

doi: 10.1093/femsec/fiw250 Advance Access Publication Date: 16 December 2016 Research Article

RESEARCH ARTICLE

The specific and exclusive microbiome of the deep-sea bone-eating snail, *Rubyspira osteovora*

Heidi S. Aronson, Amanda J. Zellmer and Shana K. Goffredi*

Department of Biology, Occidental College, Los Angeles, CA 90041, USA

*Corresponding author: Department of Biology, Occidental College, 1600 Campus Rd, Los Angeles, CA 90041, USA. Tel: +323-259-1470; E-mail: sgoffredi@oxy.edu

One sentence summary: Rubyspira osteovora is an unusual snail found only at whalefalls in the deep-sea, with a gut microbiome dominated by bacteria not present in the surrounding environment. Editor: Julie Olson

ABSTRACT

Rubyspira osteovora is an unusual deep-sea snail from Monterey Canyon, California. This group has only been found on decomposing whales and is thought to use bone as a novel source of nutrition. This study characterized the gut microbiome of *R*. osteovora, compared to the surrounding environment, as well as to other deep-sea snails with more typical diets. Analysis of 16S rRNA gene sequences revealed that *R*. osteovora digestive tissues host a much lower bacterial diversity (average Shannon index of 1.9; n = 12), compared to environmental samples (average Shannon index of 4.4; n = 2) and are dominated by two bacterial genera: *Mycoplasma* and *Psychromonas* (comprising up to 56% and 42% average total recovered sequences, respectively). These two bacteria, along with *Psychrilyobacter* sp. (~16% average recovered sequences), accounted for between 43% and 92% of the total recovered sequences in individual snail digestive systems, with other OTUs present at much lower proportions. The relative abundance of these three groups remained similar over 6 years of sampling (collection date was not shown to be a significant predictor of community structure), suggesting a long-term association. Furthermore, these bacterial genera were either not present (*Mycoplasma* and *Psychromonas*) or at very low abundance (<0.04% for *Psychrilyobacter*), in environmental samples and other deep-sea gastropods, supporting the uniqueness of the *R*. osteovora gut microbiome.

Keywords: deep sea; symbiosis; gastropod; whalefall; Mycoplasma; Psychromonas; Rubyspira

INTRODUCTION

Novel ecosystems often support unique biological communities, and their study helps to uncover Earth's true biodiversity. The deep sea is an unparalleled ecosystem, which remains largely unexplored and inaccessible, with combined physical conditions—high pressure, lack of light, and extreme low temperatures—unlike any environment on the planet. The deep sea was once thought to be devoid of life, yet discoveries have revealed thriving biological communities and unusual forms of life, from microbes to invertebrates, and thus fueled a surge of interest in deep-sea exploration (Lonsdale 1977). In recent years, the increased exploration of the deep sea, particularly along continental margins, has uncovered numerous ecosystems, including methane cold seeps and whale falls, which are host to animals with unusual life histories and nutritional strategies (Baco and Smith 2003; Dubilier, Bergin and Lott 2008; Levin *et al.* 2012).

When whales die, they sink to the seafloor and provide large amounts of energy in the form of organic material to an otherwise carbon-limited environment (excluding vents and seeps; Smith and Baco 2003). Thriving animal communities colonize these so-called whale falls, including mobile opportunistic scavengers, such as hagfish and crustaceans, and endemic polychaetes, for example, that colonize the organically enriched

Received: 19 August 2016; Accepted: 15 December 2016

[©] FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

bones and sediments (Smith and Baco 2003; Goffredi et al. 2004a). The organisms in these communities often include specialist animals that have adapted exclusively to life at whale falls—20 species have been found solely on whale carcasses (Lundsten et al. 2010).

The Monterey Submarine Canyon, off of California, is home to a deep-sea whale fall community at 2893 m depth, discovered in 2002 (Goffredi et al. 2004a). At the time of discovery, this whale fall was in the enrichment-opportunistic stage, as described by Smith and Baco 2003, and was colonized by annelids, echinoderms and gastropods (Goffredi et al. 2004a; Lundsten et al. 2010). Early surveys of this whale fall revealed entirely novel organisms, like the bone-eating polychaete genus Osedax and its intracellular bacterial symbionts within the Oceanospirillales (Goffredi et al. 2005). Similarly, Rubyspira osteovora is a new genus of snail that was discovered in 2004 at this whale fall (Johnson et al. 2010). Rubyspira osteovora became abundant 3 years later (Braby et al., 2007) and was observed in dense populations, both on the carcass and in the surrounding sediment (Lundsten et al. 2010). These gastropods are of particular interest since their main source of nutrition is bone, as revealed by stable isotope analysis, specialized radular mouthparts, and visual inspection of bone fragments in their digestive system (Johnson et al. 2010). Very few organisms rely exclusively on bone as their main source of nutrition, and other invertebrates that consume similarly indigestible substances, such as wood, often rely on microbial symbionts to supplement their dietary needs (Waterbury et al. 1983; Brune and Ohkuma 2010).

The microbial communities that reside both on and within animals, known as the microbiome, are often essential for digestion and nutrient supplementation, no matter the specific nature of the host nutritional strategy (Blaxter 1962; Douglas 1998; Brune and Ohkuma 2010). As we learn more about the diversity of life in understudied environments, we also uncover the diversity of microbial life associated with these organisms. Just as unique ecosystems on the planet can support novel biodiversity, the organisms within these ecosystems also support specific microbial communities. Animal microbiomes are often exceptional ecosystems-the human gut hosts its own unique assemblages of microbes and is unlike any on Earth (Costello et al. 2009). Viewing animals as host-microbe ecosystems nested within larger communities, rather than viewing animals in isolation, reveals the profound reciprocal influence between microbes and their hosts (McFall-Ngai et al. 2013).

Very little research has been conducted on the microbial communities associated with digestive tissues in deep-sea snails (Goffredi et al. 2004b), and surveying the microbiome of R. osteovora not only increases knowledge about biological diversity in the deep sea, but may also provide insight into their unusual nutritional strategy. This study aimed to characterize the microbial community associated with R. osteovora in comparison to microbes present in the surrounding environment and associated with other deep-sea gastropods that do not feed on bone. Rubyspira osteovora specimens were collected over the course of 6 years, and the microbial communities associated with digestive tissues were examined via sequencing of 16S rRNA genes, and both fluorescence microscopy and transmission electron microscopy (TEM). Although the role of the dominant microbes associated with R. osteovora is still undetermined, their distinctness from microbial communities from the environment and other deep-sea gastropods suggests a specific and exclusive microbiome within the bone-eating R. osteovora.

MATERIALS AND METHODS

Sample collection

Specimens (n = 8) were collected in 2004–2011 from a 2893 m depth whale fall in Monterey Submarine Canyon (36°36.8'N, 122°26.0'W; Table 1). Rubyspira osteovora samples were collected using the robotic submersibles ROV Tiburon and ROV Doc Ricketts (owned and operated by the Monterey Bay Aquarium Research Institute) via suction sample or sediment push core. Whale bone was collected via manipulator, and sediment was collected via push core. The scavenger Bathymargarites symplector and the predatory snail Phymorhynchus sp. were collected in April 2015 from the Gulf of California at 3651 m depth (23.358N; -108.542), using the ROV Doc Ricketts. Specimens for molecular analysis were preserved in 70% ethanol and stored at 4°C. Specimens for fluorescence in situ hybridization (FISH) microscopy and TEM were initially preserved in either 4% sucrose-buffered paraformaldehyde or 3% glutaraldehyde buffered with 0.1 M phosphate and 0.3 M sucrose, respectively, and kept at 4°C. Specimens were initially examined using a Leica S8APO stereomicroscope and photographed with a Nikon Coolpix P6000 digital camera (Figs 1C and 2A-D).

