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Unraveling the molecular pathogenesis of human disease presents many experimental challenges, not the least of which is that
experiments on humans are generally frowned upon. Model organisms, including the zebrafish, allow for experimental
analysis of gene function and the detailed characterization of disease processes. Zebrafish have matured as a vertebrate model
organism now that genetic tools for targeted “knockdowns” and unbiased mutagenesis approaches are in hand. The fish larval
pronephros is a relevant kidney in which to pursue many aspects of human kidney development and disease. This short
review outlines recent progress in applying the zebrafish pronephros to issues of human health and development.
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S tudies of kidney function in lower vertebrates have had
a significant impact on our understanding of basic kid-
ney physiology. The first demonstration of tubular epithe-

lial secretion was performed by Marshall (1) in the aglomerular
kidneys of the goose fish and toadfish. Our current understanding
of fluid secretion mechanisms were originally worked out using
the shark rectal gland (2). Renal micropuncture experiments that
first revealed the composition of the glomerular filtrate were per-
formed in the frog (3). Smith (4) studied the kidney in many
species of fish, taking advantage of their broad range of habitats to
explore important aspects of renal physiology as well as verte-
brate evolution. Exploring kidney development and disease in the
fish is a natural extension of these early studies. Studies of kidney
development and disease aim to uncover the origins of complexity
in the kidney and molecular pathogenesis underlying tissue dys-
function (5): How are specialized cells and structures of the kidney
derived from undifferentiated embryonic tissues? Can develop-
mental processes be recapitulated in the context of organ injury
and repair? How can organogenesis in the fish be exploited to
learn about human disease? This short review illustrates how
genetic analysis of zebrafish pronephric development is helping to
answer these questions.

Zebrafish as a System for Functional
Genomics

The maturation of the zebrafish as a model of vertebrate
organogenesis owes to (1) its relative simplicity in terms of organ
size and cell number, (2) the feasibility of applying both forward
and reverse genetic tools to define gene function, and (3) its
accessibility to observation. Zebrafish embryos develop in fresh-
water outside the mother and are transparent; observation and
manipulation of organ development are relatively straightforward

(6). Development occurs rapidly, with embryos progressing from
fertilized egg to free-swimming larvae in 2.5 d; all stages of organ
development can be observed in this short time window. Their
high fecundity, their relatively short generation time, and the
ability to observe internal organ development have made large-
scale, unbiased mutagenesis screens possible in a vertebrate (7).
Hundreds of mutations that affect individual organ systems have
been isolated, with various defects including cardiac arrhythmias
(8), gut and hepatic degeneration (9), failed blood cell develop-
ment (10), and cystic disease of the kidney (11). Sequencing the
zebrafish genome is predicted to be complete in 2005 (12), and
the existing sequence data are already useful for finding gene
homologs in zebrafish using bioinformatic methods. Full-length
cDNA projects are also under way, and microarrays that represent
approximately 15,000 genes are available for screening. Gene tar-
geting with antisense morpholino oligos is highly efficient for
gene “knockdowns” and is effective for at least the first 50 h of
development, well within the time period of organogenesis (13).
With these methods for defining gene function coupled with the
feasibility for high-throughput screening of bath-applied small
molecules and drugs for effects on development and disease
phenotypes, the zebrafish is a viable system for modeling many
human diseases and offers an in vivo assay system for drug
development (14).

Structure and Function of the Zebrafish
Pronephros

In zebrafish and other teleosts, the functional larval prone-
phros consists of only two nephrons with glomeruli fused at the
embryo midline just ventral to the dorsal aorta (Figure 1)
(11,15–17). Although simple in form, the pronephric glomeru-
lus is composed of cell types that are typical of higher verte-
brate kidneys, including fenestrated capillary endothelial cells,
podocytes, and polarized tubular epithelial cells (Figure 1, B
and C) (11). Two pronephric tubules connect the glomerulus to
the pronephric ducts, which run caudally and fuse just before
their contact with the outside world at the cloaca. The zebrafish
pronephric nephrons form a closed system of blood filtration,
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tubular resorption, and fluid excretion. The primary function of
the fish pronephros is for osmoregulation. Without a functional
kidney, larvae die of gross edema because they have salty blood
and yet live in a very dilute environment.

