

The response of desert biocrust bacterial communities to 1

- hydration-desiccation cycles 2
- 3
- Capucine Baubin*, Noya Ran, Hagar Siebner, Osnat Gillor* 4
- 5
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion
- 6 7 University of the Negev, Midreshet Ben-Gurion, Israel
- 8
- 9 Correspondence to:
- 10 *Capucine Baubin, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research,
- 11 Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel. Tel: 972-54-2944886; e-mail:
- 12 baubin@post.bgu.ac.il
- 13 *Osnat Gillor, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-
- 14 Gurion University of the Negev, Midreshet Ben-Gurion, Israel. Tel: 972-8-6596986; e-mail:
- 15 gilloro@bgu.ac.il
- 16

17 ABSTRACT

- 18 Rain events in arid environments are highly unpredictable, interspersing extended periods of drought.
- 19 Therefore, tracking changes in desert soil bacterial communities during hydration-desiccation cycles in
- 20 the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active community in
- 21 the Negev Desert biological soil crust (biocrust), and evaluated the changes in bacterial composition,
- 22 potential function, photosynthetic activity, and extracellular polysaccharide (EPS) production. We
- 23 predicted that increased biocrust moisture would resuscitate the phototrophs, while desiccation would
- 24 inhibit their activity. Our results show that hydration increased chlorophyll content, resuscitated the
- 25 biocrust Cyanobacteria, enhanced EPS production, and induced potential phototrophic functions.
- 26 However, decrease in the soil water content did not immediately decrease the phototrophs activity,
- 27 though chlorophyll levels decreased. Moreover, while the Cyanobacteria relative abundance
- 28 significantly increased, Actinobacteria, the former dominant taxa, significantly decreased in
- abundance. We propose that, following a rain event, the response of the active bacterial community
- 30 lagged the soil moisture content due to the production of EPS which delayed the desiccation of the
- 31 biocrust community.
- 32
- 33 Key words: hydration; biocrust; bacteria; Cyanobacteria; Actinobacteria; EPS

34 1. INTRODUCTION

35	Arid environments are the largest terrestrial biomes on Earth and accounts for 35% of the landmass
36	(Pointing and Belnap, 2012). Rain in hot arid environments is rare and unpredictable, and the main
37	source of water is dew (Malek et al., 1999), or fog (Kidron et al., 2002). This moisture is readily
38	absorbed to the soil surface but would quickly evaporate due to high temperatures and low humidity
39	(Cameron and Blank, 1966). The long droughts in drylands limit plant growth and in their stead, the
40	soil is covered by microbial mats, named biological soil crust (biocrust). Biocrusts are a matrix of
41	phototroph and heterotroph microorganisms that are bind together with soil particles, by using
42	extracellular polymeric substances (Campbell et al., 1989; Belnap and Lange, 2001; Kidron et al.,
43	2020). The biocrust phototrophs are the main primary producers in this desolate habitat and together
44	with the heterotrophs, they form a rigid and stable mat that can resist to xerification and soil erosion
45	(Bowker et al., 2018; Aanderud et al., 2019).
46	

47 Biocrusts are the main source of carbon and nitrogen (Agarwal et al., 2014), and a strong contributor 48 of soil respiration(Castillo-Monroy et al., 2011) in deserts. It was recently shown that, during long 49 droughts many of the biocrust microorganisms rely not only on photosynthesis but also on oxidation 50 of atmospheric trace gases(Meier et al., 2021; Leung et al., 2020). Once the biocrust is hydrated, the 51 phototrophs respond quickly by inducing their photosynthetic systems and related functions, to take 52 full advantage of the rare water abundance before the soil dehydrates (Murik et al., 2017). To that end, 53 photosynthetic members of the biocrust community form a seed bank of species that can spring to life 54 whenever the water content increases (Murik et al., 2017; Lennon and Jones, 2011; Kedem et al., 55 2020). Yet, the abrupt hydration may also cause osmotic shock that could result in massive cell lysis 56 and the release of osmoregulatory solutes (Halverson et al., 2000; Harris, 1981). The period of water 57 abundance is usually brief, and the soil quickly dehydrates forcing the bacteria to cease their activity 58 (Murik et al., 2017; Oren et al., 2019). Therefore, the members of the biocrust community must 59 respond quickly and efficiently not only to hydration but also to the subsequent desiccation.

61	Earlier studies focused on community structure and cyanobacterial response to hydration-desiccation
62	cycles under controlled conditions (Angel and Conrad, 2013; Wu et al., 2013; Meier et al., 2020; Oren
63	et al., 2019). To the best of our knowledge, these cycles were never monitored in the field during a
64	rain event. Under natural conditions, the biocrust community dynamics of the hydration-desiccation
65	cycle may be affected by a plethora of variables, such as temperature, rain intensity, or soil local
66	structure, which could not be applied in laboratory settings. Thus, it is imperative to elucidate the
67	resuscitated community and its response to the gradual dehydration after a rain event in the field.
68	
69	In this study, we followed the community structure and activity before, during, and after a rain event
70	in the arid Negev Desert highlands (Israel). We studied the active biocrust community by using SSU
71	ribosomes as a proxy to active bacterial community (Št'ovíček et al., 2017). Although ribosomes do
72	not quickly degrade in dormant or even dead cells (Sunyer-Figueres et al., 2018; Sukenik et al., 2012),
73	under field conditions they present a reliable mean to distinguish between active and inactive cells
74	(Št'ovíček et al., 2017; Angel et al., 2013; Baubin et al., 2019). We hypothesised that the biocrust
75	community would quickly respond to hydration and to desiccation. We predicted that high soil
76	moisture would trigger photosynthetic activity and carbohydrate production and a decreasing soil
77	moisture will lead to an inactivation of the phototrophs within the biocrust community. We further
78	predicted that heterotrophs response to hydration-desiccation would differ among phyla as previously
79	found for biocrust (Angel and Conrad, 2013) and topsoil (Št'ovíček et al., 2017) collected from the
80	same site. Specifically, we predicted a sharp decrease in the relative abundance of Actinobacteria
81	phylum that dominants the soil during droughts but declines upon hydration (Št'ovíček et al., 2017;
82	Angel et al., 2013; Blazewicz et al., 2013).

83 2. MATERIAL AND METHODS

84 **2.1. Sampling**

- 85 The study was conducted in the long-term ecological research station in the Negev Desert Highlands
- 86 (Zin Plateau, 30°86'N, 34°80'E, Israel; Figure 1). In this arid environment, the average annual rainfall
- is around 90 mm and extends from October to April. Biocrust samples were collected on 20/06/17
- during the dry season (T[0]; average temperature: 32.4°C) and during a rain event in the wet season
- 89 from 29/01/18 through 01/02/18 at 24 hr intervals. The rain event (5.1 mm, maximum average
- 90 temperature 14.6 °C) occurred 29/01/18 (T[R]) and samples were collected till the biocrust dried
- 91 (T[1], T[2], T[3]; Figure 1) For each time point, five samples (each ~200 g) at least 10 m apart were
- 92 collected (N = 25 samples). The biocrust samples were homogenised using a 2 mm sieve and then four
- 93 subsamples were stored: (1) at -80°C for molecular analysis; (2) at -20°C for chlorophyll extraction;
- 94 (3) at 60°C for 3 days and then kept at room temperature for chemical analysis; and (4) was used
- 95 immediately to evaluate the water content.
- 96

Figure 1. Location of the sampling site (Avdat) in the Negev Highlands (Israel) with close-ups of the crust at time 0 (before hydration) and at time 1 (after hydration). The crust becomes greener after a rain event.

110

111 2.2. Physico-chemical analyses

- 112 Water content, organic carbon and total nitrogen were measured in the soil samples. Biocrust water
- 113 content was determined by the gravimetric method, the soil was weighed before and after oven drying
- 114 at 105°C, then the percentage of moisture in the soil was determined (Scrimgeour, 2008). Organic
- 115 carbon content was determined using the loss-on-ignition method. 30 g of the dry soil sample was
- 116 burnt at 380°C for 6 hours, and the fraction of organic carbon content was calculated as previously
- 117 described (Scrimgeour, 2008; Hoogsteen et al., 2015). Total nitrogen was measured in 50 mg of soil
- 118 using the FlashSmart CHNS/O elemental analyser (ThermoFischer, Waltham, MA, USA). The
- 119 standards: BBOT (2,5-Bis (5-tert-butyl-benzoxazol-2-yl) thiophene), Tocopherol Nicotinate and a soil
- 120 reference material were used to calibrate the instrument.

121 **2.3.** Chlorophyll concentration and water content

The chlorophyll of each sample was extracted using a protocol based on Ritchie (2006) and Castle et al. (2010). The extraction was done using methanol, with a soil: methanol ratio of 3:9, followed by a 15-minutes incubation at 65°C and a 2-hour incubation at 4°C. The samples were centrifuged, and the supernatant was measured by spectrophotometry (Infinite 200 Pro, Tecan, Switzerland) at 665 nm and the concentration of chlorophyll was calculated following (Ritchie, 2006). Dried Spirulina cultures were used as positive control at 0.003g per g of soil. Distilled water (DW) was used as negative

128 controls. The concentrations are presented in mg chlorophyll per g of soil (mg chla/g soil).

129 **2.4.** Carbohydrate extraction and Polysaccharide content

130 Extracellular polysaccharides (EPS), and more precisely the tightly-bound carbohydrates that are

131 attached to the soil particles, were extracted using a 100 mM EDTA solution for 16 hours. About 20

- 132 mL of EPS were extracted from 2.5 g of soil and were kept at -20°C until further processing. The
- 133 polysaccharide content was measured using a phenol-sulfuric acid assay with a glucose standard
- 134 curve, as previously described (Dubois et al., 1956). Briefly, each EPS fraction was combined with
- 135 equal volume of 5% w/v phenol and 2.5 folds sulfuric acid. The mixture was vortexed, incubated

- 136 (45 min at room temperature) and absorbance measured at 490 nm (Infinite 200 Pro, Tecan,
- 137 Switzerland).
- 138 **2.5. RNA extraction and preparation for sequencing**
- 139 RNA was extracted from 0.5 1 g of soil using phenol-chloroform, following a previously described
- 140 protocol (Angel, 2012). The extracted total nucleic acids were treated with DNase (Takara, Shiga,
- 141 Japan) to remove the DNA. The remaining RNA was cleaned using the MagListo RNA Extraction kit
- 142 (Bioneer, Daejeon, South Korea). The RNA was reverse transcribed to cDNA using Superscript IV
- 143 (ThermoFischer, Waltham, MA, USA), and purified using the PCR purification kit (Bioneer, Daejeon,
- 144 South Korea) in accordance with the manufacturers' instructions. The cDNA was used as a template to
- amplify the V3-V4 regions of the 16S rRNA using 341F and 806R primers (Table A1), in triplicates.
- 146 Library preparations and sequencing were performed at the Research Resource Centre at the
- 147 University of Illinois with pair end (2 × 300 bp) MiSeq platform (Illumina, San Diego, CA, USA).
- 148 Due to low concentrations of ribosomes in the dry soil collected during the summer of 2017, we had to
- 149 re-extract and re-sequence these samples. However, COVID-19 restrictions prohibit us from using the
- 150 same sequencing platform, and we were forced to use the facilities and resources available to us at the
- 151 time. Therefore, RNA was extracted using the RNeasy PowerSoil Total RNA Kit (Qiagen, Hilden,
- 152 Germany), following the manufacturer's protocol. Then, the V3-V4 regions of the 16S rRNA were
- 154 150 bp) on the iSeq platform (Illumina, San Diego, CA, USA) at the Central and Northern Arava R&D
- 155 Centre (Israel).
- 156 **2.6.** Community analysis
- 157 Reads were merged, quality checked, and trimmed following the NeatSeq-Flow pipeline (Sklarz et al.,
- 158 2018). The sequences were analysed using QIIME2 (Bolyen et al., 2018) and Dada2 (Callahan et al.,
- 159 2016). Reads were clustered in amplicon sequence variants (ASVs) and taxonomy was assigned using
- 160 Silva v138 (Quast et al., 2013). The total number of sequences can be found in Table A2. All raw
- 161 sequences used in this study can be found in BioProject (https://www.ncbi.nlm.nih.gov/ bioproject)
- 162 under the submission number PRJNA718159.