Molecular analyses

Snail tissues (digestive gland, intestine, stomach, fecal pellets) were dissected in 70% ethanol after removal of the shell (Table 1, Fig. 2A). Total genomic DNA was extracted from tissues using the Qiagen DNeasy kit (Qiagen, Valencia, CA) and from bone and sediment samples using the MoBio Powersoil DNA kit (MoBio, Carlsbad, CA) according to the manufacturer's instructions. Total genomic DNA concentration was determined using the Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA), and ranged from 0.7 to 250 μ g/mL. In some cases, successful PCR required up to 300× DNA dilution, most likely due to the presence of mucus within the snail tissue. PCR amplification was performed based on the specifications of the Earth Microbiome Project (EMP; Caporaso et al. 2011), except a first PCR was performed, for 25-30 cycles with primers lacking adapter, barcode, pad or linker (515f: GTGCCAGCMGCCG-CGGT AA; 806r: GGAC-TACHVGGGTWTCTAAT). For the second PCR step, 5 μ l of the amplicon product from PCR#1 was used as template in a 5 cycle, 25 μ l reconditioning reaction with the same EMP-recommended conditions and the full EMP primers (515f-barcode: AATGATA CGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGC CGCGGTAA; 806r_barcode: CAAGCAGAAGACGGCATACGAGAT-X-AGTCAGTCAGCCG-GACTACHVGGGTWTCTAAT), where X indicates a unique 12-bp barcode. Adding the barcode indices at the second step minimizes PCR bias that would result from employing long primers over many cycles (Berry et al. 2011). Furthermore, the use of the 'reconditioning' PCR for barcoding, as well as the pooling of duplicate amplifications ahead of barcoding, was an attempt to minimize PCR errors and bias, respectively (Acinas et al. 2005; Kennedy et al. 2014). After all PCR reactions were completed, duplicate barcoded products were pooled and quantified. Samples were mixed together in equimolar amounts and purified in bulk through a Qiagen PCR Purification kit. At all PCR steps, amplification success and purity were checked by gel electrophoresis. Paired-end sequences (2×250 basepair) were generated from barcoded amplicon products at Laragen, Inc. on an Illumina MiSeq platform. At Laragen, the raw data were passed through a barcode filter which demultiplexed the library into individual samples and removed any Table 1. Snail tissue and environmental samples analyzed via 16S rRNA sequencing.

Organism	Tissue	Sample ID ^{a,b}	Sample date	No. 16S rRNA sequences
Rubyspira	Digestive gland	Ruby204A-DG	Oct '10	35 153
osteovora	0 0	Ruby204B-DG	Oct '10	8615 ^c
		Ruby204C-DG	Oct '10	34 835
		Ruby204D-DG	Oct '10	31 355
	Stomach	Ruby769A-St	Nov '04	31 217
		Ruby769B-St	Nov '04	42 488
		Ruby1162A-St	Dec '07	22 536
		Ruby204A-St	Oct '10	31 778
		Ruby204B-St	Oct '10	36 699
	Intestine	Ruby769A-Int	Nov '04	37 395
		Ruby769B-Int	Nov '04	44 141
		Ruby1162A-Int	Dec '07	21 615
		Ruby204D-Int	Oct '10	29 097
	Fecal pellets	Ruby204C-Fec	Oct '10	39 297
Other snails				
Bathymargarites sp.	Digestive gland	Bathym2-DG	Apr '15	35 878
	Intestine	Bathym1-Int	Apr '15	27 907
Phymorhynchus sp.		Phym751-Int	Apr '15	27 137
Environmental	Sediment	Sed204_PC44	Oct '10	28 108
	Whale bone	Bone_234_PC41	Jun '11	28 707

^aDives 769 and 1162 via remotely operated vehicle Tiburon, Dive 204 via remotely operated vehicle Doc Ricketts, both owned and operated by the Monterey Bay Aquarium Research Institute.

^bA-D = separate individuals.

^cRemoved from data analysis.

sequences which had >1 basepair mismatch on the 12-basepair barcode sequence (Golay barcodes were chosen with Levenshtein distance \geq 3; Caporaso *et al.* 2012). The resulting data were passed through Illumina MiSeq Recorder software, which assigned quality scores to each basepair call on every sequence. At the same time, adapter, barcode and primer sequences were removed. The raw sequence data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.5h1q1.

Sequence processing was performed in QIIME 1.8.0 (Quantitative Insights Into Microbial Ecology; Caporaso et al. 2010; Case et al. 2015). Raw sequences were aligned and quality control for unidentified base pairs and chimeras was performed (according to the specifics noted at http://sites.oxy.edu/sgoffredi/ Goffredi_Lab/LabScripts). Sequences were clustered at 97% similarity and a representative sequence from each cluster was assigned a taxonomic identification using the Silva115 database. By barcode amplicon sequencing, 8615 to 57473 sequences were recovered from each sample (Table 1). After initial quality control and trimming, one sample with low sequence yield (Rubyspira 204B digestive gland with 8615 sequences) was removed from the data set. To avoid artifacts of sequencing depth, sequence data were then normalized to the next lowest sequence yield, which was the Rubyspira 1162A intestine, which resulted in 21 615 recovered sequences (Table 1). Normalized data were then used to calculate diversity indices and create principal components analysis (PCA) plots and bar charts of total bacterial OTU abundance. The normalized data for all samples is available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.5h1q1.

Mollicute-specific 16S rRNA PCR amplification was used to rapidly screen for the presence of Mollicutes, particularly Mycoplasma, in R. osteovora in digestive gland. A Mollicute FISH probe used by Duperron et al. (2013) was converted into a forward PCR primer (MolliB_F; 5'-CAGCAGTAGGGAATATT-3') and combined with 1492R (5'-GGTTACCTTGTTACGACTT-3') to amplify a specific 1142-bp Mollicute 16S rRNA gene product (with an anneal temperature of 59.6°C, initially determined via a temperature gradient amplification; 94 for 5 min, 94°C for 1 min, 59.6°C for 1 min, 72°C for 1 min, 35 cycles). The amplification product was sequenced directly using Sanger sequencing, via Laragen Inc., and was submitted to GenBank under accession number KY064173 (Fig. 6).

Statistical analyses

Diversity indices were calculated using normalized sequence data to compare the diversity across all samples (Table 2). Shannon–Wiener diversity ($H' = \sum_{i=1}^{s} p_i ln p_i$) and Simpson's diversity indices ($D = 1/\sum_{i=1}^{s} p_i^{-2}$; where S is the total number of species in the community (richness), p_i is the proportion of S made up of the ith species) were calculated using Primer-E (Clarke and Warwick 2001). RStudio was used to make a PCA plot and perform analysis of variance (ANOVA) calculations using a script available at http://sites.oxy.edu/ sgoffredi/Goffredi_Lab/LabScripts. Alignments to close relatives were performed in Sequencher v4.10.1 and phylogenetic trees were created using MEGA v5.1. Close environmental and cultured relatives were chosen using top hits based on BLAST (www.ncbi.nlm.nih.gov).

