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Abstract—Requirements elicitation is the software engineering activity in which stakeholder needs are understood. It involves 

identifying and prioritising requirements – a process difficult to scale to large software projects with many stakeholders. This 

paper proposes StakeRare, a novel method that uses social networks and collaborative filtering to identify and prioritise 

requirements in large software projects. StakeRare identifies stakeholders and asks them to recommend other stakeholders and 

stakeholder roles, builds a social network with stakeholders as nodes and their recommendations as links, and prioritises 

stakeholders using a variety of social network measures to determine their project influence. It then asks the stakeholders to 

rate an initial list of requirements, recommends other relevant requirements to them using collaborative filtering, and prioritises 

their requirements using their ratings weighted by their project influence. StakeRare was evaluated by applying it to a software 

project for a 30,000-user system, and a substantial empirical study of requirements elicitation was conducted. Using the data 

collected from surveying and interviewing 87 stakeholders, the study demonstrated that StakeRare predicts stakeholder needs 

accurately, and arrives with a more complete and accurately prioritised list of requirements compared to the existing method 

used in the project, taking only a fraction of the time. 

Index Terms—Requirements/Specifications, Elicitation methods, Requirements prioritisation, Experimentation, Human factors, 

Recommender systems, Social network analysis, Stakeholder analysis 
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1 INTRODUCTION

OFTWARE systems are growing. The increase in size 
extends beyond mere lines of code or number of 
modules. Today, projects to build large software sys-

tems involve vast numbers of stakeholders – the indi-
viduals or groups that can influence or be influenced by 
the success or failure of a software project [1]. These 
stakeholders include customers who pay for the system, 
users who interact with the system to get their work 
done, developers who design, build, and maintain the 
system, and legislators who impose rules on the devel-
opment and operation of the system [1, 2]. In large pro-
jects, these stakeholders cut across divisions and organi-
sations. They have diverse needs, which may conflict. 

Requirements elicitation is the software engineering 
activity in which stakeholder needs are understood [1]. It 
aims to identify the purpose for which the software sys-
tem is intended [3]. It involves identifying stakeholders 
and prioritising them based on their influence in the pro-
ject. It also involves identifying requirements from these 
stakeholders and prioritising their requirements.  

StakeRare is a method to identify and prioritise re-
quirements using social networks and collaborative filter-
ing. It aims to address three problems that beset large-
scale requirements elicitation: information overload, inad-
equate stakeholder input, and biased prioritisation of require-

ments. 
Information overload is inevitable in big projects. These 

projects tend to have many stakeholders and require-
ments. Existing methods for requirements elicitation re-
quire intensive interactions with the stakeholders, for ex-
ample through face-to-face meetings, interviews, brain-
storming sessions, and focus groups [1]. These methods 
lack the means to manage the information elicited from 
stakeholders. As such, the methods fail to scale to big pro-
jects with hundreds, thousands, or even hundreds of 
thousands of stakeholders [4]. Practitioners struggle to 
use these methods in large projects. Inevitably, stakehold-
ers are omitted and their requirements overlooked. Users 
become frustrated when the software fails to meet their 
needs. Customers who pay for the project pay for the mis-
takes [5]. 

Inadequate stakeholder input is caused by inadequate 
stakeholder selection. Omitting stakeholders is one of the 
most common mistakes in software engineering [6]. Exist-
ing stakeholder analysis methods are likely to overlook 
stakeholders [7]. In addition, stakeholders are often sam-
pled during requirements elicitation [8]. As requirements 
are elicited from stakeholders, omitting stakeholders re-
sults in missing requirements, which in turn leads to the 
wrong product being built. 

Biased prioritisation of requirements occurs because cur-
rent prioritisation practices depend on individuals, who 
may not have a global perspective in large projects [4, 9]. 
Although the literature suggests that prioritising from 
multiple stakeholders’ viewpoints can reveal important 
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requirements [10], the task is almost impossible to per-
form with many stakeholders and many requirements. As 
a result, important requirements known to only a few 
stakeholders can be lost in the sea of information. Those 
who attempt to get multiple viewpoints find it difficult to 
combine information from different sources [9]. Many 
practitioners avoid prioritising requirements or resort to 
rough guesses when they prioritise requirements [9]. 

Above all, the existing requirements elicitation litera-
ture is largely qualitative [1, 11]. Without empirical evalu-
ations using real projects, no-one can be certain how well 
one method performs against another, or indeed whether 
the methods work at all! 

To address these problems, this work proposes a 
method that uses social networks and collaborative filter-
ing for requirements elicitation. In doing so, the work 
makes the following contributions: 

• The development of StakeRare, a novel method that 
uses social networks and collaborative filtering to 
support requirements elicitation in large-scale soft-
ware projects.  

o StakeRare stands for Stakeholder- and Recom-
mender-assisted method for requirements elicita-
tion. StakeRare supports requirements elicitation 
in projects where there are many stakeholders 
who must be heard, but unable to meet, possibly 
due to sheer numbers, dispersed locations, or 
lack of time. It aims to be open and inclusive so 
that the stakeholders can participate in require-
ments elicitation. 

o StakeRare uses social networks to identify and 
prioritise stakeholders and their roles in the pro-
ject. Then it asks the stakeholders to rate an in-
itial list of requirements, recommends other rel-
evant requirements to them using collaborative 
filtering, and prioritises their requirements using 
their ratings weighted by their project influence 
derived from their position on the social net-
work. 

o StakeRare addresses information overload by using 
collaborative filtering to recommend relevant re-
quirements to stakeholders, and prioritising the 
stakeholders and requirements. It addresses inad-
equate stakeholder input by asking stakeholders to 
recommend other stakeholders, and asking all 
stakeholders to provide requirements. It ad-
dresses biased prioritisation of requirements by pri-
oritising requirements using the stakeholders’ 
ratings on the requirements and their position on 
the social network. 

• The evaluation of StakeRare using a real large-scale 
software project. 

o The evaluation is empirical and appears to be 
one of the first in requirements elicitation (as re-
viewed in [12]). It is substantial, using post-
project knowledge to establish the ground truth 
of requirements. It uses measurements from the 
information retrieval literature, such as precision, 

recall, and mean absolute error, to determine the 
quality of the requirements returned by 
StakeRare. It also compares StakeRare to the ex-
isting methods used in the project. 

o The evaluation provides clear evidence that 
StakeRare can identify a highly complete set of 
requirements, and prioritise them accurately. In 
addition, it is straightforward to use, and re-
quires less time from the requirements engineers 
and stakeholders compared to the existing meth-
ods used in the project. 

The rest of the paper is organised as follows. The next 
section reviews the existing literature. Section 3 describes 
the StakeRare method and Section 4 evaluates StakeRare. 
Section 5 identifies the limitations of the study, Section 6 
describes future work, and Section 7 concludes. 

2 BACKGROUND 

2.1 Large-Scale Software Projects 

In this work, the definition of a large-scale software pro-
ject is derived from the existing measures of project size 
and definitions of large-scale software projects. As re-
quirements elicitation is the focus of this work, the defini-
tion measures the size of the requirements engineering 
tasks, rather than the size of the software system. 

There are a number of existing measures to size a pro-
ject, leading to different views on what constitutes large-
scale. Popular measures of project size include lines of 
code (LOC), function points (FP), number of developers, 
and man-hours [13-19]. LOC counts the number of non-
blank, non-comment lines in the text of a software pro-
gram’s source code [20-24]. FP determines size by identi-
fying the components of the system as seen by the end-
user, such as the inputs, outputs, interfaces to other sys-
tems, and logical internal files. Number of developers 
counts the number of developers involved in the project. 
A man-hour or person-hour is the amount of work per-
formed by an average worker for an hour [19]. 

These measures have been used to indicate the relative 
size of projects (Table 1) [25-28]. But the numbers to indi-
cate size are not absolute and may vary across different 
work. For example, McConnell [23] considered small pro-
jects to have 2,500 LOC, but Kruchten [29] considered 
them to have 10,000 LOC. McConnell [24] considered pro-
jects with 500,000 LOC as very large, but Kruchten [29] 
considered projects with 700,000 LOC as large.  

These measures are more suitable for development [23, 
24] and less so for elicitation. For example, a software pro-
ject to solve a complicated set of differential equations 
may be very large in terms of LOC or man-hours, but 
may only have a small number of stakeholders [30]. Al-
though the project is considered large in terms of devel-
opment effort, it is small in terms of elicitation effort [30]. 

In requirements elicitation, the number of stakeholders 
is often used to size a project. Cleland-Huang and Mo-
basher define an ultra-large-scale project to have thou-
sands or even hundreds of thousands of stakeholders [4]. 
Burstin and Ben-Bassat define a large software system as 
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“a software system that has a large and diversified com-
munity of users, and entails a variety of human, organisa-
tional, and automated activities, and various, sometimes 
conflicting, aspects of different parts of its environment” 
[30]. Large, complex projects have multiple stakeholder 
groups that cut across many different agencies, divisions, 
and even organisations [31]. According to Northrop et al. 
[32] and Cheng and Atlee [11], the human interaction 
element makes requirements elicitation the most difficult 
activity to scale in software engineering. For example, the 
FBI Virtual Case File project is widely cited in the existing 
literature as a large-scale software project [4, 33-36]. It had 
12,400 users (agents who would use the software) and 
more than 50 stakeholder groups (the FBI consisted of 23 
divisions which previously had their own IT budget and 
systems, and the agents worked out of 56 field offices) 
[37]. 

This work defines a large-scale software project as a 
software project with dozens of stakeholder groups and 
tens of thousands of users, where users are members of 
the stakeholder groups, and a stakeholder group contains 
one or more stakeholder roles. These stakeholders have 
differing and sometimes conflicting requirements. This 
definition measures the size of the project in terms of the 
requirements engineering task, and is based on the re-
quirements engineering literature discussed in previous 
paragraphs. 

2.2 Requirements Elicitation 

Elicitation Techniques 

In requirements elicitation, traditional techniques, such as 
interviews and focus groups, form the basis of existing 
practice [1, 38-40]. In interviews, the requirements engi-
neers approach stakeholders with questions to gain in-
formation about their needs [41]. Focus groups bring 
stakeholders together in a discussion group setting, 
where they are free to interact with one another. These 
techniques are effective but require direct interaction be-
tween the requirements engineers and stakeholders. As 
such, they are difficult to scale to a large number of stake-
holders. 

More advanced elicitation techniques improve the 
completeness and variety of the identified requirements 
by catalysing discussions and exploring the stakeholders’ 
needs. These techniques include prototyping [42], meta-
phors [43], storyboards [44, 45], and model-driven tech-
niques such as use cases [38, 46], scenarios [47], and goal 

models [48-50]. Nevertheless, similar to traditional tech-
niques, they require face-to-face meetings, hence do not 
scale well to large projects [4, 3]. 

Prioritisation Techniques 

Projects often have more requirements than time, re-
source, and budget allow for. As such, requirements 
should be prioritised and managed so that those that are 
critical and most likely to achieve customer satisfaction 
can be selected for implementation [36, 51-53].  

A prioritisation technique commonly used in practice 
is the numeral assignment technique [36, 53, 54]. In this 
technique, each requirement is assigned a value repre-
senting its perceived importance. For example, require-
ments can be classified as mandatory, desirable, or ines-
sential [53]. Numeral assignment is straightforward, but a 
study by Karlsson [53] found that the participants’ opin-
ions about the numbers in the numeral assignment tech-
nique differ, and the scoring system is often inconsistent 
as different people make use of different personal scales. 
Nevertheless, this technique is widely used due to its 
simplicity. 

Another popular technique is the pairwise comparison 
approach [53]. In this approach, requirements engineers 
compare two requirements to determine the more im-
portant one, which is then entered in the corresponding 
cell in the matrix [53, 55]. The comparison is repeated for 
all requirements pairs such that the top half of the matrix 
is filled. If both requirements are equally important, then 
they both appear in the cell. Then, each requirement is 
ranked by the number of cells in the matrix that contain 
the requirement. Pairwise comparison is simple. How-
ever, since all unique pairs of requirements need to be 
compared, the effort is substantial when there are many 
requirements [55]. Prioritising n requirements needs 
n!(n–1)/2 comparisons [55, 56]. Hence, a project with 100 
requirements would require 4,950 comparisons. 

Many existing approaches, including those previously 
mentioned, prioritise requirements from an individual’s 
perspective. Other similar approaches include the cost-
value approach which prioritises requirements based on 
their relative value and implementation cost [53, 55, 56], 
and the value-oriented prioritisation method which pri-
oritises requirements based on their contribution to the 
core business values and their perceived risks [57]. As 
prioritisations involve a small subset of stakeholders, the 
results are biased towards the perspective of those in-
volved in the process [4]. 

More sophisticated methods combine prioritisations 
from multiple stakeholders. In the 100-point test, each 
stakeholder is given 100 points that they can distribute as 
they desire among the requirements [58]. Requirements 
that are more important to a stakeholder are given more 
points. Requirements are then prioritised based on the 
total points allocated to them. 100-point test incorporates 
the concept of constraint in the stakeholder’s prioritisa-
tion by giving each of them a limited number of points. 
One criticism of this approach is that it can be easily ma-
nipulated by stakeholders seeking to accomplish their 
own objectives [36, 59]. For example, stakeholders may 

TABLE 1 
PROJECT SIZE AND MEASURES 

(Source: [15]*, [25]^, [26]
†
, [23]

‡
, [24]

 !, [27]
 ", [32]

~
, [28]

 #, [18]
 $) 

 

Measure Project 
Size Lines of Code Function 

Points 
Number of 
Developers 

Small < 2,000^ < 100* < 5† 
Large > 500,000*!‡ > 5,000* > 50‡" 

Ultra-large 1,000,000,000~ > 100,000$ > 1,000# 
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distribute their points based on how they think others 
will do it [60]. In addition, it is difficult for stakeholders to 
keep an overview of a large number of requirements [54].  

In the requirements triage method, Davis [61] pro-
posed that stakeholders should be gathered in one lo-
cation and group voting mechanisms used to prioritise 
requirements. One method to collect group vote is to use 
the show of fingers to indicate the stakeholders’ enthusi-
asm for a requirement. A disadvantage is the relative pri-
orities of requirements depend on the stakeholders who 
attended the prioritisation meeting, and dominant par-
ticipants may influence the prioritisation [36].  

In the win-win approach proposed by Boehm, stake-
holders negotiate to resolve disagreements about candi-
date requirements [62, 63]. Using this approach, each 
stakeholder ranks the requirements privately before nego-
tiations start. They also consider the requirements they 
are willing to give up on. Stakeholders then work col-
laboratively to forge an agreement through identifying 
conflicts and negotiating a solution. Win-win negotiations 
encourage stakeholders to focus on their interest rather 
than positions, negotiate towards achieving mutual gain, 
and use objective criteria to prioritise requirements. 
Nevertheless, the approach is labour intensive, particu-
larly in large projects [59]. 

Another method that involves multiple stakeholders is 
the value, cost, and risk method proposed by Wiegers 
[64]. In Wiegers’ method, the customer representatives 
estimate the value of each requirement, which is the rela-
tive benefit each requirement provides to them and the 
relative penalty they suffer if the requirement is not in-
cluded. The project team estimates the relative cost of im-
plementing each requirement and the relative degree of 
risk associated with each requirement. The priority of 
each requirement is calculated from its value, cost, and 
risk such that requirements at the top of the list have the 
most favourable balance of the three elements. This 
method is limited by the individual’s ability to determine 
the value, cost, and risk for each requirement [64]. 

Many existing prioritisation methods consider re-
quirements to have a flat structure and be independent of 
one another [65]. However, requirements are often de-
fined at different levels of abstraction. For example, a 
high-level requirement can be refined into several specific 
requirements [48, 66]. Hierarchical cumulative voting 
(HCV) proposed by Berander and Jönsson [54] enables 
prioritisations to be performed at different levels of a 
hierarchy. Stakeholders perform prioritisation using 100-
point test within each prioritisation block. The intermedi-
ate priorities for the requirements are calculated based on 
the characteristics of the requirements hierarchy. Final 
priorities are calculated for all requirements at the level of 
interest through normalisation. If several stakeholders 
have prioritised the requirements, their individual results 
are then weighted and combined. When doing so, differ-
ent stakeholders may have different weights. Although 
the hierarchical prioritisation in HCV makes it easier for 
the stakeholders to keep an overview of all the require-
ments, the prioritisations need to be interpreted in a ra-
tional way as stakeholders can easily play around with 

the numbers [54]. 
There is a plethora of methods to prioritise require-

ments, such as multi-attribute utility theory [67], top 10 
requirements [41], outranking [68], minimal spanning tree 
[55], cost benefit analysis [69], and Quality Function De-
ployment [70]. Many of these methods have similar short-
comings: significant effort is required when there are 
many requirements and the requirements’ priorities are 
easy to manipulate [60]. For example, the Quality Func-
tion Deployment suggests the limit of 30 requirements 
[71]. Cost benefit analysis relies on the type of costs in-
cluded in the analysis by the decision-makers which may 
be biased due to their vested interest [69]. 

One of the few methods that can scale to a large num-
ber of requirements is the binary search tree (BST) [72]. In 
BST, a requirement from the set of requirements is selec-
ted as the root node. Then, a binary tree is constructed by 
inserting less important requirements to the left and more 
important ones to the right of the tree. A prioritised list of 
requirements is generated by traversing the BST in order. 
The output is a prioritised list of requirements with the 
most important requirements at the start of the list, and 
the least important ones at the end. This method is simple 
to implement but provides only a simple ranking of re-
quirements as no priority values are assigned to the re-
quirements [36]. 