163 2.7. Functional predictions

- 164 Functional predictions of the 16S amplicons were done using Piphillin (Narayan et al., 2020; Iwai et
- 165 al., 2016) and the KEGG database with a 97%-identity cut-off (May 2020) (Kaneshisa and Goto,
- 166 2000). Steps of metabolic pathways for different methods of harvesting energy (organotrophy,
- 167 lithotrophy and phototrophy) (Cordero et al., 2019; Greening et al., 2016; León-Sobrino et al., 2019;
- 168 Tveit et al., 2019), for parts of the nitrogen cycle (Galloway et al., 2004), and for the survival of the
- 169 individual during a drought (DNA conservation and repair, sporulation and Reactive Oxygen Species
- 170 (ROS)-damage prevention) (Borisov et al., 2013; Hansen et al., 2007; Henrikus et al., 2018; Preiss,
- 171 1984; Preiss and Sivak, 1999; Rajeev et al., 2013; Repar et al., 2012; Slade and Radman, 2011)were
- 172 selected. Then, we picked out genes of interest from each step in the KEGG database and built our
- 173 own database (Table A3). The assignment of function to the KEGG numbers of the abundance table
- 174 from Piphillin was done in R using phyloseq (McMurdie et al., 2017). The significance of temporal
- 175 differences in predicted functionalities was evaluated using a non-parametric test (Kruskal-Wallis test
- and a post-hoc Dunn test (Dinno, 2017; Dunn, 1964; Kruskal and Wallis, 1952).

177 **2.8. Statistical analysis**

- 178 All statistical analysis was done using R (R: A language and environment for statistical computing)
- using the phyloseq (McMurdie et al., 2017) along with the ggplot2 (Wickham, 2016), vegan (Oksanen
- 180 et al., 2014), magritt (Wickham and Bache, 2014), dplyr (Wickham et al., 2018), scales (Wickham,
- 181 2017), grid (Murrell, 2004) packages. The significance of difference between time points was
- 182 determined using a non-parametric test: Kruskal-Wallis test and Dunn test (Dinno, 2017; Dunn, 1964;
- 183 Kruskal and Wallis, 1952).
- 184

185 **3. RESULTS**

186 **3.1.** Temporal changes in the biocrust chlorophyll, carbohydrates, and chemical analyses

187 We have followed changes in the biocrust before, during and after a rain event and noted that a day 188 after the rain (T[1]) the biocrust in the sampling site was visibly greener than at any other sampling 189 point (Figure 1). The average chlorophyll concentrations along with the soil water content in the 190 biocrust at each sampling point were monitored (Figure 2A, Table A4). The biocrust water content 191 was lower at the dry season T[0] and significantly increased during the rain event T[R] (2.26% and 192 16.2%, respectively, p = 0.05; Table A5). Then soil moisture significantly decreased to 3.67% at T[3] 193 (p < 0.05). The chlorophyll concentrations significantly increased right after the rain event (from 8.45 194 mg chla/g soil to 14.57 mg chla/g soil, during the rain event, p = 0.0002; Table A4 and A5), but 195 decreased significantly in later days (from 14.57 mg chla/g to 11.17 mg chla/g soil, three days after the 196 rain, p > 0.02; Table A4 and A5). However, the carbohydrate concentration significantly increases 197 after the rain event (from 83 μ g/g soil to 143 μ g/g soil, p < 0.05, Table A4 and A5, Figure 2B). After 198 the first day, the concentration decreased slowly until day 3, where it was significantly lower (from 199 143 μ g/g soil to 72 μ g/g soil, p < 0.05, Table A4 and A5, Figure 2B). The total organic carbon (Figure 200 B1) and total nitrogen (Figure B2) showed slight temporal changes (Table A4) that were not 201 significant (Table A5).

202

203 Figure 2A. Chlorophyll content (in mg chla/g soil) (boxplot) and water content (in %) (line and points)

204 for each time point. Both increase at T[R] and decrease rapidly after.

205 Figure 2B. Carbohydrate concentration (in $\mu g/g$ soil) (boxplot) for each time point. The concentration

206 increases rapidly after the rain event and decreases slowly until T[3].

207 **3.2.** Temporal changes in the microbial community composition

- 208 Figure 3 shows the bacterial community composition at the order level for each sampling point. The
- 209 community is mostly composed of the phyla Cyanobacteria, Actinobacteria, and Proteobacteria
- 210 (Figure 3; Table A6). During the dry season, biocrust community composition differed significantly
- 211 from the community depicted during the rain event (Table A7). The differences were shown mostly in
- 212 orders belonging to the *Actinobacteria* and *Cyanobacteria* phyla (Figure 3; p < 0.05, Table A7). The
- 213 relative abundance of Cyanobacteria, dominated by the Cyanobacteriales, increased during the rain
- event (from 22% to 41%, Table A6; p < 0.05, Table A7). While the relative abundance of the
- 215 Actinobacteria, dominated by Micrococcales, decreased during the rain event (from 50% to 19%,
- Table A6; p < 0.05, Table A7). In the days following the rain event, no major changes were detected
- 217 in the biocrust community (Figure 3; Table A6 and A7).

218

219 Figure 3. Relative abundance (in %, x> 0.05) at the order level for each time point. The cyanobacterial

220 orders are gathered and in different shades of green, the actinobacterial orders are gathered and in

221 different shades of blue, and the rest of the orders are gathered alphabetically. The abundance of

- 222 Cyanobacterial orders decreases at T[R], while the abundance of the Actinobacterial orders increases
- 223 at T[R].

224

225 **3.3.** Temporal changes in the microbial function

- 226 Figure 4 shows the predicted function based on the taxonomic composition using Piphillin displayed
- in copy number (CN). The values were significantly lower (p < 0.03; Table A9) in the dry season
- 228 compared to the hydration-desiccation cycle, except for light and energy sensing (Figure 4; Table A8).

229

230 Figure 4. Boxplots of the functional prediction of the 16S sequences. Each panel (Boxplot) represents

a different group of genes associated with a certain functionality. The full list of genes can be found in

- 232 Table A3. The time points are represented by distinct colours and patterns. The y-axis is the
- abundance in copy number (CN) normalized to the 16S rRNA copy number for each genome.

260

234 **4. DISCUSSION**

235	Biocrust bacterial communities were shown to alter during hydration (Angel and Conrad, 2013; Meier
236	et al., 2021). Most apparent was the change in the relative abundance of Cyanobacteria which
237	increased while the abundance of Actinobacteria decreased (Figure 3), similar to results obtained
238	under controlled conditions where the biocrust was hydrated to saturation (Angel and Conrad, 2013).
239	Likewise, the filamentous cyanobacterium Leptolyngbya sp. isolated from the Negev Desert biocrust,
240	was shown to respond quickly to both hydration and desiccation (Oren et al., 2019, 2017). Even slight
241	increases in biocrust moisture, triggered by dew simulation, were shown to induce DNA repair and
242	associated regulatory genes, activating the photosynthetic system of the cyanobacterium (Rajeev et al.,
243	2013; Murik et al., 2017). In the field, a rain event significantly increases soil moisture (Figure 2A),
244	activating various cyanobacterial orders (Figure 3) that trigger their photosynthesis system (Figure 4),
245	resulting in a sharp rise in bacterial chlorophyll a (Figure 2A) and carbohydrates (Figure 2B)
246	concentrations. The concentration of the chlorophyll pigment was suggested to be linked to the soil
247	water content (Péli et al., 2011) and to the activity of the biocrust primary producers, i.e.,
248	Cyanobacteria and/or green algae.
249	
250	While the cyanobacterial activity increased with soil moisture (Figure 2A), no significant changes
251	were detected in the total organic carbon and nitrogen content (Figure B1 and B2; Table A4 and A5).
252	This observation suggests that the immediate change in these parameters is negligible compared to
253	existing soil reservoir; thus, it cannot be used as an indicator for the resuscitation of the local microbial
254	community during rain events. Moreover, it was recently proposed that in arid biocrusts, the dominant
255	Cyanobacteria phylum exchanges carbon for nitrogen with copiotrophic diazotrophs, thus rapidly
256	utilizing available nutrients to enable their colonisation of the oligotrophic dryland soils (Couradeau et
257	al., 2019).
258	In arid soils, rain events entail a decrease in the abundance of Actinobacteria both in the biocrust
259	(Angel and Conrad, 2013) and topsoil (Št'ovíček et al., 2017; Barnard et al., 2013). Members of this

phylum were shown to be well adapted to harsh environments (Goodfellow and Williams, 1983;

261	Zvyagintsev et al., 2007), and were found to be abundant in the Negev Highland biocrust (Meier et al.,
262	2021). Here, we showed that the increase of water content may lead to an increase in activity in all
263	gene groups linked to energy usage or production (Figure 4; Table A9). The generally dry biocrust,
264	experiences a narrow window of hydration conditions after a rain event (Figure 2A) that needs to be
265	rapidly exploited by the primary producers before the soil dries (Figure 2A and 2B). Concomitantly,
266	the resilient heterotrophs are mitigated, as was previously shown in controlled (Cordero et al., 2019;
267	Greening et al., 2016; León-Sobrino et al., 2019; Tveit et al., 2019), and natural settings (León-
268	Sobrino et al., 2019).
269	The microbial community quickly responds to hydration (Figure 3). However, the response to
270	desiccation is slower despite the rapid drying of the biocrust (Figure 2A) due to evaporation, expedited
271	by strong radiation, high winds, and low air humidity (Kidron and Tal, 2012). Unlike the response to
272	dew hydration-desiccation cycles (Oren et al., 2019, 2017), the community does not immediately
273	inactivate, when the water content in the soil decreases. In a previous study (Št'ovíček et al., 2017), we
274	showed that the topsoil community bounces back to its original structure as the soil dries. In the
275	biocrust, while dehydration was associated to a decrease in chlorophyll concentrations (Figure 2A),
276	there was no significant changes in the community composition (Figure 3). The concentration of
277	carbohydrates, the main components of EPS, follows the same pattern as chlorophyll. In controlled
278	experiments, it was shown that Cyanobacteria secrete copious amounts of EPS that bind the soil
279	particles (Kidron and Tal, 2012; Kidron et al., 2020) and retain water in the soil, slowing down the
280	drying process (Roberson and Firestone, 1992). EPS in the soil also create microhabitats that retain
281	humidity (Colica et al., 2014), thus protecting the residing microorganisms from desiccation (Mazor et
282	al., 1996; Mager and Thomas, 2011). In the Negev desert, a similar impact of the EPS production can
283	be seen. Indeed, it may benefit soil microbial community by creating microhabitats in which moisture
284	is retained longer, enabling an extended active phase following a rain event. This extra active time
285	after a rain event enables longer photosynthesis. This provides access to organic molecules that may
286	justify the ample resources invested by the Cyanobacteria in EPS production (Mager and Thomas,
287	2011). EPS was known as a key component in the Negev Desert for maintaining the structural

- 288 integrity of the biocrust (Kidron et al., 2020) but it seems to help also sustaining the activity of the soil
- 289 bacterial communities that inhabit the biocrust.

290

- 291
- 292 5. CONCLUSIONS
- 293 In desert biocrusts, bacterial communities must respond quickly and efficiently to hydration, to take
- 294 advantage of this short window of opportunity and sequester nutrients. This fleeting abundance
- 295 requires the bacterial community to be equally adapt to the onset of desiccation and prevent cells
- 296 damage. Our findings reinforce controlled studies showing that biocrust hydration change the bacterial
- 297 community and increasing cyanobacterial relative abundance over Actinobacteria. Here, we have
- shown that the response to biocrust desiccation following a rain event is slower than after a dew event,
- allowing the primary producers to be active even after the soil moisture decreases. This lag in response
- 300 to dehydration could be associated to water retention by the newly secreted EPS, mediated by the
- 301 Cyanobacteria activity surge. This grace period may justify the metabolic cost of polysaccharides
- 302 exhaustive production that quickly follows rain events in the desert.

304 ACKNOWLEDGEMENTS

- 305 The authors are grateful to Lusine Ghazaryan for technical support and to Ben Poodiack for editing the
- 306 manuscript. This study was partially supported by the Israel Science Academy, grant no. 993/11.

307 DATA AVAILABILITY

308 The data (raw reads) are available in Bioproject under the submission number PRJNA718159.

309 COMPETING INTERESTS

310 The authors declare that they have no conflict of interest.

311 AUTHORS CONTRIBUTIONS

- 312 CB, OG and HS conceptualized and designed the methodology; CB and OG collected the
- 313 samples and metadata; CB and NR did the laboratory work and sequencing; CB did the
- 314 formal analysis, visualization, data curation and wrote the manuscript; CB, OG, HS and NR
- 315 did the reviewing and editing of the manuscript.