A hierarchical approach was used to evaluate factors contributing to variance in microbial community dissimilarity among samples using both PCA and permutational multivariate analysis of variance using distance matrices (PERMANOVA). The contribution of sample type (R. osteovora, other snail species or environmental) and year (i.e. collection date) was evaluated for all samples. Analysis was restricted to only R. osteovora samples to evaluate differences among tissue types within R. osteovora

Figure 1. Rubyspira osteovora. (A) Rubyspira osteovora snails (arrows) on pieces of bone and sediment at a 2893 m whale fall at Monterey Submarine Canyon. (B) Rubyspira specimens, ruler (cm) shown for scale.

(digestive gland, stomach and intestine) and year. The single fecal sample in R. osteovora was excluded from this analysis due to lack of replication. Bray–Curtis dissimilarity matrices were calculated using the 'vegan' R package (Oksanen *et al.* 2013), and PERMANOVA was conducted using the command 'adonis'.

To evaluate predictors of the proportions of the two most dominant microbial groups within the Rubyspira osteovora samples, Mycoplasma and Psychromonas, we conducted model selection analysis. A hierarchical approach was again used to first compare among sample types and then within Rubyspira alone. Four candidate models were considered for analysis (Table 3). For all samples, the models included sample type (Rubyspira, other snail species or environment), year (i.e. collection date), sample type + year, and a null model. For the Rubyspira-specific analysis, the models included tissue (digestive gland, stomach and intestine), year, tissue + year, and a null model. For each candidate model, we performed a linear model and calculated the second-order bias corrected Akaike's Information Criterion (AIC_C), a measure of the relative quality of a model based on the goodness of fit observed and the parsimony of that model, using the R package, 'AICcmodavg' (Mazerolle 2011). AIC has been shown to perform well as a model selection tool for complex ecological datasets (Aho, Derryberry and Peterson 2014). Akaike weights (ω_i) were calculated to assess the weight of evidence in favor of the hypotheses represented by the model (Burnham and Anderson 2002, 2004). Models in each set were ranked according

Figure 2. Anatomy of R. osteovora digestive tract and contents. (A) Dissected digestive tract of Rubyspira with intestine stomach and digestive gland (dark tissue; reproductive tissue is light colored). Scale bar, 5 mm. (B) Fecal pellets removed from the intestine. Scale bar, 2 mm. (C) Size comparison of bone fragments (top) and fecal pellets (bottom). (D) Bone fragments removed from the stomach. Scale bar, 2 mm.

to the difference in AICc (Δ_i) and ω_i . Models with $\Delta_i < 2$ were selected as best-fit models out of the candidate set. If only a single model received a $\Delta_i < 2$, this is considered comparable to a significant difference among alternate models. Higher ω_i values indicate better support for the model (as a percentage; Table 3). Variables included in the best-fit model(s) are considered to be the best predictors of the response variable. The analyses were repeated for both Mycoplasma and Psychromonas.

FISH microscopy

Paraformaldehyde-preserved R. osteovora specimens were rinsed with $1 \times$ PBS, transferred to 70% ethanol, and stored at -20°C. Digestive gland, stomach and intestine were dissected and embedded in Steedman's wax (1 part cetyl alcohol: 9 parts polyethylene glycol (400) distearate, mixed at 60°C; Steedman 1957). An ethanol:wax gradient of 3:1, 2:1 and 1:1, and eventually full strength wax, was used to embed the samples (1 h each treatment). Embedded samples were sectioned at 5–10 μ m thickness using a Leica RM2125 microtome and placed on Superfrost Plus slides. Sections were dewaxed in 100% ethanol rinses. Hybridization buffers and wash buffers were prepared according to Pernthaler and Pernthaler (2005), using 30% formamide in the hybridization buffer and 450 mM NaCl in the wash solution, and fluorescent probes were at a final concentration of 5 μ g mL⁻¹. A universal bacterial probe mix (Eub338[•]I-III, Amann et al. 1990, Daims et al. 1999), a probe that targeted Mollicutes (5'- AATATTCCCTACTGCTG-3'; adapted from Duperron et al. 2013), and a genus-specific Psychromonas probe (NOR2-1453, 5'-GGTCATCGCCATCCCC-3'; Eilers et al. 2000) were used to observe the localization of Mycoplasma and Psychromonas in R. osteovora tissues, respectively. Probes were hybridized at 46°C for 4 h, followed by a 15 min wash at 48°C. Tissues were stained with 4'6'-diamidino-2-phenylindole (DAPI, 5 mg/mL) for 1 min, rinsed and mounted in Citifluor. Tissues were examined by Table 2. Average bacterial diversity indices, based on 16S rRNA barcoding, for samples examined in the this study.

Organism	Tissue	Shannon index (x ±SE)ª	Simpson index (x ±SE) ¹	
Rubyspira osteovora	Digestive gland Intestine Stomach Fecal pellets	$\begin{array}{c} 1.29 \pm 0.19 \\ 1.77 \pm 0.25 \\ 2.12 \pm 0.24 \\ 2.70 \end{array}$	$\begin{array}{c} 0.49 \pm 0.07 \\ 0.58 \pm 0.08 \\ 0.72 \pm 0.04 \\ 0.87 \end{array}$	
Bathymargarites	Digestive gland	2.58	0.88	
symplector	Intestine	2.78	0.90	
Phymorhynchus sp	Intestine	1.32	0.50	
Environment	Bone	4.57	0.98	
	Sediment	4.16	0.98	

^aSample sizes of 1 have no SE available. Data correspond to those shown in Fig. 3.

epifluorescence microscopy using a Nikon E80i epifluorescence microscope with a Nikon DS-Qi1Mc high-sensitivity monochrome digital camera.

Electron microscopy

Approximately 1 mm³ digestive gland tissue samples for examination by TEM were fixed in 3% glutaraldehyde buffered with 0.1 M phosphate and 0.3 M sucrose (pH 7.8). Samples were washed in 0.1 M sodium cacodylate with 24% sucrose and post-fixed with 1% OsO₄ in 0.1 M sodium cacodylate for 1 h. Samples were stained in 3% uranyl acetate in 0.1 M sodium acetate buffer for 1 h, dehydrated in ethanol and embedded in Spurr's resin. Thick sections (0.4 μ m) were stained with methylene blue and thin sections (70 nm) were stained with lead citrate. Sections were examined and photographed using a Nikon E80i epifluorescence microscope and Zeiss EM 109 TEM.

RESULTS

Rubyspira osteovora collections and anatomy

Rubyspira osteovora specimens were collected between 2004 and 2011 from a whale fall in Monterey Submarine Canyon (Table 1, Fig. 1). Snails ranged from 1 to 4 cm in total shell length. The stomach and distal intestine were easily identifiable, as their surfaces were visibly different from that of the digestive gland (Fig. 2). Samples of digestive gland were typically taken from the very tip of the coil to avoid adjacent reproductive tissue. Intestine samples, which usually contained dark fecal pellets, were taken from the distal end of the rectum closest to the gill. The stomach contained bone fragments (\leq 5 mm; Fig. 2D), which were noticeably different from fecal pellets in the intestine, as was observed by Johnson *et al.* 2010 (Fig. 2B–D).

