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Levi ben Gerson (1288-1344) was a medieval astronomer who responded
in an unusual way to the Ptolemaic tradition. He significantly modified
Ptolemy’s lunar and planetary theories, in part by appealing to physical
reasoning. Moreover, he depended on his own observations, with instru-
ments he invented, rather than on observations he found in literary
sources. As a result of his close attention to the variation in apparent
planetary sizes, a subject entirely absent from the Almagest, he discov-
ered a new phenomenon of Mars and noticed a serious flaw in Ptolemy’s
treatment of the Moon.

Levi ben Gerson (1288-1344), also known as Gersonides, lived in Or-
ange, a town in southern France not far from Avignon, which was then
the papal residence, and is best known for his Biblical commentaries
and his philosophical work, The Wars of the Lord (see Touati 1973). But
his contributions to science and mathematics were considerable, and
his approach to astronomy was outstanding in the context of medieval
scholarship in this discipline (see Freudenthal 1992). His Astronomy
constitutes book 5, part 1, of his Wars of the Lord, but it is as long as the
rest of the treatise altogether and is preserved in separate manuscripts
(Goldstein 1974, pp. 74ff; see also Appendix). This astronomical text
was translated from Hebrew into Latin by Peter of Alexandria (a town
in the north of Italy), who also collaborated with Levi—nothing is
known about this Peter except that he was a member of the Order of
Hermit Brothers of St. Augustine, but it can be said on the basis of the
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2 Levi ben Gerson

translation that he had a clear understanding of Levi’s Astronomy (see
Mancha 1992b).

Let me begin with an evaluation of Levi (here called by his Latin
name, Leo) by the fifteenth-century humanist George of Trebizond:

In each discipline there is one ancient scholar of distinction
whom we should follow as, for example, Aristotle for laying bare
the secrets of nature, Euclid for the elements of geometry, Homer
for Greek poetry, Virgil for Latin poetry, Demosthenes and Cicero
for oratory, and surely one person for astronomy, namely Ptol-
emy. Now among the later commentators, some have made [new]
instruments for themselves, as we learn from their writings, that
have led them—and those who follow them—into great errors.
Indeed, a certain Jew, Leo, describes the positions of both the
planets and fixed stars by means of his own instruments. . . . But
Leo and others descended to inept demonstrations trying to save
the appearances . .. seeking glory most basely by false and de-
ceitful detraction of divine men. (Goldstein 1985, p. 11)

It is striking that Levi is given such prominence here, but the point is
that Levi departed from Ptolemy, insisting that he could do better than
Ptolemy, and, from a humanist perspective, this was blameworthy. For
George, as for most other scholars in the premodern age, the greater
part of truth was already known and available in books venerated by
tradition. The first response is to say that George was right—Levi did
think he had done better than Ptolemy (and in many ways he had).
But Levi’s attitude to Ptolemy was not as simple as George imagined,
and it is this attitude that I wish to explore.

What distinguishes Levi from the vast majority of medieval mathe-
matical astronomers is his insistence that mathematical astronomy can-
not be treated apart from physical considerations. In chapter 1 he
writes:

We found that [previous] investigators, namely some of the math-
ematicians, decided it would be sufficient to determine a model
from which there would follow that which is in close agreement
with what is perceived by the senses, but they did not attempt to
explain the model according to true principles. Indeed the model
they produced contains so many doubtful matters that it is alto-
gether impossible that it be as they assumed. . . . In its perfection
this investigation belongs to [several] sciences: to mathematics
because of the geometric proofs, and to physics and metaphysics
because of the physical and philosophical proofs. (Goldstein
1985, pp. 22-23, 304-305)
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In chapter 2, he adds:

[Astronomy] is of value for itself . . . for the subject of this inquiry,
celestial body, is the most noble of all natural bodies . . . and it is
most instructive for the other sciences, particularly physics and
metaphysics. ... [I]f we could perfect this investigation fully
without leaving any remaining doubt or confusion, it would be
infinitely precious and noble, and therefore we ought to elaborate
on it, perfecting it in every way possible. (Goldstein 1985, pp.
24-26)

As part of this project, Levi devised a new astronomical instrument,
later known as the cross-staff, that was easy to construct and that pro-
duced reliable and accurate observations. Between 1321 and 1340, he
observed ten eclipses, solar and lunar positions at other times, and a
considerable number of planetary positions (Goldstein 1979, 1988).
This is a substantial list and sets Levi apart from other medieval as-
tronomers who recorded few observations of their own. Moreover,
Levi constructed a new lunar theory based on his own observations of
lunar positions and claimed that it produced closer agreement with
his observations than did Ptolemy’s theory (Goldstein 1974, pp. 53-74).
While this may seem like a “normal” thing for a scientist to do, in a
medieval context, this was by no means the case.

Levi’s emphasis on physical considerations also affected his attitude
toward the ancients. As he writes in chapter 46 of his Astronomy:

In this chapter we direct the community of scholars not to hasten
to dissent from the views of the ancients except after much inves-
tigation and careful scrutiny. ... We first tried to solve some of
the difficulties raised against [Ptolemy] by our predecessors with
respect to his postulates concerning eccentric spheres and epi-
cycles, seeking to find observational evidence to establish his
hypotheses. Indeed, the reason for which we invented the afore-
mentioned instrument [the cross-staff] was to determine the
amount of the eccentricity. When we investigated this matter for
the Moon and found that its model could not possibly be as Ptol-
emy postulated, we took pains to investigate alternative possibili-
ties for the models of the celestial bodies until we discovered [a
model] according to which the motions [of these bodies] conform
to observational evidence. (Goldstein 1988, p. 385)

Of special significance in this passage is that Levi appealed to the phe-
nomena as the ultimate criteria for determining the truth of a theory
and that he depended primarily on the observational evidence that he
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had gathered for himself rather than on the observational evidence
preserved in texts. As we shall see, the phenomena that Levi consid-
ered were not restricted to positional data. This direct appeal to phe-
nomena is surprisingly rare in the Middle Ages and virtually without
parallel among Jewish, Christian, and Muslim scholars. As Kepler re-
marks in his Astronomia Nova (1609, chapter 14), “Copernicus, ignorant
of his own riches, ever took it upon himself to express Ptolemy, not the
nature of things, to which, nonetheless, he of all men came closest”
(Donahue 1992, p. 232). What Kepler says about Copernicus, that he
was responding to Ptolemy rather than to nature, can be said of virtu-
ally all medieval astronomers.

Let us now turn to some details of Levi’s contributions to astronomy.
It is immediately striking that he does not follow the standard arrange-
ment of material in a medieval book on astronomy, and this reflects
his different motivation and methodology. After a preliminary discus-
sion of trigonometry, mainly of the construction of a table for the sine
function, Levi turns to observational instruments, breaking with the
standard order of subjects in a medieval astronomical treatise. We are
not given any precise clues for this break with tradition, and it is worth
pausing to understand it. Levi says repeatedly that astronomical the-
ory must be based on observations—so far nothing unusual—but he
is concerned about observations of two kinds: (1) the positions of the
planets (including the Sun and the Moon), which he shared with other
medieval astronomers, and (2) the physical attributes of the planets,
which were given much less consideration by other medieval astrono-
mers. His models were intended to satisfy observations of both kinds,
and in this he parted company with his contemporaries.

The underlying issue relates to the interpretation of the Ptolemaic
planetary models and the criticisms of them by astronomers before
Levi, notably by al-BitrGji (ca. 1200). In fact, after Ptolemy, the most
prominent name in Levi’s Astronomy is that of al-Bitriiji, despite the
fact that Levi argues vigorously against his views. Al- Bitraiji revived
the notion of homocentric planetary models and tried to harmonize
that notion with the models of Ptolemy by envisaging Ptolemy’s mod-
els on the surface of a sphere near the pole of the sphere with some
way for the planet near the ecliptic to be guided by the motion of
its pole. Levi was aware of many technical inadequacies of al-Bitraiji'’s
scheme, but there was another matter that needed to be investigated
(Goldstein 1971, 1:40-43). Al-Bitriiji claimed that Venus always main-
tained the same size (i.e., brightness) and that it did not display phases
as would be required if its distance varied and if it received its light
from the Sun:
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Those whose pretext for opposing the ancients” opinion is that
they have not seen Venus or Mercury obscure the Sun under any
circumstances, as the Moon does during solar eclipses, would
have a sound reason if these two planets were illuminated by
another body, as the Moon is illuminated by the Sun. The proof
that they [Venus and Mercury] are not illuminated by the Sun
and do not receive light from any other source is that their lumi-
nosity seems the same whether they are close to the Sun or far
from it. But if their light came from the Sun, like the Moon’,
Mercury would always appear as a crescent, because it is never
very distant from the Sun; and similarly for Venus most of the
time. If someone were to say that the distance between them in
height makes the surface facing us always appear luminous, it
still remains that some of the surface would be without light, and
[the planet] would appear elongated.

