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Why ML and biology

We need to analyse the cell at systems level
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Detect patterns in large amounts of very noisy data
Integrate diverse sets of data from different sources
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Biological networks

Cell as webs of interactions between biomolecules
Experimental data have a natural representation as networks

it
Yo - »
-
T k. e - - N
N, 2 s e
'y . o e s
Samh 1 e N Soom
b o * %
D e 1 ¥
. e o S ® < ~ =
.~ Cnamcs o v o N ] N
o, °, bl = | \ ~
e o =~

;o

roblems in biology .
and medicine can be

send fOrmulated as problems of
inference on biological |
networks g

i T . ot L
(| AL i u,, S ‘.:;'."
...::‘
T
e b
. '”:";

—— IR s
1 Bl .:Sxxf_{\.‘%v : i b& : =
— o ol _ 4 .;/'f‘
Y -\‘Ea b 111 o
el AR B g
1 I ; YL
Co-expression networks Protein-protein interaction
networks

[Horak, Genes & Dev.; DeRisi, Science; Qian, J. Mol. Bio; Jeong, Nature,;Tong, Science; Goh, PNAS]
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In my lab, we develop
Machine Learning methods
for answering questions in

Biology and Medicine

focus on biological networks

At the heart of our research is the biological question,
not the methodology — different areas of ML

Diverse problems
Collaborate with experimentalists

We implement software tools that allow biologists

and clinicians to easily use the methods that we
develop

A. Paccanaro, 2019
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The Menu

1. Network Science (brief intro)
2. Biological networks

3. Network Medicine, Systems Pharmacology
— Measure of distance between hereditary disease modules on the
interactome (2015)
— Disease gene prediction for uncharted diseases (2019)

4. Recommender Systems
— Method for predicting the frequency of drug side effects (under review)

5. Clustering, Spectral Clustering, Information diffusion
—  ClusterONE (2012)
— Spectral clustering of protein sequences (2009)

— An information diffusion approach to de-noise large-scale networks (2012)
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The Erdos-Renyi model (1959)

To build a random graph with n nodes:

For each pair of nodes

connect the pair with probability p
endfor;

This creates a graph with approximately:

-1
D n(n2 )

randomly placed links.

A. Paccanaro, 2019



Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Departiment of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction arrays™, excitable
media’, neural networks®™'’, spatial games', genetic control
networks'” and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon'*"* (popularly known as six degrees of separation®).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

Nature, Vol. 393, 440, 1998

A. Paccanaro, 2019



Degree of a node: the number of edges incident on the node

O
O

Degree of node i = 5

© A. Paccanaro, 2019



(Local) Clustering coefficient = LOCAL property

The clustering coefficient of node 1 is the ratio of the number E; of edges
that exist among its neighbours, over the number of edges that could exist

if node 1 has k neighbours, then at most
k(k-1)/2 edges can exist between them

Clustering coefficient of node i = 1/6

The clustering coetficient for the entire network C is the average of all
the C,

© A. Paccanaro, 2019



Characteristic path length - GLOBAL property

L (i j) is the number of edges in the shortest path between vertices i and j

o Lj) =2

The characteristic path length L of a graph is the average of the L,
for every possible pair (1,j)

A. Paccanaro, 2019



Watts & Strogatz: the idea/the question

Regular Random

o
From T.].Watts,
p=0 > p=1 S.H Strogatz,
Increasing randomness Nature, Vol. 393,

440, 1998
REWIRING PROCEDURE

e Start with a regular network with n vertices
* Rewire each edge with probability p

p =0 =» regularity
p =1 =» disorder (random)
Question: what happens for O0<p<17?

Quantify the structural properties of the graph by its
characteristic path length L(p) and clustering coefficient C(p)

A. Paccanaro, 2019



n vertices
k edges per vertex

S.H Strogatz,

440, 1998

From T.].Watts,

Nature, Vol. 393,

For p 2 0 (Regular Networks):

* high clustering coefficient
* high characteristic path length

e highly clustered
e large world [L grows lin. with n]

For p 21 (Random Networks):

* Jow clustering coefficient
* Jow characteristic path length

® poorly clustered
e small world [L grows log. with n]

This might lead to think that large C is always associated with large L,

and small C with small L...

A. Paccanaro, 2019



1) There is a broad interval of p for which L is small, but C remains large

Regular Small-world

Increasing randomness
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2) Hypothesis: small-world property might be common in sparse

networks with many vertices as even a tiny fraction of short cuts could
be sufficient

Table 1 Empirical examples of small-world networks

L actual L random I::'er:tl.l.all '::'ran-:ln:-rn
Film actors 3.65 299 0.79 0.00027
Power grid 18.7 12.4 0,080 0.005
. elegans £.65 2.25 0.28 0.05

From T.].Watts, S.H Strogatz, Nature, Vol. 393, 440, 1998

Comparison with random graphs with the same number of vertices n and
average degree k

Actors: n=225226 k=06l

Power grid: n=4941 k=2.677

C.Elegans: n=282 k=14

A. Paccanaro, 2019



Conclusions

The small-world phenomenon is not merely a curiosity of
social networks nor an artefact of an idealized model ---

it is probably generic for many large, sparse networks
found in nature

The distinctive combination of high clustering with
short characteristic path length in small-world networks
cannot be captured by traditional approximations such
as those based on regular lattices or random graphs.

A. Paccanaro, 2019



Science, Vol. 286, 1999

Emergence of Scaling in
Random Networks

Albert-Laszlé Barabasi* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-  actions currently limits advances in many
scribe systems composed of nonidentical el-  disciplines, ranging from molecular biology
ements that have diverse and nonlocal inter-  to computer science (/). The difficulty of

describing these systems lies partly in their
Department of Physics, University of Notre Dame,  topology: Many of them form rather complex

Notre Dame, IN 46556, USA. networks whose vertices are the elements of
*To whom correspondence should be addressed. E-  the system and whose edges represent the

mail: alb@nd.edu interactions between them. For example, liv-

1. Actors

2. Power grid
3. WWW

A. Paccanaro, 2019
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) Y,ior = 23, (B) Yoy = 2.1 a0d (C) v e = 4

From A.L. Barabasi, R. Albert, Science, Vol. 286, 1999

A. Paccanaro, 2019



Independent of the system and
the identity of its constituents,
the probability P(k) that a
vertex in the network interacts
with k other vertices decays as
a power law:

P(k) ~ k7

In the Erdos-Renyi models the

node degrees follow a Poisson
distribution

* most nodes have approximately the same
number of links (~ <k>)

* the tail (high k region) of the degree
distribution P(k) decreases exponentially,
which indicates that nodes that

significantly deviate from the average are
extremely rare
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ER model: the probability of finding a highly
connected vertex (that is, a large k) decreases
exponentially with k; thus, vertices with large
connectivity are practically absent.

Scale Free model: the power-law tail characterizing
P(k) for the networks studied indicates that highly
connected (large k) vertices have a large chance of
occurring, dominating the connectivity.

A. Paccanaro, 2019



Implications for Network reliability

This type of network is extremely robust to random
destruction/malfunction of one of its components

It is extremely vulnerable to well-aimed attacks

A. Paccanaro, 2019



2.

Two mechanisms behind the generation
of random networks

real world networks are formed by the continuous
addition of new vertices to the system, thus the number of

vertices n increases throughout the lifetime of the
network

most real networks exhibit preferential connectivity.

The probability with which a new vertex connects to
the existing vertices is not uniform; there is a higher
probability that it will be linked to a vertex that
already has a large number of connections

A. Paccanaro, 2019



Conclusion

1. A common property of many large networks is that the
vertex connectivity follows a scale-free power-law
distribution.

2. This feature was found to be a consequence of two
generic mechanisms:

— (1) networks expand continuously by the addition
of new vertices, and

— (ii) new vertices attach preferentially to sites that
are already well connected.

