
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

StakeRare: Using Social Networks and
Collaborative Filtering for Large-Scale

Requirements Elicitation
Soo Ling Lim, and Anthony Finkelstein, Member, IEEE

Abstract—Requirements elicitation is the software engineering activity in which stakeholder needs are understood. It involves

identifying and prioritising requirements – a process difficult to scale to large software projects with many stakeholders. This

paper proposes StakeRare, a novel method that uses social networks and collaborative filtering to identify and prioritise

requirements in large software projects. StakeRare identifies stakeholders and asks them to recommend other stakeholders and

stakeholder roles, builds a social network with stakeholders as nodes and their recommendations as links, and prioritises

stakeholders using a variety of social network measures to determine their project influence. It then asks the stakeholders to

rate an initial list of requirements, recommends other relevant requirements to them using collaborative filtering, and prioritises

their requirements using their ratings weighted by their project influence. StakeRare was evaluated by applying it to a software

project for a 30,000-user system, and a substantial empirical study of requirements elicitation was conducted. Using the data

collected from surveying and interviewing 87 stakeholders, the study demonstrated that StakeRare predicts stakeholder needs

accurately, and arrives with a more complete and accurately prioritised list of requirements compared to the existing method

used in the project, taking only a fraction of the time.

Index Terms—Requirements/Specifications, Elicitation methods, Requirements prioritisation, Experimentation, Human factors,

Recommender systems, Social network analysis, Stakeholder analysis

—————————— ! ——————————

1 INTRODUCTION

OFTWARE systems are growing. The increase in size
extends beyond mere lines of code or number of
modules. Today, projects to build large software sys-

tems involve vast numbers of stakeholders – the indi-
viduals or groups that can influence or be influenced by
the success or failure of a software project [1]. These
stakeholders include customers who pay for the system,
users who interact with the system to get their work
done, developers who design, build, and maintain the
system, and legislators who impose rules on the devel-
opment and operation of the system [1, 2]. In large pro-
jects, these stakeholders cut across divisions and organi-
sations. They have diverse needs, which may conflict.

Requirements elicitation is the software engineering
activity in which stakeholder needs are understood [1]. It
aims to identify the purpose for which the software sys-
tem is intended [3]. It involves identifying stakeholders
and prioritising them based on their influence in the pro-
ject. It also involves identifying requirements from these
stakeholders and prioritising their requirements.

StakeRare is a method to identify and prioritise re-
quirements using social networks and collaborative filter-
ing. It aims to address three problems that beset large-
scale requirements elicitation: information overload, inad-
equate stakeholder input, and biased prioritisation of require-

ments.
Information overload is inevitable in big projects. These

projects tend to have many stakeholders and require-
ments. Existing methods for requirements elicitation re-
quire intensive interactions with the stakeholders, for ex-
ample through face-to-face meetings, interviews, brain-
storming sessions, and focus groups [1]. These methods
lack the means to manage the information elicited from
stakeholders. As such, the methods fail to scale to big pro-
jects with hundreds, thousands, or even hundreds of
thousands of stakeholders [4]. Practitioners struggle to
use these methods in large projects. Inevitably, stakehold-
ers are omitted and their requirements overlooked. Users
become frustrated when the software fails to meet their
needs. Customers who pay for the project pay for the mis-
takes [5].

Inadequate stakeholder input is caused by inadequate
stakeholder selection. Omitting stakeholders is one of the
most common mistakes in software engineering [6]. Exist-
ing stakeholder analysis methods are likely to overlook
stakeholders [7]. In addition, stakeholders are often sam-
pled during requirements elicitation [8]. As requirements
are elicited from stakeholders, omitting stakeholders re-
sults in missing requirements, which in turn leads to the
wrong product being built.

Biased prioritisation of requirements occurs because cur-
rent prioritisation practices depend on individuals, who
may not have a global perspective in large projects [4, 9].
Although the literature suggests that prioritising from
multiple stakeholders’ viewpoints can reveal important

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• S.L. Lim is with the Department of Computer Science, University College
London, Gower Street, London, WC1E 6BT. E-mail: s.lim@cs.ucl.ac.uk.

• A. Finkelstein is with the Department of Computer Science, University
College London, Gower Street, London, WC1E 6BT. E-mail:
a.finkelstein@cs.ucl.ac.uk.

S

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

requirements [10], the task is almost impossible to per-
form with many stakeholders and many requirements. As
a result, important requirements known to only a few
stakeholders can be lost in the sea of information. Those
who attempt to get multiple viewpoints find it difficult to
combine information from different sources [9]. Many
practitioners avoid prioritising requirements or resort to
rough guesses when they prioritise requirements [9].

Above all, the existing requirements elicitation litera-
ture is largely qualitative [1, 11]. Without empirical evalu-
ations using real projects, no-one can be certain how well
one method performs against another, or indeed whether
the methods work at all!

To address these problems, this work proposes a
method that uses social networks and collaborative filter-
ing for requirements elicitation. In doing so, the work
makes the following contributions:

• The development of StakeRare, a novel method that
uses social networks and collaborative filtering to
support requirements elicitation in large-scale soft-
ware projects.

o StakeRare stands for Stakeholder- and Recom-
mender-assisted method for requirements elicita-
tion. StakeRare supports requirements elicitation
in projects where there are many stakeholders
who must be heard, but unable to meet, possibly
due to sheer numbers, dispersed locations, or
lack of time. It aims to be open and inclusive so
that the stakeholders can participate in require-
ments elicitation.

o StakeRare uses social networks to identify and
prioritise stakeholders and their roles in the pro-
ject. Then it asks the stakeholders to rate an in-
itial list of requirements, recommends other rel-
evant requirements to them using collaborative
filtering, and prioritises their requirements using
their ratings weighted by their project influence
derived from their position on the social net-
work.

o StakeRare addresses information overload by using
collaborative filtering to recommend relevant re-
quirements to stakeholders, and prioritising the
stakeholders and requirements. It addresses inad-
equate stakeholder input by asking stakeholders to
recommend other stakeholders, and asking all
stakeholders to provide requirements. It ad-
dresses biased prioritisation of requirements by pri-
oritising requirements using the stakeholders’
ratings on the requirements and their position on
the social network.

• The evaluation of StakeRare using a real large-scale
software project.

o The evaluation is empirical and appears to be
one of the first in requirements elicitation (as re-
viewed in [12]). It is substantial, using post-
project knowledge to establish the ground truth
of requirements. It uses measurements from the
information retrieval literature, such as precision,

recall, and mean absolute error, to determine the
quality of the requirements returned by
StakeRare. It also compares StakeRare to the ex-
isting methods used in the project.

o The evaluation provides clear evidence that
StakeRare can identify a highly complete set of
requirements, and prioritise them accurately. In
addition, it is straightforward to use, and re-
quires less time from the requirements engineers
and stakeholders compared to the existing meth-
ods used in the project.

The rest of the paper is organised as follows. The next
section reviews the existing literature. Section 3 describes
the StakeRare method and Section 4 evaluates StakeRare.
Section 5 identifies the limitations of the study, Section 6
describes future work, and Section 7 concludes.

2 BACKGROUND

2.1 Large-Scale Software Projects

In this work, the definition of a large-scale software pro-
ject is derived from the existing measures of project size
and definitions of large-scale software projects. As re-
quirements elicitation is the focus of this work, the defini-
tion measures the size of the requirements engineering
tasks, rather than the size of the software system.

There are a number of existing measures to size a pro-
ject, leading to different views on what constitutes large-
scale. Popular measures of project size include lines of
code (LOC), function points (FP), number of developers,
and man-hours [13-19]. LOC counts the number of non-
blank, non-comment lines in the text of a software pro-
gram’s source code [20-24]. FP determines size by identi-
fying the components of the system as seen by the end-
user, such as the inputs, outputs, interfaces to other sys-
tems, and logical internal files. Number of developers
counts the number of developers involved in the project.
A man-hour or person-hour is the amount of work per-
formed by an average worker for an hour [19].

These measures have been used to indicate the relative
size of projects (Table 1) [25-28]. But the numbers to indi-
cate size are not absolute and may vary across different
work. For example, McConnell [23] considered small pro-
jects to have 2,500 LOC, but Kruchten [29] considered
them to have 10,000 LOC. McConnell [24] considered pro-
jects with 500,000 LOC as very large, but Kruchten [29]
considered projects with 700,000 LOC as large.

These measures are more suitable for development [23,
24] and less so for elicitation. For example, a software pro-
ject to solve a complicated set of differential equations
may be very large in terms of LOC or man-hours, but
may only have a small number of stakeholders [30]. Al-
though the project is considered large in terms of devel-
opment effort, it is small in terms of elicitation effort [30].

In requirements elicitation, the number of stakeholders
is often used to size a project. Cleland-Huang and Mo-
basher define an ultra-large-scale project to have thou-
sands or even hundreds of thousands of stakeholders [4].
Burstin and Ben-Bassat define a large software system as

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 3

“a software system that has a large and diversified com-
munity of users, and entails a variety of human, organisa-
tional, and automated activities, and various, sometimes
conflicting, aspects of different parts of its environment”
[30]. Large, complex projects have multiple stakeholder
groups that cut across many different agencies, divisions,
and even organisations [31]. According to Northrop et al.
[32] and Cheng and Atlee [11], the human interaction
element makes requirements elicitation the most difficult
activity to scale in software engineering. For example, the
FBI Virtual Case File project is widely cited in the existing
literature as a large-scale software project [4, 33-36]. It had
12,400 users (agents who would use the software) and
more than 50 stakeholder groups (the FBI consisted of 23
divisions which previously had their own IT budget and
systems, and the agents worked out of 56 field offices)
[37].

This work defines a large-scale software project as a
software project with dozens of stakeholder groups and
tens of thousands of users, where users are members of
the stakeholder groups, and a stakeholder group contains
one or more stakeholder roles. These stakeholders have
differing and sometimes conflicting requirements. This
definition measures the size of the project in terms of the
requirements engineering task, and is based on the re-
quirements engineering literature discussed in previous
paragraphs.

2.2 Requirements Elicitation

Elicitation Techniques

In requirements elicitation, traditional techniques, such as
interviews and focus groups, form the basis of existing
practice [1, 38-40]. In interviews, the requirements engi-
neers approach stakeholders with questions to gain in-
formation about their needs [41]. Focus groups bring
stakeholders together in a discussion group setting,
where they are free to interact with one another. These
techniques are effective but require direct interaction be-
tween the requirements engineers and stakeholders. As
such, they are difficult to scale to a large number of stake-
holders.

More advanced elicitation techniques improve the
completeness and variety of the identified requirements
by catalysing discussions and exploring the stakeholders’
needs. These techniques include prototyping [42], meta-
phors [43], storyboards [44, 45], and model-driven tech-
niques such as use cases [38, 46], scenarios [47], and goal

models [48-50]. Nevertheless, similar to traditional tech-
niques, they require face-to-face meetings, hence do not
scale well to large projects [4, 3].

Prioritisation Techniques

Projects often have more requirements than time, re-
source, and budget allow for. As such, requirements
should be prioritised and managed so that those that are
critical and most likely to achieve customer satisfaction
can be selected for implementation [36, 51-53].

A prioritisation technique commonly used in practice
is the numeral assignment technique [36, 53, 54]. In this
technique, each requirement is assigned a value repre-
senting its perceived importance. For example, require-
ments can be classified as mandatory, desirable, or ines-
sential [53]. Numeral assignment is straightforward, but a
study by Karlsson [53] found that the participants’ opin-
ions about the numbers in the numeral assignment tech-
nique differ, and the scoring system is often inconsistent
as different people make use of different personal scales.
Nevertheless, this technique is widely used due to its
simplicity.

Another popular technique is the pairwise comparison
approach [53]. In this approach, requirements engineers
compare two requirements to determine the more im-
portant one, which is then entered in the corresponding
cell in the matrix [53, 55]. The comparison is repeated for
all requirements pairs such that the top half of the matrix
is filled. If both requirements are equally important, then
they both appear in the cell. Then, each requirement is
ranked by the number of cells in the matrix that contain
the requirement. Pairwise comparison is simple. How-
ever, since all unique pairs of requirements need to be
compared, the effort is substantial when there are many
requirements [55]. Prioritising n requirements needs
n!(n–1)/2 comparisons [55, 56]. Hence, a project with 100
requirements would require 4,950 comparisons.

Many existing approaches, including those previously
mentioned, prioritise requirements from an individual’s
perspective. Other similar approaches include the cost-
value approach which prioritises requirements based on
their relative value and implementation cost [53, 55, 56],
and the value-oriented prioritisation method which pri-
oritises requirements based on their contribution to the
core business values and their perceived risks [57]. As
prioritisations involve a small subset of stakeholders, the
results are biased towards the perspective of those in-
volved in the process [4].

More sophisticated methods combine prioritisations
from multiple stakeholders. In the 100-point test, each
stakeholder is given 100 points that they can distribute as
they desire among the requirements [58]. Requirements
that are more important to a stakeholder are given more
points. Requirements are then prioritised based on the
total points allocated to them. 100-point test incorporates
the concept of constraint in the stakeholder’s prioritisa-
tion by giving each of them a limited number of points.
One criticism of this approach is that it can be easily ma-
nipulated by stakeholders seeking to accomplish their
own objectives [36, 59]. For example, stakeholders may

TABLE 1
PROJECT SIZE AND MEASURES

(Source: [15]*, [25]^, [26]
†
, [23]

‡
, [24]

 !, [27]
 ", [32]

~
, [28]

 #, [18]
 $)

Measure Project
Size Lines of Code Function

Points
Number of
Developers

Small < 2,000^ < 100* < 5†
Large > 500,000*!‡ > 5,000* > 50‡"

Ultra-large 1,000,000,000~ > 100,000$ > 1,000#

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

distribute their points based on how they think others
will do it [60]. In addition, it is difficult for stakeholders to
keep an overview of a large number of requirements [54].

In the requirements triage method, Davis [61] pro-
posed that stakeholders should be gathered in one lo-
cation and group voting mechanisms used to prioritise
requirements. One method to collect group vote is to use
the show of fingers to indicate the stakeholders’ enthusi-
asm for a requirement. A disadvantage is the relative pri-
orities of requirements depend on the stakeholders who
attended the prioritisation meeting, and dominant par-
ticipants may influence the prioritisation [36].

In the win-win approach proposed by Boehm, stake-
holders negotiate to resolve disagreements about candi-
date requirements [62, 63]. Using this approach, each
stakeholder ranks the requirements privately before nego-
tiations start. They also consider the requirements they
are willing to give up on. Stakeholders then work col-
laboratively to forge an agreement through identifying
conflicts and negotiating a solution. Win-win negotiations
encourage stakeholders to focus on their interest rather
than positions, negotiate towards achieving mutual gain,
and use objective criteria to prioritise requirements.
Nevertheless, the approach is labour intensive, particu-
larly in large projects [59].

Another method that involves multiple stakeholders is
the value, cost, and risk method proposed by Wiegers
[64]. In Wiegers’ method, the customer representatives
estimate the value of each requirement, which is the rela-
tive benefit each requirement provides to them and the
relative penalty they suffer if the requirement is not in-
cluded. The project team estimates the relative cost of im-
plementing each requirement and the relative degree of
risk associated with each requirement. The priority of
each requirement is calculated from its value, cost, and
risk such that requirements at the top of the list have the
most favourable balance of the three elements. This
method is limited by the individual’s ability to determine
the value, cost, and risk for each requirement [64].

Many existing prioritisation methods consider re-
quirements to have a flat structure and be independent of
one another [65]. However, requirements are often de-
fined at different levels of abstraction. For example, a
high-level requirement can be refined into several specific
requirements [48, 66]. Hierarchical cumulative voting
(HCV) proposed by Berander and Jönsson [54] enables
prioritisations to be performed at different levels of a
hierarchy. Stakeholders perform prioritisation using 100-
point test within each prioritisation block. The intermedi-
ate priorities for the requirements are calculated based on
the characteristics of the requirements hierarchy. Final
priorities are calculated for all requirements at the level of
interest through normalisation. If several stakeholders
have prioritised the requirements, their individual results
are then weighted and combined. When doing so, differ-
ent stakeholders may have different weights. Although
the hierarchical prioritisation in HCV makes it easier for
the stakeholders to keep an overview of all the require-
ments, the prioritisations need to be interpreted in a ra-
tional way as stakeholders can easily play around with

the numbers [54].
There is a plethora of methods to prioritise require-

ments, such as multi-attribute utility theory [67], top 10
requirements [41], outranking [68], minimal spanning tree
[55], cost benefit analysis [69], and Quality Function De-
ployment [70]. Many of these methods have similar short-
comings: significant effort is required when there are
many requirements and the requirements’ priorities are
easy to manipulate [60]. For example, the Quality Func-
tion Deployment suggests the limit of 30 requirements
[71]. Cost benefit analysis relies on the type of costs in-
cluded in the analysis by the decision-makers which may
be biased due to their vested interest [69].