Moreover, if the Sun were below both of them and they were
receiving their light from it, then the higher would receive light
from the lower, so that the lower would then be more perfect.
This is a repugnant notion and remote from the principles by
which things exist. Since they do not obscure the light of the Sun,
despite their lying below it and above us, either the rays of the
Sun pass through them on account of their translucence, or their
light replaces the part of the Sun which they obscure. Since this
is the case, their argument is not sound. (Goldstein 1971, 1:125)

This argument was used as evidence to support the claim that the
planets stayed at the same distance from Earth and that neither the
epicyclic model nor the eccentric model was appropriate. For us, it

is noteworthy that this argument depends on physical considerations

rather than on positional data. Levi’s response was to say that the epi-

cyclic model is indeed inappropriate (but for a different reason) and

that the eccentric model conforms to the observational facts, for, he

argues in chapter 44 of his Astronomy,

It is clear from the observational data with respect to the Sun
and Venus that they are sometimes seen greater and sometimes
smaller . . . from which it follows that there are eccentric orbs, and
this contradicts what [al-BitrGji] assumed, for he tried to invent
models without eccentric orbs. (MS P 84a:20ff)"

This follows from one of Levi’s methodological principles, stated in
chapter 42:

1. Sigla for MSS are identified at the beginning of the appendix.
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[Elccentric spheres are derived directly from observations about
which there is no doubt. Thus, they cannot be refuted by philo-
sophical argument. True beliefs must correspond to reality; real-
ity, however, need not correspond to what one prefers to believe.
(MS P 75a)

So, in a fundamental way, Levi’s arguments depended strongly on
finding a variation in planetary sizes and taking that variation to be
significant. To be sure, Ptolemy had assigned apparent sizes to the
planets in his Planetary Hypotheses (Goldstein 1967, p. 8), but he did not
discuss the variation in their apparent sizes, nor did any of these data
serve as the basis for his models. One might say that, for Ptolemy,
planetary sizes were an afterthought, a consequence of his theory, but
not part of the data for its construction. On the other hand, for Levi,
planetary sizes are equally to be considered as part of the data that an
astronomical theory is to explain. Levi is much more precise:

It also became clear to us on the basis of observation that the
apparent size of the diameter of Venus is greater at greatest elon-
gation from the Sun than at 0° or 180° of anomaly [superior and
inferior conjunction]; on the other hand, we did not observe it to
be greater at 180° of anomaly than at 0° of anomaly. All this is at
variance with what follows from Ptolemy’s model, for according
to it the diameter of Venus should appear to be greater at 180° of
anomaly than at 0° of anomaly by more than 6 times. We also
observed diligently seeking to find the apparent size of Venus at
each time relative to the apparent size of the fixed stars of first or
second magnitude, and in general to determine the variations in
the apparent sizes of the planets. For Venus we could determine
this by its appearance with the Sun during the day, because when
Venus is at its greatest elongation from the Sun, you can see it in
the afternoon sunlight. But when it is closer than 20°, it cannot
be seen in sunlight. You can also verify this by observing the size
of the diameter of Venus in these two places and by observing it
at 0° and 180° of anomaly. Another way to verify this is by noting
its rays that enter the window of the instrument that we de-
scribed earlier [i.e., the camera obscura], and this should be done
when the light of the Moon is not shining and it is pitch dark.
(Levi, Astronomy, chapter 17; Goldstein 1985, p. 105; cf. Gold-
stein 1996b)

In other words, Levi failed to find any difference in the apparent size
of Venus near inferior and superior conjunctions (180° and 0° of anom-
aly), while claiming that its greatest apparent size was at greatest elon-
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gation (about 47° from the Sun). According to modern theory, maxi-
mum brightness occurs about thirty-five days after inferior conjunction
at an elongation of about 39° and greatest elongation about thirty-five
days after that (give or take a few days). So, one might argue that Levi
is just as far off in the other direction as some medieval astronomers
(e.g., Bernard of Verdun, ca. 1300; see Goldstein 1996b, p. 5) who took
maximum size to take place at inferior conjunction. Given an epicyclic
model, Venus would be much closer to Earth at 180° of anomaly, and
hence one would expect it to appear larger in size. But, in fact, the
phases of Venus very nearly counteract the variation in distance, and
the phases of Venus were not observed until Galileo’s observations
with a telescope in the early seventeenth century. Thus, those who
claimed maximum size took place at inferior conjunction seem to have
depended on Ptolemaic theory, recast as an observation, whereas Levi
gives the impression of reporting what he had observed. There was no
previous significance to an elongation of about 39°, and he was equally
unaware of any, but greatest elongation was a known phenomenon
of Venus, and it would have been natural to observe Venus in that
circumstance.

Levi also measured the apparent sizes of the Sun at apogee and
perigee with a camera obscura on specified dates in 1334, and his re-
sults were that the apparent diameter of the Sun varied from 0;27,51°
to 0;30°, from which he derived a solar eccentricity of 2;14, where the
radius of the deferent is 60 (Levi, Astronomy, chapter 56; Mancha 1992a,
pp. 292ff). His derivation of the solar eccentricity from observations of
the apparent solar diameter (rather than from the variation in the
length of the seasons, on which Ptolemy had based his argument) con-
vinced Levi of the reality of the Sun’s variation in distance from Earth.
Note that Ptolemy’s value for the solar eccentricity was 2;30, which
Levi reduced to 2;14.

So what gave Levi such confidence in his observations of planetary
sizes? For this purpose, he appeals to an observational instrument, the
camera obscura, that was unavailable to Ptolemy and that was de-
scribed in detail by Ibn al-Haytham (d. 1039), a Muslim scholar noted
for his contributions to astronomy and optics. It is not clear how Levi
learned of this instrument—the text of Ibn al-Haytham was not trans-
lated into Hebrew, as far as I know. It is quite possible that Levi learned
of it from Latin sources, for it was discussed by a number of scholars
in the thirteenth century, notably Roger Bacon and William of St. Cloud
(Mancha 1992a). As usual, Levi did not cite his sources, but his analysis
of the way this instrument worked far surpassed that of any medieval
Latin author, and it was not until Kepler that a Christian author
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Figure 1. lllustration of the reason for subtracting the diameter of the aper-
ture of the camera obscura from the size of the image (see figs. 2 and 3). The
luminous object is XY, the aperture is AB, and the image on the screen is CD.
The angular size of XY is angle XZY which is equal to angle CZD, and in turn
equal to angle CAE. But tan (CAF) = CF/AF, where CF is half of CE, and
CE = CD - ED. Since XY is assumed to be very far away, the rays from any
point on it arrive at AB along parallel lines. Hence AB = ED, and the angular
size of XY is twice angle CAFE.

reached his level of understanding. Levi first describes this instrument
in chapter 5 of his Astronomy, assuming that the aperture has the size
of a point, but in chapter 9 he indicates how to compensate for an
aperture of finite size—the size of the aperture is to be subtracted from
the size of the image (Goldstein 1985, pp. 140-43) (fig. 1). Without this
correction, the values produced by observations with this instrument
are not valid quantitatively and even lead to qualitative problems that
bothered astronomers as late as the time of Tycho Brahe at the end of
the sixteenth century. The camera obscura is useful for observing solar
eclipses, but without this correction the size of the Moon seems to be
much smaller than it should be, based on observing it at times other
than eclipses. As Tycho wrote in 1598, “Truly it must be acknowledged
that the Moon during a solar eclipse does not appear to be the same
size as it appears at other times during full moons when it is equally
far away; but it appears as if it were constricted by about Ysth, by
causes to be disclosed elsewhere” (Straker 1981, p. 278). The correct
analysis of the camera obscura is one of the main themes of Kepler's
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Paralipomena ad Vitellionem of 1604; Kepler knew about some of Levi’s
work but not his discussion of this instrument.