- A model based on these two ingredients reproduces
the observed stationary scale-free distributions.

A. Paccanaro, 2019



Zipt's Law

In a natural language, the frequency of any word is

roughly inversely proportional to its rank in the
frequency table

f(n) ~n*

where f is the frequency of occurrence of the n'
ranked item and a is close to 1

A. Paccanaro, 2019



Reading material

Papers from which I took some figures:

d T.J.Watts, S.H Strogatz, Nature, Vol. 393, 440, 1998
[ A.L. Barabasi, R. Albert, Science, Vol. 286, 1999

Other relevant readings:

O Mark Newman, Networks: An Introduction, 2" ed, 2018
d Albert Barabasi, Network Science, 2015

(available to read online http://networksciencebook.com/)

A. Paccanaro, 2019
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PROTEINS

Movie:

https://www.youtube.com/watch?v=X tYrnv o06A

naro, 2019



https://www.youtube.com/watch?v=X_tYrnv_o6A

Amino acids

Proteins made out of
long chains of 20
different types of
aminoacids...

We need to store the
sequence of
aminoacids that make
each protein.

We need a code for

BASIC SIDE CHAINS NONPOLAR SIDE CHAINS
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' 4 3 ' 1 e
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The code

e We need to code for 20 aminoacids
e We have a 4 letter alphabet...

S, 3[
| SUCASC SUY ACC Ay

—Leu—Ser ——Val——Thr—

— Ser Ala Leu Pro—

2]

2882 rE¢
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3 Fundamental Operations

1. Transcription
2. Translation
3. Replication
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The Central Dogma

of Molecular Biology

 There is a single direction of flow of genetic information from DNA,

through RNA into proteins.

e Genes
DNA replication
< )DNA

RNA synthesis
(transcription)

i RNA
5'm3'

protein synthesis
(translation)

| PROTEIN
HzNQ;]-DCQO%:EO-COOH
amino acids

Note that not all genetic information encodes proteins...

From M. Zvelebil, |. Baum,

Understanding
Bioinformatics, GS, 2007

A. Paccanaro, 2019



A fundamental concept:
the Guilt by Association Principle

If unknown gene/protein i behaves similarly to
another gene j, maybe they are involved in the

same/related biological process/pathway/
complex

Biomolecules rarely act in isolation, normally they
work together with other cell components in order to
achieve complex functions.

A. Paccanaro, 2019



Biological Networks

A. Paccanaro, 2019



Let us focus on Human

d ~ 25,000 protein coding genes
J Few thousands metabolites
J Functional RN A molecules...

=>» total of about 100,000 elements

10
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1. Protein-Protein Interaction Networks

Nodes represent proteins
and edges represent a
physical interaction
between two proteins.

Edges are non-directed

From Jeong et al, Nature 2001

® Techniques: Y2H, AP/MS

* Databases: MIPS, BIND, MINT, DIP, Biogrid, HPRD, STRING
e ~ 40,000 known interactions in human

® 96% human protein have 3D inferred structures

11
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2. Co-expression networks

Transcriptomics data:

T T2 e
Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene n

Fully connected network, where nodes are the genes and

the links are weighted by the similarity in gene expression

patterns (rows)

* databases: ArrayExpress, GEO

12
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3. Metabolic networks

Metabolic network maps
attempt to comprehensively
describe all possible
biochemical reactions for a
particular cell or organism

edatabases: KEGG, BIGG
e 2766 metabolites, 3311 reactions

Trehalose UDP-GLU étse‘“z 73 Glycogen‘]a

L GLU-6-P
LR PGMa
5.8 Lpean)
Pentose Phosphate
Glucose %@"GLU-&P—’ Pathway, RNA, DNA,
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[PFKZ| 25
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Glycolysis /
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22
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[ PGK1 |
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[ Eno1 |
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[aoki | [CAokz]
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Isocitrate  Glyoxylate 3-7{

56

13
9.6

[from DeRisi, lyer, and Brown, Science,

278:680-686] 13
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4. Gene Regulatory Networks

Nodes are either proteins or a putative DNA regulatory
element and directed edges represent:

1. Regulatory relationships (the physical binding of transcription factors
to regulatory elements)

e Databases: UniPROBE, JASPAR, TRANSFAC, BCI

2. Post-translational modifications (e.g. kinases and its substrates)
e Databases: PhosphoELM, PhosphoSite, PHOSIDA

1| yoxt | T 1 1 sTEnz|| vaes sPT15 fworec] msnt | rxH2 | roxt [ vwet |[ecmzz [TsTer | sror frerorae| Hori | ez fromozse|maLts |
\\

[msu]w[w]mm[a;r:[wne]mas]m[m[m‘lm| |[ caor | sums | serie | erion | :c';] [aom [ st | a2 | av [ AsFr |

From Horak, Genes & Dev. 2002
14
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5. RNA networks

* They capture the interactions between RNAs and
DNA in regulating gene expression

Nodes represent small non-coding RNAs (miRNAs)
or small interfering RNAs (siRNAs) and DNA
regulatory elements. Links represent regulation.

e Databases:

1. Predicted microRNA targets: TargetScan, PicTar, microRNA,
miRBase, miRDB

2. Experimentally supported targets: TarBase, miRecords

15
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Expression networks

[from Qian, et al, J. Mol. Bio., 314:1053-1066]

Nucleus

16



” Nucleus

Regulatory Expression
networks networks

From Horak, Genes & Dev.; DeRisi, Science; Qian, J. Mol. Bio; Jeong, Nature

17



Interaction
networks

Regulatory Expression
networks networks

v, cvio

1

A

M. 1 avuall

From Horak, Genes & Dev.; DeRisi, Science; Qian, J. Mol. Bio; Jeong, Nature
18
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Interaction
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Regulatory  Expression &
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QUESTION: When I look at Human
biological networks in terms of principles
from network science, what do I see?

20
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Modules: high degree of clustering, implying the

existence of topological modules that represent highly
interlinked local regions in the network.

Degree distribution: the degree distribution P(k) ~ k7

21
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Hubs: few highly connected hubs hold the whole
network together.

In protein interaction networks we have:

= ‘party’ hubs: interact with most of their partners simultaneously-
they function inside modules and coordinate specific cellular
processes

= ‘date’ hubs: bind different partners at different locations and times —
they link together rather different processes and organize the
interactome

In protein interaction networks, hub proteins tend to
be encoded by essential genes, and genes encoding
hubs are older and evolve more slowly than genes
encoding non-hub proteins

22

A. Paccanaro, 2019



Small world phenomena: relatively short paths
between any pair of nodes.

Motifs: Some subgraphs (a group of nodes that link
to each other, forming a small subnetwork within a
network) in biological networks appear more (or
less) frequently than expected

Betweeness centrality: a measure of the number of
shortest paths that go through each node.

Nodes with high betweeness centrality are often
called bottlenecks. In networks with directed edges,

such as regulatory networks, bottlenecks tend to
correlate with essentiality.

23
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Genotype, phenotype & hereditary disease

Human disease cannot be explained by simple genotype-
phenotype relationships

* Many genes linked to the same disease
(e.g. hundreds of genes linked to cancer)

* One gene linked to many diseases

(e.g. genes related to diabetes, obesity and hypertension)

We follow an excellent review: A.L.Barabasi, et al. Nature Review Genetics, 2011

A. Paccanaro, 2019



QUESTION: When I map our current
knowledge of Human disease onto the
Human biological networks, and I analyze it
in terms of principles from network science,
what do I see?

A. Paccanaro, 2019



Principles of Network Medicine

A. Hubs: disease genes tend to avoid hubs and segregate at the
functional periphery of the interactome. In humans essential
genes, not disease genes are encoded in hubs.