The pronephric kidney forms in a stepwise progression that,
in general terms, follows the sequence observed in mammalian
kidney development (18). First, the pronephric duct, the future
collecting system, is formed by the conversion of loose fibro-
blastic cells into a polarized epithelial tube. The nephrons then
form and connect to the pronephric duct at its anterior tips,
and, finally, blood vessels sprout and invade the podocytes to
form the glomerulus. This process occurs only once in the
zebrafish embryo during the first 2 d of development. Thus, all
of the relevant cellular interactions and the genes that control
kidney development can be studied over a relatively short
period in a simple and accessible kidney.

Zebrafish Pronephros as a Model of Human
Disease
Defects in Glomerulus Formation and Nephrotic Syndromes

Proper functioning of the kidney requires a structural inte-
gration of glomerular podocytes and blood vessels. In ze-

brafish, evidence that podocytes act to organize vessel in-
growth can be seen in (1) the expression patterns of genes that
are known to play an important role in angiogenesis and (2) the
recruitment of endothelial cells to clusters of podocytes in
mutant embryos that lack the dorsal aorta, the normal blood
supply for the pronephric glomerulus. Zebrafish pronephric
podocytes express two known mediators of angiogenesis: Vas-
cular endothelial growth factor (VEGF) and angiopoietin 2
(19,20). In a complementary manner, capillary-forming endo-
thelial cells express flk1, a VEGF receptor and an early marker
of the endothelial differentiation program (21). In normal ze-
brafish embryos at 40 hpf, flk-1–positive endothelial cells in-
vade the glomerular epithelium and form the capillary loop. In
floating head mutant embryos, the dorsal aorta is absent (22),
and so the nascent glomeruli are deprived of their normal
source of vasculature. Nonetheless, podocytes continue to ex-
press wt1 and vegf and seem to recruit flk-1–positive endothelial
cells from nearby veins and go on to form a reasonably func-
tional glomerulus (19). These results support the idea that
podocytes, by expressing vegf, play a primary role in attracting
and assembling the glomerular capillary tuft.

Surprisingly, zebrafish mutants that lack blood flow as a
result of defects in cardiac function (23) fail to form a proper
glomerular capillary tuft (Figure 2, A and B). This suggests that
vascular shear force per se is required to drive capillary forma-
tion (24). Although vascular cells seem normal, they fail to
express matrix metalloproteinase-2. Inhibition of matrix metal-
loproteinase activity by tissue inhibitor of metalloproteinase-1
injections results in a similar failure to form the glomerulus
(24), indicating that degradation and remodeling of the glomer-
ular basement membrane is a key step in capillary tuft forma-
tion.

Filtration of blood by the pronephric glomerulus can be
detected by injections of fluorescence compounds into the gen-
eral circulation and then monitoring the appearance of fluores-
cent endosomes in the apical cytoplasm of pronephric duct cells
(Figure 2C) (11,19). From these data, it can be inferred that the
fluorescence tracer has passed the glomerular basement mem-
brane and entered the lumen of the pronephric tubules and
ducts, where it is actively endocytosed. Using this assay, we
have established that blood filtration by the zebrafish prone-
phros begins at approximately 40 hpf (11).

A major feature of the mammalian glomerular blood filter is
the podocyte slit diaphragm, a specialized adherens junction
that forms between the podocyte foot processes (25). Failure of
the slit diaphragm to form results in proteinuria or leakage of
high molecular weight proteins into the filtrate. Proteinuria is
the cardinal feature of several human congenital nephropathies
and also a common complication of diabetes (26). Several dis-
ease genes that are known to function in the slit diaphragm
have been cloned. Nephrin is a transmembrane protein present
in the slit diaphragm itself and is thought to contribute to the
zipper-like extracellular structure between foot processes (27).
Podocin is a podocyte junction–associated protein (28) that
resembles stomatin proteins, which play a role in regulating
mechanosensitive ion channels (29). Electron microscopy of the
zebrafish pronephric glomerulus reveals that like mammalian

