed: 10/	19/2017		
Antimony	55.3796	2.0	0.51	125.000	ND	44.3	33 - 98			
Arsenic	77.4801	1.0	0.12	125.000	0.237066	61.8	48 - 101			
Barium	156.386	1.0	0.12	125.000	98.8874	46.0	25 - 131			
Beryllium	76.9417	1.0	0.12	125.000	98.8874 ND	61.6	56 - 97			
JC1 Y 111U111	10.7411	1.0	0.03							

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0522 - EPA 3050B_S	(continued)									
Matrix Spike (B7J0522-MS1) - Col		So	ource: 17036	72-05	Prepared:	: 10/18/2017	Analyzed: 10/1	9/2017		
Chromium	79.7975	1.0	0.26	125.000	7.45795	57.9	45 - 113			
Cobalt	75.9180	1.0	0.07	125.000	3.69589	57.8	51 - 97			
Copper	84.9218	2.0	0.19	125.000	7.57142	61.9	51 - 113			
Lead	71.4824	1.0	0.18	125.000	ND	57.2	33 - 127			
Molybdenum	75.1120	1.0	0.12	125.000	ND	60.1	54 - 97			
Nickel	75.5334	1.0	0.18	125.000	5.76752	55.8	46 - 102			
Selenium	74.6554	1.0	0.40	125.000	ND	59.7	52 - 93			
Silver	86.2298	1.0	0.12	125.000	ND	69.0	58 - 98			
Thallium	67.5519	1.0	0.38	125.000	ND	54.0	46 - 93			
Vanadium	88.0594	1.0	0.06	125.000	15.4392	58.1	55 - 104			
Zinc	85.3713	1.0	0.15	125.000	25.5268	47.9	26 - 118			
Matrix Spike Dup (B7J0522-MSD	1)	So	ource: 17036	72-05	Prepared:	: 10/18/2017	Analyzed: 10/1	9/2017		
Antimony	59.4024	2.0	0.51	125.000	ND	47.5	33 - 98	7.01	20	
Arsenic	82.6520	1.0	0.12	125.000	0.237066	65.9	48 - 101	6.46	20	
Barium	164.454	1.0	0.12	125.000	98.8874	52.5	25 - 131	5.03	20	
Beryllium	83.0842	1.0	0.03	125.000	ND	66.5	56 - 97	7.68	20	
Cadmium	74.1982	1.0	0.14	125.000	ND	59.4	53 - 94	6.30	20	
Chromium	84.5824	1.0	0.26	125.000	7.45795	61.7	45 - 113	5.82	20	
Cobalt	80.6244	1.0	0.07	125.000	3.69589	61.5	51 - 97	6.01	20	
Copper	89.4858	2.0	0.19	125.000	7.57142	65.5	51 - 113	5.23	20	
Lead	75.3280	1.0	0.18	125.000	ND	60.3	33 - 127	5.24	20	
Molybdenum	79.0384	1.0	0.12	125.000	ND	63.2	54 - 97	5.09	20	
Nickel	79.8602	1.0	0.18	125.000	5.76752	59.3	46 - 102	5.57	20	
Selenium	79.5914	1.0	0.40	125.000	ND	63.7	52 - 93	6.40	20	
Silver	91.4008	1.0	0.12	125.000	ND	73.1	58 - 98	5.82	20	
Thallium	71.8481	1.0	0.38	125.000	ND	57.5	46 - 93	6.16	20	
Vanadium	93.7148	1.0	0.06	125.000	15.4392	62.6	55 - 104	6.22	20	
Zinc	93.1380	1.0	0.15	125.000	25.5268	54.1	26 - 118	8.70	20	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0458 - EPA 245.1/74	70_W									
Blank (B7J0458-BLK1)					Prepared	Prepared: 10/17/2017		18/2017		
Mercury	ND	0.20	0.05							
LCS (B7J0458-BS1)					Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	9.54958	0.20	0.05	10.0000		95.5	80 - 120			
Matrix Spike (B7J0458-MS1)		S	ource: 1703	640-01	Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	9.82494	0.20	0.05	10.0000	0.066603	97.6	70 - 130			
Matrix Spike Dup (B7J0458-MSI	01)	S	ource: 1703	640-01	Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	10.2498	0.20	0.05	10.0000	0.066603	102	70 - 130	4.23	20	
Post Spike (B7J0458-PS1)	9458-PS1) Source: 1703640-01		640-01	Prepared	: 10/17/2017	Analyzed: 10/	18/2017			
Mercury	4.94797			5.00000	0.066603	97.6	85 - 115			

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To : Kyle Leach Nevada City , CA 95959 Reported : 10/20/2017