B. Local hypothesis: if a gene or molecule is involved in a
disease, its direct interactors might also be suspected to have
some role in the same disease.

=>» Proteins involved in the same disease have an increased tendency
to interact with each other.

A. Paccanaro, 2019



Gene associated with a specific disease
tend to cluster in the same neighbourhood

disease module

A. Paccanaro, 2019



3 modules

1.

‘topological module’: a locally dense
neighbourhood in a network, such that nodes have a
higher tendency to link to nodes within the same
local neighbourhood than to nodes outside it.

‘functional module’: nodes of similar or related
function (~phenotype) in the same network
neighbourhood.

‘disease module’: a group of network components
that together contribute to a cellular function and
disruption of which results in a particular disease
phenotype.

A. Paccanaro, 2019



a Topological module b Functional module € Disease module

() Topologically close @ Functionally similar @) Disease genes ‘Bidirect?onal Directed
genes (or products) genes (or products) (or products) interactions

interactions

From A.L.Barabasi, N.Gulbahce, |.Loscalzo, Nature Review Genetics, Vol. 12 (2011)

These three concepts are interrelated

A. Paccanaro, 2019



Note that...

a disease module may not be identical to, but is
likely to overlap with, the topological and/or
functional modules.

a disease module is defined in relation to a

particular disease and, accordingly, each disease has
its own unique module.

a gene, protein or metabolite can be implicated in
several disease modules, which means that different
disease modules can overlap.

A. Paccanaro, 2019



C. Corollary of the local hypothesis: Mutations in
interacting proteins often lead to similar disease
phenotypes.

D. Shared components hypothesis: Diseases that share
disease-associated cellular components (genes,
proteins, metabolites or microRNAs) show phenotypic
similarity and comorbidity.

A. Paccanaro, 2019



In other words, Network Medicine...

Network medicine: a network-based approach to human disease
Barabasi et al., Nature Review Genetics, 2011

Cellular components exerts their functions through
interactions with other cellular components

This interconnectivity means that the impact of the
abnormality in a gene is not limited to that gene. The
etfects of this abnormality will be propagated to other
elements in the networks which do not have
abnormalities.

A. Paccanaro, 2019

An understanding of a gene’s network context is

essential in determining the phenotypic impact of defects
that atfect it.

10



1.

What applications have these
ideas had so far?

Methods for disease gene prediction

2. The human diseasome

3.

Implications for Network pharmacology

11
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1. Methods for Disease Gene Prediction

Genes in the neighbourhood of known disease
genes for a given disease, are likely to be disease
genes (for that disease)

1. Direct Linkage methods: predict genes that are direct
interactors of known disease genes

2. Diffusion based methods: predict genes «highly

connected» to known disease disease genes (more on
this later)

3. Disease module-based methods: start by identifying
the disease modules, and inspect their members as
potential disease genes.

12
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2. The human diseasomes

At the molecular level, it is difficult to consider diseases as being
consistently independent of one another.

Different disease modules can overlap.

Diseasome: disease maps whose nodes are diseases and whose
links represent various molecular relationships between the
disease-associated cellular components.

13
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Why is this important...

To understand how different phenotypes, often
addressed by different medical subdisciplines, are
linked at the molecular level

To understand why certain groups of diseases arise
together (comorbidity)

To aid drug discovery, in particular when it comes

to the use of approved drugs to treat molecularly
linked diseases.

14
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1. The Human Disease =~ . ® @4 ¢ Goh et al, PNAS (2007)

Network (HDN) Do @ <
® ® L -@ '. .... . @ @ ®
. \0 O

@ ® e
: .. @' .@.l' @ o
@ %

@ Bone

@ Cancer

@ Cardiovascular
@ Connective tissue
@ Dermatological
@ Developmental
O Ear, Nose, Throat
() Endocrine

O Gastrointestinal
@ Hematological
O Immunological
@ Metabolic

@ Muscular

@ Neurological

@ Nutritional

@ Ophthamological
@ Psychiatric

@ Renal

© Respiratory

@ Skeletal

@ multiple

O Unclassified

* each node corresponds to a distinct disorder
* size of each node is proportional to the number of genes participating in the corresponding disorder
* the link thickness is proportional to the number of genes shared by the disorders it connects. 15



2. Phenotypic disease networks (PDN)

Phenotypic disease networks are diseasomes which
are generated by analyzing disease phenotypes.

Clearly, these are important when the phenotype is
used to create links which correspond to real
relationships at the level of molecular network (we
will see an example of this later)

16
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3. Network pharmacology

reduce the search for therapeutic agents to those that induce
detectable changes in disease module activity.

A drug might have more than one binding partner such that
its etficacy is determined by its multiple interactions, leading
to unwanted side effects

therapies that involve multiple targets, which may be more
effective than are single drugs — drug cocktails

Open question: can one systematically identify multiple drug
targets that have an optimal impact on the disease
phenotype?

17
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Network Medicine: Disease as perturbations
of molecular networks

Protein-protein interaction networks

Genes associated with a specific disease
tend to cluster in the same neighbourhood —
the disease module

The disease modules of diseases that are
phenotypically similar tend to be located in
closeby regions of the interactome.

© A. Paccanaro, 2019



Question

l

Define a “distance” between diseases using the disease phenotypes
such that
it 1s related to the distance between disease modules

© A. Paccanaro, 2019



The problem

Phenotype

calculate a distance here
which is...

Genotype

...related to a distance here

© A. Paccanaro, 2019



Outline of the method

[Caniza, Romero, Paccanaro, Nature Scientific Reports, 2015]

STEP 1: Translate a genetic disease into a set of MeSH terms

MESH
terms

scientific
OMIM papers
disease

l

© A. Paccanaro, 2019
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STEP 2: quantify a distance between two sets of terms on an
ontology

Luckily © , we had developed a measure for that !
(Yang et al, Bioinformatics, 2012; Caniza et al, Bioinformatics, 2014)

© A. Paccanaro, 2019



Semantic Similarity on the Gene Ontology
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Problem: evaluate the similarity between genes (or group of genes) in terms of
their functional assignments

Methods use the Information Content of the Lowest Common Ancestor
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STEP 2: quantify a distance between two sets of terms on an
ontology

: Q/Cj:l\Q )]
Does our distance reflects the distance between
disease modules ?

¥ .

Luckily © , we had developed a measure for that !

(Yang et al, Bioinformatics, 2012; Caniza et al, Bioinformatics, 2014) 10
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1. Evaluation as a prediction problem

A. Diseases related by physical interactions (PPI) of diseases proteins

(Di,D;) ~1
iff 3 aeD; and BeD;
s.t. a interacts with 8

Our similarity measure

D, | D, 0 D, |D, |0.783
D, | D; 1 D, |D, |1233
D; |D, 1 D; |D, |1.056

B. Diseases related by sequence similarity of disease proteins

C. Diseases related by evolutionary relatedness of disease proteins (Pfam)

D. Coverage (% of OMIM diseases)

© A. Paccanaro, 2019



Results of AUC analysis

-Coverage
- Pfam
Robinson o -
0.52 |:|Sequence Similarity
0.73 N
Our method 0.74 0.74 ]
| | |
0 05 1 1.5 2 2.5 3 3.5

Performance

Robinson : builds and ad-hoc diseases ontology (Human Phenotype Ontology) and then
calculates a distance on it (Kshler et al, NAR, 2013)

Park : similarity between two diseases is determined by an association score based on the
cellular co-localisation of their disease proteins (Park et al, Mol. Sys. Bio. 2011)

12
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2. Embedding diseases in low dimensional space

© A. Paccanaro, 2019

Goh et al, PNAS (2007)
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Embedding diseases in 3D using {-SNE

100

[van der Maaten, Hinton, JMLR, 2008]

N
80\
60
N
40
N
20
N
o |
N
0,.
-20\
-40_ |
N
-60 (o)}
\ =
-80 ° N,
N o = e @]
v ~e % o ege” et ® o ChBDIOVASEUAR G
L4 b«
-100 | ’oC.‘ . o5 :‘-. S ° ‘ﬁ.f °.* e DERMATOLOGICAL c
AT oY o Le2° : DEVELOPMENTAL c
100 o2 o ° %o MIM:308240 HEMATOLOGICAL O
o oq *  IMMUNOLOGICAL O
= METABOLIC ©
® NEUROLOGICAL o
®  OPHTHAMOLOGICAL
SKELETAL <
— < ~N .80 -100
20 40 -60

/K’_’_—\—_’_K 40 . 20 0

80 60

MIM:180550 - Ring Dermoid of Cornea — cancer/dermatological/ophthalmological

MIM:609528 - Cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma syndrome — neurol./dermatol.