A unique bacterial community associated with Rubyspira osteovora

Barcode sequencing of 16S rRNA genes revealed that R. osteovora digestive tissues contained 45–195 bacterial OTUs and 5–12 bacterial families (OTUs <0.5% and families <1% grouped as 'other'; Fig. 3). The digestive gland was the least diverse (average Shannon index of 1.29, n = 3), followed by the intestine (average Shannon index of 1.77, n = 4) and stomach (average Shannon index of 2.12, n = 5; Table 2). Fecal pellets most closely resembled in-

Table 3. Comparison of linear models for proportion of dominant microbial groups in microbial samples using ${\rm AIC}_{\rm C}$ analysis.

Analysis	Species	Model ^a	Kp	AIC _C	$\Delta_{\rm i}$	ω_{i}
All	Mycoplasma	Туре	4	167.2	0.00*	0.75
Samples		NULL	2	169.4	2.22	0.25
		Year	6	177.5	10.24	0.00
		Type + year	7	179.2	11.94	0.00
Rubyspira	Mycoplasma	Tissue	4	106.6	0.00*	0.94
Samples		NULL	2	112.5	5.86	0.05
		Year	4	117.6	11.00	0.00
		Tissue + year	6	121.1	14.45	0.00
All	Psychromonas	Туре	4	156.5	0.00*	0.80
Samples		NULL	2	159.7	3.14	0.17
		Year	6	163.3	6.79	0.03
		Type + year	7	166.9	10.40	0.00
Rubyspira Samples	Psychromonas	Tissue	4	106.3	0.00*	0.59
		NULL	2	107.1	0.82*	0.39
		Year	4	113.0	6.66	0.02
		${\tt Tissue + year}$	6	121.1	14.76	0.00

^aThe candidate models include the variables: sample type (Rubyspira, other snail species or environment), year (i.e. collection date) and tissue type (digestive gland, stomach or intestine). The results include the parameter count, K; the AIC_c score; the change in AIC_c scores relative to the lowest AIC_c score, Δ_i ; the weight of each model (or % of variance that is explained by the parameter?), ω_i . (*) indicates values that are indicative of the model significance. Parameter count includes intercept and variance.

testine tissue based on PCA and contained 23% Psychromonas, which was present in high levels in the intestine (Figs 3 and 4). Rubyspira osteovora digestive gland, stomach and intestine bacterial communities were dominated by two genera: Mycoplasma and Psychromonas. A single Mycoplasma OTU was most dominant in R. osteovora tissues, comprising up to 75% total recovered sequences in the digestive gland, and averages of 56%, 40% and 11% in the digestive gland, stomach and intestine, respectively. A single Psychromonas OTU comprised up to 67% total recovered sequences in the intestine, with averages of 11%, 21% and 42% in the digestive gland, stomach and intestine, respectively. These two OTUs accounted for between 42% and 80% of the total recovered R. osteovora sequences, with other minor OTUs usually present at very low proportions (<0.5%). A single Psychrilyobacter OTU formed the next most dominant genus in R. osteovora tissues, up to 35% with averages of 16%, 3% and 6% in the digestive gland, stomach and intestine, respectively. Over the course of 6 years (2004-2011), similar microbial communities, with the same dominant three genera were recovered from R. osteovora (stomach and intestine Figs 4 and 5). Community dissimilarity analyses showed that tissue type was a significant predictor of community dissimilarity (PERMANOVA $R^2 = 0.42$, P = 0.005), while year (i.e. collection date) was non-significant (PER-MANOVA $R^2 = 0.05$, P = 0.13), indicating the stability of the microbiome over time.

Conversely, microbial communities in sediment surrounding the whale fall and on a whale bone surface were found to be significantly more diverse, with Shannon indices of 4.2–4.6, compared to an average Shannon index of 1.3–2.1 for all R. osteovora tissues (Table 2; ANOVA P = 0.0026). Note that the diversity values for the environmental samples are further underestimated because a considerable number of OTUs (~60% of total recovered sequences) were eliminated during normalization of the entire dataset. For the bone and sediment samples from the Monterey

Figure 3. Relative abundance of bacterial community structure to the OTU level (97% 16S rRNA sequence similarity), from R. osteovora digestive gland, stomach and intestine, B. symplector, Phymorhynchus sp. and environmental samples (sediment and whale bone). Each color on the graph represents a distinct genus-level OTU or lowest level available. Dominant OTUs are indicated. Genera that constituted <0.5% of individual samples were grouped as 'Other' and are shown in gray.

Canyon whale fall, no single bacterial OTU (based on 97% similarity) accounted for more than 21% of recovered sequences. Mycoplasma and Psychromonas were not recovered from these environmental samples, while Psychrilyobacter comprised <0.04% of the bacterial community of bone and sediment samples.

The bacterial communities of other deep-sea non-boneeating snails (Phymorhynchus sp. and Bathymargarites symplector) were also surveyed and found to be distinct from R. osteovora (Figs 3 and 4). The bacterial community in the Phymorhynchus intestine tissue was least diverse, with a Shannon index of 1.32, while the community diversity in the digestive gland and intestine of B. symplector was more diverse than R. osteovora, with Shannon indices of 2.58 and 2.78 for the digestive gland and intestine, respectively (Table 2, Fig. 3). Mycoplasma, Psychromonas and Psychrilyobacter were generally absent from Phymorhynchus and Bathymargarites tissues, with the exception of Psychrilyobacter in the intestine of Phymorhynchus (~5% of recovered sequences).

Rubyspira osteovora samples showed lower community dissimilarity than either of the other snail species samples, the environmental samples or the between sample type comparisons. PCA showed clear separation of R. osteovora tissue microbial communities from environmental microbial communities and those from other snail species (Fig. 4; the first two principal components accounted for 46% and 28% of the variation in microbial communities across samples). Sample type (Rubyspira, other snail species or environment) was a significant predictor of community dissimilarity (PERMANOVA: $R^2 = 0.45$, P = 0.001). In particular, mean proportions of Mycoplasma and Psychromonas were significantly different between R. osteovora tissues and the environment (ANOVA P = 0.0002 and 0.004, respectively; Fig. 5).