Figure 1. Structure of the functional larval pronephros. (A)
Diagram of the mature zebrafish pronephric kidney in 3-d-old
larva. A midline compound glomerulus connects to the pro-
nephric tubules that run laterally and drain into the pronephric
ducts. The ducts are joined at the cloaca, where they commu-
nicate with the exterior. (B) Polarized distribution of the NaK
ATPase in 2.5-d-old pronephric duct epithelial cells visualized
by the �6F monoclonal antibody. The apical cell surface (Ap) is
devoid of staining, whereas staining is strong on the basolateral
cell surface and membrane infoldings (Bl). (C) Electron micro-
graph of 2.5-d-old pronephric duct epithelial cells showing
apical (Ap) brush border and basolateral (Bl) cell surfaces and
infoldings. (Inset) Enlarged view of the apical cell junction
showing a well-developed adherens junction.
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podocytes, zebrafish podocytes form slit diaphragms between
their foot processes (Figure 2D). Zebrafish homologs of podocin
and nephrin are specifically expressed in podocyte precursor cells
as early as 24 hpf (Figure 2, E and F). These functional similarities
between mammalian and zebrafish podocytes, coupled with as-
says for glomerular filtration, point to future applications of fish as
a model for study and treatment of human proteinuria.

Defects in Tubules and Models of Cystic Disease
One of the most common human genetic diseases is polycys-

tic kidney disease, which affects 1 in 1000 individuals (30).
Kidney cysts are the result of grossly expanded kidney tubule

lumens and, when present in sufficient size and number, lead
to kidney fibrosis and end-stage renal failure. Our work has
identified a relatively large set of genetic loci associated with
cystic pronephroi in zebrafish (11) (Figure 3). Recently, the
results of a large-scale retroviral insertional mutagenesis screen
have identified 10 zebrafish genes that when mutated cause
pronephric cysts (31). The requirement for a relatively large
number of genes underlying maintenance of tubule structure is
consistent with the idea that maintenance of lumen size and
epithelial cell shape is a complex process that is controlled by
many cellular proteins or signaling pathways.

A surprising convergence of findings from studies of cystic
disease, left-right asymmetry, retinal degeneration, and flagella
formation in the simple eukaryote Chlamydomonas have led to
the idea that defects in the formation or function of cilia may
underlie the pathology observed in all of these conditions.
Cloning the gene that is responsible for the oakridge polycystic
kidney (orpk) mouse was the first link between cilia and kidney
cystic disease. The mutant gene, polaris, is a homolog of a
Chlamydomonas gene, IFT88, that is required for intraflagellar

Figure 2. The zebrafish as a model of glomerular structure and
function. (A) An electron micrograph of the forming glomeru-
lus at 2.5 dpf with invading endothelial cells from the dorsal
aorta shaded in red and podocytes shaded in blue (image
false-colored in Adobe Photoshop). (B) A similar stage glomer-
ulus in the mutant island beat, which lacks blood flow as a result
of a mutation in an L-type cardiac-specific calcium channel. The
endothelial cells and podocytes are present, but there is no sign
of glomerular remodeling and morphogenesis. (C) Measuring
renal clearance: Rhodamine-dextran filtration and uptake by
pronephric epithelial cells. 10KD lysine-fixable rhodamine dex-
tran injected into the general circulation can be seen as red
fluorescence in glomerular capillaries (gl), and filtered dye is
seen in apical endosomes of pronephric duct cells (arrow-
heads). Counterstain: FITC wheat germ agglutinin. (D) Electron
micrograph of the glomerular basement membrane (gbm) re-
gion in the glomerulus. Individual profiles of podocyte foot
processes resting on the glomerular basement membrane (gbm)
are connected by slit diaphragms (arrowheads at top). Cl, cap-
illary lumen; bs, Bowman’s space. Whole-mount in situ hybrid-
ization shows expression of zebrafish podocin (E) and nephrin
(F), genes associated with human nephrotic syndromes, specif-
ically in the forming podocyte precursor cells.