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0524 - EPA 7471_S										
Blank (B7J0524-BLK1)	(B7J0524-BLK1)				Prepared:	10/18/2017	Analyzed: 10/	19/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0524-BS1)					Prepared	10/18/2017	Analyzed: 10/	19/2017		
Mercury	0.767508	0.10	0.005	0.833333		92.1	80 - 120			
Matrix Spike (B7J0524-MS1)		S	ource: 1703	672-05	Prepared	10/18/2017	Analyzed: 10/	19/2017		
Mercury	0.829618	0.10	0.005	0.833333	0.014933	97.8	70 - 130			
Matrix Spike Dup (B7J0524-MSD1)		S	ource: 1703	672-05	Prepared	10/18/2017	Analyzed: 10/	19/2017		
Mercury	0.755244	0.10	0.005	0.833333	0.014933	88.8	70 - 130	9.39	20	
Post Spike (B7J0524-PS1)		S	Source: 1703672-05		Prepared: 10/18/20		10/18/2017 Analyzed: 10/19/2017			
Mercury	0.005499			5.00000E-3	0.000179	106	85 - 115			

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Semivolatile Organic Compounds by EPA 8270C - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	
Batch B7J0452 - MSSEMI_S											
_					Drangers	d. 10/17/2015	Amaluzadi 10/	17/2017			
Blank (B7J0452-BLK1)					Prepared	a: 10/1//201/	' Analyzed: 10/	1 //201 /			
2,4,6-Trichlorophenol	ND	330	220								
Pentachlorophenol	:: 1,2-Dichlorobenzene- 1903		190								
Surrogate: 1,2-Dichlorobenzene-				3333.33		57.1	38 - 93				
Surrogate: 2,4,6-Tribromophenol				3333.33		83.1	27 - 124				
Surrogate: 2-Chlorophenol-d4	1792			3333.33		53.8	36 - 96				
Surrogate: 2-Fluorobiphenyl	2173			3333.33		65.2 44 - 100					
Surrogate: 2-Fluorophenol	1630			3333.33		48.9	32 - 89				
Surrogate: 4-Terphenyl-d14	3105			3333.33		93.2	49 - 123				
Surrogate: Nitrobenzene-d5	1737			3333.33		52.1	38 - 104				
LCS (B7J0452-BS1)					Prepared	d: 10/17/2017	Analyzed: 10/	17/2017			
2,4,6-Trichlorophenol	3264.33	330	220	3333.33		97.9	61 - 119				
Pentachlorophenol	3224.33	1600	190	3333.33		96.7	53 - 115				
Surrogate: 1,2-Dichlorobenzene-	2166			3333.33		65.0	38 - 93				
Surrogate: 2,4,6-Tribromophenol	3376			3333.33		101	27 - 124				
Surrogate: 2-Chlorophenol-d4	2120			3333.33		63.6	36 - 96				
Surrogate: 2-Fluorobiphenyl	2815			3333.33		84.4	44 - 100				
Surrogate: 2-Fluorophenol	1890			3333.33		56.7	32 - 89				
Surrogate: 4-Terphenyl-d14	2943			3333.33		88.3	49 - 123				
Surrogate: Nitrobenzene-d5	2024			3333.33		60.7	38 - 104				
Matrix Spike (B7J0452-MS1)		s	ource: 1703	679-05	Prepared	d: 10/17/2017	' Analyzed: 10/	17/2017			
2,4,6-Trichlorophenol	2571.33	330	220	3333.33	ND	77.1	46 - 121				
Pentachlorophenol	2361.67	1600	190	3333.33	ND	70.9	32 - 128				
Surrogate: 1,2-Dichlorobenzene-	1276			3333.33		38.3	38 - 93				
Surrogate: 2,4,6-Tribromophenol	2481			3333.33		74.4	27 - 124				
Surrogate: 2-Chlorophenol-d4	1383			3333.33		41.5	36 - 96				
Surrogate: 2-Fluorobiphenyl	1919			3333.33		57.6	44 - 100				
Surrogate: 2-Fluorophenol	1200			3333.33		36.0	32 - 89				
Surrogate: 4-Terphenyl-d14	2019			3333.33		60.6	49 - 123				
Surrogate: Nitrobenzene-d5	1365			3333.33		41.0	38 - 104				
Matrix Spike Dup (B7J0452-MSD1		e	ource: 17036		Prenare		' Analyzed: 10/	17/2017			
• • •	• `				•		•		20		
2,4,6-Trichlorophenol	2774.67	330	220	3333.33	ND	83.2	46 - 121	7.61	20		
Pentachlorophenol	2511.00	1600	190	3333.33	ND	75.3	32 - 128	6.13	20		
Surrogate: 1,2-Dichlorobenzene-	1387			3333.33		41.6	38 - 93				
Surrogate: 2,4,6-Tribromophenol	2458			3333.33		73.8	27 - 124				
Surrogate: 2-Chlorophenol-d4	1475			3333.33		44.3	36 - 96				
Surrogate: 2-Fluorobiphenyl	2123			3333.33		63.7	44 - 100				
Surrogate: 2-Fluorophenol	1261			3333.33		37.8	32 - 89				

