INTRODUCTION TO COMPLEX ANALYSIS - SECOND PART

 IMM LAHORE, SPRING SEMESTER 2020ALBERTO ABBONDANDOLO - alberto.abbondandolo@rub.de GABRIELE BENEDETTI - gbenedetti@mathi.uni-heidelberg.de

Worksheet 2

In the following exercises we denote with $D_{r}^{\prime}\left(z_{0}\right)=\left\{z \in \mathbb{C}\left|0<\left|z-z_{0}\right|<R\right\}\right.$ an open disc with radius r and center z_{0} removed. Recall also the notation $A_{r, R}\left(z_{0}\right)$ for the open annulus with center z_{0}, inner radius r and outer radius R.
Exercise 1. Find the singularities of the following functions and determine their type. If they are poles, find also their order.
(a) $f(z)=\frac{(z-1)^{3}}{z^{3}-1}$,
(b) $f(z)=\frac{2(\cos z)^{2}-1}{(4 z-\pi)^{2}}$,
(c) $f(z)=\sin \left(\frac{\pi}{(4 z-i)^{3}}\right)$,
(d) $f(z)=\frac{\sin (\pi z)-2 z}{(1-2 z)^{2}}$,
(e) $f(z)=\frac{\sin (z)-1}{(z-\pi / 2)^{2}}$,
(f) $f(z)=\cot \left(z^{2}\right)$,

Exercise 2. Determine all the singularities of the function

$$
f(z)=\frac{1}{1-e^{1 / z}}
$$

Determine the type of the isolated singularities. Is 0 an isolated singularity? determine the order of the poles.

Exercise 3. Let $f: A_{r, \infty}(0) \rightarrow \mathbb{C}$ be a holomorphic function which is not a polynomial. Show that $z \mapsto f(1 / z)$ has an essential singularity in 0 .
Exercise 4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an injective entire function. Prove that
(1) f is a polynomial;
(2) f has degree one.

Exercise 5. Let us consider the function $f(z)=e^{1 / z}$. If r is an arbitrary positive number, describe the set $f\left(D_{r}^{\prime}(0)\right)$.
Exercise 6. Let $f: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ be a non-constant holomorphic function such that $f\left(z_{0}\right)=0$.
(1) Determine the order of the pole of the function $\frac{1}{f(z)}$ in z_{0}. Hint: look at the smallest k such that $f^{(k)}\left(z_{0}\right) \neq 0$.
(2) Let $g: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ be a holomorphic function. When does $\frac{g(z)}{f(z)}$ have a removable singularity in z_{0} ? If the singularity is not removable, determine the order of the pole. Hint: look at the smallest h such that $g^{(h)}\left(z_{0}\right) \neq 0$.
Exercise 7. Find the singularities of the function

$$
f(z)=\cos \left(\frac{2}{z-i}\right) \cdot \frac{z^{3}+z^{2}-z-1}{(\cos z-1)(z+1)\left(z^{3}-1\right)^{2}} .
$$

Determine their type and compute the order of the poles.
(d) $f_{1}(z)=\frac{\sin (\pi z)-2 z}{(1-2 z)^{2}}$,
(e) $f_{2}(z)=\frac{\sin (z)-1}{\left(z-\frac{\pi}{2}\right)^{2}}$
f_{1} is hobmozphic for all z such that $1-2 z \neq 0 \Leftrightarrow z \neq 1 / 2$.
$z=1 / 2$ is an isbeted singularity. Let's if it is renoubbe:

$$
\begin{aligned}
& \lim _{z \rightarrow 1 / 2} \frac{\left(z-\frac{1}{2}\right)^{1} \cdot \frac{\sin (\pi z)-2 z}{2^{2}(z-1 / 2)^{2}}=\lim _{z \rightarrow 1 / 2} \frac{\sin (\pi z)-2 z}{4(z-1 / 2)}}{}=\lim _{z \rightarrow 1 / 2} \frac{\pi \cdot \cos (\pi z)-2}{4 \cdot 1} \\
&=\frac{\pi \cdot \cos \left(\frac{\pi}{2}\right)-2}{4}=-\frac{1}{2} .
\end{aligned}
$$

Since $-1 / 2 \neq 0$ the singubity is not removable and it will be a pole singularity with order 1 .

$$
f(z)=\frac{\sin (z)-1}{\left(z-\frac{\pi}{2}\right)^{2}} \quad f \text { has an isolated singularity for } z=\frac{\pi}{2} \text {. }
$$

Let's check if the singularity is removable:

$$
\begin{aligned}
\lim _{z \rightarrow \frac{\pi}{2}} \frac{\left(z-\frac{\pi}{2}\right) \cdot \frac{\sin (z)-1}{\left(z-\frac{\pi}{2}\right)^{z}}=\lim _{z \rightarrow \frac{\pi}{2}} \frac{\sin (z)-1}{z-\frac{\pi}{2}}}{}=\frac{\lim _{z \rightarrow \frac{\pi}{2}} \frac{\cos (z)}{1}}{} & =\operatorname{cs}\left(\frac{\pi}{2}\right)=0 .
\end{aligned}
$$

Since the limit is zero, the singularity is removable.
$\Rightarrow f$ con be extended to a lobmorphic function on $D_{r}\left(\frac{\pi}{2}\right)$.