One of the few methods that can scale to a large num-
ber of requirements is the binary search tree (BST) [72]. In
BST, a requirement from the set of requirements is selec-
ted as the root node. Then, a binary tree is constructed by
inserting less important requirements to the left and more
important ones to the right of the tree. A prioritised list of
requirements is generated by traversing the BST in order.
The output is a prioritised list of requirements with the
most important requirements at the start of the list, and
the least important ones at the end. This method is simple
to implement but provides only a simple ranking of re-
quirements as no priority values are assigned to the re-
quirements [36].

For projects with many requirements, recent work by
Laurent et al. [34] and Duan et al. [36] propose Pirogov,
which uses data mining and machine learning techniques
to support requirements prioritisation. Pirogov uses vari-
ous clustering techniques to organise requirements into
different categories. The requirements engineers then pri-
oritise the clusters and determine the importance of each
clustering technique. Using the information, Pirogov gen-
erates a list of prioritised requirements. By automatically
clustering the requirements into different categories,
Pirogov reduces the number of manual prioritisations. It
is a significant step towards large-scale requirements elici-
tation. But at the moment, the results of prioritisation de-
pend on the requirements engineers’ subjective prioritisa-
tion of the clusters and clustering techniques [36].

2.3 Social Network Analysis

Social network analysis is the application of methods to
understand the relationships among actors, and on the
patterns and implications of the relationships [73]. In
social network analysis, actors are discrete individuals,
corporate, or collective social units, such as employees
within a department, departments within a corporation,
and private companies in a city [73]. These actors are
linked to one another by relational or social ties, such as
evaluation of one person by another (e.g., friendship or
respect), transfers of material resources (e.g., business
transaction), and formal relations (e.g., authority) [73].

In social network analysis, the snowballing method
proposed by Goodman [74] is used to sample social net-
work data for large networks where the boundary is un-
known [73, 75]. It is also used to track down “special” or
“hidden” populations, such as business contact networks,
community elites, and deviant sub-cultures [76]. Snowball

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 5

sampling begins with a set of actors [73, 75, 76]. Each of
these actors is asked to nominate other actors. Then, new
actors who are not part of the original list are similarly
asked to nominate other actors. As the process continues,
the group of actors builds up like a snowball rolled down
a hill [75]. The process continues until no new actors are
identified, time or resources have run out, or when the
new actors being named are very marginal to the actor set
under study [76].

A social network is a structure that consists of actors
and the relation(s) defined on them [73, 75]. It is often
depicted as a graph in which the actors are represented as
nodes and the relationships among the pairs of actors are
represented by lines linking the corresponding nodes [73,
75]. The graph can be binary or valued, directed or undi-
rected, depending on the relations between the actors. If
the relations are directed, then the links have direction
and if the relations are valued, the links have weights at-
tached to them. Using graph structures to represent social
networks enables large sets of social network data to be
visualised.

The centrality of actors in their social networks is of
great interest to social network analysts [75]. Actors that
are more central have a more favourable position in the
network [76]. For example, in a friendship network, an
actor who is connected to many actors in the network is
popular. In a business contact network, an actor that sits
in between clusters of networks has high influence on the
information that passes between the clusters. A number of
different social network measures have been developed to
measure the centrality of social network actors, such as
betweenness centrality, load centrality, degree centrality,
in-degree centrality, and out-degree centrality [73, 75, 76].

In requirements engineering, Damian et al. used social
network analysis to study collaboration, communication,
and awareness among project team members [77, 78]. The
nodes were members of the development team who are
working on, assigned to, or communicating about the
requirements in the project. Social network measures,
such as degree centrality and betweenness centrality,
were used to analyse the collaboration behaviour. For
example, degree centrality indicated active members and
betweenness centrality indicated members who control
interactions between other members.

2.4 Collaborative Filtering

Collaborative filtering is a technique to filter large sets of
data for information and patterns [79]. This technique is
used in recommender systems to forecast a user’s prefer-
ence on an item by collecting preference information from
many users [80]. For example, Amazon1 uses collaborative
filtering to recommend books to their customers and
MovieLens2 uses it to recommend movies [80, 81]. The
underlying assumption is that users who have had simi-
lar taste in the past will share similar taste in the future
[82].

In collaborative filtering, users are the individuals who

1 http://www.amazon.com/
2 !""#$%%&&&'()*+,-,./')01%

provide ratings to a system and receive recommendations
from the system. Items can consist of anything for which
ratings can be provided, such as art, books, songs, mov-
ies, vacation destinations, and jokes [83]. A rating is a
numerical representation of a user’s preference for an
item. A profile is the set of ratings that a particular user
has provided to the system. Collaborative filtering sys-
tems take a set of ratings from the user community as
input, use this set of ratings to predict missing ratings,
and use the predictions to create a list of items that is per-
sonalised for each user. This list of items are then pre-
sented to the user as recommendations [82].

To produce predictions, collaborative filtering systems
use a variety of algorithms. One of the most well-known
algorithms is the k-Nearest Neighbour (kNN) algorithm
[80, 84, 85]. kNN is used to identify like-minded users
with similar rating histories in order to predict ratings for
unobserved users-item pairs [85]. kNN first finds a
unique subset of the community for each user by identify-
ing those with similar interests. To do so, every pair of
user profile is compared to measure the degree of simi-
larity. A popular method is Pearson’s correlation coeffici-
ent, which measures the degree of linearity between the
intersection of the pair of users’ profiles [80]. Then, a
neighbourhood is created for each user by selecting the k
most similar users. The similarity between each pair of
user profiles for users in the neighbourhood is used to
compute predicted ratings. Finally, the predicted ratings
for the items are sorted according to the predicted value,
and the top-N items are proposed to the user as recom-
mendations, where N is the number of items recom-
mended to the user [80].

In requirements engineering, Castro-Herrera et al. uses
collaborative filtering to facilitate online discussions for
requirements identification [86, 87]. Their method, named
Organiser and Promoter of Collaborative Ideas (OPCI),
uses clustering to group the stakeholder’s ideas into an
initial set of discussion forums and construct a stake-
holder profile for each stakeholder. These profiles are
used by the kNN algorithm to identify stakeholders with
similar interests and suggest additional forums that might
be of interest to the stakeholders. By recommending suit-
able forums to stakeholders, OPCI aims to encourage
stakeholders to contribute to relevant forums and increase
the quality of the elicited requirements.

OPCI uses collaborative filtering to recommend forums
of interest to stakeholders. It has inspired the work de-
scribed in this paper to use collaborative filtering to rec-
ommend requirements of interest to stakeholders, in order
to support large-scale requirements elicitation. Recom-
mending relevant requirements to stakeholders can re-
duce the number of requirements each stakeholder has to
identify and prioritise, while still ensuring they are aware
of the requirements they may be interested in.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

2.5 Summary

In this paper, a large-scale software project is defined as a
software project with dozens of stakeholder groups and
tens of thousands of users, where users are members of
the stakeholder groups. These stakeholders have differing
and sometimes conflicting requirements.

Existing methods to identify and prioritise require-
ments do not scale well to large projects. Most elicitation
methods require face-to-face meetings with the stake-
holders, hence is time consuming when there are many
stakeholders. Existing requirements prioritisation meth-
ods require substantial efforts from the requirements en-
gineers when there are many requirements. Furthermore,
requirements prioritisation from an individual’s perspec-
tive is likely to be biased, especially in large projects
where no individual has the global perspective.

An ideal method in requirements elicitation should
identify and prioritise stakeholders and their require-
ments from a global perspective. It should be independ-
ent of the individual doing the analysis, and scalable to
large projects. In doing so, it should not overload stake-
holders with information or burden the requirements en-
gineers. The aim of this work, described in the next sec-
tion, is to develop such a method using the existing tech-
niques in social networks and collaborative filtering de-
scribed in this section.

3 STAKERARE

Large projects tend to be beset by three problems: infor-
mation overload, inadequate stakeholder input, and
biased prioritisation of requirements. StakeRare is a
method that uses social networks and collaborative filter-
ing to elicit requirements in large projects.

To address the problem of inadequate stakeholder in-
put, StakeRare aims to be open and inclusive, so that a
representative sample of stakeholders participates in the
requirements elicitation process. As stakeholders are so-
cially related to one another, they can be identified and
prioritised using their relations. StakeRare exploits previ-

ous work [89] to do this. The previous work asks stake-
holders to recommend other stakeholders, builds a social
network with stakeholders as nodes and their recom-
mendations as links, and prioritises stakeholders from a
global perspective using social network measures [89].

To avoid overloading stakeholders with information,
StakeRare uses collaborative filtering to present only the
requirements that are relevant to them. StakeRare asks
each stakeholder to rate an initial list of requirements, and
based on the list, identifies a neighbourhood of similar
stakeholders for each stakeholder. Then, it predicts other
relevant requirements for the stakeholder based on the
requirements provided by similar stakeholders. These
predictions are presented to the stakeholder to be ap-
proved and added into their set of ratings. To avoid over-
loading the requirements engineers with information,
StakeRare prioritises stakeholders and their requirements.

Step 1

Input: None

Substeps:

1. Requirements engineer provides initial
stakeholders.

2. Initial and newly identified stakehold-
ers provide recommendations.

3. StakeRare builds social network.
4. StakeRare prioritises stakeholders and

roles using social network measures.

Output: Prioritised list of stakeholders
and roles.

Step 2

Input: Stakeholder list from Step 1.

Substeps:

1. Requirements engineer provides initial
requirements.

2. Stakeholders in stakeholder list rate
requirements and provide other require-

ments.
3. StakeRare propagates ratings.

Output: Profiles of stakeholders who

responded.

Step 3

Input: Profiles from Step 2.

Substeps:

1. StakeRare applies collaborative filter-
ing algorithms on profiles to predict

unrated requirements.
2. StakeRare recommends requirements

that may be relevant to the stakeholders.
3. Stakeholders rate recommended re-

quirements. Substeps 1-3 can be repeated
using updated profiles.

Output: Updated profiles.

Step 4

Input: Stakeholder list from Step 1, and

profiles from Step 3.

Substeps:
1. StakeRare calculates project influence

for each stakeholder.
2. StakeRare calculates score for each

requirement.
3. StakeRare prioritises requirements

based on score.

Output: Prioritised list of requirements.

Fig. 1. StakeRare steps.

 TABLE 2
STAKERARE CONCEPTS

Concept Definition

Salience The level of influence a stakeholder has on
the project [88]. Stakeholders with high
salience are crucial to project success;
stakeholders with low salience have mar-
ginal impact.

Scope The work required for completing the pro-
ject successfully [39].

Stakeholder An individual or a group who can influ-
ence or be influenced by the success or
failure of a project [1].

Stakeholder
role

The stakeholder’s position or customary
function in the project [2].

Requirement The real-world goals for, functions of, and
constraints on software systems [3].

Rating Numerical importance of a requirement to
the stakeholder [80].

Profile The set of requirements and their ratings
provided by a stakeholder [80].

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 7

Finally, to avoid biased prioritisation of requirements,
StakeRare produces a prioritised list of requirements
based on each stakeholder’s ratings and their influence in
the project. The stakeholders’ influence in the project is
produced from a global perspective, by running the social
network measures on the stakeholder network.

StakeRare has four steps (Fig. 1) and uses the concepts
in Table 2.

Step 1: Identify and Prioritise Stakeholders

Step 1 identifies and prioritises the stakeholders based on
their influence in the project (Fig. 1). Stakeholders have to
be identified, as they are the source of requirements. They
have to be prioritised as their level of influence in the pro-
ject affects the priority of their requirements. The output
is a prioritised list of stakeholder roles and for each role, a
prioritised list of stakeholders.

StakeRare uses StakeNet for Step 1. StakeNet is a pre-
viously published stakeholder analysis method that pro-
duces such an output [89]. StakeNet identifies an initial
set of stakeholders and asks them to recommend other
stakeholders and stakeholder roles. A recommendation is
a triple <stakeholder, stakeholder role, salience>, where
salience is a number on an ordinal scale (e.g., 1–5). For
example, in a software project to implement a university
access control system, Alice, a stakeholder representing
the role of Estates that manages the university’s physical
estate, can make a recommendation <Bob, Library, 4>.
StakeNet then asks Bob to recommend other stakeholders.

Based on the stakeholders’ recommendations,
StakeNet builds a social network with stakeholders as
nodes and their recommendations as links [89]. An exam-
ple stakeholder network is illustrated in Fig. 2.

Finally, StakeNet applies various social network meas-
ures, such as betweenness centrality, degree centrality,
and closeness centrality, to prioritise the stakeholders in
the network [89]. The social network measures produce a
score for each stakeholder. The stakeholder roles are pri-
oritised by the highest score of their stakeholders. An ex-
ample output is illustrated in Table 3. Fractional ranking
or “1 2.5 2.5 4” ranking [90] is used such that if a tie in
ranks occurs, the mean of the ranks involved is assigned
to each of the tied items. For example, if Estates and Stu-
dents have the same level of influence, then the ranks
become Estates: Rank 1.5, Students: Rank 1.5, Library:
Rank 3.

Fig. 2. Example stakeholder network.

TABLE 3
EXAMPLE PRIORITISED LIST OF STAKEHOLDERS

Prioritised Stakeholder Roles Prioritised Stakeholders

(1) Estates Alice

(2) Students (1) Dave

 (2) Carl

(3) Library Bob

Step 2: Collect Profile

Step 2 collects a profile from each stakeholder identified
in Step 1 (Fig. 1). Existing elicitation methods in the back-
ground section, such as interviews with a subset of stake-
holders or focus groups, can be used to identify an initial
list of requirements. Using the university access control
project in Step 1 as an example, an interview with Alice
from Estates revealed that one of the project objectives is
to provide “better user experience.” Bob representing the
library reveals that his requirement is “to combine library
card with access card,” student Dave’s requirement is “to
combine access card with bank card,” and Alice, repre-
senting the Estates, requests for “all in one card.”

As mentioned in the background section, requirements
can be defined at different levels of abstraction and a
high-level requirement can be refined into several specific
requirements [48, 66]. In this example, the requirements
are organised into a hierarchy of three levels: project ob-
jective, requirement, and specific requirement3. Achieving
all the specific requirements means that the parent re-
quirement is achieved, and achieving all the parent re-
quirements means that the project objective is achieved.
For example, the requirement “all in one card” falls under
the project objective “better user experience,” as it is
easier to carry one card for all purposes (Fig. 3). Then,
combining the various cards are specific requirements
under “all in one card.”

Fig. 3. The hierarchy of requirements4.

The stakeholders identified in Step 1 are asked to pro-

3 Project objectives describe specific and measurable goals for the pro-

ject, requirements describe what must be delivered to meet the project
objectives, and specific requirements describe what must be delivered to
meet the requirements. The hierarchy of requirements and their classifi-
cation are determined by the requirements engineer, and may be modi-
fied during the elicitation process (e.g., stakeholders may provide more
details to a specific requirement, resulting in an additional level to the
hierarchy).

4 A requirement such as “to combine library card with access card, un-
less access card is also bank card” should be placed under “to combine
library card with access card” as it is more specific.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

vide their preferences on the initial requirements. A pre-
ference is a triple

<stakeholder, requirement, rating>,

where rating is a number on an ordinal scale (e.g., 0 – 5)
reflecting the importance of the requirement to the stake-
holder (e.g., 0 is unimportant and 5 is very important).
For example, Alice provides a preference

<Alice, To combine library card with access card, 5>.

Stakeholders can also indicate requirements that they
actively do not want (e.g., by rating the requirement an
X). For example, Bob provides a preference

<Bob, To combine access card with bank card, X>.

Stakeholders can also rate requirements not in the list
by adding their own requirements. The requirements
added are then available to be rated by other stakehold-
ers. If a requirement provided by a stakeholder does not
have any specific requirements, specific requirements can
be identified using existing elicitation methods (e.g.,
interviews) and added to the list to be rated.

Finally, StakeRare propagates the ratings of require-
ments to avoid missing values. Rating propagation en-
ables StakeRare to make prioritisations and predictions at
different levels of detail. If a stakeholder rates a high-level
requirement but does not rate the lower-level require-
ments, then his rating propagates down to the lower-level
requirements. For example, Carl provides a preference

<Carl, All in one card, 4>.

Since Bob and Dave provided specific requirements for
this requirement, Carl then implicitly provides two other
preferences

<Carl, To combine library card and access card, 4>, and

<Carl, To combine access card with bank card, 4>.

