langun paraturati CREEKE Contraction of the second seco

CL[®]

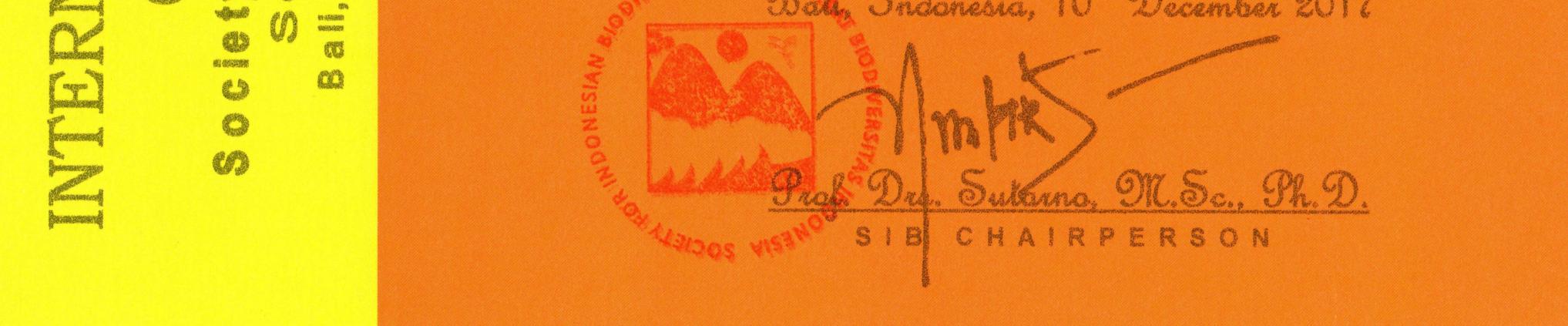
6.)

(D)

的形形的思

Certificate of Appreciation

Awarded with thanks to:


Gulianto Suleja

In recognition of his/her significant contribution as:

Gresenter

International Conference on Biodiversity

Bali, Indonesia, 10th December 2017

POSTER DI HALAMAN BERIKUTNYA

BIODIVERSITY OF FISH RESOURCES IN SUNGSANG ESTUARY, SOUTH SUMATRA, INDONESIA

FAUZIYAH¹, SITI MASREAH BERNAS², NURHAYATI³, APRIANSYAH PUTERA⁴, YULIANTO SUTEJA⁵, LULU YUNINGSIH ⁶

¹Marine Science Program Study, Mathematical and Science Facultyof Sriwijaya University
 JI. Raya Palembang - Prabumulih Km. 32 Indralaya, Palembang, Sumatera Selatan 30662 Indonesia
 ² Agriculture Faculty of Sriwijaya University, Indonesia
 ³ Environmental management study program, Sriwijaya University, Indonesia
 ⁴ Computer Science Faculty of Sriwijaya University, Indonesia
 ⁵Faculty of Marine Science. Udayana University, Indonesia
 ⁶Forestry Study Program of Muhammadiyah Palembang University, Indonesia

ABSTRACT

Other than as a production area of fish resources, the Sungsang estuary is also used by the surrounding population as a transportation lines and a center of fishing activities. The purpose of this study is to assess the fish biodiversity in Sungsang estuary South Sumatra. The species diversity, evenness, dominance, degree of similarity, and composition of fish communities as well as some physico-chemical conditions were analyzed in order to establish baseline data inventory in Sungsang estuary. Results showed that all of the physico-chemical waters quality parameters in the Sungsang estuary were below the water quality standard, so the physico-chemical parameters were good conditions for the fish sustainability. Forty-eight (48) species of fishes belonging to 29 families from freshwater, brackish water and marine sources were encountered in the water bodies. *Thryssa kammalensis, Johnius trachycephalus*, and *Johnius amblycephalus* were a species with relatively high abundance. The index value of diversity classified as moderate (H'=1,477-2,708), The index value of evenness classified as high (J'= 0,616 - 0,876), and the index value of dominance classified as low (D = 0,097 - 0,382). This result showed that the species diversity was good enough, the species spread evenly distributed, no domination and there has a stable community structure. Almost all fish community between the observation locations had no resemblance to each other, except between fish community in the waters around the settlement and species in the shipping channel **Key words:** Biodiversity, Fish, Sungsang Estuary

INTRODUCTION

Based on data from the Department of Marine and Fisheries in 2009 until 2013, the number of fishing gear unit operated by fisherman in Sungsang Village from year after year is always increased. In addition to the increase in fishing activities, the increase in population waste, and increased transportation activities in Sungsang Estuary also likely can be a pressure to the aquatic environment, especially fish resources. Based on the interview with the local fisherman, at the beginning only adult fish are caught, but then the small fish are also caught. Nurfiarini *et al* (2015) explains that the species abundance in estuary area can not be separated from the potential of ecosystems in providing space to reproduce, grow and a food source. The purpose of this study is to assess the biodiversity of fish resources in Sungsang Estuary South Sumatera.