$$
\begin{aligned}
\tilde{f}\left(\frac{\pi}{2}\right)=\lim _{z \rightarrow \frac{\pi}{2}} f_{2}(z)=\lim _{z \rightarrow \frac{\pi}{2}} \frac{\sin (z)-1}{\left(z-\frac{\pi}{2}\right)^{2}}=\lim _{z \rightarrow \frac{\pi}{2}} \frac{\cos (z)}{2\left(z-\frac{\pi}{2}\right)} & =\lim _{z \rightarrow \frac{\pi}{2}} \frac{-\sin (z)}{2} \\
& =-1 / 2
\end{aligned}
$$

Exercise 1. Find the singularities of the following functions and determine their
type. If they are poles, find also their order.
(a) $f(z)=\frac{(z-1)^{3}}{z^{3}-1}$,
(c) $f(z)=\sin \left(\frac{\pi}{(4 z-i)^{3}}\right)$,
(b) $f(z)=\frac{2(\cos z)^{2}-1}{(4 z-\pi)^{2}}$,
(d) $f(z)=\frac{\sin (\pi z)-2 z}{(1-2 z)^{2}}$,
(f) $f(z)=\cot \left(z^{2}\right)$,

Three types of singularities:

- removable $\lim _{z \rightarrow t=0}\left(z-z_{0}\right) f(z)=0$

the limit \& lobes has renorible Jingmbrity
The oder of the pole is also the only k such that $\left[\lim _{t \rightarrow z_{0}}\left(t-z_{0}\right)^{\leq} \cdot f(t) \in \mathbb{C} \backslash\left\{_{0}\right\}\right.$

$$
\begin{aligned}
& f(z)=\frac{a-k}{\left(z-z_{0}\right)}+\frac{a_{-k+1}}{\left(z-z_{0}\right)^{k-1}+\cdots \mid a_{-k} \neq 0} \\
& \left(z-z_{0}\right)^{k} f(z)=a_{-k}+a_{0}+x_{0} \cdot\left(z-z_{0}\right)+\cdots
\end{aligned}
$$

- essential : principal part infinitely many terms

$$
\begin{aligned}
& \text { a) } f(t)=\frac{(z-1)^{3}}{z^{3}-1} \\
& z^{3}-1=(z-1)\left(7-z_{0}\right)\left(z-z_{1}\right) \\
& \Rightarrow f(t)=\frac{(z-1)^{\beta^{2}}}{\left(z-1\left(t-z_{0}\right)\left(t-z_{1}\right)\right.} \\
&=\frac{(z-1)^{2}}{\left(z-z_{0}\right)\left(z-z_{1}\right)}
\end{aligned}
$$

removable
1 is a singubanty

$$
\rightarrow \lim _{z \rightarrow 1}(z-1) \cdot \frac{(z-1)^{2}}{\left(z_{i}-z_{0}\right)\left(z_{1}-z_{1}\right)}=0 \quad f(1)=\frac{(1-1)^{2}}{\left(1-z_{0}\right)\left(1-z_{1}\right)}=\underline{=}
$$

z_{0} is a singularity.

$$
\lim _{z \rightarrow t_{0}} \frac{\left(t-z_{0}\right)}{} \cdot \frac{(z-1)^{2}}{\left(z-z_{0}\right)\left(t-z_{1}\right)}=\frac{\left(z_{0}-1\right)^{2}}{\left(z_{0}-z_{1}\right)} \neq 0 .
$$

z_{0} is a pole of order $K=1$.
[Also possible: $\left.\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{1+K} \frac{(z-1)^{2}}{\left(z-z_{0}\right)\left(z-z_{1}\right)}=0\right]$
z_{1} is s pole of order $K=1$ (Some argument)

$$
\begin{aligned}
& f(t)=\frac{2 \cdot(\cos t)^{2}-1}{(4 z-\pi)^{2}} \\
& \begin{array}{l}
47-\pi=0 \quad z=\pi / 4 \\
\text { Singubuity }
\end{array} \\
& \lim _{z \rightarrow \frac{\pi}{4}}\left(z-\frac{\pi}{4}\right) \cdot \frac{2 \cdot(6 s t)^{2}-1}{4^{2}\left(z-\frac{\pi}{4}\right)^{x}} \\
& \begin{aligned}
\left.\lim _{z \rightarrow \frac{\pi}{4}} \frac{2 \cdot(\cos z)^{2}-1}{4^{2} \underbrace{\left(z-\frac{\pi}{4}\right)}_{-10}} \underbrace{4}_{\frac{4 \text { mitt }}{4}} \right\rvert\, \lim _{z \rightarrow \frac{\pi}{4}} 2 \cdot(\cos z)^{2}-1 & =2 \cdot\left(\frac{\sqrt{2}}{2}\right)^{2}-1 \\
& =0 .
\end{aligned}
\end{aligned}
$$