316 REFERENCES

- 317 Aanderud, Z. T., Bahr, J., Robinson, D. M., Belnap, J., Campbell, T. P., Gill, R. A.,
- 318 McMillian, B., and st. Clair, S.: The Burning of Biocrusts Facilitates the Emergence of a Bare
- 319 Soil Community of Poorly-Connected Chemoheterotrophic Bacteria With Depressed
- 320 Ecosystem Services, 7, 1–14, https://doi.org/10.3389/fevo.2019.00467, 2019.
- 321 Agarwal, L., Qureshi, A., Kalia, V. C., Kapley, A., Purohit, H. J., and Singh, R. N.: Arid
- ecosystem: Future option for carbon sinks using microbial community intelligence, 106,
 1357–1363, 2014.
- 324 Angel, R.: Total Nucleic Acid Extraction from Soil, 2012.
- 325 Angel, R. and Conrad, R.: Elucidating the microbial resuscitation cascade in biological soil
- 326 crusts following a simulated rain event, 15, 2799–2815, https://doi.org/10.1111/1462-327 2920 12140 2013
- 327 2920.12140, 2013.
- 328 Angel, R., Pasternak, Z., Soares, M. I. M., Conrad, R., and Gillor, O.: Active and total
- 329 prokaryotic communities in dryland soils, 86, 130–138, https://doi.org/10.1111/1574-
- 330 *6*941.12155, 2013.
- 331 Barnard, R. L., Osborne, C. A., and Firestone, M. K.: Responses of soil bacterial and fungal
- communities to extreme desiccation and rewetting, 7, 2229–2241,
- 333 https://doi.org/10.1038/ismej.2013.104, 2013.
- Baubin, C., Farrell, A. M., Šťovíček, A., Ghazaryan, L., Giladi, I., and Gillor, O.: Seasonal
- and spatial variability in total and active bacterial communities from desert soil, 74, 7–14,
- 336 https://doi.org/10.1016/J.PEDOBI.2019.02.001, 2019.
- 337 Belnap, J. and Lange, O. L.: Biological Soil Crusts: Structure, Function, and Management,
- 338 496 pp., https://doi.org/10.1639/0007-2745(2002)105[0500:]2.0.co;2, 2001.
- 339 Blazewicz, S. J., Barnard, R. L., Daly, R. A., and Firestone, M. K.: Evaluating rRNA as an
- indicator of microbial activity in environmental communities: Limitations and uses, 7, 2061–
 2068, https://doi.org/10.1038/ismej.2013.102, 2013.
- 342 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A.,
- 343 Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K.,
- 344 Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M.,
- 345 Chase, J., Cope, E., da Silva, R., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet,
- 346 C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibson, D. L.,
- 347 Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C.,
- 348 Huttley, G., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B., Kang, K. bin, Keefe, C. R.,
- 349 Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I.,
- 350 Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D.,
- 351 McDonald, D., McIver, L. J., Melnik, A. v, Metcalf, J. L., Morgan, S. C., Morton, J., Naimey,
- 352 A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L.,
- 353 Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson Michael S, I. I.,
- 354 Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R.,
- 355 Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-
- 356 Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel,
- 357 M., Walters, W., Wan, Y., et al.: QIIME 2: Reproducible, interactive, scalable, and extensible
- 358 microbiome data science, 6, e27295v2, https://doi.org/10.7287/peerj.preprints.27295v2, 2018.
- 359 Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A.:
- 360 Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An additional
- defense against oxidative stress, 587, 2214–2218,
- 362 https://doi.org/10.1016/j.febslet.2013.05.047, 2013.
- Bowker, M. A., Reed, S. C., Maestre, F. T., and Eldridge, D. J.: Biocrusts: the living skin of
- 364 the earth, 429, 1–7, https://doi.org/10.1007/s11104-018-3735-1, 2018.

- 365 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S.
- 366 P.: DADA2: High-resolution sample inference from Illumina amplicon data, 13, 581–583,
- 367 https://doi.org/10.1038/nmeth.3869, 2016.
- 368 Cameron, R. E. and Blank, G. B.: Desert algae: soil crusts and diaphanous substrata as algal
- 369 habitats, 47 pp., 1966.
- 370 Campbell, S. E., Seeler, J., and Golubic, S.: Desert crust formation and soil stabilization, 3,
- 371 217–228, https://doi.org/10.1080/15324988909381200, 1989.
- 372 Castillo-Monroy, A. P., Maestre, F. T., Rey, A., Soliveres, S., and Garcia-Palacios, P.:
- 373 Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a Semiarid
- 374 Ecosystem, 14, 835–847, https://doi.org/10.1007/s10021-011-9449-3, 2011.
- 375 Castle, S. C., Morrison, C. D., and Barger, N. N.: Extraction of chlorophyll a from biological
- 376 soil crusts: A comparison of solvents for spectrophotometric determination, 43, 853–856,
- 377 https://doi.org/10.1016/j.soilbio.2010.11.025, 2010.
- 378 Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., and de Philippis, R.: Microbial secreted
- 379 exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert
- 380 sandy soils, 68, 62–70, https://doi.org/10.1016/j.soilbio.2013.09.017, 2014.
- 381 Cordero, P. R. F., Bayly, K., Man Leung, P., Huang, C., Islam, Z. F., Schittenhelm, R. B.,
- 382 King, G. M., and Greening, C.: Atmospheric carbon monoxide oxidation is a widespread
- 383 mechanism supporting microbial survival, 13, 2868–2881, https://doi.org/10.1038/s41396-
- 384 019-0479-8, 2019.
- 385 Couradeau, E., Giraldo-Silva, A., de Martini, F., and Garcia-Pichel, F.: Spatial segregation of
- the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus
- 387 vaginatus, and the formation of a nitrogen-fixing cyanosphere, 7, 1–12,
- 388 https://doi.org/10.1186/s40168-019-0661-2, 2019.
- 389 Dinno, A.: Package 'dunn.test,' 1–7, 2017.
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F.: Colorimetric Method
 for Determination of Sugars and Related Substances, 350–356 pp., 1956.
- 392 Dunn, O. J.: Multiple Comparisons Using Rank Sums, 6, 241–252, 1964.
- 393 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S.
- 394 P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F.,
- 395 Porter, J. H., Townsend, A. R., and Vörösmarty, C. J.: Nitrogen cycles: past, present, and
- 396 future, 70, 153–226, 2004.
- 397 Goodfellow, M. and Williams, S. T.: Ecology of actinomycetes., 37, 189–216,
- 398 https://doi.org/10.1146/annurev.mi.37.100183.001201, 1983.
- 399 Greening, C., Biswas, A., Carere, C. R., Jackson, C. J., Taylor, M. C., Stott, M. B., Cook, G.
- 400 M., and Morales, S. E.: Genomic and metagenomic surveys of hydrogenase distribution
- 401 indicate H 2 is a widely utilised energy source for microbial growth and survival, 10, 761–
- 402 777, https://doi.org/10.1038/ismej.2015.153, 2016.
- 403 Halverson, L. J., Jones, T. M., and Firestone, M. K.: Release of Intracellular Solutes by Four
- 404 Soil Bacteria Exposed to Dilution Stress, 64, 1630–1637,
- 405 https://doi.org/10.2136/sssaj2000.6451630x, 2000.
- 406 Hansen, B. B., Henriksen, S., Aanes, R., and Sæther, B. E.: Ungulate impact on vegetation in
- 407 a two-level trophic system, 30, 549–558, https://doi.org/10.1007/s00300-006-0212-8, 2007.
- 408 Harris, R. F.: Effect of Water Potential on Microbial Growth and Activity,
- 409 https://doi.org/https://doi.org/10.2136/sssaspecpub9.c2, 1 January 1981.
- 410 Henrikus, S. S., Wood, E. A., McDonald, J. P., Cox, M. M., Woodgate, R., Goodman, M. F.,
- 411 van Oijen, A. M., and Robinson, A.: DNA polymerase IV primarily operates outside of DNA
- 412 replication forks in Escherichia coli, 14, 1–29, https://doi.org/10.1371/journal.pgen.1007161,
- 413 2018.

- 414 Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., Groot, J. C. J., and Tittonell, P. A.:
- 415 Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and
- 416 structural water loss, 66, 320–328, https://doi.org/10.1111/ejss.12224, 2015.
- 417 Iwai, S., Weinmaier, T., Schmidt, B. L., Albertson, D. G., Poloso, N. J., Dabbagh, K., and
- 418 DeSantis, T. Z.: Piphillin: Improved prediction of metagenomic content by direct inference
- 419 from human microbiomes, 11, 1–18, https://doi.org/10.1371/journal.pone.0166104, 2016.
- 420 Kaneshisa, M. and Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes, 28, 27–30,
- 421 https://doi.org/10.3892/ol.2020.11439, 2000.
- 422 Kedem, I., Treves, H., Noble, G., Hagemann, M., Murik, O., Raanan, H., Oren, N., Giordano,
- 423 M., and Kaplan, A.: Keep your friends close and your competitors closer: novel interspecies
- 424 interaction in desert biological sand crusts, 00, 1–8,
- 425 https://doi.org/10.1080/00318884.2020.1843349, 2020.
- 426 Kidron, G. J. and Tal, S. Y.: The effect of biocrusts on evaporation from sand dunes in the
- 427 Negev Desert, 179–180, 104–112, https://doi.org/10.1016/j.geoderma.2012.02.021, 2012.
- 428 Kidron, G. J., Herrnstadt, I., and Barzilay, E.: The role of dew as a moisture source for sand
- 429 microbiotic crusts in the Negev Desert, Israel, 52, 517–533,
- 430 https://doi.org/10.1006/jare.2002.1014, 2002.
- 431 Kidron, G. J., Wang, Y., and Herzberg, M.: Exopolysaccharides may increase biocrust rigidity
- 432 and induce runoff generation, 588, 125081, https://doi.org/10.1016/j.jhydrol.2020.125081,
 433 2020.
- 434 Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glöckner, F.
- 435 O.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
- generation sequencing-based diversity studies, 41, 1–11, https://doi.org/10.1093/nar/gks808,
 2013.
- 438 Kruskal, W. H. and Wallis, W. A.: Use of Ranks in One-Criterion Variance Analysis, 47,
- 439 583-621, https://doi.org/10.1080/01621459.1952.10483441, 1952.
- 440 Lennon, J. T. and Jones, S. E.: Microbial seed banks: the ecological and evolutionary
- 441 implications of dormancy, 9, 119–130, 2011.
- 442 León-Sobrino, C., Ramond, J. B., Maggs-Kölling, G., and Cowan, D. A.: Nutrient acquisition,
- 443 rather than stress response over diel cycles, drives microbial transcription in a hyper-arid
- 444 Namib desert soil, 10, 1–11, https://doi.org/10.3389/fmicb.2019.01054, 2019.
- Leung, P. M., Bay, S. K., Meier, D. v., Chiri, E., Cowan, D. A., Gillor, O., Woebken, D., and
- 446 Greening, C.: Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems, 5,
- 447 1–14, https://doi.org/10.1128/msystems.00495-19, 2020.
- 448 Mager, D. M. and Thomas, A. D.: Extracellular polysaccharides from cyanobacterial soil
- 449 crusts: A review of their role in dryland soil processes, 75, 91–97,
- 450 https://doi.org/10.1016/j.jaridenv.2010.10.001, 2011.
- 451 Malek, E., McCurdy, G., and Giles, B.: Dew contribution to the annual water balances in
- 452 semi-arid desert valleys, 42, 71–80, https://doi.org/10.1006/jare.1999.0506, 1999.
- 453 Mazor, G., Kidron, G. J., Vonshak, A., and Abeliovich, A.: The role of cyanobacterial
- 454 exopolysaccharides in structuring desert microbial crusts, 21, 121–130,
- 455 https://doi.org/10.1016/0168-6496(96)00050-5, 1996.
- 456 McMurdie, P. J., Holmes, S., Jordan, G., and Chamberlain, S.: Phyloseq: handling and
- analysis of high-throughput microbiome census data, 2017.
- 458 Meier, D. v, Imminger, S., Gillor, O., and Woebken, D.: Versatility of energy metabolism and
- 459 drought survival strategies characterize microbial genomes in biological soil crust, 2020.
- 460 Meier, D. v., Imminger, S., Gillor, O., and Woebken, D.: Distribution of Mixotrophy and
- 461 Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil Crust
- 462 Community, 6, 1–20, https://doi.org/10.1128/msystems.00786-20, 2021.