Levi's interest in planetary sizes led him to notice a phenomenon of
Mars that had previously escaped attention, namely, that Mars varies
in brightness at successive oppositions to the Sun. Levi’s account is
brief, and he seems to have been surprised by his observations, judging
by the ad hoc explanations he offers:

When Mars was retrograde in Leo, we found its size perceptibly
greater than that of Saturn, and similarly in Capricorn, but there
its size appeared greater than it was in Leo. However, when it
was retrograde in Scorpio its size did not seem greater than that
of Saturn. ... You should know that we ascribed what we first
discovered concerning Mars in Leo to thin clouds through which
it was seen at that time. We did this because during its retrogra-
dation in Scorpio its size was not found to be augmented, and
because we did not see this increment in the proper order in
which it should take place were it due to its closeness to us. You
cannot argue that after a short time it [Mars] can appear to be
smaller in size than what follows from the appropriate ratio, for
we observed its size while retrograde in Capricorn where we
found it somewhat augmented as compared to the size that we
found it in Leo. We also ascribed the absence of an increment in
the size of Mars in Scorpio to the thickness of vapors through
which it was seen at that time. We then understood that this phe-
nomenon took place because of the comet that continued to ap-
pear for more than 3 months; that vapor came into being under
Scorpio and it was drawn from there to somewhat below the
north pole: there it burst into flame and it perished in Scorpio.
(Levi, Astronomy, chapter 17; Goldstein 1985, p. 106; cf. Gold-
stein 1996a)

The comet in question can be dated to 1337 on the basis of observations
in China and in Europe, and this is consistent with dating the opposi-
tion of Mars in Scorpio to April/May 1337 (see also Mancha 1992b, p.
32). (Note that Mars is in opposition to the Sun every two years or 50.)
I take Levi’s appeal to comet formation, clouds, and the thickness of
vapors to be part of his explanation for anomalous phenomena rather
than as part of the observational reports. The theory of comet forma-
tion to which Levi alludes was commonplace in the Middle Ages, but
to appeal to it in an astronomical context is unprecedented. According
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to modern theory, the values for the brightness of Mars, M, measured
in stellar magnitude (the higher the negative value, the brighter the
object), at its closest approach to Earth near these three oppositions
were: February 8, 1333 (Mars in Leo), M = —1.3; May 3, 1337 (Mars in
Scorpio), M = —2.0; and July 1, 1339 (Mars in Capricorn), M = —2.8.
In more familiar terms, Mars was four times brighter in 1339 than in
1333. No other dates during Levi’s lifetime are possible for oppositions
of Mars in these zodiacal signs. This variation in brightness is not sur-
prising, given the modern view that the brightness of Mars at opposi-
tion depends on its position relative to its perihelion (where Mars is
closest to the Sun). When an opposition takes place in February, Mars
is near aphelion (farthest from the Sun) and hence dimmest, whereas
when an opposition takes place in August it is near perihelion and
hence brightest. Levi’s report that Mars at opposition in 1337 was not
as large (i.e., bright) as Saturn is a puzzle for which I have no explana-
tion. I also have no way to explain how Levi could remember the
brightness of Mars in 1333 in order to compare it with its brightness
in 1339, but he correctly reports the facts and he was not guided by a
commonly accepted theory.

Let us now consider the case of the Moon. In chapter 71 of his As-
tronomy, Levi presented a new model for the Moon that was to account
for positions of the Moon when it was in conjunction with the Sun or
at a distance of 90°, 180°, and 270° from the Sun (these distances are
called “elongations”), and in these cases his data were not much differ-
ent from those of Ptolemy. But at multiples of 45° of elongation (known
as the “octant points”), he found Ptolemy’s theory to be deficient in
accounting for the lunar positions, whereas his new theory was much
more successful in accounting for them. Rather than analyzing his new
model, let us pay close attention to what Levi calls his “additional
proofs” in favor of his new model, all of which involve physical consid-
erations: (1) the variation in lunar parallax; (2) the “spot” on the Moon;
(3) the variation in the size of the image of the Moon cast on a screen;
and (4) measurements of the apparent diameter of the Moon. His con-
clusion is that “the Moon has no epicycle or eccentric orb in the way
that Ptolemy assumed, as will become clear and, once that has been
clarified, it will be clear from the force of our previous remarks that
the motion of the Moon can only take place in the way we have set it”
(Levi, Astronomy, chapter 72; see Appendix).

The argument from parallax depends on the fact that parallax is a
measure of the distance from the Moon to Earth—the greater the angle
of parallax, the closer the Moon is to Earth. Ptolemy allows the Moon
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to vary in distance such that the maximum is about double its mini-
mum distance, which implies that its apparent size varies in the same
ratio, i.e., at closest approach the Moon’s apparent diameter should
appear to be twice as great as at its farthest distance from Earth, quite
contrary to the appearances. Yet, no one before Levi called attention to
this discrepancy between the phenomena and Ptolemaic Iunar theory.
Levi’s lunar theory drastically reduces the difference in lunar parallax
at quadrature and syzygy (conjunction and opposition) and hence the
lunar distances from Earth under these conditions (see Appendix; Le-
vi's Astronomy, chapter 73). After him, Ibn al-Shatir (Damascus, d. ca.
1375) and Regiomontanus (d. 1476) both mentioned this flaw in Ptole-
my’s lunar theory, and Ibn al-Shatir produced a new theory in which
this flaw was eliminated. It has now been shown that Copernicus’ lu-
nar theory in the sixteenth century is virtually identical to that of his
predecessor, Ibn al-Shatir (see Goldstein 1972, p. 46; Swerdlow 1973,
p. 456; 1990, pp. 174, 190).

The “spot” on the Moon is usually known as the “man in the Moon.”
Levi’s argument is that, if the Moon had an epicycle, we would see
both sides of it, but, in fact, we always see the same side. Levi insists
that the “man in the Moon” is a reality and not an appearance or an
optical illusion. This passage is essential for Levis argument against
the epicyclic model—given the principle of the uniformity of nature,
if an epicyclic model is inappropriate for the Moon, it is inappropriate
for any planet—but there is no comparable argument against the ec-
centric model. Consider the following figure (fig. 2)—the eccentric and
epicyclic models are geometrically equivalent, but they have different
physical consequences.

Physical reasoning also appears in Levi’s account of cosmic dis-
tances. He seems to have taken a hint from Maimonides (Guide ii.24)
concerning an interplanetary celestial body, but he may have depended
directly on Ptolemy’s Planetary Hypotheses (book ii) (for Levi’s owner-
ship of a copy, see Weil 1991, p. 108), where there is a layer of unspeci-
fied thickness between adjacent planetary spheres. Maimonides re-
ports the following from a lost book by Thabit ibn Qurra (d. 901):

(1]t follows necessarily that when the higher [planetary] sphere
is in motion it must move the sphere beneath it with the same
motion and around its own center. Now we do not find that this
is so. ... Hence necessity requires the belief that between every
two [planetary] spheres there are bodies other than those of the
spheres. . . . Thabit has explained this in a treatise of his and has
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Figure 2. [llustration of the apparent disk of the Moon according to the epicy-
clic and eccentric models under the assumption that the Moon is fixed to its
orb. The observer is at O, and the center of the eccentric circle is D. Note that
the Sun may shine on both the solid and the shaded portions of the Moon.
Ptolemy proved that these two models are geometrically equivalent. Levi ar-
gues, however, that they are not physically equivalent: in the epicyclic model
the observer would see both sides of the Moon, but in the eccentric model this
would not happen.

demonstrated what we said, namely, that there must be the body
of a sphere between every two spheres.” (Pines 1963, pp. 324-25)