Problem: limit is undetermined because both the numerator and the denominator go to zeno.
Solution: take Taylor expansion of the numerator at $z=\frac{\pi}{4}$:
Hospital

$$
\begin{aligned}
=\lim _{z \rightarrow \frac{\pi}{4}} & \frac{2 \cdot 2 \cos z \cdot(-\sin z)}{4^{2} \cdot 1}=\frac{4 \cdot \cos \frac{\pi}{4} \cdot\left(-\sin \frac{\pi}{4}\right)}{4^{2}}=\frac{4 \cdot\left(-\frac{1}{2}\right)}{4^{2}} \\
& =-\frac{1}{8} \neq 0
\end{aligned}
$$

$\Rightarrow \frac{\pi}{4}$ is a pole of solder 1 .

$$
\begin{aligned}
& g(z)=2 \cdot(65 z)^{2}-1 \quad g(z)=\overbrace{g\left(\frac{\pi}{4}\right)}^{\pi}+g^{\prime}\left(\frac{\pi}{4}\right)\left(z-\frac{\pi}{4}\right)+O\left(z-\frac{\pi}{4}\right)^{2} \\
& g(t)=-2\left(z-\frac{\pi}{4}\right)+O\left(\left(z-\frac{\pi}{4}\right)^{2}\right) \\
& \lim _{z \rightarrow \frac{\pi}{4}}\left(z \frac{\pi}{4}\right) \cdot \frac{-2 \cdot\left(z-\frac{\pi}{4}\right)+O\left(\left(z-\frac{\pi}{4}\right)^{2}\right.}{4^{2}\left(z-\frac{\pi}{4}\right)^{2}} \\
& =\lim _{z \rightarrow \frac{\pi}{4}}\left[-\frac{2}{4^{2}}+O\left(z-\frac{\pi}{4}\right)\right]=-\frac{2}{4^{2}}=-\frac{1}{9} .
\end{aligned}
$$

$O\left(\left(z-\frac{\pi}{1}\right)^{k}\right)$ means that $/ \lim O\left(\left(7-\frac{\pi}{n}\right)^{k}\right)=0$
$O\left(\left(z-\frac{\pi}{4}\right)^{k}\right)$ means that $\lim _{z \rightarrow \frac{\pi}{4}} \frac{O\left(\left(z-\frac{\pi}{4}\right)^{k}\right)}{\left(z-\left.\frac{\pi}{4}\right|^{k-1}\right.}=0$

$$
\begin{aligned}
& k=0: O\left(z-\frac{\pi}{4}\right)^{z \rightarrow-\frac{\pi}{4}}=0 \\
& \lim _{z \rightarrow \frac{\pi}{4}}\left(z-\frac{\pi}{4}\right) \cdot f(z)=-1 / 8 \\
& \lim _{z \rightarrow \frac{\pi}{4}}\left(z-\frac{\pi}{4}\right)^{2} f(z)=\lim _{z-\frac{\pi}{4}}\left(z-\frac{\pi}{4}\right) \cdot \overbrace{z \rightarrow-\frac{\pi}{4}}^{-1 / 3}\left(z-\frac{\pi}{4}\right) \cdot f(z)=0 \\
& f(z)= \\
& \sin \left(\frac{\pi}{\left.(4 z-i)^{3}\right)} \quad 4 z-i=0 \Leftrightarrow z=i / 4\right.
\end{aligned}
$$

Function f is hobmophic on $\mathbb{C}_{1}\{1 / 4\}$ Let's find what type of ringuberity we have at $i / 4$.
Ides: find Lament expansion.

$$
\begin{aligned}
& \sin W=\sum_{n=0}^{+\infty}(-1)^{n} \frac{w^{2 n+1}}{(2 n+1!}!w=\frac{\pi}{(4 z+-1)^{3}}=\frac{\pi}{4^{3}\left(z-y_{4}\right)^{3}} \\
& f(t)=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{\frac{n=0}{(2 n+1)!}!}\left(\frac{\pi}{4^{3}(z-i / 4)^{3}}\right)^{(2 n+1} \\
& =\sum_{n=0}^{+\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!4^{3(2 n+1)}} \frac{1}{(z-i / 4)^{\beta \cdot(2 n+1)}} . \\
& \Rightarrow a_{-3(2 n+1)} \neq 0 \text { for all } n \geq 0 \text {. }
\end{aligned}
$$

$\rightarrow(2 n+1)$ represents infinitely many negative integers
$\Rightarrow i / 4$ is an essential singubinty.

$$
\begin{array}{l|ll}
f(z)=\operatorname{Gt}\left(z^{2}\right)=\frac{\cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} \cdot & \sin z^{2}=0 \\
z^{2}=n \pi & n \in \mathbb{Z} \\
\text { We check } z=0: \quad, 11 * 0 & z= \pm \sqrt{n \pi} & n>0
\end{array}
$$

We check $z=0$:

$$
\lim _{t \rightarrow 0} \frac{\left((z) \cdot \operatorname{cx}^{2}\right)}{\sin \left(z^{2}\right)}=\cdots
$$

Let's use the identity

$$
\lim _{w \rightarrow 0} \frac{\sin w}{w}=1
$$

$$
\begin{aligned}
\lim _{z \rightarrow 0} & \frac{z^{2} \cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} \\
& =\lim _{t \rightarrow 0} \frac{z^{2}}{\sin z^{2}} \cdot \lim _{z \rightarrow 0} \cos \left(z^{2}\right) \\
& =1 \cdot \cos (0)=7+0 .
\end{aligned}
$$