- 463 Murik, O., Oren, N., Shotland, Y., Raanan, H., Treves, H., Kedem, I., Keren, N., Hagemann,
- 464 M., Pade, N., and Kaplan, A.: What distinguishes cyanobacteria able to revive after
- desiccation from those that cannot: the genome aspect, 19, 535–550,
- 466 https://doi.org/10.1111/1462-2920.13486, 2017.
- 467 Murrell, P.: grid Graphics Creating and Controlling Graphics Regions and Co- ordinate
- 468 Systems, 1–17, https://doi.org/doi:10.1201/b10966-6, 2004.
- 469 Narayan, N. R., Weinmaier, T., Laserna-Mendieta, E. J., Claesson, M. J., Shanahan, F.,
- 470 Dabbagh, K., Iwai, S., and Desantis, T. Z.: Piphillin predicts metagenomic composition and
- 471 dynamics from DADA2- corrected 16S rDNA sequences, 21, 1–12,
- 472 https://doi.org/10.1186/s12864-020-6537-9, 2020.
- 473 Oksanen, J., Blanchet, F. G., Kindt, R., Legen-, P., Minchin, P. R., Hara, R. B. O., Simpson,
- 474 G. L., Solymos, P., and Stevens, M. H. H.: Package 'vegan,' https://doi.org/ISBN 0-387 475 95457-0, 2014.
- 476 Oren, N., Raanan, H., Murik, O., Keren, N., and Kaplan, A.: Dawn illumination prepares
- 477 desert cyanobacteria for dehydration, 27, R1056–R1057,
- 478 https://doi.org/10.1016/j.cub.2017.08.027, 2017.
- 479 Oren, N., Raanan, H., Kedem, I., Turjeman, A., Bronstein, M., Kaplan, A., and Murik, O.:
- 480 Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and
- 481 temperature sensing, 28, 2305–2320, https://doi.org/10.1111/mec.15074, 2019.
- 482 Péli, E. R., Lei, N., Pócs, T., Laufer, Z., Porembski, S., and Tuba, Z.: Ecophysiological
- 483 responses of desiccation-tolerant cryptobiotic crusts, 6, 838-849,
- 484 https://doi.org/10.2478/s11535-011-0049-1, 2011.
- 485 Pointing, S. B. and Belnap, J.: Microbial colonization and controls in dryland systems, 10,
- 486 551–562, https://doi.org/10.1038/nrmicro2831, 2012.
- 487 Preiss, J.: Bacterial glycogen synthesis and its regulation, 38, 419–458, 1984.
- 488 Preiss, J. and Sivak, M.: 3.14 Starch and Glycogen Biosynthesis, edited by: Barton, S. D.,
- 489 Nakanishi, K., and Meth-Cohn, O. B. T.-C. N. P. C., Pergamon, Oxford, 441–495,
- 490 https://doi.org/https://doi.org/10.1016/B978-0-08-091283-7.00082-5, 1999.
- 491 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and
- 492 Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing
- 493 and web-based tools, 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2013.
- 494 Rajeev, L., da Rocha, U. N., Klitgord, N., Luning, E. G., Fortney, J., Axen, S. D., Shih, P. M.,
- 495 Bouskill, N. J., Bowen, B. P., Kerfeld, C. A., Garcia-Pichel, F., Brodie, E. L., Northen, T. R.,
- and Mukhopadhyay, A.: Dynamic cyanobacterial response to hydration and dehydration in a
- 497 desert biological soil crust, 7, 2178–2191, https://doi.org/10.1038/ismej.2013.83, 2013.
- 498 Repar, J., Briski, N., Buljubašić, M., Zahradka, K., and Zahradka, D.: Exonuclease VII is
- 499 involved in "reckless" DNA degradation in UV-irradiated Escherichia coli, 750,
- 500 https://doi.org/10.1016/j.mrgentox.2012.10.005, 2012.
- 501 Ritchie, R. J.: Consistent sets of spectrophotometric chlorophyll equations for acetone,
- 502 methanol and ethanol solvents, 89, 27–41, https://doi.org/10.1007/s11120-006-9065-9, 2006.
- 503 Roberson, E. B. and Firestone, M. K.: Relationship between desiccation and
- 504 exopolysaccharide production in a soil Pseudomonas sp., 58, 1284–1291,
- 505 https://doi.org/10.1128/aem.58.4.1284-1291.1992, 1992.
- 506 Scrimgeour, C.: Soil Sampling and Methods of Analysis (Second Edition), edited by: Carter,
- 507 M. R. and Gregorich, E. G., 1224 pp., https://doi.org/10.1017/s0014479708006546, 2008.
- 508 Sklarz, M. Y., Levin, L., Gordon, M., and Chalifa-Caspi, V.: NeatSeq-Flow: A Lightweight
- 509 High Throughput Sequencing Workflow Platform for Non-Programmers and Programmers
- 510 alike, 173005, https://doi.org/10.1101/173005, 2018.
- 511 Slade, D. and Radman, M.: Oxidative Stress Resistance in Deinococcus radiodurans, 133–191
- 512 pp., https://doi.org/10.1128/mmbr.00015-10, 2011.

- 513 Št'ovíček, A., Kim, M., Or, D., and Gillor, O.: Microbial community response to hydration-
- desiccation cycles in desert soil, 7, 45735, https://doi.org/10.1038/srep45735, 2017.
- 515 Sukenik, A., Kaplan-Levy, R. N., Welch, J. M., and Post, A. F.: Massive multiplication of
- 516 genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum
- 517 (Cyanobacteria), 6, 670–679, https://doi.org/10.1038/ismej.2011.128, 2012.
- 518 Sunyer-Figueres, M., Wang, C., and Mas, A.: Analysis of ribosomal RNA stability in dead
- 519 cells of wine yeast by quantitative PCR, 270, 1–4,
- 520 https://doi.org/10.1016/j.ijfoodmicro.2018.01.020, 2018.
- 521 Tveit, A. T., Hestnes, A. G., Robinson, S. L., Schintlmeister, A., Dedysh, S. N., Jehmlich, N.,
- 522 von Bergen, M., Herbold, C., Wagner, M., Richter, A., and Svenning, M. M.: Widespread soil
- 523 bacterium that oxidizes atmospheric methane, 116, 8515–8524,
- 524 https://doi.org/10.1073/pnas.1817812116, 2019.
- 525 Wickham, H.: Ggplot2: Elegant graphics for data analysis, 2016.
- 526 Wickham, H.: R: Package 'scales,' https://cran.r-project.org/web/packages/scales.pdf, 527 2017.
- 528 Wickham, H. and Bache, S. M.: Magrittr: A forward-pipe operator for R. 2014.
- 529 Wickham, H., Francois, R., Henry, L., and Müller, K.: Package "dplyr," 2018.
- 530 Wu, Y., Rao, B., Wu, P., Liu, Y., Li, G., and Li, D.: Development of artificially induced
- 531 biological soil crusts in fields and their effects on topsoil, 370, 115–124,
- 532 https://doi.org/10.1007/s11104-013-1611-6, 2013.
- 533 Zvyagintsev, D. G., Zenova, G. M., Doroshenko, E. A., Gryadunova, A. A., Gracheva, T. A.,
- and Sudnitsyn, I. I.: Actinomycete growth in conditions of low moisture, 34, 242–247,
- 535 https://doi.org/10.1134/S1062359007030053, 2007.

537

538 APPPENDICES

- 539 APPPENDIX A
- 540 Tables
- 541 Table A1. Primers used in this study

	Primer name	Primers (5' – 3')	Reference
	V3F(341)	CCTACGGGAGGCAGCAG	
16S rRNA	V4R(515)	TTACCGCGGCKGCTGGCAC	(Vlindworth
	V4R(806)	GGACTACHVGGGTWTCTAAT	$(\mathbf{K}_{111}, \mathbf{W}_{111}, W$
Universal to as	CS1	ACACTGACGACATGGTTCTACA	et al., 2013)
Universal tags	CS2	TACGGTAGCAGAGACTTGGTCT	

Sample	Input	Filtered	Percentage of input passed filter	Denoised	Non- chimeric	Percentage of input non-chimeric
T[R]	99090	87403	88.21	76272	68762	69
T[R]	102014	87207	85.49	75796	64954	64
T[R]	107763	94407	87.61	80242	72676	67
T[R]	94175	81352	86.38	69460	61519	65
T[R]	97752	85658	87.63	76694	65590	67
T[1]	102147	89670	87.79	79436	68611	67
T[1]	110406	96638	87.53	86745	76384	69
T[1]	94247	81576	86.56	72289	65755	70
T[1]	107731	94180	87.42	83504	72831	68
T[1]	96982	84993	87.64	77197	67547	70
T[2]	95525	82453	86.32	73811	63892	67
T[2]	90500	79303	87.63	75977	74636	82
T[2]	84648	74376	87.87	71060	69017	82
T[2]	96778	85143	87.98	75971	66483	69
T[2]	83749	72395	86.44	65649	60857	73
T[3]	85527	74977	87.66	66324	56872	67
T[3]	92648	81056	87.49	74512	67015	72
T[3]	98388	86526	87.94	78048	69910	71
T[3]	92219	79938	86.68	69799	62666	68
T[3]	88140	77515	87.95	73273	72113	82
T[0]	22095	21646	97.97	19900	12628	57
T[0]	23457	22888	97.57	18342	11627	50
T[0]	26072	25368	97.30	20726	12867	49

543 Table A2. Statistics from Dada2

544

Group	Metabolic traits	KEGG ID	Function
	Putative DNA-	K02524	K10; DNA binding protein (fs(1)K10,
	binding protein	K02324	female sterile(1)K10)
	Putative DNA-	K03111	ssh: single-strand DNA-binding protein
	binding protein	ROJIII	sso, single-straid DTVT-binding protein
	Putative DNA-	K03530	hupB: DNA-binding protein HU-beta
	binding protein		
	Putative DNA-	K03622	ssh10b; archaea-specific DNA-binding
	Dinding protein		protein
	binding protein	K03746	hns; DNA-binding protein H-NS
	Putative DNA		dps: starvation_inducible DNA_binding
	binding protein	K04047	protein
	Putative DNA-		CHD8, HELSNE1: chromodomain helicase
	binding protein	K04494	DNA binding protein 8 [EC:3.6.4.12]
	Putative DNA-	1204600	
	binding protein	K04680	ID1; DNA-binding protein inhibitor ID1
	Putative DNA-	V05516	abo A: auguad DNA binding protain
	binding protein	K05510	copA, curved DNA-binding protein
	Putative DNA-	K05732	ARHGAP35, GRLF1; glucocorticoid
	binding protein	R05752	receptor DNA-binding factor 1
	Putative DNA-	K05787	hupA: DNA-binding protein HU-alpha
	binding protein		
	Putative DNA-	K09061	GCF, C20rf3; GC-rich sequence DNA-
DNA	Difficing protein		Difficing factor BAS1 : Mub like DNA binding protein
conservation	hinding protein	K09423	BAS1, Myd-like DNA-oliding protein
	Putative DNA-		REB1: Myb-like DNA-binding protein
	binding protein	K09424	REB1
	Putative DNA-	100 105	K09425; Myb-like DNA-binding protein
	binding protein	K09425	FlbD
	Putative DNA-	K00426	RAP1; Myb-like DNA-binding protein
	binding protein	K09420	RAP1
	Putative DNA-	K10140	DDB2: DNA damage-binding protein 2
	binding protein		2222, 2111 damage officing proton 2
	Putative DNA-	K10610	DDB1; DNA damage-binding protein 1
	binding protein		
	binding protein	K10728	protein 1
	Putative DNA		tus tau: DNA replication terminus site
	binding protein	K10748	binding protein
			RBBP4, HAT2, CAF1, MIS16; histone-
	Histone-like protein	K10752	binding protein RBBP4
	Putative DNA-	IX 10070	kuy DNA and hinding protain Ku
	binding protein	K10979	ku, DNA end-binding protein Ku
	Putative DNA-	K11367	CHD1; chromodomain-helicase-DNA-
	binding protein		binding protein 1 [EC:3.6.4.12]
	Histone-like protein	K11495	CENPA; histone H3-like centromeric protein