This propagation assumes that specific requirements
when unrated by the stakeholder have the same rating as
their parent requirement, and the stakeholder agrees with
the decomposition of the requirement into the specific
requirements (Table 4 A1). Similarly, if a stakeholder rates
a lower-level requirement but does not rate the high-level
requirement, then his rating propagates up to the high-
level requirement. This propagation assumes that if a
stakeholder cares about a specific requirement, they
would care equally about the parent requirement (Table 4
A2). If more than one specific requirement is rated, then
the maximum rating is propagated.

Step 3: Predict Requirements

Based on the stakeholders’ profile, Step 3 uses collabor-
ative filtering to predict other requirements that each
stakeholder needs or actively does not want (Fig. 1).
StakeRare uses the k-Nearest Neighbour (kNN) algorithm
described in the background section. Cross-validation is
used to find the optimal value for k. kNN finds similar
stakeholders by measuring the similarity between the
stakeholders’ profiles. Then, it generates the predicted

level of interest that a stakeholder will have in a require-
ment that he has not yet rated. StakeRare returns re-
quirements that may be relevant to the stakeholder (i.e.,
requirements with the highest predicted level of interest)
as recommendations at all three levels (e.g., Fig. 4).

TABLE 4

STAKERARE ASSUMPTIONS

ID Assumption

A1 Specific requirements when unrated by the stake-

holder have the same rating as their parent require-

ment, and the stakeholder agrees with the decomposi-

tion of the requirement into the specific requirements.

(This assumption does not always hold. For example,

the specific requirements may be in conflict, the

stakeholder may have unequal preference among the

specific requirements, and the rating for specific re-

quirements may be higher than the requirements.)

A2 If a stakeholder cares about a specific requirement,

they would care equally about the parent require-

ment. (This assumption does not always hold. For

example, a stakeholder who actively does not want a

specific requirement may still rate the higher-level

requirement positively.)

A3 A stakeholder’s project influence is determined by

their role in the project.

A4 The stakeholder represents only the role that gives

him the highest weight.

Stakeholders can then rate the requirements that are

recommended to them, provide new requirements, or rate
other requirements. The new ratings by the stakeholders
are then added to their profiles. Then, Step 3 is repeated
with the updated profiles. Step 3 can be repeated until no
new ratings and requirements are provided by stakehold-
ers after one round of recommendations.

Step 4: Prioritise Requirements

For the final step, StakeRare aggregates all the stakehold-
ers’ profiles into a prioritised list of requirements (Fig. 1).
The ratings from the stakeholders’ profiles, and the pri-
ority of the stakeholders and their roles from Step 1 are
used to prioritise requirements. Negative ratings (from a
stakeholder actively not wanting a requirement) are ex-
cluded in the calculation, as their purpose is to highlight
conflicts to the requirements engineers, rather than to
prioritise the requirements. To calculate the importance of
a requirement in a project, the influence of the stake-
holder’s role in the project is determined, and then the
influence of the stakeholders in their roles is determined
as follows.

The influence of stakeholder i’s role in the project is
calculated using Equation 3-1.

!

Influencerole(i) =
RRmax +1" rank(role(i))

(RRmax +1" rank(role(j)))
j=1

n

#

, (3-1)

where role(i) is stakeholder i’s role in the project, RRmax is

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 9

the maximum rank of the roles in the list, rank(role(j)) is the

fractional rank of role j, and n is the total number of roles in

the list. Roles where none of the stakeholders provide rat-

ings are excluded. As lower rank values correspond to

higher influence, this calculation inverts the rank value by

subtracting it from the upper bound of maxrankRole + 1. The

calculation also normalises the influence of a role by divid-

ing it with the sum of all role influences. An example priori-

tised list of stakeholder roles is Estates: Rank 1.5, Students:

Rank 1.5, and Library: Rank 3 (fractional ranking is used

where Estates and Students have the same rank). Using this

example, Estates’ influence is , Students’ in-

fluence is the same as Estates’ influence, and Library’s in-

fluence is .

The influence of stakeholder i in the role is calculated
the same way using Equation 3-2.

!

Influencei =
RSmax +1" rank(i)

(RSmax +1" rank(k))
k=1

n

#

, (3-2)

where RSmax is the maximum rank of all stakeholders with

the same role, rank(i) is the fractional rank of stakeholder i,

and n is the total number of stakeholders with the same role.

Stakeholders who do not provide any ratings are excluded.

Again, as lower rank values correspond to higher influence,

this calculation inverts the rank value by subtracting it from

the upper bound of maxranks + 1, then it normalises the in-

fluence by dividing it with the sum of all the influences of

stakeholders with the same role. For roles with one stake-

holder, the stakeholder’s influence is its role’s influence. For

example, Alice’s influence is 1 as she is the only stakeholder

for the Estates role. The Student role has two stakeholders

Dave and Carl. Dave’s influence is and Carl’s

influence in his role is .

The influence of stakeholder i in a project is calculated
using Equation 3-3 as follows.

!

ProjectInfluencei = Influencerole(i) " Influencei, (3-3)

where Influencerole(i) is the influence of the stakeholder’s
role in the project (Equation 3-1), and Influencei is the in-
fluence of the stakeholder in the role (Equation 3-2). The
sum of all the stakeholders’ project influence is equal to 1.
From the previous example, Carl’s influence in the Stu-

dent role is 0.33, and the Student role’s influence in the
project is 0.42. Hence, Carl’s influence in the project is
0.33!0.42 = 0.1386. This calculation of project influence
assumes that a stakeholder’s project influence is deter-
mined by their role in the project (Table 4 A3).

The importance of a requirement is calculated using
Equation 3-4 as follows.

!

ImportanceR = ProjectInfluencei " ri
i=1

n

, (3-4)

where ProjectInfluencei is the stakeholder i’s influence in
the project (Equation 3-3), ri is the rating provided by
stakeholder i on requirement R, and n is the total number
of stakeholders who rated on requirement R. Following
the previous example, the requirement “To combine li-
brary card with access card” is rated 5 by Alice and 4 by
Carl. Alice’s influence in the project is 0.42, and Carl’s
influence in the project is 0.1386, hence the requirement’s
importance is (0.42!5) + (0.1386!4) = 2.6544. If a stake-
holder has more than one role, only the position in the
role that gives him the highest weight is considered. By
doing so, StakeRare assumes that the stakeholder repre-
sents only the role that gives him the highest weight
(Table 4 A4).

Finally, the requirements are prioritised based on their
importance, where requirements with higher importance
values are ranked higher. The requirements are prioritised
within their hierarchy, so that the output is a ranked list of
project objectives, for each project objective, a ranked list
of requirements, and for each requirement, a ranked list
of specific requirements. This list is StakeRare’s output for
the requirements engineers.

4 EVALUATION

StakeRare was evaluated by applying it to a real-world
large-scale software project. The stakeholders were sur-
veyed for their requirements. The resulting lists of re-
quirements were empirically evaluated in terms of quality
of the requirements and accuracy of the prioritisation, by
comparing them with the ground truth – the actual com-
plete and prioritised lists of requirements in the project.
StakeRare was also compared to the existing methods
used in the project in terms of quality of the requirements,
accuracy of the prioritisation, and the time spent using
the methods. Finally, the stakeholders were interviewed
and surveyed on the level of difficulty and effort in using
StakeRare.

The rest of this section is organised as follows. Section
4.1 details the research questions. Section 4.2 describes
RALIC, the large-scale software project used to evaluate
this work. Section 4.3 describes the application of
StakeRare to RALIC. Section 4.4 describes the construc-
tion of the ground truth list of requirements for RALIC
and its validation. Section 4.5 describes the existing
method list of requirements. Finally, Section 4.6 reveals
the results. Fig. 5 summarises the evaluation described in
this section.

StakeRare recommends the following requirements to you:

1. Card to have features to prevent sharing

2. To combine access card with fitness centre card

The recommendations are based on the requirements you have

rated:

To combine library card with access card

 To combine ID card with session card

Fig. 4. StakeRare’s output for Alice at the specific re-
quirements level.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

4.1 Research Questions

Step 1 of StakeRare identifies and prioritises the stake-
holders and their roles for RALIC. The evaluation of this
step has been reported in [89] and [12]. The evaluation
shows that social networks can be used to effectively
identify and prioritise stakeholders. The method identi-
fied a highly complete set of stakeholders and prioritised
them accurately, using less time compared to the existing
method used in the project. The rest of this section de-
scribes the evaluation of the other StakeRare steps.

For Steps 2 and 4, the requirements lists produced by
StakeRare were compared with the existing method and
the ground truth lists of requirements.

RQ1 to RQ4 as follows are the research questions for
Steps 2 and 4.

RQ1. Identifying requirements. The existing require-
ments elicitation methods described in the background
section involve a subset of stakeholders. In contrast,
StakeRare involves all the identified stakeholders. This
research question assesses how well StakeRare identifies
requirements as compared to the existing method used in
the project by asking:

• How many requirements identified by StakeRare
and the existing method used in the project are ac-
tual requirements as compared to the ground truth?

• How many of all the actual requirements in the
ground truth are identified by StakeRare and the ex-
isting method used in the project?

RQ2. Prioritising requirements. StakeRare prioritises
stakeholders using social network measures, and then
uses the output to prioritise requirements. This research
question asks:

• How accurately does StakeRare prioritise require-
ments as compared to the ground truth?

RQ3. Survey response and time spent. The quality of the

requirements returned by StakeRare depends on the
stakeholders’ motivation to participate. Also, to provide
effective support in requirements elicitation, StakeRare
should take less time than existing methods. This research
question asks:

• Are stakeholders motivated to provide require-
ments for StakeRare?

• How much time did stakeholders spend in identify-
ing and prioritising requirements as compared to
the existing method in the project?

RQ4. Effective support for requirements elicitation.
StakeRare aims to provide effective support for require-
ments elicitation, by providing a predefined list of re-
quirements for the stakeholders to rate (RateP). During
the survey, two other elicitation methods were adminis-
tered to explore the effectiveness of different methods.
RankP asks stakeholders to enter their requirements
without providing an initial list of requirements, and
PointP asks stakeholders to allocate 100 points to the re-
quirements they want in the same predefined list. In
RateP and PointP, stakeholders can suggest additional
requirements. This research question explores what kinds
of support are effective for the requirements engineer and
stakeholders by asking the following questions.

• Between the three elicitation methods RankP, RateP,
and PointP, which produces the most complete list
of requirements and most accurate prioritisation for
the requirements engineer? Are the results consis-
tent regardless of the elicitation method used?

• Between the three elicitation methods RankP, RateP,
and PointP, which do the stakeholders prefer?

• If stakeholders are provided with a list of all the re-
quirements in the project, how prepared are they to
rate them all?

In Step 3, collaborative filtering is used to predict other
requirements a stakeholder may need based on the profile

StakeRare Steps:
1. Identify and prioritise stakeholders
2. Survey stakeholders to collect profile
3. Predict requirements
4. Prioritise requirements

Steps:
1. Identify requirements
2. Pairwise comparison
3. Prioritise requirements
4. Validate with stakeholders

Steps:
1. Identify requirements elicited by
 project team
2. Compile list

Apply StakeRare to RALIC Build Ground Truth Get Existing Method List

Compare Lists

RankP
RateP
PointP

Existing
Method

List

Ground
Truth

Select RALIC Project

RALIC
Documentation

Fig. 5. StakeRare evaluation.

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 11

they provide in Step 2. This step was evaluated using the
standard evaluation method in the collaborative filtering
literature [80, 82, 91]. The evaluation partitioned the
stakeholders’ profiles into two subsets. The first subset
was the training set, which the collaborative filtering al-
gorithm learnt from. The second subset was the test set,
with rating values that were hidden from the algorithm.
For the evaluation, the algorithm’s task was to make pre-
dictions on all the items in the test set. The predictions
were then compared to the actual hidden rating values.
Using this method of evaluation, no additional input was
required from the stakeholders.

An alternative method to evaluate Step 3 was to make
predictions based on the stakeholders’ complete profiles
and ask the stakeholders to rate the recommended re-
quirements. This option was not selected as some stake-
holders were not available to be interviewed more than
once.

RQ5 to RQ7 as follows are the research questions for
Step 3.

RQ5. Predicting requirements. To recommend require-
ments that may be of interest to the stakeholders,
StakeRare uses the kNN algorithm in collaborative filter-
ing to identify similar stakeholders and predict their re-
quirements. This research question asks:

• How accurately can collaborative filtering predict
stakeholder requirements?

• Are the results consistent regardless of the elicita-
tion method used?

RQ6. Predicting requirements: enhanced profiles. In
Castro-Herrera et al.’s work in recommending forums to
stakeholders, the stakeholders’ profiles are enhanced with
stakeholder information, such as their roles in the project
and their interest in different aspects of the system, to
produce more accurate predictions of the stakeholders’
interest in forums [86]. This research question asks:

• Does enhancing stakeholder profile by adding
stakeholder information improve the accuracy of
predicting stakeholder interest in requirements?

• Are the results consistent regardless of the elicita-
tion method used?

RQ7. Predicting requirements: other algorithms. As
mentioned in the background section, kNN is a simple
machine learning algorithm. Other machine learning al-
gorithms can also be used to predict stakeholders’ interest
[92]. This research question asks:

• Does using other algorithms and combinations of
algorithms improve the prediction accuracy?

• Are the results consistent regardless of the elicita-
tion method used?

4.2 The RALIC Project

The RALIC project was a software project in University
College London (UCL), initiated to replace the existing
access control systems at UCL and consolidate the new
system with library access and borrowing. RALIC stands
for Replacement Access, Library and ID Card. It was a

combination of development and customisation of an off-
the-shelf system. The project duration was 2.5 years and
the system has been in deployment for over two years.

RALIC was selected to evaluate this work from a list of
approximately 40 software projects in UCL. The selection
criteria were as follows.

• Large-scale. The software project must be a large-
scale software project following the definition of
large-scale provided in the background section.

• Well-documented. The project must be very well
documented in order to build the ground truth and
existing method lists of requirements to evaluate the
work.

• Available stakeholders. The stakeholders should be
available for interviews.

• Completed and deployed. The project should be
completed and the system should have been de-
ployed in UCL for more than a year. This is neces-
sary to allow sufficient time for missing stakehold-
ers and requirements to surface in order to build the
ground truth of requirements.

o Requirements elicitation and analysis activities at
the start of the project often produce a “complete
enough” set of requirements [1]. Stakeholders
and requirements that are omitted during re-
quirements phase are uncovered in later phases,
such as design, development, and deployment.
For example, one study described a project
where all the change requests received during
the first year the software was deployed were
from stakeholder needs that were overlooked
during the project [38].

o Ideally, for the least biased evaluation, the pro-
posed method should be applied to a project
when it was initiated and evaluated after the sys-
tem is deployed, so that post-project knowledge
does not influence the results. But it is impracti-
cal to do so because big projects often take longer
than the three-year duration allocated for the
work5. Also, studies suggested that software pro-
jects are more likely to fail than complete suc-
cessfully [94, 95], hence evaluating StakeRare
using a project that has just started is risky be-
cause the project may fail before the ground
truth can be built. Evaluation using a completed
project comes with threats to validity, which will
be discussed in Section 5.

Most of the projects in the list of available projects
were either not large-scale or lack documentation. RALIC
was selected because it met the selection criteria.

• Large-scale. RALIC had a large and complex stake-
holder base with more than 60 stakeholder groups.
Approximately 30,000 students, staff, and visitors

5 A study of 214 software projects in Europe found the average project

duration to be over 2 years [93]. The study investigated projects of all
sizes, and the duration for large-scale projects is likely to be above the
average.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

use the system to enter buildings, borrow library re-
sources, use the fitness centre, and gain IT access.
Besides all UCL faculties and academic depart-
ments, RALIC also involved other supporting de-
partments such as the Estates and Facilities Division
that manages UCL’s physical estate, Human Re-
source Division that manages staff information, In-
formation Services Division, Library Services, Se-
curity Services, and so on. These stakeholders have
differing and sometimes conflicting requirements.

• Well-documented. RALIC was a very well doc-
umented project and the project documentation was
available to build the ground truth and existing
method lists of requirements.

• Available stakeholders. The majority of RALIC
stakeholders were available for interviews. For
stakeholders who were unavailable, other staff
members were available to take their roles.

• Completed and deployed. RALIC was completed
and the system was already deployed in UCL for
more than a year.

4.3 Applying StakeRare to RALIC

Using Step 1 of StakeRare, the stakeholders and roles for
the RALIC project were identified and prioritised. The
application of this step on RALIC is described in previous
work [12, 89]. A total of 127 stakeholders and 70 roles
were identified6. This list of stakeholders and their roles
served as input to Step 2 of StakeRare to collect stake-
holder’s profile.