Levi modifies Ptolemy’s nesting hypothesis by introducing a fluid be-
tween adjacent planetary spheres, and he then goes on to specify the
thickness of those interplanetary layers. For Levi this fluid, called “the
body that does not retain its shape,” is left over from the creation of
the world. Each planetary sphere (or spherical shell bounded by two
concentric spherical surfaces) is composed of a set of orbs. The lowest
orb moves with the daily rotation and the highest part of the sphere
moves with a velocity equal to the algebraic sum of 360° to the west,
and the planet’s minimum daily velocity to the east. Between each pair
of adjacent planetary spheres, the interplanetary fluid makes sure that
none of the motion of one planet interferes with that of another: there
are no empty spaces in the cosmos. This fluid obeys certain laws of
mechanics that allow Levi to compute its thickness: there is no relative
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motion at the convex (or concave) surface of the planet’s sphere, ie.,
the fluid there moves at the same rate as the spherical surface. But as
the radial distance from that surface increases, the motion of the fluid
decreases uniformly until it reaches zero at a certain distance from the
highest (or lowest) orb of the planet (fig. 3). (Although Levi does not
mention it, this case is the reverse of water flowing in a river: there is
no relative motion of the water at the banks of the river; the motion
increases with the distance from the banks, and the swiftest part of the
river is in the middle.) For Levi, the layer of zero motion is assumed
to have zero thickness, but this takes place with respect to the superior
concave surface and the inferior convex surface; hence, the motion of
one planet has no effect on the adjacent planet. I omit the details of
the computations, but the results are extraordinary. For Ptolemy, the
fixed stars are at a distance of 20,000 terrestrial radii from Earth,
whereas Levi considers them (under one set of assumptions) to be at
a distance of 157 - 10™ terrestrial radii, a truly astronomical distance
and well beyond anything proposed in a serious medieval astronomi-
cal work (Goldstein 1986a).
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Figure 3. Illustration of the inner part of Levi’s cosmos. The superlunary fluid
layer is shown between the convex surface of the lunar orb, C'C, and the con-

cave surface of Mercury’s orb, E'E. The layer in which no mation takes place
is labeled D'D.
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The essence of this derivation of planetary distances depends on
Levi’s analysis of the motion of the celestial fluid by means of terres-
trial analogies. As he puts it:

[TIhe strength of the impulse depends upon the strength of the
motion. This is clarified from the throwing of stones, for the
greater the force, the greater is the amount of the medium that
receives the form of the impulse. But when the [force] is weak,
its amount is diminished until it happens, due to the weakness
of the impulse, that [the stone] will fall immediately upon its
separation from the hand of the thrower. From this it is clear that
the daily orbs move the celestial fluids below them with differing
amounts. (Levi, Astronomy, chapter 130; Goldstein 19864, pp.
286-87)

Levi’s analysis of fluid motion is quite reasonable, from the point of
view of fluid dynamics, and unprecedented as far as I know, but his
application of it to a celestial fluid is truly remarkable, for he is failing
to adhere to a rigid distinction between the celestial and terrestrial
realms that was virtually unchallenged by medieval philosophers. The
reason Levi can appeal to this analogy is that he believes there are
universal physical principles that apply to both realms and that they
can be discovered experimentally. To be sure, Levi recognizes differ-
ences between these realms, e.g., light and heavy do not apply to the
celestial realm (see Glasner 1996). In chapter 130 of his Astronomy, Levi
tried to determine the parallax of a comet that ought to have displayed
some parallax because it was assumed to be closer to Earth than the
Moon, and the Moon has a measurable parallax. The closer an object
is to Earth, the greater should be its parallax. Levi interpreted his fail-
ure to find any parallax for the comet as an indication that the celestial
fluid has different properties from the fluid below the Moon, but he
did not take this to mean that the sublunary fluid had no properties
in common with the celestial fluid.

The metaphysical or theological warrant for this use of physical rea-
soning is stated in Levi's Wars of the Lord (vi.2.8): “The Torah gave us a
great benefit when it made known to us that there is a unity of a sort
of the lower matter and the heavenly body. The reason for this is that
if there were not a unity between them, it would necessarily follow
that there would be two divinities” (Levi ben Gerson 1866, p. 430;
Staub 1982, pp. 263-64). This underlying unity of the sub- and superlu-
nary realms is in opposition to (among others) Maimonides (Guide,
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ii.26): “the matter of the heavens is altogether different from that of the
earth” (Pines 1963, p. 331), following the standard Aristotelian distinc-
tion. But Levi understands the discussion of the separation of the “wa-
ters” in Genesis, chapter 1, as support for his views about the celestial
and sublunary fluids (cf. Freudenthal 1986).

On a methodological level, Levi accepts the hierarchy of disci-
plines—astronomy, physics, metaphysics—that was a common feature
of Aristotelian science. Metaphysics is the source for the principles that
govern physics, and physics is the source for the principles that govern
astronomy. This is what Levi calls the “a priori” method. But he also
accepts the “a posteriori” method, according to which the data at one
level of the hierarchy can disconfirm the principles at a higher level.
In chapter 19 of his Astronomy, he says, “We decided to introduce these
results based on our observations and those of others here so that we
may use them as assumptions in our proofs, for in this science you
have to rely on sensory perception to find the true models for the celes-
tial orbs, and in this way it is similar to the Science of Physics in which
proofs are taken a posteriori” (Goldstein 1985, pp. 113, 230). What is of
particular interest is that Levi’s new view of astronomy depended on
a (partial) breakdown of the distinction between the sub- and superlu-
nary realms, much less thorough in the case of Levi than in the case
of Kepler, for Levi still accepted the physical reality of celestial orbs.
The conventional account of the breakdown of this distinction places
greatest emphasis on Brahe’s observations of the comet of 1577, lead-
ing him to conclude that there are no hard impenetrable planetary
spheres (Goldstein and Barker 1995). That story is not so simple, but
for Kepler there are certainly no longer any such spheres in the heav-
ens. Kepler’s goal was to find a causal account of planetary motion
taking place in a celestial fluid, based on physical laws that conformed
to his theological commitments (see, e.g., Stephenson 1987). Levi, to
be sure, did not see his task in the same way, but for him the principal
issue was also theological: the demands of monotheism led him to
question the astronomical tradition and gave physical arguments legit-
imacy in astronomy. He then applied physical arguments to the lunar
and planetary models as well as to the celestial fluid.

Levi’s insights into the relationship between astronomy and physics
were not appreciated by his contemporaries or immediate successors,
even by those who were aware of his contributions to mathematical
astronomy, but they show that a medieval scholar could well transcend
the legacy of antiquity. Levi was confident that he had made significant
improvements on Ptolemy’s astronomical theories and that he could
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account for the positional data as well as the physical phenomena of
the planets.

Appendix

The Astronomy of Levi ben Gerson

The Hebrew text of the Astronomy of Levi ben Gerson consists of 136
chapters. I have previously published the Hebrew text of chapters 1-20
(Goldstein 1985) as well as the following translations: chapters 1-20
(Goldstein 1985); chapter 29 (Goldstein 1986b); chapters 46, 109, 113,
117, and 122 (Goldstein 1988); chapter 61 (Goldstein 1975); chapter 71,
in part (Goldstein 1974); chapters 80 and 100 (Goldstein 1979); and
chapters 130 and 131 (Goldstein 1986b). The translation of chapters
72-75 that follows in section I is based on MSS P (ff. 143b:3 to 146b:21),
and Q (ff. 111a:—5 to 114a:3), where P is Paris, Bibliotheque nationale
de France, heb. 724; and Q is Paris, Bibliothéque nationale de France,
heb. 725 (negative line numbers are counted from the bottom of the
page). Sentence numbers, in square brackets, and paragraphing have
been added to the translation for ease of reading. The commentary on
these chapters is in section II.

|, Translation: Chapters 72-75

Chapter 72

[1] Now that we have established this model with respect to the Moon’s
apparent motion, we shall bring additional proofs for its truth with
respect to other considerations, and there are 4 of them.

[2] The first is with respect to the apparent lunar parallax at quadra-
tures and oppositions, at 0° in anomaly and 180° in anomaly. [3] We
have found that its amount at oppositions is about 0;55° [with Q; P
reads: 0;5°] and at quadratures it is about 0;57°, to a close approxima-
tion. [4] We have repeated this observation many times, only to find
that the parallax of the Moon was greater at quadratures. [5] If some-
one were to say that this [increment at quadratures] may be due to
approximation in the observations, [we would point out that] it is curi-
ous that this approximation is always on the incremental side. [6] But
this shows, without doubt, that the Moon is closer to us at quadratures
than at oppositions. [7] We have not seen, up to this time, any differ-
ence in the amount of parallax when the Moon is at 0° in anomaly as
compared with its parallax at 180° in anomaly. [8] We should investi-
gate this matter further because, from it, we may determine whether
the eccenters of the motion in anomaly are different or whether they
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are one and the same, as we have argued [lit. agreed]; and if they are
different, what the distance is between them.

[9] The second is with respect to the spot [Heb.: sel; Lat.: macula)
seen on the Moon which is a reality (amitut ‘inyan) rather than an ap-
pearance (re‘iyya), as we explained above.