For projects with many requirements, recent work by 
Laurent et al. [34] and Duan et al. [36] propose Pirogov, 
which uses data mining and machine learning techniques 
to support requirements prioritisation. Pirogov uses vari-
ous clustering techniques to organise requirements into 
different categories. The requirements engineers then pri-
oritise the clusters and determine the importance of each 
clustering technique. Using the information, Pirogov gen-
erates a list of prioritised requirements. By automatically 
clustering the requirements into different categories, 
Pirogov reduces the number of manual prioritisations. It 
is a significant step towards large-scale requirements elici-
tation. But at the moment, the results of prioritisation de-
pend on the requirements engineers’ subjective prioritisa-
tion of the clusters and clustering techniques [36]. 

2.3 Social Network Analysis 

Social network analysis is the application of methods to 
understand the relationships among actors, and on the 
patterns and implications of the relationships [73]. In 
social network analysis, actors are discrete individuals, 
corporate, or collective social units, such as employees 
within a department, departments within a corporation, 
and private companies in a city [73]. These actors are 
linked to one another by relational or social ties, such as 
evaluation of one person by another (e.g., friendship or 
respect), transfers of material resources (e.g., business 
transaction), and formal relations (e.g., authority) [73].  

In social network analysis, the snowballing method 
proposed by Goodman [74] is used to sample social net-
work data for large networks where the boundary is un-
known [73, 75]. It is also used to track down “special” or 
“hidden” populations, such as business contact networks, 
community elites, and deviant sub-cultures [76]. Snowball 
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sampling begins with a set of actors [73, 75, 76]. Each of 
these actors is asked to nominate other actors. Then, new 
actors who are not part of the original list are similarly 
asked to nominate other actors. As the process continues, 
the group of actors builds up like a snowball rolled down 
a hill [75]. The process continues until no new actors are 
identified, time or resources have run out, or when the 
new actors being named are very marginal to the actor set 
under study [76]. 

A social network is a structure that consists of actors 
and the relation(s) defined on them [73, 75]. It is often 
depicted as a graph in which the actors are represented as 
nodes and the relationships among the pairs of actors are 
represented by lines linking the corresponding nodes [73, 
75]. The graph can be binary or valued, directed or undi-
rected, depending on the relations between the actors. If 
the relations are directed, then the links have direction 
and if the relations are valued, the links have weights at-
tached to them. Using graph structures to represent social 
networks enables large sets of social network data to be 
visualised. 

The centrality of actors in their social networks is of 
great interest to social network analysts [75]. Actors that 
are more central have a more favourable position in the 
network [76]. For example, in a friendship network, an 
actor who is connected to many actors in the network is 
popular. In a business contact network, an actor that sits 
in between clusters of networks has high influence on the 
information that passes between the clusters. A number of 
different social network measures have been developed to 
measure the centrality of social network actors, such as 
betweenness centrality, load centrality, degree centrality, 
in-degree centrality, and out-degree centrality [73, 75, 76].  

In requirements engineering, Damian et al. used social 
network analysis to study collaboration, communication, 
and awareness among project team members [77, 78]. The 
nodes were members of the development team who are 
working on, assigned to, or communicating about the 
requirements in the project. Social network measures, 
such as degree centrality and betweenness centrality, 
were used to analyse the collaboration behaviour. For 
example, degree centrality indicated active members and 
betweenness centrality indicated members who control 
interactions between other members.  

2.4 Collaborative Filtering 

Collaborative filtering is a technique to filter large sets of 
data for information and patterns [79]. This technique is 
used in recommender systems to forecast a user’s prefer-
ence on an item by collecting preference information from 
many users [80]. For example, Amazon1 uses collaborative 
filtering to recommend books to their customers and 
MovieLens2 uses it to recommend movies [80, 81]. The 
underlying assumption is that users who have had simi-
lar taste in the past will share similar taste in the future 
[82].   

In collaborative filtering, users are the individuals who 
 

 
1 http://www.amazon.com/ 
2 !""#$%%&&&'()*+,-,./')01% 

provide ratings to a system and receive recommendations 
from the system. Items can consist of anything for which 
ratings can be provided, such as art, books, songs, mov-
ies, vacation destinations, and jokes [83]. A rating is a 
numerical representation of a user’s preference for an 
item. A profile is the set of ratings that a particular user 
has provided to the system. Collaborative filtering sys-
tems take a set of ratings from the user community as 
input, use this set of ratings to predict missing ratings, 
and use the predictions to create a list of items that is per-
sonalised for each user. This list of items are then pre-
sented to the user as recommendations [82]. 

To produce predictions, collaborative filtering systems 
use a variety of algorithms. One of the most well-known 
algorithms is the k-Nearest Neighbour (kNN) algorithm 
[80, 84, 85]. kNN is used to identify like-minded users 
with similar rating histories in order to predict ratings for 
unobserved users-item pairs [85]. kNN first finds a 
unique subset of the community for each user by identify-
ing those with similar interests. To do so, every pair of 
user profile is compared to measure the degree of simi-
larity. A popular method is Pearson’s correlation coeffici-
ent, which measures the degree of linearity between the 
intersection of the pair of users’ profiles [80]. Then, a 
neighbourhood is created for each user by selecting the k 
most similar users. The similarity between each pair of 
user profiles for users in the neighbourhood is used to 
compute predicted ratings. Finally, the predicted ratings 
for the items are sorted according to the predicted value, 
and the top-N items are proposed to the user as recom-
mendations, where N is the number of items recom-
mended to the user [80]. 

In requirements engineering, Castro-Herrera et al. uses 
collaborative filtering to facilitate online discussions for 
requirements identification [86, 87]. Their method, named 
Organiser and Promoter of Collaborative Ideas (OPCI), 
uses clustering to group the stakeholder’s ideas into an 
initial set of discussion forums and construct a stake-
holder profile for each stakeholder. These profiles are 
used by the kNN algorithm to identify stakeholders with 
similar interests and suggest additional forums that might 
be of interest to the stakeholders. By recommending suit-
able forums to stakeholders, OPCI aims to encourage 
stakeholders to contribute to relevant forums and increase 
the quality of the elicited requirements. 

OPCI uses collaborative filtering to recommend forums 
of interest to stakeholders. It has inspired the work de-
scribed in this paper to use collaborative filtering to rec-
ommend requirements of interest to stakeholders, in order 
to support large-scale requirements elicitation. Recom-
mending relevant requirements to stakeholders can re-
duce the number of requirements each stakeholder has to 
identify and prioritise, while still ensuring they are aware 
of the requirements they may be interested in. 
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2.5 Summary 

In this paper, a large-scale software project is defined as a 
software project with dozens of stakeholder groups and 
tens of thousands of users, where users are members of 
the stakeholder groups. These stakeholders have differing 
and sometimes conflicting requirements. 

Existing methods to identify and prioritise require-
ments do not scale well to large projects. Most elicitation 
methods require face-to-face meetings with the stake-
holders, hence is time consuming when there are many 
stakeholders. Existing requirements prioritisation meth-
ods require substantial efforts from the requirements en-
gineers when there are many requirements. Furthermore, 
requirements prioritisation from an individual’s perspec-
tive is likely to be biased, especially in large projects 
where no individual has the global perspective. 

An ideal method in requirements elicitation should 
identify and prioritise stakeholders and their require-
ments from a global perspective. It should be independ-
ent of the individual doing the analysis, and scalable to 
large projects. In doing so, it should not overload stake-
holders with information or burden the requirements en-
gineers. The aim of this work, described in the next sec-
tion, is to develop such a method using the existing tech-
niques in social networks and collaborative filtering de-
scribed in this section. 

3 STAKERARE 

Large projects tend to be beset by three problems: infor-
mation overload, inadequate stakeholder input, and 
biased prioritisation of requirements. StakeRare is a 
method that uses social networks and collaborative filter-
ing to elicit requirements in large projects.  

To address the problem of inadequate stakeholder in-
put, StakeRare aims to be open and inclusive, so that a 
representative sample of stakeholders participates in the 
requirements elicitation process. As stakeholders are so-
cially related to one another, they can be identified and 
prioritised using their relations. StakeRare exploits previ-

ous work [89] to do this. The previous work asks stake-
holders to recommend other stakeholders, builds a social 
network with stakeholders as nodes and their recom-
mendations as links, and prioritises stakeholders from a 
global perspective using social network measures [89]. 

To avoid overloading stakeholders with information, 
StakeRare uses collaborative filtering to present only the 
requirements that are relevant to them. StakeRare asks 
each stakeholder to rate an initial list of requirements, and 
based on the list, identifies a neighbourhood of similar 
stakeholders for each stakeholder. Then, it predicts other 
relevant requirements for the stakeholder based on the 
requirements provided by similar stakeholders. These 
predictions are presented to the stakeholder to be ap-
proved and added into their set of ratings. To avoid over-
loading the requirements engineers with information, 
StakeRare prioritises stakeholders and their requirements. 

 

Step 1 

 

Input: None 

 
Substeps: 

1. Requirements engineer provides initial 
stakeholders. 

2. Initial and newly identified stakehold-
ers provide recommendations. 

3. StakeRare builds social network. 
4. StakeRare prioritises stakeholders and 

roles using social network measures. 
 

Output: Prioritised list of stakeholders 
and roles. 

Step 2 

 

Input: Stakeholder list from Step 1. 

 
Substeps: 

1. Requirements engineer provides initial 
requirements. 

2. Stakeholders in stakeholder list rate 
requirements and provide other require-

ments. 
3. StakeRare propagates ratings. 

 
Output: Profiles of stakeholders who 

responded. 

Step 3 

 

Input: Profiles from Step 2. 

 
Substeps: 

1. StakeRare applies collaborative filter-
ing algorithms on profiles to predict 

unrated requirements. 
2. StakeRare recommends requirements 

that may be relevant to the stakeholders.  
3. Stakeholders rate recommended re-

quirements. Substeps 1-3 can be repeated 
using updated profiles. 

  
Output: Updated profiles. 

Step 4 

 

Input: Stakeholder list from Step 1, and 

profiles from Step 3. 
 

Substeps: 
1. StakeRare calculates project influence 

for each stakeholder. 
2. StakeRare calculates score for each 

requirement. 
3. StakeRare prioritises requirements 

based on score. 
 

Output: Prioritised list of requirements. 
 

 

Fig. 1. StakeRare steps. 

 TABLE 2 
STAKERARE CONCEPTS 

 

Concept Definition 

Salience The level of influence a stakeholder has on 
the project [88]. Stakeholders with high 
salience are crucial to project success; 
stakeholders with low salience have mar-
ginal impact. 

Scope The work required for completing the pro-
ject successfully [39]. 

Stakeholder An individual or a group who can influ-
ence or be influenced by the success or 
failure of a project [1]. 

Stakeholder 
role 

The stakeholder’s position or customary 
function in the project [2]. 

Requirement The real-world goals for, functions of, and 
constraints on software systems [3]. 

Rating Numerical importance of a requirement to 
the stakeholder [80]. 

Profile The set of requirements and their ratings 
provided by a stakeholder [80]. 
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Finally, to avoid biased prioritisation of requirements, 
StakeRare produces a prioritised list of requirements 
based on each stakeholder’s ratings and their influence in 
the project. The stakeholders’ influence in the project is 
produced from a global perspective, by running the social 
network measures on the stakeholder network. 

StakeRare has four steps (Fig. 1) and uses the concepts 
in Table 2. 

Step 1: Identify and Prioritise Stakeholders 

Step 1 identifies and prioritises the stakeholders based on 
their influence in the project (Fig. 1). Stakeholders have to 
be identified, as they are the source of requirements. They 
have to be prioritised as their level of influence in the pro-
ject affects the priority of their requirements. The output 
is a prioritised list of stakeholder roles and for each role, a 
prioritised list of stakeholders.  

StakeRare uses StakeNet for Step 1. StakeNet is a pre-
viously published stakeholder analysis method that pro-
duces such an output [89]. StakeNet identifies an initial 
set of stakeholders and asks them to recommend other 
stakeholders and stakeholder roles. A recommendation is 
a triple <stakeholder, stakeholder role, salience>, where 
salience is a number on an ordinal scale (e.g., 1–5). For 
example, in a software project to implement a university 
access control system, Alice, a stakeholder representing 
the role of Estates that manages the university’s physical 
estate, can make a recommendation <Bob, Library, 4>. 
StakeNet then asks Bob to recommend other stakeholders.  

Based on the stakeholders’ recommendations, 
StakeNet builds a social network with stakeholders as 
nodes and their recommendations as links [89]. An exam-
ple stakeholder network is illustrated in Fig. 2.  

Finally, StakeNet applies various social network meas-
ures, such as betweenness centrality, degree centrality, 
and closeness centrality, to prioritise the stakeholders in 
the network [89]. The social network measures produce a 
score for each stakeholder. The stakeholder roles are pri-
oritised by the highest score of their stakeholders. An ex-
ample output is illustrated in Table 3. Fractional ranking 
or “1 2.5 2.5 4” ranking [90] is used such that if a tie in 
ranks occurs, the mean of the ranks involved is assigned 
to each of the tied items. For example, if Estates and Stu-
dents have the same level of influence, then the ranks 
become Estates: Rank 1.5, Students: Rank 1.5, Library: 
Rank 3. 

 

Fig. 2. Example stakeholder network. 

TABLE 3 
EXAMPLE PRIORITISED LIST OF STAKEHOLDERS 

 

Prioritised Stakeholder Roles Prioritised Stakeholders 

(1) Estates Alice 

(2) Students (1) Dave 

 (2) Carl 

(3) Library Bob 

 

Step 2: Collect Profile 

Step 2 collects a profile from each stakeholder identified 
in Step 1 (Fig. 1). Existing elicitation methods in the back-
ground section, such as interviews with a subset of stake-
holders or focus groups, can be used to identify an initial 
list of requirements. Using the university access control 
project in Step 1 as an example, an interview with Alice 
from Estates revealed that one of the project objectives is 
to provide “better user experience.” Bob representing the 
library reveals that his requirement is “to combine library 
card with access card,” student Dave’s requirement is “to 
combine access card with bank card,” and Alice, repre-
senting the Estates, requests for “all in one card.”  

As mentioned in the background section, requirements 
can be defined at different levels of abstraction and a 
high-level requirement can be refined into several specific 
requirements [48, 66]. In this example, the requirements 
are organised into a hierarchy of three levels: project ob-
jective, requirement, and specific requirement3. Achieving 
all the specific requirements means that the parent re-
quirement is achieved, and achieving all the parent re-
quirements means that the project objective is achieved. 
For example, the requirement “all in one card” falls under 
the project objective “better user experience,” as it is 
easier to carry one card for all purposes (Fig. 3). Then, 
combining the various cards are specific requirements 
under “all in one card.” 

 

Fig. 3. The hierarchy of requirements4. 

The stakeholders identified in Step 1 are asked to pro-

 

 
3 Project objectives describe specific and measurable goals for the pro-

ject, requirements describe what must be delivered to meet the project 
objectives, and specific requirements describe what must be delivered to 
meet the requirements. The hierarchy of requirements and their classifi-
cation are determined by the requirements engineer, and may be modi-
fied during the elicitation process (e.g., stakeholders may provide more 
details to a specific requirement, resulting in an additional level to the 
hierarchy). 

4 A requirement such as “to combine library card with access card, un-
less access card is also bank card” should be placed under “to combine 
library card with access card” as it is more specific. 
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vide their preferences on the initial requirements. A pre-
ference is a triple  

<stakeholder, requirement, rating>, 

where rating is a number on an ordinal scale (e.g., 0 – 5) 
reflecting the importance of the requirement to the stake-
holder (e.g., 0 is unimportant and 5 is very important). 
For example, Alice provides a preference  

<Alice, To combine library card with access card, 5>.  

Stakeholders can also indicate requirements that they 
actively do not want (e.g., by rating the requirement an 
X). For example, Bob provides a preference 

<Bob, To combine access card with bank card, X>.  

Stakeholders can also rate requirements not in the list 
by adding their own requirements. The requirements 
added are then available to be rated by other stakehold-
ers. If a requirement provided by a stakeholder does not 
have any specific requirements, specific requirements can 
be identified using existing elicitation methods (e.g., 
interviews) and added to the list to be rated. 

Finally, StakeRare propagates the ratings of require-
ments to avoid missing values. Rating propagation en-
ables StakeRare to make prioritisations and predictions at 
different levels of detail. If a stakeholder rates a high-level 
requirement but does not rate the lower-level require-
ments, then his rating propagates down to the lower-level 
requirements. For example, Carl provides a preference  

<Carl, All in one card, 4>.  

Since Bob and Dave provided specific requirements for 
this requirement, Carl then implicitly provides two other 
preferences  

<Carl, To combine library card and access card, 4>, and  

<Carl, To combine access card with bank card, 4>.  

This propagation assumes that specific requirements 
when unrated by the stakeholder have the same rating as 
their parent requirement, and the stakeholder agrees with 
the decomposition of the requirement into the specific 
requirements (Table 4 A1). Similarly, if a stakeholder rates 
a lower-level requirement but does not rate the high-level 
requirement, then his rating propagates up to the high-
level requirement. This propagation assumes that if a 
stakeholder cares about a specific requirement, they 
would care equally about the parent requirement (Table 4 
A2). If more than one specific requirement is rated, then 
the maximum rating is propagated. 