546 Table A3. List of the genes used for function prediction ordered by groups and subgroups.

I	Putative DNA-	K11574	CBF2, CBF3A, CTF14; centromere DNA-
	binding protein		binding protein complex CBF3 subunit A
1	Putative DNA-	K11575	CEP3, CBF3B; centromere DNA-binding
	binding protein		protein complex CBF3 subunit B
1	Putative DNA-	K11576	CTF13, CBF3C; centromere DNA-binding
	oinding protein	KIIC	protein complex CBF3 subunit C
1	Putative DNA-	K11642	CHD3, MI2A; chromodomain-helicase-
	oinding protein	K 110	DNA-binding protein 3 [EC:3.6.4.12]
1	Putative DNA-	K11643	CHD4, MI2B; chromodomain-helicase-
t	binding protein	N 110.2	DNA-binding protein 4 [EC:3.6.4.12]
H	Histone-like protein	K11659	RBBP7; histone-binding protein RBBP7
I	Putative DNA-	K11685	stnA · DNA-hinding protein StnA
t	binding protein	KII005	stpri, Divi onding protein stpri
I	Putative DNA-	K12965	7RP1 DAI: Z-DNA binding protein 1
t	binding protein	K12705	LDI I, DI II, L-DI II Onionis protoni i
I	Putative DNA-	K13102	KIN· DNA/RNA-hinding protein KIN17
t	binding protein	K15102	Kitt, Divertifit ondang proton tert.
I	Putative DNA-	K13211	GCFC; GC-rich sequence DNA-binding
t	binding protein	K15211	factor
I	Putative DNA-	K14435	CHD5; chromodomain-helicase-DNA-
t	binding protein	K17755	binding protein 5 [EC:3.6.4.12]
I	Putative DNA-	K14436	CHD6; chromodomain-helicase-DNA-
t	binding protein	X1 +100	binding protein 6 [EC:3.6.4.12]
H	Putative DNA-	к14437	CHD7; chromodomain-helicase-DNA-
t	oinding protein	1114437	binding protein 7 [EC:3.6.4.12]
I	Putative DNA-	K14438	CHD9; chromodomain-helicase-DNA-
t	binding protein	RI 1.20	binding protein 9 [EC:3.6.4.12]
I	Putative DNA-	K14507	ORCA2_3; AP2-domain DNA-binding
t	binding protein	III .007	protein ORCA2/3
			NCOAT, MGEA5; protein O-GlcNAcase /
1	Histone-like protein	K15719	histone acetyltransferase [EC:3.2.1.169
L			2.3.1.48]
1	Putative DNA-	K16640	ssh7: DNA-binding protein 7 [EC:3.1.27]
	binding protein		sonr, Erit entening pretter []
1	Putative DNA-	K17693	ID2: DNA-binding protein inhibitor ID2
	binding protein		
1	Putative DNA-	K17694	ID3: DNA-binding protein inhibitor ID3
	binding protein		
1	Putative DNA-	K17695	ID4: DNA-binding protein inhibitor ID4
	binding protein		
1	Putative DNA-	K17696	EMC; DNA-binding protein inhibitor ID,
	binding protein	-110-110	other
	Histone-like protein	K18710	SLBP; histone RNA hairpin-binding protein
H	Putative DNA-	K18946	gp32, ssb; single-stranded DNA-binding
t	binding protein	KIU	protein
H	Putative DNA-	K19442	ICP8, DBP, UL29; Simplexvirus major
t	binding protein	IS17	DNA-binding protein
		. I	RPH1; DNA damage-responsive
I	Histone-like protein	K19799	transcriptional repressor / [histone H3]-
	r interest in the second s		trimethyl-L-lysine36 demethylase
L.			[EC:1.14.11.69]
1	Putative DNA-	K20091	CHD2; chromodomain-helicase-DNA-
	oinding protein		binding protein 2 [EC:3.6.4.12]

	Putative DNA- binding protein	K20092	CHD1L; chromodomain-helicase-DNA- binding protein 1-like [EC:3.6.4.12]
	Putative DNA-	K22592	AHDC1; AT-hook DNA-binding motif-
	Putative DNA-	K23225	SATB1; DNA-binding protein SATB1
	Putative DNA-	K23226	SATB2; DNA-binding protein SATB2
	Putative DNA-	K23600	TARDBP, TDP43; TAR DNA-binding
	DNA polymerase	K02320	POLA1; DNA polymerase alpha subunit A
	DNA polymerase	K02321	POLA2; DNA polymerase alpha subunit B
	DNA polymerase	K02335	polA; DNA polymerase I [EC:2.7.7.7]
	DNA polymerase	K02346	dinB; DNA polymerase IV [EC:2.7.7.7]
	Exodeoxyribonucle ase VII	K03601	xseA; exodeoxyribonuclease VII large subunit [EC:3.1.11.6]
	Exodeoxyribonucle ase VII	K03602	xseB; exodeoxyribonuclease VII small subunit [EC:3.1.11.6]
DNA repair	DNA polymerase IV	K04479	dbh; DNA polymerase IV (archaeal DinB- like DNA polymerase) [EC:2.7.7.7]
	Exodeoxyribonucle ase VII	K10906	recE; exodeoxyribonuclease VIII [EC:3.1.11]
	DNA polymerase IV	K10981	POL4; DNA polymerase IV [EC:2.7.7.7]
	DNA polymerase IV	K16250	NRPD1; DNA-directed RNA polymerase IV subunit 1 [EC:2.7.7.6]
	DNA polymerase IV	K16252	NRPD2, NRPE2; DNA-directed RNA polymerase IV and V subunit 2 [EC:2.7.7.6]
	DNA polymerase IV	K16253	NRPD7, NRPE7; DNA-directed RNA polymerase IV and V subunit 7
	NiFe hydrogenase	K00437	hydB ; [NiFe] hydrogenase large subunit [EC:1.12.2.1]
	NiFe hydrogenase	K02587	nifE; nitrogenase molybdenum-cofactor synthesis protein NifE
	CO-dehydrogenase CoxM & CoxS	K03518	coxS; aerobic carbon-monoxide dehydrogenase small subunit [EC:1.2.5.3]
	CO-dehydrogenase CoxM & CoxS	K03519	coxM, cutM; aerobic carbon-monoxide dehydrogenase medium subunit [EC:1.2.5.3]
Lithotrophy	CO-dehydrogenase large subunit (coxL) Form I	K03520	CoxL, cutL; aerobic carbon-monoxide dehydrogenase large subunit [EC:1.2.5.3]
	NiFe hydrogenase	K05586	hoxE ; bidirectional [NiFe] hydrogenase diaphorase subunit [EC:7.1.1.2]
	NiFe hydrogenase	K05587	hoxF; bidirectional [NiFe] hydrogenase diaphorase subunit [EC:7.1.1.2]
	NiFe hydrogenase	K05588	hoxU ; bidirectional [NiFe] hydrogenase diaphorase subunit [EC:7.1.1.2]
	SOX sulfur- oxidation system	K17218	sqr; sulfide:quinone oxidoreductase [EC:1.8.5.4]

	SOX sulfur- oxidation system	K17222	soxA; L-cysteine S-thiosulfotransferase [EC:2.8.5.2]
	SOX sulfur- oxidation system	K17223	soxX; L-cysteine S-thiosulfotransferase [EC:2.8.5.2]
	SOX sulfur- oxidation system	K17224	soxB; S-sulfosulfanyl-L-cysteine sulfohydrolase [EC:3.1.6.20]
	SOX sulfur-	K17225	soxC ; sulfane dehydrogenase subunit SoxC
	SOX sulfur-	K17226	soxY; sulfur-oxidizing protein SoxY
	SOX sulfur-	K17227	soxZ; sulfur-oxidizing protein SoxZ
	NiFe hydrogenase	K18005	hoxF; [NiFe] hydrogenase diaphorase moiety
	NiFe hydrogenase	K18006	hoxU; [NiFe] hydrogenase diaphorase
	NiFe hydrogenase	K18008	hydA; [NiFe] hydrogenase small subunit [EC:1.12.2.1]
	Propane monooxygenase (soluble)	K18223	prmA ; propane 2-monooxygenase large subunit [EC:1.14.13.227]
	Propane monooxygenase (soluble)	K18224	prmC; propane 2-monooxygenase small subunit [EC:1.14.13.227]
	Propane monooxygenase (soluble)	K18225	prmB; propane monooxygenase reductase component [EC:1.18.1]
	Propane monooxygenase (soluble)	K18226	prmD; propane monooxygenase coupling protein
	SOX sulfur- oxidation system	K22622	soxD; S-disulfanyl-L-cysteine oxidoreductase SoxD [EC:1.8.2.6]
	SOX sulfur- oxidation system	K24007	soxD; cytochrome aa3-type oxidase subunit SoxD
	SOX sulfur- oxidation system	K24008	soxC; cytochrome aa3-type oxidase subunit III
	SOX sulfur- oxidation system	K24009	soxB; cytochrome aa3-type oxidase subunit I [EC:7.1.1.4]
	SOX sulfur- oxidation system	K24010	soxA; cytochrome aa3-type oxidase subunit II [EC:7.1.1.4]
	SOX sulfur- oxidation system	K24011	soxM; cytochrome aa3-type oxidase subunit I/III [EC:7.1.1.4]
	ABC sugar transporters	K02025	ABC.MS.P; multiple sugar transport system permease protein
	ABC sugar transporters	K02026	ABC.MS.P1; multiple sugar transport system permease protein
Orgonation-h-	ABC sugar transporters	K02027	ABC.MS.S; multiple sugar transport system substrate-binding protein
Organotrophy	ABC sugar transporters	K02056	ABC.SS.A; simple sugar transport system ATP-binding protein [EC:7.5.2]
	ABC sugar transporters	K02057	ABC.SS.P; simple sugar transport system permease protein
	ABC sugar transporters	K02058	ABC.SS.S; simple sugar transport system

PTS sugar importers	K02777	crr; sugar PTS system EIIA component [EC:2.7.1]
Amino acid	K03293	TC.AAT; amino acid transporter, AAT
Peptide transporter	K03305	TC.POT; proton-dependent oligopeptide
Amino acid		transporter, POT family TC.LIVCS: branched-chain amino
transporter	K03311	acid:cation transporter, LIVCS family
Carboxylate	K03326	TC.DCUC, dcuC, dcuD; C4-dicarboxylate
transporters	103320	transporter, DcuC family
Amino acid	K03450	SLC7A; solute carrier family 7 (L-type
transporter		amino acid transporter), other
hydrolases	K04844	[EC:3.2.1]
Amino acid		SLC6A15S; solute carrier family 6
transporter	K05048	(neurotransmitter transporter, amino
A 1		acid/orphan) member 15/16/17/18/20
Amino acid	K05615	SLC1A4, SATT; solute carrier family 1 (neutrol amino acid transporter) member 4
A mino acid		SI C1A5: solute carrier family 1 (neutral
transporter	K05616	amino acid transporter) member 5
Amino acid		
transporter	K07084	yuiF; putative amino acid transporter
Carboxylate	V07701	dcuA; anaerobic C4-dicarboxylate
transporters	K07791	transporter DcuA
Carboxylate	K07792	dcuB; anaerobic C4-dicarboxylate
transporters	KOTTJZ	transporter DcuB
ABC sugar	K10546	ABC.GGU.S, chvE; putative multiple sugar
transporters		transport system substrate-binding protein
ABC sugar	K10547	ABC.GGU.P, gguB; putative multiple sugar
transporters		ABC GGU A gguA: putative multiple sugar
ABC sugar	K10548	transport system ATP-binding protein
transporters	1110540	[EC:7.5.2]
Carboxylate	W11600	dctQ ; C4-dicarboxylate transporter, DctQ
transporters	K11689	subunit
Carboxylate	K11600	dctM; C4-dicarboxylate transporter, DctM
transporters	K11090	subunit
Amino acid	1110	SLC38A3, SNAT3; solute carrier family 38
transporter	K13576	(sodium-coupled neutral amino acid
		SL C25 A 10, DIC: solute corrier family 25
Carboxylate	K13577	(mitochondrial dicarboxylate transporter)
transporters	113377	member 10
Amino acid	1110500	SLC7A5, LAT1: solute carrier family 7 (L-
transporter	K13780	type amino acid transporter), member 5
Amino acid	K13781	SLC7A8, LAT2; solute carrier family 7 (L-
transporter	K15/01	type amino acid transporter), member 8
Amino acid	K13782	SLC7A10, ASC1; solute carrier family 7 (L-
transporter		type amino acid transporter), member 10
Amino acid	K13863	SLU/AI, AIRCI; solute carrier family 7
Amino acid		(cauonic amino acid transporter), member 1 SLC7A2 ATPC2: solute corrige family 7
transporter	K13864	(cationic amino acid transporter), member 2
	•	,