[10] The third is with respect to the ray of the apparent Moon [that
passes] through the window of the instrument of the Staff at quadra-
tures and oppositions, and at diverse places in anomaly.

[11] The fourth is with respect to the apparent size of the diameter
of the Moon at quadratures, oppositions, and at diverse places in
anomaly, for it does not appear to vary noticeably. [12] We will deter-
mine the truth of this with the instrument that we invented for this
investigation, i.e., the Staff.

[13] All these imply that the Moon has no epicycle or eccentric orb
in the way that Ptolemy assumed, as will become clear and, once that
has been clarified, it will be clear from the force of our previous re-
marks that the motion of the Moon can only take place in the way
we have set it. This explanation [shall be the subject of] the following
chapters. [End chapter 72]

Chapter 73

[1] Here we present the proof taken from parallax, and it is as follows.
[2] If the Moon were closer to us at quadrature than at opposition in
the way that follows from Ptolemy’s model, the apparent parallax at
quadrature would be much greater than at opposition. [3] But, to re-
peat, we found that the parallax at quadrature was only slightly
greater than at opposition, and at its maximum it is greater by only
about 0;2°. [4] It follows that the Moon is only a little closer at quadra-
ture than at opposition. [5] By this very argument, it is evident that the
Moon is not sensibly closer to us at 180° of anomaly than at 0° in
anomaly. [6] You ought to know that if the matter were in accordance
with Ptolemy’s model, the apparent parallax at quadrature and 180° of
anomaly would be nearly twice that [amount] at opposition and 0° of
anomaly, and this is clear to anyone who examines his model.

[71 T will explain that the parallax at quadrature is only slightly
greater than at opposition, and that it is not seen to be greater at 180°
of lunar anomaly than elsewhere. [8] Let us observe the Moon with a
fixed star close to the ecliptic and 20° [with Q; P reads 2°] or more
away from it [i.e., the Moon] with the instrument that we invented to
determine accurately the position [of the Moon relative to] the star by
observation, and we should determine as accurately as possible the
time of the observation. [9] Then about 4 or 5 hours later we again
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observe the Moon with the same fixed star as before, and from this
we can determine the apparent motion of the Moon between the two
observations and the time interval between them with the greatest pos-
sible accuracy. [10] Then we compute the true lunar motion between
the two observations according to either Ptolemy’s model or our own
model, for there will be no sensible difference between them in such a
short time interval. [11] The difference between the true motion of the
Moon and its apparent motion in this interval is the excess of the paral-
lax at one observation over the parallax at the other observation, if
both of them were to be added to, or subtracted from, the true position
of the Moon. [12] But [take] the sum of the two parallaxes if at the first
observation the parallax was additive, and at the second observation
it was subtractive. [13] We examined this problem when the Moon
was at quadrature [and when it was at opposition]: we computed the
parallax according to its amount found at the times of eclipses when
its maximum is about 0;55°, and we found that what is between the
two motions agrees closely with this computation. [14] But the addi-
tional amount of parallax at quadrature over its amount at opposition
was only 0;2°, i.e., its maximum was 0;57°. [15] Thus our results are
quite different from what follows from Ptolemy’s model, and we re-
peated this observation many times. [16] We have computed the paral-
lax in all our lunar observations in this way. [17] The best results are
found when there is a large excess in the parallax of one observation
over the parallax of the other, or when the sum of the parallaxes is
large in those cases where one is additive and the other substractive.
[18] To illustrate this: consider the Moon at Cancer 0°; the first obser-
vation takes place 2 equal hours before it crosses the meridian, and the
second observation 3 equal hours after it crosses the meridian, for then
the diminution of the Moon’s apparent motion in these 5 hours would
be about 0;45° at the horizon of Orange if we set the maximum parallax
equal to 0;55° [i.e., at opposition]. [19] Then it is quite clear that the
lunar motion in anomaly and longitude is not according to Ptolemy’s
model with an eccentric and an epicycle, for in that case the excess of
the parallax in this example at quadrature would be much greater than
at opposition, and likewise greater at 180° of anomaly than at 0° of
anomaly, and analogously for other parallaxes, whether all of them or
some of them, when the Moon is at mean distances in these respects.
[20] The excess between these two [extremes under the condition spec-
ified for] the observation that we mentioned should be quite sensible.
[21] Similarly, consider the Moon at Cancer 0° in quadrature; the
first observation takes place on the meridian and the second before or
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after it by 4 or more hours, according to what is possible, for when it
is 50, one should see a diminution in the motion of the Moon according
to our assumptions of 0;32°, but according to Ptolemy it would exceed
0;55°—setting the Moon at 180° of anomaly. [22] When we examined
this in this way, we did find not the parallax seen in the observation of
the Moon at quadrature greater than the amount that follows from
assuming the Moon at greatest distance except by the amount that we
mentioned, namely a maximum of 0;2°.

[23] We determined this from our observation of the Moon on 20
June of the aforementioned year [1333]* 8;13 hours after mean noon,
and we found the Moon at Libra 2;8,35°, as we have already men-
tioned. [24] Then 2;19 equal hours later, we again observed the Moon
with the same star as in the first observation. [25] The apparent motion
of the Moon between these two observations was shorter than the true
motion by the appropriate amount according to what we mentioned.
[26] In the same way we again observed the Moon on the night of 21
June, and 2;44 hours passed between the two observations. [27] We
found the matter in very close [agreement], and we were as careful as
possible, for otherwise we would have had no way to determine the
true position of the Moon from the observation. [28] You may verify
this by observing the Moon with the observational instrument that 1
invented for you in accordance with my directions. [end chapter 73]

Chapter 74

[1] A doubter may ask, how is it possible for the truth to contradict
itself? [2] For it seems that Ptolemy explained on the basis of percep-
tion, as is mentioned in the Almagest, that lunar parallax conforms with
what follows from his model. [3] In the Almagest, v.13, he records that
he observed in the 16th [sic] year of Hadrian, on the 13th day of the
Coptic month, Athyr, that the apparent altitude of the Moon on the
meridian was 39;5°, and its true position was Cap 3°, and its latitude
was to the north at its maximum less 0;1°. [4] According to Ptolemy,
the true lunar altitude at that time in Alexandria was 40;12°, since the
latitude of the Moon was 4;59°. [5] Therefore, he concluded that the
lunar parallax at that time was 1;7°, but according to our explanations
the parallax at that time should only have been 0;42°. [6] The way to
resolve this doubt is not difficult, for [Ptolemy’s] proof is based on a
maximum lunar latitude of 5°, but this is not right, for the maximum

2. Cf. chap. 71, P 141a:—5.
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lunar latitude is only 4'4°, as we will explain. [7] Moreover, al-Battani
agreed that the maximum lunar latitude is 4'4°. [8] When we subtract
these 30 minutes from this parallax found by observation, the observed
parallax that remains is only 0;37° which is even less than the amount
arrived at by our reckoning by 0;5°. [9] This discrepancy may be due
to approximation either in the observation or in the instrument with
which the observation was taken, or it is possible that the altitude of
the pole there was greater by 0;5° than the amount assumed by Ptol-
emy. [10] Be that as it may, it is clear that this observation does not
contradict our claim that parallax does not agree with what follows
from Ptolemy’s model, but that it is evidence and proof in favor of our
remarks. [11] It is a property of the truth that it agrees with itself in
every respect.

[12] To demonstrate that the maximum lunar latitude is not sensibly
greater than 4'2° we depend partly on the observations of Ptolemy,
partly on the observations of his predecessors that he reported, and
partly on our observations of solar and lunar eclipses. [13] Moreover,
we depended on our observation of the Moon on the meridian when
it was very nearly at its maximum northern latitude from which we
verified that its latitude was 4;30° very nearly, and on other observa-
tions as well. [14] Let us take one example from the observations of
Ptolemy and those that he recorded by his predecessors, namely, the
observation that we just cited, that he used to derive his view for the
distances from the Moon to Earth, as evidence for showing that
the lunar latitude only reaches 4'4°.