Figure 3. The zebrafish as a model of polycystic kidney disease.
Three-day-old larvae showing wild-type (A) and the mutant
double bubble (dbb; B) with a grossly distended pronephric tu-
bule that appears as a bubble (arrow) just behind the pectoral
fin. (C) Three-day-old wild-type kidney structure showing the
pronephric duct (pnd; cross-section), pronephric tubule (pt),
and glomerulus (gl). (D) A section of a dbb mutant pronephros
shows the cystic distended lumen of the pronephric tubule (*)
and distended glomerulus at the midline. (E) Whole-mount
confocal immunofluorescent image of a 3-d-old embryo stained
with anti-acetylated tubulin to reveal cilia in the pronephric
ducts (arrowhead). Dorsal structures are the neural tube and
motor neurons. (F) Close-up view of acetylated tubulin–posi-
tive pronephric cilia. (G) Electron micrograph of a single apical
cilium (arrowhead) on a pronephric duct cell.
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transport, an essential process in flagellum formation (32,33).
Human and mouse kidney cells are not flagellated but have a
single, nonmotile apical cilium. Orpk mutant mouse kidney
epithelial cells have short, malformed apical cilia (32–34), sug-
gesting a functional link between cilia and maintenance of
epithelial tubule lumen diameter. Subsequent studies revealed
that most known cystic mutant genes, including polycystin 1,
polycystin 2, cystin (cpk mouse), polaris, inversin, and the
Caenorhabditis elegans polycystin homologs lov-1 and pkd2,
were, at least in part, localized to cilia (35–39). The results of a
large-scale insertional mutagenesis screen in zebrafish lend
further support to the link between cilia and cystic disease. Of
10 genes reported in this work, three were IFT genes associated
with ciliogenesis (31). Recent studies of polycystin 1 and poly-
cystin 2, the genes that are responsible for autosomal dominant
polycystic kidney disease, indicate that they act together to
mediate calcium entry into cells upon flow-induced cilium
deflection (40,41). The current model of cilia function in the
mammalian kidney is that the cilium acts as a sensor of tubule
lumen mechanics and flow, providing a feedback signal that
limits lumen diameter or cell proliferation. Our recent observa-
tions in zebrafish indicate that cilia in the pronephros are motile
and have a “9 � 2” microtubule doublet organization that is
typical of motile cilia and flagella (Kramer-Zucker et al., sub-
mitted). Because motile cilia are often associated with fluid
flow, this leads to an alternative hypothesis that cilia may act as
a fluid pump in the zebrafish pronephros. It seems that cystic
kidney tubules could arise by multiple different mechanisms
related to cilia function.

Several other genes that can account for tubule cyst forma-
tion have been identified in zebrafish. Nek8 is a member of the
NIMA family of serine/threonine kinases and is mutated in the
juvenile cystic kidney (jck) mouse (42). Disrupting the function
of zebrafish Nek8 causes severe cystic distension of the pro-
nephric tubules. Other Nek kinases have links to cytoskeletal
functions: Nek2 is localized to centrioles and acts to promote
splitting of duplicated centrioles during the cell cycle (43).
Further studies are needed to test whether Nek8 may have a
similar role in cilium or centrosome/basal body function (44–47).

Disruption of the zebrafish homolog of the human cystic dis-
ease gene polycystin 2 also causes pronephric cyst formation (31;
Obara et al., unpublished results, 2004). We have found that co-
injected human polycystin 2 mRNA can rescue this phenotype,
indicating that the function of polycystin 2 has been highly con-
served between fish and human. This kind of result opens to the
door for functional analysis of variant forms of the human PKD2
gene in an easily manipulated, in vivo model of human disease.

Disruption of the zebrafish inversin gene results in kidney
cysts. The human condition nephronophthisis type 2 (NPHP2)
is associated with mutations in the human inversin gene (13).
Both inversin and the mammalian NPHP1 gene nephrocystin
are found in basal bodies and cilia and have been shown to
interact biochemically. Deletion of the putative nephrocystin-
binding domain in zebrafish inversin results in severe cyst
formation, supporting the idea that NPHP proteins act as a
multiprotein complex to regulate the function of basal bodies
and/or cilia (13).

The transcription factor hepatocyte nuclear factor 1� (HNF-
1�) is required for normal zebrafish pronephric tubule devel-
opment (48) and, when mutated, results in glomerular cysts.
HNF-1� has been shown to regulate the expression of several
other cyst-associated genes in the mouse (49). Mutations in
HNF-1� in humans are associated with glomerulocystic disease
and maturity onset diabetes of the young, type V (50).

Conclusions
Despite some differences in organ morphology between the

mammalian and teleost kidneys, many parallels exist at the
cellular and molecular levels that can be exploited to further
our understanding of kidney development and disease. The
same genes and cell types are used in the development and
function of all vertebrate kidneys. Genes that are mutated in
human disease are also essential for the formation and function
of the zebrafish pronephros. The zebrafish thus presents a
useful and relevant model for studies of kidney development
and disease. Both gene-targeted and unbiased mutagenesis ap-
proaches to genetic manipulation in the zebrafish will no doubt
continue to reveal the function of genes and cell–cell interac-
tions that underlie the development of all kidney forms.
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