Step 2 of StakeRare uses existing elicitation methods to
identify an initial list of requirements. To reflect the actual
initial list of requirements in the project, the initial list of
requirements was taken from the earliest draft require-
ments produced by the project team. This initial list con-
sists of 3 project objectives, 12 requirements, and 11 spe-
cific requirements.

Once the initial list of requirements was prepared, a
survey was conducted to collect the profiles of RALIC
stakeholders. To do so, all the stakeholders identified in
Step 1 were contacted separately via email for a survey.

Each survey took 30 minutes on average. In general,
each stakeholder spent 10 minutes to learn about
StakeRare and RALIC, and 20 minutes to complete the
questionnaire. At the start of each survey, the respondent
was provided with a cover sheet describing the survey
purpose to elicit RALIC requirements. Then, StakeRare
was introduced using a set of slides. After that, the re-
spondent was provided with a description of RALIC and
its project scope to familiarise the respondent with the
project. The respondent was also asked to put themselves
in the situation before RALIC was initiated when provid-
ing requirements. To prompt the respondent for recom-
mendations, the respondent was provided with the defi-

6 The 127 stakeholders and 70 roles were identified by applying

StakeNet on RALIC. Refer to [12] and [89] for the precision and recall of
this list. The 127 stakeholders include all kinds of stakeholders such as
users, legislators, decision-makers, and developers.

nition of requirements, as well as the different types of
requirements, examples for each type of requirement, and
a template to guide the free text provided by the respond-
ent (Fig. 6).

Step 2 of StakeRare collects stakeholders’ profiles by
asking them to rate a predefined list of requirements (the
initial requirements) and provide other requirements not
in the list. In addition to this elicitation method, the work
also tested two other methods: (1) without a predefined
list, stakeholders provide a list of requirements and assign
numeric ranks to the requirements based on their per-
ceived importance [53], and (2) 100-point test, where each
stakeholder is given 100 points that they can distribute as
they desire among the requirements [65].

In order to gather these different forms of information,
a questionnaire comprising the following parts was used
to gather the stakeholders’ profile. The complete ques-
tionnaire is available in [12].

(a) Stakeholder details. Respondents provide their
name, position, department, and role in the project
(Fig. 7(a)).

(b) Ranked profile (RankP). Respondents provide
their requirements with numeric priorities (1 for
most important) and X for requirements they ac-
tively do not want (Fig. 7(b)). Then, respondents
provide feedback on the elicitation method in
terms of three criteria: (1) level of difficulty, (2) ef-
fort required, and (3) time spent, by rating each cri-
terion High, Medium or Low (Fig. 7(c)). The re-
spondents are required to complete this question
before proceeding to the next to avoid the prede-
fined list of requirements in the next question from
influencing their answers.

(c) Rated profile (RateP). Respondents rate a prede-
fined list of requirements, from 0 (not important)
to 5 (very important), and –1 for requirements they
actively do not want (Fig. 7(d)). The predefined list
consists of requirements extracted from the earliest
draft requirements produced by the project team to
reflect the actual initial requirements in RALIC.
One extra requirement was added to the list,
which is combining Santander Bank Card with
UCL access card (Fig. 7(d), Item 1.3.8). This re-
quirement was being considered at the time of the
survey and it was an opportunity to use the survey
to elicit the stakeholders’ views on the require-
ment. Respondents are also asked to add require-
ments not in the predefined list and rate those re-
quirements (Fig. 7(e)). Once they start on RateP,
they cannot return to RankP. As before, respond-
ents provide feedback on the elicitation method af-
ter they have completed the question.

(d) Point test profile (PointP). Respondents are allo-
cated 100 points each to distribute among the re-
quirements they want from RateP (Fig. 7(f)). The
requirements include both the predefined ones and
the additional ones they provide. Respondents are
asked to allocate more points to the requirements
that are more important to them. Again, respond-

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 13

ents provide feedback on the elicitation method.

(e) Interest and comments. Finally, respondents re-
veal their interest in the RALIC project in terms of
“not at all”, “a little”, “so so”, or “a lot” (Fig. 7(g)).
Respondents also provide any other comments
they have on the study (Fig. 7(h)). This part aims to
learn more about the respondents and collect extra
information to support the analysis of the results.

(a)

(b)

(c)

(d)

Fig. 6. Requirements: examples and template.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

(e)

(f)

(g)

(h)

Fig. 7. StakeRare survey questionnaire.

When the respondents have completed their question-
naire, they were interviewed for their survey experience
and the rationale behind their answers. Similar to the in-
terviews in the StakeNet survey, these interviews were
semi-structured, allowing the questions to be modified
and new questions to be brought up depending on what
the respondents say [96]. Some questions include:

• What do you think about the StakeRare method?

• Why is requirement R bad? (If the respondent ac-
tively does not want a requirement.)

• Why is requirement R important to you? (If the re-
spondent allocated many points to a particular re-
quirement.)

• Which elicitation method do you prefer and why?

A total of 87 stakeholders (out of the 127 stakeholders
identified in Step 1) were surveyed. Table 5 summarises
the amount of data collected from the survey. RateP re-
ceived the highest number of ratings, followed by PointP,
and then RankP. The predefined list in RateP has the ad-
vantage of suggesting requirements that the respondents
are unaware of, but has the disadvantage of enabling re-
spondents to rate as many requirements as they like.
PointP has fewer ratings than RateP, as the limitation of
points encouraged the stakeholders to rate only the re-
quirements that they needed most.

TABLE 5

DATA COLLECTED FROM 87 RESPONDENTS

Data Amount

Stakeholder details 87 sets of details
RankP
 Ratings 415 ratings
 Requirements 51 items
 Specific Requirements 132 items
RateP
 Ratings 2,396 ratings
 Requirements 48 items
 Specific Requirements 104 items
PointP
 Ratings 699 ratings
 Requirements 45 items
 Specific Requirements 83 items
Feedback on elicitation method 783 ratings
Interest in RALIC 79 ratings

The data collected from the survey was processed and

cleaned. The survey revealed that although all stakehold-
ers provided short statements of their requirements (e.g.,
short clauses, or one to two sentences per requirement),
very few stakeholders adhere to the requirements tem-
plate provided to them at the start of the survey (Fig. 6). A
respondent experienced in business analysis advised that
in requesting input from stakeholders, restrictions and
templates should be kept to a minimum to encourage
response, and the requirements engineers should process
the data after collection. As RateP and PointP used a pre-
defined list of requirements, less cleaning was required.

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 15

Data cleaning focused on RankP as follows.
• Same requirement different wording. Different

statements describing the same requirement were
merged. For example, in RALIC, “all in one card”
was used interchangeably with “one card with mul-
tiple functionality,” hence the two requirements
were merged.

• Same requirement different perspective. Stake-
holders with different perspective may express the
same requirement in a different way, hence these re-
quirements were merged. For example, Library Sys-
tems had the requirement “to import barcode from
Access Systems,” but Access Systems had the re-
quirement “to export barcode to Library Systems.”

• One statement many requirements. Statements
containing more than one requirement were split
into their respective requirements.

• Classification into the requirements hierarchy. The
requirements were grouped under their respective
project objectives. Specific requirements were classi-
fied into their respective requirements.

• Duplicate entries. If a stakeholder provided a re-
quirement more than once, only the requirement
with the highest rank (i.e., assigned with the small-
est number) was kept.

• Missing fields. A valid preference is in the form of
<stakeholder, requirement, rating>. Three stakeholders
provided only a requirement and did not rank their
requirement. The rank of 1 was assigned to such re-
quirements, because if the stakeholder provided one
requirement, then that requirement was assumed to
be the most important to the stakeholder.

• Tied ranks. Some respondents provided tied ranks
for their requirements (e.g., two requirements with
the same rank). Fractional ranking was used to han-
dle tied ranks. In RankP, the range of the ranking
depends on the number of requirements provided
by the stakeholders, and this variability affects the
prediction and prioritisation. Hence, normalisation
was done such that the sum of all the ranks from a
stakeholder adds up to 1 in order to ensure that all
rankings were within the same range of 0 to 1 for
each stakeholder. The rating for “actively do not
want” was converted to 0.

In RateP, if the respondents entered additional re-
quirements, then the requirements were cleaned the same
way as they were in RankP for the items “same require-
ment different wording”, “same requirement different
perspective”, and “one statement many requirements”.
When providing additional requirements in RateP, some
respondents indicated which project objective in the pre-
defined list the requirements belong to, hence reducing
the need for classification into project objectives. For du-
plicate entries in RateP, the requirement with the highest
rating was kept.

For PointP, the ratings were normalised such that each
stakeholder’s allocated points added up to 100 to remove
arithmetic errors during the survey. For duplicate entries

in PointP, the requirement with the most points was kept.
In addition to the data cleaning, Step 2 of StakeRare

involves propagating the ratings up and down the hier-
archy. If a stakeholder rates a lower-level requirement but
does not rate the high-level requirement, then StakeRare
assumes the stakeholder provides the same rating to the
high-level requirement. If a stakeholder rates a require-
ment but not its specific requirements, then StakeRare
assumes the stakeholder provides the same rating to all
the specific requirements. This propagation expanded the
requirements’ ratings into the ratings of their correspond-
ing specific requirements, resulting in a total of 1109 rat-
ings on specific requirements for RankP, 3113 for RateP,
and 1219 for PointP7.

When plotting the specific requirements in RankP
against the number of positive ratings, the result resem-
bles a power-law distribution (Fig. 8), with a few domi-
nating requirements to the left receiving many ratings
and a long tail to the right with many requirements re-
ceiving a few ratings [97]. A power law graph is expected
to emerge when there is a large population of stakehold-
ers, a large number of ratings, and a high freedom of
choice [97]. The graph for RateP has a large number of
dominating requirements due to the predefined list (Fig.
9) and the graph for PointP has a long tail but does not
have clear dominating requirements because of its point
restriction (Fig. 10).

Fig. 8. RankP: Specific requirement vs. number of rat-
ings.

7 The complete RankP, RateP, and PointP datasets are available at

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Fig. 9. RateP: Specific requirement vs. number of rat-
ings.

Fig. 10. PointP: Specific requirement vs. number of rat-
ings.

In Step 3, collaborative filtering is used to predict other
requirements a stakeholder may need based on the profile
they provide in Step 2. As discussed in Section 4.1, no
additional input is required from the respondents.

The fourth and final step of StakeRare gathers all the
stakeholders’ initial ratings in Step 2 and their approved
ratings from Step 3 to prioritise all the requirements for
the project. This step uses the priority of stakeholders and
their roles from Step 1. For this priority, the StakeNet list
produced by the betweenness centrality measure was
used, because the evaluation from the previous work
found the list to be the most accurate compared to the
lists produced by the other social network measures [12,
89]. As three datasets, RankP, RateP, and PointP, were col-
lected during the survey, three prioritised lists of re-
quirements were produced.

4.4 Ground Truth

The ground truth of requirements in RALIC is the actual
list of requirements implemented in the project, priori-
tised based on their importance in the project. The ground
truth consists of 10 project objectives, 43 requirements,
and 80 specific requirements.

Construction

The ground truth was built by the author in three stages.

Stage 1: Identify requirements. The ground truth project
objectives, requirements, and specific requirements were
identified by analysing project documentation such as the
project plan, functional specification, meeting minutes,
and post implementation report. For example, the project
plan revealed that a project objective was “to improve
security.” A requirement to achieve the project objective
was “to enable security/reception staff to validate the
cardholder’s identity.” Two specific requirements were
“to enable security/reception staff to check that the ap-
pearance of the cardholder matches the digitally stored
photo” and “to enable security/reception staff to check
the cardholder’s role.”

RALIC requirements were organised into three levels
of hierarchy: project objectives, requirements, and specific
requirements. A requirement that contributed towards a
project objective was placed under the project objective,
and a specific requirement that contributed towards the
requirement was placed under the requirement. When
placing requirements and specific requirements in the
hierarchy, a requirement is placed under the objective that
it influences most, and similarly, a specific requirement is
placed under the requirement that it influences most.

Stage 2: Pairwise comparison. This stage uses pairwise
comparison to prioritise the project objectives, require-
ments, and specific requirements from Stage 1. The pair-
wise comparison method discussed in the background
section was used as it includes much redundancy and is
thus less sensitive to judgmental errors common to tech-
niques using absolute assignments [56]. The requirements
from each level were considered separately.

• Project objectives. The project objectives were ar-
ranged in an N!N matrix where N is the total num-
ber of project objectives. For each row, the objective
in the row was compared with respect to each objec-
tive in the rest of the row in terms of their import-
ance to the project. The comparison is transitive.
The project objective that contributes more to the
success of the project is more important. For exam-
ple, in RALIC, the objective “to improve security
and access control in UCL” (labelled as Security in
Fig. 11) was more important compared to the objec-
tive “to design the access card” (labelled as Card
design in Fig. 11). The objective considered to be
more important in each pairwise comparison was
placed in the corresponding cell of the matrix (Fig.
11). If the two project objectives were equally im-
portant, they were both placed in the cell. For ex-
ample, the objective “to design the access card” was
equally important with the objective “to reduce
cost” (labelled as Cost). Hence, in Fig. 11, they both
appear in the corresponding cell of the matrix.

• Requirements. Requirements were prioritised the
same way as project objectives. A requirement was
more important if it contributed more towards the
project objectives. For example, in RALIC, between
the requirements “granting access rights” and
“cashless vending,” “granting access rights” was

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 17

more important as it contributed highly towards the
project objectives “to improve security” and “to im-
prove processes,” but “cashless vending” only con-
tributed towards “extensible future features.”

• Specific requirements. Specific requirements were
prioritised the same way as requirements. A specific
requirement was more important if it contributed
more towards the requirements.

 Security Card design Cost

Security – Security Security

Card design – – Cost, Card design

Cost – – –

Fig. 11. 3!3 Matrix for Project Objectives.

Stage 3: Prioritise requirements by their project objec-
tives. This stage produced the ground truth of require-
ments, which consists of a prioritised list of project objec-
tives, and within each project objective, a prioritised list
of requirements, and within each requirement, a priori-
tised list of specific requirements. To produce the ground
truth, project objectives were ranked by the number of
cells in the matrix that contains the project objectives,
from the most to the least. For each project objective, the
requirements were prioritised from the requirements that
appeared in the most cells to the least, and for each re-
quirement, the specific requirements are prioritised from
the specific requirements that appear in the most cells to
the least.

Validation

The ground truth was validated by management-level
stakeholders and stakeholders who were involved in a
major part of the project. These stakeholders were inter-
viewed to validate its completeness and accuracy in pri-
oritisation. The interviews were conducted after
StakeRare was applied to RALIC. As StakeRare was ev-
aluated by surveying the stakeholders, conducting the
interviews after the surveys prevents the survey answers
from being influenced by the interviews. The interviews
increased the confidence that the ground truth is objective
and accurate, and is representative of the actual require-
ments and their prioritisations in RALIC.

During the interviews, the stakeholders were provided
with the description of the RALIC project and reminded
about the purpose of the study, which was to identify and
prioritise requirements. The stakeholders were also pro-
vided with the ground truth, and the purpose of the
ground truth to evaluate StakeRare’s output was ex-
plained to them. The stakeholders were asked to inspect
the ground truth and were presented with the following
questions:

• Are there any project objectives, requirements, and
specific requirements that are missing from the
ground truth?

• Are there any project objectives, requirements, and
specific requirements that should not be included in
the ground truth?

• Are any of requirements incorrectly prioritised? If
so, why?

The feedback based on the questions was used to
amend the ground truth. Missing requirements that were
pointed out were confirmed with project documentation
as this work only considered documented requirements.
The interviews revealed that the ground truth of require-
ments was complete. However, some stakeholders
pointed out that as the project was completed a while ago,
they may not have remembered all the requirements, and
the best way to check for completeness would be to con-
sult the project documentation. Disagreements in the pri-
oritisations were confirmed with the other stakeholders
and justified before amendments were made to the
ground truth.

4.5 Existing Method List

The existing method list of requirements is an unpriori-
tised list of requirements identified by the project team at
the start of the project using existing methods. The project
team used traditional elicitation techniques, which in-
cluded meetings and interviews with key stakeholders
(approximately 20 stakeholders representing 30 roles)
determined by the project board. The existing method list
consists of 10 project objectives, 43 requirements, and 56
specific requirements. These requirements were identified
from the start of the project until the date the require-
ments were signed off by the project board.

The project team spent about 127 hours to produce the
existing method list. This number is an approximation
calculated from the total number of hours the stakehold-
ers spent in meetings until the requirements were signed
off.

4.6 Method and Results

This section describes the method to evaluate each re-
search question in Section 4.1 and the results.

RQ1: Identifying Requirements

The first research question asks:
• How many requirements identified by StakeRare

and the existing method used in the project are ac-
tual requirements as compared to the ground truth?