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach Nevada City, CA 95959 Reported: 10/20/2017

Semivolatile Organic Compounds by EPA 8270C - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0452 - MSSEMI_S (continued)

Matrix Spike Dup (B7J0452-MSD1) - Continued Source: 1703679-05 Prepared: 10/17/2017 Analyzed: 10/17/2017

 Surrogate: 4-Terphenyl-d14
 2086
 3333.33
 62.6
 49 - 123

 Surrogate: Nitrobenzene-d5
 1492
 3333.33
 44.8
 38 - 104

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach
Nevada City, CA 95959 Reported: 10/20/2017

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0451 - EPA 1311_S (S	SVOA CCMS	a								
	OA_GCMS	')			_					
Blank (B7J0451-BLK1)					Prepared	d: 10/17/2017	Analyzed: 10/	17/2017		
2-Methylnaphthalene	ND	5.0	0.60							
Acenaphthene	ND	5.0	0.41							
Acenaphthylene	ND	5.0	0.41							
Anthracene	ND	5.0	0.56							
Benzo(a)anthracene	ND	5.0	0.56							
Benzo(a)pyrene	ND	5.0	0.69							
Benzo(b)fluoranthene	ND	5.0	2.2							
Benzo(g,h,i)perylene	ND	5.0	0.80							
Benzo(k)fluoranthene	ND	5.0	0.70							
Chrysene	ND	5.0	0.61							
Dibenz(a,h)anthracene	ND	5.0	0.88							
Fluoranthene	ND	5.0	0.45							
Fluorene	ND	5.0	0.35							
Indeno(1,2,3-cd)pyrene	ND	5.0	0.82							
Naphthalene	ND	5.0	0.56							
Phenanthrene	ND	5.0	0.34							
Pyrene	ND	5.0	0.51							
Surrogate: 1,2-Dichlorobenzene-	25.84			33.3333		77.5	29 - 109			
Surrogate: 2-Fluorobiphenyl	29.70			33.3333		89.1	39 - 108			
Surrogate: Nitrobenzene-d5	31.82			33.3333		95.5	0 - 146			
Surrogate: 4-Terphenyl-d14	37.87			33.3333		114	39 - 123			
LCS (B7J0451-BS1)					Prepared	d: 10/17/2017	Analyzed: 10/	17/2017		
2-Methylnaphthalene	19.1893	5.0	0.60	33.3333	•	57.6	23 - 127			
Acenaphthene	23.3423	5.0	0.41	33.3333		70.0	35 - 91			
Acenaphthylene	23.9160	5.0	0.41	33.3333		71.7	35 - 92			
Anthracene	24.1743	5.0	0.56	33.3333		72.5	43 - 109			
Benzo(a)anthracene	26.2543	5.0	0.56	33.3333		78.8	46 - 121			
Benzo(a)pyrene	23.7787	5.0	0.69	33.3333		71.3	49 - 126			
Benzo(b)fluoranthene	28.2593	5.0	2.2	33.3333		84.8	34 - 137			
Benzo(g,h,i)perylene	25.8367	5.0	0.80	33.3333		77.5	40 - 124			
Benzo(k)fluoranthene	27.2847	5.0	0.70	33.3333		81.9	21 - 132			
Chrysene	25.9293	5.0	0.61	33.3333		77.8	51 - 124			
Dibenz(a,h)anthracene	26.7347	5.0	0.88	33.3333		80.2	38 - 123			
Fluoranthene	27.3077	5.0	0.45	33.3333		81.9	47 - 105			
Fluorene	23.9170	5.0	0.45	33.3333		71.8	34 - 95			
Indeno(1,2,3-cd)pyrene	26.0093	5.0	0.82	33.3333		78.0	45 - 124			
Naphthalene	23.2187	5.0	0.56	33.3333		69.7	26 - 110			
Phenanthrene	24.5200	5.0	0.34	33.3333		73.6	39 - 108			
Pyrene	26.8843	5.0	0.51	33.3333		80.7	47 - 107			
1 310110	20.0043	5.0	0.31	22.223		00.7	7/-10/			

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To : Kyle Leach Nevada City , CA 95959 Reported : 10/20/2017

