Computational algorithm for Lasso

can use a very generic coordinate descent algorithm (not
gradient descent)

motivation of the algorithm:

consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

0
o IY = XBIE/n-+ AlBll+)
= G/(B)+ e,
G(8) = —2XT(Y — XB)/n,
e = sign()) if 5; # 0, g € [-1,1]if5=0



from convex optimization:
solution is characterized by

0 € sub-differential at(})

this implies the KKT-conditions (Lemma 2.1, Bihlmann and van
de Geer (2011):

Gi(B) = —sign(B)Aif B; # 0,
1Gi(B)| < Aif B =0.

an interesting characterization of the Lasso solution!



in abbreviated form:
1: Let Bl% e RP be an initial parameter vector. For m= 1,2, ...

2: repeat

3: Proceed componentwise j=1,2,...,p,1,2,...p,1,2,...
update:
it |G g )l <A set g™ =0,

~——
prev. parameter with jth comp=0

otherwise: B[m] is the minimizer of the objective function
with respect to the jth component but keeping all others
fixed

4: until numerical convergence



—_

. Let l% € RP be an initial parameter vector. Set m = 0.
repeat
Increase mby one: m <+ m+1.
Denote by SI™ the index cycling through the coordinates
{1,...,p}:
StM = §Im=11 4 1 mod p. Abbreviate by j = SI" the value
of Slml,
if1G(8" ™l < A+ set g™ =0,
["?—1])
o)
where B[_'}’_” is the parameter vector where the jth

component is set to zero and ,BL”]_” is the parameter

vector which equals 5™ except for the jth component
where it is equal to j3; (i.e. the argument we minimize
over).

until numerical convergence

otherwise: 6}"’] = argming Q\(8



for the squared error loss: the update in Step 4 is explicit (a
soft-thresholding operation)

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times

R-package glmnet



The Lasso regularization path
compute 3(\) over “all” A
» just a grid of A-values and interpolate linearly (the true
solution path over all X is piecewise linear)
> for Amax = max; |(2XTY/n)j|: B(Amax) =0
(because of KKT conditions!)

Standardized Coefficients

|betal/max|beta]

plot against [|3(\)]|1/ maxy [|B(A)|l1 (A small is to the right)
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regularization path: in general, “not monotone in the non-zeros”
it can happen in general that e.qg.

Bi(\) # 0, Bi(N) =0for N < A



Generalized linear models (GLMs)

univariate response Y, covariate X € X C RP

GLM: Yi,..., Y independent
p
gEYiIX = X)) = u+ Y gix0)
j=1
=f(x)=f.,5(x)

g(+) real-valued, known link function
w an intercept term: the intercept is important: we cannot
simply center the response and ignore an intercept...

Lasso: defined as ¢1-norm penalized negative log-likelihood
(where p is not penalized)

software: glmnet in R



Example: logistic (penalized) regression

Y €{0,1}

7(x) =E[Y|X =x] =P[Y =1|X = X]

logistic link function: g(7) = log(w/(1 — 7)) (7 € (0, 1))

denote by m; = P[Yy = 1]X]]

xp(u+XT
og(my/ (1 = 7)) = 1+ X[ B, m = 122X

log-likelihood

n

> log(n (1 = m)' =) = D" (Yilog(m) + (1 — i) log(1 — 7))
i i

— Z(Y,-Iog(ﬂi/(1—77i))+ log(1 —m;) )

-
: pXT B log(1+exp(u+X] 8))




negative log-likelihood

n

—U(p, B) =D (=il + X B) + log(1 + exp(u+ X 8)))

=1
which is a convex function in u, 5

Lasso for linear logistic regression:

A

fi, p = argmin, s(—£(x, B) + Al Bll1)

w1 is not penalized



note: often used nowadays for classification with deep neural
networks

log(mi/(1 — 7)) = pu + xTpM + We(X)" 8@
NN with linear connection  features from last NN layer

estimator:

7, B0, 5,6 = argmin — £ (11, 80, 83, 6) + A(18M 1 + 8@]1)

this is now a highly non-convex function in 6...!