Step 3: Predict Requirements 

Based on the stakeholders’ profile, Step 3 uses collabor-
ative filtering to predict other requirements that each 
stakeholder needs or actively does not want (Fig. 1). 
StakeRare uses the k-Nearest Neighbour (kNN) algorithm 
described in the background section. Cross-validation is 
used to find the optimal value for k. kNN finds similar 
stakeholders by measuring the similarity between the 
stakeholders’ profiles. Then, it generates the predicted 

level of interest that a stakeholder will have in a require-
ment that he has not yet rated. StakeRare returns re-
quirements that may be relevant to the stakeholder (i.e., 
requirements with the highest predicted level of interest) 
as recommendations at all three levels (e.g., Fig. 4).  

 
TABLE 4 

STAKERARE ASSUMPTIONS 

 

ID Assumption 

A1 Specific requirements when unrated by the stake-

holder have the same rating as their parent require-

ment, and the stakeholder agrees with the decomposi-

tion of the requirement into the specific requirements. 

(This assumption does not always hold. For example, 

the specific requirements may be in conflict, the 

stakeholder may have unequal preference among the 

specific requirements, and the rating for specific re-

quirements may be higher than the requirements.) 

A2 If a stakeholder cares about a specific requirement, 

they would care equally about the parent require-

ment. (This assumption does not always hold. For 

example, a stakeholder who actively does not want a 

specific requirement may still rate the higher-level 

requirement positively.) 

A3 A stakeholder’s project influence is determined by 

their role in the project. 

A4 The stakeholder represents only the role that gives 

him the highest weight.  

 
Stakeholders can then rate the requirements that are 

recommended to them, provide new requirements, or rate 
other requirements. The new ratings by the stakeholders 
are then added to their profiles. Then, Step 3 is repeated 
with the updated profiles. Step 3 can be repeated until no 
new ratings and requirements are provided by stakehold-
ers after one round of recommendations. 

Step 4: Prioritise Requirements 

For the final step, StakeRare aggregates all the stakehold-
ers’ profiles into a prioritised list of requirements (Fig. 1). 
The ratings from the stakeholders’ profiles, and the pri-
ority of the stakeholders and their roles from Step 1 are 
used to prioritise requirements. Negative ratings (from a 
stakeholder actively not wanting a requirement) are ex-
cluded in the calculation, as their purpose is to highlight 
conflicts to the requirements engineers, rather than to 
prioritise the requirements. To calculate the importance of 
a requirement in a project, the influence of the stake-
holder’s role in the project is determined, and then the 
influence of the stakeholders in their roles is determined 
as follows.  

The influence of stakeholder i’s role in the project is 
calculated using Equation 3-1. 

! 

Influencerole( i) =
RRmax +1" rank(role(i))

(RRmax +1" rank(role( j)))
j=1

n

#

,        (3-1) 

where role(i) is stakeholder i’s role in the project, RRmax is 



LIM ET AL.:  USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 9 

 

 

the maximum rank of the roles in the list, rank(role(j)) is the 

fractional rank of role j, and n is the total number of roles in 

the list. Roles where none of the stakeholders provide rat-

ings are excluded. As lower rank values correspond to 

higher influence, this calculation inverts the rank value by 

subtracting it from the upper bound of maxrankRole + 1. The 

calculation also normalises the influence of a role by divid-

ing it with the sum of all role influences. An example priori-

tised list of stakeholder roles is Estates: Rank 1.5, Students: 

Rank 1.5, and Library: Rank 3 (fractional ranking is used 

where Estates and Students have the same rank). Using this 

example, Estates’ influence is , Students’ in-

fluence is the same as Estates’ influence, and Library’s in-

fluence is . 

The influence of stakeholder i in the role is calculated 
the same way using Equation 3-2. 

! 

Influencei =
RSmax +1" rank(i)

(RSmax +1" rank(k))
k=1

n

#

,          (3-2) 

where RSmax is the maximum rank of all stakeholders with 

the same role, rank(i) is the fractional rank of stakeholder i, 

and n is the total number of stakeholders with the same role. 

Stakeholders who do not provide any ratings are excluded. 

Again, as lower rank values correspond to higher influence, 

this calculation inverts the rank value by subtracting it from 

the upper bound of maxranks + 1, then it normalises the in-

fluence by dividing it with the sum of all the influences of 

stakeholders with the same role. For roles with one stake-

holder, the stakeholder’s influence is its role’s influence. For 

example, Alice’s influence is 1 as she is the only stakeholder 

for the Estates role. The Student role has two stakeholders 

Dave and Carl. Dave’s influence is  and Carl’s 

influence in his role is .  

The influence of stakeholder i in a project is calculated 
using Equation 3-3 as follows. 

! 

ProjectInfluencei = Influencerole(i) " Influencei,          (3-3) 

where Influencerole(i) is the influence of the stakeholder’s 
role in the project (Equation 3-1), and Influencei is the in-
fluence of the stakeholder in the role (Equation 3-2). The 
sum of all the stakeholders’ project influence is equal to 1. 
From the previous example, Carl’s influence in the Stu-

dent role is 0.33, and the Student role’s influence in the 
project is 0.42. Hence, Carl’s influence in the project is 
0.33!0.42 = 0.1386. This calculation of project influence 
assumes that a stakeholder’s project influence is deter-
mined by their role in the project (Table 4 A3). 

The importance of a requirement is calculated using 
Equation 3-4 as follows. 

  

! 

ImportanceR = ProjectInfluencei " ri
i=1

n

# ,          (3-4) 

where ProjectInfluencei is the stakeholder i’s influence in 
the project (Equation 3-3), ri is the rating provided by 
stakeholder i on requirement R, and n is the total number 
of stakeholders who rated on requirement R. Following 
the previous example, the requirement “To combine li-
brary card with access card” is rated 5 by Alice and 4 by 
Carl. Alice’s influence in the project is 0.42, and Carl’s 
influence in the project is 0.1386, hence the requirement’s 
importance is (0.42!5) + (0.1386!4) = 2.6544. If a stake-
holder has more than one role, only the position in the 
role that gives him the highest weight is considered. By 
doing so, StakeRare assumes that the stakeholder repre-
sents only the role that gives him the highest weight 
(Table 4 A4).  

Finally, the requirements are prioritised based on their 
importance, where requirements with higher importance 
values are ranked higher. The requirements are prioritised 
within their hierarchy, so that the output is a ranked list of 
project objectives, for each project objective, a ranked list 
of requirements, and for each requirement, a ranked list 
of specific requirements. This list is StakeRare’s output for 
the requirements engineers. 

4 EVALUATION 

StakeRare was evaluated by applying it to a real-world 
large-scale software project. The stakeholders were sur-
veyed for their requirements. The resulting lists of re-
quirements were empirically evaluated in terms of quality 
of the requirements and accuracy of the prioritisation, by 
comparing them with the ground truth – the actual com-
plete and prioritised lists of requirements in the project. 
StakeRare was also compared to the existing methods 
used in the project in terms of quality of the requirements, 
accuracy of the prioritisation, and the time spent using 
the methods. Finally, the stakeholders were interviewed 
and surveyed on the level of difficulty and effort in using 
StakeRare. 

The rest of this section is organised as follows. Section 
4.1 details the research questions. Section 4.2 describes 
RALIC, the large-scale software project used to evaluate 
this work. Section 4.3 describes the application of 
StakeRare to RALIC. Section 4.4 describes the construc-
tion of the ground truth list of requirements for RALIC 
and its validation. Section 4.5 describes the existing 
method list of requirements. Finally, Section 4.6 reveals 
the results. Fig. 5 summarises the evaluation described in 
this section. 

StakeRare recommends the following requirements to you: 

1. Card to have features to prevent sharing 

2. To combine access card with fitness centre card 

 

The recommendations are based on the requirements you have 

rated: 

To combine library card with access card 

    To combine ID card with session card 

 
Fig. 4. StakeRare’s output for Alice at the specific re-
quirements level. 
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4.1 Research Questions 

Step 1 of StakeRare identifies and prioritises the stake-
holders and their roles for RALIC. The evaluation of this 
step has been reported in [89] and [12]. The evaluation 
shows that social networks can be used to effectively 
identify and prioritise stakeholders. The method identi-
fied a highly complete set of stakeholders and prioritised 
them accurately, using less time compared to the existing 
method used in the project. The rest of this section de-
scribes the evaluation of the other StakeRare steps.  

For Steps 2 and 4, the requirements lists produced by 
StakeRare were compared with the existing method and 
the ground truth lists of requirements.  

RQ1 to RQ4 as follows are the research questions for 
Steps 2 and 4. 

 
RQ1. Identifying requirements. The existing require-
ments elicitation methods described in the background 
section involve a subset of stakeholders. In contrast, 
StakeRare involves all the identified stakeholders. This 
research question assesses how well StakeRare identifies 
requirements as compared to the existing method used in 
the project by asking: 

• How many requirements identified by StakeRare 
and the existing method used in the project are ac-
tual requirements as compared to the ground truth? 

• How many of all the actual requirements in the 
ground truth are identified by StakeRare and the ex-
isting method used in the project? 

RQ2. Prioritising requirements. StakeRare prioritises 
stakeholders using social network measures, and then 
uses the output to prioritise requirements. This research 
question asks: 

• How accurately does StakeRare prioritise require-
ments as compared to the ground truth? 

RQ3. Survey response and time spent. The quality of the 

requirements returned by StakeRare depends on the 
stakeholders’ motivation to participate. Also, to provide 
effective support in requirements elicitation, StakeRare 
should take less time than existing methods. This research 
question asks: 

• Are stakeholders motivated to provide require-
ments for StakeRare?  

• How much time did stakeholders spend in identify-
ing and prioritising requirements as compared to 
the existing method in the project? 

RQ4. Effective support for requirements elicitation. 
StakeRare aims to provide effective support for require-
ments elicitation, by providing a predefined list of re-
quirements for the stakeholders to rate (RateP). During 
the survey, two other elicitation methods were adminis-
tered to explore the effectiveness of different methods. 
RankP asks stakeholders to enter their requirements 
without providing an initial list of requirements, and 
PointP asks stakeholders to allocate 100 points to the re-
quirements they want in the same predefined list. In 
RateP and PointP, stakeholders can suggest additional 
requirements. This research question explores what kinds 
of support are effective for the requirements engineer and 
stakeholders by asking the following questions. 

• Between the three elicitation methods RankP, RateP, 
and PointP, which produces the most complete list 
of requirements and most accurate prioritisation for 
the requirements engineer? Are the results consis-
tent regardless of the elicitation method used? 

• Between the three elicitation methods RankP, RateP, 
and PointP, which do the stakeholders prefer? 

• If stakeholders are provided with a list of all the re-
quirements in the project, how prepared are they to 
rate them all? 

In Step 3, collaborative filtering is used to predict other 
requirements a stakeholder may need based on the profile 

StakeRare Steps:
1. Identify and prioritise stakeholders
2. Survey stakeholders to collect profile
3. Predict requirements
4. Prioritise requirements

Steps:
1. Identify requirements
2. Pairwise comparison
3. Prioritise requirements
4. Validate with stakeholders

Steps:
1. Identify requirements elicited by
    project team
2. Compile list

Apply StakeRare to RALIC Build Ground Truth Get Existing Method List

Compare Lists

RankP
RateP  
PointP

Existing 
Method 

List

Ground 
Truth

Select RALIC Project

RALIC 
Documentation

 

Fig. 5. StakeRare evaluation. 
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they provide in Step 2. This step was evaluated using the 
standard evaluation method in the collaborative filtering 
literature [80, 82, 91]. The evaluation partitioned the 
stakeholders’ profiles into two subsets. The first subset 
was the training set, which the collaborative filtering al-
gorithm learnt from. The second subset was the test set, 
with rating values that were hidden from the algorithm. 
For the evaluation, the algorithm’s task was to make pre-
dictions on all the items in the test set. The predictions 
were then compared to the actual hidden rating values. 
Using this method of evaluation, no additional input was 
required from the stakeholders.  

An alternative method to evaluate Step 3 was to make 
predictions based on the stakeholders’ complete profiles 
and ask the stakeholders to rate the recommended re-
quirements. This option was not selected as some stake-
holders were not available to be interviewed more than 
once. 

RQ5 to RQ7 as follows are the research questions for 
Step 3.   

 
RQ5. Predicting requirements. To recommend require-
ments that may be of interest to the stakeholders, 
StakeRare uses the kNN algorithm in collaborative filter-
ing to identify similar stakeholders and predict their re-
quirements. This research question asks: 

• How accurately can collaborative filtering predict 
stakeholder requirements? 

• Are the results consistent regardless of the elicita-
tion method used? 

RQ6. Predicting requirements: enhanced profiles. In 
Castro-Herrera et al.’s work in recommending forums to 
stakeholders, the stakeholders’ profiles are enhanced with 
stakeholder information, such as their roles in the project 
and their interest in different aspects of the system, to 
produce more accurate predictions of the stakeholders’ 
interest in forums [86]. This research question asks: 

• Does enhancing stakeholder profile by adding 
stakeholder information improve the accuracy of 
predicting stakeholder interest in requirements? 

• Are the results consistent regardless of the elicita-
tion method used? 

RQ7. Predicting requirements: other algorithms. As 
mentioned in the background section, kNN is a simple 
machine learning algorithm. Other machine learning al-
gorithms can also be used to predict stakeholders’ interest 
[92]. This research question asks: 

• Does using other algorithms and combinations of 
algorithms improve the prediction accuracy? 

• Are the results consistent regardless of the elicita-
tion method used? 

4.2 The RALIC Project 

The RALIC project was a software project in University 
College London (UCL), initiated to replace the existing 
access control systems at UCL and consolidate the new 
system with library access and borrowing. RALIC stands 
for Replacement Access, Library and ID Card. It was a 

combination of development and customisation of an off-
the-shelf system. The project duration was 2.5 years and 
the system has been in deployment for over two years. 

RALIC was selected to evaluate this work from a list of 
approximately 40 software projects in UCL. The selection 
criteria were as follows. 

• Large-scale. The software project must be a large-
scale software project following the definition of 
large-scale provided in the background section. 

• Well-documented. The project must be very well 
documented in order to build the ground truth and 
existing method lists of requirements to evaluate the 
work. 

• Available stakeholders. The stakeholders should be 
available for interviews.  

• Completed and deployed. The project should be 
completed and the system should have been de-
ployed in UCL for more than a year. This is neces-
sary to allow sufficient time for missing stakehold-
ers and requirements to surface in order to build the 
ground truth of requirements.  

o Requirements elicitation and analysis activities at 
the start of the project often produce a “complete 
enough” set of requirements [1]. Stakeholders 
and requirements that are omitted during re-
quirements phase are uncovered in later phases, 
such as design, development, and deployment. 
For example, one study described a project 
where all the change requests received during 
the first year the software was deployed were 
from stakeholder needs that were overlooked 
during the project [38].  

o Ideally, for the least biased evaluation, the pro-
posed method should be applied to a project 
when it was initiated and evaluated after the sys-
tem is deployed, so that post-project knowledge 
does not influence the results. But it is impracti-
cal to do so because big projects often take longer 
than the three-year duration allocated for the 
work5. Also, studies suggested that software pro-
jects are more likely to fail than complete suc-
cessfully [94, 95], hence evaluating StakeRare 
using a project that has just started is risky be-
cause the project may fail before the ground 
truth can be built. Evaluation using a completed 
project comes with threats to validity, which will 
be discussed in Section 5. 

Most of the projects in the list of available projects 
were either not large-scale or lack documentation. RALIC 
was selected because it met the selection criteria.  

• Large-scale. RALIC had a large and complex stake-
holder base with more than 60 stakeholder groups. 
Approximately 30,000 students, staff, and visitors 

 

 
5 A study of 214 software projects in Europe found the average project 

duration to be over 2 years [93]. The study investigated projects of all 
sizes, and the duration for large-scale projects is likely to be above the 
average. 
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use the system to enter buildings, borrow library re-
sources, use the fitness centre, and gain IT access. 
Besides all UCL faculties and academic depart-
ments, RALIC also involved other supporting de-
partments such as the Estates and Facilities Division 
that manages UCL’s physical estate, Human Re-
source Division that manages staff information, In-
formation Services Division, Library Services, Se-
curity Services, and so on. These stakeholders have 
differing and sometimes conflicting requirements.  

• Well-documented. RALIC was a very well doc-
umented project and the project documentation was 
available to build the ground truth and existing 
method lists of requirements. 

• Available stakeholders. The majority of RALIC 
stakeholders were available for interviews. For 
stakeholders who were unavailable, other staff 
members were available to take their roles. 

• Completed and deployed. RALIC was completed 
and the system was already deployed in UCL for 
more than a year. 

4.3 Applying StakeRare to RALIC 

Using Step 1 of StakeRare, the stakeholders and roles for 
the RALIC project were identified and prioritised. The 
application of this step on RALIC is described in previous 
work [12, 89]. A total of 127 stakeholders and 70 roles 
were identified6. This list of stakeholders and their roles 
served as input to Step 2 of StakeRare to collect stake-
holder’s profile. 

Step 2 of StakeRare uses existing elicitation methods to 
identify an initial list of requirements. To reflect the actual 
initial list of requirements in the project, the initial list of 
requirements was taken from the earliest draft require-
ments produced by the project team. This initial list con-
sists of 3 project objectives, 12 requirements, and 11 spe-
cific requirements. 

Once the initial list of requirements was prepared, a 
survey was conducted to collect the profiles of RALIC 
stakeholders. To do so, all the stakeholders identified in 
Step 1 were contacted separately via email for a survey.  