	Amino acid	K13865	SLC7A3, ATRC3; solute carrier family 7
	transporter	───	(cationic amino acid transporter), member 3
	Amino acid	K13866	SLC/A4; solute carrier family / (cationic
	transporter	<u> </u>	amino acid transporter), member 4
	Amino acid	K13867	SLC/A/; solute carrier family / (L-type
	transporter	 	amino acid transporter), member /
	Amino acid	K13868	SLC/A9, BATT; solute carrier family / (L-
	transporter	───	type amino acid transporter), member 9
	Amino acid	K13869	SLC7A11; solute carrier family / (L-type
	transporter		amino acid transporter), member 11
	Amino acid	K13870	SLC7A13, AGT1; solute carrier family / (L-
	transporter		type amino acid transporter), member 13
	Amino acid	K13871	SLC7A14; solute carrier family 7 (cationic
	transporter		amino acid transporter), member 14
	Amino acid	K13872	SLC7A6; solute carrier family 7 (L-type
	transporter	11100.2	amino acid transporter), member 6
	Pentide transporter	K14206	SLC15A1, PEPT1; solute carrier family 15
	I opide d'ansporter	1117200	(oligopeptide transporter), member 1
	Amino acid		SLC38A2, SNAT2; solute carrier family 38
	transporter	K14207	(sodium-coupled neutral amino acid
	transporter		transporter), member 2
	Amino acid	1714200	SLC36A, PAT; solute carrier family 36
	transporter	K14209	(proton-coupled amino acid transporter)
			SLC3A1, RBAT; solute carrier family 3
	Amino acia	K14210	(neutral and basic amino acid transporter),
	transporter	-	member 1
	~ 1 1.		SLC5A8 12, SMCT; solute carrier family 5
	Carboxylate transporters	K14388	(sodium-coupled monocarboxylate
			transporter). member 8/12
			SLC13A2 3 5: solute carrier family 13
	Carboxylate	K14445	(sodium-dependent dicarboxylate
	transporters		transporter). member $2/3/5$
	Dentide to t		SI C15A2 PEPT2: solute carrier family 15
	Peptide transporter	K14637	(oligoneptide transporter), member 2
			SI C15A3 A PHT: solute carrier family 15
	Peptide transporter	K14638	(nontide/histidine transporter) member 3/4
			SI C28A1 SNAT1 GI NT: solute carrier
	Amino acid	K 14990	family 38 (sodium_coupled neutral amino
	transporter	K14770	failing 50 (soutum-coupled neutral annuo
			SI C228 4 SNAT4: solute carrier family 28
	Amino acid	V14001	SLUSAA4, SINA 14; Solute carrier failing 50
	transporter	K14991	(sodium-coupled neutral animo acid
	-	───	transporter), member 4
	Amino acid	1714002	SLC38A5, SNA15; solute carrier family 50
	transporter	K14992	(sodium-coupled neutral amino acid
	*	 	transporter), member 5
	Amino acid	771 1000	SLC38A6, SNA16; solute carrier family 38
	transporter	K14993	(sodium-coupled neutral amino acid
			transporter), member 6
	Amino acid		SLC38A7_8; solute carrier family 38
	transporter	K14994	(sodium-coupled neutral amino acid
	transporte-	<u> </u>	transporter), member 7/8
	Amino acid transporter	K14995	SLC38A9; solute carrier family 38 (sodium-
			coupled neutral amino acid transporter),
			member 9

	Amino acid transporter	K14996	SLC38A10; solute carrier family 38 (sodium-coupled neutral amino acid transporter) member 10
	Amino acid transporter	K14997	SLC38A11; solute carrier family 38 (sodium-coupled neutral amino acid transporter), member 11
	Amino acid transporter	K15015	SLC32A, VGAT; solute carrier family 32 (vesicular inhibitory amino acid transporter)
	Carboxylate transporters	K15110	SLC25A21, ODC; solute carrier family 25 (mitochondrial 2-oxodicarboxylate transporter), member 21
	Amino acid transporter	K16261	YAT; yeast amino acid transporter
	Amino acid transporter	K16263	yjeH; amino acid efflux transporter
	Peptide transporter	K17938	sbmA, bacA; peptide/bleomycin uptake transporter
	RuBisCO	K01601	rbcL; ribulose-bisphosphate carboxylase large chain [EC:4.1.1.39]
	Chlorophyll synthesis	K01669	phrB; deoxyribodipyrimidine photo-lyase [EC:4.1.99.3]
	Chlorophyll synthesis	K02689	psaA; photosystem I P700 chlorophyll a apoprotein A1
	Chlorophyll synthesis	K02690	psaB; photosystem I P700 chlorophyll a apoprotein A2
	Chlorophyll synthesis	K02691	psaC; photosystem I subunit VII
	Chlorophyll synthesis	K02692	psaD; photosystem I subunit II
	Chlorophyll synthesis	K02693	psaE; photosystem I subunit IV
	Chlorophyll synthesis	K02694	psaF; photosystem I subunit III
Phototrophy	Chlorophyll synthesis	K02695	psaH; photosystem I subunit VI
1 10000 - FJ	Chlorophyll synthesis	K02696	psaI; photosystem I subunit VIII
	Chlorophyll synthesis	K02697	psaJ; photosystem I subunit IX
	Chlorophyll synthesis	K02698	psaK; photosystem I subunit X
	Chlorophyll synthesis	K02699	psaL; photosystem I subunit XI
	Chlorophyll synthesis	K02700	psaM; photosystem I subunit XII
	Chlorophyll synthesis	K02701	psaN; photosystem I subunit PsaN
	Chlorophyll synthesis	K02702	psaX; photosystem I 4.8kDa protein
	Chlorophyll synthesis	K02703	psbA; photosystem II P680 reaction center D1 protein [EC:1.10.3.9]
	Chlorophyll synthesis	K02704	psbB; photosystem II CP47 chlorophyll apoprotein

Chlorophyll	K02705	psbC; photosystem II CP43 chlorophyll
syntnesis		
synthesis	K02706	D2 protein [EC:1.10.3.9]
Chlorophyll	K02707	psbE; photosystem II cytochrome b559
synthesis		subunit alpha
Chlorophyll synthesis	K02708	psbF; photosystem II cytochrome b559 subunit beta
Chlorophyll		Suburit botu
synthesis	K02709	psbH; photosystem II PsbH protein
Chlorophyll		
synthesis	K02710	psbl; photosystem II Psbl protein
Chlorophyll	K02711	pshI: photosystem II PshI protein
synthesis	K02711	psos, photosystem in r sos protem
Chlorophyll	K02712	psbK: photosystem II PsbK protein
synthesis		r ··· , r-····, r-···
Chlorophyll	K02713	psbL; photosystem II PsbL protein
synthesis		r , r
Chlorophyll	K02714	psbM; photosystem II PsbM protein
synthesis		
Chlorophyll	K02716	psbO; photosystem II oxygen-evolving
synthesis		enhancer protein 1
Chlorophyll	K02717	psbP; photosystem II oxygen-evolving
synthesis		ennancer protein 2
Chlorophyll	K02718	psbT; photosystem II PsbT protein
synthesis		
Chlorophyll	K02719	psbU; photosystem II PsbU protein
synthesis		
Chlorophyll synthesis	K02720	psbV; photosystem II cytochrome c550
Chlorophyll		
synthesis	K02721	psbW; photosystem II PsbW protein
Chlorophyll		
synthesis	K02722	psbX; photosystem II PsbX protein
Chlorophvll	WOOTOO	
synthesis	K02723	psbY; photosystem II PsbY protein
Chlorophyll	KOOZOA	
synthesis	K02724	psdz; photosystem II PsbZ protein
Chlorophyll	K03157	LTB, TNFC; lymphotoxin beta (TNF
synthesis	KU313/	superfamily, member 3)
Chlorophyll	K03150	TNFRSF3, LTBR; lymphotoxin beta
synthesis	K03139	receptor TNFR superfamily member 3
Chlorophyll	K03541	nshR: photosystem II 10kDa protein
synthesis	1000041	psor, photosystem in Tokiza protein
Chlorophyll	K03542	psbS: photosystem II 22kDa protein
synthesis	1103372	poes, protosystem i 22kDu protein
Chlorophyll	K03716	splB; spore photoproduct lyase
synthesis	1100/10	[EC:4.1.99.14]
Chlorophyll	K05468	LTA, TNFB; lymphotoxin alpha (TNF
synthesis		supertamily, member 1)
Chlorophyll	K06315	spIA; transcriptional regulator of the spore
synthesis		photoproduct lyase operon
Cnioropnyll	K06876	KU08/0; deoxyribodipyrimidine photolyase-
synullesis	1	related broteni

	Chlorophyll synthesis	K08901	psbQ; photosystem II oxygen-evolving enhancer protein 3
	Chlorophyll synthesis	K08902	psb27; photosystem II Psb27 protein
	Chlorophyll synthesis	K08903	psb28; photosystem II 13kDa protein
	Chlorophyll synthesis	K08904	psb28-2; photosystem II Psb28-2 protein
	Chlorophyll synthesis	K08905	psaG; photosystem I subunit V
	Chlorophyll	K08928	pufL; photosynthetic reaction center L subunit
	Chlorophyll synthesis	K08929	pufM; photosynthetic reaction center M subunit
	Chlorophyll	K08940	pscA; photosystem P840 reaction center
	Chlorophyll	K08941	pscB; photosystem P840 reaction center iron-sulfur protein
	Chlorophyll synthesis	K08942	pscC; photosystem P840 reaction center cvtochrome c551
	Chlorophyll synthesis	K08943	pscD; photosystem P840 reaction center protein PscD
	Chlorophyll synthesis	K11524	pixI ; positive phototaxis protein PixI
	Chlorophyll synthesis	K13991	puhA; photosynthetic reaction center H subunit
	Chlorophyll synthesis	K13992	pufC; photosynthetic reaction center cytochrome c subunit
	Chlorophyll synthesis	K13994	pufX; photosynthetic reaction center PufX protein
	Chlorophyll	K14332	psaO; photosystem I subunit PsaO
	Chlorophyll	K19016	IMPG1, SPACR; interphotoreceptor matrix proteoglycan 1
	Chlorophyll synthesis	K19017	IMPG2, SPACRCAN; interphotoreceptor matrix proteoglycan 2
	Chlorophyll synthesis	K20715	PHOT; phototropin [EC:2.7.11.1]
	Chlorophyll synthesis	K22464	FAP; fatty acid photodecarboxylase [EC:4.1.1.106]
	Chlorophyll synthesis	K22619	Aequorin; calcium-regulated photoprotein [EC:1.13.12.24]
	Chlorophyll synthesis	K24165	PCARE; photoreceptor cilium actin regulator
	Cytochrome C oxidase	K00404	ccoN; cytochrome c oxidase cbb3-type subunit I [EC:7.1.1.9]
ROS-damage prevention	Cytochrome C oxidase	K00405	ccoO; cytochrome c oxidase cbb3-type subunit II
	Cytochrome C oxidase	K00406	ccoP; cytochrome c oxidase cbb3-type subunit III
	Cytochrome C oxidase	K00407	ccoQ; cytochrome c oxidase cbb3-type subunit IV
	Cytochrome bd	K00424	cydX; cytochrome bd-I ubiquinol oxidase subunit X [EC:7.1.1.7]

Cytochrome C oxidase	K00424	cydX; cytochrome bd-I ubiquinol oxidase subunit X [EC:7.1.1.7]
Cytochrome bd ubiquinol oxidase	K00425	cydA; cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]
Cytochrome C oxidase	K00425	cydA; cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]
Cytochrome bd ubiquinol oxidase	K00426	cydB; cytochrome bd ubiquinol oxidase subunit II [EC:7.1.1.7]
Cytochrome C oxidase	K00426	cydB; cytochrome bd ubiquinol oxidase subunit II [EC:7.1.1.7]
Cytochrome C oxidase	K00428	E1.11.1.5; cytochrome c peroxidase
Cytochrome C oxidase	K02256	COX1; cytochrome c oxidase subunit 1 [EC:7.1.1.9]
Cytochrome C	K02258	COX11, ctaG; cytochrome c oxidase assembly protein subunit 11
Cytochrome C	K02259	COX15, ctaA; cytochrome c oxidase assembly protein subunit 15
Cytochrome C	K02260	COX17; cytochrome c oxidase assembly protein subunit 17
Cytochrome C	K02261	COX2; cytochrome c oxidase subunit 2
Cytochrome C	K02262	COX3; cytochrome c oxidase subunit 3
Cytochrome C	K02263	COX4; cytochrome c oxidase subunit 4
Cytochrome C	K02264	COX5A; cytochrome c oxidase subunit 5a
Cytochrome C	K02265	COX5B; cytochrome c oxidase subunit 5b
Cytochrome C	K02266	COX6A; cytochrome c oxidase subunit 6a
Cytochrome C	K02267	COX6B; cytochrome c oxidase subunit 6b
Cytochrome C	K02268	COX6C; cytochrome c oxidase subunit 6c
Cytochrome C	K02269	COX7; cytochrome c oxidase subunit 7
Cytochrome C oxidase	K02270	COX7A; cytochrome c oxidase subunit 7a
Cytochrome C oxidase	K02271	COX7B; cytochrome c oxidase subunit 7b
Cytochrome C oxidase	K02272	COX7C; cytochrome c oxidase subunit 7c
Cytochrome C oxidase	K02273	COX8; cytochrome c oxidase subunit 8
Cytochrome C oxidase	K02274	coxA, ctaD; cytochrome c oxidase subunit I [EC:7.1.1.9]
Cytochrome C oxidase	K02275	coxB, ctaC; cytochrome c oxidase subunit II [EC:7.1.1.9]
Cytochrome C oxidase	K02276	coxC, ctaE; cytochrome c oxidase subunit III [EC:7.1.1.9]
Cytochrome C oxidase	K02277	coxD, ctaF; cytochrome c oxidase subunit IV [EC:7.1.1.9]