if somebody gives you the feature mapping w;(-) (e.g. trained
on large image database), then one can use logistic Lasso



V. Group Lasso (... continued after material from visualizer)
Parameterization of model matrix
4 levels, p = 2 variables

main effects only

> xxl
[1J0o1233210
Levels: 0123

> xx2
1133221100
Levels: 0123

> model .matrix("xx1+xx2,

contrasts=list(xx1="contr.sum",xx2="contr.sum"))
(Intercept) xx11 xx12 xx13 xx21 xx22 xx23
1 1 0 0 -1 -1 -1
o] 1 0 -1 -1 -1

o] 0 1 o] 0

0 NO R W N e

1

1

1 )
1 -1 -1 -1 )
1 ) 0 1 )
1 1
1 1

cor ko
cC o0 ok

attr(,"assign")
[1Jo111222
attr(,"contrasts")
attr(,"contrasts")$xx1
[1] "contr.sum"

attr(,"contrasts")$xx2
[1] "contr.sum"



with interaction terms

> model matrix( xx1%xx2,
contrasts=list(xx1="contr.sum",xx2="contr.sum"))
(Intercept) xx11 xx12 xx13 xx21 xx22 xx23 xxil:xx21 xx12:xx21 xx13:xx21

1 1 1 [ 0o -1 -1 -1 -1 0 0

2 1 0 1 0o -1 -1 -1 0 -1 0

3 1 0 0 1 0 0 1 0 0 0

4 1 -1 -1 -1 0 0 0 0

5 1 -1 -1 -1 0 1 0 0 0 0

6 1 0 [ 1 0 1 [ 0 0 0

7 1 0 1 0 1 0 o 0 1 0

8 1 1 0 0 1 0 0 1 0 0
xx11:xx22 xx12:xx22 xx13:xx22 xx11:xx23 xx12:xx23 xx13:xx23

1 -1 0 0 -1 0 0

2 0 -1 0 [ -1 [

3 0 [ 0 [ 0 1

4 0 o 0 -1 -1 -1

5 -1 -1 -1 0 0 0

6 0 0 1 0 0 0

T 0 0 0 0 0 0

8 [ 0 [ 0 [

attr (,"assign")

[ 0111222333333333
attr (,"contrasts")

attr (, "contrasts") $xxl

[1] "contr.sum"

attr (,"contrasts") $xx2
[1] "contr.sum"



Prediction of DNA splice sites (Ch. 4.3.1 in Bihimann and van de Geer (2011))

want to predict donor splice site where coding and non-coding
regions in DNA start/end

. ... @GT o

exon: coding intron: non-coding

seven positions around “GT”

training data: _
Y; € {0, 1} true donor site or not

X; € {A,C,G, T} positions
i=1,...,n~ 188000
unbalanced: Y; = 1: 8415; Y; = 0: 179438

model: logistic linear regression model with intercept, main
effects and interactions up to order 2 (3 variables interact)
~» dimension = 1155



methods:
» Group Lasso
> MLE on S = {j; Bg, # 0}
> as above but with Ridge regularized MLE on &
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mainly main effects (quite debated in computational biology...)
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Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments as for
the Lasso



Algorithm for Group Lasso

consider the KKT conditions for the objective function

n q
Q\(B) =" pa(Xi, Y)Y millBg I

i=1 j=1

e.g. | Y—Xa|2/n

Lemma (Lemma 4.3 in Bihlmann and van de Geer (2011))
Assume pg = n~1 Y"1 . ps(X;, Y;) is differentiable and convex
(in B). Then, a necessary and sufficient condition for /3 to be a
solution is

N

/ng
15g;l2
Hv/)(B)QjHQ < )‘mj if BQ/ =0

Vo(B)g = ~Am, i Bg, # 0,



block coordinate descent

Algorithm 1 Block Coordinate Descent Algorithm
- Let B9 € R” be an initial parameter vector. Set m =
0.