Each survey took 30 minutes on average. In general, 
each stakeholder spent 10 minutes to learn about 
StakeRare and RALIC, and 20 minutes to complete the 
questionnaire. At the start of each survey, the respondent 
was provided with a cover sheet describing the survey 
purpose to elicit RALIC requirements. Then, StakeRare 
was introduced using a set of slides. After that, the re-
spondent was provided with a description of RALIC and 
its project scope to familiarise the respondent with the 
project. The respondent was also asked to put themselves 
in the situation before RALIC was initiated when provid-
ing requirements. To prompt the respondent for recom-
mendations, the respondent was provided with the defi-
 

 
6 The 127 stakeholders and 70 roles were identified by applying 

StakeNet on RALIC. Refer to [12] and [89] for the precision and recall of 
this list. The 127 stakeholders include all kinds of stakeholders such as 
users, legislators, decision-makers, and developers. 

nition of requirements, as well as the different types of 
requirements, examples for each type of requirement, and 
a template to guide the free text provided by the respond-
ent (Fig. 6). 

Step 2 of StakeRare collects stakeholders’ profiles by 
asking them to rate a predefined list of requirements (the 
initial requirements) and provide other requirements not 
in the list. In addition to this elicitation method, the work 
also tested two other methods: (1) without a predefined 
list, stakeholders provide a list of requirements and assign 
numeric ranks to the requirements based on their per-
ceived importance [53], and (2) 100-point test, where each 
stakeholder is given 100 points that they can distribute as 
they desire among the requirements [65]. 

In order to gather these different forms of information, 
a questionnaire comprising the following parts was used 
to gather the stakeholders’ profile. The complete ques-
tionnaire is available in [12]. 

(a) Stakeholder details. Respondents provide their 
name, position, department, and role in the project 
(Fig. 7(a)). 

(b) Ranked profile (RankP). Respondents provide 
their requirements with numeric priorities (1 for 
most important) and X for requirements they ac-
tively do not want (Fig. 7(b)). Then, respondents 
provide feedback on the elicitation method in 
terms of three criteria: (1) level of difficulty, (2) ef-
fort required, and (3) time spent, by rating each cri-
terion High, Medium or Low (Fig. 7(c)). The re-
spondents are required to complete this question 
before proceeding to the next to avoid the prede-
fined list of requirements in the next question from 
influencing their answers. 

(c) Rated profile (RateP). Respondents rate a prede-
fined list of requirements, from 0 (not important) 
to 5 (very important), and –1 for requirements they 
actively do not want (Fig. 7(d)). The predefined list 
consists of requirements extracted from the earliest 
draft requirements produced by the project team to 
reflect the actual initial requirements in RALIC. 
One extra requirement was added to the list, 
which is combining Santander Bank Card with 
UCL access card (Fig. 7(d), Item 1.3.8). This re-
quirement was being considered at the time of the 
survey and it was an opportunity to use the survey 
to elicit the stakeholders’ views on the require-
ment. Respondents are also asked to add require-
ments not in the predefined list and rate those re-
quirements (Fig. 7(e)). Once they start on RateP, 
they cannot return to RankP. As before, respond-
ents provide feedback on the elicitation method af-
ter they have completed the question. 

(d) Point test profile (PointP). Respondents are allo-
cated 100 points each to distribute among the re-
quirements they want from RateP (Fig. 7(f)). The 
requirements include both the predefined ones and 
the additional ones they provide. Respondents are 
asked to allocate more points to the requirements 
that are more important to them. Again, respond-
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ents provide feedback on the elicitation method.  

(e) Interest and comments. Finally, respondents re-
veal their interest in the RALIC project in terms of 
“not at all”, “a little”, “so so”, or “a lot” (Fig. 7(g)). 
Respondents also provide any other comments 
they have on the study (Fig. 7(h)). This part aims to 
learn more about the respondents and collect extra 
information to support the analysis of the results.  

 
 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

Fig. 6. Requirements: examples and template. 
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(e) 

 

 

(f) 

 

 

(g) 

 

 

(h) 

 

Fig. 7. StakeRare survey questionnaire. 

When the respondents have completed their question-
naire, they were interviewed for their survey experience 
and the rationale behind their answers. Similar to the in-
terviews in the StakeNet survey, these interviews were 
semi-structured, allowing the questions to be modified 
and new questions to be brought up depending on what 
the respondents say [96]. Some questions include:  

• What do you think about the StakeRare method? 

• Why is requirement R bad? (If the respondent ac-
tively does not want a requirement.)  

• Why is requirement R important to you? (If the re-
spondent allocated many points to a particular re-
quirement.) 

• Which elicitation method do you prefer and why? 

A total of 87 stakeholders (out of the 127 stakeholders 
identified in Step 1) were surveyed. Table 5 summarises 
the amount of data collected from the survey. RateP re-
ceived the highest number of ratings, followed by PointP, 
and then RankP. The predefined list in RateP has the ad-
vantage of suggesting requirements that the respondents 
are unaware of, but has the disadvantage of enabling re-
spondents to rate as many requirements as they like. 
PointP has fewer ratings than RateP, as the limitation of 
points encouraged the stakeholders to rate only the re-
quirements that they needed most.  

 
TABLE 5 

DATA COLLECTED FROM 87 RESPONDENTS 

 

Data Amount 

Stakeholder details 87 sets of details 
RankP  
     Ratings 415 ratings 
     Requirements 51 items 
     Specific Requirements 132 items 
RateP  
     Ratings 2,396 ratings 
     Requirements 48 items 
     Specific Requirements 104 items 
PointP  
     Ratings 699 ratings 
     Requirements 45 items 
     Specific Requirements 83 items 
Feedback on elicitation method 783 ratings 
Interest in RALIC 79 ratings 

 
The data collected from the survey was processed and 

cleaned. The survey revealed that although all stakehold-
ers provided short statements of their requirements (e.g., 
short clauses, or one to two sentences per requirement), 
very few stakeholders adhere to the requirements tem-
plate provided to them at the start of the survey (Fig. 6). A 
respondent experienced in business analysis advised that 
in requesting input from stakeholders, restrictions and 
templates should be kept to a minimum to encourage 
response, and the requirements engineers should process 
the data after collection. As RateP and PointP used a pre-
defined list of requirements, less cleaning was required. 
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Data cleaning focused on RankP as follows.  
• Same requirement different wording. Different 

statements describing the same requirement were 
merged. For example, in RALIC, “all in one card” 
was used interchangeably with “one card with mul-
tiple functionality,” hence the two requirements 
were merged.  

• Same requirement different perspective. Stake-
holders with different perspective may express the 
same requirement in a different way, hence these re-
quirements were merged. For example, Library Sys-
tems had the requirement “to import barcode from 
Access Systems,” but Access Systems had the re-
quirement “to export barcode to Library Systems.”  

• One statement many requirements. Statements 
containing more than one requirement were split 
into their respective requirements.  

• Classification into the requirements hierarchy. The 
requirements were grouped under their respective 
project objectives. Specific requirements were classi-
fied into their respective requirements.  

• Duplicate entries. If a stakeholder provided a re-
quirement more than once, only the requirement 
with the highest rank (i.e., assigned with the small-
est number) was kept. 

• Missing fields. A valid preference is in the form of 
<stakeholder, requirement, rating>. Three stakeholders 
provided only a requirement and did not rank their 
requirement. The rank of 1 was assigned to such re-
quirements, because if the stakeholder provided one 
requirement, then that requirement was assumed to 
be the most important to the stakeholder. 

• Tied ranks. Some respondents provided tied ranks 
for their requirements (e.g., two requirements with 
the same rank). Fractional ranking was used to han-
dle tied ranks. In RankP, the range of the ranking 
depends on the number of requirements provided 
by the stakeholders, and this variability affects the 
prediction and prioritisation. Hence, normalisation 
was done such that the sum of all the ranks from a 
stakeholder adds up to 1 in order to ensure that all 
rankings were within the same range of 0 to 1 for 
each stakeholder. The rating for “actively do not 
want” was converted to 0. 

In RateP, if the respondents entered additional re-
quirements, then the requirements were cleaned the same 
way as they were in RankP for the items “same require-
ment different wording”, “same requirement different 
perspective”, and “one statement many requirements”. 
When providing additional requirements in RateP, some 
respondents indicated which project objective in the pre-
defined list the requirements belong to, hence reducing 
the need for classification into project objectives. For du-
plicate entries in RateP, the requirement with the highest 
rating was kept.  

For PointP, the ratings were normalised such that each 
stakeholder’s allocated points added up to 100 to remove 
arithmetic errors during the survey. For duplicate entries 

in PointP, the requirement with the most points was kept. 
In addition to the data cleaning, Step 2 of StakeRare 

involves propagating the ratings up and down the hier-
archy. If a stakeholder rates a lower-level requirement but 
does not rate the high-level requirement, then StakeRare 
assumes the stakeholder provides the same rating to the 
high-level requirement. If a stakeholder rates a require-
ment but not its specific requirements, then StakeRare 
assumes the stakeholder provides the same rating to all 
the specific requirements. This propagation expanded the 
requirements’ ratings into the ratings of their correspond-
ing specific requirements, resulting in a total of 1109 rat-
ings on specific requirements for RankP, 3113 for RateP, 
and 1219 for PointP7.  

When plotting the specific requirements in RankP 
against the number of positive ratings, the result resem-
bles a power-law distribution (Fig. 8), with a few domi-
nating requirements to the left receiving many ratings 
and a long tail to the right with many requirements re-
ceiving a few ratings [97]. A power law graph is expected 
to emerge when there is a large population of stakehold-
ers, a large number of ratings, and a high freedom of 
choice [97]. The graph for RateP has a large number of 
dominating requirements due to the predefined list (Fig. 
9) and the graph for PointP has a long tail but does not 
have clear dominating requirements because of its point 
restriction (Fig. 10). 

 

Fig. 8. RankP: Specific requirement vs. number of rat-
ings. 

 

 
7 The complete RankP, RateP, and PointP datasets are available at 

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html. 
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Fig. 9. RateP: Specific requirement vs. number of rat-
ings. 

 

Fig. 10. PointP: Specific requirement vs. number of rat-
ings. 

In Step 3, collaborative filtering is used to predict other 
requirements a stakeholder may need based on the profile 
they provide in Step 2. As discussed in Section 4.1, no 
additional input is required from the respondents. 

The fourth and final step of StakeRare gathers all the 
stakeholders’ initial ratings in Step 2 and their approved 
ratings from Step 3 to prioritise all the requirements for 
the project. This step uses the priority of stakeholders and 
their roles from Step 1. For this priority, the StakeNet list 
produced by the betweenness centrality measure was 
used, because the evaluation from the previous work 
found the list to be the most accurate compared to the 
lists produced by the other social network measures [12, 
89]. As three datasets, RankP, RateP, and PointP, were col-
lected during the survey, three prioritised lists of re-
quirements were produced. 

4.4 Ground Truth 

The ground truth of requirements in RALIC is the actual 
list of requirements implemented in the project, priori-
tised based on their importance in the project. The ground 
truth consists of 10 project objectives, 43 requirements, 
and 80 specific requirements. 

Construction 

The ground truth was built by the author in three stages. 

 
Stage 1: Identify requirements. The ground truth project 
objectives, requirements, and specific requirements were 
identified by analysing project documentation such as the 
project plan, functional specification, meeting minutes, 
and post implementation report. For example, the project 
plan revealed that a project objective was “to improve 
security.” A requirement to achieve the project objective 
was “to enable security/reception staff to validate the 
cardholder’s identity.” Two specific requirements were 
“to enable security/reception staff to check that the ap-
pearance of the cardholder matches the digitally stored 
photo” and “to enable security/reception staff to check 
the cardholder’s role.”  

RALIC requirements were organised into three levels 
of hierarchy: project objectives, requirements, and specific 
requirements. A requirement that contributed towards a 
project objective was placed under the project objective, 
and a specific requirement that contributed towards the 
requirement was placed under the requirement. When 
placing requirements and specific requirements in the 
hierarchy, a requirement is placed under the objective that 
it influences most, and similarly, a specific requirement is 
placed under the requirement that it influences most. 

 
Stage 2: Pairwise comparison. This stage uses pairwise 
comparison to prioritise the project objectives, require-
ments, and specific requirements from Stage 1. The pair-
wise comparison method discussed in the background 
section was used as it includes much redundancy and is 
thus less sensitive to judgmental errors common to tech-
niques using absolute assignments [56]. The requirements 
from each level were considered separately. 

• Project objectives. The project objectives were ar-
ranged in an N!N matrix where N is the total num-
ber of project objectives. For each row, the objective 
in the row was compared with respect to each objec-
tive in the rest of the row in terms of their import-
ance to the project. The comparison is transitive. 
The project objective that contributes more to the 
success of the project is more important. For exam-
ple, in RALIC, the objective “to improve security 
and access control in UCL” (labelled as Security in 
Fig. 11) was more important compared to the objec-
tive “to design the access card” (labelled as Card 
design in Fig. 11). The objective considered to be 
more important in each pairwise comparison was 
placed in the corresponding cell of the matrix (Fig. 
11). If the two project objectives were equally im-
portant, they were both placed in the cell. For ex-
ample, the objective “to design the access card” was 
equally important with the objective “to reduce 
cost” (labelled as Cost). Hence, in Fig. 11, they both 
appear in the corresponding cell of the matrix. 

• Requirements. Requirements were prioritised the 
same way as project objectives. A requirement was 
more important if it contributed more towards the 
project objectives. For example, in RALIC, between 
the requirements “granting access rights” and 
“cashless vending,” “granting access rights” was 
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more important as it contributed highly towards the 
project objectives “to improve security” and “to im-
prove processes,” but “cashless vending” only con-
tributed towards “extensible future features.”  

• Specific requirements. Specific requirements were 
prioritised the same way as requirements. A specific 
requirement was more important if it contributed 
more towards the requirements. 

 

 Security Card design Cost 

Security – Security Security 

Card design – – Cost, Card design 

Cost – – – 

Fig. 11. 3!3 Matrix for Project Objectives. 

Stage 3: Prioritise requirements by their project objec-
tives. This stage produced the ground truth of require-
ments, which consists of a prioritised list of project objec-
tives, and within each project objective, a prioritised list 
of requirements, and within each requirement, a priori-
tised list of specific requirements. To produce the ground 
truth, project objectives were ranked by the number of 
cells in the matrix that contains the project objectives, 
from the most to the least. For each project objective, the 
requirements were prioritised from the requirements that 
appeared in the most cells to the least, and for each re-
quirement, the specific requirements are prioritised from 
the specific requirements that appear in the most cells to 
the least.  

Validation 

The ground truth was validated by management-level 
stakeholders and stakeholders who were involved in a 
major part of the project. These stakeholders were inter-
viewed to validate its completeness and accuracy in pri-
oritisation. The interviews were conducted after 
StakeRare was applied to RALIC. As StakeRare was ev-
aluated by surveying the stakeholders, conducting the 
interviews after the surveys prevents the survey answers 
from being influenced by the interviews. The interviews 
increased the confidence that the ground truth is objective 
and accurate, and is representative of the actual require-
ments and their prioritisations in RALIC.  

During the interviews, the stakeholders were provided 
with the description of the RALIC project and reminded 
about the purpose of the study, which was to identify and 
prioritise requirements. The stakeholders were also pro-
vided with the ground truth, and the purpose of the 
ground truth to evaluate StakeRare’s output was ex-
plained to them. The stakeholders were asked to inspect 
the ground truth and were presented with the following 
questions: 

• Are there any project objectives, requirements, and 
specific requirements that are missing from the 
ground truth? 

• Are there any project objectives, requirements, and 
specific requirements that should not be included in 
the ground truth? 

• Are any of requirements incorrectly prioritised? If 
so, why? 

The feedback based on the questions was used to 
amend the ground truth. Missing requirements that were 
pointed out were confirmed with project documentation 
as this work only considered documented requirements. 
The interviews revealed that the ground truth of require-
ments was complete. However, some stakeholders 
pointed out that as the project was completed a while ago, 
they may not have remembered all the requirements, and 
the best way to check for completeness would be to con-
sult the project documentation. Disagreements in the pri-
oritisations were confirmed with the other stakeholders 
and justified before amendments were made to the 
ground truth.  

4.5 Existing Method List 

The existing method list of requirements is an unpriori-
tised list of requirements identified by the project team at 
the start of the project using existing methods. The project 
team used traditional elicitation techniques, which in-
cluded meetings and interviews with key stakeholders 
(approximately 20 stakeholders representing 30 roles) 
determined by the project board. The existing method list 
consists of 10 project objectives, 43 requirements, and 56 
specific requirements. These requirements were identified 
from the start of the project until the date the require-
ments were signed off by the project board.  

The project team spent about 127 hours to produce the 
existing method list. This number is an approximation 
calculated from the total number of hours the stakehold-
ers spent in meetings until the requirements were signed 
off. 

4.6 Method and Results 

This section describes the method to evaluate each re-
search question in Section 4.1 and the results. 

RQ1: Identifying Requirements 

The first research question asks: 
• How many requirements identified by StakeRare 

and the existing method used in the project are ac-
tual requirements as compared to the ground truth? 

• How many of all the actual requirements in the 
ground truth are identified by StakeRare and the ex-
isting method used in the project? 

 
Method 
The list of requirements identified by StakeRare and the 
existing method were compared against the ground truth, 
in terms of precision and recall, the two metrics widely 
used in the information retrieval literature [91].  

The precision of identified requirements is the number 
of actual requirements in the set of identified require-
ments divided by the total number of identified require-
ments (Equation 4-1). 

,          (4-1) 
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where X is the set of requirements identified by StakeRare 
or the existing method, and GroundTruth is the set of re-
quirements in the ground truth.  

The recall of identified requirements is the number of 
actual requirements in the set of identified requirements 
divided by the total number of actual requirements 
(Equation 4-2). 