• How many of all the actual requirements in the
ground truth are identified by StakeRare and the ex-
isting method used in the project?

Method
The list of requirements identified by StakeRare and the
existing method were compared against the ground truth,
in terms of precision and recall, the two metrics widely
used in the information retrieval literature [91].

The precision of identified requirements is the number
of actual requirements in the set of identified require-
ments divided by the total number of identified require-
ments (Equation 4-1).

, (4-1)

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

where X is the set of requirements identified by StakeRare
or the existing method, and GroundTruth is the set of re-
quirements in the ground truth.

The recall of identified requirements is the number of
actual requirements in the set of identified requirements
divided by the total number of actual requirements
(Equation 4-2).

, (4-2)

with X and GroundTruth same as for precision. Both preci-
sion and recall range from 0 to 1. A precision of 1 means
all the identified requirements are actual requirements. A
recall of 1 means that all the actual requirements are iden-
tified.

As explained in the StakeRare method, the require-
ments in StakeRare are organised into a hierarchy of pro-
ject objectives, requirements, and specific requirements.
To measure the precision and recall of the identified re-
quirements, both the requirements and specific require-
ments were considered. Project objectives were not con-
sidered because the different methods share the same pro-
ject objectives.

The requirements returned by the methods can be at a
finer, equal, or coarser grain compared to the ground
truth. If the returned requirements were at a finer grain,
then the results were considered a match. For example, if
ground truth returned “control access to departments,”
and StakeRare returned “control access to the Department
of Computer Science, Department of Engineering, etc.,”
then it was considered that StakeRare returned a re-
quirement that matched the ground truth. Otherwise, if
the returned requirements were at a coarser grain than
the ground truth, then the results were considered not a
match. If they were of equal grain, the descriptions of the
requirements were compared. Match was independent of
exact details such as numeric parameters. For example, if
StakeRare returned the requirement “a minimum of 5
years support from the software vendor,” but the actual
requirement in the ground truth was “a minimum of 10
years support from the software vendor,” then it was con-
sidered that StakeRare returned a requirement that
matched the ground truth. This is because in an actual
project, specific details could be modified during the pro-
ject as long as the requirement was identified.

Results
StakeRare identified the requirements in RALIC with a
high level of completeness, with a 10% higher recall com-
pared to the existing method used in the project (Fig. 12).
As the existing method mainly involved decision-makers,
the list omitted process related requirements such as “en-
able visual checking of cardholders’ roles” and “ease of
installing new card readers.” In the StakeRare list, these
requirements were identified by stakeholders who were
involved in the process. Hence, StakeRare’s approach of
asking stakeholders with different perspectives increased
the completeness of the elicited requirements, which is
critical to build a system that meets the stakeholders’

needs.
The majority of the requirements missing in the

StakeRare list were technical constraints such as “the
database platform must support Microsoft SQL Server
and/or Oracle Server” and “the system manufacturer
must be a Microsoft Certified Partner,” although technical
stakeholders were involved in the survey. One reason
could be the survey method of asking stakeholders to
provide requirements on the spot, which may result in a
bias to the type of requirements that can be identified
using this approach. Future work should investigate this
further.

Fig. 12. Identifying requirements8.

StakeRare had a lower precision compared to the exist-
ing method. This is because in StakeRare, stakeholders are
free to suggest requirements, which may not always be
implemented. For example, some RALIC stakeholders
wanted to replace the existing access control system with
thumb readers, but this requirement was not imple-
mented, hence lowering the precision. Other such re-
quirements include enabling the tracking of UCL alumni,
card to be cheap (10 pence per card), and combine access
card with travel card. These requirements do not appear
in the existing method and ground truth lists. Neverthe-
less, in requirements elicitation, it is better to be more
complete but less precise (identify extra requirements
which are not implemented), rather than to be precise
(identify only the requirements that are implemented) but
miss out requirements [1, 39]. Due to the wide coverage of
requirements in StakeRare, the majority of missing re-
quirements are of low priority.

Not all stakeholders had requirements. For example,
some developers who had not provided any requirements
explained that their job was to implement the require-
ments given to them; others highlighted prerequisites for
their job. For example, when completing the survey, the
maintenance team entered technical documentation as
their requirement. The StakeRare lists were less precise
partly due to these requirements, as they were not in the
ground truth. These requirements do not appear in the
existing method list.

8 Comparison between RankP, RateP, and PointP can be found in RQ4

Fig. 14.

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 19

By asking stakeholders to indicate requirements they
actively did not want, StakeRare uncovered conflicts. For
example, security guards preferred not to have UCL’s
logo on the ID card, for security reasons had the card
been lost. Fitness centre users preferred not to have too
many features on the ID card, as they had to exchange
their cards for their locker keys for the duration they use
the gym lockers. If the ID card had also served as a cash
or bank card, then the fitness centre users would prefer
using a separate gym card to exchange for locker keys,
which meant that the requirement “all in one card” would
not be achieved.

Stakeholders recommended for a role may provide re-
quirements for another role, as it is common for a stake-
holder to have more than one role in a project. For exam-
ple, a RALIC developer was also a user of the access
cards. According to this stakeholder, “as a developer I
only care about system requirements. But as a member of
staff, I want to be able to access required buildings, and
by rating these [access related] requirements, I am an-
swering the questionnaire as a member of staff.”

During the surveys, some respondents recommended
other stakeholders to be surveyed regarding a specific
requirement (e.g., the comment in Fig. 7(h)). This suggests
that the stakeholder analysis step should overlap with the
requirements elicitation step to improve the quality of the
stakeholder list and requirement list. This finding is con-
sistent with the existing requirements engineering litera-
ture. According to Robertson and Robertson [39], the
identifications of scope, stakeholders, and requirements
are dependent on one another, and should be iterated
until the deliverables have stabilised.

Stakeholders supported StakeRare’s idea of being open
and inclusive in requirements elicitation. When asked to
represent all UCL students in RALIC, the student repre-
sentative clarified that “I do not represent all 20 thousand
students, even though they voted for me. Their views on
data management, for example, can be very different from
mine,” and suggested a wider body of students to be sur-
veyed using StakeRare to ensure a more representative
view. A management-level stakeholder commented that
StakeRare provides the opportunity to elicit different
views from a large number of stakeholders, which can
increase stakeholder buy-in, a vital element for project
success.

RQ2: Prioritising Requirements

The second research question asks: How accurately does
StakeRare prioritise requirements as compared to the
ground truth?

Method
StakeRare’s output for the requirements engineers was
measured against the ground truth of requirements in
Section 4.4, in terms of accuracy of prioritisation. The ac-
curacy of prioritisation for project objectives is the simi-
larity between the prioritisation of the project objectives
by StakeRare and the prioritisation in the ground truth.
Pearson’s correlation coefficient, %, was used to determine
the similarity [91]. Values of % range from +1 (perfect cor-

relation), through 0 (no correlation), to –1 (perfect nega-
tive correlation). A positive % means that high priorities in
the ground truth list are associated with high priorities in
the list of identified requirements. The closer the values
are to &1 or +1, the stronger the correlation. The statistics
software by Wessa9 is used to calculate % in this work.

The computation of % requires the lists to be of the
same size. Therefore, the measurement of % takes the in-
tersection between the lists: each list is intersected with
the other, and fractional ranking [90] is reapplied to the
remaining elements in that list. Missing requirements and
additional requirements in the StakeRare list were ac-
counted for when answering RQ1 on the completeness of
the returned requirements. For requirements, % was
measured for each list of requirements per project objec-
tive and the results were averaged, and the standard de-
viation was calculated for each average. The same was
done for specific requirements, by measuring % for each
list of specific requirements per requirement, averaging
the results and calculating the standard deviation for each
average.

As a control, prioritised lists were produced using un-
weighted stakeholders (referred to as Unweighted in the
results), i.e., each stakeholder’s weight is 1. The existing
method list was not compared as it is unprioritised.

Results
StakeRare prioritised requirements accurately compared
to the ground truth (Fig. 13). In prioritising project objec-
tives and requirements, StakeRare had a high correlation
with the ground truth (% = 0.8 and % = 0.7 respectively). It
was less accurate in prioritising specific requirements (% =
0.5). Weighting stakeholders by their influence increased
the accuracy of prioritising project objectives and re-
quirements by over 10%, but not for specific require-
ments. This influence is produced by applying social
network measures to the stakeholder network. As such,
the results show that using social networks generally im-
proves the accuracy of prioritising requirements. Never-
theless, the low accuracy in prioritising specific require-
ments should be further investigated, as these require-
ments are crucial to system development.

StakeRare’s output was presented to interested stake-
holders after this work was completed. The director of
Information Systems, who was experienced in options
rankings for major decisions, commented that StakeRare’s
prioritisation is “surprisingly accurate.”

Interestingly, analysis of the meeting minutes and post
implementation report revealed that the project team
spent a disproportionate amount of time discussing less
important requirements during project meetings. Accord-
ing to the minutes and interviews with the stakeholders, a
significant amount of time was spent discussing card de-
sign. However, the project objectives “better user experi-
ence” and “improve processes” have a higher priority
than “card design” in the ground truth. The post imple-
mentation report identified a key area relating to user

9 Wessa, P. (2009) Free Statistics Software, Office for Research Devel-

opment and Education, version 1.1.23-r4, URL http://www.wessa.net/.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

experience and processes that was not given adequate
attention. According to the report, “A student’s first ex-
perience of UCL should not be spent all day in a queue.
…the queuing arrangements should be revised and a
more joined up approach with Registry taken. Last year
the queue for the RALIC card meant students were queu-
ing outside – we were fortunate with the weather.”

Fig. 13. Prioritising requirements (standard deviation in
parentheses).

StakeRare accurately prioritised the project objectives
“better user experience” and “improve processes” as hav-
ing higher priority than “card design.” Had StakeRare
been used, the project team would have realised that
“card design” had a lower priority compared to the other
two project objectives, and might have spent less time
discussing card design and more time discussing various
ways to improve processes and user experience.

RQ3: Survey Response and Time Spent

The third research question asks:
• Are stakeholders motivated to provide require-

ments for StakeRare?

• How much time did stakeholders spend in identify-
ing and prioritising requirements as compared to
the existing method in the project?

Method
To determine the stakeholders’ motivation to provide rat-
ings, the response rate of the survey was calculated as the
number of stakeholders who responded, over the total
number of stakeholders who were contacted, expressed as
a percentage. In the calculation, “non-stakeholders” and
stakeholders who have left but yet to be replaced were
excluded. For stakeholders who responded, their level of
interest in the project, which was collected during the
survey, was also investigated.

The time spent using StakeRare was calculated using
Equation 4-3.

!

timeStakeRare = timepredefined _ list +
timequestionnaire

3
, (4-3)

where timepredefined_list is the time spent building the prede-
fined list of requirements. As the predefined list of re-

quirements was taken from the first draft requirements,
timepredefined_list is the number of hours the stakeholders spent
in meetings until the draft requirements was produced on
8 August 2005, which was 61 hours. timequestionnaire is the
total time spent answering the questionnaire, which is the
total survey time minus the time spent introducing Stak-
eRare and interviewing the respondents after the survey,
which was approximately 10 minutes per respondent.
timequestionnaire is divided by 3, to consider only one elicita-
tion method out of the three.

timeStakeRare is the time spent using StakeRare from the
stakeholders’ perspective. Only the respondents’ time
spent was calculated, as this researcher’s presence while
they were completing the questionnaires was just to ob-
serve them for research purposes. The calculation was an
approximation that assumed the elicitation methods take
an equal amount of time. The time spent using StakeRare
was compared with the time spent using the existing
method in the project, which was 127 hours as reported in
Section 4.5.

Results
Stakeholders were motivated to provide ratings. The sur-
vey response rate was 79%, about 30% higher than the
weighted average response rate without regard to tech-
nique10 [98]. Most of the stakeholders who responded
were very interested in RALIC, only 13% indicated that
they have little interest and 3% no interest. Those with
little or no interest may not have responded in tool-based
implementations of the survey.

The time spent using StakeRare was 71 hours, 56 hours
less than the time spent using the existing method in the
project. While the existing method in the project returned
an unprioritised list of requirements, StakeRare’s list of
requirements was accurately prioritised and highly com-
plete, as shown in the previous research questions. These
findings indicate that a more adequate involvement of
stakeholders in this case produced better requirements.

Finally, many stakeholders preferred using StakeRare
to provide requirements rather than attend lengthy meet-
ings. In line with the existing literature, elicitation meet-
ings used in existing methods can be time consuming and
ineffective [6]. One stakeholder commented, “I was only
interested in one issue, but had to sit through hours of
meetings, where unrelated items were discussed. What a
waste of time. With this method, I could just write it
down and get on with my work!”

RQ4: Effective Support for Requirements Elicitation

StakeRare’s default elicitation method is RateP, but the
evaluation administered two other elicitation methods,
RankP and PointP, to explore the effectiveness of different
methods. The fourth research question asks:

• Best elicitation method. Between the three elicita-

10 In the study by Yu and Cooper [98], the sample sizes for 497 response

rates from various survey methods (e.g., mail surveys, telephone surveys,
personal interviews) varied from 12 to 14,785. As such, the response rate
averages are weighted by the number of contacts underlying the re-
sponse rate.

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 21

tion methods RankP, RateP, and PointP, which pro-
duces the most complete list of requirements and
most accurate prioritisation for the requirements
engineer? Are the results consistent regardless of the
elicitation method used?

• Stakeholders’ preference. Between the three elicita-
tion methods RankP, RateP, and PointP, which do
the stakeholders prefer?

• Rating all requirements. If stakeholders are pro-
vided with a list of all the requirements in the pro-
ject, how prepared are they to rate them all?

Method
Best elicitation method. Three elicitation methods were
administered to explore the effectiveness of different
methods. In RankP, stakeholders were asked to enter their
requirements without providing an initial list of require-
ments. In RateP, stakeholders were asked to rate a prede-
fined list of requirements and provide additional re-
quirements. In PointP, stakeholders were asked to allocate
100 points to the requirements they want in the same pre-
defined list as RateP. To evaluate the different elicitation
methods, the lists produced from RankP and PointP were
compared against the ground truth, and RQ1 and RQ2
were answered using precision, recall, and accuracy as
described previously. Then, the results from RankP and
PointP were compared with the results from RateP.

Stakeholders’ preference. To determine the elicitation
method preferred by the stakeholders, the respondents’
feedback on the elicitation methods was investigated.
During the survey, each respondent rated RankP, RateP,
and PointP in terms of the criteria: level of difficulty, ef-
fort required, and time spent. Each criterion was rated
High, Medium, or Low. The ratings were converted into
numeric values (High = 3, Medium = 2, Low = 1) to be
averaged. The average rating on each criterion for each
elicitation method and the standard deviation for each
average were calculated for RankP, RateP, and PointP. The
interviews conducted with stakeholders after the surveys
provided the rationale behind the stakeholders’ prefer-
ence.

Rating all requirements. To determine how prepared
stakeholders were to rate all the requirements, an alterna-
tive RateP questionnaire, which consisted of the prede-
fined list of requirements as well as the requirements pro-
vided by other stakeholders, was prepared. An experi-
ment was conducted with four stakeholders to rate this
alternative questionnaire. The initial plan to involve more
stakeholders in the experiment fell through as the stake-
holders were reluctant to rate a long list of requirements.

Results
Best elicitation method. In identifying requirements
(RQ1), RateP had the best overall results, RankP had the
highest recall, and PointP had the highest precision (Fig.
14). RankP had the lowest precision because stakeholders
were free to express what they want. PointP had the high-

est precision as limited points encouraged stakeholders to
only suggest requirements they really needed. Although
RateP collected the highest number of ratings, it has a
lower recall compared to RankP. This is because in RateP,
some stakeholders do not provide additional require-
ments after they have rated the requirements in the pre-
defined list. Requirements missing from RateP that are in
RankP are mostly specific requirements. For example,
RateP has the requirement “import data from other sys-
tems” but omitted the specific systems to import the data
from.

In prioritising requirements (RQ2), RateP produced the
most accurate prioritisation for project objectives and re-
quirements (Fig. 15). The results in all three datasets
showed that weighting stakeholders generally increased
the accuracy of prioritisation. The most significant im-
provement was RateP requirements with an increase of 16
percentage points. Only for RankP requirements and
RateP specific requirements was there no improvement.

The elicitation method influenced the prioritisation.
For example, the project objective “extensible for future
features” was prioritised disproportionately high in
RateP, and disproportionately low in PointP and RankP.
As RateP allowed stakeholders to rate as many require-
ments as they wanted, “nice to have” features were rated
high. In PointP, stakeholders were given limited points,
hence they allocated the points for requirements they
really need rather than future features. In RankP, devel-
oper related project objectives such as “compatibility with
existing UCL systems” and “project deliverables11” were
prioritised disproportionately high. This was because
developers who participated in the survey listed devel-
opment requirements (e.g., the maintenance team needed
the requirements documentation for their work) rather
than system requirements (e.g., easier to use access cards),
and the other stakeholders provided relatively fewer re-
quirements in RankP compared to RateP and PointP.