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL		Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)		Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0451 - EPA 1311_S (S	VOA_GCMS) (continued)							
LCS (B7J0451-BS1) - Continued					Prepared	10/17/2017	Analyzed: 10/	17/2017		
Surrogate: 1,2-Dichlorobenzene-	24.07			33.3333		72.2	29 - 109			
Surrogate: 2-Fluorobiphenyl	28.50			33.3333		85.5	39 - 108			
Surrogate: Nitrobenzene-d5	30.43			33.3333		91.3	0 - 146			
Surrogate: 4-Terphenyl-d14	34.91			33.3333		105	39 - 123			
Matrix Spike (B7J0451-MS1)		So	ource: 1703	679-09	Prepared:	10/17/2017	Analyzed: 10/	17/2017		
2-Methylnaphthalene	13.1260	5.0	0.60	33.3333	ND	39.4	30 - 141			
Acenaphthene	15.1393	5.0	0.41	33.3333	ND	45.4	9 - 155			
Acenaphthylene	17.0413	5.0	0.41	33.3333	2.65067	43.2	43 - 110			
Anthracene	15.4727	5.0	0.56	33.3333	ND	46.4	33 - 146			
Benzo(a)anthracene	17.9023	5.0	0.56	33.3333	0.713000	51.6	49 - 130			
Benzo(a)pyrene	14.1577	5.0	0.69	33.3333	ND	42.5	36 - 134			
Benzo(b)fluoranthene	17.0667	5.0	2.2	33.3333	ND	51.2	26 - 148			
Benzo(g,h,i)perylene	16.4503	5.0	0.80	33.3333	1.21500	45.7	16 - 156			
Benzo(k)fluoranthene	13.9833	5.0	0.70	33.3333	ND	42.0	29 - 132			
Chrysene	15.7017	5.0	0.61	33.3333	1.40600	42.9	0 - 184			
Dibenz(a,h)anthracene	16.0207	5.0	0.88	33.3333	ND	48.1	29 - 149			
Fluoranthene	18.8333	5.0	0.45	33.3333	1.91067	50.8	14 - 162			M2
Fluorene	15.6817	5.0	0.35	33.3333	0.539667	45.4	48 - 111			M2
ndeno(1,2,3-cd)pyrene	15.6677 16.0377	5.0 5.0	0.82 0.56	33.3333 33.3333	ND 0.596667	47.0 46.3	37 - 135 34 - 126			
Naphthalene Phenanthrene	16.1000	5.0	0.36	33.3333	0.396667	45.5	19 - 155			
Pyrene	17.9860	5.0	0.54	33.3333	1.19800	50.4	19 - 155			
Surrogate: 1,2-Dichlorobenzene-	15.53			33.3333		46.6	29 - 109			
Surrogate: 2-Fluorobiphenyl	19.17			33.3333		57.5	39 - 108			
Surrogate: Nitrobenzene-d5	20.34			33.3333		61.0	0 - 146			
Surrogate: 4-Terphenyl-d14	17.86			33.3333		53.6	39 - 123			
Matrix Spike Dup (B7J0451-MSD1)	So	urce: 1703	679-09	Prepared	10/17/2017	Analyzed: 10/	17/2017		
2-Methylnaphthalene	14.7920	5.0	0.60	33.3333	ND	44.4	30 - 141	11.9	20	
Acenaphthene	17.1057	5.0	0.41	33.3333	ND	51.3	9 - 155	12.2	20	
Acenaphthylene	19.9313	5.0	0.41	33.3333	2.65067	51.8	43 - 110	15.6	20	
Anthracene	17.9160	5.0	0.56	33.3333	ND	53.7	33 - 146	14.6	20	
Benzo(a)anthracene	20.3453	5.0	0.56	33.3333	0.713000	58.9	49 - 130	12.8	20	
Benzo(a)pyrene	15.7273	5.0	0.69	33.3333	ND	47.2	36 - 134	10.5	20	
Benzo(b)fluoranthene	18.3107	5.0	2.2	33.3333	ND	54.9	26 - 148	7.03	20	
Benzo(g,h,i)perylene	16.8937	5.0	0.80	33.3333	1.21500	47.0	16 - 156	2.66	20	
Benzo(k)fluoranthene	16.2780	5.0	0.70	33.3333	ND	48.8	29 - 132	15.2	20	
Chrysene	17.6690	5.0	0.61	33.3333	1.40600	48.8	0 - 184	11.8	20	
Dibenz(a,h)anthracene	17.1670	5.0	0.88	33.3333	ND	51.5	29 - 149	6.91	20	
Fluoranthene	19.2853	5.0	0.45	33.3333	1.91067	52.1	14 - 162	2.37	20	

Sierra Streams Institute Project Number: Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach Nevada City, CA 95959 Reported: 10/20/2017

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD			
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	% Rec Limits RPD		Limit	Notes		
Batch B7J0451 - EPA 1311_S (SVOA_GCMS) (continued)												