[15] Moreover, in the Almagest, v.14, Ptolemy claimed that when
the Moon is 7;48° from the ascending or descending node, half of the
Moon’s diameter enters the shadow; but when it is 9;20° from these
points, only a quarter of its diameter enters the shadow. [16] Therefore,
the excess in the latitudes corresponds to about a quarter of the lunar
diameter, 0;6,52°, according to our determination of the lunar diameter.
[17] For the lunar diameter, as determined by means of the ray entering
through the window of the instrument, is 0;27,51° of the circle on
which it travels. [18] It follows from this that its true amount on the
circle on which it travels about Earth is less than this amount by 0;0,24°,
as we will explain later, God willing. [19] Therefore, it is clear that the
excess in latitude of the Moon at 9;20° over its latitude at 7;48° is
0;6,52°, and from this we derive a maximum lunar latitude of about
4;30°. [20] This is easily explained by means of the table that Ptolemy
arranged for finding the lunar latitude, for the excess in the latitude
corresponding to 9;20° over the latitude corresponding to 7;48° is
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0;7,55%* and the arc corresponding to this excess is 0;7,34°, very nearly,
assuming a maximum lunar latitude of 5°. [21] But when we seek a
number whose ratio to 5° is equal to the ratio of 0;6,52° to 0;7,34°, that
number is about 4;32,15%; indeed, the ratio of 4;32,15° to 5° is equal to
the ratio of 0;6,52° to 0;7,34°. [22] This shows that the [maximum] lati-
tude of the Moon is 4%°, very nearly, for we cannot verify the excess
of the 0;2,15° over the 4'%4°, because the determination of the digits of
eclipse is difficult and we cannot be certain that there is no approxima-
tion in those observations to that extent. [23] This is because these
0;2,15° will affect this excess by only 0;0,3%2°, and they will affect the
digits of eclipse by only 1 part in 40 of a digit.

[24] 1t is clear that the latitude of the Moon is about 4;30°, very
nearly, because in the year 1334 according to the Christian reckoning,
on 7 May, we observed the altitude of the Moon on the meridian at 3
hours after mean noon, very nearly. [25] We found its altitude in Or-
ange to be 72;53° when the longitude of the mean [with Q; P omits]
Moon was in Cancer 4;8,19°, and its motion in anomaly was 274;25,48°,
and its distance from its apogee was 81;50,47°. [26] Therefore, reckon-
ing with our model, the Moon was at Cancer 11;19,19°, whereas ac-
cording to Ptolemy’s model it was at Cancer 9;41,38°. [27] Nevertheless,
the difference between these two reckonings does not matter in this
place because of the smallness of the excess and diminution of these
inclinations in this place, namely, the inclination [i.e., the declination]
of the degree [on the ecliptic], and the inclination of the Moon. [28]
The distance from the Moon to the ascending node according to the
reckoning with our model is 62;36,48°; the altitude of the degree of the
Moon [on the ecliptic] at this horizon is 69;4,2°, and the inclination of
the Moon according to our reckoning is 3;59,40°. [29] When we add
this to the altitude of the degree [on the ecliptic], the resulting true
altitude of the Moon is 73;3,42°, which means that the parallax is 0;11°,
very nearly. [30] This is less than what follows from our reckoning by
0;4°, and this [level of ] approximation can be ascribed to the approxi-
mation in the observation in taking the altitude of the Moon. [31] But
when the maximum latitude of the Moon is taken to be 5°, the inclina-
tion of the Moon in this place is 4;26,18°, from which it ought to follow
that the true altitude of the Moon at this horizon is 73;30,20°, and the
parallax would then be more than 0;37°. [32] But this is impossible, for

3. With al-Battant’s tables (Nallino 1903-07, 2:78), B(9;20°) = 0;48,35°, and B(7;48°) =
0;40,40°; hence the difference is 0;7,55°.
4. Note that Sin (0;7,34°) = 0;7,55.
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even according to Ptolemy’s reckoning the parallax at this place would
only be about 0;20°. [33] Therefore, it is clear that this observation is
evidence that the inclination of the Moon does not exceed 4'5°.

[34] According to Ptolemy’s reckoning, the altitude of the degree [on
the ecliptic] is 69;11,47°, and according to our reckoning the latitude of
the Moon is 3;56,7°. [35] When we add them together, the true altitude
of the Moon on the meridian is 73;7,56°, and this agrees with what is
appropriate for the parallax at this place according to our reckoning,.
[36] But if the maximum latitude of the Moon is taken to be 5%, the
resulting parallax would be more than 0;41° [with P; Q reads 0;45°].
[37] For, according to this reckoning, the lunar latitude was 4;22,25°,
and when added to [the altitude of the degree on the ecliptic], the
resulting true altitude of the Moon would be 73;34,7°; this is impossible
for, even according to his reckoning, [the parallax] should only be 0;20°.

[38] We also determined this from another observation in that afore-
mentioned year [1334] on the 24th of June, after sunrise: when the
altitude of the Sun was 9;10°, we found the altitude of the Moon on
the meridian to be 43;16°, very nearly. [39] At that time the Moon was
very nearly 324;42° from the ascending node, and it was at Aries 1,20°.
[40] When we computed the latitude of the Moon with a maximum of
414°, the true altitude of the Moon at that time is 43;56° [with Q; P
reads 40;56°]. [41] Therefore its apparent parallax at that place is 0;40°,
and this should be its amount according to our assumptions. [42] This
observation, in addition to providing evidence that the amount of the
inclination of the Moon is as we set it, is also evidence that the parallax
is as we set it, very nearly. [43] For, according to Ptolemy’s view for
the latitude of the Moon, the altitude of the Moon at the time of that
observation should have been much less than the amount we men-
tioned for these two reasons together: because at that time the Moon
was at its perigee and very nearly at 180° in its motion of anomaly as
well, and the inclination of the Moon was to the south. [44] Tts altitude,
according to Ptolemy’s reckoning, ought to have been less than what
we found by observation by about % of a degree. [45] Al-Battani em-
phasized that the latitude of the Moon does not reach the entire
amount that Ptolemy assumed, and agreed that the maximum latitude
of the Moon is 44°. [46] This adds clarity and perfection to what we
explained about it, and this will be further verified when we mention
the eclipses that we observed. [end chapter 74]

Chapter 75
[1] The proof taken from the spot seen on the Moon is as follows. [2]
If the Moon had an epicycle in the way that Ptolemy assumed, the



Perspectives on Science 23

portion of the Moon’s body seen when it is at the highest part of the
epicycle would be different from the portion of its body seen by us
when it is at the lowest part of its epicycle, for then we would see the
convex surface of the epicycle, but at the highest part of the epicycle
we would see the concave surface of the epicycle. [3] At middle places
we should see a composite of these two portions of the Moon's body,
i.e., a part of what is seen of it is what is seen at the lowest part of the
epicycle, and a part of it is what is seen of it when it is at the highest
point of the epicycle. [4] The spot seen on the Moon is necessarily
something in the body of the Moon at a definite place on it, for it is a
reality rather than an appearance, as we mentioned before; therefore,
it clearly follows that the spot would sometimes be seen, sometimes
not seen, and sometimes only part of it seen and part of it hidden. [5]
Also, when it is seen, it ought to be seen in diverse conditions with
respect to the luminous [part] of the Moon, and this is self-evident to
the careful reader of this book. [6] But, we repeat that this spot is al-
ways seen in the same condition with respect to the luminous [part]
of the Moon when we examine this with respect to the ecliptic. [7] The
contrary of what was assumed previously follows, namely, that the
Moon has no epicycle. [8] We stipulated that this should be examined
with respect to the ecliptic because, if it is examined with respect to
the horizon, it may be imagined that this spot is seen in diverse condi-
tions, for the condition of the ecliptic [relative to] the horizon varies
according to the changes in the [point of the ecliptic] that is on the
horizon, and all this is clear to the careful reader of this book.

[9] The proof taken from the ray of the Moon that enters through
the window of the Staff is as follows. [10] If the Moon had an epicycle
and an eccentric orb in the way that Ptolemy assumed, it would follow
that the diameter of the image of the Moon would be much greater at
quadrature than its size when seen at opposition, and that it would be
much greater when seen at 180° of its motion in anomaly than when
it is seen at 0° of its motion in anomaly. [11] But we find that the size
of the diameter of the image at quadrature is not perceptibly greater
than its apparent size at opposition by much. [12] Similarly, we find no
perceptible increment in its size at 180° of its motion in anomaly. [13]
We repeated this observation, and it yielded the contrary of what was
previously assumed, namely, that the Moon has no epicycle and no
eccentric orb in the way that Ptolemy assumed. [14] We determined
from this observation the apparent size of the lunar diameter on the
circle on which it travels when it is at apogee, for it was necessary to
investigate this on account of eclipses, but we have not yet repeated
this observation of the size of the lunar diameter at quadrature in such



24 Levi ben Gerson

a way that we could derive from it the amount of eccentricity of the
orb of the apogee, as we mentioned previously.