Fig. 14. Identifying requirements: RankP, RateP, and
PointP.

11 This project objective contains development related requirements

such as requirements documentation, technical documentation, and
change management.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Fig. 15. Prioritising requirements: RankP, RateP, and
PointP (standard deviation for requirements and spe-
cific requirements in parentheses).

RateP had the advantage of suggesting requirements
that the respondents were unaware of, which improved
the accuracy of prioritisation. Upon looking at the prede-
fined requirements in RateP, some stakeholders com-
mented that they were reminded about requirements
which did not cross their minds while they were complet-
ing RankP. For example, the requirement “centralised
management of access and identification information”
had high priority in the ground truth. But in RankP, only
one respondent provided this requirement, resulting in a
biased overall prioritisation. The accuracy of prioritisa-
tion for the list of requirements under the same project
objective was % = &0.1, indicating that the list was nega-
tively correlated with the ground truth. In contrast, this
requirement, which was provided in the predefined list in
RateP, received positive ratings from 68 respondents, re-
sulting in a prioritisation that was highly correlated with
the ground truth (% = 0.7).

Stakeholders found it easy to point out requirements
they actively do not want from the predefined list of re-
quirements in RateP. However, they found it more diffi-
cult to do so in RankP where no requirements were pro-
vided. Although RateP suggested requirements to stake-
holders, stakeholders did not blindly follow the sugges-
tions. For example, although the “Santander bank card”
requirement was in the predefined list, the majority of
stakeholders were against it. The requirement received a
rating of zero from 25 respondents and a rating of –1 (ac-
tively do not want) from 20 respondents. Only 23 re-
spondents rated it positively, suggesting that if UCL were
to implement it, the card would not be well received.

Stakeholders’ preference. The majority of stakeholders
preferred RateP as they found it to require the least effort.
Nevertheless, as they had to go through a predefined list
of requirements, they found it more time consuming than
RankP and PointP, where they only entered the require-
ments they wanted. For example, a security guard found
the RateP list too student focused, and commented that it
was “tedious to go through a list of requirements that are

mostly unrelated.” In general, stakeholders found all
three elicitation methods easy to complete, requiring little
time and effort (Fig. 16). The average responses sat be-
tween Low and Medium for all three elicitation methods
in all criteria.

Different types of stakeholders preferred different elici-
tation methods. Many decision-makers preferred PointP,
as they were used to making decisions under constraints.
System users such as students and gym users preferred
RateP, where options were provided. RankP was challen-
ging to some as they found it difficult to articulate their
needs without prompts. Nevertheless, stakeholders with
specific requirements in mind preferred RankP, where
they could freely articulate their requirements. Some
stakeholders found the predefined list of requirements
constraining. For example, a respondent had trouble rat-
ing the requirement “enable the gathering and retrieval of
the time which individuals enter and leave buildings.” He
explained that the requirement should be worded as two
requirements because he would provide a negative rating
for gathering the time individuals enter buildings (he did
not want the time he arrived at work to be recorded), but
a high positive rating for gathering the time individuals
leave buildings for security reasons.

Fig. 16. Stakeholder feedback on elicitation method.

Finally, many stakeholders found the arithmetic exer-
cise in PointP distracting, especially those who allocated
points at a fine level of granularity. As such, PointP was
rated the highest in terms of effort and difficulty. Future
implementations of PointP should provide automatic
point calculations.

Rating all requirements. Although stakeholders rated
most of the initial requirements, they were not prepared
to rate the full list of requirements. The four stakeholders
involved in rating the alternative questionnaire found the
task tedious and time consuming. They preferred to only
rate a subset of requirements that were relevant to them.
One complained that she was bored and wanted to stop
halfway. This suggests that it is useful to recommend rel-
evant requirements to stakeholders when the list of
requirements is long.

RQ5: Predicting Requirements

The fifth research question asks:

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 23

• How accurately can collaborative filtering predict
stakeholder requirements?

• Are the results consistent regardless of the elicita-
tion method used?

Method
To evaluate StakeRare’s prediction accuracy, 10-fold cross-
validation [92] was used to predict the stakeholders’ rat-
ings for project objectives, requirements, and specific re-
quirements. 10-fold cross-validation is commonly used in
machine learning research for assessing how the results of
a statistical analysis will generalise to an independent
dataset [99-101]. Using 10-fold cross-validation, the origi-
nal sample is randomly partitioned into ten subsamples.
Of the ten subsamples, a single subsample is retained as
the validation data for testing the model, and the remain-
ing nine subsamples are used as training data [92]. The
cross-validation process is then repeated ten times (the
folds), with each of the ten subsamples used exactly once
as the validation data. The ten results from the folds are
then averaged to produce a single estimation. The advan-
tage of this method over repeated random sub-sampling
is that all observations are used for both training and
validation, and each observation is used for validation
exactly once [92, 102].

The Weka13 data mining software was used for the
kNN algorithm and the evaluation. Cross-validation was
used to find the optimal value for k. This was done using
the built-in cross validation in Weka by setting k to the
total number of stakeholders who provided more than
one rating. The resulting optimal value was corroborated

12 As mentioned in the data cleaning at the beginning of this section

(page 14), the ratings for RankP have been normalised between 0 and 1,
where the rating for actively do not want is 0. The ratings for RateP are
integers. The ratings for PointP are real numbers.

13 Weka version 3.6 http://www.cs.waikato.ac.nz/ml/weka/

through an exhaustive search using all possible values of
k (from 1 to the total number of stakeholders who pro-
vided more than one rating) during preliminary experi-
ments.

The mean absolute error (MAE) metric was used to ev-
aluate the accuracy of the predictions [91]. MAE is a
measure of the deviation of recommendations from their
true user-specified values widely used in the collabor-
ative filtering literature [103-106]. The MAE is computed
by first summing these absolute errors of the n corres-
ponding rating-prediction pairs and then computing the
average. Formally,

, (4-4)

where n is the number of tested ratings, and < ri, pi > is a
rating-prediction pair. The lower the MAE, the more ac-
curately the recommendation system predicts user rat-
ings. Stakeholders must provide at least one rating before
their preference can be predicted, hence stakeholders who
provided only one rating were removed.

The results produced from using kNN with optimal k
were compared to the following controls.

• Random. Random predictions for the ratings were
produced with a uniform distribution within the
rating range, which was different for RankP, RateP,
and PointP (Table 6). The experiment was repeated
50 times and the average MAE was computed.

• Max k. All stakeholders were assumed to be the
same by running kNN with k = the total number of
stakeholders who provided more than one rating.

To check if the result was consistent regardless of the
elicitation method, the datasets for RankP and PointP
were evaluated using the same experiment.

Results
StakeRare predicted the stakeholders’ preference with
high accuracy using the default RateP dataset (Fig. 17). As
expected, random predictions were inaccurate, with an
MAE of about 2.5 for all three hierarchy levels. kNN with
maximum k improved the prediction accuracy by more
than half, and kNN with optimal k performed the best in
all three levels14. This showed that identifying similar
stakeholders improved prediction accuracy. The average
MAE after applying kNN was about 1 (Fig. 17). This
meant that if a stakeholder rated a requirement as 4,
StakeRare’s prediction of her rating was between 3 and 5.
This result was comparable to that reported in the litera-
ture for standard collaborative filtering applications, such
as movie rating [104]. In Jin et al.’s experiments [104] with
two datasets (one with five ratings and one with six rat-
ings), the MAE ranged between 0.8 and 1.3. The
StakeRare RateP dataset had six ratings (i.e., actively do
not want, 1, 2, 3, 4, and 5).

14 The differences in MAE observed in the results reported in this paper

may not always be significant.

TABLE 6
DATA CHARACTERISTICS

 RankP RateP PointP

Project Objectives

Number of Stakeholders

Providing > 1 Rating

66 75 71

Number of Items 10 10 10

Number of Ratings 249 438 270

Requirements

Number of Stakeholders

Providing > 1 Rating

71 75 71

Number of Items 51 48 45

Number of Ratings 461 1513 664

Specific Requirements

Number of Stakeholders

Providing > 1 Rating

76 75 75

Number of Items 132 104 83

Number of Ratings 1106 3112 1217

Rating Range12 0' x <1 –1' x '5 0< x '100

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Fig. 17. RateP: Predicting requirements (smaller MAE
indicates higher prediction accuracy).

The prediction results were consistent regardless of the
elicitation method (Fig. 18). Random predictions were the
least accurate, followed by kNN with maximum k, and
kNN with optimal k produced the most accurate predic-
tion. The MAE for RankP was small as the rank was nor-
malised. The MAE for PointP was large, with random
guessing having an MAE as large as 44.6, as possible rat-
ings ranged between 0 and 100. kNN managed to reduce
the MAE to as low as 3.9 for that dataset.

Fig. 18. Predicting requirements: RankP and PointP
(smaller MAE indicates higher prediction accuracy).

RQ6: Predicting Requirements: Enhanced Profiles

The sixth research question asks:
• Does enhancing stakeholder profile by adding

stakeholder information improve the accuracy of
predicting stakeholder interest in requirements?

• Are the results consistent regardless of the elicita-
tion method used?

Method
For enhancing stakeholders’ profiles, two attributes were
added to each stakeholder’s profile: role (referred to as
Role in the Results section) and number of ratings (re-
ferred to as #Rtgs in the Results section). The attributes
were first added separately, and then together (referred to
as Both in the Results section). The experiment as before
was used to predict stakeholders’ ratings using the en-
hanced profiles. 10-fold cross-validation [92] was used to
predict the stakeholders’ ratings for project objectives,
requirements, and specific requirements. The mean abso-
lute error (MAE) evaluation metric was used to evaluate
the accuracy of the predictions [91]. The control was kNN
with optimal k from the previous research question (re-
ferred to as Basic in the Results section).

To check if the result was consistent regardless of the
elicitation method, the datasets for RankP and PointP
were evaluated using the same experiment.

Results
Enhancing the stakeholders’ profiles improved the accu-
racy of predicting their requirements for the default RateP
dataset (Fig. 19). Adding stakeholder role improved pre-
diction accuracy because stakeholders with the same roles
tend to have similar requirements. For example, members
of the UCL Development & Corporate Communications
Office required the card to have UCL branding but se-
curity guards preferred otherwise for security reasons in
case the cards were lost. In requirements and specific re-
quirements, adding each attribute separately significantly
improved the prediction accuracy, and adding both at-
tributes produced the most accurate prediction. In project
objectives, the improvement was less obvious, and add-
ing each attribute separately produced better prediction
than adding both attributes together.

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 25

Fig. 19. RateP: Enhanced profiles (smaller MAE indi-
cates higher prediction accuracy).

The results were less consistent for RankP and PointP
(Fig. 20). For PointP, prediction accuracy improved after
adding roles to the profiles, but prediction accuracy be-
came worse when both attributes were added. For RankP,
no significant improvements could be observed after en-
hancing profiles. Hence, different attributes may be
needed for different datasets to improve prediction accu-
racy.

Fig. 20. Enhanced profiles: RankP and PointP (smaller
MAE indicates higher prediction accuracy).

RQ7: Predicting Requirements: Other Algorithms

The final research question asks:
• Does using other algorithms and combinations of

algorithms improve the prediction accuracy?

• Are the results consistent regardless of the elicita-
tion method used?

Method
To answer the question about using other algorithms and
combinations of algorithms, linear regression was used to
predict the stakeholders’ preferences [92]. Principle Com-
ponent Analysis (PCA) was also used to preprocess the
data before the prediction algorithms (i.e., kNN or linear
regression) were applied [92, 107, 108]. PCA is widely
used in exploratory data analysis and for making predic-
tive models [107]. It involves a mathematical procedure
that transforms a number of possibly correlated variables
into a smaller number of uncorrelated variables called
principal components [107]. The experiment in the previ-
ous research question was used to predict stakeholders’
ratings using four permutations as follows:

• kNN with optimal k (kNN),

• PCA and kNN with optimal k (P+kNN),

• linear regression (LR), and

• PCA and linear regression (P+LR).

To check if the result was consistent regardless of the
elicitation method, the datasets for RankP and PointP
were evaluated using the same experiment.

Results
The use of other algorithms improved the accuracy of
prediction in general (Fig. 21). Applying PCA before kNN
improved the prediction accuracy for project objectives
and requirements, but not for specific requirements. As
PCA finds the principle components, it potentially dis-
cards some information and focuses on the variables that
make classification easiest. The lower prediction accuracy
for specific requirements suggested that the specific re-
quirements were more complex and needed more infor-
mation for better classification. Using linear regression
instead of kNN improved the prediction accuracy signifi-
cantly for all three hierarchy levels. However, applying
PCA before linear regression did not produce better re-
sults in general. For project objectives and specific re-
quirements, it performed slightly worse.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Fig. 21. Other algorithms (smaller MAE indicates higher
prediction accuracy).

The best algorithm differed across different datasets.
For RankP, apart from the objective level, kNN was the
most accurate (Fig. 22). For PointP, apart from the objec-
tive level, linear regression was slightly more accurate
than the others. Applying PCA before kNN or linear re-
gression consistently produced lower accuracy for spe-
cific requirements in all three datasets. This confirmed
that specific requirements were complex and required
more information for better classification.

Fig. 22. Other algorithms: RankP and PointP (smaller
MAE indicates higher prediction accuracy).

Summary

The evaluation of StakeRare on RALIC provide clear evi-
dence that StakeRare effectively supports requirements
elicitation as follows.

• The first step of StakeRare, which uses the StakeNet
method, identifies a highly complete set of stake-
holders and prioritises them accurately based on
their influence in the project. The evaluation is de-
scribed in [89] and [12].

• StakeRare identifies a highly complete set of re-
quirements compared to the existing method used
in the project. By eliciting requirements from vari-
ous perspectives, StakeRare detects conflicts and has
the potential of increasing stakeholder buy-in.

• Stakeholders are motivated to provide their re-
quirements using StakeRare. StakeRare requires less
time from the requirements engineers and the
stakeholders as compared to the existing method
used in the project.

• StakeRare prioritises requirements accurately using
the stakeholders’ influence produced by the social
network measures. The director of Information Sys-
tems experienced in options rankings for major de-
cisions commended StakeRare’s prioritisation as
“surprisingly accurate.”

• The investigation of different elicitation methods,
such as RankP and PointP, shows that StakeRare’s
elicitation method, RateP, which provides stake-
holders with a predefined list of requirements as
well as allows them to add new requirements, is
rated by stakeholders as low difficulty and requir-
ing little effort. It also produces the most accurate
prioritisation of requirements. Nevertheless, stake-
holders prefer not to be overloaded by information,
which happens when there is a long list of require-
ments for them to rate.

• StakeRare handles information overload by drawing
stakeholders’ attention to only the relevant re-
quirements that they are unaware of. The recom-
mendations by StakeRare that are approved by the
stakeholders will then improve global prioritisation.
The kNN collaborative filtering algorithm accurately
predicts a stakeholder’s requirements based on the
requirements provided by similar stakeholders.

• Adding stakeholder profiles can increase prediction
accuracy, and using other collaborative filtering al-
gorithms can also improve prediction accuracy.

5 THREATS TO VALIDITY

Single Completed Project

The main threat to validity in the evaluation is the use of
one project to evaluate StakeRare, and that the project has
already completed before StakeRare was applied. As
such, there must be some caution in generalising the re-
sults to other projects and organisations.

The StakeRare survey was conducted after the RALIC

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 27

project was completed, hence post-project knowledge
may influence the results. In the survey, respondents were
asked to articulate requirements for the existing system
by imagining the situation before the RALIC project.
Nevertheless, it is difficult for the respondents to do so
without bias, as they had already been using the system
and may not be aware of the difficulties before the RALIC
system was implemented. More importantly, the re-
spondents may be aware of the requirements due to their
involvement in the project, and their knowledge may
skew the evaluation results. In addition, the comparison
of StakeRare with the existing method used in the project
could be regarded as unfair because the existing method
was used at the start of the project, when the stakeholders
have no prior knowledge about the requirements.

Further analysis was conducted to investigate the ef-
fect of this threat on the evaluation results. Due to staff
turnover and department restructuring, only 15% of the
respondents were involved in decision-making, stake-
holder analysis, and requirements elicitation during the
project, hence their influence on the overall prioritisation
of stakeholder roles and requirements is low. The re-
quirements provided by these respondents have a recall
of 39%, which was approximately 50% lower than the
recall of the requirements returned by StakeRare. As the
respondents who were also involved in the actual project
were mainly decision-makers, their requirements missed
out process related requirements such as “faster card is-
sue.” In the StakeRare list, these requirements were iden-
tified by stakeholders who were involved in the process
themselves.