,          (4-2) 

with X and GroundTruth same as for precision. Both preci-
sion and recall range from 0 to 1. A precision of 1 means 
all the identified requirements are actual requirements. A 
recall of 1 means that all the actual requirements are iden-
tified. 

As explained in the StakeRare method, the require-
ments in StakeRare are organised into a hierarchy of pro-
ject objectives, requirements, and specific requirements. 
To measure the precision and recall of the identified re-
quirements, both the requirements and specific require-
ments were considered. Project objectives were not con-
sidered because the different methods share the same pro-
ject objectives.  

The requirements returned by the methods can be at a 
finer, equal, or coarser grain compared to the ground 
truth. If the returned requirements were at a finer grain, 
then the results were considered a match. For example, if 
ground truth returned “control access to departments,” 
and StakeRare returned “control access to the Department 
of Computer Science, Department of Engineering, etc.,” 
then it was considered that StakeRare returned a re-
quirement that matched the ground truth. Otherwise, if 
the returned requirements were at a coarser grain than 
the ground truth, then the results were considered not a 
match. If they were of equal grain, the descriptions of the 
requirements were compared. Match was independent of 
exact details such as numeric parameters. For example, if 
StakeRare returned the requirement “a minimum of 5 
years support from the software vendor,” but the actual 
requirement in the ground truth was “a minimum of 10 
years support from the software vendor,” then it was con-
sidered that StakeRare returned a requirement that 
matched the ground truth. This is because in an actual 
project, specific details could be modified during the pro-
ject as long as the requirement was identified. 

 
Results 
StakeRare identified the requirements in RALIC with a 
high level of completeness, with a 10% higher recall com-
pared to the existing method used in the project (Fig. 12). 
As the existing method mainly involved decision-makers, 
the list omitted process related requirements such as “en-
able visual checking of cardholders’ roles” and “ease of 
installing new card readers.” In the StakeRare list, these 
requirements were identified by stakeholders who were 
involved in the process. Hence, StakeRare’s approach of 
asking stakeholders with different perspectives increased 
the completeness of the elicited requirements, which is 
critical to build a system that meets the stakeholders’ 

needs. 
The majority of the requirements missing in the 

StakeRare list were technical constraints such as “the 
database platform must support Microsoft SQL Server 
and/or Oracle Server” and “the system manufacturer 
must be a Microsoft Certified Partner,” although technical 
stakeholders were involved in the survey. One reason 
could be the survey method of asking stakeholders to 
provide requirements on the spot, which may result in a 
bias to the type of requirements that can be identified 
using this approach. Future work should investigate this 
further. 

 

Fig. 12. Identifying requirements8. 

StakeRare had a lower precision compared to the exist-
ing method. This is because in StakeRare, stakeholders are 
free to suggest requirements, which may not always be 
implemented. For example, some RALIC stakeholders 
wanted to replace the existing access control system with 
thumb readers, but this requirement was not imple-
mented, hence lowering the precision. Other such re-
quirements include enabling the tracking of UCL alumni, 
card to be cheap (10 pence per card), and combine access 
card with travel card. These requirements do not appear 
in the existing method and ground truth lists. Neverthe-
less, in requirements elicitation, it is better to be more 
complete but less precise (identify extra requirements 
which are not implemented), rather than to be precise 
(identify only the requirements that are implemented) but 
miss out requirements [1, 39]. Due to the wide coverage of 
requirements in StakeRare, the majority of missing re-
quirements are of low priority. 

Not all stakeholders had requirements. For example, 
some developers who had not provided any requirements 
explained that their job was to implement the require-
ments given to them; others highlighted prerequisites for 
their job. For example, when completing the survey, the 
maintenance team entered technical documentation as 
their requirement. The StakeRare lists were less precise 
partly due to these requirements, as they were not in the 
ground truth. These requirements do not appear in the 
existing method list.  
 

 
8 Comparison between RankP, RateP, and PointP can be found in RQ4 

Fig. 14. 
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By asking stakeholders to indicate requirements they 
actively did not want, StakeRare uncovered conflicts. For 
example, security guards preferred not to have UCL’s 
logo on the ID card, for security reasons had the card 
been lost. Fitness centre users preferred not to have too 
many features on the ID card, as they had to exchange 
their cards for their locker keys for the duration they use 
the gym lockers. If the ID card had also served as a cash 
or bank card, then the fitness centre users would prefer 
using a separate gym card to exchange for locker keys, 
which meant that the requirement “all in one card” would 
not be achieved.  

Stakeholders recommended for a role may provide re-
quirements for another role, as it is common for a stake-
holder to have more than one role in a project. For exam-
ple, a RALIC developer was also a user of the access 
cards. According to this stakeholder, “as a developer I 
only care about system requirements. But as a member of 
staff, I want to be able to access required buildings, and 
by rating these [access related] requirements, I am an-
swering the questionnaire as a member of staff.” 

During the surveys, some respondents recommended 
other stakeholders to be surveyed regarding a specific 
requirement (e.g., the comment in Fig. 7(h)). This suggests 
that the stakeholder analysis step should overlap with the 
requirements elicitation step to improve the quality of the 
stakeholder list and requirement list. This finding is con-
sistent with the existing requirements engineering litera-
ture. According to Robertson and Robertson [39], the 
identifications of scope, stakeholders, and requirements 
are dependent on one another, and should be iterated 
until the deliverables have stabilised.  

Stakeholders supported StakeRare’s idea of being open 
and inclusive in requirements elicitation. When asked to 
represent all UCL students in RALIC, the student repre-
sentative clarified that “I do not represent all 20 thousand 
students, even though they voted for me. Their views on 
data management, for example, can be very different from 
mine,” and suggested a wider body of students to be sur-
veyed using StakeRare to ensure a more representative 
view. A management-level stakeholder commented that 
StakeRare provides the opportunity to elicit different 
views from a large number of stakeholders, which can 
increase stakeholder buy-in, a vital element for project 
success.  

RQ2: Prioritising Requirements 

The second research question asks: How accurately does 
StakeRare prioritise requirements as compared to the 
ground truth? 

 
Method 
StakeRare’s output for the requirements engineers was 
measured against the ground truth of requirements in 
Section 4.4, in terms of accuracy of prioritisation. The ac-
curacy of prioritisation for project objectives is the simi-
larity between the prioritisation of the project objectives 
by StakeRare and the prioritisation in the ground truth. 
Pearson’s correlation coefficient, %, was used to determine 
the similarity [91]. Values of % range from +1 (perfect cor-

relation), through 0 (no correlation), to –1 (perfect nega-
tive correlation). A positive % means that high priorities in 
the ground truth list are associated with high priorities in 
the list of identified requirements. The closer the values 
are to &1 or +1, the stronger the correlation. The statistics 
software by Wessa9 is used to calculate % in this work.  

The computation of % requires the lists to be of the 
same size. Therefore, the measurement of % takes the in-
tersection between the lists: each list is intersected with 
the other, and fractional ranking [90] is reapplied to the 
remaining elements in that list. Missing requirements and 
additional requirements in the StakeRare list were ac-
counted for when answering RQ1 on the completeness of 
the returned requirements. For requirements, % was 
measured for each list of requirements per project objec-
tive and the results were averaged, and the standard de-
viation was calculated for each average. The same was 
done for specific requirements, by measuring % for each 
list of specific requirements per requirement, averaging 
the results and calculating the standard deviation for each 
average. 

As a control, prioritised lists were produced using un-
weighted stakeholders (referred to as Unweighted in the 
results), i.e., each stakeholder’s weight is 1. The existing 
method list was not compared as it is unprioritised. 

 
Results 
StakeRare prioritised requirements accurately compared 
to the ground truth (Fig. 13). In prioritising project objec-
tives and requirements, StakeRare had a high correlation 
with the ground truth (% = 0.8 and % = 0.7 respectively). It 
was less accurate in prioritising specific requirements (% = 
0.5). Weighting stakeholders by their influence increased 
the accuracy of prioritising project objectives and re-
quirements by over 10%, but not for specific require-
ments. This influence is produced by applying social 
network measures to the stakeholder network. As such, 
the results show that using social networks generally im-
proves the accuracy of prioritising requirements. Never-
theless, the low accuracy in prioritising specific require-
ments should be further investigated, as these require-
ments are crucial to system development. 

StakeRare’s output was presented to interested stake-
holders after this work was completed. The director of 
Information Systems, who was experienced in options 
rankings for major decisions, commented that StakeRare’s 
prioritisation is “surprisingly accurate.” 

Interestingly, analysis of the meeting minutes and post 
implementation report revealed that the project team 
spent a disproportionate amount of time discussing less 
important requirements during project meetings. Accord-
ing to the minutes and interviews with the stakeholders, a 
significant amount of time was spent discussing card de-
sign. However, the project objectives “better user experi-
ence” and “improve processes” have a higher priority 
than “card design” in the ground truth. The post imple-
mentation report identified a key area relating to user 
 

 
9 Wessa, P. (2009) Free Statistics Software, Office for Research Devel-

opment and Education, version 1.1.23-r4, URL http://www.wessa.net/. 
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experience and processes that was not given adequate 
attention. According to the report, “A student’s first ex-
perience of UCL should not be spent all day in a queue. 
…the queuing arrangements should be revised and a 
more joined up approach with Registry taken. Last year 
the queue for the RALIC card meant students were queu-
ing outside – we were fortunate with the weather.” 

 

Fig. 13. Prioritising requirements (standard deviation in 
parentheses). 

StakeRare accurately prioritised the project objectives 
“better user experience” and “improve processes” as hav-
ing higher priority than “card design.” Had StakeRare 
been used, the project team would have realised that 
“card design” had a lower priority compared to the other 
two project objectives, and might have spent less time 
discussing card design and more time discussing various 
ways to improve processes and user experience.  

RQ3: Survey Response and Time Spent 

The third research question asks: 
• Are stakeholders motivated to provide require-

ments for StakeRare?  

• How much time did stakeholders spend in identify-
ing and prioritising requirements as compared to 
the existing method in the project? 

 
Method 
To determine the stakeholders’ motivation to provide rat-
ings, the response rate of the survey was calculated as the 
number of stakeholders who responded, over the total 
number of stakeholders who were contacted, expressed as 
a percentage. In the calculation, “non-stakeholders” and 
stakeholders who have left but yet to be replaced were 
excluded. For stakeholders who responded, their level of 
interest in the project, which was collected during the 
survey, was also investigated. 

The time spent using StakeRare was calculated using 
Equation 4-3. 

! 

timeStakeRare = timepredefined _ list +
timequestionnaire

3
,          (4-3) 

where timepredefined_list is the time spent building the prede-
fined list of requirements. As the predefined list of re-

quirements was taken from the first draft requirements, 
timepredefined_list is the number of hours the stakeholders spent 
in meetings until the draft requirements was produced on 
8 August 2005, which was 61 hours. timequestionnaire is the 
total time spent answering the questionnaire, which is the 
total survey time minus the time spent introducing Stak-
eRare and interviewing the respondents after the survey, 
which was approximately 10 minutes per respondent. 
timequestionnaire is divided by 3, to consider only one elicita-
tion method out of the three.  

timeStakeRare is the time spent using StakeRare from the 
stakeholders’ perspective. Only the respondents’ time 
spent was calculated, as this researcher’s presence while 
they were completing the questionnaires was just to ob-
serve them for research purposes. The calculation was an 
approximation that assumed the elicitation methods take 
an equal amount of time. The time spent using StakeRare 
was compared with the time spent using the existing 
method in the project, which was 127 hours as reported in 
Section 4.5.  
 
Results 
Stakeholders were motivated to provide ratings. The sur-
vey response rate was 79%, about 30% higher than the 
weighted average response rate without regard to tech-
nique10 [98]. Most of the stakeholders who responded 
were very interested in RALIC, only 13% indicated that 
they have little interest and 3% no interest. Those with 
little or no interest may not have responded in tool-based 
implementations of the survey.  

The time spent using StakeRare was 71 hours, 56 hours 
less than the time spent using the existing method in the 
project. While the existing method in the project returned 
an unprioritised list of requirements, StakeRare’s list of 
requirements was accurately prioritised and highly com-
plete, as shown in the previous research questions. These 
findings indicate that a more adequate involvement of 
stakeholders in this case produced better requirements. 

Finally, many stakeholders preferred using StakeRare 
to provide requirements rather than attend lengthy meet-
ings. In line with the existing literature, elicitation meet-
ings used in existing methods can be time consuming and 
ineffective [6]. One stakeholder commented, “I was only 
interested in one issue, but had to sit through hours of 
meetings, where unrelated items were discussed. What a 
waste of time. With this method, I could just write it 
down and get on with my work!” 

RQ4: Effective Support for Requirements Elicitation 

StakeRare’s default elicitation method is RateP, but the 
evaluation administered two other elicitation methods, 
RankP and PointP, to explore the effectiveness of different 
methods. The fourth research question asks: 

• Best elicitation method. Between the three elicita-
 

 
10 In the study by Yu and Cooper [98], the sample sizes for 497 response 

rates from various survey methods (e.g., mail surveys, telephone surveys, 
personal interviews) varied from 12 to 14,785. As such, the response rate 
averages are weighted by the number of contacts underlying the re-
sponse rate. 
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tion methods RankP, RateP, and PointP, which pro-
duces the most complete list of requirements and 
most accurate prioritisation for the requirements 
engineer? Are the results consistent regardless of the 
elicitation method used? 

• Stakeholders’ preference. Between the three elicita-
tion methods RankP, RateP, and PointP, which do 
the stakeholders prefer? 

• Rating all requirements. If stakeholders are pro-
vided with a list of all the requirements in the pro-
ject, how prepared are they to rate them all? 

 
Method 
Best elicitation method. Three elicitation methods were 
administered to explore the effectiveness of different 
methods. In RankP, stakeholders were asked to enter their 
requirements without providing an initial list of require-
ments. In RateP, stakeholders were asked to rate a prede-
fined list of requirements and provide additional re-
quirements. In PointP, stakeholders were asked to allocate 
100 points to the requirements they want in the same pre-
defined list as RateP. To evaluate the different elicitation 
methods, the lists produced from RankP and PointP were 
compared against the ground truth, and RQ1 and RQ2 
were answered using precision, recall, and accuracy as 
described previously. Then, the results from RankP and 
PointP were compared with the results from RateP.  
 
Stakeholders’ preference. To determine the elicitation 
method preferred by the stakeholders, the respondents’ 
feedback on the elicitation methods was investigated. 
During the survey, each respondent rated RankP, RateP, 
and PointP in terms of the criteria: level of difficulty, ef-
fort required, and time spent. Each criterion was rated 
High, Medium, or Low. The ratings were converted into 
numeric values (High = 3, Medium = 2, Low = 1) to be 
averaged. The average rating on each criterion for each 
elicitation method and the standard deviation for each 
average were calculated for RankP, RateP, and PointP. The 
interviews conducted with stakeholders after the surveys 
provided the rationale behind the stakeholders’ prefer-
ence. 

 
Rating all requirements. To determine how prepared 
stakeholders were to rate all the requirements, an alterna-
tive RateP questionnaire, which consisted of the prede-
fined list of requirements as well as the requirements pro-
vided by other stakeholders, was prepared. An experi-
ment was conducted with four stakeholders to rate this 
alternative questionnaire. The initial plan to involve more 
stakeholders in the experiment fell through as the stake-
holders were reluctant to rate a long list of requirements. 
 
Results 
Best elicitation method. In identifying requirements 
(RQ1), RateP had the best overall results, RankP had the 
highest recall, and PointP had the highest precision (Fig. 
14). RankP had the lowest precision because stakeholders 
were free to express what they want. PointP had the high-

est precision as limited points encouraged stakeholders to 
only suggest requirements they really needed. Although 
RateP collected the highest number of ratings, it has a 
lower recall compared to RankP. This is because in RateP, 
some stakeholders do not provide additional require-
ments after they have rated the requirements in the pre-
defined list. Requirements missing from RateP that are in 
RankP are mostly specific requirements. For example, 
RateP has the requirement “import data from other sys-
tems” but omitted the specific systems to import the data 
from. 

In prioritising requirements (RQ2), RateP produced the 
most accurate prioritisation for project objectives and re-
quirements (Fig. 15). The results in all three datasets 
showed that weighting stakeholders generally increased 
the accuracy of prioritisation. The most significant im-
provement was RateP requirements with an increase of 16 
percentage points. Only for RankP requirements and 
RateP specific requirements was there no improvement. 

The elicitation method influenced the prioritisation. 
For example, the project objective “extensible for future 
features” was prioritised disproportionately high in 
RateP, and disproportionately low in PointP and RankP. 
As RateP allowed stakeholders to rate as many require-
ments as they wanted, “nice to have” features were rated 
high. In PointP, stakeholders were given limited points, 
hence they allocated the points for requirements they 
really need rather than future features. In RankP, devel-
oper related project objectives such as “compatibility with 
existing UCL systems” and “project deliverables11” were 
prioritised disproportionately high. This was because 
developers who participated in the survey listed devel-
opment requirements (e.g., the maintenance team needed 
the requirements documentation for their work) rather 
than system requirements (e.g., easier to use access cards), 
and the other stakeholders provided relatively fewer re-
quirements in RankP compared to RateP and PointP. 

 

Fig. 14. Identifying requirements: RankP, RateP, and 
PointP. 

 

 
11 This project objective contains development related requirements 

such as requirements documentation, technical documentation, and 
change management. 
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Fig. 15. Prioritising requirements: RankP, RateP, and 
PointP (standard deviation for requirements and spe-
cific requirements in parentheses). 