Dominant microbes associated with Rubyspira osteovora

Mycoplasma and Psychromonas were the most dominant bacterial genera associated with Rubyspira digestive tissues. Mean abundances of Mycoplasma and Psychromonas were significantly different between the three R. osteovora tissues types (ANOVA P = 0.005and 0.032, respectively; Fig. 5). Mycoplasma proportions were highest in the digestive gland (average 56%) and lowest in the intestine (average 11%; Fig. 5A). Conversely, Psychromonas proportions were highest in the intestine (average 42%) and lowest in the digestive gland (average 11%; Fig. 5B). The stomach contained intermediate amounts of both microbes. Both digestive gland and stomach tissues showed higher within-tissue similarity in bacterial community composition, compared to either the intestine or the between tissue comparisons (Fig. 4). The best fit of the candidate model set for 'All Samples' included sample type only for proportions of both Mycoplasma ($\omega_i = 0.75$) and Psychromonas ($\omega_i = 0.80$) (e.g. tissue type essentially explains 75% and 80% of the bacterial community variability; Table 3). Each of the other models had Δ_i values greater than 2, suggesting that sample type is the best predictor of Mycoplasma and Psychromonas levels in samples, while year/collection date is not. For the Rubyspira-specific analyses, tissue type was identified in the top candidate models for both Mycoplasma ($\omega_i = 0.94$) and Psychromonas ($\omega_i = 0.59$) however, for Psychromonas, AIC_C analysis could not distinguish between the tissue type and null model $(\Delta_i < 2 \text{ for both models; Table 3})$. Thus, while tissue type is a good predictor of the proportion of Mycoplasma in Rubyspira samples alone, there is not enough evidence to determine the best predictors of the proportion of Psychromonas in Rubyspira samples.

Figure 4. PCA results of individual samples at the level of OTUS (97% sequence similarity) showing microbial communities of R. osteovora tissues (circles), other snail species (triangles; B. symplector, Phymorhynchus sp.) and environmental samples (X, whale bone and sediment). The 95% confidence ellipse is shown for the Rubyspira samples (solid line). There were too few samples for 95% confidence ellipses for other species or environmental samples; however, an ellipse was drawn by hand (dashed line) around all non-Rubyspira samples, for clarity. Rubyspira osteovora samples clustered together and separately from other snail species and the environmental samples. Principal components 1 and 2 accounted for 46% and 28% of variation within microbial communities across samples, respectively.

Five Mycoplasma phylotypes (which were 98%–99.6% similar to each other) were recovered in the barcode dataset, but one was dominant and represented >98% of the sequence reads in the 12 Rubyspira samples (all others represented 0.2%-1.2% of recovered Mycoplasma sequences). A phylogenetic tree of the dominant Mycoplasma OTU recovered from R. osteovora, via both barcode sequencing and the Mollicute-specific 16S rRNA amplification from the digestive gland, revealed relationships between this phylotype and other Mycoplasma-related bacteria. This Mycoplasma sequence was only 91%-94% similar to cultured and uncultured representatives, and clustered most closely to sequences from cage-cultured abalone intestine (GU070691 and HQ393429, both at 93% sequence similarity), distinct from human pathogens (Fig. 6). Although commonly considered to be a vertebrate pathogen, the closest relatives were observed from marine invertebrates. Mycoplasma has been only rarely reported for non-vertebrates; thus, the ribotype recovered from R. osteovora represents one of the only known instances of Mycoplasma in deep-sea molluscs and within deep-sea animals in general (Duperron et al. 2013).

Nine Psychromonas phylotypes were recovered in the barcode dataset (which were 98% similar to each other), but one was dominant and represented >96% of the sequence reads in all 12 Rubyspira samples (the others were 0.2%–1.3% of recovered Psychromonas sequences). The dominant Psychromonas sequence was >99% similar to cultured and uncultured representatives. Psychromonas recovered from R. osteovora clustered most closely with deep-sea environmental sequences from biocorroded marine metals (Dang et al. 2011), Arctic sediments (Prasad et al. 2014) and sequences recovered from leeches at a 600 m whale fall in Monterey Canyon (Goffredi, Morella and Pulcrano 2012) (Fig. 7A).

An additional genus Psychrilyobacter was common among Rubyspira digestive tissues. Four Psychrilyobacter phylotypes were recovered in the barcode dataset (which were 98.8% similar to each other), but one was dominant and represented 94.0% of the

Figure 5. ANOVA of mean proportions of (A) Mycoplasma and (B) Psychromonas between tissue types and environmental samples. Rubyspira osteouora digestive tract tissues had significantly higher proportions of Mycoplasma and Psychromonas than the environment and other snails. ANOVA, P = 0.0002 (Mycoplasma), P = 0.004 (Psychromonas).

sequence reads in all 12 R. osteovora samples (the others were 0.9%–4.0% of recovered Psychrilyobacter sequences). The dominant Psychrilyobacter sequence was 100% similar to both uncultured and cultured Psychrilyobacter atlanticus strains (Fig. 7B; Zhao et al. 2004). Phylogenetic analysis grouped Psychrilyobacter from R. osteovora with deep-sea environmental samples such as those from hydrothermal vents (Reed, Lutz and Vetriani 2006; Hügler, Gärtner and Imhoff 2010) and cold seep sediments (Reveillaud et al. 2016; Fig. 7B), as well as marine invertebrates including a tunicate (Dishaw et al. 2014), oyster (Fernandez-Piquer et al. 2012) and Paralvinella worm, a hydrothermal vent polychaete (Alain et al. 2002).

FISH microscopy was used to confirm the presence of microbes within the digestive tissues of R. *osteovora* (Fig. 8). Light and fluorescence microscopy revealed distinct morphology for each tissue; intestinal epithelia contained ciliated columnar cells, stomach lining was highly convoluted and contained simple cuboidal cells with clear basal nuclei, and the digestive gland contained columnar cells arranged in tubules (Fig. 8). Positive FISH signals were obtained with the general eubacterial probe Eub338 for all three tissues, which indicates the presence of bac-

Figure 6. Phylogenetic tree of the dominant Mycoplasma-related OTU isolated from R. osteovora digestive gland (in bold). Five Mycoplasma phylotypes (which were 98%– 99.6% similar to each other) were recovered in the barcode dataset, but one was dominant (shown in the tree) and represented >98% of the sequence reads in all 12 Rubyspira samples (all others represented 0.2%–1.2% of recovered Mycoplasma sequences). Close relatives were assigned using BLAST and include human pathogens and environmental samples. Mycoplasma from Rubyspira clustered most closely (61% bootstrap confidence) with Mycoplasma isolated from abalone intestine. The tree is based on neighbor-joining analysis was conducted with Olsen distance correction, and the resulting tree topology was evaluated by bootstrap analysis (numbers at nodes indicate bootstrap support from 1000 resampled data sets). The scale bar represents 0.05 substitutions per site.

teria in these areas. Bacteria were observed attached to the cilia of the stomach and intestine, as well as in the lumen. In the digestive gland, bacteria were localized within the lumen of the ducts. Qualitatively, greater numbers of bacteria were observed within the intestine and stomach, and fewer within the digestive gland. In the stomach and intestine, in particular, many of these bacteria were confirmed to be Psychromonas spp. via hybridization with a genus-specific probe (Fig. 8). Unfortunately, no positive signals were observed with the Mollicute-specific probe, even in the digestive gland. We suspect this is due to low numbers of bacteria in this tissue in particular, and perhaps also due to the enzymatic nature of the digestive gland and the compromised nature of the tissues, even with immediate preservation. Although intracellular bacteria-like objects in the digestive gland, detected by TEM, could be intracellular secretory vesicles, they are consistent with Mycoplasma, irregular in shape, size and without a cell wall (Rottem, Kornspan and Kosower 2012; Fig. 9).