	Cytochrome C oxidase	K02297	cyoA; cytochrome o ubiquinol oxidase subunit II [EC:7.1.1.3]
	Cytochrome C oxidase	K02298	cyoB; cytochrome o ubiquinol oxidase subunit I [EC:7.1.1.3]
	Cytochrome C oxidase	K02299	cyoC; cytochrome o ubiquinol oxidase subunit III
	Cytochrome C oxidase	K02300	cyoD; cytochrome o ubiquinol oxidase subunit IV
	Cytochrome C oxidase	K02826	qoxA ; cytochrome aa3-600 menaquinol oxidase subunit II [EC:7.1.1.5]
	Cytochrome C oxidase	K02827	qoxB; cytochrome aa3-600 menaquinol oxidase subunit I [EC:7.1.1.5]
	Cytochrome C oxidase	K02828	qoxC; cytochrome aa3-600 menaquinol oxidase subunit III [EC:7.1.1.5]
	Cytochrome C	K02829	qoxD; cytochrome aa3-600 menaquinol oxidase subunit IV [EC·7 1 1 5]
	Mn2+ catalase	K07217	K07217: Mn-containing catalase
	Cytochrome C oxidase	K15408	coxAC; cytochrome c oxidase subunit I+III [EC:7.1.1.9]
	Cytochrome C oxidase	K15862	ccoNO; cytochrome c oxidase cbb3-type subunit I/II [EC:7.1.1.9]
	Cytochrome C oxidase	K18173	COA1; cytochrome c oxidase assembly factor 1
	Cytochrome C oxidase	K18174	COA2; cytochrome c oxidase assembly factor 2
	Cytochrome C oxidase	K18175	CCDC56, COA3; cytochrome c oxidase assembly factor 3, animal type
	Cytochrome C oxidase	K18176	COA3; cytochrome c oxidase assembly factor 3, fungi type
	Cytochrome C oxidase	K18177	COA4; cytochrome c oxidase assembly factor 4
	Cytochrome C oxidase	K18178	COA5, PET191; cytochrome c oxidase assembly factor 5
	Cytochrome C oxidase	K18179	COA6; cytochrome c oxidase assembly factor 6
	Cytochrome C oxidase	K18180	COA7, SELRC1, RESA1; cytochrome c oxidase assembly factor 7
	Cytochrome C oxidase	K18181	COX14; cytochrome c oxidase assembly factor 14
	Cytochrome C oxidase	K18182	COX16; cytochrome c oxidase assembly protein subunit 16
	Cytochrome C oxidase	K18183	COX19; cytochrome c oxidase assembly protein subunit 19
	Cytochrome C oxidase	K18184	COX20; cytochrome c oxidase assembly protein subunit 20
	Cytochrome C oxidase	K18185	COX23; cytochrome c oxidase assembly protein subunit 23
	Cytochrome C oxidase	K18189	TACO1; translational activator of cytochrome c oxidase 1
	Cytochrome bd ubiquinol oxidase	K22501	appX; cytochrome bd-II ubiquinol oxidase subunit AppX [EC:7.1.1.7]
	Cytochrome C oxidase	K22501	appX; cytochrome bd-II ubiquinol oxidase subunit AppX [EC:7.1.1.7]

	Cytochrome C oxidase	K24007	soxD; cytochrome aa3-type oxidase subunit SoxD			
	Cytochrome C oxidase	K24008	soxC; cytochrome aa3-type oxidase subunit III			
	Cytochrome C oxidase	K24009	soxB; cytochrome aa3-type oxidase subunit I [EC:7.1.1.4]			
	Cytochrome C oxidase	K24010	soxA; cytochrome aa3-type oxidase subunit II [EC:7.1.1.4]			
	Cytochrome C oxidase	K24011	soxM; cytochrome aa3-type oxidase subunit I/III [EC:7.1.1.4]			
	Glycogen synthesis	K00693	GYS; glycogen synthase [EC:2.4.1.11]			
	Sporulation (Actinobacteria)	K02490	spo0F; two-component system, response regulator, stage 0 sporulation protein F			
	Sporulation (Actinobacteria)	K02491	kinA; two-component system, sporulation sensor kinase A [EC:2.7.13.3]			
	Glycogen synthesis	K03083	GSK3B; glycogen synthase kinase 3 beta [EC:2.7.11.26]			
	Sporulation (Actinobacteria)	K03091	sigH; RNA polymerase sporulation-specific sigma factor			
	Sporulation (Actinobacteria)	K04769	spoVT; AbrB family transcriptional regulator, stage V sporulation protein T			
	Sporulation (Actinobacteria)	K06283	spoIIID; putative DeoR family transcriptional regulator, stage III sporulation protein D			
	Sporulation (Actinobacteria)	K06348	kapD; sporulation inhibitor KapD			
	Sporulation (Actinobacteria)	K06359	rapA, spo0L; response regulator aspartate phosphatase A (stage 0 sporulation protein L) [EC:3.1]			
	Sporulation (Actinobacteria)	K06371	sda; developmental checkpoint coupling sporulation initiation to replication initiation			
Sporulation	Sporulation (Actinobacteria)	K06375	spo0B; stage 0 sporulation protein B (sporulation initiation phosphotransferase) [EC:2.7]			
	Sporulation (Actinobacteria)	K06376	spo0E; stage 0 sporulation regulatory protein			
	Sporulation (Actinobacteria)	K06377	spo0M; sporulation-barren protein			
	Sporulation (Actinobacteria)	K06378	spoIIAA; stage II sporulation protein AA (anti-sigma F factor antagonist)			
	Sporulation (Actinobacteria)	K06379	spoIIAB; stage II sporulation protein AB (anti-sigma F factor) [EC:2.7.11.1]			
	Sporulation (Actinobacteria)	K06380	spoIIB; stage II sporulation protein B			
	Sporulation (Actinobacteria)	K06381	spoIID; stage II sporulation protein D			
	Sporulation (Actinobacteria)	K06382	spoIIE; stage II sporulation protein E [EC:3.1.3.16]			
	Sporulation (Actinobacteria)	K06383	spoIIGA; stage II sporulation protein GA (sporulation sigma-E factor processing peptidase) [EC:3.4.23]			
	Sporulation (Actinobacteria)	K06384	spoIIM; stage II sporulation protein M			

Sporulation (Actinobacteria)	K06385	spoIIP; stage II sporulation protein P
Sporulation (Actinobacteria)	K06386	spoIIQ ; stage II sporulation protein Q
Sporulation (Actinobacteria)	K06387	spoIIR; stage II sporulation protein R
Sporulation (Actinobacteria)	K06388	spoIISA ; stage II sporulation protein SA
Sporulation (Actinobacteria)	K06389	spoIISB; stage II sporulation protein SB
Sporulation (Actinobacteria)	K06390	spoIIIAA; stage III sporulation protein AA
Sporulation (Actinobacteria)	K06391	spoIIIAB; stage III sporulation protein AB
Sporulation (Actinobacteria)	K06392	spoIIIAC; stage III sporulation protein AC
Sporulation (Actinobacteria)	K06393	spoIIIAD; stage III sporulation protein AD
Sporulation (Actinobacteria)	K06394	spoIIIAE; stage III sporulation protein AE
Sporulation (Actinobacteria)	K06395	spoIIIAF; stage III sporulation protein AF
Sporulation (Actinobacteria)	K06396	spoIIIAG; stage III sporulation protein AG
Sporulation (Actinobacteria)	K06397	spoIIIAH; stage III sporulation protein AH
Sporulation (Actinobacteria)	K06398	spoIVA; stage IV sporulation protein A
Sporulation (Actinobacteria)	K06399	spoIVB; stage IV sporulation protein B [EC:3.4.21.116]
Sporulation (Actinobacteria)	K06401	spoIVFA; stage IV sporulation protein FA
Sporulation (Actinobacteria)	K06402	spoIVFB; stage IV sporulation protein FB [EC:3.4.24]
Sporulation (Actinobacteria)	K06403	spoVAA; stage V sporulation protein AA
Sporulation (Actinobacteria)	K06404	spoVAB; stage V sporulation protein AB
Sporulation (Actinobacteria)	K06405	spoVAC; stage V sporulation protein AC
Sporulation (Actinobacteria)	K06406	spoVAD; stage V sporulation protein AD
Sporulation (Actinobacteria)	K06407	spoVAE; stage V sporulation protein AE
Sporulation (Actinobacteria)	K06408	spoVAF; stage V sporulation protein AF
Sporulation (Actinobacteria)	K06409	spoVB; stage V sporulation protein B
Sporulation (Actinobacteria)	K06412	spoVG; stage V sporulation protein G
Sporulation (Actinobacteria)	K06413	spoVK; stage V sporulation protein K
Sporulation (Actinobacteria)	K06414	spoVM; stage V sporulation protein M

Sporulation (Actinobacteria)	K06415	spoVR; stage V sporulation protein R
Sporulation (Actinobacteria)	K06416	spoVS; stage V sporulation protein S
Sporulation (Actinobacteria)	K06417	spoVID; stage VI sporulation protein D
Sporulation (Actinobacteria)	K06437	yknT; sigma-E barrenled sporulation protein
(Actinobacteria) Sporulation	K06438	yqfD; similar to stage IV sporulation protein
Sporulation	K07697	kinB; two-component system, sporulation
(Actinobacteria) Sporulation	K07698	kinC; two-component system, sporulation
(Actinobacteria) Sporulation	K07600	sensor kinase C [EC:2.7.13.3] spo0A; two-component system, response
(Actinobacteria)	K07099	regulator, stage 0 sporulation protein A
Sporulation (Actinobacteria)	K08293	SMK1; sporulation-specific mitogen- activated protein kinase SMK1 [EC:2.7.11.24]
Sporulation (Actinobacteria)	K08384	spoVD; stage V sporulation protein D (sporulation-specific penicillin-binding protein)
Glycogen synthesis	K08822	GSK3A; glycogen synthase kinase 3 alpha [EC:2.7.11.26]
Sporulation (Actinobacteria)	K12576	SPO12; sporulation-specific protein 12
Sporulation (Actinobacteria)	K12771	SPS1; sporulation-specific protein 1 [EC:2.7.11.1]
Sporulation (Actinobacteria)	K12772	SPS4; sporulation-specific protein 4
Sporulation (Actinobacteria)	K12773	SPR3; sporulation-regulated protein 3
Sporulation (Actinobacteria)	K12783	SSP1; sporulation-specific protein 1
Sporulation (Actinobacteria)	K13532	kinD; two-component system, sporulation sensor kinase D [EC:2.7.13.3]
Sporulation (Actinobacteria)	K13533	kinE; two-component system, sporulation sensor kinase E [EC:2.7.13.3]
Glycogen synthesis	K16150	K16150; glycogen synthase [EC:2.4.1.11]
Exopolysaccharide	K16566	exoY ; exopolysaccharide production protein
synthesis	1110200	ExoY
Exopolysaccharide synthesis	K16567	exoQ ; exopolysaccharide production protein ExoQ
Exopolysaccharide synthesis	K16568	exoZ ; exopolysaccharide production protein ExoZ
Sporulation (Actinobacteria)	K16947	SPR28; sporulation-regulated protein 28
Glycogen synthesis	K20812	glgA; glycogen synthase [EC:2.4.1.242]

549	Table A4	Chlorophyll	concentrations	and water	content	values in	the h	iocrust at	each s	ampling	point
577	1 abic 714.	Chiorophyn	concentrations	and water	content	values m	une o	noerust at	cach s	ampning	point

550 and site.