Matrix Spike Dup (B7J0451-MSD)	1) - Continued	s	Source: 1703	679-09	Prepared:	7/2017			
Fluorene	17.5333	5.0	0.35	33.3333	0.539667	51.0	48 - 111	11.1	20
Indeno(1,2,3-cd)pyrene	16.6873	5.0	0.82	33.3333	ND	50.1	37 - 135	6.30	20
Naphthalene	17.5313	5.0	0.56	33.3333	0.596667	50.8	34 - 126	8.90	20
Phenanthrene	17.8570	5.0	0.34	33.3333	0.948667	50.7	19 - 155	10.3	20
Pyrene	18.2027	5.0	0.51	33.3333	1.19800	51.0	13 - 162	1.20	20
Surrogate: 1,2-Dichlorobenzene-	17.61			33.3333		52.8	29 - 109		
Surrogate: 2-Fluorobiphenyl	22.61			33.3333		67.8	39 - 108		
Surrogate: Nitrobenzene-d5	23.46	33.3333				70.4	0 - 146		
Surrogate: 4-Terphenyl-d14	20.50	33.3333			61.5	39 - 123			

Sierra Streams Institute Project Number : Plumas Brownfields, Crescent Mills

431 Uren St., Suite C Report To: Kyle Leach Nevada City, CA 95959 Reported: 10/20/2017

Notes and Definitions

M2 Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory

control sample.

D1 Sample required dilution due to possible matrix interference.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

CHAIN OF CUSTODY RECORD

Page 1 of 2

	ATLCOC Ver:	20130.	/1:		
Mark ad at Tarana	s	ample Condit	ions Upan Receipt		
Method of Transport	Condition	Y N	Condition	Y	N
☐ Client ☐ ATL	1. CHILLED	۵ کامی	5. # OF SAMPLES MATCH CO	: 0	
☐ FedEx Y OnTrac	2. HEADSPACE (VOA)	WO C	6. PRESERVED	A STATE OF THE STA	Ć
□ GSO	3. CONTAINER INTACT		7. COOLER TEMP, deg C:	1 .	
Other:	4. SEALED		160 110	70	ズ

Date:

Date:

Time:

Facility and a Use Oak

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

ished by: (Signature and Printed Name)

Relinquished by: (Signature and Printed Name)

Instruction: Complete all shaded areas.