Finally, despite this threat to validity to some of the re-
sults, the evaluation contains much more than a compari-
son against the existing method and the ground truth.
They include a systematic comparison of various elicita-
tion methods, prioritisation methods, and collaborative
filtering algorithms.

Ground Truth Construction

The ground truth of requirements in a software project is
difficult to establish definitely, as the decision of which
requirements to implement may involve politics and
power struggles. One may claim that the ground truth is
biased in the perspective of this researcher, thus affecting
the results of the study. Nevertheless, it is argued that the
ground truth is representative of the actual stakeholders
and requirements in the project because the global per-
spective of the project was acquired from reviewing pro-
ject documentation, observing the stakeholders’ engage-
ment with the project, and interviewing them. In addi-
tion, to increase the confidence that the ground truth is
objective and accurate, the ground truth was validated by
management-level stakeholders and stakeholders who
were involved in a major part of the project (Section 4.4).

As the ground truth validation involved stakeholders
who were also involved in the survey, one may claim that
their input in the validation could bias the ground truth.
Nevertheless, the total number of these stakeholders was
less than 10 (out of a total of 87 respondents), and they
had different levels of project influence, hence their over-

all influence on the requirements prioritisation in
StakeRare was low. In addition, disagreements with the
ground truth must be backed by justifications and evi-
dence before the ground truth was amended. The total
number of amendments made from the validation was
less than 5.

Data Cleaning

The responses provided by respondents during the sur-
vey were cleaned by this researcher. Additional require-
ments provided by the respondents were classified into
their respective project objectives, synonymous require-
ments were merged, and statements containing more than
one requirement were split. Manual merging of require-
ments and classification of requirements into their respec-
tive project objectives can be subjective.

The data cleaning on the RankP dataset has the highest
risk of being subjective among all the datasets in this
work. StakeRare uses the RateP dataset where an initial
list of requirements is provided. RankP was a dataset
used solely to evaluate StakeRare. In RankP, there were no
initial requirements; stakeholders provided their own
requirements, which are then cleaned by this researcher
by manually classifying the requirements into their re-
spective project objectives.

To determine the objectiveness of the classification, a
group of 16 Master of Science students from the UCL De-
partment of Computer Science were requested to classify
the raw text provided by the respondents into the rel-
evant project objectives. The students’ classifications are
then compared to the classification by this researcher.
These students were enrolled in the Systems Require-
ments Engineering course15 during the time of this study.
Their familiarity with the RALIC project comes from the
brief description of the project in the StakeNet paper [89],
and the use of their own access cards. Each student was
given approximately 25 requirements to classify into pro-
ject objectives. The requirements are raw text as provided
by the stakeholders.

The classification survey revealed that the classifica-
tion in the work appears to be valid, but dependent on
project knowledge and interaction with the stakeholders.
The student’s classification shows agreement with the
classification in this work, with a 68% match. The discre-
pancy was partly due to the students’ lack of project
knowledge about RALIC. The students found the classifi-
cation easy but felt that they required more knowledge
about RALIC to be certain about some classifications.

Evaluation of the Collaborative Filtering Algorithm

StakeRare uses collaborative filtering to recommend rel-
evant requirements to a stakeholder. The evaluation uses
mean absolute error (MAE), which measures the devi-
ation between a predicted rating and the actual rating
provided by the stakeholder, rather than the relevance of
the recommended requirements. In addition, MAE may
be less appropriate for tasks where a ranked result is re-
turned to the user, who then only views items at the top

15 http://www.cs.ucl.ac.uk/teaching/syllabus/mscsse/gs01.htm

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

of the ranking. The accuracy of predictions for items that
the system correctly knows the user will have no interest
in are less important, but using MAE, the predictions for
all items are evaluated equally [80, 91].

Nevertheless, MAE is used to evaluate this work as it
captures the quality of the collaborative filtering system
because more accurate predictions of ratings generally
correspond to more relevant recommendations [80]. In
addition, MAE is a standard measure for evaluating pre-
dictive accuracy in collaborative filtering widely used in
the field (e.g., for predicting the accuracy of movie rat-
ings) [80, 91, 103-106]. Finally, measures that are more
appropriate to evaluate a ranked list of recommendations
have their own drawbacks (e.g., the half-life utility metric
is less standard, and different researchers can use signifi-
cantly different values making it difficult to compare re-
sults and easy to manipulate) [91]. More accurate means
to evaluate the relevance of the recommendations, such as
interviewing stakeholders to find out the relevance of the
recommendations, should be investigated.

Respondent Feedback

Due to social niceties, the respondents’ feedback (e.g.,
their ratings on the ease of use of StakeRare, and feedback
on the accuracy of StakeRare’s prioritisation) may be posi-
tively biased. Nevertheless, these stakeholders have little
incentive to make socially desirable remarks, and they
have been quite frank in pointing out deficiencies in the
methods (e.g., the arithmetic exercise in PointP was dis-
tracting and they disliked rating all the requirements). In
addition, it was made clear to the stakeholders that the
main objective of their feedback was to improve the work.

The respondents were requested to evaluate each elici-
tation method sequentially. For a more effective compari-
son among the three elicitation methods, the stakeholders
should evaluate the methods all at once at the end of the
survey, for example, using pairwise comparison among
the elicitation methods.

6 FUTURE WORK

To address the threats to validity, future work should ev-
aluate StakeRare using different projects in different or-
ganisations, and apply the method at the start of the pro-
jects. In addition, although RALIC was a large project in
terms of number of stakeholders and stakeholder roles, it
is not large in terms of the number of elicited require-
ments. Step 3 of StakeRare aims to predict the require-
ments the stakeholders may need so that they need not go
through a long list of requirements when they rate re-
quirements. Hence, future work should evaluate
StakeRare using projects with a large number of require-
ments (e.g., hundreds or thousands).

Future evaluations should also consider alternative
ways of building the ground truth to increase its objec-
tiveness, such as involving more than one researcher. Fu-
ture work should improve the objectiveness and scalabil-
ity of the data cleaning, for example, by crowdsourcing
the stakeholders to clean the data, enabling the stake-
holders to comment on the requirements engineers’ data

cleaning, or using natural language processing to identify
similar requirements [109].

The evaluation also highlighted limitations in the
StakeRare method that should be addressed in future
work as follows.

• The quality of the requirements identified by
StakeRare may depend on the initial set of require-
ments, especially in projects where stakeholders are
less aware of their requirements. Future work
should investigate the effect of the initial require-
ments on the result, for example, by using a control
project with a lower quality set of initial require-
ments. The initial requirements in StakeRare are
identified using the existing elicitation methods dis-
cussed in the background section. Future work can
also explore ways to improve the quality of the in-
itial requirements, for example by selecting suitable
existing elicitation methods for different projects.

• The quality of the requirements depends on the
stakeholders’ response. Future work should investi-
gate methods to encourage their response.
StakeRare was designed for projects where stake-
holders are likely to use the resulting system. In
such projects, it is likely that stakeholders are better
motivated to respond. In projects where stakehold-
ers are not obliged to use the system or are unclear
about their requirements, focus groups and work-
shops may be more suitable to encourage stake-
holders to articulate and discover requirements.
Hence, future work should investigate the types of
projects suitable for StakeRare to be used.

• StakeRare assumes that stakeholders provide rec-
ommendations and ratings honestly. However, ma-
licious stakeholders may provide responses for their
personal benefit, such as recommend “non-
stakeholders”, exclude some stakeholders, or ma-
nipulate the requirements ratings. This, in turn, af-
fects the quality of stakeholders and requirements
returned by the method. Nevertheless, the be-
tweenness centrality measure makes it more diffi-
cult for stakeholders to manipulate their influence
because it considers the whole network in the pri-
oritisation (i.e., to manipulate their influence in the
project, the stakeholders have to influence the other
stakeholders’ recommendations). Still, future work
should develop more sophisticated methods that
account for malicious stakeholders who manipulate
recommendations and ratings for personal gains.

• StakeRare’s rating propagation in Step 2 makes as-
sumptions that may not always be true. Future
work should investigate alternate methods of
propagation, and the effect of these methods on the
results.

• Requirements that stakeholders actively do not
want are rated with an X. Future work should inves-
tigate (1) enabling stakeholders to indicate the levels
they do not want a requirement (e.g., -1 to -5, where
-1 is mildly do not want and -5 is strongly do not
want), (2) incorporating negative ratings into re-

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 29

quirements prioritisation, and (3) integrating con-
flict negotiation methods into StakeRare.

• In StakeRare, requirements are weighted by the
stakeholders’ total influence over the project lifecy-
cle. To improve the accuracy of prioritisation, future
work should consider the following factors.

o Stakeholders have different influence across dif-
ferent issues, such as funding, development, and
usage.

o A stakeholder’s influence in a project may
change over time.

o Requirements and their importance in the project
change over time.

o The knowledge about the implementation cost of
each requirement may influence the stakehold-
ers’ rating on the requirement.

o The dependencies among requirements may in-
fluence the prioritisation. For example, if an es-
sential requirement depends on a trivial re-
quirement to be realised, then the trivial re-
quirement deserves high priority.

• During the evaluation, various lessons were learnt
from analysing different elicitation methods. For ex-
ample, RateP allowed stakeholders to rate as many
requirements as they wanted, which caused them to
include many “nice to have” features, stakeholders
find it difficult to point out requirements they ac-
tively do not want in RankP where no requirements
were provided, and PointP had the highest preci-
sion as limited points encouraged stakeholders to
only suggest requirements they really needed. Fu-
ture work should analyse these insights systemati-
cally and investigate their suitability for different
kinds of projects and stakeholders.

• The diversity of results for the different elicitation
methods suggests that future work should investi-
gate the combination of elicitation methods to pro-
duce better results. In this work, only three elicita-
tion methods (i.e., RateP, RankP, and PointP) are
compared. Future work should also conduct com-
parisons with more elicitation methods.

Finally, changes in the stakeholders’ recommendations
(e.g., modification of salience value or new recommenda-
tions) or changes in the requirements’ ratings (e.g., modi-
fication or addition of ratings) mean that the require-
ments have to be reprioritised. StakeRare’s effectiveness
in supporting requirements elicitation can be significantly
improved by automating the requirements engineer’s
task, such as face-to-face surveys with stakeholders, data
entry, and requirements prioritisation. StakeSource16, a
software tool described in previous work [110], has been
developed to automate Step 1 of StakeRare. StakeSource
crowdsources17 the stakeholders themselves for recommen-

16 http://www.cs.ucl.ac.uk/research/StakeSource/
17 Crowdsourcing is a concept that harnesses the knowledge contained

in diverse communities of people [111, 112]. In this case, StakeSource

dations about other stakeholders and aggregates their
answers using social network analysis. StakeSource has
been used in real projects by practitioners. Tool support
for the other StakeRare steps, such as rating collection,
automated requirements prioritisation, and collaborative
filtering computations, has also been implemented as
StakeSource2.0 [113]. Future work involves evaluating the
tool in real-world projects.

7 CONCLUSION

In large software projects, requirements elicitation tends
to be beset by three problems: information overload, in-
adequate stakeholder input, and biased prioritisation of
requirements.

The main contribution of the work is the development
of the StakeRare method, which supports requirements
elicitation in large software projects. The method is one of
the first applications of social networks and collaborative
filtering to identify and prioritise stakeholders and their
requirements.

A second important contribution of the work is the ex-
tensive empirical evaluation of the methods using a real
large-scale software project. This work pioneered three
significant forms of evaluation: the comparison with ex-
isting elicitation methods used in the project, the com-
parison with the ground truth built from post-project
knowledge, and the use of standard statistical measures
from the information retrieval literature. This substantial
empirical study using real data is one of the first in re-
quirements elicitation research. Approximately 200 face-
to-face interviews were conducted with the project stake-
holders, and more than 1000 pages of project documenta-
tion were reviewed.

Using this substantial data, the work has demonstrated
that social networks and collaborative filtering provide
effective support for requirements elicitation in large-
scale software projects.

In a broader context, this work proposes a new meth-
odology in requirements elicitation that shifts the em-
phasis from requirements elicitation by the requirements
engineers to a collaborative approach in which a repre-
sentative sample of stakeholders has a say. Doing so re-
duces the requirements engineers’ workload and the like-
lihood of omitting stakeholders and their requirements.
This methodology for supporting requirements elicitation
is one of the first scalable solutions for future large pro-
jects. Using methods such as StakeRare, it is hoped that
one day software projects will no longer fail from infor-
mation overload, inadequate stakeholder input, and
biased prioritisation of requirements.

ACKNOWLEDGMENT

The authors wish to thank the RALIC stakeholders for
their survey participation, Peter Bentley for his machine
learning expertise and for reading the numerous revisions

harnesses the knowledge of stakeholders to identify and prioritise stake-
holders.

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

of this paper, Jun Wang for his advise on collaborative
filtering, Daniele Quercia and Neal Lathia for their idea of
using collaborative filtering in this context, Emmanuel
Letier for his requirements engineering advice, his Sys-
tems Requirements Engineering students for participating
in the requirements classification survey, and the anony-
mous reviewers for their feedback on the paper.

REFERENCES

[1] B. Nuseibeh, and S. Easterbrook, "Requirements engineering: a
roadmap," Proceedings of the Conference on The Future of Software
Engineering. pp. 35 - 46, 2000.

[2] H. Sharp, G. H. Galal, and A. Finkelstein, "Stakeholder
identification in the requirements engineering process,"
Proceedings of the Database & Expert System Applications
Workshop. pp. 387–391, 1999.

[3] P. Zave, “Classification of research efforts in requirements
engineering,” ACM Computing Surveys, vol. 29, no. 4, pp. 315-
321, 1997.

[4] J. Cleland-Huang, and B. Mobasher, "Using data mining and
recommender systems to scale up the requirements process,"
Proceedings of the 2nd International Workshop on Ultra-Large-Scale
Software-Intensive Systems. pp. 3-6, 2008.

[5] R. N. Charette, “Why software fails,” IEEE Spectrum, vol. 42, no.
9, pp. 36, 2005.

[6] D. C. Gause, and G. M. Weinberg, Exploring Requirements:
Quality Before Design: Dorset House Publishing Company, Inc.,
1989.

[7] I. Alexander, and S. Robertson, “Understanding project
sociology by modeling stakeholders,” IEEE Software, vol. 21, no.
1, pp. 23-27, 2004.

[8] I. Alexander, “A taxonomy of stakeholders: human roles in
system development,” International Journal of Technology and
Human Interaction, vol. 1, no. 1, pp. 23-59, 2005.

[9] L. Lehtola, M. Kauppinen, and S. Kujala, "Requirements
prioritization challenges in practice," Product Focused Software
Process Improvement, pp. 497-508, Berlin Heidelberg: Springer,
2004.

[10] I. Sommerville, and P. Sawyer, Requirements Engineering: A Good
Practice Guide: John Wiley & Sons, Inc., 1997.

[11] B. H. C. Cheng, and J. M. Atlee, "Research directions in
requirements engineering," Proceedings of the Conference on The
Future of Software Engineering. pp. 285-303, 2007.

[12] S. L. Lim, “Social Networks and Collaborative Filtering for
Large-Scale Requirements Elicitation,” PhD Thesis, University
of New South Wales, Australia, 2010.

[13] A. J. Albrecht, "Measuring application development
productivity," Proceedings of the Joint SHARE, GUIDE, and IBM
Application Development Symposium. pp. 83–92, 1979.

[14] G. C. Low, and D. R. Jeffery, “Function points in the estimation
and evaluation of the software process,” IEEE Transactions on
Software Engineering, pp. 64-71, 1990.

[15] C. Jones, “Patterns of large software systems: failure and
success,” Computer, vol. 28, no. 3, pp. 86-87, 1995.

[16] C. F. Kemerer, “Reliability of function points measurement: a
field experiment,” Communications of the ACM, vol. 36, no. 2, pp.
85-97, 1993.

[17] D. Galin, Software Quality Assurance: From Theory to
Implementation: Addison-Wesley, 2004.

[18] C. Jones, Applied Software Measurement: Global Analysis of
Productivity and Quality, 3rd ed.: McGraw-Hill Osborne Media,
2008.

[19] F. P. Brooks Jr, The Mythical Man-Month, Anniversary ed.,
Boston, MA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[20] M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal, vol. 15, no. 3, pp.
182-211, 1976.

[21] D. R. Jeffery, and M. J. Lawrence, "An inter-organisational
comparison of programming productivity," Proceedings of the
4th International Conference on Software Engineering. pp. 369-377,
1979.