MIM:308240 - Lymphoproliferative syndrome — cancer/immunological

14



Landis — the Landscape of Disease Similarities
http://www.paccanarolab.org/landis
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Disease gene prediction

— Charted diseases: some disease genes are known
— Uncharted diseases: no known disease genes

Disease gene prediction for charted diseases: search in a neighbourhood
of known disease genes

Can we use our disease similarity measure for
predicting disease genes for uncharted diseases ?

Charted
diseases
(5971)

Data from Online Mendelian
Inheritance in Man (OMIM),
Sept 2018

A. Paccanaro, 2019



Predicting genes for uncharted
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A new disease gene prediction algorithm

soft labels + diffusion
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1. Calculate the similarity between our
uncharted disease and each charted disease

A. Paccanaro, 2019

2. Place known genes in the interactome.
3. Learn a similarity-to-label mapping

4. Assign a “soft” label to the disease genes
5. Diffuse the soft labels



Diffusing soft labels (semi-supervised learning)

Eor a given disease. the SOft Interacting nodes Preserve initial
label is related t ﬂ’,l have similar labels labelling

aoel i1s r.e‘ae 0 trie F*=argminQ(F) T T
probability for that gene F
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that disease. Q) = 5 Zl sz |) tu,
L]= i=

F assignment vector

(Zhou et al, NIPS 2004,
Y known labels P , .
38 W PPI matrix Consistency” method)

D degree matrix of W

1
=——,u>0
¢ 1+u“

[@))
F*= (1 -a)(I - aD"Y2WD~1/2)"y3
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Testing Setup

Disease categories

Uncharted diseases

Currently there are no known
disease genes

Charted diseases

Some disease genes are know

Experiment types

Prospective evaluations

Using information from 2013,

predict new disease genes known
in 2018

Leave-one-out

Using data from 2018, a single
association is removed and is
predicted back

A. Paccanaro, 2019



Target found (%)

Performance — uncharted diseases

Prospective evaluations
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Performance — charted diseases

Prospective evaluations Leave-one-out
50 70
I Cardigan I Cardigan
I DIAMOND go N DIAMOND
40 BN Prodigel I Prodigel
I Prodige4 50 I Prodige4
) B Prince —_ I Prince
< 39 B Random S I8 Random
= T 40
c c
3 o |
L 2
S 20 g%
[ [
- -
20
10
0 0 l
Top1 Top 10 Top 100 Top 200 Top1l Top 10 Top 100 Top 200

Predictions retrieved Predictions retrieved

DIAMOND -- Ghiassian, Menche, Barabasi, PLoS Comp Bio 2015
Prodigel,4 -- Mordelet, Vert, BMC Bioinformatics, 2011

Prince -- Vanunu, Magger, Ruppin, Shlomi, Sharan, PLoS Comp Bio 2010



Prospective evaluation -- Examples

Familial Retinal Zenten |. et al. , Graefe's
Arteriolar Tortuosity Uncharted COL4Al 5 Arch. Clin. Exp
(MIM:180000) Ophthalmology 252, 2014

Ablepharon- Marchegiani et al.,
macrostomia syndrome Uncharted TWIST2 10 American J. of Human
(MIM:200110) Genetics 97, 2015

Fetal Akinesia Tan-Sindhunata et al. ,
Deformation Sequence Charted MUSK 1 Eur. ]. Human Genetics
(MIM:208150) 23,2015

Schimmelpenning- Lim et al., Human
Feuerstein-Mims Charted NRAS 1 molecular genetics 23,
syndrome (MIM:163200) 2014

A. Paccanaro, 2019



Conclusions

v’ A distance between disease modules on the
interactome which uses exclusively disease
phenotype information.

v' How diffusion methods + our disease similarity
measure can be used to infer disease genes for
uncharted diseases.

v These methods can provide explanations

10
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What is the goal of a RecSys?

Predicting relevant items to users (e.g. movies)

As in Netflix, to predict the rating value 1,2,3,4, or 5 for each movie.

***** | LOVEDIT
***** | LIKED IT
e Fe Fe Ve o
** %ﬁ% | DIDN'T LIKE IT
*ﬁ *ﬁ* | HATEDIT

A. Paccanaro, 2019



Brief History: The Netflix Prize

e Year: 2006

 Competition for the best collaborative filtering algorithm

e Data: 480,189 users x 17,770 movies with 100,480,507
ratings (~ 1.7% density).

e Prize: US$1,000,000

Over 40,000 teams registered
from 186 countries
Growing interest in the field

Robert Bell, Yehuda Koren
Pragmatic Chaos

A. Paccanaro, 2019



Growing interest in RecSys
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Content-based Filtering

e Assumption/Scenario: we do not have access to
other users ratings.

e Profiles for users and movies

— Movie: genre, actors, box office popularity, plot, etc.
— Users: demographic information, age, sex, etc.

* Example:

— John liked Terminator.

— Terminator has similar genre keywords as Alien and Predator.

— Recommend Alien and Predators to John.

Aggarwal, Charu C. Recommender systems. Cham: Springer International Publishing, 2016.

A. Paccanaro, 2019



Content-based Filtering

similarI

recommend

https://medium.com/building-ibotta/ibottas-recommender-system-7a4034773bf{9
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The rest of this lecture
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Collaborative Filtering

Past users behaviour is available — e.g. previous ratings
— without requiring the creation of explicit profiles

A. Paccanaro, 2019



How Collaborative Filtering is
different from classification?

A F Y
TRAINING
ROWS
NO
DEMARCATION
BETWEEN
TRAINING AND
TEST ROWS
TEST
ROWS
v v
< > < =3
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES
(a) Classification (b) Collaborative filtering
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Neighbourhood-based models

User-based: deliver recommendation by finding
similar users

Item-based: deliver recommendations by finding
similar items (movies)

From Koren,
Bell,Volinsky, Computer
(2009): 30-37.

11
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How do we define similarities?

e Pearson correlation

Zkefur‘]j’u (Tfu-k = ,Uuu,) " (Tuk — PLL-)
\/Zkei‘umy (Tuk — tha)? - \/EF;GIHHL. (P — B )*

e (osine similarity

Zkefur‘ifv Tuk * Tvk

2 2
\/Zkefuﬂj}, Tk * \/zkefumy ok

u, v.:two given users.

R = |r,;] matrix of n X m containing ratings for n users and m movies
I, I;: set of movies indices rated by user u and v, respectively.

Wy, tyy: Mean rating for user u and v, respectively.

P, (j): set of k closest users to target user u.

12
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Strengths and weaknesses

e Strengths:
— Simple and intuitive
— Interpretable

e Weakness:

— Impractical in large-scale settings

— Computationally expensive: need to compute all pairwise
similarities between users or items

13
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The rest of this lecture
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Latent Factor Models

Goal: to find “hidden” factors in the user-movie
rating matrix that explains user preferences.