RateP had the advantage of suggesting requirements 
that the respondents were unaware of, which improved 
the accuracy of prioritisation. Upon looking at the prede-
fined requirements in RateP, some stakeholders com-
mented that they were reminded about requirements 
which did not cross their minds while they were complet-
ing RankP. For example, the requirement “centralised 
management of access and identification information” 
had high priority in the ground truth. But in RankP, only 
one respondent provided this requirement, resulting in a 
biased overall prioritisation. The accuracy of prioritisa-
tion for the list of requirements under the same project 
objective was % = &0.1, indicating that the list was nega-
tively correlated with the ground truth. In contrast, this 
requirement, which was provided in the predefined list in 
RateP, received positive ratings from 68 respondents, re-
sulting in a prioritisation that was highly correlated with 
the ground truth (% = 0.7). 

Stakeholders found it easy to point out requirements 
they actively do not want from the predefined list of re-
quirements in RateP. However, they found it more diffi-
cult to do so in RankP where no requirements were pro-
vided. Although RateP suggested requirements to stake-
holders, stakeholders did not blindly follow the sugges-
tions. For example, although the “Santander bank card” 
requirement was in the predefined list, the majority of 
stakeholders were against it. The requirement received a 
rating of zero from 25 respondents and a rating of –1 (ac-
tively do not want) from 20 respondents. Only 23 re-
spondents rated it positively, suggesting that if UCL were 
to implement it, the card would not be well received.  
 
Stakeholders’ preference. The majority of stakeholders 
preferred RateP as they found it to require the least effort. 
Nevertheless, as they had to go through a predefined list 
of requirements, they found it more time consuming than 
RankP and PointP, where they only entered the require-
ments they wanted. For example, a security guard found 
the RateP list too student focused, and commented that it 
was “tedious to go through a list of requirements that are 

mostly unrelated.” In general, stakeholders found all 
three elicitation methods easy to complete, requiring little 
time and effort (Fig. 16). The average responses sat be-
tween Low and Medium for all three elicitation methods 
in all criteria. 

Different types of stakeholders preferred different elici-
tation methods. Many decision-makers preferred PointP, 
as they were used to making decisions under constraints. 
System users such as students and gym users preferred 
RateP, where options were provided. RankP was challen-
ging to some as they found it difficult to articulate their 
needs without prompts. Nevertheless, stakeholders with 
specific requirements in mind preferred RankP, where 
they could freely articulate their requirements. Some 
stakeholders found the predefined list of requirements 
constraining. For example, a respondent had trouble rat-
ing the requirement “enable the gathering and retrieval of 
the time which individuals enter and leave buildings.” He 
explained that the requirement should be worded as two 
requirements because he would provide a negative rating 
for gathering the time individuals enter buildings (he did 
not want the time he arrived at work to be recorded), but 
a high positive rating for gathering the time individuals 
leave buildings for security reasons.  

 

Fig. 16. Stakeholder feedback on elicitation method. 

Finally, many stakeholders found the arithmetic exer-
cise in PointP distracting, especially those who allocated 
points at a fine level of granularity. As such, PointP was 
rated the highest in terms of effort and difficulty. Future 
implementations of PointP should provide automatic 
point calculations. 

 
Rating all requirements. Although stakeholders rated 
most of the initial requirements, they were not prepared 
to rate the full list of requirements. The four stakeholders 
involved in rating the alternative questionnaire found the 
task tedious and time consuming. They preferred to only 
rate a subset of requirements that were relevant to them. 
One complained that she was bored and wanted to stop 
halfway. This suggests that it is useful to recommend rel-
evant requirements to stakeholders when the list of 
requirements is long. 

RQ5: Predicting Requirements 

The fifth research question asks: 
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• How accurately can collaborative filtering predict 
stakeholder requirements? 

• Are the results consistent regardless of the elicita-
tion method used? 

 
Method 
To evaluate StakeRare’s prediction accuracy, 10-fold cross-
validation [92] was used to predict the stakeholders’ rat-
ings for project objectives, requirements, and specific re-
quirements. 10-fold cross-validation is commonly used in 
machine learning research for assessing how the results of 
a statistical analysis will generalise to an independent 
dataset [99-101]. Using 10-fold cross-validation, the origi-
nal sample is randomly partitioned into ten subsamples. 
Of the ten subsamples, a single subsample is retained as 
the validation data for testing the model, and the remain-
ing nine subsamples are used as training data [92]. The 
cross-validation process is then repeated ten times (the 
folds), with each of the ten subsamples used exactly once 
as the validation data. The ten results from the folds are 
then averaged to produce a single estimation. The advan-
tage of this method over repeated random sub-sampling 
is that all observations are used for both training and 
validation, and each observation is used for validation 
exactly once [92, 102]. 

The Weka13 data mining software was used for the 
kNN algorithm and the evaluation. Cross-validation was 
used to find the optimal value for k. This was done using 
the built-in cross validation in Weka by setting k to the 
total number of stakeholders who provided more than 
one rating. The resulting optimal value was corroborated 

 

 
12 As mentioned in the data cleaning at the beginning of this section 

(page 14), the ratings for RankP have been normalised between 0 and 1, 
where the rating for actively do not want is 0. The ratings for RateP are 
integers. The ratings for PointP are real numbers. 

13 Weka version 3.6 http://www.cs.waikato.ac.nz/ml/weka/ 

through an exhaustive search using all possible values of 
k (from 1 to the total number of stakeholders who pro-
vided more than one rating) during preliminary experi-
ments.  

The mean absolute error (MAE) metric was used to ev-
aluate the accuracy of the predictions [91]. MAE is a 
measure of the deviation of recommendations from their 
true user-specified values widely used in the collabor-
ative filtering literature [103-106]. The MAE is computed 
by first summing these absolute errors of the n corres-
ponding rating-prediction pairs and then computing the 
average. Formally, 

,          (4-4) 

where n is the number of tested ratings, and < ri, pi > is a 
rating-prediction pair. The lower the MAE, the more ac-
curately the recommendation system predicts user rat-
ings. Stakeholders must provide at least one rating before 
their preference can be predicted, hence stakeholders who 
provided only one rating were removed.  

The results produced from using kNN with optimal k 
were compared to the following controls. 

• Random. Random predictions for the ratings were 
produced with a uniform distribution within the 
rating range, which was different for RankP, RateP, 
and PointP (Table 6). The experiment was repeated 
50 times and the average MAE was computed.  

• Max k. All stakeholders were assumed to be the 
same by running kNN with k = the total number of 
stakeholders who provided more than one rating. 

To check if the result was consistent regardless of the 
elicitation method, the datasets for RankP and PointP 
were evaluated using the same experiment. 

 
Results 
StakeRare predicted the stakeholders’ preference with 
high accuracy using the default RateP dataset (Fig. 17). As 
expected, random predictions were inaccurate, with an 
MAE of about 2.5 for all three hierarchy levels. kNN with 
maximum k improved the prediction accuracy by more 
than half, and kNN with optimal k performed the best in 
all three levels14. This showed that identifying similar 
stakeholders improved prediction accuracy. The average 
MAE after applying kNN was about 1 (Fig. 17). This 
meant that if a stakeholder rated a requirement as 4, 
StakeRare’s prediction of her rating was between 3 and 5. 
This result was comparable to that reported in the litera-
ture for standard collaborative filtering applications, such 
as movie rating [104]. In Jin et al.’s experiments [104] with 
two datasets (one with five ratings and one with six rat-
ings), the MAE ranged between 0.8 and 1.3. The 
StakeRare RateP dataset had six ratings (i.e., actively do 
not want, 1, 2, 3, 4, and 5). 

 

 
14 The differences in MAE observed in the results reported in this paper 

may not always be significant. 

TABLE 6 
DATA CHARACTERISTICS 

 

 RankP RateP PointP 

Project Objectives    

Number of Stakeholders 

Providing > 1 Rating 

66 75 71 

Number of Items 10 10 10 

Number of Ratings 249 438 270 

Requirements    

Number of Stakeholders 

Providing > 1 Rating 

71 75 71 

Number of Items 51 48 45 

Number of Ratings 461 1513 664 

Specific Requirements    

Number of Stakeholders 

Providing > 1 Rating 

76 75 75 

Number of Items 132 104 83 

Number of Ratings 1106 3112 1217 

Rating Range12 0' x <1 –1' x '5 0< x '100 
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Fig. 17. RateP: Predicting requirements (smaller MAE 
indicates higher prediction accuracy). 

The prediction results were consistent regardless of the 
elicitation method (Fig. 18). Random predictions were the 
least accurate, followed by kNN with maximum k, and 
kNN with optimal k produced the most accurate predic-
tion. The MAE for RankP was small as the rank was nor-
malised. The MAE for PointP was large, with random 
guessing having an MAE as large as 44.6, as possible rat-
ings ranged between 0 and 100. kNN managed to reduce 
the MAE to as low as 3.9 for that dataset. 

 

 

Fig. 18. Predicting requirements: RankP and PointP 
(smaller MAE indicates higher prediction accuracy). 

RQ6: Predicting Requirements: Enhanced Profiles 

The sixth research question asks: 
• Does enhancing stakeholder profile by adding 

stakeholder information improve the accuracy of 
predicting stakeholder interest in requirements? 

• Are the results consistent regardless of the elicita-
tion method used? 

 
Method 
For enhancing stakeholders’ profiles, two attributes were 
added to each stakeholder’s profile: role (referred to as 
Role in the Results section) and number of ratings (re-
ferred to as #Rtgs in the Results section). The attributes 
were first added separately, and then together (referred to 
as Both in the Results section). The experiment as before 
was used to predict stakeholders’ ratings using the en-
hanced profiles. 10-fold cross-validation [92] was used to 
predict the stakeholders’ ratings for project objectives, 
requirements, and specific requirements. The mean abso-
lute error (MAE) evaluation metric was used to evaluate 
the accuracy of the predictions [91]. The control was kNN 
with optimal k from the previous research question (re-
ferred to as Basic in the Results section). 

To check if the result was consistent regardless of the 
elicitation method, the datasets for RankP and PointP 
were evaluated using the same experiment. 

 
Results 
Enhancing the stakeholders’ profiles improved the accu-
racy of predicting their requirements for the default RateP 
dataset (Fig. 19). Adding stakeholder role improved pre-
diction accuracy because stakeholders with the same roles 
tend to have similar requirements. For example, members 
of the UCL Development & Corporate Communications 
Office required the card to have UCL branding but se-
curity guards preferred otherwise for security reasons in 
case the cards were lost. In requirements and specific re-
quirements, adding each attribute separately significantly 
improved the prediction accuracy, and adding both at-
tributes produced the most accurate prediction. In project 
objectives, the improvement was less obvious, and add-
ing each attribute separately produced better prediction 
than adding both attributes together. 
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Fig. 19. RateP: Enhanced profiles (smaller MAE indi-
cates higher prediction accuracy). 

The results were less consistent for RankP and PointP 
(Fig. 20). For PointP, prediction accuracy improved after 
adding roles to the profiles, but prediction accuracy be-
came worse when both attributes were added. For RankP, 
no significant improvements could be observed after en-
hancing profiles. Hence, different attributes may be 
needed for different datasets to improve prediction accu-
racy.  

 

 

Fig. 20. Enhanced profiles: RankP and PointP (smaller 
MAE indicates higher prediction accuracy). 

RQ7: Predicting Requirements: Other Algorithms 

The final research question asks: 
• Does using other algorithms and combinations of 

algorithms improve the prediction accuracy? 

• Are the results consistent regardless of the elicita-
tion method used? 

 
Method 
To answer the question about using other algorithms and 
combinations of algorithms, linear regression was used to 
predict the stakeholders’ preferences [92]. Principle Com-
ponent Analysis (PCA) was also used to preprocess the 
data before the prediction algorithms (i.e., kNN or linear 
regression) were applied [92, 107, 108]. PCA is widely 
used in exploratory data analysis and for making predic-
tive models [107]. It involves a mathematical procedure 
that transforms a number of possibly correlated variables 
into a smaller number of uncorrelated variables called 
principal components [107]. The experiment in the previ-
ous research question was used to predict stakeholders’ 
ratings using four permutations as follows: 

• kNN with optimal k (kNN),  

• PCA and kNN with optimal k (P+kNN),  

• linear regression (LR), and 

• PCA and linear regression (P+LR). 

To check if the result was consistent regardless of the 
elicitation method, the datasets for RankP and PointP 
were evaluated using the same experiment. 

 
Results 
The use of other algorithms improved the accuracy of 
prediction in general (Fig. 21). Applying PCA before kNN 
improved the prediction accuracy for project objectives 
and requirements, but not for specific requirements. As 
PCA finds the principle components, it potentially dis-
cards some information and focuses on the variables that 
make classification easiest. The lower prediction accuracy 
for specific requirements suggested that the specific re-
quirements were more complex and needed more infor-
mation for better classification. Using linear regression 
instead of kNN improved the prediction accuracy signifi-
cantly for all three hierarchy levels. However, applying 
PCA before linear regression did not produce better re-
sults in general. For project objectives and specific re-
quirements, it performed slightly worse. 
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Fig. 21. Other algorithms (smaller MAE indicates higher 
prediction accuracy). 

The best algorithm differed across different datasets. 
For RankP, apart from the objective level, kNN was the 
most accurate (Fig. 22). For PointP, apart from the objec-
tive level, linear regression was slightly more accurate 
than the others. Applying PCA before kNN or linear re-
gression consistently produced lower accuracy for spe-
cific requirements in all three datasets. This confirmed 
that specific requirements were complex and required 
more information for better classification. 

 

 

Fig. 22. Other algorithms: RankP and PointP (smaller 
MAE indicates higher prediction accuracy). 

Summary 

The evaluation of StakeRare on RALIC provide clear evi-
dence that StakeRare effectively supports requirements 
elicitation as follows. 

• The first step of StakeRare, which uses the StakeNet 
method, identifies a highly complete set of stake-
holders and prioritises them accurately based on 
their influence in the project. The evaluation is de-
scribed in [89] and [12]. 

• StakeRare identifies a highly complete set of re-
quirements compared to the existing method used 
in the project. By eliciting requirements from vari-
ous perspectives, StakeRare detects conflicts and has 
the potential of increasing stakeholder buy-in. 

• Stakeholders are motivated to provide their re-
quirements using StakeRare. StakeRare requires less 
time from the requirements engineers and the 
stakeholders as compared to the existing method 
used in the project. 

• StakeRare prioritises requirements accurately using 
the stakeholders’ influence produced by the social 
network measures. The director of Information Sys-
tems experienced in options rankings for major de-
cisions commended StakeRare’s prioritisation as 
“surprisingly accurate.” 

• The investigation of different elicitation methods, 
such as RankP and PointP, shows that StakeRare’s 
elicitation method, RateP, which provides stake-
holders with a predefined list of requirements as 
well as allows them to add new requirements, is 
rated by stakeholders as low difficulty and requir-
ing little effort. It also produces the most accurate 
prioritisation of requirements. Nevertheless, stake-
holders prefer not to be overloaded by information, 
which happens when there is a long list of require-
ments for them to rate. 

• StakeRare handles information overload by drawing 
stakeholders’ attention to only the relevant re-
quirements that they are unaware of. The recom-
mendations by StakeRare that are approved by the 
stakeholders will then improve global prioritisation. 
The kNN collaborative filtering algorithm accurately 
predicts a stakeholder’s requirements based on the 
requirements provided by similar stakeholders. 

• Adding stakeholder profiles can increase prediction 
accuracy, and using other collaborative filtering al-
gorithms can also improve prediction accuracy. 

5 THREATS TO VALIDITY 

Single Completed Project 

The main threat to validity in the evaluation is the use of 
one project to evaluate StakeRare, and that the project has 
already completed before StakeRare was applied. As 
such, there must be some caution in generalising the re-
sults to other projects and organisations.  

The StakeRare survey was conducted after the RALIC 
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project was completed, hence post-project knowledge 
may influence the results. In the survey, respondents were 
asked to articulate requirements for the existing system 
by imagining the situation before the RALIC project. 
Nevertheless, it is difficult for the respondents to do so 
without bias, as they had already been using the system 
and may not be aware of the difficulties before the RALIC 
system was implemented. More importantly, the re-
spondents may be aware of the requirements due to their 
involvement in the project, and their knowledge may 
skew the evaluation results. In addition, the comparison 
of StakeRare with the existing method used in the project 
could be regarded as unfair because the existing method 
was used at the start of the project, when the stakeholders 
have no prior knowledge about the requirements. 

Further analysis was conducted to investigate the ef-
fect of this threat on the evaluation results. Due to staff 
turnover and department restructuring, only 15% of the 
respondents were involved in decision-making, stake-
holder analysis, and requirements elicitation during the 
project, hence their influence on the overall prioritisation 
of stakeholder roles and requirements is low. The re-
quirements provided by these respondents have a recall 
of 39%, which was approximately 50% lower than the 
recall of the requirements returned by StakeRare. As the 
respondents who were also involved in the actual project 
were mainly decision-makers, their requirements missed 
out process related requirements such as “faster card is-
sue.” In the StakeRare list, these requirements were iden-
tified by stakeholders who were involved in the process 
themselves. 

Finally, despite this threat to validity to some of the re-
sults, the evaluation contains much more than a compari-
son against the existing method and the ground truth. 
They include a systematic comparison of various elicita-
tion methods, prioritisation methods, and collaborative 
filtering algorithms. 