[15] The proof taken from the apparent size of the Moon with the
Staff is like the previous proof except that this proof is taken by observ-
ing the body of the Moon [directly] whereas the previous proof was
taken by observing the size of its image. [16] The size of the lunar
diameter can be observed in many ways with this Staff. One way is for
there to be a square missing in the middle of the plate in the upper
direction whose side is less than 1 part in 120 of the length of the Staff.
[17] We bring the plate closer to, or farther from, the eye until the edges
of the hole appear to touch the ends of the Moon’s apparent diameter
at that time perfectly at right angles, for this will lead us to the appar-
ent size of the Moon at that time.

[18] The second way is for us to observe the Moon with a star on a
straight line passing completely through its [i.e., the Moon's] apparent
diameter. [19] We observe the Moon with that star [using this instru-
ment] when the entire diameter of the Moon is included in the dis-
tance, and we observe the Moon and that star with [the instrument]
again when none of the diameter of the Moon is included in the dis-
tance. [20] The difference between these two distances is the apparent
size of the Moon at that time. [21] When we observed this in this way,
we did not find until now that the Moon was perceptibly greater in
size at quadrature than at opposition by much, and we did not find
that it was greater at 180° of its motion in anomaly than at 0° of its
motion in anomaly. [22] From this we conclude that without doubt the
Moon has no epicycle and no eccentric orb as Ptolemy assumed. [23]
Moreover, it follows from the force of our previous remarks that it is
impossible to consider the model for the orbs of the Moon in a way
other than the one that we have mentioned except for slight changes
in the parameters that may be reached by our senses by repeating this
observation. [24] You, O careful reader, see how noble is the truth, and
how it produces evidence for itself in every respect. [end chapter 75]

Il. Commentary

Chapter 72

In chapter 71, Levi established his lunar model from observations of
the positions of the Moon; he now wishes to establish his model on
physical grounds. He claims to have four arguments: (1) his determina-
tion of lunar parallax supports his model against that of Ptolemy; (2)
the fact that we always see the same side of the Moon is inconsistent
with the epicyclic model; (3) the size of the image of the Moon in a
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camera obscura is consistent with Levi’s model but not with Ptolemy’s
model; and (4) direct measurement of the apparent lunar diameter is
also consistent with Levi’s model but not with Ptolemy’s. The first
proof, based on parallax, is the subject of chapters 73 and 74, and the
other proofs are treated in chapter 75.

Chapter 73
Levi claims repeatedly that the lunar anomaly has no effect on parallax
and that the parallax at quadrature is 0;57°, while at opposition it is
0;55°. This is a small variation in contrast to the large variation in paral-
lax that follows from Ptolemy’s lunar model. Levi describes some ob-
servational methods to determine the lunar parallax and ends the
chapter with references to two dated observations, June 20, 1333, and
June 21, 1333, but no details are given here.

In [8] I prefer the reading 20°, based on a parallel passage in Levi's
Astronomy, chapter 11 (Goldstein 1985, p. 80).

Chapter 74
In this chapter, Levi discusses Ptolemy’s determinations of lunar paral-
lax, the inclination of the lunar orb, and the apparent size of the lunar
diameter. Levi first turns his attention to Almagest v.13, which is con-
cerned with the determination of lunar parallax. There is a problem
with his citation of the date of Ptolemy’s observation: Levi says it took
place in the sixteenth year of Hadrian, whereas the Greek text has the
twentieth year (cf. Toomer 1984, p. 247). Levi argues that Ptolemy’s
determination of parallax at the time of that observation is incorrect.
Instead of 1;7° it should have been 0;42°. Levi ascribes Ptolemy’s error
to an erroneous value for the maximum lunar latitude: according to
Ptolemy, it is 5;0°, but, according to Levi, it is only 4;30°. It is interesting
that the modern determination of parallax under those circumstances
yields 0;44° (cf. Pedersen 1974, p. 206), but the error in Ptolemy’s deter-
mination is not associated with his value for the maximum lunar lati-
tude; rather, it is associated with errors in his values for the latitude of
Alexandria and for the obliquity of the ecliptic. Levi claims that the
value 4;30° for the maximum lunar latitude was accepted by al-Battani,
but there does not seem to be any other evidence in favor of this claim.
Indeed, the tables of al-Battani use 5;0° as the maximum lunar latitude
(see Nallino 1903-07, 2:80). On the other hand, the tables of al-
Khwarizmi use a maximum lunar latitude of 4;30° (see Suter 1914, p.
134), and Levi may have confused these two sources.

Levi next turns to a passage in Almagest v.14 in order to undermine
Ptolemy’s value for the maximum lunar latitude. The data there are
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that, namely, that when the argument of lunar latitude is 9;20° only %
of the lunar diameter is eclipsed, whereas when the argument of lunar
latitude is 7;48° half of the lunar diameter is eclipsed. Ptolemy, using
a maximum lunar latitude of 5;0°, shows that the apparent lunar diam-
eter is 0;31,20°. Levi tries to show that, starting with an apparent lunar
diameter of 0;27,27°, the maximum lunar latitude is 4;,30°. Levi’s argu-
ment in [20ff] is faulty, but a proper argument can replace it. The cor-
rect formula relating the apparent lunar diameter and the maximum
lunar latitude is the following:

i sin (9;20) — i sin (7;48) = d/4,

where i is the maximum lunar latitude and d is the apparent lunar
diameter.
Then

P d/4
sin (9;20°) — sin (7;48°)

Given modern sine tables, if i = 5;,0°, d = 0;31,45° (Ptolemy computes
0;31,20°); whereas if i = 4;30°, d = 0;28,35°. Moreover, if d = 0;31,20°,
i = 4;56° (rather than Ptolemy’s 5,0°), and if d = 0;27,27°, i = 4;19°
(rather than Levi's value of 4;30°). Levi’s point is that for him the deter-
mination of the apparent lunar diameter is secure and based on direct
observations, and he is therefore willing to use this value for the deter-
mination of the maximum lunar latitude. On the other hand, Ptolemy
did not think that direct observations of the Sun or Moon could yield
reliable values for their apparent diameters (cf. Almagest v.14).

Levi then confirms his value for the maximum lunar latitude and
for lunar parallax by appealing to observations on May 7, 1334, and
June 24, 1334. In both cases the observed parallax agreed with his
model (and his value for lunar latitude) and not with Ptolemy’s model
(or with Ptolemy’s maximum lunar latitude). Levi assumes that the
lunar latitude lies on an altitude circle, but this is only approximately
true when the Moon is on the meridian (it is precisely true only when
the Moon is at the nonagesimal, the point on the ecliptic 90° from its
rising point). For Levi the importance of his values for lunar parallax
is that they indicate that Ptolemy’s values for the distances from Earth
to the Moon are erroneous and that in fact the Moon varies relatively
little in its distance from Earth.

Levi's value for the lunar diameter, 0;27,51° (in [17]), is the same as
the value he found for the apparent solar diameter at apogee in chapter
56 (see Mancha 1992a, p. 292). The computation of the correction,
0;0,24° (in [18]), is given in chapter 92 (see Mancha 1993, especially pp.
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111, 119, and 125). The reason for the correction is that the value for
the apparent lunar diameter, 0;27,51°, was observed on the surface of
Earth, but Levi wishes to determine the value for the lunar diameter
as it would be seen from the center of Earth. In chapter 92, values are
given for the apparent radius of the Moon under these two circum-
stances: 0;13,55°, from the surface of Earth, and 0;13,43°, from the cen-
ter of Earth (both values have been rounded), whose difference is
0;0,12°. Hence the difference in the apparent diameters is 0;0,24°. (I am
grateful to ]. L. Mancha for calling my attention to the relevant passage
in chapter 92.)