DISCUSSION

It is now widely accepted that multicellular organisms form intricate cooperative associations with microbes. Bacteria live in the digestive systems, in particular, of nearly all animals that have been studied, and these bacteria play critical roles in the exchange of nutrients and digestion of food, and thus contribute to success and survival of the host. Discovering novel and diverse animals in unusual ecosystems has also uncovered the unique and specific microbial communities associated with these organisms. *Rubyspira osteovora* is a deep-sea gastropod that was discovered at a whalefall in 2004 (Johnson *et al.* 2010). 16S rRNA gene sequencing revealed that R. *osteovora* is colonized by a stable and specific microbiome, significantly less diverse than the surrounding microbial communities.

The unique and specific bacterial community of Rubyspira osteovora

Rubyspira osteovora has a specific microbial community dominated by three microbial genera: Mycoplasma, Psychromonas and Psychrilyobacter. The predominance of these three bacterial OTUs at 43%–92% of total recovered sequences is notable and indicates a specific relationship between R. osteovora and these microbes, although their role is still unknown. In contrast, the human gut microbiome, and other mammalian microbiomes, contain around 1000 bacterial species, and the 'core microbiome' is characterized at the phylum level, rather than the genus level because of high levels of diversity (Ley *et al.* 2008; Turnbaugh *et al.* 2009; Qin *et al.* 2010). Within invertebrates, the diversity level of the gut microbiome has been shown to be one to two orders of magnitude lower than that of mammals (Dillon and Dillon 2004; Dunn and Stabb 2005). For example, Drosophila melanogaster has five dominant species in its microbiome that are present at every host life stage, with only 17–71 total OTUs (Wong, Ng and Douglas 2011).

Rubyspira osteovora is thought to forage exclusively on bone, based on stable isotope analyses, radular morphology and the occurrence of bone fragments within the stomach (Johnson et al. 2010). It is still unclear whether the microbes associated with R. osteovora are acquired vertically or from the environment during foraging. If the microbes within the gut of R. osteovora were only transiently associated with the animals during feeding, we would expect to see a highly diverse microbiome that mirrored the composition of the environmental samples. Instead, the low bacterial diversity in R. osteovora tissues compared to nearby sediment and bone samples supports the argument for a specific microbial community, not present in the environment. Psychrilyobacter has been found in other deep-sea sediments and from sediments adjacent to whale falls (Goffredi et al. 2005; Reed, Lutz and Vetriani 2006; Reveillaud et al. 2016), and closely related Psychromonas has also been found in Monterey Canyon (Goffredi, Morella and Pulcrano 2012). Although Psychrilyobacter was found in the environmental communities in very low abundances (<0.04%), it is still possible that R. osteovora acquires them from the environment. A similar acquisition of a specific symbiont in very low abundance is seen in the Euprymna squid-Vibrio fischeri symbiosis (McFall-Ngai 1994). Mycoplasma, however, is an obligate pathogen, so it is likely transmitted from host to host. To study this, the microbiome of Rubyspira should be surveyed at

Figure 7. Phylogenetic trees of OTUs with high-sequence similarity to Psychromonas (A) and Psychrilyobacter (B) isolated from R. osteovora digestive tract tissue (in bold), based on 250-bp fragments from barcoded Illumina sequencing. Nine Psychromonas phylotypes were recovered in the barcode dataset (which were 98% similar to each other), but one was dominant (shown in the tree) and represented >96% of the sequence reads in all 12 Rubyspira samples (all others were 0.2%-1.3% of recovered Psychromonas sequences). Four Psychrilyobacter phylotypes were recovered in the barcode dataset (which were 98.8% similar to each other), but one was dominant (shown in the tree) and represented 94.0% of the sequence reads in all 12 Rubyspira samples (all others were 0.9%-4.0% of recovered Psychrilyobacter sequences). Trees based on neighbor-joining analysis were conducted with Olsen distance correction, and the resulting tree topology was evaluated by bootstrap analysis (numbers at nodes indicate bootstrap support from 1000 resampled data sets). The scale bars represent 0.1 substitutions per site.

different developmental stages—in the eggs, during larval development, as juveniles, and as adults. If these microbes are vertically transmitted, we would expect to see them throughout all stages of development, particularly in the eggs.

Additionally, the bacterial community composition of R. osteovora differed from other deep-sea, non-bone feeding gastropod microbiomes, despite diversity levels that were significantly different from those found in the environment. *Phymorhynchus* sp. is predatory and feeds on other gastropods, while *Bathymargarites symplector* is a scavenger on the remains of invertebrates, diatoms and undefined organic matter (Warén and Bouchet 1989). If a common microbiome existed among all deepsea gastropods, we would expect to see similar microbial communities, despite differing nutritional strategies. However, these gastropods did not contain any of the abundant microbes observed in R. osteovora, except for *Phymorhynchus*, which contained 5% *Psychrilyobacter*. The absence of two of the dominant R. osteovora microbes from other gastropods supports the idea that R. osteovora hosts a specific microbial community in its digestive system.

Dominant microbes associated with Rubyspira osteovora

Mycoplasma (phylum Tenericutes; class Mollicutes) was the most dominant genus in the digestive gland of R. osteovora. Mycoplasmas are parasitic and have typically been found as obligate vertebrate pathogens, most notably the cause of several human diseases (Mycoplasma genitalium and M. pneumoniae; Razin, Yogev and Naot 1998). Normally, mycoplasmas have strict host and tissue specificity within vertebrates; however, recent research has observed Mycoplasma in high abundance in algae (Hollants et al. 2011, 2013) and invertebrates, including shallow-water molluscs, such as Sacoglossans (90% of total recovered sequences), aquacultured abalone and oysters (>80% of total sequences; Huang et al. 2010; King et al. 2012; Davis et al. 2013), deep-sea woodeating chitons (50% of sequences in gut, 70% in gill) (Duperron et al. 2013) and the deep-sea polychaete Riftia (>80% of individuals; Scharhauser 2013). The abundance and role of Mycoplasma in these organisms is unclear, although authors have speculated that the microbes may help animals digest nutrient-poor foods (Fraune and Zimmer 2008; Duperron et al. 2013). In R. osteovora, Mycoplasma was dominant in nearly all digestive tract samples, but was most prevalent in the digestive gland, where intracellular enzymatic digestion occurs (Walker 1970). It is possible that nutrients or molecules involved in digestion facilitate Mycoplasma growth in this area. The Mycoplasma sequence isolated from R. osteovora is likely a novel species, as it was only 91%–94% similar to any close relatives. Whether Mycoplasma is a pathogen, beneficial symbiont or neutral associate is still unknown. However, evidence of Mycoplasma in snails collected over the course of 6 years indicates a relatively long-term relationship.

Psychromonas (class Gammaproteobacteria) was the most dominant genus in the intestine of R. osteovora, and was > 96%identical to sequences recovered from sediment adjacent to a sperm whale carcass (Miyazaki et al. 2008). While it seems to be a ubiquitous psychrophilic environmental microbe, there have been several reported instances of Psychromonas associating with marine invertebrates. For example, deep-sea leeches, from two different whale fall habitats in Monterey Canyon, were dominated by closely related Psychromonas (98% 16S rRNA sequence similarity; >90% of recovered sequences; Goffredi, Morella and Pulcrano 2012). Additionally, Psychromonas ribotypes have been recovered from the digestive tract of a wood-feeding gastropod from ~500 m depth in the Vanuatu archipelago (Zbinden et al. 2010). The close relatives of this isolate are anaerobic heterotrophs that are able to hydrolyze polymers such as starch, and the authors speculate that Psychromonas, along with other microbes in the digestive tract, have a role in wood digestion (Zbinden et al. 2010). The clear association of this bacterial genus with the digestive tissues of R. osteovora (Fig. 8) suggests a nontransient association.