Ground Truth Construction 

The ground truth of requirements in a software project is 
difficult to establish definitely, as the decision of which 
requirements to implement may involve politics and 
power struggles. One may claim that the ground truth is 
biased in the perspective of this researcher, thus affecting 
the results of the study. Nevertheless, it is argued that the 
ground truth is representative of the actual stakeholders 
and requirements in the project because the global per-
spective of the project was acquired from reviewing pro-
ject documentation, observing the stakeholders’ engage-
ment with the project, and interviewing them. In addi-
tion, to increase the confidence that the ground truth is 
objective and accurate, the ground truth was validated by 
management-level stakeholders and stakeholders who 
were involved in a major part of the project (Section 4.4).  

As the ground truth validation involved stakeholders 
who were also involved in the survey, one may claim that 
their input in the validation could bias the ground truth. 
Nevertheless, the total number of these stakeholders was 
less than 10 (out of a total of 87 respondents), and they 
had different levels of project influence, hence their over-

all influence on the requirements prioritisation in 
StakeRare was low. In addition, disagreements with the 
ground truth must be backed by justifications and evi-
dence before the ground truth was amended. The total 
number of amendments made from the validation was 
less than 5.  

Data Cleaning 

The responses provided by respondents during the sur-
vey were cleaned by this researcher. Additional require-
ments provided by the respondents were classified into 
their respective project objectives, synonymous require-
ments were merged, and statements containing more than 
one requirement were split. Manual merging of require-
ments and classification of requirements into their respec-
tive project objectives can be subjective.  

The data cleaning on the RankP dataset has the highest 
risk of being subjective among all the datasets in this 
work. StakeRare uses the RateP dataset where an initial 
list of requirements is provided. RankP was a dataset 
used solely to evaluate StakeRare. In RankP, there were no 
initial requirements; stakeholders provided their own 
requirements, which are then cleaned by this researcher 
by manually classifying the requirements into their re-
spective project objectives. 

To determine the objectiveness of the classification, a 
group of 16 Master of Science students from the UCL De-
partment of Computer Science were requested to classify 
the raw text provided by the respondents into the rel-
evant project objectives. The students’ classifications are 
then compared to the classification by this researcher. 
These students were enrolled in the Systems Require-
ments Engineering course15 during the time of this study. 
Their familiarity with the RALIC project comes from the 
brief description of the project in the StakeNet paper [89], 
and the use of their own access cards. Each student was 
given approximately 25 requirements to classify into pro-
ject objectives. The requirements are raw text as provided 
by the stakeholders. 

The classification survey revealed that the classifica-
tion in the work appears to be valid, but dependent on 
project knowledge and interaction with the stakeholders. 
The student’s classification shows agreement with the 
classification in this work, with a 68% match. The discre-
pancy was partly due to the students’ lack of project 
knowledge about RALIC. The students found the classifi-
cation easy but felt that they required more knowledge 
about RALIC to be certain about some classifications.  

Evaluation of the Collaborative Filtering Algorithm 

StakeRare uses collaborative filtering to recommend rel-
evant requirements to a stakeholder. The evaluation uses 
mean absolute error (MAE), which measures the devi-
ation between a predicted rating and the actual rating 
provided by the stakeholder, rather than the relevance of 
the recommended requirements. In addition, MAE may 
be less appropriate for tasks where a ranked result is re-
turned to the user, who then only views items at the top 
 

 
15 http://www.cs.ucl.ac.uk/teaching/syllabus/mscsse/gs01.htm 
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of the ranking. The accuracy of predictions for items that 
the system correctly knows the user will have no interest 
in are less important, but using MAE, the predictions for 
all items are evaluated equally [80, 91].  

Nevertheless, MAE is used to evaluate this work as it 
captures the quality of the collaborative filtering system 
because more accurate predictions of ratings generally 
correspond to more relevant recommendations [80]. In 
addition, MAE is a standard measure for evaluating pre-
dictive accuracy in collaborative filtering widely used in 
the field (e.g., for predicting the accuracy of movie rat-
ings) [80, 91, 103-106]. Finally, measures that are more 
appropriate to evaluate a ranked list of recommendations 
have their own drawbacks (e.g., the half-life utility metric 
is less standard, and different researchers can use signifi-
cantly different values making it difficult to compare re-
sults and easy to manipulate) [91]. More accurate means 
to evaluate the relevance of the recommendations, such as 
interviewing stakeholders to find out the relevance of the 
recommendations, should be investigated. 

Respondent Feedback 

Due to social niceties, the respondents’ feedback (e.g., 
their ratings on the ease of use of StakeRare, and feedback 
on the accuracy of StakeRare’s prioritisation) may be posi-
tively biased. Nevertheless, these stakeholders have little 
incentive to make socially desirable remarks, and they 
have been quite frank in pointing out deficiencies in the 
methods (e.g., the arithmetic exercise in PointP was dis-
tracting and they disliked rating all the requirements). In 
addition, it was made clear to the stakeholders that the 
main objective of their feedback was to improve the work. 

The respondents were requested to evaluate each elici-
tation method sequentially. For a more effective compari-
son among the three elicitation methods, the stakeholders 
should evaluate the methods all at once at the end of the 
survey, for example, using pairwise comparison among 
the elicitation methods. 

6 FUTURE WORK 

To address the threats to validity, future work should ev-
aluate StakeRare using different projects in different or-
ganisations, and apply the method at the start of the pro-
jects. In addition, although RALIC was a large project in 
terms of number of stakeholders and stakeholder roles, it 
is not large in terms of the number of elicited require-
ments. Step 3 of StakeRare aims to predict the require-
ments the stakeholders may need so that they need not go 
through a long list of requirements when they rate re-
quirements. Hence, future work should evaluate 
StakeRare using projects with a large number of require-
ments (e.g., hundreds or thousands). 

Future evaluations should also consider alternative 
ways of building the ground truth to increase its objec-
tiveness, such as involving more than one researcher. Fu-
ture work should improve the objectiveness and scalabil-
ity of the data cleaning, for example, by crowdsourcing 
the stakeholders to clean the data, enabling the stake-
holders to comment on the requirements engineers’ data 

cleaning, or using natural language processing to identify 
similar requirements [109].  

The evaluation also highlighted limitations in the 
StakeRare method that should be addressed in future 
work as follows. 

• The quality of the requirements identified by 
StakeRare may depend on the initial set of require-
ments, especially in projects where stakeholders are 
less aware of their requirements. Future work 
should investigate the effect of the initial require-
ments on the result, for example, by using a control 
project with a lower quality set of initial require-
ments. The initial requirements in StakeRare are 
identified using the existing elicitation methods dis-
cussed in the background section. Future work can 
also explore ways to improve the quality of the in-
itial requirements, for example by selecting suitable 
existing elicitation methods for different projects. 

• The quality of the requirements depends on the 
stakeholders’ response. Future work should investi-
gate methods to encourage their response. 
StakeRare was designed for projects where stake-
holders are likely to use the resulting system. In 
such projects, it is likely that stakeholders are better 
motivated to respond. In projects where stakehold-
ers are not obliged to use the system or are unclear 
about their requirements, focus groups and work-
shops may be more suitable to encourage stake-
holders to articulate and discover requirements. 
Hence, future work should investigate the types of 
projects suitable for StakeRare to be used.  

• StakeRare assumes that stakeholders provide rec-
ommendations and ratings honestly. However, ma-
licious stakeholders may provide responses for their 
personal benefit, such as recommend “non-
stakeholders”, exclude some stakeholders, or ma-
nipulate the requirements ratings. This, in turn, af-
fects the quality of stakeholders and requirements 
returned by the method. Nevertheless, the be-
tweenness centrality measure makes it more diffi-
cult for stakeholders to manipulate their influence 
because it considers the whole network in the pri-
oritisation (i.e., to manipulate their influence in the 
project, the stakeholders have to influence the other 
stakeholders’ recommendations). Still, future work 
should develop more sophisticated methods that 
account for malicious stakeholders who manipulate 
recommendations and ratings for personal gains. 

• StakeRare’s rating propagation in Step 2 makes as-
sumptions that may not always be true. Future 
work should investigate alternate methods of 
propagation, and the effect of these methods on the 
results. 

• Requirements that stakeholders actively do not 
want are rated with an X. Future work should inves-
tigate (1) enabling stakeholders to indicate the levels 
they do not want a requirement (e.g., -1 to -5, where 
-1 is mildly do not want and -5 is strongly do not 
want), (2) incorporating negative ratings into re-
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quirements prioritisation, and (3) integrating con-
flict negotiation methods into StakeRare. 

• In StakeRare, requirements are weighted by the 
stakeholders’ total influence over the project lifecy-
cle. To improve the accuracy of prioritisation, future 
work should consider the following factors.  

o Stakeholders have different influence across dif-
ferent issues, such as funding, development, and 
usage. 

o A stakeholder’s influence in a project may 
change over time.  

o Requirements and their importance in the project 
change over time. 

o The knowledge about the implementation cost of 
each requirement may influence the stakehold-
ers’ rating on the requirement. 

o The dependencies among requirements may in-
fluence the prioritisation. For example, if an es-
sential requirement depends on a trivial re-
quirement to be realised, then the trivial re-
quirement deserves high priority. 

• During the evaluation, various lessons were learnt 
from analysing different elicitation methods. For ex-
ample, RateP allowed stakeholders to rate as many 
requirements as they wanted, which caused them to 
include many “nice to have” features, stakeholders 
find it difficult to point out requirements they ac-
tively do not want in RankP where no requirements 
were provided, and PointP had the highest preci-
sion as limited points encouraged stakeholders to 
only suggest requirements they really needed. Fu-
ture work should analyse these insights systemati-
cally and investigate their suitability for different 
kinds of projects and stakeholders. 

• The diversity of results for the different elicitation 
methods suggests that future work should investi-
gate the combination of elicitation methods to pro-
duce better results. In this work, only three elicita-
tion methods (i.e., RateP, RankP, and PointP) are 
compared. Future work should also conduct com-
parisons with more elicitation methods.  

Finally, changes in the stakeholders’ recommendations 
(e.g., modification of salience value or new recommenda-
tions) or changes in the requirements’ ratings (e.g., modi-
fication or addition of ratings) mean that the require-
ments have to be reprioritised. StakeRare’s effectiveness 
in supporting requirements elicitation can be significantly 
improved by automating the requirements engineer’s 
task, such as face-to-face surveys with stakeholders, data 
entry, and requirements prioritisation. StakeSource16, a 
software tool described in previous work [110], has been 
developed to automate Step 1 of StakeRare. StakeSource 
crowdsources17 the stakeholders themselves for recommen-
 

 
16 http://www.cs.ucl.ac.uk/research/StakeSource/ 
17 Crowdsourcing is a concept that harnesses the knowledge contained 

in diverse communities of people [111, 112]. In this case, StakeSource 

dations about other stakeholders and aggregates their 
answers using social network analysis. StakeSource has 
been used in real projects by practitioners. Tool support 
for the other StakeRare steps, such as rating collection, 
automated requirements prioritisation, and collaborative 
filtering computations, has also been implemented as 
StakeSource2.0 [113]. Future work involves evaluating the 
tool in real-world projects. 

7 CONCLUSION 

In large software projects, requirements elicitation tends 
to be beset by three problems: information overload, in-
adequate stakeholder input, and biased prioritisation of 
requirements.  

The main contribution of the work is the development 
of the StakeRare method, which supports requirements 
elicitation in large software projects. The method is one of 
the first applications of social networks and collaborative 
filtering to identify and prioritise stakeholders and their 
requirements. 

A second important contribution of the work is the ex-
tensive empirical evaluation of the methods using a real 
large-scale software project. This work pioneered three 
significant forms of evaluation: the comparison with ex-
isting elicitation methods used in the project, the com-
parison with the ground truth built from post-project 
knowledge, and the use of standard statistical measures 
from the information retrieval literature. This substantial 
empirical study using real data is one of the first in re-
quirements elicitation research. Approximately 200 face-
to-face interviews were conducted with the project stake-
holders, and more than 1000 pages of project documenta-
tion were reviewed. 

Using this substantial data, the work has demonstrated 
that social networks and collaborative filtering provide 
effective support for requirements elicitation in large-
scale software projects. 

In a broader context, this work proposes a new meth-
odology in requirements elicitation that shifts the em-
phasis from requirements elicitation by the requirements 
engineers to a collaborative approach in which a repre-
sentative sample of stakeholders has a say. Doing so re-
duces the requirements engineers’ workload and the like-
lihood of omitting stakeholders and their requirements. 
This methodology for supporting requirements elicitation 
is one of the first scalable solutions for future large pro-
jects. Using methods such as StakeRare, it is hoped that 
one day software projects will no longer fail from infor-
mation overload, inadequate stakeholder input, and 
biased prioritisation of requirements.  

ACKNOWLEDGMENT 

The authors wish to thank the RALIC stakeholders for 
their survey participation, Peter Bentley for his machine 
learning expertise and for reading the numerous revisions 

                                                                                                       
 
harnesses the knowledge of stakeholders to identify and prioritise stake-
holders. 



30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  MANUSCRIPT ID 

 

 

of this paper, Jun Wang for his advise on collaborative 
filtering, Daniele Quercia and Neal Lathia for their idea of 
using collaborative filtering in this context, Emmanuel 
Letier for his requirements engineering advice, his Sys-
tems Requirements Engineering students for participating 
in the requirements classification survey, and the anony-
mous reviewers for their feedback on the paper.  

REFERENCES 

[1] B. Nuseibeh, and S. Easterbrook, "Requirements engineering: a 
roadmap," Proceedings of the Conference on The Future of Software 
Engineering. pp. 35 - 46, 2000. 

[2] H. Sharp, G. H. Galal, and A. Finkelstein, "Stakeholder 
identification in the requirements engineering process," 
Proceedings of the Database & Expert System Applications 
Workshop. pp. 387–391, 1999. 

[3] P. Zave, “Classification of research efforts in requirements 
engineering,” ACM Computing Surveys, vol. 29, no. 4, pp. 315-
321, 1997. 

[4] J. Cleland-Huang, and B. Mobasher, "Using data mining and 
recommender systems to scale up the requirements process," 
Proceedings of the 2nd International Workshop on Ultra-Large-Scale 
Software-Intensive Systems. pp. 3-6, 2008. 

[5] R. N. Charette, “Why software fails,” IEEE Spectrum, vol. 42, no. 
9, pp. 36, 2005. 

[6] D. C. Gause, and G. M. Weinberg, Exploring Requirements: 
Quality Before Design: Dorset House Publishing Company, Inc., 
1989. 

[7] I. Alexander, and S. Robertson, “Understanding project 
sociology by modeling stakeholders,” IEEE Software, vol. 21, no. 
1, pp. 23-27, 2004. 

[8] I. Alexander, “A taxonomy of stakeholders: human roles in 
system development,” International Journal of Technology and 
Human Interaction, vol. 1, no. 1, pp. 23-59, 2005. 

[9] L. Lehtola, M. Kauppinen, and S. Kujala, "Requirements 
prioritization challenges in practice," Product Focused Software 
Process Improvement, pp. 497-508, Berlin Heidelberg: Springer, 
2004. 

[10] I. Sommerville, and P. Sawyer, Requirements Engineering: A Good 
Practice Guide: John Wiley & Sons, Inc., 1997. 

[11] B. H. C. Cheng, and J. M. Atlee, "Research directions in 
requirements engineering," Proceedings of the Conference on The 
Future of Software Engineering. pp. 285-303, 2007. 

[12] S. L. Lim, “Social Networks and Collaborative Filtering for 
Large-Scale Requirements Elicitation,” PhD Thesis, University 
of New South Wales, Australia, 2010. 

[13] A. J. Albrecht, "Measuring application development 
productivity," Proceedings of the Joint SHARE, GUIDE, and IBM 
Application Development Symposium. pp. 83–92, 1979. 

[14] G. C. Low, and D. R. Jeffery, “Function points in the estimation 
and evaluation of the software process,” IEEE Transactions on 
Software Engineering, pp. 64-71, 1990. 

[15] C. Jones, “Patterns of large software systems: failure and 
success,” Computer, vol. 28, no. 3, pp. 86-87, 1995. 

[16] C. F. Kemerer, “Reliability of function points measurement: a 
field experiment,” Communications of the ACM, vol. 36, no. 2, pp. 
85-97, 1993. 

[17] D. Galin, Software Quality Assurance: From Theory to 
Implementation: Addison-Wesley, 2004. 

[18] C. Jones, Applied Software Measurement: Global Analysis of 
Productivity and Quality, 3rd ed.: McGraw-Hill Osborne Media, 
2008. 

[19] F. P. Brooks Jr, The Mythical Man-Month, Anniversary ed., 
Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 
1995. 

[20] M. E. Fagan, “Design and code inspections to reduce errors in 
program development,” IBM Systems Journal, vol. 15, no. 3, pp. 
182-211, 1976. 

[21] D. R. Jeffery, and M. J. Lawrence, "An inter-organisational 
comparison of programming productivity," Proceedings of the 
4th International Conference on Software Engineering. pp. 369-377, 
1979. 

[22] A. J. Albrecht, and J. E. Gaffney Jr, “Software function, source 
lines of code, and development effort prediction: a software 

science validation,” IEEE Transactions on Software Engineering, 
vol. SE-9, no. 6, pp. 639-648, 1983. 

[23] S. McConnell, Rapid Development: Taming Wild Software 
Schedules, Redmond, WA: Microsoft Press, 1996. 

[24] S. McConnell, Code Complete, Redmond, WA: Microsoft Press, 
2004. 

[25] C. Jones, Estimating Software Costs, New York: McGraw-Hill, 
1998. 

[26] J. J. Rakos, Software Project Management: Prentice Hall, 1990. 
[27] M. Fischer, and H. Gall, “Visualizing feature evolution of large-

scale software based on problem and modification report data,” 
Journal of Software Maintenance and Evolution Research and 
Practice, vol. 16, no. 6, pp. 385-403, 2004. 