RESULTS AND DISCUSSION

Physico-chemical parameters. Based on KepMenLH No. 51 Year 2004 and PerGub SumSel No. 16 Year 2005 the physico-chemical water quality parameters (WQP) in the Sungsang estuary are below the WQP, so its good condition for the fish sustainability .
Table 1. Average of physico-chemical water quality parameters on 5 observation stations

	Station								
Water parameters	1	2	3	4	5				
Physic									
Brightness (cm)	35	20	7.5	27.5	120				
Temperature (C)	29.9	26	30	27.5	29				
current velocity (m/dt)	0.21	0.52	0.17	0.31	0.33				
Chemical									
DO (mg/L)	5	5.9	9.7	7.6	11.8				
Salinity (‰)	2.7	7	21	25	30.7				
рН	7.5	8	7.5	8	8				
Phosphate (mg/L)	< 0.002	0.004	0.003	< 0.002	< 0.002				
Nitrate (mg/L)	0.26	0.55	0.42	0.09	0.07				

MATERIALS AND METHODS

The study was carried out in June 2015 . The physicochemical parameters measured were: Temperature, Salinity, DO. pH, Turbidity, Current Velocity, Phosphate and Nitrate. Fish samples were taken using drift gillnet (200 m length and 5 m deep with stretched mesh size of 2 and 3 in) for 12 hours from morning to evening at each station. Fish samples were analysed for species composition, relative abundance, frequency density, diversity, evenness, dominance, and similarity according to Rilov and Benayahu (2000), Nurfiarini et al, (2015), Okyere *et al,* (2011), Ravanbakhsh (2016), Mondal (2010), Davari (2011), Chao *et al,* (2006), Carles *at al,* (2014).

Fig 1. Location of the Sungsang Estuary and sampling sites

Fish Biodiversity Table 4. Diversity, Evennes and Dominance Index

Fish Species Composition in Sungsang Estuary

The results of observations in the water of Sungsang Estuary are collected as many as 657 individuals and identified as 48 species from 29 families of fish. Based on habitat, the fish species composition found consists of brackish (23 species), sea (20 species) and the last (3 species) are freshwater species

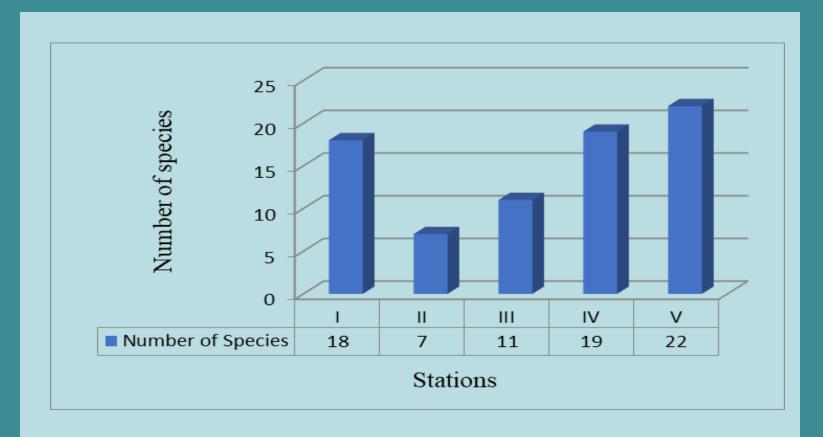

Diversity (H') Station Value Category V	Diver	sity (H')	Even	nes (J')	Dominance (D)			
	Value	Category	Value	Category				
1	2,002	Medium	0,693	High	0,222	Low		
2	1,649	Medium	0,847	High	0,247	Low		
3	1,477	Medium	0,616	High	0,382	Low		
4	1,898	Medium	0,645	High	0,267	Low		
5	2,708	Medium	0,876	High	0,090	Low		

Table 5. Similarity Index (C_s) of Fish (^{N)}:not similar ^{S)} : similar)