Psychrilyobacter (Phylum Fusobacteria) was the third most abundant bacterial genus within *Rubyspira* osteovora tissue. Psychrilyobacter are psychrophilic, obligately anaerobic bacteria originally recovered from marine sediment at 215 m depth in 2009 (Zhao, Manno and Hawari 2009). Like Psychromonas, closely related *Psychrilyobacter* sequences were found in both environmental samples and in the microbiomes of invertebrates with no identified roles. The *Psychrilyobacter* sequence recovered from *R.* osteovora was 100% identical to uncultured bacteria from hydrothermal vent and cold seep sediments and over 99% similar

Figure 8. Light microscopy (A-C) and fluorescence microscopy (D-F) of R. osteovora digestive tract tissues. Methylene blue-stained thick sections ($0.4 \mu m$) were used for R. osteovora tissue morphology, and revealed intestinal epithelia columnar cells topped with very long cilia (A), stomach epithelia contained simple cuboidal cells, topped with short cilia (B) and a digestive gland with ducts of columnar cells (C). DAPI-stained nuclei of R. osteovora cells (blue), a general bacteria-probe Eub388-Alexa (green) and a Psychromonas-probe, NOR2-1453.Cy3 (orange) revealed that bacteria were attached to the cilia (c) of the intestinal epithelia (D). Large clusters of Psychromonas and other bacteria were also found in the lumen (l) of the intestine (D-inset). In the stomach, bacteria were found in the lumen (E). Fewer bacteria were observed in the digestive gland, and localized within the duct lumen, close to the epithelia. (F, inset). n, nucleus. l, lumen. c, cilia. b, bacteria. All scale bars are 10 μ m.

to uncultured bacteria from Monterey whale fall sediments (Goffredi et al. 2005; Reed, Lutz and Vetriani 2006). Psychrilyobacter has limited known associations with metazoans. Three close relatives (>99% sequence similarity) were recovered, in low abundance, from Paralvinella polychaetes, Pacific oysters and Ciona tunicates (Alain et al. 2002; Fernandez-Piquer et al. 2012; Dishaw et al. 2014). Within the Pacific oysters, Psychrilyobacter dominated at 44% of the bacterial community, although its role was not determined (Fernandez-Piquer et al. 2012).

The stable bacterial community of Rubyspira osteovora

The discovery and elucidation of the role of symbiotic microorganisms to animal life has emerged as an important area of research, and, as such, there are increasing numbers of described animal-bacterial symbioses in the literature. One must be careful, however, to distinguish a true symbiosis involving two or more organisms from a transient interaction between an animal and the innumerable surrounding microbiota, with which they interact for part or all of their lives. 16S rRNA barcode sequencing of R. *osteovora* digestive tract tissues, including the digestive gland, intestine and stomach, revealed that three genera continuously dominated the gut microbiome over the course of 6 years, from 2004 to 2010. The presence of these microbes could be indicative of a persistent negative infection. However, this is unlikely because the proportions of the microbes do not change over time. The microbiome stability between tissue types implies that the specific conditions within these tissues are favorable for growth of these specific microbial species.

Figure 9. TEM of R. osteovora digestive gland, showing bacteria-like objects (b) that are small, intracellular, irregular in shape, without a cell wall, consistent with Mycoplasma. n, nucleus. m, mitochondria. Scale bar is 300 nm.

CONCLUSIONS

Overall, this study uncovered a very low-diversity gut microbiome of a gastropod with an unusual nutritional strategy. The discovery of Rubyspira osteovora, at two whale falls deep in Monterey Canyon, has revealed more about the exceptional biodiversity in the deep-sea, including the specific assemblage of microbes that associate with animals in these unique ecosystems. Importantly, the microbiome of R. osteovora is dominated by microbes not observed in either the environment or within other non-bone-feeding gastropods. This specificity, as well as the temporal stability of the microbiome over 6 years, indicates a microbiome that is exclusive to R. osteovora. Very few studies have examined the microbial communities associated with digestive tissues of deep-sea animals. While this study was able to characterize the microbiome of R. osteovora, uniquely dominated by Mycoplasma, Psychromonas and Psychrilyobacter, the role of these microbes within the nutrition and life history of R. osteovora remains largely speculative. The Rubyspira microbiome, in particular Mycoplasma and Psychromonas, could contribute to digestive functions, but specific digestive supplementation by these microbes has not yet been shown in any study. Future surveys of other deep-sea gastropods in different habitats and within whale falls may reveal new information about the specificity of the microbiome, nutrient supplementation and possibly new microbial host services. By considering the microbial community nested within marine animals, we will surely discover more about the reciprocal influence these organisms have on each other and further increase our understanding of biodiversity in deep-sea ecosystems.

ACKNOWLEDGEMENTS

We thank Dr. Anders Waren for his expertise in deep-sea snail anatomy, G. Martin for TEM assistance, D. Case, S. Connon, and VJ. Orphan (California Institute of Technology) for barcode guidance, S. Johnson for invaluable help with specimens and data analysis, the captain and crew of the RV Western Flyer, the pilots of the ROVS Tiburon and Doc Ricketts, and Dr. Robert Vrijenhoek from the Monterey Bay Aquarium Research Institute for providing additional snail specimens. We are especially thankful for the support from members of the Occidental College Microbial Symbiosis Laboratory.

FUNDING

Partial funding for H. Aronson was provided by a HHMI grant to Occidental College and the Undergraduate Research Center (Academic Student Projects) at Occidental College.

Conflict of interest. None declared.

REFERENCES

- Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V et al. PCRinduced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microb 2005;71:8966–9.
- Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 2014;95:631–6.
- Alain K, Olagnon M, Desbruyères D et al. Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis.FEMS Microbiol Ecol 2002;42:463–76.
- Amann RI, Binder BJ, Olson RJ *et al*. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl Environ Microb* 1990;**56**:1919–25.
- Baco AR, Smith CR. High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 2003;260:109–14.
- Berry D, Ben Mahfoudh K, Wagner M et al. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microb 2011;77:7846–9.
- Blaxter KL. The Energy Metabolism of Ruminants. Springfield, IL: Thomas, 1962.
- Braby CE, Rouse GW, Johnson SB et al. Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep-Sea Res Pt I 2007;54:1773–91.
- Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion. In: Biology of Termites: A Modern Synthesis. Netherlands: Springer, 2010, 439–75.
- Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. New York: Springer Science & Business Media, 2002.
- Burnham KP, Anderson DR. Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 2004;33:261–304.
- Caporaso JG, Kuczynski J, Stombaugh J et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–6.
- Caporaso JG, Lauber CL, Walters WA et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNatl Acad Sci USA 2011;**108**:4516–22.
- Caporaso JG, Lauber CL, Walters WA et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012;6:1621–4.
- Case DH, Pasulka AL, Marlow JJ et al. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. MBio. 2015;6:e01348–15.
- Clarke KR, Warwick RM. Change in Marine Communities, 2nd edn. Plymouth: PRIMER-E Ltd, 2001.
- Costello EK, Lauber CL, Hamady M et al. Bacterial community variation in human body habitats across space and time. Science 2009;**326**:1694–7.
- Daims H, Brühl A, Amann R et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:

development and evaluation of a more comprehensive probe set . Syst Appl Microbiol 1999;**22**:434–44.