[28] C. Sauer, A. Gemino, and B. H. Reich, “The impact of size and 
volatility on IT project performance,” Communications of the 
ACM, vol. 50, no. 11, pp. 79-84, 2007. 

[29] P. Kruchten, “Architectural blueprints - the “4+ 1” view model 
of software architecture,” IEEE Software, vol. 12, no. 6, pp. 42-50, 
1995. 

[30] M. Burstin, and M. Ben-Bassat, "A user's approach to 
requirements analysis of a large software system," Proceedings of 
the 1984 Annual Conference of the ACM on the Fifth Generation 
Challenge. pp. 133-145, 1984. 

[31] M. Cross, “Special report: public sector IT failures,” 
PROSPECT, pp. 48-52, 2005. 

[32] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, 
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, and K. Sullivan, 
Ultra-Large-Scale Systems: The Software Challenge of the Future: 
Software Engineering Institute, 2006. 

[33] R. Schaefer, “A rational theory of system-making systems,” 
ACM SIGSOFT Software Engineering Notes, vol. 31, no. 2, pp. 1-
20, 2006. 

[34] P. Laurent, J. Cleland-Huang, and C. Duan, "Towards 
automated requirements triage," Proceedings of the 15th IEEE 
International Conference on Requirements Engineering. pp. 131-140, 
2007. 

[35] R. Schaefer, “A systems analysis of systems integration,” ACM 
SIGSOFT Software Engineering Notes, vol. 33, no. 1, 2008. 

[36] C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski, 
“Towards automated requirements prioritization and triage,” 
Requirements Engineering, vol. 14, no. 2, pp. 73-89, 2009. 

[37] H. Goldstein, “Who killed the virtual case file?,” IEEE Spectrum, 
vol. 42, no. 9, pp. 24-35, 2005. 

[38] A. Cockburn, Writing Effective Use Cases: Addison-Wesley 
Professional, 2000. 

[39] S. Robertson, and J. Robertson, Mastering the Requirements 
Process: Addison-Wesley Professional, 2006. 

[40] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno, 
"Effectiveness of requirements elicitation techniques: Empirical 
results derived from a systematic review," Proceedings of the 14th 
IEEE International Conference on Requirements Engineering. pp. 
179-188, 2006. 

[41] S. Lauesen, Software Requirements: Styles and Techniques: 
Addison-Wesley Professional, 2002. 

[42] A. M. Davis, “Operational prototyping: a new development 
approach,” IEEE Software, vol. 9, no. 5, pp. 70-78, 1992. 

[43] C. Potts, "Metaphors of intent," Proceedings of the 5th IEEE 
International Symposium on Requirements Engineering. pp. 31-38, 
2001. 

[44] S. J. Andriole, Storyboard Prototyping: A New Approach to User 
Requirements Analysis, Wellesley, MA: QED Information 
Sciences, Inc., 1989. 

[45] D. Leffingwell, and D. Widrig, Managing Software Requirements: 
A Unified Approach, Boston, MA: Addison-Wesley Longman 
Publishing Co., Inc., 1999. 

[46] I. Jacobson, Object-Oriented Software Engineering, New York: 
ACM Press, 1991. 

[47] N. A. M. Maiden, “CREWS-SAVRE: Scenarios for acquiring and 
validating requirements,” Automated Software Engineering, vol. 
5, no. 4, pp. 419-446, 1998. 

[48] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Science of Computer 
Programming, vol. 20, no. 1-2, pp. 3-50, 1993. 

[49] A. van Lamsweerde, "Goal-oriented requirements engineering: 
a guided tour," Proceedings of the 5th IEEE International 
Symposium on Requirements Engineering. pp. 249-262, 2001. 

[50] E. S. K. Yu, "Towards modelling and reasoning support for 
early-phase requirements engineering," Proceedings of the 3rd 



LIM ET AL.:  USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 31 

 

 

IEEE International Symposium on Requirements Engineering. pp. 
226-235, 1997. 

[51] H. Holbrook III, “A scenario-based methodology for 
conducting requirements elicitation,” ACM SIGSOFT Software 
Engineering Notes, vol. 15, no. 1, pp. 95-104, 1990. 

[52] A. M. Davis, Software Requirements: Objects, Functions, and States, 
Upper Saddle River, NJ: Prentice-Hall, Inc., 1993. 

[53] J. Karlsson, "Software requirements prioritizing," Proceedings of 
the 2nd International Conference on Requirements Engineering. pp. 
110-116, 1996. 

[54] P. Berander, and P. Jonsson, “Hierarchical cumulative voting 
(HCV) - prioritization of requirements in hierarchies,” 
International Journal of Software Engineering and Knowledge 
Engineering, vol. 16, no. 6, pp. 819-849, 2006. 

[55] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of 
methods for prioritizing software requirements,” Information 
and Software Technology, vol. 39, no. 14-15, pp. 939-947, 1998. 

[56] J. Karlsson, and K. Ryan, “A cost-value approach for 
prioritizing requirements,” IEEE Software, vol. 14, no. 5, pp. 67-
74, 1997. 

[57] J. Azar, R. K. Smith, and D. Cordes, “Value-oriented 
requirements prioritization in a small development 
organization,” IEEE Software, vol. 24, no. 1, pp. 32-37, 2007. 

[58] D. Leffingwell, and D. Widrig, Managing Software Requirements: 
A Use Case Approach: Pearson Education, 2003. 

[59] N. R. Mead, Requirements Prioritization Introduction, Software 
Engineering Institute (web publication), Carnegie Mellon 
University, 2006. 

[60] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm, 
“An industrial case study on distributed prioritisation in 
market-driven requirements engineering for packaged 
software,” Requirements Engineering, vol. 6, no. 1, pp. 51-62, 
2001. 

[61] A. M. Davis, “The art of requirements triage,” Computer, vol. 36, 
no. 3, pp. 42-49, 2003. 

[62] B. W. Boehm, and R. Ross, “Theory-W software project 
management principles and examples,” IEEE Transactions on 
Software Engineering, vol. 15, no. 7, pp. 902-916, 1989. 

[63] J. Park, D. Port, and B. Boehm, "Supporting Distributed 
Collaborative Prioritization for Win-Win Requirements Capture 
and Negotiation," Proceedings of the International Third World 
Multiconference on Systemics, Cybernetics and Informatics-Volume 
2. pp. 578-584, 1999. 

[64] K. Wiegers, “First things first: prioritizing requirements,” 
Software Development, vol. 7, no. 9, pp. 48–53, 1999. 

[65] A. Herrmann, and M. Daneva, "Requirements prioritization 
based on benefit and cost prediction: an agenda for future 
research," Proceedings of the 16th IEEE International Conference on 
Requirements Engineering. pp. 125-134, 2008. 

[66] A. van Lamsweerde, Requirements Engineering: From System 
Goals to UML Models to Software Specifications: John Wiley & 
Sons, Inc., 2009. 

[67] R. L. Keeney, and H. Raiffa, Decisions with Multiple Objectives: 
Preferences and Value Tradeoffs: Cambridge University Press, 
1993. 

[68] B. Roy, Multicriteria Methodology for Decision Aiding: Springer-
Verlag, 1996. 

[69] T. F. Nas, Cost-benefit Analysis: Theory and Application: Sage, 
1996. 

[70] Y. Akao, Quality Function Deployment: Integrating Customer 
Requirements into Product Design, New York: Productivity Press, 
2004. 

[71] F. Moisiadis, "The fundamentals of prioritising requirements," 
Proceedings of the System Engineering, Test and Evaluation 
Conference. pp., 2002. 

[72] V. Ahl, “An Experimental Comparison of Five Prioritization 
Methods,” Masters Thesis, School of Engineering, Blekinge 
Institute of Technology, Ronneby, Sweden, 2005. 

[73] S. Wasserman, and K. Faust, Social Network Analysis: Methods 
and Applications: Cambridge University Press, 1994. 

[74] L. A. Goodman, “Snowball sampling,” The Annals of 
Mathematical Statistics, vol. 32, no. 1, pp. 148-170, 1961. 

[75] J. Scott, Social Network Analysis: A Handbook: Sage, 2000. 
[76] R. A. Hanneman, and M. Riddle, Introduction to Social Network 

Methods, Riverside, CA: University of California, Riverside, 
2005. 

[77] D. Damian, S. Marczak, and I. Kwan, "Collaboration patterns 
and the impact of distance on awareness in requirements-
centred social networks," Proceedings of the 15th IEEE 

International Conference on Requirements Engineering. pp. 59-68, 
2007. 

[78] D. Damian, I. Kwan, and S. Marczak, "Requirements-driven 
collaboration: Leveraging the invisible relationships between 
requirements and people," Collaborative Software Engineering, 
Berlin Heidelberg: Springer, 2010. 

[79] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using 
collaborative filtering to weave an information tapestry,” 
Communications of the ACM, vol. 35, no. 12, pp. 61-70, 1992. 

[80] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen, 
"Collaborative filtering recommender systems," The Adaptive 
Web: Methods and Strategies of Web Personalization, pp. 291-324, 
2007. 

[81] G. Linden, B. Smith, and J. York, “Amazon.com 
recommendations: Item-to-item collaborative filtering,” IEEE 
Internet Computing, vol. 7, no. 1, pp. 76-80, 2003. 

[82] N. Lathia, "Computing Recommendations with Collaborative 
Filtering," Collaborative and Social Information Retrieval and 
Access: Techniques for Improved User Modeling: Information 
Science Reference, 2008. 

[83] T. Segaran, Programming Collective Intelligence: O'Reilly Media, 
2007. 

[84] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An 
algorithmic framework for performing collaborative filtering," 
Proceedings of the 22nd Annual International ACM SIGIR 
Conference on Research and Development in Information Retrieval. 
pp. 230-237, 1999. 

[85] R. M. Bell, and Y. Koren, "Scalable collaborative filtering with 
jointly derived neighborhood interpolation weights," 
Proceedings of the 7th IEEE International Conference on Data 
Mining. pp. 43-52, 2007. 

[86] C. Castro-Herrera, J. Cleland-Huang, and B. Mobasher, 
"Enhancing stakeholder profiles to improve recommendations 
in online requirements elicitation," Proceedings of the 17th IEEE 
International Conference on Requirements Engineering. pp. 37-46, 
2009. 

[87] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. 
Mobasher, "A recommender system for requirements elicitation 
in large-scale software projects," Proceedings of the 2009 ACM 
Symposium on Applied Computing. pp. 1419-1426, 2009. 

[88] R. K. Mitchell, B. R. Agle, and D. J. Wood, “Toward a theory of 
stakeholder identification and salience: defining the principle of 
who and what really counts,” Academy of Management Review, 
vol. 22, no. 4, pp. 853-886, 1997. 

[89] S. L. Lim, D. Quercia, and A. Finkelstein, "StakeNet: using 
social networks to analyse the stakeholders of large-scale 
software projects," Proceedings of the 32nd ACM/IEEE 
International Conference on Software Engineering-Volume 1. pp. 
295-304, 2010. 

[90] M. F. Triola, Elementary Statistics: Addison Wesley, 1992. 
[91] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, 

“Evaluating collaborative filtering recommender systems,” 
ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5-53, 
2004. 

[92] I. H. Witten, and E. Frank, Data Mining: Practical Machine 
Learning Tools and Techniques: Morgan Kaufmann Publishers, 
Inc., 2005. 

[93] J. McManus, and T. Wood-Harper, “Understanding the sources 
of information systems project failure,” Management Services, 
vol. 51, no. 3, pp. 38-43, 2007. 

[94] The Standish Group, The CHAOS Report, 1994. 
[95] The Standish Group, CHAOS Summary 2009, 2009. 
[96] T. R. Lindlof, and B. C. Taylor, Qualitative Communication 

Research Methods: Sage, 2002. 
[97] C. Anderson, The Long Tail: Why the Future of Business is Selling 

Less of More: Hyperion Books, 2008. 
[98] J. Yu, and H. Cooper, “A quantitative review of research design 

effects on response rates to questionnaires,” Journal of Marketing 
Research, vol. 20, no. 1, pp. 36-44, 1983. 

[99] P. Zhang, “Model selection via multifold cross validation,” The 
Annals of Statistics, vol. 21, no. 1, pp. 299-313, 1993. 

[100] R. Kohavi, "A study of cross-validation and bootstrap for 
accuracy estimation and model selection," Proceedings of the 
International joint Conference on Artificial Intelligence. pp. 1137-
1145, 1995. 

[101] U. M. Braga-Neto, and E. R. Dougherty, “Is cross-validation 
valid for small-sample microarray classification?,” 
Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004. 



32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  MANUSCRIPT ID 

 

 

[102] S. Alag, Collective Intelligence in Action, Greenwich: Manning 
Publications, 2008. 

[103] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, "Item-based 
collaborative filtering recommendation algorithms," Proceedings 
of the 10th International Conference on World Wide Web. pp. 285-
295, 2001. 

[104] R. Jin, J. Y. Chai, and L. Si, "An automatic weighting scheme for 
collaborative filtering," Proceedings of the 27th Annual 
International ACM SIGIR Conference on Research and Development 
in Information Retrieval. pp. 337-344, 2004. 

[105] G. R. Xue, C. Lin, Q. Yang, W. S. Xi, H. J. Zeng, Y. Yu, and Z. 
Chen, "Scalable collaborative filtering using cluster-based 
smoothing," Proceedings of the 28th Annual International ACM 
SIGIR Conference on Research and Development in Information 
Retrieval. pp. 114-121, 2005. 

[106] J. Wang, A. P. De Vries, and M. J. T. Reinders, "Unifying user-
based and item-based collaborative filtering approaches by 
similarity fusion," Proceedings of the 29th Annual International 
ACM SIGIR Conference on Research and Development in 
Information Retrieval. pp. 501-508, 2006. 

[107] K. Pearson, “On lines and planes of closest fit to systems of 
points in space,” Philosophical Magazine Series 6, vol. 2, no. 11, 
pp. 559-572, 1901. 

[108] T. Howley, M. G. Madden, M. L. O’Connell, and A. G. Ryder, 
“The effect of principal component analysis on machine 
learning accuracy with high dimensional spectral data,” 
Knowledge Based Systems, vol. 19, no. 5, pp. 209-222, 2006. 

[109] K. Zachos, N. Maiden, X. Zhu, and S. Jones, "Discovering web 
services to specify more complete system requirements," 
Proceedings of the 19th International Conference on Advanced 
Information Systems Engineering. pp. 142-157, 2007. 

[110] S. L. Lim, D. Damian, and A. Finkelstein, "StakeSource2.0: using 
social networks of stakeholders to identify and prioritise 
requirements," Proceedings of the 33rd ACM/IEEE International 
Conference on Software Engineering, in press. pp., 2011. 

[111] J. Surowiecki, The Wisdom of Crowds: Why the Many are Smarter 
than the Few and How Collective Wisdom Shapes Business, 
Economies, Societies, and Nations: Doubleday Books, 2004. 

[112] J. Howe, Crowdsourcing: Why The Power of the Crowd is Driving 
the Future of Business, CA: Three Rivers Press, 2009. 

[113] S. L. Lim, D. Quercia, and A. Finkelstein, "StakeSource: 
harnessing the power of crowdsourcing and social networks in 
stakeholder analysis," Proceedings of the 32nd ACM/IEEE 
International Conference on Software Engineering-Volume 2. pp. 
239-242, 2010. 

 
 

Soo Ling Lim is a PhD candidate at the 
School of Computer Science and 
Engineering, The University of New South 
Wales in Sydney, Australia. She is also a 
visiting researcher at the Department of 
Computer Science, University College 
London. She received a bachelor of software 
engineering with first class honours from the 
Australian National University in 2005. She 
also won the Australian Computer Society 

prize and the Dean!s prize. Before her PhD, she worked as an SAP 
consultant at the Computer Sciences Corporation and as a software 
engineer at CIC Secure in Australia. Her research interests are in the 
area of requirements engineering, specifically in the areas of stake-
holder analysis, requirements elicitation, prioritisation, and modelling, 
and requirements change management. She is a member of the 
British Computer Society. 

 
Anthony Finkelstein holds a BEng degree 
in systems engineering, an MSc degree in 
systems analysis, and a PhD degree in 
design theory. He is professor of software 
systems engineering and dean of the 
Faculty of Engineering Sciences at 
University College London. Formerly, he 
was professor of computer science at The 
City University, London and head of the 
Department of Computer Science. Prior to 

that, he was a member of the academic staff at Imperial College of 

Science, Technology & Medicine. His research interests are in the 
area of software systems engineering and, in particular, in require-
ments engineering. He has contributed to software specification 
methods, software development processes, tool, and environment 
support for software development. He has published more than 200 
papers in these areas and held research grants totaling in excess of 
£20m. In 2003 he was a winner of the prestigious International Con-
ference on Software Engineering "most influential paper! prize for 
work on "viewpoints! and in 2004 was winner of the Requirements 
Engineering "most influential paper! prize for work on traceability. In 
2005 he was a member of the winning team of the first Times Higher 
Education Supplement "Research Project of the Year!. In 2009 he 
received the Oliver Lodge Medal of the Institution of Engineering and 
Technology for outstanding achievement in the area of Information 
Technology. In 2010 he won the special award conferred by the 
International Conference on Software Engineering for his “outstand-
ing contribution in designing the highly influential Future of Software 
Engineering track and editing the highly cited volume with the collec-
tion of papers presented in the track!. He is a chartered engineer, a 
fellow of the IEE and BCS. He is a founding member of IFIP WG 2.9 
Software Requirements Engineering. 
 

 
 
 

 
 