These factors can be thought of as modelling movie
genres and user preferences, e.g. thriller, sci-fi, etc.

15
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Latent Factor (matrix decomposition) models -

the idea

Movies (Q)
_[1]o]o]o]2]o ] o Mo Matrix decomposition models are
=+ HEEH - BEBE useful for very sparse datasets with
o |0 o olofo]1]o[ o potential latent features
o @ ofolo[ofo]1]o]0
0
> [o|o o] o]2]0]0]o0

Movies
~y
)i,j ~ Di 'qj

k latent

YnXm ~ Ppxk - Qkxm features
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Matrix decomposition

User u: low-dimensional feature vector g, € R.
Movie j: low-dimensional feature vector p; € Rk,

Rating prediction:  #,; = q, ' p;

These are learned by minimising;:
min > ,—q/p) + MlgP + [Ip,I»

It can be solved by stochastic gradient descent:

qi < qi+7Y-(€ui- pu—A-qi) def
Pu ¢ pu+7Y-(eui-qi—A- pu) € = Ty~ q; Py

17
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Matrix decomposition

e Matrix form:

R € R™™ : ratings of n users and m movies
P € R™: users latent factors (each row is a user).

Q € R*¥*™: movies latent factors (each column is a movie).
(): set of observed entries in R.

Model R

12

PQ

Learned by minimising the cost function:

min{(P,Q) = 12 e (R = PO+ (171l + 10}

Fits model Regularization to
to observed entries prevent overfitting

18
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Non-negative matrix decomposition
(NMF)

e Additional non-negative
constraint: P,Q = 0.

e Why NMF is interesting?
— Model interpretability
— Efficient Multiplicative algorithm

Original

NMF
1 | | ] 1
k= L
Y
e e -
7 i ¢ 5 bl T
P e {r
= demoi TN
L s i B
= o o o e el e s
i e
et S DU T SR L R
el ] ek

From Lee, Daniel D., and H. Sebastian Seung. "Learning the parts of objects by non-negative matrix
factorization." Nature 401.6755 (1999): 788.
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Modelling users and item biases

There are users who tend to rate always high (above
mean rating) or low (below mean rating).

r. = U+ bi+bu+quu

Lt

p: mean rating of all users.
b;: bias of item i
b,: bias of user u

We need to learn
also b; and b,!

Learned by minimising the cost:

min r —u—b —b.—pTg) + A
pe.g-b- {u.!z]:ﬂ:( ut !'l' u i pu qa)

Ulp, [P + 1 g 1> + b2 + b2

20
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Implicit Feedback

Implicit feedback: additional information about
users, e.g. which movies were clicked (plots read).

These additional information can be integrated into
the model.

22
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Drugs side effects

A drug-side effect association in humans can be:

Very rare: <0.01%

Rare: <0.1%

Infrequent: <1%

Frequent: <10%

Very frequent: >10%
Placebo-controlled study Obse'rvatio.nal study
One disease Multiple diseases
Limited size Multiple medications

Clinical Trials | Post-marketing Surveillance

Phase I-111 * Systems
: (FAERS-FDA)

I
" FDA-approved (In-market)

(Premarketing)
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Question /

Can we predict the frequency of drug side effects ?

Few methods exists which are aimed at predicting the presence/absence of
side effects. These exploit molecular or cellular features.

A. Paccanaro, 2019



The data

996 side effect terms Very rare = 1
Rare = 2

28 1 ¢ L Infrequent = 3
> WM 0|0 0|01 Frequent = 4
g n 0 0 0 0 Very Frequent = 5
N~

s IEIE 100

ONNIN 4 N 0/]0|0

density ~ 5% (sparse)

The Side Effect Resource (SIDER) 4.1 [Khun et al., 2015]
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Let’s look at the data...
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How do we predict (recommend) movies?

Movies (Q)

0{0[2]|0

N
0

(r)
Iika

o

0
0
0

(
0
0
0
1
0

o
O|lo0o|j]O0|O|O
o
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(0]
(0]
N | O | O

DS E

O OoO|O|=—= | O

Y,; ~ pi - q;

Ynxm ~ Ipxk - Qkxm

Matrix decomposition models are
useful for very sparse datasets with
potential latent features

Movies

k latent
features
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Our idea: recommending side effects to drugs

996 side effect terms .
olol2lo Om Side effects

0 On 0|0
0|0
0|0 O.

0 0

760 drugs

9]

o
OO0l |O|O
o
N[O | O
O | O |0 |Kr

0
110
0

)21X7n

Very rare =1
Rare = 2
Infrequent = 3
Frequent = 4
Very Frequent = 5 Drugs

Paccanaro, 2019

latent
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representations
~ nl . n. (drug signatures)
Yi i~ Pi - q J 8918

2

Ynxm ank ) Qkxm



Learning the latent representations

min J(P,Q) = 1Y = PQ IZ +5 (1P IZ+1 Q I?)

Low-rank representation Regularization to
of the data prevent overfitting

SUbjeCt to: Pi,j = 0, Qi,j > ()
In order to increase interpretability

We learn this with a multiplicative rule (similar to NMF)
or with Conjugate Gradient Descent + projections

... it does not work ®

A. Paccanaro, 2019



Our new cost function

1
mn JW,H =35 > = WH) ) 45 ) (WH),)

Yi,jE{1,2,3,4,5} Yi,j= 0

Fits unobserved associations

Fits clinical trials with confidence dpyy

frequency data

Y,xm of n drugs and m side effects
Whxk: drug signatures

Hy xm: side effect signatures
0<ac<l

We are confident on clinical trials data (values 1-5) but only a-confident on the
unobserved associations (0s)

Our model uses the large amount of zeros as a regularization
- Small a allows the weights in W and H to grow
- Large a keeps the weights in W and H small and induces sparsity.

A. Paccanaro, 2019



Multiplicative Learning algorithm

Our cost function converges to a local optimum using the
update rules (satisfy the Karush-Kuhn-Tucker conditions):

W W

H<H

Po(Y)HT

) (Po(WH) + a P5(WH))HT

Pg': selection function for entries {0}
wT P, (Y) o is the Hadamard product

’ WT(Po(WH) + @ P5(WH))

Multiplicative learning rule — no learning rate, no projection

function

Inspired by non-negative matrix factorization (NMF) [Lee, Seung, Nature, 1999]

Pq: selection function for entries {1,2,3,4,5}

A. Paccanaro, 2019



Hold-out clinical trials data

Prospective evaluation

ks ke

soskok

dkk

I

ns. P>0.93

1 T T T T T
very frequent
0.5r -1
0

3 4

5 6

i
- frequent
0.5r &
0 1 2 3 4 5 6
1 T T
0.5 infrequent
0 1 I} |
0 1 3 4 S 6
1 T
rare
0.5F
0 1 1 1 L 1
0 1 2 3 4 5 6
1 T
very rare
0.5 y
-
0 1 | 1
0 1 2 8 - 5 6
1 ‘ .
postmarketing
—  0.5F -
0 1 WWW_W
0 1 2 3 4 S 6

predicted scores

Prediction on
Test Set

Higher predicted values
correspond to higher
side effect frequencies

No significant differences
between the predicted scores for
the very rare side effects and the
post-marketing side effects
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Examples

Gabapentin
(anticonvulsant drug )

otitis externa iritis

very frequent

skin odour abnormal bursitis

euphoric mood respiratory failure

hallucination amnesia

. vomiting
body temperature increased

hyperhidrosis seborrhoeic dermatitis

Arrhythmia
(cardiovascular side effect)

hyoscyamine zolpidem

very frequent imeterol
salmeterol

vandetanib & fluticasone

infrequent

mvery rare

pregabalin salmeterol

5
afo, 2019

venlafaxine

toremifene anagrelide

A. Paccan

fludarabine remifentanil

12



Percentage of accuracy at predicting the
frequency class of drug side effects

Predicted Class

ZETos

very rare 8.065 2.419
0
g
rare 2.398 0.7194

—
O
Q infrequent
a |
[l
B

frequent

4.567 = 11.06

very frequent

:senﬁﬁvﬁyof097
. specificity of 0.57

50

145

140

135

130

Accuracy (%)

Very rare:
Rare:
Infrequent:
Frequent:
Very frequent:

<0.01%
<0.1%
<1l%
<10%
>10%
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Question: can we “explain” how the
prediction works ?

