
1

CPU Scheduling

• Have many threads on ready list
– need to choose one to execute

• When does kernel get to choose?
– when a running thread blocks
– when a running thread is preempted
– when a running thread terminates
– possibly, when a waiting thread moves to ready list
– possibly, on any entry to the kernel

CPU bound vs. I/O bound Threads

• CPU bound
– tend to have long CPU bursts
– example: matrix multiplication

• I/O bound
– tend to have short CPU bursts
– example: netscape

Possible Goals of Scheduling
• Maximize throughput

– number of threads completed per unit time

• Minimize turnaround time
– how long does my thread take to execute?

• Minimize response time
– amount of time until thread sees some result

• Fairness
• Predictability
These goals conflict! Which goals to optimize depend on 

system.

FCFS (First Come First Served)

• First thread to request CPU gets it
• Non-preemptive: run until done or blocked

• Characteristics:
– Simple
– Easy to implement
– Short jobs get stuck behind large jobs

Round Robin

• Each thread gets a quantum (“time slice”)
– when it’s up, thread gets preempted and put on 

tail of ready queue

• If quantum very large:
– Round Robin behaves as does FCFS

• If quantum very small:
– Spend all time context switching (hurts 

throughput)

• OS might try to spend 1% of time switching

Shortest Job First/Shortest 
Remaining Time First

• Idea: get short jobs out of the system ASAP
• Threads that take the least time execute first
• SJF nonpreemptive, STRF premptive

• Characteristics:
– Optimal for avg. turnaround time and throughput
– Unfair
– Need to predict the future -- how?
– If all threads take same time, SJF == FCFS



2

Priority Scheduling

• Priority associated with each thread
– run highest priority thread next

• SJF is special case of priority scheduling
• Characteristics:

– Unfair
– How to compute priorities in general?

Multilevel Feedback Queues 

• Use past to predict future
• Have some number of queues

– threads move between queues, depending on 
their behavior

• Design parameters
– how many queues
– scheduling algorithm for each queue
– when to move

• Variant of this used in UNIX

UNIX 4.4 Scheduling

• Use multilevel queuing
– Desire: good response time for interactive jobs 

w/o starving compute-bound jobs
– Uses pre-emption
– Adjusts priority dynamically by moving jobs 

between queues

UNIX 4.4 Scheduling

• 128 priority ranges
– 0-49 are kernel mode, 50-127 are user mode

• 32 run queues
– Divide priority by 4

• Each process:
– Has an entry in its process descriptor for its 

CPU utilization as well as its priority
• CPU utilization incremented every tick process is 

running

UNIX 4.4 Scheduling

• Formulas:
– New priority = 50 + estimatedUtilization/4

• Lower priority is better!

– Running process: New estimatedUtilization = 
DecayRunnable(estimatedUtilization)

• Accounts for (hopes) process closer to terminating!

– Sleeping process: new estimatedUtilization = 
DecaySleep(estimatedUtilization)

• This decays much faster (exponentially)

• This means CPU bound jobs are pushed to 
lower priority queues, in general

Lottery Scheduling

• Need some fairness, but still want good 
average turnaround time
– SJF unfair, other methods have poor turnaround 

times
– Feedback queues try to be best of both worlds:

• But, they are generally ad-hoc (ex: busy CPU)

• Instead, give each job lottery tickets
– pick a winner when quantum expires
– behaves well when load changes



3

Multiprocessor Scheduling

• Multiple CPUs, common main memory
– can execute many threads at once

• Simple solution:
– use one ready list (in shared memory)
– grab first thread on list
– need mutual exclusion between processors
– problem: memory effects (more later)

Real-Time Scheduling

• Hard real time
– must execute thread in specific time, or reject it
– requires different kind of OS

• Soft real time
– less restrictive -- critical threads get priority
– need: dispatch latency to be small

• hard if no preemption in system calls (UNIX)
• may need to make kernel preemptible
• need to avoid priority inversion

Deadlock

• Several threads in system
• Several resources

– example: printer, CPU, disk

• Standard mode of operation
– request resource (wait if necessary)
– use resource
– release resource

• Can lead to deadlock

Necessary (but not sufficient) 
conditions for deadlock

• Mutual exclusion
– some resources are nonsharable, e.g. printer

• Hold and wait
– some thread holds a resource waiting for another

• No preemption
– cannot take resource away from thread

• Circular waiting
– ex: 2 threads hold resources A and B, each waiting 

for other resource

Dining Philosophers cont.
(note: on this slide ‘+’ is modulo)
Philosopher(int j) {

P(fork[j]);
P(fork[j+1]);
eat
V(fork[j]);
V(fork[j+1]);

}

Can Deadlock!

Philosopher(int j) {
if (j != 0) 

P(fork[j]); P(fork[j+1])
eat
V(fork[j]); V(fork[j+1])

else
P(fork[1]); P(fork[0])
eat
V(fork[1]); V(fork[0]

}

Resource Allocation Graph

• 2 types of nodes
– threads 
– resources -- can have multiple instances

• 2 types of edges (both directed)
– from thread to resource

• indicates thread wants that resource

– from resource to thread
• indicates thread has that resource

Cycle may indicate deadlock



4

What to do about deadlock --
choose one

• Prevent it
– ensure one of four conditions does not hold
– read book for details

• Avoid it
– only satisfy safe requests

• Allow it, and roll back
– may be time consuming and/or hard

• Reboot

Avoiding Deadlock

• Definition: Safe State
– a state where there exists some sequence in 

which resources can be allocated and released 
such that deadlock does not occur

• Threads must declare max. resource needs
• Don’t allow OS to go from safe state to 

unsafe state

Banker’s Algorithm (Dijkstra)
[1 resource only]

• Each thread declares max number
• Data structures:

– Available: how many of resource are available
– Max: array of max demand per thread
– Allocation: array of number allocated per 

thread
– Need: Max - Allocation

Note: Requires each thread to declare max 
number of resource (not possible in general)

Basic idea behind Banker’s 
Algorithm

• Have an algorithm to determine whether a 
state is safe or not

• When a thread wants a resource
– if the request is too large, error
– if the request cannot be satisfied, wait
– if the request can be satisfied

• move to the new state
• run safety algorithm
• if safe, allocate; else, wait

Banker’s Algorithm
[multiple resources]

• Just a generalization of single resource
• Data structures:

– Available: array with count of each resource
– Max: 2-d array of max demand per thread
– Allocation: 2-d array of allocated resources per 

thread
– Need: 2-d array (Max - Allocation)