Station	1	2	3	4	5
1	-	8,00 ^{N)}	41,38 ^{N)}	32,43 ^{N)}	5,00 ^{N)}
2	-	-	66,67 ^{S)}	46,15 ^{N)}	6,90 ^{N)}
3	-	-	-	40,00 ^{N)}	6,06 ^{N)}
4	-	-	-	-	10,53 ^{N)}
5	-	-	-	-	-

Table 3. Fish Species Composition in Sungsang Estuary South Sumatera (F = Freshwater, E = Estuary, M = Marine)

Family	Species		Habi	Station				Number	Relative Abundance		ency of erance			
. anny	Local Name	Scientific Name	tat	T	2	3	4		5	of ind	(%)	Status	(%)	Status
1. Bagridae	1. Lundu	Mystus gulio	F	1	1	-	-		-	2	0,304	Low	40	Low
2. Cyprinidae	2. Lumajang	Cyclocheilichthys enoplos	F	5	3	12	-		-	20	3,044	Moderate	60	Moderate
3. Engraulidae	3. Pirang Putih	Lycothrissa crocodiles	F	-	1	17	6		1	25	3,805	Moderate	80	High
4. Pangasidae	4. Patin	Pangasius pangasius	F	9	-	-	-		-	9	1,370	Low	20	Low
	Sub Total Individual									57				
9. Cynoglossidae	11. Lidah	Cynoglossus lingua	Е	-	-	8		19	3	30	4,566	Moderate	60	Moderate
10. Leiognathidae	14. Pepetek	Leiognathus splendens	Е	-	-	-	-		1	1	0,152	Low	20	Low
11. Mugilidae	16. Belanak	Valamugil engeli	Е	-	-	-	1		-	1	0,152	Low	20	Low
13. Plotosidae	18. Sembilang	Plotosus canius	Е	2	-	-	2		-	4	0,609	Low	40	Low
16. Stromateidae	22. Gulama jangt	Johnius amblycephalus	Е	69	-	1		103	-	173	26,332	High	60	Moderate
18. Triacanthidae	27. Duri langit	Triacanthus biaculeatus	Е	-	-	-	-		2	2	0,304	Low	20	Low
19. Chanidae	28. Bandeng	Chanos chanos	Е	-	-	-	2		-	2	0,304	Low	20	Low
	Sub Total Individu									382				
22. Clupeidae	36. Bilis teri	Stolephorus dubiosus	Μ	1	-	-	-		-	1	0,152	Low	20	Low
24. Drepaneidae	39. Daun baharu	Drepane longimana	Μ	-	-	-	2		-	2	0,304	Low	20	Low
a. Engraulidae	40. Pirang	Setipinna melanochir	Μ	-	-	-	-		1	1	0,152	Low	20	Low
	42. Teri	Thryssa kammalensis	Μ	-	-	108	1	1	-	119	18,113	High	40	Low
29. Scrombridae	47. Tongkol	Euthynnus affinis	Μ	-	-	-	-		1	1	0,152	Low	20	Low
	Sub Total Individu									218				
	Number of individuals			166	19	181	215	76		657				
	Number of spe	cies		18	7	11	19	22						

Fig 2. Distribution of the species number

Ikan Pari
Dasyatis spImage: Constraint of the system

ACKNOWLEDGEMENTS

This study is one of a series of studies were supported by grants from DIPA Universitas Sriwijaya . We would like to thank LP2M Unsri for their support so that this research can be accomplished.

Fish communities in Station 5 have the highest diversity index than other station. This is indicated by the existance of brackish fish species (9 species) which also found. It means that the brackish fish species are still able to tolerate the salinity which reached 30,7‰. In contrast to the diversity index (H'), evenness index (J') in each station included in the high category. It means that, species and number of individuals of each species are evenly distributed, stable communities and a high degree of balance community (Gunawan dan Jumadi, 2016; Krebs, 1978; Asriyana et al., 2009). The number of individuals of each species which is evenly distributed also showed no inclination of species dominance. This is also reinforced by the low value of domination index in each station. The results are consistent with the results of Fauziyah et al., (2012) in estuarine waters of TN Sembilang South Sumatera which shown that the structure of fish communities were in stable condition with the number of individuals or species were evenly distributed and no dominance.

Based on the similarity index (Cs), there is only fish species in the station 2 and 3 have in common and the similarity index value is the highest (66%). Whereas fish species in the waters around mangrove ecosystem (station I) and species in fishing ground around stationary lift net have the lowest similarity level of species and included in the non-similar category (Cs = 5%).