A. Paccanaro, 2019



Predictions can be explained in terms
of the latent features

Example: Atorvastatin is known to cause frequent respiratory and thoracic-
related side effects

side effects

k latent
features

atorvastatin

upper respiratory tract infection | nausca

nasopharyngitis headache

influenza vomiting

sinusitis diarrhoea

pharyngitis dermatitis upper respiratory tract infection (4.45)
bronchitis rash - . headache (4.40)

urinary tract infection :-1hdomlmal pam nasopharyngitis (4.20)

rhinitis gastrointestinal pain

cough (4.04)

! diarrhoea (4.01)

i musculoskeletal discomfort (3.90)
| abdominal pain (3.86)

U

personality disorder

neurosis

tenosynovitis

muscle contractions involuntary
tongue disorder

application site pain
application site erythema
erythema

application site pruritus
skin exfoliation

application site burn hostility )
eve irritation hyporeflexia
>ye irritation

hernia

15
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Question: do the latent representations tell us
something about the biology of the problem?

A. Paccanaro, 2019



N E

Drug signature are related to
clinical activity of the drug

Hierarchical
categorization of
drugs according to
ATC (from WHO):

Anatomical
Therapeutic
Pharmacological
Chemical

Anatomical class

Alimentary tract and metabolism (A) . [ 0.46
Blood and blood forming organs (B) 0.44
Cardiovascular system (C) .
Dermatologicals (D) 0.42
Genito urinary system and sex hormones (G) 0.4
Systemic hormonal preparations, insulins (H)
Antiinfectives for systemic use (1)

Respiratory system (R)

0.3

Sensory organs (S)

Various (V) 0.28

17
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Drug signature similarity predicts
drug clinical activity

B Anatomical class

Hierarchical
categorization of

drugs according to

W=

ATC (from WHO):

Anatomical
Therapeutic
Pharmacological
Chemical

B Therapeutic subclass

B lharmacological subclass B Chemical subclass

08 r

aT7s

=
o

065

Area Under the ROC Curve { AUROC)

=
L)
o

0.5

Drug ATC Levels

Predicting if 2 drugs share the
same category using the drug
signature similarity.

18
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Side-effect signatures are
related to phenotypes

Medical Dictionary for Regulatory Activities (MedDRA)
classification of side effects

1. System Organ class (anatomy and physiology)
2. High level group term
3. High level term

0.7r
Hepatobiliary (Hepa) 1048
Metabolism and nutrition (Meta) 0.68- =§?;;E$\Z';gggsr?se$ﬂ(i{m)
Eye (Eye) [_IHigh Level Term (HLT)
Investigations (Inv) L | 5 0.66-
Musculoskeletal and connective tissue (Musc) F 5 0.4
Gastroinstestinal (Gastro) %
Inmune system (Inmu) E 0.64r
Reproductive system and breast (Repro)
Meoplasm benign, malignant (Neop)
Seneral disorders and administration site conditions (Gen) 0.35 %)
Endocrine (Endo) 8
Vascular (Vasc) |- 2
Blood and lymphatic systems (Blood)
Skin and subcutaneous tissue (Skin)
Infections and infestations (Infec) 0-3
Respiratory, thoracic and mediastinal (Resp)
Psychiatric (Psych)
Renal and urinary (Renal)
Ear and labyrinth (Ear) 0.25
Cardiac (Carc)
Nervous system (Nerv)
Injury, poisoning and procedural complications {Inj)

A. Paccanaro, 2019
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Side effect signatures

Drug signatures

Hepatobiliary disorders
Metabolism and nutrition disorders
Eye disorders
Investigations
Musculoskeletal and connective tissue disorders
Gastrointestinal disorders
Social circumstances
Immune system disorders
Reproductive system and breast disorders
Neoplasms benign, malignant and unspecified (incl cysts and polyps)
General disorders and administration site conditions
Endocrine disorders
Surgical and medical procedures
Vascular disorders
Blood and lymphatic system disorders
Skin and subcutaneous tissue disorders
Congenital, familial and genetic disorders
Infections and infestations
Respiratory, thoracic and mediastinal disorders
Psychiatric disorders
Renal and urinary disorders
Pregnancy, puerperium and perinatal conditions
Ear and labyrinth disorders
Cardiac disorders
Nervous system disorders
Injury, poisoning and procedural complications

A:Alimentary tract and metabolism
B:Blood and blood forming organs
C:Cardiovascular system
D:Dermatologicals
G:Genito-urinary system and sex hormones
H:Systemic hormonal preparations, excluding sex hormones and insulins
J:Antiinfectives for systemic use
L:Antineoplastic and immunomodulating agents
M:Musculo-skeletal system
N:Nervous system
P:Antiparasitic products, insecticides and repellents
R:Respiratory system
S:Sensory organs
V:Various

1

1

[-]
(¢} O
(6]
o
O [5)
® °
o Q
O o - ®

o) O

2 3 4 6 6/ 7 8 9 10

2 3 4 5 6 7 8 9 10

-log(p)

00000 e

N W R OO N @

Interpreting
the signatures

100%
80%
60%
40%
20%
0%
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Question: can we exploit the latent
representations for predictions in pharmacology?

A. Paccanaro, 2019



Drug latent representations predict shared targets

1.0 P < 2.85x10%%

0.4

0.6

0.4

Drug signature similarity

0.2

0.0
Unknown to share Known to share
molecular targets molecular targets

There is a significant difference in the
cosine similarity between drug
signatures for pairs that share
targets

0.9

0.8

0.7
e
© 0.6
2
= 05
(72}
8
1)} 04 i
=
" 03 .

e [Drug signature similarity
0.2 = Side effect similarity
it s Chemical similarity
0 1 L 1 L
0 0.2 0.4 0.6 0.8 1

False positive rate

Prediction of whether 2 drugs share

molecular targets using similarity
between drug signatures

22

A. Paccanaro, 2019



Conclusions

A method for predicting the frequency of side-
effects in the population.

It tells us something about the biology of the
problem

It can be used for directing clinical trials.

It can provide explanations

23
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Reading Material

D. Galeano, A. Paccanaro (2019)
BioRxiv 594465, doi: 10.1101/594465

24
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What is clustering ?

Clustering is grouping things that “go together”

A. Paccanaro, 2019
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Two questions need to be answered

1. What do | want to get out of my clustering
— Objects in an image
— Genes with the same function
— Homologous proteins

2. What is that | can measure in the data (which | hope can
answer 1.)

— Difference in colour between pixels
— Correlation in gene expression data
— Sequence distance

A. Paccanaro, 2019



Clustering Methods

“Statistical” clustering methods: assume a probabilistic
model that generates the observed data points

“Pairwise” clustering methods: define a similarity
function between pairs of points (distance) and then
formulates an optimality criterion that the clustering
must optimize.