	Comp	pany:			-		Address:	4.	31	Ur	ረክ	5+		Ste	_ (2				Tel	:13	30	26	5-6	090	× 20.
		Siem) trea	us lushfute				City: N	ev	ude	- C	ety				S	tate: CA		p: 9	5950	Fa:	x: 🗸				13	. 1
m cc	Attn:		SEND REPORT TO:	mail:	1 00			Attn	Var. de de	ale e						SEND INVO	OICE TO		nail:		□ sa	me as	SEN	D RE	PORT	TO
Σ 0		Kyle Leav	<u> </u>	mail: Kleac	rosc	291	hail.com	C							1	<u> </u>		<u> </u>								<u> </u>
CUSTOMER	Comp	Sierra St	reems lust						pany:		Sa	n	٤_			<u> </u>										:
٥	Addre	ess: 431 Uren.	h reems last St Suite C					Add	ress:																	
	City:	Nevada	City	State: CA	Zip:	950	२८५	City:	SS 115 Testers										.:	State	e:		Zip:	:		
	Proje	ect Name:	Quote No:	Special Instruc	tions/C	omm	ents:				Encircle	or Write	e Req			lysis		Encircle	e Samp	le Mat	rix	C	ontain	ier	I = 4C;	QA/QC
		Crescent Mil		Need re 10/20	sults 17	by	à	8260 / 624 (Volatiles) 8015(GRO) 8015(DRO) 8270(Semi-volatiles) 8081(Organochlorine Pesticides) 8082(PCBs) 6010 / 7000(Title 22 Metals) TO-15				JU(Title 22 Metals)	Organic	8270C	50 KM 50 T			SOIL SEDIMENT / SLUDGE SOLIDS / WIPE/ FILTER WATER - DRINKING / GROUND WATER - STORM / WASTE AQUEOUS / LAYERED - OIL					; 2=VOA; 3=Liter; 4=Pint; r; 7 = Canister	Slass; 2=Plastic; 3=Metal	HNO3; 3=H2S0 JA2S2O3	Routin Caltrar Legal RWQC Level I
	Σ		Sample	Description			The second second second	9/0	(GRO (DRO	(Sem	(PCB;	5 4	نم سالات					SEDIN SS / WI	R - DR				1=Tube 6=Tedla	riak: 1≕	(Ac)2; 6	REMARKS
ES	ITEM	Lab No. 1703679	Sample ID / Location		Da	te	Time	826	8015(8015(827(8082(10-15	1	PAE.	5			S S	WATER	AQUI		#	Type: 5=Jar;	Material:	Prese 5=Zn (REM
SAMPLES	1	SMR-1-01		10/9	17	200				,	XII		X	1			V			T	Τ	П	1			
	2	SMR-2-02		,	١	210											У		TT		T		,			
ECT	3	515-3 - S	SMR-2 SLS-3				220							×	<			V					П	ì		
PROJECT	4	-041	SMR-4				23\$. }	<	T	П				Y	П	\prod			П	,		
ď	5	-06	5MR-6				235							×	2			Y						,		
	6	-07	SLDRP-6				245			П								4	П	11	T			, ,		
	7	-08	SMR-7	nga mang mang dan di di pang dan di didak di di di di di			255					7		×	4			yc						1		** dans de la constante
	8	709	5mR-8	regregation of the second			310					$\langle $						X					П	1		William Town
	9	~(P)	SMR-9	A STATE OF THE PARTY OF THE PAR			320	20020)			×	K			X	П							
	10	·- []	SMR-10			<u>/</u>	330				\perp							4						1	.W. 130	
s Page	2. Sam 3. The 4. Wee 5. Subo	pple receiving hours: 7:30 AM to 7:30 optes Submitted AFTER 3:00 PM, are cridllowing turnaround time conditions TAT = 0:300% Surcharge SAME BU. TAT = 1:100% Surcharge PAST BUSTAT = 2:50% Surcharge 2ND BUSIN TAT = 4:20% Surcharge 2ND BUSIN TAT = 4:20% Surcharge 4TH BUSIN TAT = 4:20% Surcharge 4TH BUSIN TAT = 5:50 SUBCHARGE 5th BUSIN CATES = 5:50 SUBCHARGE 5th BU	samples will be dispo 7. Electronic records ma 8. Hard copy reports will 9. Storage and Report F. - Liquid & solid sample extended storage or - Air samples. Complir requested. - Hard copy and reger 335 per reprocessed 10. Rush TCLP/STLC sam 11. Unanalyzed samples	intained for I be dispose es: Complim hold is requimentary stor perated repo EDD. iples: add 2 (five (5) yed of after 4 entary storested. rage for terminates to analysis of the days of t	ears from report da 15 calendar days fro rage for forty-fi ve (n (10) calendar day: \$17.50 per hard co plysis TAT for extrac	te. im repoi 45) cale is from ri by repoi tion on	rt date. endar day: eceipt of : rt request	amples; ed; \$50.0	\$20/ samp	le/week if e	xtendeo	i storage	11	purchase l hereby gua	uthorized agent of the compa e laboratory services from ATI guarantee payment as quoted 						ATL as shown above and			•	
34 of	Reling	uished by: (Signature and Pri		Date:			Time:		eceive	d by: (s	ignature	and Printe	d/Nan	e je	- (ONC_	A CONTRACTOR OF THE PROPERTY O				Date;	Date: 15/13/1 Time: 16/			·ll	
	(C) 1: 2			Data			Timo	ĺĎ	ocaiva	I bun (C		and Drinte	al Nice								Date.				Time	7

Time:

Time:

Date:

Received by: (Signature and Printed Name)

Received by: (Signature and Printed Name)