Chapter 75

In the first paragraph, Levi argues that we always see the same side of
the Moon, i.e., that it always has the same markings even though it is
not always entirely illuminated by the Sun. Levi argues that the spot
on the Moon is a physical property of it and not an optical illusion.
The term “shadow” (sel) used in the text for the spot on the Moon is
rather unfortunate; the Latin translator understood the sense of the
passage as is clear from his term, macula. If the Moon were attached to
an epicycle, we should sometimes see one side and sometimes the
other side, but this is not so. Hence, the Moon is not attached to an
epicycle (cf. Goldstein 1974, pp. 25-26). Levi is here appealing to an
Aristotelian argument that the Moon has no motion of its own; rather,
its motion is that of the orb to which it is attached (cf. Goldstein 1985,
pp. 114, 230). The claim that we only see one side of the Moon goes
back to antiquity (see Aristotle, De caelo, ii.8: 290a; Guthrie 1960,
p- 189), and the difficulty it poses for the epicyclic model was noted
by some Latin authors of the thirteenth and fourteenth centuries (cf.
Duhem 1954, p. 437; Grant 1987, pp. 203f; Gabbey 1991, pp. 115ff)
but, as far as I know, Levi was the first to mention it in a work on
mathematical astronomy. In [8], Levi emphasizes that the markings on
the Moon are fixed in position with respect to the ecliptic and that
comparison with other reference systems (e.g., the horizon) may be
misleading. Buridan (fourteenth century) put this argument some-
what differently:

Then I argue that it [an epicycle] ought not to be assumed for the
Moon, because then it would follow that in that spot (macula) of
the Moon which appears as if it were an image of a man whose
feet always appear to be below [or toward the bottom], the feet
would sometimes appear above [in the upper part of the Moon].
But we experience that this consequence is false, since this image
always appears situated in the same way with respect to us, on
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the assumption that it appears to us in the same part of the sky,
for example, on the meridan. But I prove the principal conse-
quent, because if the feet appear to us below when the Moon is
in the aux [that is, apogee] of the epicycle, it should follow that
when it reaches the opposite of the aux [that is, perigee] the feet
should appear above, since by the motion of the epicycle the
Moon has traversed [a distance such that] the part of the Moon
which previously was above is now below. (Grant 1974, p. 525)

According to Buridan, if the epicyclic model was a true representation
of reality, the “man in the Moon” would sometimes appear upside
down and sometimes rightside up, whereas Levi argued that, if the
epicyclic model was a true representation of reality, we would some-
times see the “spot” and sometimes it would not be visible. It would
seem that Levi understood the Aristotelian argument better than
Buridan.

The camera obscura combined with the Staff allows for a measure-
ment of the image of the Moon on a screen. Levi was well aware of the
need to subtract the size of the hole from that of the image (see
Goldstein 1985, 141ff). In chapter 56 of his Astronomy, Levi gives many
more details of his observations for finding the apparent diameter of
the Sun than he does here for the Moon.

Finally, Levi claims that direct measurement of the lunar diameter
with the Staff leads to the same conclusion that he reached using the
other methods, but again details of his observations are not given.

References

Donahue, W. H. 1992. Johannes Kepler: New Astronomy. Cambridge:
Cambridge University Press.

Duhem, P. 1954. Le Systéagme du monde. Vol. 3. Paris: Hermann.

Freudenthal, G. 1986. “Cosmogonie et physique chez Gersonide.” Re-
vue des Etudes Juives 145:295-314.

, ed. 1992. Studies on Gersonides: A Fourteenth-Century [ewish
Philosopher-Scientist. Leiden: Brill.

Glasner, R. 1996. “Gersonides’s Theory of Natural Motion.” Early Sci-
ence and Medicine 1:151-203.

Gabbey, A. 1991. “Innovation and Continuity in the History of Astron-
omy: The Case of the Rotating Moon.” Pp. 95-129 in Revolution and
Continuity: Essays in the History and Philosophy of Early Modern Sci-
ence. Edited by P. Barker and R. Ariew. Washington, D.C.: Catholic
University Press.

Goldstein, B. R. 1967. The Arabic Version of Ptolemy’s Planetary Hypothe-




Perspectives on Science 29

ses. Vol. 57, pt. 4, Transactions of the American Philosophical Society.

Philadelphia: American Philosophical Society.

. 1971. Al-Bitriiji: On the Principles of Astronomy. 2 vols. New Ha-

ven: Yale University Press.

. 1972. “Theory and Observation in Medieval Astronomy.” Isis

63:39-47.

. 1974. The Astronomical Tables of Levi ben Gerson. New Haven:

Connecticut Academy of Arts and Sciences.

. 1975. “Levi ben Gerson's Analysis of Precession.” Journal for the

History of Astronomy 6:31-41.

. 1979. “Medieval Observations of Solar and Lunar Eclipses.”

Archives Internationales d"Histoire des Sciences 29:101-56.

. 1985. The Astronomy of Levi ben Gerson (1288-1344). New York

and Berlin: Springer.

. 1986a. “Levi ben Gerson’s Theory of Planetary Distances.” Cen-

taurus 29:272-313.

. 1986b. “Preliminary Remarks on Levi ben Gerson’s Cosmol-

ogy” Pp. 261-76 in Creation and the End of Days. Edited by D. Novak

and N. Samuelson. Lanham, Md.: University Press of America.

. 1988. “A New Set of Fourteenth Century Planetary Observa-

tions.” Proceedings of the American Philosophical Society 132:371-99.

. 1996a. “Levi ben Gerson and the Brightness of Mars.” Journal

for the History of Astronomy 27:297-300.

. 1996b. “The Pre-Telescopic Treatment of the Phases and Appar-
ent Size of Venus.” Journal for the History of Astronomy 27:1-12.

Goldstein, B. R., and P. Barker. 1995. “The Role of Rothmann in the
Dissolution of the Celestial Spheres.” British Journal for the History of
Science 28:385-403.

Grant, E. 1974. A Source Book in Medieval Science. Cambridge, Mass.:
Harvard University Press.

. 1987. “Eccentrics and Epicycles in Medieval Cosmology.” Pp.
189-213 in Mathematics and Its Applications to Science and Natural Phi-
losophy in the Middle Ages. Edited by E. Grant and J. E. Murdoch.
Cambridge: Cambridge University Press.

Guthrie, W. K. C. 1960. Aristotle: On the Heavens. Cambridge, Mass.:
Harvard University Press.

Levi ben Gerson. 1866. The Wars of the Lord [in Hebrew]. Leipzig: Carl
B. Lorck.

Mancha, J. L. 19924. “Astronomical Use of Pinhole Images in William of
St. Cloud’s Almanach Planetarum (1292). Archive for History of Exact
Sciences 43:275-98.

. 1992b. “The Latin Translation of Levi ben Gerson's Astronomy.”




30 Levi ben Gerson

Pp. 21-46 in Studies on Gersonides: A Fourteenth-Century Jewish Philos-

opher-Scientist. Edited by G. Freudenthal. Leiden: Brill.

.1993. “La determinacién de la distancia del sol en la Astronomia
de Levi ben Gerson.” Fragmentos de Filosofia 3:97-127.

Nallino, C. A. 1903-07. Al-Battani sive Albatenii Opus Astronomicum. 2
vols. Milan: Osservatorio di Brera.

Pedersen, O. 1974. A Survey of the Almagest. Odense: Odense Univer-
sity Press.

Pines, S. 1963. Maimonides: The Guide of the Perplexed. Chicago: Univer-
sity of Chicago Press.

Staub, J. 1982. The Creation of the World According to Gersonides. Chico,
Calif.: Scholars Press.

Stephenson, B. 1987. Kepler's Physical Astronomy. New York and Berlin:
Springer. Reprinted 1994. Princeton: Princeton University Press.
Straker, S. 1981. “Kepler, Tycho, and the ‘Optical Part of Astronomy’:
The Genesis of Kepler’s Theory of Pinhole Images.” Archive for His-

tory of Exact Sciences 24:267-93.

Suter, H. 1914. Die astronomischen Tafeln des Muhammad ibn Miisa al-
Khwarizmi. Copenhagen: Royal Danish Academy of Sciences.

Swerdlow, N. 1973. “The Derivation and First Draft of Copernicus’s
Planetary Theory.” Proceedings of the American Philosophical Society
117:423-512.

. 1990. “Regiomontanus on the Critical Problems in Astronomy.”
Pp. 165-95 in Nature, Experiment, and the Sciences. Edited by T. H.
Levere and W. R. Shea. Dordrecht and Boston: Kluwer.

Toomer, G. J. 1984. Ptolemy’s Almagest. New York and Berlin: Springer.

Touati, C. 1973. La pensée philosophique et théologique de Gersonide. Paris:
Editions de Minuit.

Weil, G. E. 1991. La Bibliothéque de Gersonide d'aprés son catalogue auto-
graphe. Louvain and Paris: Peeters.