Time	Chlorophyll concentration (mg chla/ g soil)	Water content (%)	Total organic carbon (%)	Total nitrogen (%)	Polysaccharides
T[0]	7.7	1.9	4.2	0.1	63.6
T[0]	8.6	2.7	4.1	0.1	69.4
T[0]	6.8	2.3	4.2	0.1	64.2
T[R]	10.1	13.6	3.0	0.1	54.3
T[R]	16.1	16.9	3.9	0.1	224.5
T[R]	15.7	16.6	3.8	0.1	134.8
T[R]	12.7	16.3	4.0	0.1	111.4
T[R]	14.2	17.5	4.0	0.1	157.1
T[1]	10.5	5.3	3.3	0.1	121.6
T[1]	16.0	5.6	3.2	0.1	82.6
T[1]	16.9	7.1	4.0	0.1	145.5
T[1]	15.3	6.2	4.0	0.1	168.9
T[1]	14.2	6.8	3.9	0.1	199.6
T[2]	10.1	3.9	3.9	0.1	78.4
T[2]	11.8	4.5	4.0	0.1	85.0
T[2]	11.8	4.5	4.2	0.1	133.3
T[2]	13.0	5.1	4.1	0.1	111.0
T[2]	13.0	6.9	4.1	0.1	59.8
T[3]	9.9	2.9	3.8	0.1	66.7
T[3]	12.8	3.7	3.7	0.1	78.4
T[3]	9.3	3.7	3.7	0.1	39.9
T[3]	9.4	4.3	4.5	0.1	75.7
T[3]	14.5	3.8	4.6	0.1	102.2

551

- Table A5. Dunn tests p values for chlorophyll concentration (mg chla/g of soil), water content (%),
- total organic carbon content (%) and total nitrogen (%) in biocrust samples collected at the different
- sampling point. Bold numbers mark significant differences (<0.05).

Comparison	Chlorophyll	Water content	Total organic Carbon	Total Nitrogen	Polysaccharides
T[0] - T[1]	5.4E-03	5.7E-02	8.9E-01	1.7E-01	4.60E-02
T[0] - T[2]	2.8E-02	3.6E-01	6.4E-01	5.3E-01	7.34E-01
T[1] - T[2]	2.6E-01	2.6E-02	5.5E-01	4.5E-01	9.00E-02
T[0] - T[3]	1.8E-01	2.0E-01	7.5E-01	6.5E-02	6.93E-01
T[1] - T[3]	5.3E-02	8.0E-03	8.5E-01	6.1E-01	2.00E-02
T[2] - T[3]	1.7E-01	3.2E-01	4.3E-01	2.1E-01	4.64E-01
T[0] - T[R]	3.6E-06	1.6E-01	8.4E-01	7.2E-01	2.04E-01
T[1] - T[R]	2.6E-02	2.8E-01	9.5E-01	3.0E-01	4.26E-01
T[2] - T[R]	4.9E-03	8.6E-02	5.1E-01	7.8E-01	3.45E-01
T[3] - T[R]	1.9E-04	3.3E-02	9.0E-01	1.3E-01	1.02E-01

Phylum	Order	Time Point	Relative Abundance
		T[0]	0.023
		T[R]	0.036
	Frankiales	T[1]	0.013
		T[2]	0.032
		T[3]	0.021
		T[0]	0.0097
		T[R]	0.0053
	IMCC26256	T[1]	0.0084
		T[2]	0.0086
		T[3]	0.0062
		T[0]	0.39
		T[R]	0.0098
	Micrococcales	T[2]	0.0082
		T[3]	0.0067
		T[R]	0.014
		T[1]	0.0056
	Micromonosporales	T[2]	0.0075
		T[3]	0.0075
Actinobacteria		T[1]	0.0053
	Microtrichales	T[2]	0.0054
		T[R]	0.011
	Propionibacteriales	T[1]	0.0062
		T[2]	0.0095
		T[3]	0.0053
		T[R]	0.0079
	Pseudonocardiales	T[2]	0.0054
		T[0]	0.015
		T[R]	0.075
	Rubrobacterales	T[1]	0.088
		T[2]	0.1
		T[3]	0.08
		T[0]	0.077
		T[R]	0.04
	Solirubrobacterales	T[1]	0.043
		T[2]	0.046
		T[3]	0.032
		T[0]	0.021
		T[R]	0.012
Cuanabastaria	Chloroplast	T[1]	0.027
Cyanobacteria		T[2]	0.028
		T[3]	0.018
	Cyanobacteriales	T[0]	0.19
Cuenchasteria	Cuenchasteriales	T[R]	0.39
Cyanobacteria	Cyanobacteriales	T[1]	0.33

557 Table A6. Relative abundance of the taxa in the biocrust community at each time point.

		T[2]	0.29
		T[3]	0.35
		T[R]	0.013
		T[1]	0.015
	Unknown Oxyphotobacteria	T[2]	0.014
		T[3]	0.015
	Thermosynechococcales	T[0]	0.011
Acidobacteriota	Bryobacterales	T[R]	0.0052
	5	T[0]	0.0062
	Chitinophagales	T[R]	0.0052
	1 0	T[2]	0.0073
		T[0]	0.0092
Bacteroidota		T[R]	0.096
	Cytophagales	T[1]	0.12
	-) - _F g	T[2]	0.079
		T[3]	0.091
		T[R]	0.0084
	Kallotenuales	T[2]	0.016
Chloroflexi		T[3]	0.0084
	Thermomicrobiales	T[2]	0.0051
			0.0054
	Gemmatimonadales	T[2]	0.0069
Gemmatimonadota		T[R]	0.016
	Longimicrobiales	T[2]	0.0054
			0.0057
	Haliangiales	T[3]	0.006
		TIR	0.02
		T[1]	0.011
	Myxococcales	T[2]	0.014
		T[2]	0.014
		T[8]	0.015
Myxococcota		T[1]	0.011
	Nannocystales	T[2]	0.011
		T[2]	0.0050
		T[8]	0.0083
		T[1]	0.0081
	Polyangiales	T[2]	0.006
		T[2]	0.000
		T[5]	0.0000
		T[1]	0.013
	Acetobacterales	T[2]	0.012
Proteobacteria		T[3]	0.016
	Azosnirillales	T[0]	0.031
	Burkholderiales	T[0]	0.057
	Burkholdenales		0.013
Proteobacteria	Burkholderiales	T[1]	0.013
		[]	0.011

		T[2]	0.014
		T[3]	0.013
		T[0]	0.013
		T[R]	0.022
	Caulobacterales	T[1]	0.035
		T[2]	0.021
		T[3]	0.025
	Pseudomonadales	T[0]	0.014
		T[0]	0.087
		T[R]	0.044
	Rhizobiales	T[1]	0.063
		T[2]	0.07
		T[3]	0.068
	Rhodobacterales	T[0]	0.0055
		T[R]	0.016
		T[1]	0.017
		T[2]	0.021
		T[3]	0.016
		T[0]	0.019
		T[R]	0.038
	Sphingomonadales	T[1]	0.044
		T[2]	0.044
		T[3]	0.034
		T[R]	0.012
Varmaamianahista	Chthonicheotonolo-	T[1]	0.067
verrucomicrodiota	Chinomodacterales	T[2]	0.044
		T[3]	0.095

558

- 560 Table A7. P-values of the Dunn tests between time points on the relative abundance of the
- 561 actinobacterial and cyanobacterial orders. Bold numbers are significant (<0.05).

Comparison	Cyanobacteria	Actinobacteria
T[0] - T[1]	6.1E-10	8.2E-13
T[0] - T[2]	5.1E-08	2.5E-14
T[0] - T[3]	6.0E-10	6.9E-11
T[0] - T[R]	6.5E-10	6.5E-14
T[1] - T[3]	5.0E-01	2.3E-01
T[1] - T[2]	1.9E-01	2.9E-01
T[1] - T[R]	5.0E-01	3.5E-01
T[2] - T[R]	1.9E-01	4.4E-01
T[3] - T[R]	4.9E-01	1.3E-01
T[2] - T[3]	1.9E-01	9.9E-02

Gene Group	Time points	Abundance
	T[0]	20590
	T[R]	91433
DNA conservation	T[1]	92496
	T[2]	78321
	T[3]	81983
	T[0]	13579
	T[R]	66132
DNA repair and degradation	T[1]	67048
	T[2]	55948
	T[3]	58457
	T[0]	85
	T[R]	43
Light energy or sensing	T[1]	59
	T[2]	64
	T[3]	17
	T[0]	7554
	T[R]	37972
Lithotrophs	T[1]	38632
-	T[2]	31341
	T[3]	32758
	T[0]	10027
	T[R]	50708
Nitrogen	T[1]	58068
-	T[2]	48225
	T[3]	45638
	T[0]	60007
	T[R]	108275
Organotrophs	T[1]	111044
	T[2]	88557
	T[3]	89148
	T[0]	50301
	T[R]	445432
Phototrophy	T[1]	425819
	T[2]	342188
	T[3]	407532
	T[0]	26126
	T[R]	138367
ROS-damage prevention	T[1]	143726
	T[2]	121507
	T[3]	126677
	T[0]	31075
Sensing & motility	T[R]	81947
	T[1]	92070
Sensing & motility	T[2]	90844

563	Table A8	Abundanca	in cont	numbor	ofeach	timo n	ointe	within (anch arc	up of go	na
303	Table Ao.	Abundance (in copy	number	or each	ume p	omts	within 6	each gro	oup or gei	ne.

	T[3]	74436
	T[0]	7302
	T[R]	48141
Sporulation capsule & C-storage	T[1]	48944
	T[2]	38998
	T[3]	42341

565 Table A9. Chi-square values and p-values of the Dunn tests between time points done on the

566 functional prediction results. Bold numbers are signifi	cant (< 0.05)
---	---------------

Comparison	DNA Conservation	DNA Repair	Light energy	Lithotrophy	Nitrogen
T[0] - T[1]	4.9E-03	2.9E-03	1.9E-01	3.1E-04	4.2E-17
T[0] - T[2]	2.0E-02	9.7E-03	4.5E-01	7.5E-03	8.1E-12
T[0] - T[3]	2.9E-02	1.6E-02	2.8E-01	1.5E-02	8.2E-10
T[0] - T[R]	2.9E-02	5.2E-03	3.8E-01	1.6E-03	1.3E-12
T[1] - T[3]	2.1E-01	2.4E-01	4.6E-02	7.3E-02	4.0E-03
T[1] - T[2]	2.7E-01	3.1E-01	2.0E-01	1.3E-01	3.3E-02
T[1] - T[R]	2.2E-01	4.1E-01	2.6E-01	2.9E-01	6.3E-02
T[2] - T[3]	4.3E-01	4.2E-01	2.0E-01	3.8E-01	2.1E-01
T[2] - T[R]	4.3E-01	4.0E-01	4.2E-01	2.8E-01	3.8E-01
T[3] - T[R]	5.0E-01	3.2E-01	1.5E-01	1.8E-01	1.3E-01
Chi-square	7.0E+00	8.9E+00	2.9E+00	1.3E+01	7.6E+01

Comparisons	Organotrophy	Phototrophy	ROS	Motility	Sporulation
T[0] - T[1]	1.9E-03	5.4E-36	5.7E-06	1.1E-18	7.5E-05
T[0] - T[2]	2.1E-02	8.5E-17	2.8E-05	2.1E-14	3.0E-09
T[0] - T[3]	4.1E-02	8.8E-26	9.0E-05	2.4E-11	8.8E-04
T[0] - T[R]	1.9E-02	4.3E-35	6.3E-05	1.2E-14	4.1E-04
T[1] - T[3]	9.1E-02	9.3E-03	2.3E-01	6.1E-03	2.2E-01
T[1] - T[2]	1.6E-01	5.2E-07	3.4E-01	8.4E-02	9.7E-03
T[1] - T[R]	1.7E-01	4.2E-01	2.6E-01	9.7E-02	3.0E-01
T[2] - T[3]	3.7E-01	5.7E-03	3.7E-01	1.3E-01	9.5E-04
T[2] - T[R]	4.8E-01	1.4E-06	4.1E-01	4.7E-01	2.2E-03
T[3] - T[R]	3.5E-01	1.5E-02	4.6E-01	1.1E-01	4.0E-01
Chi-square	8.6E+00	2.0E+02	2.3E+01	8.7E+01	3.5E+01

572 Figure B1. Boxplot of the organic carbon content (%) for each sampling point.

575 Figure B2. Boxplot of the nitrogen content (%) for each time point.