- Dang H, Chen R, Wang L *et al*. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon-and Zetaproteobacteria in Pacific Ocean coastal seawaters. *Environ Microbiol* 2011;**13**:3059–74.
- Davis J, Fricke WF, Hamann MT et al. Characterization of the bacterial community of the chemically defended Hawaiian sacoglossan Elysia rufescens. Appl Environ Microb 2013;**79**:7073–81.
- Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 2004;49:71–92.
- Dishaw LJ, Flores-Torres J, Lax S et al. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 2014;9:e93386.
- Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 1998;43:17–37.
- Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 2008;6:725–40.
- Dunn AK, Stabb EV. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl Environ Microb 2005;71: 8784–94.
- Duperron S, Pottier MA, Leger N et al. A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities? FEMS Microbiol Ecol 2013;**83**:552–67.
- Eilers H, Pernthaler J, Glöckner FO et al. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microb 2000;66:3044–51.
- Fernandez-Piquer J, Bowman JP, Ross T et al. Molecular analysis of the bacterial communities in the live Pacific oyster (*Crassostrea gigas*) and the influence of postharvest temperature on its structure. J Appl Microbiol 2012;**112**:1134–43.
- Fraune S, Zimmer M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. *Environ Microbiol* 2008;**10**:2497–504.
- Goffredi SK, Morella NM, Pulcrano ME. Affiliations between bacteria and marine fish leeches (Piscicolidae), with emphasis on a deep-sea species from Monterey Canyon, CA. Environ Microbiol 2012;**14**:2429–44.
- Goffredi SK, Orphan VJ, Rouse GW et al. Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 2005;7:1369–78.
- Goffredi SK, Paull CK, Fulton-Bennett K et al. Unusual benthic fauna associated with a whale fall in Monterey Canyon, California. *Deep Sea* Res Pt I 2004a;**51**:1295–306.
- Goffredi SK, Warén A, Orphan V et al. Novel forms of structural integration between microbes and a vent gastropod from the Indian Ocean. Appl Environ Microb 2004b;**70**:3082–90.
- Hollants J, Leroux O, Leliaert F et al. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One 2011;6: e26458.
- Hollants J, Leliaert F, Verbruggen H *et al.* Permanent residents or temporary lodgers: characterizing intracellular bacterial communities in the siphonous green alga *Bryopsis. P R Soc B* 2013;**280**:2012–659.
- Huang ZB, Guo F, Zhao J et al. Molecular analysis of the intestinal bacterial flora in cage-cultured adult small abalone, Haliotis diversicolor. Aquacult Res 2010;**41**:e760–9.
- Hügler M, Gärtner A, Imhoff JF. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of

hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 2010;**73**:526–37.

- Johnson SB, Warén A, Lee RW et al. Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habits. Biol Bull 2010;219:166–77.
- Kennedy K, Hall MW, Lynch MD et al. Evaluating bias of Illuminabased bacterial 16S rRNA gene profiles. Appl Environ Microb 2014;80:5717–22.
- King GM, Judd C, Kuske CR et al. Analysis of stomach and gut microbiomes of the eastern oyster (*Crassostrea* virginica) from coastal Louisiana, USA. PLoS One 2012;7: e51475.
- Levin LA, Orphan, VJ, Rouse, GW *et al*. A hydrothermal seep on the Costa Rica margin: Middle ground in a continuum of reducing ecosystems. P R Soc B 2012;**279**:2580–88.
- Ley RE, Hamady M, Lozupone C et al. Evolution of mammals and their gut microbes. Science 2008;**320**:1647–51.
- Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. *Deep Sea* Res 1977;24:857–63.
- Lundsten L, Schlining KL, Frasier K et al. Time-series analysis of six whale-fall communities in Monterey Canyon, California, USA. Deep Sea Res Pt I 2010;57:1573–84.
- McFall-Ngai MJ. Animal-bacterial interactions in the early life history of marine invertebrates: the Euprymna scolopes/Vibrio fischeri symbiosis. Am Zool 1994;34:554–61.
- McFall-Ngai M, Hadfield MG, Bosch TC *et al*. Animals in a bacterial world, a new imperative for the life sciences. P Natl Acad Sci 2013;**110**:3229–36.
- Mazerolle MJ. Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package version 1.1.15. 2011 www.r-project.org.
- Miyazaki M, Nogi Y, Fujiwara Y et al. Psychromonas japonica sp. nov., Psychromonas aquimarina sp. nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Micr 2008;58:1709–14.
- Oksanen J, Blanchet FG, Kindt R et al. Package 'vegan'. Community Ecology Package, Version 2.9, 2013. www.r-project.org.
- Pernthaler A, Pernthaler J. Simultaneous fluorescence in situ hybridization of mRNA and rRNA for the detection of gene expression in environmental microbes. *Methods Enzymol* 2005;**397**:352–71.
- Prasad S, Manasa P, Buddhi S et al. Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. *Curr Microbiol* 2014;**68**:233–8.
- Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464: 59–65.
- Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol R 1998;62:1094–156.
- Reed AJ, Lutz RA, Vetriani C. Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 2006;10:199–211.
- Reveillaud J, Reddington E, McDermott J et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol 2016;18:1970–87.
- Rottem S, Kornspan JD, Kosower NS. Contamination of Tissue Cultures by Mycoplasmas. INTECH Open Access Publisher; 2012. http://dx.doi.org/10.5772/51518 (22 Decemeber 2016, date last accessed).

- Scharhauser F. The search for Candidatus Endoriftia persephone during the development of Riftia pachyptila, 2013 Doctoral Dissertation, University of Vienna.
- Smith CR, Baco AR. Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 2003;41:311–54.
- Steedman HF, Polyester wax. A new ribboning embedding medium for histology. Nature 1957;179:1345.
- Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. *Nature* 2009;**457**:480–4.
- Walker G. The cytology, histochemistry, and ultrastructure of the cell types found in the digestive gland of the slug, Agriolimax reticulatus (Müller). Protoplasma 1970;71:91–109.
- Warén A, Bouchet P. New gastropods from East Pacific hydrothermal vents. Zool Scr 1989;**18**:67–102.
- Waterbury JB, Calloway CB, Turner RD. A cellulolytic nitrogenfixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). *Science* 1983;**221**:1401–3.

- Wong CN, Ng P, Douglas AE. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 2011;13:1889–900.
- Zbinden M, Pailleret M, Ravaux J et al. Bacterial communities associated with the wood-feeding gastropod Pectinodonta sp. (Patellogastropoda, Mollusca). FEMS Microbiol Ecol 2010;74:450–63.
- Zhao JS, Manno D, Hawari J. Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. Int J Syst Evol Micr 2009;59: 491–7.
- Zhao JS, Spain J, Thiboutot S et al. Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 2004;49:349– 57.