Excelche Environmental L	m abs				Ph		Ro	cklin	, CA	. 957	I. Unii 765 16-54		49			Cł	ΙΑΙ	N-C	OF.	-CU	ST	OE	Υ	RE	СО	RD	Α	ND	Αl	IA	LYS	SIS	RE	EQI	UE	ST					
Project Manager:								Pho	ne #	:	65			`		Ele	ctro	onic	Dat	ta D	eliv	eral	oles	Re	que	st:							Em	nail .	Ado	lres	s:				
Company/Address:	led						····	Fax							*******																										
551																AN	JA!	LYS	SIS	RE	OL	JES	 ЗТ		***************************************				•••••••			p	adi		2	of	2				
Project Number/P O#								Proj	ect N	lame	9:	~~ \																			Wet		<u></u>			<u> </u>			Bin#		
Project Location: Cres ce	-s 131	100						1			25					3015)			964	(7					g						Tota	 al		tance				2hr/Standard	Due I	Date:	
Project Location:	Λ.							San	npler	1	ature					3021/8			520)1((808	141)				netho	(0)		260B)	0B)	ソ			<u>_</u>	onpuc					Work	Order:	
Cresce	~ x / M	11/6		***********		****			V	<u> </u>	1	_		<u></u>	***************************************	(602/8			3th 54	2CBs	ide (8	151)	(i)		the I	1 (826		3B (8	826				Kjelda	ph, c				/48hr/	1000		
	Sam	pling		Со	ntai	iner	•		M/ Pre	etho ser			M	latri	x	oline	Sm)		SM-18	1A) - [Pestic	es (8	8270	<u> </u>	circle	thano	(B	CA/EL	nates	22			onia, I	Iffide,				/24hr			
Sample ID	Date	Time	A	SLEEVE	1L GLASS	PLASTIC	Summa or Tedlar		HNO3		NONE		WATER			EX - TPH as Gasoline (602/8021/8015)	TPH as Diesel (8015m)	TPH as Oil (8015m)	Total Oil & Grease (SM-18th 5520)1664	Pesticides (608/8081A) - PCBs (8082)	Organophoshorous Pesticide (8141)	Chlorinated Herbicides (8151)	Semi VOC Full List (8270C)	VOC Full list (8260B)	MTBE (8021/8260B) circle the method	Methanol (8015M) Ethanol (8260)	5 Oxygenates (8260B)	Lead Scavengers DCA/EDB (8260B)	Tphg/BTEX/5 Oxygenates (8260B)	Metals = Title 2	Metals =	Metals =	Nitrate, Nitrite, Ammonia, Kjeldahl	Chloride, Sulfate, Sulfide, ph, conductance	20128	5270 Sim		Requested TAT: 12hr/24hr/48hr/	1	AB USI ONLY:	
1703679	7.1		VOA	SLE	i	1	Sur	Ξ	Z Z	JCE	2	_	× ×	SOIL	AIR	BTEX	르	I d	Tot	Pes		Chl	Ser	8	Σ	Me	50	Lea	T _q	-	Met	Med	ş	ਨੁ		ļ	-	Red			
SP5-511	10/0/17	340	┨	 	×	+	ऻ			<u> </u>		_	\dashv	X		-		-												X			-		X	8	-	-			
5MR-12		240	╂	-	X	X	-			×		-	\supset					-												X					-	_	-	-			
RWS-1	<u> </u>	350	-		_	1	-			X		+	\forall	\dashv					<u> </u>											_		-						 	en i en		
			\dagger	-		-	\vdash					\dashv	\dashv					-																	!	ļ				365.0	
			-				 					1																										╁┈			
Relinquished by:				Date /v/	<i>[</i>		Tim	e	Re	ceiv	ed b	y:		annever l				Re	mar	ks/(Con	ditic	n o	f Sa	mp	le:					I	L	<u> </u>	L	I	L	.l.,	I			
Definquished by:				Date	е	T	Tim O/Y	,	Re	ceiv	ed b	y La	abo	rato	ory:			Bill	То																	······································			***************************************		
Palinquished by: age 35 of 35																																									

Summary Report

Project No.: PL17215 Project Name: Indian Valley Wood Waste Utilization Campus Sample No.:

Boring/Trench: SP6N Depth, ft.: 0-6 GM-comp

Campic No	CIVI COII	ib	Borning/ Frontieri.	Dopui, it	0 0	rested by.
Description:	Very Da	rk Grey (7.5YR	3/1) Poorly Graded G	ravel with Silt		Checked By: MLH
Sample Location	n:					Lab. No.: 15-17-596
	TEST		METHOD	RESULTS		
Sie	ve Analy	ses		Percent	Percer	nt
Sieve S	Size Design	gnation:		<u>Passing</u>	<u>Passir</u>	<u>ng</u>
U.S. S	Standard	Millimeters		without bark	with ba	ark
6.0	inch	152		100	100	
3.0	inch	75		96	96	
2.0	inch	50.0		81	81	
1.5	inch	37.5		72	73	
1.0	Inch	25.0		60	61	
3/4	Inch	19.0	8	48	50	
1/2	Inch	12.5	242	32	34	
3/8	Inch	9.50	ASTM D422	23	26	
;	#4	4.75	Ĕ	19	22	
#	‡10	2.00	AS	19	21	
#	‡20	0.850		17	19	
#	‡ 40	0.425		15	17	
#	#60	0.250		13	15	
#	100	0.150		11	13	
#:	200	0.075		8.1	10.1	
Coefficient of	f Uniformi	tv (Cu):	ASTM D-2487	260.00	357.1	4
Coefficient of			ASTM D-2487	65.00	82.29	

	ADDITIONAL INFORMATION / RESULTS									
TEST	METHOD	RESULTS	SPECIFICATIONS							

Operating Contract Range Compliance

Date: 10/23/17

Tested By: MLH/NGH

Atterberg Indices, Plasticity Index NP **ASTM D-4318** Atterberg Indices, Group Symbol ASTM D-4318 ML