[22] A. J. Albrecht, and J. E. Gaffney Jr, “Software function, source
lines of code, and development effort prediction: a software

science validation,” IEEE Transactions on Software Engineering,
vol. SE-9, no. 6, pp. 639-648, 1983.

[23] S. McConnell, Rapid Development: Taming Wild Software
Schedules, Redmond, WA: Microsoft Press, 1996.

[24] S. McConnell, Code Complete, Redmond, WA: Microsoft Press,
2004.

[25] C. Jones, Estimating Software Costs, New York: McGraw-Hill,
1998.

[26] J. J. Rakos, Software Project Management: Prentice Hall, 1990.
[27] M. Fischer, and H. Gall, “Visualizing feature evolution of large-

scale software based on problem and modification report data,”
Journal of Software Maintenance and Evolution Research and
Practice, vol. 16, no. 6, pp. 385-403, 2004.

[28] C. Sauer, A. Gemino, and B. H. Reich, “The impact of size and
volatility on IT project performance,” Communications of the
ACM, vol. 50, no. 11, pp. 79-84, 2007.

[29] P. Kruchten, “Architectural blueprints - the “4+ 1” view model
of software architecture,” IEEE Software, vol. 12, no. 6, pp. 42-50,
1995.

[30] M. Burstin, and M. Ben-Bassat, "A user's approach to
requirements analysis of a large software system," Proceedings of
the 1984 Annual Conference of the ACM on the Fifth Generation
Challenge. pp. 133-145, 1984.

[31] M. Cross, “Special report: public sector IT failures,”
PROSPECT, pp. 48-52, 2005.

[32] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, and K. Sullivan,
Ultra-Large-Scale Systems: The Software Challenge of the Future:
Software Engineering Institute, 2006.

[33] R. Schaefer, “A rational theory of system-making systems,”
ACM SIGSOFT Software Engineering Notes, vol. 31, no. 2, pp. 1-
20, 2006.

[34] P. Laurent, J. Cleland-Huang, and C. Duan, "Towards
automated requirements triage," Proceedings of the 15th IEEE
International Conference on Requirements Engineering. pp. 131-140,
2007.

[35] R. Schaefer, “A systems analysis of systems integration,” ACM
SIGSOFT Software Engineering Notes, vol. 33, no. 1, 2008.

[36] C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski,
“Towards automated requirements prioritization and triage,”
Requirements Engineering, vol. 14, no. 2, pp. 73-89, 2009.

[37] H. Goldstein, “Who killed the virtual case file?,” IEEE Spectrum,
vol. 42, no. 9, pp. 24-35, 2005.

[38] A. Cockburn, Writing Effective Use Cases: Addison-Wesley
Professional, 2000.

[39] S. Robertson, and J. Robertson, Mastering the Requirements
Process: Addison-Wesley Professional, 2006.

[40] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno,
"Effectiveness of requirements elicitation techniques: Empirical
results derived from a systematic review," Proceedings of the 14th
IEEE International Conference on Requirements Engineering. pp.
179-188, 2006.

[41] S. Lauesen, Software Requirements: Styles and Techniques:
Addison-Wesley Professional, 2002.

[42] A. M. Davis, “Operational prototyping: a new development
approach,” IEEE Software, vol. 9, no. 5, pp. 70-78, 1992.

[43] C. Potts, "Metaphors of intent," Proceedings of the 5th IEEE
International Symposium on Requirements Engineering. pp. 31-38,
2001.

[44] S. J. Andriole, Storyboard Prototyping: A New Approach to User
Requirements Analysis, Wellesley, MA: QED Information
Sciences, Inc., 1989.

[45] D. Leffingwell, and D. Widrig, Managing Software Requirements:
A Unified Approach, Boston, MA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[46] I. Jacobson, Object-Oriented Software Engineering, New York:
ACM Press, 1991.

[47] N. A. M. Maiden, “CREWS-SAVRE: Scenarios for acquiring and
validating requirements,” Automated Software Engineering, vol.
5, no. 4, pp. 419-446, 1998.

[48] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Science of Computer
Programming, vol. 20, no. 1-2, pp. 3-50, 1993.

[49] A. van Lamsweerde, "Goal-oriented requirements engineering:
a guided tour," Proceedings of the 5th IEEE International
Symposium on Requirements Engineering. pp. 249-262, 2001.

[50] E. S. K. Yu, "Towards modelling and reasoning support for
early-phase requirements engineering," Proceedings of the 3rd

LIM ET AL.: USING SOCIAL NETWORKS AND COLLABORATIVE FILTERING FOR LARGE-SCALE REQUIREMENTS ELICITATION 31

IEEE International Symposium on Requirements Engineering. pp.
226-235, 1997.

[51] H. Holbrook III, “A scenario-based methodology for
conducting requirements elicitation,” ACM SIGSOFT Software
Engineering Notes, vol. 15, no. 1, pp. 95-104, 1990.

[52] A. M. Davis, Software Requirements: Objects, Functions, and States,
Upper Saddle River, NJ: Prentice-Hall, Inc., 1993.

[53] J. Karlsson, "Software requirements prioritizing," Proceedings of
the 2nd International Conference on Requirements Engineering. pp.
110-116, 1996.

[54] P. Berander, and P. Jonsson, “Hierarchical cumulative voting
(HCV) - prioritization of requirements in hierarchies,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 16, no. 6, pp. 819-849, 2006.

[55] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of
methods for prioritizing software requirements,” Information
and Software Technology, vol. 39, no. 14-15, pp. 939-947, 1998.

[56] J. Karlsson, and K. Ryan, “A cost-value approach for
prioritizing requirements,” IEEE Software, vol. 14, no. 5, pp. 67-
74, 1997.

[57] J. Azar, R. K. Smith, and D. Cordes, “Value-oriented
requirements prioritization in a small development
organization,” IEEE Software, vol. 24, no. 1, pp. 32-37, 2007.

[58] D. Leffingwell, and D. Widrig, Managing Software Requirements:
A Use Case Approach: Pearson Education, 2003.

[59] N. R. Mead, Requirements Prioritization Introduction, Software
Engineering Institute (web publication), Carnegie Mellon
University, 2006.

[60] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm,
“An industrial case study on distributed prioritisation in
market-driven requirements engineering for packaged
software,” Requirements Engineering, vol. 6, no. 1, pp. 51-62,
2001.

[61] A. M. Davis, “The art of requirements triage,” Computer, vol. 36,
no. 3, pp. 42-49, 2003.

[62] B. W. Boehm, and R. Ross, “Theory-W software project
management principles and examples,” IEEE Transactions on
Software Engineering, vol. 15, no. 7, pp. 902-916, 1989.

[63] J. Park, D. Port, and B. Boehm, "Supporting Distributed
Collaborative Prioritization for Win-Win Requirements Capture
and Negotiation," Proceedings of the International Third World
Multiconference on Systemics, Cybernetics and Informatics-Volume
2. pp. 578-584, 1999.

[64] K. Wiegers, “First things first: prioritizing requirements,”
Software Development, vol. 7, no. 9, pp. 48–53, 1999.

[65] A. Herrmann, and M. Daneva, "Requirements prioritization
based on benefit and cost prediction: an agenda for future
research," Proceedings of the 16th IEEE International Conference on
Requirements Engineering. pp. 125-134, 2008.

[66] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications: John Wiley &
Sons, Inc., 2009.

[67] R. L. Keeney, and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs: Cambridge University Press,
1993.

[68] B. Roy, Multicriteria Methodology for Decision Aiding: Springer-
Verlag, 1996.

[69] T. F. Nas, Cost-benefit Analysis: Theory and Application: Sage,
1996.

[70] Y. Akao, Quality Function Deployment: Integrating Customer
Requirements into Product Design, New York: Productivity Press,
2004.

[71] F. Moisiadis, "The fundamentals of prioritising requirements,"
Proceedings of the System Engineering, Test and Evaluation
Conference. pp., 2002.

[72] V. Ahl, “An Experimental Comparison of Five Prioritization
Methods,” Masters Thesis, School of Engineering, Blekinge
Institute of Technology, Ronneby, Sweden, 2005.

[73] S. Wasserman, and K. Faust, Social Network Analysis: Methods
and Applications: Cambridge University Press, 1994.

[74] L. A. Goodman, “Snowball sampling,” The Annals of
Mathematical Statistics, vol. 32, no. 1, pp. 148-170, 1961.

[75] J. Scott, Social Network Analysis: A Handbook: Sage, 2000.
[76] R. A. Hanneman, and M. Riddle, Introduction to Social Network

Methods, Riverside, CA: University of California, Riverside,
2005.

[77] D. Damian, S. Marczak, and I. Kwan, "Collaboration patterns
and the impact of distance on awareness in requirements-
centred social networks," Proceedings of the 15th IEEE

International Conference on Requirements Engineering. pp. 59-68,
2007.

[78] D. Damian, I. Kwan, and S. Marczak, "Requirements-driven
collaboration: Leveraging the invisible relationships between
requirements and people," Collaborative Software Engineering,
Berlin Heidelberg: Springer, 2010.

[79] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,”
Communications of the ACM, vol. 35, no. 12, pp. 61-70, 1992.

[80] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen,
"Collaborative filtering recommender systems," The Adaptive
Web: Methods and Strategies of Web Personalization, pp. 291-324,
2007.

[81] G. Linden, B. Smith, and J. York, “Amazon.com
recommendations: Item-to-item collaborative filtering,” IEEE
Internet Computing, vol. 7, no. 1, pp. 76-80, 2003.

[82] N. Lathia, "Computing Recommendations with Collaborative
Filtering," Collaborative and Social Information Retrieval and
Access: Techniques for Improved User Modeling: Information
Science Reference, 2008.

[83] T. Segaran, Programming Collective Intelligence: O'Reilly Media,
2007.

[84] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An
algorithmic framework for performing collaborative filtering,"
Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.
pp. 230-237, 1999.

[85] R. M. Bell, and Y. Koren, "Scalable collaborative filtering with
jointly derived neighborhood interpolation weights,"
Proceedings of the 7th IEEE International Conference on Data
Mining. pp. 43-52, 2007.

[86] C. Castro-Herrera, J. Cleland-Huang, and B. Mobasher,
"Enhancing stakeholder profiles to improve recommendations
in online requirements elicitation," Proceedings of the 17th IEEE
International Conference on Requirements Engineering. pp. 37-46,
2009.

[87] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B.
Mobasher, "A recommender system for requirements elicitation
in large-scale software projects," Proceedings of the 2009 ACM
Symposium on Applied Computing. pp. 1419-1426, 2009.

[88] R. K. Mitchell, B. R. Agle, and D. J. Wood, “Toward a theory of
stakeholder identification and salience: defining the principle of
who and what really counts,” Academy of Management Review,
vol. 22, no. 4, pp. 853-886, 1997.

[89] S. L. Lim, D. Quercia, and A. Finkelstein, "StakeNet: using
social networks to analyse the stakeholders of large-scale
software projects," Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. pp.
295-304, 2010.

[90] M. F. Triola, Elementary Statistics: Addison Wesley, 1992.
[91] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,

“Evaluating collaborative filtering recommender systems,”
ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5-53,
2004.

[92] I. H. Witten, and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques: Morgan Kaufmann Publishers,
Inc., 2005.

[93] J. McManus, and T. Wood-Harper, “Understanding the sources
of information systems project failure,” Management Services,
vol. 51, no. 3, pp. 38-43, 2007.

[94] The Standish Group, The CHAOS Report, 1994.
[95] The Standish Group, CHAOS Summary 2009, 2009.
[96] T. R. Lindlof, and B. C. Taylor, Qualitative Communication

Research Methods: Sage, 2002.
[97] C. Anderson, The Long Tail: Why the Future of Business is Selling

Less of More: Hyperion Books, 2008.
[98] J. Yu, and H. Cooper, “A quantitative review of research design

effects on response rates to questionnaires,” Journal of Marketing
Research, vol. 20, no. 1, pp. 36-44, 1983.

[99] P. Zhang, “Model selection via multifold cross validation,” The
Annals of Statistics, vol. 21, no. 1, pp. 299-313, 1993.

[100] R. Kohavi, "A study of cross-validation and bootstrap for
accuracy estimation and model selection," Proceedings of the
International joint Conference on Artificial Intelligence. pp. 1137-
1145, 1995.

[101] U. M. Braga-Neto, and E. R. Dougherty, “Is cross-validation
valid for small-sample microarray classification?,”
Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

[102] S. Alag, Collective Intelligence in Action, Greenwich: Manning
Publications, 2008.

[103] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, "Item-based
collaborative filtering recommendation algorithms," Proceedings
of the 10th International Conference on World Wide Web. pp. 285-
295, 2001.

[104] R. Jin, J. Y. Chai, and L. Si, "An automatic weighting scheme for
collaborative filtering," Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. pp. 337-344, 2004.

[105] G. R. Xue, C. Lin, Q. Yang, W. S. Xi, H. J. Zeng, Y. Yu, and Z.
Chen, "Scalable collaborative filtering using cluster-based
smoothing," Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. pp. 114-121, 2005.

[106] J. Wang, A. P. De Vries, and M. J. T. Reinders, "Unifying user-
based and item-based collaborative filtering approaches by
similarity fusion," Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 501-508, 2006.

[107] K. Pearson, “On lines and planes of closest fit to systems of
points in space,” Philosophical Magazine Series 6, vol. 2, no. 11,
pp. 559-572, 1901.

[108] T. Howley, M. G. Madden, M. L. O’Connell, and A. G. Ryder,
“The effect of principal component analysis on machine
learning accuracy with high dimensional spectral data,”
Knowledge Based Systems, vol. 19, no. 5, pp. 209-222, 2006.

[109] K. Zachos, N. Maiden, X. Zhu, and S. Jones, "Discovering web
services to specify more complete system requirements,"
Proceedings of the 19th International Conference on Advanced
Information Systems Engineering. pp. 142-157, 2007.

[110] S. L. Lim, D. Damian, and A. Finkelstein, "StakeSource2.0: using
social networks of stakeholders to identify and prioritise
requirements," Proceedings of the 33rd ACM/IEEE International
Conference on Software Engineering, in press. pp., 2011.

[111] J. Surowiecki, The Wisdom of Crowds: Why the Many are Smarter
than the Few and How Collective Wisdom Shapes Business,
Economies, Societies, and Nations: Doubleday Books, 2004.

[112] J. Howe, Crowdsourcing: Why The Power of the Crowd is Driving
the Future of Business, CA: Three Rivers Press, 2009.

[113] S. L. Lim, D. Quercia, and A. Finkelstein, "StakeSource:
harnessing the power of crowdsourcing and social networks in
stakeholder analysis," Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 2. pp.
239-242, 2010.

Soo Ling Lim is a PhD candidate at the
School of Computer Science and
Engineering, The University of New South
Wales in Sydney, Australia. She is also a
visiting researcher at the Department of
Computer Science, University College
London. She received a bachelor of software
engineering with first class honours from the
Australian National University in 2005. She
also won the Australian Computer Society

prize and the Dean!s prize. Before her PhD, she worked as an SAP
consultant at the Computer Sciences Corporation and as a software
engineer at CIC Secure in Australia. Her research interests are in the
area of requirements engineering, specifically in the areas of stake-
holder analysis, requirements elicitation, prioritisation, and modelling,
and requirements change management. She is a member of the
British Computer Society.

Anthony Finkelstein holds a BEng degree
in systems engineering, an MSc degree in
systems analysis, and a PhD degree in
design theory. He is professor of software
systems engineering and dean of the
Faculty of Engineering Sciences at
University College London. Formerly, he
was professor of computer science at The
City University, London and head of the
Department of Computer Science. Prior to

that, he was a member of the academic staff at Imperial College of

Science, Technology & Medicine. His research interests are in the
area of software systems engineering and, in particular, in require-
ments engineering. He has contributed to software specification
methods, software development processes, tool, and environment
support for software development. He has published more than 200
papers in these areas and held research grants totaling in excess of
£20m. In 2003 he was a winner of the prestigious International Con-
ference on Software Engineering "most influential paper! prize for
work on "viewpoints! and in 2004 was winner of the Requirements
Engineering "most influential paper! prize for work on traceability. In
2005 he was a member of the winning team of the first Times Higher
Education Supplement "Research Project of the Year!. In 2009 he
received the Oliver Lodge Medal of the Institution of Engineering and
Technology for outstanding achievement in the area of Information
Technology. In 2010 he won the special award conferred by the
International Conference on Software Engineering for his “outstand-
ing contribution in designing the highly influential Future of Software
Engineering track and editing the highly cited volume with the collec-
tion of papers presented in the track!. He is a chartered engineer, a
fellow of the IEE and BCS. He is a founding member of IFIP WG 2.9
Software Requirements Engineering.