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{z^{3} \cdot \cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} & =\lim z \cdot \frac{z^{2} \cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} \\
& =\lim 7 \cdot \lim \frac{z^{2} \cos \left(z^{2}\right)}{\sin z^{2}} \\
& =0 \cdot 1=0
\end{aligned}
$$

$3=2+1 \Rightarrow$ Pale of rater 2
What kind of singubuty is $\sqrt{\pi}$?

$$
\lim _{z \rightarrow \sqrt{\pi}}(z-\sqrt{\pi})^{1} \cdot \frac{\cos \left(z^{2}\right)}{\sin \left(z^{2}\right)}=\underbrace{\lim _{t \rightarrow 2} \cos \left(z^{2}\right)}_{\cos (\pi)=-1} \cdot \lim _{z \rightarrow \sqrt{\pi} \frac{z-\sqrt{\pi}}{\sin \left(z^{1}\right)} \text {. } 10 \text {. } 100}
$$

L'topitiol

$$
(-1) \cdot \lim _{z \rightarrow \sqrt{\pi}} \frac{1}{\cos \left(z^{2}\right) \cdot 2 z}=(-1) \cdot \frac{1}{\cos (\pi) \cdot(2 \sqrt{\pi})}=\frac{1}{2 \sqrt{\pi}} \neq 0
$$

\Rightarrow Pole of order 1 .

$$
\begin{aligned}
\lim _{z \rightarrow \sqrt{\pi}}(z-\sqrt{\pi})^{2} \frac{\cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} & =\left[\lim _{z \rightarrow \sqrt{\pi}}(z-\sqrt{\pi})\right] \cdot \lim _{z \rightarrow \sqrt{\pi}}(z-\sqrt{\pi}) \cdot \frac{\cos \left(z^{2}\right)}{\sin \left(z^{2}\right)} \\
& =0 \cdot \frac{1}{2 \sqrt{\pi}}=0 .
\end{aligned}
$$

Some argument slows that $z= \pm \sqrt{n \pi}$ for $n \neq 0$ is a - l I In 1
dome azguneut slows that $z= \pm \sqrt{n \pi}$ for $n \neq 0$ is a pole of oder 1.

Exercise 2. Determine all the singularities of the function

$$
f(z)=\frac{1}{1-e^{1 / z}} .
$$

Determine the type of the isolated singularities. Is 0 an isolated singularity? determine the order of the poles.

$$
f(t)=\frac{1}{1-e^{1 / t}}
$$

1 - f is not defined for $z=0$ (because you have $1 / 7 \mathrm{in}$)
the formula

- f is nat defined if $1-e^{1 / 2}=0$.

Solutions to: $e^{1 / 7}=1 \quad 1 / z=2 \pi \cdot k i, k \in \pi$.

$$
1 / z \neq 0 \Rightarrow k \neq 0 \text { and } z=-\frac{1}{2 \pi k} i
$$

0 is not an isobtel singubanty because $-\frac{1}{2 \pi k} i \stackrel{K \rightarrow \infty}{\longrightarrow} 0$.
The point $-\frac{1}{2 \pi k} i$ is an isobted singubrity for al $k \neq 0$.
Let's see what Kind of singularity it is.

$$
\begin{aligned}
& \lim _{z \rightarrow-\frac{1}{2 \pi K} i}\left[z-\left(-\frac{1}{2 \pi K^{2}} i\right)\right] \cdot \frac{1}{1-e^{1 / z}} \\
& =\lim _{z \rightarrow-\frac{1}{2 \pi K^{K}}} \frac{\left(z+\frac{1}{2 \pi k} \bar{i}\right)}{1-e^{1 / z}} \\
& \text { L'Hopitl } \\
& =\lim _{2 \ldots 1 i} \frac{1}{-e^{1 / t} \cdot\left(-\frac{1}{-1}\right)}
\end{aligned}
$$

LIopan

$$
\begin{aligned}
& =\lim _{z \rightarrow-\frac{1}{2 \pi} i} \frac{z}{-e^{1 / z} \cdot\left(-\frac{1}{z^{2}}\right)} \\
& =\lim _{z \rightarrow-\frac{1}{2 \pi k} i} \frac{z^{2}}{e^{1 / z}} \\
& =\frac{\left(-\frac{1}{2 \pi k} i\right)^{2}}{e^{+2 \pi k i}}=-\frac{1}{(2 \pi k)^{2}} \neq 0
\end{aligned}
$$

\Rightarrow Singularity is not removable
Pole of order 1: $\lim _{z \rightarrow-\frac{1}{2 \pi k} i}\left[\left(7-\left(-\frac{1}{2 \pi k} i\right)\right)^{2} \cdot \frac{1}{1-e^{1 / z}}\right]$

$$
\begin{aligned}
& =\lim _{z \rightarrow-\frac{1}{2 \pi k}} i\left(z+\frac{1}{2 \pi k} i\right) \cdot \lim _{z \rightarrow-\frac{1}{2 \pi k}}\left(z+\frac{1}{2 k^{2}} i\right) \frac{1}{1-e^{1 / 2}} \\
& \quad=0 \cdot\left(-\frac{1}{(2 \pi k)^{2}}\right)=0 .
\end{aligned}
$$