11.60% Percent Bark in sample

Summary Report

Project No.: PL17215 Project Name: Indian Valley Wood Waste Utilization Campus Date: 10/23/17
Sample No.: GM-comp Boring/Trench: SP6 Depth, ft.: 0-4 Tested By: MLH/NGH

Description: Very Dark Brown (10YR 2/2) Well Graded Gravel with Silt and Sand

Sample Location:

Checked By: MLH
Lab. No.: 15-17-596

TEST		METHOD	RESULTS	SPECIFICATIONS
Sieve Analys	es		Percent	•
Sieve Size Desig	nation:		<u>Passing</u>	
U.S. Standard	Millimeters			
6.0 inch	152		100	
3.0 inch	75		100	
2.0 inch	50.0		85	
1.5 inch	37.5		79	
1.0 Inch	25.0		66	
3/4 Inch	19.0	Ži.	61	
1/2 Inch	12.5	42	50	
3/8 Inch	9.50	ASTM D422	45	
#4	4.75	É	37	
#10	2.00	Ϋ́	30	
#20	0.850		26	
#40	0.425		23	
#60	0.250		20	
#100	0.150		16	
#200	0.075		10.6	

Coefficient of Uniformity (Cu): ASTM D-2487
Coefficient of Curvature (Cc): ASTM D-2487

	ADDITIONAL IN	IFORMATION / RES	SULTS
TEAT	METUAR		

TEST METHOD RESULTS SPECIFICATIONS
Operating Contract

Range Compliance

Atterberg Indices, Plasticity Index ASTM D-4318 12
Atterberg Indices, Group Symbol ASTM D-4318 MH

Summary Report

Project No.: PL17215 Project Name: Indian Valley Wood Waste Utilization Campus

Boring/Trench: SP6 Sample No.: T1, T4 comp Depth, ft.: 0-10

Very Dark Brown (10YR 2/2) Silty Sand Description:

Sample Location:

Tested By: MLH/NGH Checked By: MLH
Lab. No.: 15-17-596

Date: 10/23/17

TEST	METHOD	RESULTS	SPECIFICATIONS
Sieve Analyses		Percent	
Sieve Size Designation:		<u>Passing</u>	
U.S. Standard Millimeters			
6.0 inch 152		100	
3.0 inch 75		100	
2.0 inch 50.0		100	
1.5 inch 37.5		100	
1.0 lnch 25.0		100	
3/4 Inch 19.0	8	100	
1/2 Inch 12.5	242	99	
3/8 Inch 9.50	<u> </u>	99	
#4 4.75	ASTM D422	99	
#10 2.00	AS	98	
#20 0.850		96	
#40 0.425		92	
#60 0.250		82	
#100 0.150		65	
#200 0.075		44	
Coefficient of Uniformity (Cu):	ASTM D-2487	-	
Coefficient of Curvature (Cc):	ASTM D-2487	-	

	ADDITIONAL IN	IFORMATION / RES	BULTS
TEST	METHOD	RESULTS	SPECIFICATIONS

Operating Range

Contract Compliance

Atterberg Indices, Plasticity Index NP ASTM D-4318 Atterberg Indices, Group Symbol ASTM D-4318 ML

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 11/08/2017 Date Submitted 11/02/2017

To: Kyle Leach

Sierra Streams Institute 431 Uren Street Ste.C Nevada City, CA 95959

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The following is analysis requested on SUN Order 75555.

Thank you for your business.

SOIL ANALYSIS

SUN#	Sample Source	Samp ID	Organic Matter			
157689	CRESCENT MILLS IS	SP6-GM COMP	5.4 %			
157690	CRESCENT MILLS IS	SP6-TI,T4 COMP	4.5 %			
157691	CRESCENT MILLS IS	SP6N-GM COMP	8.5 %			

METHOD: LOI

Detection limit = 0.1 (ND = below det.lim.)

SUNLAND ANALYTICAL LAB 11419 Sunrise Gold Cr., Ste.10 Rancho Cordova, CA 95742 (916)852-8557 INVOICE

======

Inv.No. 95555

Sierra Streams Institute 431 Uren Street Ste.C Nevada City, CA 95959

ATTENTION ACCOUNTS PAYABLE

Date 11/08/2017

Terms: NET 30, 30+ 15%

Customer P.O.#

Requestor: Leach

* Please indicate Invo.# on remittance

SUN NOS.	SAMPLE LOCATION		ANALYSIS	PRICE
	many area total gauge many data pang many blass bots pang many blass bots about about about about about about			
157689	CRESCENT MILLS IS	SP6-GM COMP	OM	18.00
157690	CRESCENT MILLS IS	SP6-TI,T4 COMP	OM	18.00
157691	CRESCENT MILLS IS	SP6N-GM COMP	OM	18.00
	*	****** Total *****	***	54.00