(the optimality criteria quantify the intuitive notion that points in the
same cluster are similar while points in different clusters are dissimilar)

A. Paccanaro, 2019



Clustering as “segmenting” a graph

Pairwise distances between the datapoints as

representing the adjacency matrix of a fully connected
graph, where:

* nodes are datapoints
* the links are weighted by the distances

clustering = finding areas in
the graph which are more
“tightly” connected

A. Paccanaro, 2019



Which algorithms we will look at

K-means clustering

Hierarchical clustering
e Single linkage
e Complete linkage
e Average linkage

Connected Components Analysis
ClusterONE

Spectral clustering

A. Paccanaro, 2019



Which algorithms we will look at

s+ Completetinkage
s+ Averggelinkage

3. Connected Components Analysis

4. ClusterONE

5. Spectral clustering

A. Paccanaro, 2019



Connected Component Analysis

@ t=0.5

A

A. Paccanaro, 2019



The CCA algorithm

Think of the problem in terms of a graph where:

— The graph is fully connected
— Each datapoint in your problem is a node
— Links are labelled with the distance between the datapoints

—

Select a threshold t

Erase every link in the graph whose label is greater
than t

The clusters are the parts of the graph which are still
connected

A. Paccanaro, 2019



Which algorithms we will look at

4. ClusterONE

5. Spectral clustering

A. Paccanaro, 2019



ClusterONE - Clustering with Overlapping
Neighborhood Expansion

The material in the following slides is taken from:
T. Nepusz, H. Yu, A. Paccanaro,
Nature Methods, 2012

e Main features:

— Can take into account network weights
— Creates overlapping clusters

— Extremely fast — it can be applied to large scale networks

e |Implementation available from the lab website:
www.paccanarolab.org/cluster-one

A. Paccanaro, 2019

e Current release uses multiple CPU cores and can now scale up to graphs
containing millions of vertices and edges (has been used on 9 million

nodes and nearly 100 million edges on a server containing 80 CPU cores
and 96 GB of memory).




We developed it for detecting protein complexes from protein
interaction networks. It has now become the state-of-the-art method for
this problem.

Other research groups have successfully applied ClusterONE and proved
its usefulness in several different domains:

— Clustering a genome-scale network obtained by integrating SNP array,
gene expression microarray, array-CGH, CGH, GWAS and gene
mutation data. This study was aimed at identifying key functional
modules in lung adenocarcinoma.

— Associating drugs with protein domains in the context of myocardial
infarction.

Studying the mechanisms of adverse side effects of Torcetrapib, a drug
being developed to treat hypercholesterolemia (elevated cholesterol

levels) and prevent cardiovascular disease (its development was halted
in 2006).

Detecting communities in Social Networks.

A. Paccanaro, 2019



Human soluble protein complexes

[Havugimana et al, Cell, 2012]

Experimental data

HeLa soluble protein extracts
Fractionated with different techniques
Coeluting proteins identified by MS

A. Emili lab, Un. of Toronto Preliminary PPI network

0.02 O
Qoo / 00 090 " 080
oc0 . Qo80 o o
o 0.70 0.90 0.85
080 O s

GO

Functional genomics data s.em.ant.lc
E. Marcotte lab similarity
Un. Texas, Austin . .
De-noising

(diffusion)

A. Paccanaro, 2019

Finding the
complexes
(ClusterONE)




The problem

Cluster a large graph
Edges are undirected
Edges are weighted

Nodes can appear in more than one
cluster — overlapping clustering

A. Paccanaro, 2019



The ClusterONE algorithm — 3 phases

1. Cluster Growth: Cluster candidates are grown from
selected seed nodes, independently of each other.

Growth is driven by the greedy maximisation of a goal
function.

2. Cluster Merging: Highly similar cluster candidates are
merged into larger clusters.

3. Cluster post-processing: Cluster candidates are finally
post-processed using several simple criteria (size,
density, etc.)

A. Paccanaro, 2019



Step 1. Cluster Growth

A cluster should satisfy two structural properties:
a. contain many reliable interactions between its nodes
b. be well-separated from the rest of the network

Cohesiveness:

total weight of internal edges,
divided by the total weight of
internal or boundary edges.

Cohesiveness measures how likely it is for a group of nodes to form a
cluster

A. Paccanaro, 2019



The cohesiveness function

wi (V) + wbound vy 4 p|V|

fi¥)=

e w,(V)the total weight of edges contained entirely by a
cluster V

*  Ww,,,.4(V)the total weight of edges that connect the
cluster with the rest of the network.

e p|V|isa penalty term

A. Paccanaro, 2019



Details of cluster growth

v, =node with the highest degree among those
that have not been included in any complex so far.

Greedy growth procedure :

1.

AR

Let V= {v,}. Set the step number ¢ = 0.
Calculate the cohesiveness of V,and let V,,; =V, .

For every external vertex v on a boundary edge, V' =V, U {v}. If (V") >f(V,,1), thenV,;=V".

If V,# V,,, increase t and return to step 2.
Otherwise, declare V,a locally optimal cohesive group.

For every internal vertex v on a boundary edge, V' =V, \ {v}. If AV"") > f(V,,;), thenV,, =V"".

A. Paccanaro, 2019



Step 2. Cluster Merging

We merge pairs of putative clusters whose overlap score w is
greater than a given threshold.

The overlap score of two putative clusters A and B is defined
as:

|A N B|?
|A| |B|

w(4,B) =

A. Paccanaro, 2019



Step 3. Cluster Postprocessing

Clusters are further analyzed and selected according to:
1. Size

2. Density

3. Other user parameters (e.g., in the case of protein
clusters, functional enrichment)

In our implementation for detecting protein complexes, we
discard complex candidates that:

a. contain less than 3 proteins

b. whose density 6 =2E,/n(n-1) < z,, where n is the

number of proteins and E, the total weight of internal
edges.

A. Paccanaro, 2019



Evaluation

Comparison with a gold standard is difficult:

L matches are often only partial
O many-to-one and one-to-many matches
O gold standard is incomplete

Measures wrt gold standard:

1. the Maximum Matching Ratio (MMR)

2. clustering-wise sensitivity (Sn), positive predicted value (PPV)
and geometric accuracy Acc = +Snx PPV (Brohee, BMC Bioinf. 2006)

3. number of matched complexes with w >0.25

A. Paccanaro, 2019



The Maximum Matching Ratio (MMR)

Reference set

Predicted set

1. bipartite graph (reference and predicted complexes sets)
2. select the maximum weighted (overlap score) bipartite matching

total weight of selected edges
number of reference complexes

MMR =

A. Paccanaro, 2019



Results using ClusterONE

PPI datasets for benchmarking
1. Gavin 1430 proteins, 6531 interactions. Large-scale AP-MS
experimental data on yeast.

2. Krogan core 2708 proteins, 7123 interactions. Large-scale AP-MS
experimental data on yeast.

3. Krogan extd 3672 proteins, 14137 interactions. Same as Krogan core,
different threshold.

4. Collins 1622 proteins, 9074 interactions. Combined Gavin and
Krogan.

Data sources:

Gavin et al: Proteome survey reveals modularity of the yeast cell machinery.
Nature 440(7084):631-636.

Krogan et al: Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae. Nature 440(7084):637-643.

Collins et al: Toward a comprehensive atlas of the physical interactome of
Saccharomyces cerevisiae. Mol Cell Prot 6:439-450.