Exercise 3. Let f be an entire function which is not a polynomial. Show that $z \mapsto f(1 / z)$ has an essential singularity in 0 .
$f: \mathbb{C} \rightarrow \mathbb{C}$ hobmoophic, f is not a polynomial.
The power series of f centered $a t / / z_{0}=0$ has infinite radius of invegence $f(x)=\sum_{n=0}^{+\infty} a_{n} \cdot z^{n}$. $\quad a_{n} \neq 0$ for infinitely many n.
$f(1 / z)$ is hobmaphic in $A_{0, \infty}(0)$ (since f is entire)
$f\left(\frac{1}{z}\right)=\sum_{n=0}^{+\infty} a_{n}\left(\frac{1}{z}\right)^{n}=\sum_{m=-n}^{0} a_{m=-\infty} z^{m} \quad$ and we know that
arm is different from tho
for infinitely many $m<0$.
$\Rightarrow f\left(\frac{1}{t}\right)$ has an essential singubaity at zero.

Exercise 4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an injective entire function. Prove that
(1) f is a polynomial;
(2) f has degree one.

Prove (1) by cuntractiction. Assume that f is not a polynomial.
For every $r>0 \quad f\left(\mathbb{C}, ~ D_{r}(0)\right)$ is dense in \mathbb{C}. (proved in the lecture). What dos it mean to be dense?
$\forall w \in \mathbb{C}$ and for every neighborhood U of w, there exists an clement of $f\left(\mathbb{C} D_{r}(0)\right)$ in τ.

$$
(\exists z \in \mathbb{C},|z|>r, \quad f(z) \in U) \text {. }
$$

We now find a point $z_{1} \in \operatorname{Dr}(0)$ such that $f\left(z_{1}\right)=f(z)$.
This is a cutradictionbecouse f is infective.

Let's use the open mopping theorem: if $g: \underline{V} \rightarrow \mathbb{C}, V$ open g hobmophic and not constant, then $g(V)$ open.
Ne apply this theorem with $g=f$ (f is not constant because is invective) and $V=D_{r}(0)$. Then $f\left(D_{r}(0)\right)$ is open in \mathbb{C}, therefore is a neighborhood of $f(0)=: w$. Toking $U=f\left(D_{r}(0)\right)$ we see that $f(z) \rightarrow U=f\left(D_{r}(0)\right) \Rightarrow f(z)=f(7$,$) for some z, \in D_{r}(0)$.

We have shown that f is a polynomial.
Let's slow that f has degree 1 .
By the fundamental theorem of oledbra: $f(z)=c \cdot\left(z-z_{0}\right) \cdot\left(z-z_{1}\right) \cdot \ldots \cdot\left(z-z_{n}\right)$

By the fundamental theorem of ofebio: $f(z)=c \cdot\left(z-z_{0}\right) \cdot\left(z-z_{1}\right) \cdot \ldots \cdot\left(t-z_{n}\right)$ If f has two distinct roots z_{n}, z_{k}, then $f\left(z_{h}\right)=0$ and $f\left(z_{k}\right)=0$
$\Rightarrow f$ is not infective : a cutradiction.
Then oil the roots must be the same: $z_{0}=z_{1}=\ldots=z_{n}$ $f(z)=c \cdot\left(z-z_{0}\right)^{n}$. Let's cusiden the equation $f(z)=c$.
This equation has n solutions: $\phi \cdot\left(z-z_{0}\right)^{n}=\varnothing, c \neq 0$

$$
\left(z-z_{0}\right)^{n}=1 \Leftrightarrow z=z_{0}+e^{\frac{2 \pi i}{n} \cdot k} \text { for } k=0,1, \ldots, n-1 \text {. }
$$

Since f is infective $f(t)=c$ cen have sully one solution. Hence $n=1$.

Exercise 5. Let us consider the function $f(z)=e^{1 / z}$. If r is an arbitrary positive
number, describe the set $f\left(D_{r}^{\prime}(0)\right)$.
During the lecture you sow that f has essentid singularity at $z=0$.
The (Casorati-Weiestross)
$\forall r>0 \quad f\left(D_{r}^{\prime}(0)\right)$ is dense in \mathbb{C}, if f hos essential singularity at $z=0$.
Find the set $f\left(D_{r}^{\prime}(0)\right)$ for $f(t)=e^{1 / z}$.
Question: if $w \in \mathbb{C}$, does there exist $t \in D_{r}^{\prime}(0)$
Such that $e^{1 / z}=w$?
We have to understand first what is the image of the exponential function exp: $\mathbb{C} \rightarrow \mathbb{C}$. $u \mapsto e^{u}$

$$
e^{u}=e^{\operatorname{Re} u} \cdot e^{i \operatorname{Im} u} \quad \text { If } w \in \mathbb{C}, w=r \cdot e^{i \theta}
$$

Let's find u such that $e^{u}=w$. $\log w=\log |w|+i A \operatorname{Lg} w$

$$
u:=\log w+2 \pi k_{i} \quad \forall k \in \mathbb{R} .
$$

$\log : \mathbb{C},\{0\} \rightarrow \mathbb{C}$ principal brooch of logarithm.
We find that $e^{u}=w$ has the solution $u=\log w+2 r i i_{i}$ for all $w \neq 0$.
Therefore, $e^{1 / z}=w$ has the section $1 / t=\log w+\pi \pi k i$

Therefore, $e^{2 t}=w$ has the solution $\mid 1 / t=\log W+\pi k i$ if $w \neq 0$.