2 repeat

3 Increase m by one: m <—m+1.
Denote by .7 the index cycling through the
block coordinates {1,...,q}:
S = =1 1 | mod ¢. Abbreviate by j ="
the value of .71,

s« A (=VP(BY, Vgl < Am;: set B =0,
otherwise: ﬁgjﬂ = arg;nin Ox( J[f;;l]),

]
where ﬁl’tzl] is defined in (4.14) and ﬁkﬁ};]] is the
parameter vector which equals B~ except for
the components corresponding to group ¢; whose
entries are equal to ,ng (i.e. the argument we min-
imize over).

s: until numerical convergence

block-updates where the blocks correspond to the groups



The generalized Group Lasso penalty
Chapter 4.5 in Bihlmann and van de Geer (2011)

q

pen(8) =) _ mj\/ 84 A,
j=1

A; positive definite

can do the computation with standard group Lasso by
transformation:

q
g, = A}’ g, ~ pen(B) = x>~ my Bz
j=1

q

o = Y —1/2

XB = ZXQ/BQJ' = Xﬁ) ng = ngAj /
=

can simply solve the “tilde” problem: ~» é«» ng = A/-_1/2,§gj



special but important case: groupwise prediction penalty

pen(j3 ijHXg,Bg,Hz—/\me/ﬂ X9,

XgCngtyplcaIIy positive deflnlte for |G;| < n

» penalty is invariant under arbitrary reparameterizations
within every group G;: important!

» when using an orthogonal parameterization such that
XgCng = [: it is the standard Group Lasso
with categorical variables: this is in fact what one has in
mind (can use groupwise orthogonalized design) or one
should use the groupwise prediction penalty
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is with groupwise orthogonalized design matrices




High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bihlmann and van de Geer (2011))
consider the estimation problem wit the SSP penalty:

p

foodp=argming o2 (IY =D flla+ Mlfilln + A2l(£))
j=1

where F = Sobolev space of functions on [a, b] that are continuously

differentiable with square integrable second derivatives

Proposition 5.1 in Bihlmann and van de Geer (2011)

Let a,b € R such that a < mm,j(X(/)) and b > max,j(X( )). Let

F be as above. Then, the f s are natural cubic splines with

knotsatX,.(f), i=1,...,n

implication: the optimization over functions is exactly
representable as a parametric problem with dim ~ 3np



the optimization over functions is exactly representable as a
parametric problem with

therefore:

fi = H;B;, H; from natural cubic spline basis

#lln = [ Hy8ylle/v/n = \/BTHT Hig/ v/

15) =/ [ (H) )2 =

~» convex problem

p P
3 = argmin, (Y HBI3/n+ M Y- \ /8T HT Hiy/n+ 22y \/W)
=1 j=1



SSS penalty of group Lasso type

for easier computation: instead of

SSP penalty = A Y _ [Iflln + Xe > I(f)
J I

one can also use as an alternative:
SSP Group Lasso penalty = A1 Y 1/[Ifil13 + A2 /2(f)
J

in parameterized form, the latter becomes:

p p
M DB IE/n+ XZBTWis = M > (/BT (HT Hy/n + 23 W))5

j=1 =

~» for every \»: a generalized Group Lasso penalty



simulated example: n = 150, p = 200 and 4 active variables
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dotted line: Ao =0
~ A2 seems not so important: just consider a few candidate values

(solid and dashed line)
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~+ a linear model would be “fine as well”



Conclusions
if the problem is sparse and smooth:
only a few X(U)’s influence Y (only a few non-zero f?) and the

non-zero f° are smooth
~> one can often afford to model and fit additive functions in
high dimensions

reason:

» dimensionality is of order dim = O(pn)
log(dim)/n = O((log(p) + log(n))/n) which is still small

» sparsity and smoothness then lead to: if each 1}0 is twice
continuously differentiable

IF—P18/n=0p(  sparsity  \/log(p)n /%)
N——

no. of non-zero fj0

(cf. Ch. 8.4 in Bihlmann & van de Geer (2011))