A. Paccanaro, 2019



Competing algorithms

Affinity Propagation - Frey et al, Science (2007)
MCL - Enright et al, NAR (2002)

Non-
overlapping

. RNSC —King et al, Bioinformatics (2004)
CFinder —Palla et al, Nature (2005)
CMC - Liu et al, Bioinformatics (2009)

Overlapping
RRW - Macropol et al, Bioinformatics (2009)

MCODE - Bader et al, Bioinformatics (2003)

The parameters for all the above algorithms were optimized
ClusterONE run was with the default parameters

A. Paccanaro, 2019



Results wrt the MIPS gold standard

[CJRNSC JAP EEMCL E=IMCODE I CFinder EEEICMC BB RRW [ ClusterONE

I Fraction of matched complexes

1.8

= Maximum matching ratio

I Accuracy
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The RSC and SW1/SNF chromatin remodelling complexes

[Collins dataset]

ClusterONE

.CFinder

. RSC only .SWI/SNF only O Both complexes O Not in complexes




Which algorithms we will look at

5. Spectral clustering

A. Paccanaro, 2019



Spectral Clustering
the basic idea

The material in the following slides is taken from:
A. Paccanaro, J. A. Casbon, and M. A. Saqi
Nucleic Acids Research, vol. 34, 2006

Eigenvalues and eigenvectors of a matrix
derived from affinities provide a basis for
deciding on a particular segmentation

A. Paccanaro, 2019



Spectral Clustering
the Markov chain perspective

Pg initial distribution of a particle.
The probability distribution at the

next time step 1s:

p1=M - pg

where: M = S}

2019

is the Markov transition probabilit
matrix

21

A. Paccan

The probability distribution after B iterations is:

ps=M -ppg_y=M: (M- -pp_g)=... :- Po

Therefore, to see what happens to the particle during the
random walk, we need to analyze MP



e For analysis, consider the similar matrix L.

v

L € p-l2pple

D_1/2SD_1D1/2
D—l/2SD—1/2

= [ symmetric = L=UAU"1 =UAU?T
where U = [uq,uy,---,up] €igenvectors, A diag-
onal matrix of eigenvalues

e We can write M as:

M — DI/QLD—I/Z _ D1/2U A UTD—1/2
MP = DYV3U AP U DY
— Z D1/2u@)\fu;rD_1/2

=1

A. Paccanaro, 2019



(1) What happens after an infinite number of iterations?

B _ l/2 BT Hy—1/2 _ - /2.0 \B T 1y—1/2
M D7=U N U D D 7w\ u; D

1=1

M = D'?u; u{ D™/

The leading eigenvector of Lis: u; = vd
V Zz d;
T
Therefore: M>® = D7 vd = D—1/2
\/Z@' d; \/ Zz d;
d
Zi’ dg o Z@' d;
= [T wes T is the leading

eigenvector of M

A. Paccanaro, 2019



Therefore, for any initial distribution p, we always

reach the same stationary distribution =

Poo =M7py=m

u = D_I/QSD_I/Qul,

_ D-l/2gp-1/2

1

VI d;

D—l/? d

\/Zd?-_’

d
Z d.é ’

= JJH4g

Z (l‘g :

d

( D-1/2,/d — 1)

(.  S1=d)

A. Paccanaro, 201




1.
2.

(2) What happens to p, after 3 iterations ?

MP = D'/?u, urer*I/2 r ZDl/zu;kPu?Dm
=2

= M + Z:Dl/zu,-KPUiTDI/2
—2

l

T
=2

T
= 7w+ z DY/ 2)\5 ugu'fD‘lf Do
=2

Markovian relaxation process as perturbations to the stationary distribution!

condition of piecewise constancy on the form of the leading eigenvectors

A. ravtaliaiv, 2vuiy



sc1=0.9
sc2=1
sc3=0.8

a=0.2
b=0.7
c=0.8
d=0.1

sc

sci

sc1

scl1| 1 | se1| se1
scl| sc1| 1 | sc1| a
sc1| se1| se1| 1 a
a a a 11 | B | B | B
b | 1 | sc2| sc2| sc2
b | sc2| 1 | sc2| sc2
b | sc2| sc2| 1 | sc2
b | sc2| sc2| sc2| 1
¢ ¢ c - a | & | 4| &
1 | sc3| sc3| sc3
sc3| 1 | sc3| sc3
sc3| sc3| 1 | sc3
8c3| sc3| sc3| 1
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u2*u2"

u2*u2"+u3*u3"
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The problem

* Given a set of protein sequences, automatically group
them based on their functional similarity

\  SLSAAQKDN
SLSAAQKDN ALVEDNNA
DLGAPONPNA ( AFTACEKQT
DGESIYING )
GDVAKGKKTF DGESIYING
EVPSEPGRL |— c1%s t%rlng ggg%KAgIégIT{g
EGDAAAGEKA ystem S OTCECRNEY
ALVEDNNA N
GKPEIHKCRS d
SOWGSGKNLY

AFTACEKQT / K

The core of most methods was based on

simply thresholding a measure related to the
distance between the sequences

A. Paccanaro, 2019



The algorithm

Assign proteins to clusters based on the value of the
elements of u,

1. we use the eigengap to guess the number of
clusters k (ratio of successive eigenvalues)

2. we use the first k eigenvectors to map the
proteins onto points in R¥; normalize these points

to unit length; then cluster using K-Means (Ng et
al, NIPS, 2000)

A. Paccanaro, J. A. Casbon, and M. A. Saqi
Spectral clustering of protein sequences
Nucleic Acids Research, vol. 34, iss. 5, pp. 1571-1580, 2006

A. Paccanaro, 2019



Learning to discriminate e-values
(= adding a bit of background knowledge)

* build a dataset of distances:

Class 1: distances between proteins of the same super-family

Class 2: distances between proteins in two different super-families
* learn a logistic regression model to discriminate between 2 classes

=>» the posterior probabilities returned by the model can be seen as
probabilities of functional relatedness

A. Paccanaro, 2019



Outline of the method
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Results: 108 proteins, 3 super-families, Astral 40

GeneRAGE, top 10 clusters (out of 43) (F=0.59) TribeMCL, inflation = 1.6 (F=0.60)
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GeneRage — 152 clusters

Hierarchical cl. — 205 clusters
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Comparison with other methods
Results on 10 datasets from SCOP
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Conclusion — why does spectral clustering works so
much better for clustering protein sequences?

0. %1

a=0.5, b=0.3
the spectral clustering is still correct

» Spectral clustering looks at global properties in the affinity matrix, and
this makes it more robust to noise

 Local methods, that decide the grouping based on the value of one (or a
few) sequence similarities, are very sensitive to this noise

A. Paccanaro, 2019



SCPS: a fast implementation of a spectral method
for detecting protein families on a genome-wide
scale [Nepusz et al. BMC Bioinformatics 2010]

e Simple, clean and user-friendly graphical user interface
(requires no background knowledge in the details of spectral clustering)

SCPS is also able to perform

connected component analysis
hierarchical clustering

TribeMCL

provides different cluster quality scores

SCPS Interfaces with:

BLAST
- Cytoscape

e Extremely efficient and its speed scales well with the size of the dataset
e Produces publication-quality graphical representations of the clusters
e included a sophisticated command line interface (for automated batch jobs)

SCPS was written in C++ and is distributed as an open-source package.
Precompiled executables are available for the three major operating systems
(Windows, Linux and Mac OS X) at

http://www.paccanarolab.org/software/scps

A. Paccanaro, 2019



Material

(from which | took some of the figures in these slides)

Tamas Nepusz, Haiyuan Yu, Alberto Paccanaro

Detecting overlapping protein complexes in protein-protein interaction networks
Nature Methods (2012) -- doi:10.1038/nmeth.1938

Code available from the lab website at: http://www.paccanarolab.org/cluster-one/

A. Paccanaro, J. A. Casbon, and M. A. Saqi
Spectral clustering of protein sequences
Nucleic Acids Research, vol. 34, iss. 5, pp. 1571-1580, 2006

T. Nepusz, R. Sasidharan, and A. Paccanaro

SCPS: a fast implementation of a spectral method for detecting protein families on a
genome-wide scale

BMC Bioinformatics, vol. 11, iss. 1, p. 120, 2010.
Code available from the lab website at: http://www.paccanarolab.org/software/scps

A. Paccanaro, 2019
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