Question: is $\frac{1}{\log W+2 \pi K_{i}}$ an element

$$
\text { of } D_{r}^{\prime}(\rho) \text { ? }
$$

This is equivalent to say that $\left|\frac{1}{\log \omega+2 \pi K_{i}}\right|<r$. Idea: we con take any $k \in \mathbb{Z}$: "If k is biz, then

$$
\left|\frac{1}{\log w+2 \pi k_{i}}\right| \text { is small" }
$$

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \frac{1}{\left|\log w+2 \pi k_{i}\right|}= & 0 \text { beconse } \\
\lim _{k \rightarrow+\infty}\left|\log w+2 \pi k_{i}\right| & \geqslant \lim _{k \rightarrow+\infty}\left|2 \pi k_{i}\right|-|\log w| \\
& =\lim _{k \rightarrow+\infty} 2 \pi k-|\log w| \\
& =+\infty .
\end{aligned}
$$

This means that for k sufficiently large

$$
\left|\frac{1}{\log w+2 \pi k_{i}}\right|<r .
$$

$$
\text { Therefore } z=\frac{1}{\log W+2 \pi k_{i}} \in \stackrel{D_{r}^{\prime}(0)}{\Rightarrow} \Rightarrow W \in f\left(D_{r}^{\prime}(0)\right)
$$

$$
\begin{aligned}
\text { inerefore } \begin{aligned}
\text { log } W+2 \pi K_{i} & \Rightarrow W \in \neq\left(D_{r}(0)\right) \\
& \text { if } W \neq 0 . \\
\text { Summing up: } e^{1 / t}=W . & \left.D_{r}^{\prime}(0)\right)=\mathbb{C},\{0\} .
\end{aligned}
\end{aligned}
$$

Exercise 6. Let $f: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ be a non-constant holomorphic function such that $f\left(z_{0}\right)=0$.
(1) Determine the order of the pole of the function $\frac{1}{f(z)}$ in z_{0}. Hint: look at the smallest k such that $f^{(k)}\left(z_{0}\right) \neq 0$.
(2) Let $g: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ be a holomorphic function. When does $\frac{g(z)}{f(z)}$ have a removable singularity in z_{0} ? If the singularity is not removable, determine the order of the pole. Hint: look at the smallest h such that $g^{(h)}\left(z_{0}\right) \neq 0$.
$h(z)=\frac{1}{f(z)}$, this function has a singularity at to since $f\left(t_{0}\right)=0$. The sinusubarity is isabted because f has isabel zens since it is not custant.
The power series expansion of f at z_{0} is given by $f(z)=\sum_{k=0}^{+\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}$. Let K_{0} be the smallest k such that $f^{(k)}\left(z_{0}\right) \neq 0\left(K_{0} \geqslant 1\right)$.
It exists because not all coefficients in the power series expansion are tee (f) ountant)

$$
\begin{aligned}
& \quad f(z)=\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}\left(z-z_{0}\right)^{k_{0}}+0\left(\left(z-z_{0}\right)^{k_{0}}\right)=\left(z-z_{0}\right)^{k_{0}} \cdot\left(\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+0\left(\left(z-z_{0}\right)\right)\right) \\
& h(z)=\frac{1}{f(z)}=\frac{1}{\left(z-z_{0}\right)^{k_{0}} \cdot\left(\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+0\left(\left(z-z_{0}\right)^{0}\right)\right)} \\
& \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k_{0}} \cdot \frac{1}{\left(z-z_{0}\right)^{k_{0}} \cdot\left(\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+0\left(\left(z-z_{0}\right)^{0}\right)\right.}=\frac{1}{\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{K_{0}!}+0}=\frac{k_{0}!}{f^{\left(k_{0}\right)\left(z_{0}\right)}}
\end{aligned}
$$

since $\lim _{z \rightarrow z_{0}} o\left(\left(z-z_{0}\right)^{0}\right)=0$.
Since $\frac{k_{0}!!^{\left(k_{0}\right)}\left(t_{0}\right)}{f^{t \rightarrow t_{0}}} \neq 0$ the function $1 / f(z)$ hos a pole of order k_{0}.
Example $f(t)=\sin \left(z^{2}\right)$ on $D_{r}(0) . \quad f(0)=0$.

$$
\begin{aligned}
& f^{\prime}(z)=2 z \cdot \cos \left(z^{2}\right), \quad f^{\prime}(0)=0 \\
& f^{\prime \prime}(z)=2 \cos \left(z^{2}\right)+2 z \cdot\left(\cos \left(z^{2}\right)\right)^{\prime} \\
& f^{\prime \prime}(0)=2 \cdot \cos (0)+\underbrace{2 \cdot 0 \cdot(\ldots)^{\prime}}_{=0}=2 \neq 0 \Rightarrow k_{0}=2 .
\end{aligned}
$$

$\Rightarrow \frac{1}{\varepsilon \cdot\left(2^{2}\right)}$ has a pole of $r=0$ der 2 at $z_{0}=0$.
$\Rightarrow \frac{1}{\sin \left(z^{2}\right)}$ has a pole of $r=\frac{0}{0} 2$ at $z_{0}=0$.
Alternative way to compute order of the pole (rot using the criterion)

$$
\begin{aligned}
h(z) & =\frac{1}{\sin \left(z^{2}\right)}=\frac{1}{z^{2}-\frac{\left(z^{2}\right)^{3}=z^{6}}{3!}+\frac{\left(z^{2}\right)^{5} z^{10}}{5!}}+\cdots \frac{1 \text { above }}{z^{2}\left(1+0\left(z^{0}\right)\right)} \\
& \Rightarrow \lim _{z \rightarrow 0} z^{2}-\frac{1}{z^{2}\left(1+0\left(z^{0}\right)\right)}=1 \neq 0 \Rightarrow \text { Be of oder two. }
\end{aligned}
$$

Let $h(z)=\frac{g(z)}{f(z)} \quad f\left(t_{0}\right)=0 \quad f$ wot constant. If $g \equiv 0$, then $h(z) \equiv 0 \Rightarrow z_{0}$ is a removable singularity. If $g \neq 0, g(z)=\sum_{h=0}^{+\infty} \frac{g^{(h)}\left(z_{0}\right)}{h!}\left(z-z_{0}\right)^{h}$. Let h_{0} be the smallest integer such that $g^{(h)}\left(t_{0}\right) \neq 0$. (ho exists since $\left.g \neq 0\right)$.

$$
\begin{aligned}
& g(z)=\left(z-z_{0}\right)^{h_{0}} \cdot\left(\frac{g^{\left(h_{0}\right)}\left(z_{0}\right)}{h_{0}!}+0\left(\left(z-z_{0}\right)^{0}\right)\right) \cdot \\
& h(z)=\frac{g(z)}{f(z)}=\frac{\left(z-z_{0}\right)^{h_{0}}\left(g^{\left(h_{0}\right)}\left(z_{0}\right)+0\left(\left(z-z_{0}\right)^{0}\right)\right)}{h_{0}!}+\left(z-z_{0}\right)^{k_{0}} \frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+0\left(\left(z-z_{0}\right)^{0}\right) \\
&=\frac{1}{\left(z-z_{0}\right)^{k_{0}-h_{0}} \cdot \frac{g^{\left(h_{0}\right)}\left(z_{0}\right) / h_{0}!+0\left(\left(z-z_{0}\right)^{0}\right)}{\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+0\left(\left(z-z_{0}\right)^{0}\right)}}
\end{aligned}
$$

If $k_{0} \leq h_{0}$, then the singulenity is remosble:

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) h(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \frac{h_{0}-k_{0}+1}{>0} \cdot \frac{\frac{g}{}_{\left(h_{0}\right)}^{\left(z_{0}\right) / h_{0}!+\cdots}}{\frac{f^{\left(k_{0}\right)}\left(z_{0}\right)}{k_{0}!}+\cdots} \\
&=0 \cdot \frac{g^{\left(h_{0}\right)}\left(z_{0}\right) / h_{0}!}{f^{\left(k_{0}\right)\left(z_{0}\right)}}=0 \cdot \Rightarrow \text { singuenity is } \\
& \text { uemovoble. }
\end{aligned}
$$

If $k_{0}>h_{0}$, than z_{0} is a pole of order $k_{0}-h_{0}$:

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0}}\left(z-z_{0}\right)^{K_{0}-h_{0}} \cdot \frac{1}{\left(z-z_{0}\right)^{k_{0}-h_{0}}} \cdot \frac{g^{\left(h_{0}\right)}\left(z_{0}\right) / h_{0}!+\cdots}{f^{\left(k_{0}\right)}\left(z_{0}\right) / k_{0}!} \\
&=g^{\left(h_{0}\right)\left(z_{0}\right) \cdot k_{0}!} \frac{f^{\left(k_{0}\right)}\left(z_{0}\right) h_{0}!}{0} \neq 0 \Rightarrow z_{0} \text { pole of oder } K_{0}-h_{0} .
\end{aligned}
$$

Example of application:

$$
\begin{array}{cc}
h(z)=\frac{e^{z}-1}{\sin \left(z^{3}\right)} \cdot g(z)=e^{7}-1 \quad f(z)=\sin \left(z^{3}\right) . \\
h_{0}=? & K_{0}=?
\end{array}
$$

For ho:

$$
\begin{aligned}
& g(0)=e^{0}-1=0 \quad \Rightarrow h_{0}>0 \\
& g^{\prime}(z)=e^{z} \quad \Rightarrow g^{\prime}(0)=1 \Rightarrow h_{0}=1
\end{aligned}
$$

For K_{0} :

$$
\begin{aligned}
& f(z)=\sin \left(z^{3}\right)=z^{3}-\frac{\left(z^{3}\right)^{3}}{3!}+\cdots \\
& \Rightarrow f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0
\end{aligned}
$$

$\Rightarrow h(z)$ has a pole of oder $3-1=2$ at $t=0$.

$$
f^{\prime \prime \prime}(0) \neq 0
$$

$$
\begin{aligned}
& 111 \\
& 3!=6
\end{aligned} \rightarrow K_{0}=3
$$

Exercise 7. Find the singularities of the function

$$
f(z)=\cos \left(\frac{2}{z-i}\right)\left[\frac{z^{3}+z^{2}-z-1}{(\cos z-1)(z+1)\left(z^{3}-1\right)^{2}}\right]
$$

Determine their type and compute the order of the poles.
f is hobmorphic for all a such that:

- z-i $\neq 0$
$\Leftrightarrow z \neq i$
- $\cos t-1 \neq 0$
$\Leftrightarrow z \neq 2 \pi \cdot k, k \in \mathbb{Z}$
- $z+1 \neq 0$
$\Leftrightarrow z \neq-1$
- $z^{3}-1 \neq 0$
$\Leftrightarrow(z-1)\left(z-z_{0}\right)\left(z-z_{1}\right) \neq 0, \quad z_{0}=\frac{-1+i \sqrt{3}}{2}, \quad z_{1}=\frac{-1-i \sqrt{3}}{2}$.
f has the singularities $i, 2 \pi K$ for $k \in \pi,-1,1, z_{0}, z_{1}$.
- The singularity: $\begin{aligned} & \text { we know that } \cos \left(\frac{2}{z-i}\right) \text { has an essential } \\ & \text { singularity at } z=i:\end{aligned}$ singularity at $z=i$:
$\cos \left(\frac{2}{z-i}\right)=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} \cdot\left(\frac{2}{z-i}\right)^{2 n} \quad$ (Lavent expountion)
This expansion has infinitely many terms with $(z-i)^{m}$ where m is a negative integer.
$\rightarrow \cos \left(\frac{2}{z-i}\right)$ has an essential singularity at $z=i$.
$\cos \left(\frac{2}{z-i}\right)=f(z) \cdot g(z)$, where $g(z)=\frac{(\cos z-1)(z+1)\left(z^{3}-1\right)^{2}}{z^{3}+z^{2}-z-1}$.
Suppose that f does nat have an essential singurbanty at $z=i$.
$\Rightarrow \circ f(z)=a_{m}(t-i)^{m}+o\left((z-i)^{m}\right) \quad m \in \mathbb{Z}$. (Lament expansion)
We know that g is holomorphic in a neighborhood of $t=i$,
because $i^{3}+i^{2}-i-1=-i-1-i-1=-2(i+1) \neq 0$.

$$
\begin{aligned}
& g(z)=b_{n}(z-i)^{n}+0\left((z-i)^{n}\right) \text { for some } n \in \mathbb{N} . \\
& \Rightarrow f \cdot g(z)=a_{m} \cdot b_{n}(t-i)^{m+n}+o\left((z-i)^{m+n}\right) \\
& \quad \cos ^{\prime \prime}\left(\frac{2}{z-i}\right)
\end{aligned}
$$

This is a contradiction beconse $\cos \left(\frac{2}{7-i}\right)$ has infinitely many terms in the laurent expansion with negative exponent.

$$
\rightarrow l \text { L. . .ant. } 0 \text { - . e. } t+1 \text { : }
$$

in the laneent expenstion with negative exponent.
$\Rightarrow f$ har essential singubuity at $z=i$.
The singubitites $2 \pi K, k \in \mathbb{Z}$.

$$
\begin{aligned}
\cos z-1 & =\underbrace{\cos (2 \pi k)}_{=0}-1+(-\underbrace{\sin (2 \pi k)}_{=0}) \cdot(z-2 \pi k)+\frac{1}{2}[-\underbrace{\cos (2 \pi k)}_{11}] \cdot(z-2 \pi k)^{2} \\
\Rightarrow \cos z-1 & =-\frac{1}{2}(z-2 \pi k)^{2}+0\left(\left((z-2 \pi k)^{2}\right)\right. \\
& \left.=(z-2 \pi k)^{2}\right) \\
f(z) & =\cos \left(\frac{2}{z-i}\right) \frac{z^{3}+z^{2}-z-1}{(z-2 \pi k)^{2}\left(-\frac{1}{2}+0\left((z-2 \pi k)^{0}\right)\right) \cdot(z+1)\left(z^{3}-1\right)^{2}} \\
& \left.=\frac{1}{(z-2 \pi k)^{2}} \cdot g(z) \quad g(z)=\cos \left(\frac{2}{z-i}\right) \cdot \frac{z^{3}+z^{2}-z-1}{\left.\left(-\frac{1}{2}+0(--)\right) \cdot(z+1)\left(z^{3}-1\right)\right)^{2}}\right) \cdot
\end{aligned}
$$

g is holomopphic around $2 \pi k$ since $\left.g(2 \pi k)=\cos \left(\frac{2}{2 \pi k-i}\right) \cdot \frac{(2 \pi k)^{3}+(\pi \pi k)^{2}-(\pi \pi k)-1}{\left.-\frac{1}{2}(2 \pi k+1)(2 \pi k)^{2}-1\right)^{2}}\right\}^{\mathbb{C}} \neq 0$
Want to shos $g(2 \pi k) \neq 0: \cdot \cos \left(\frac{2}{2 \pi k-i}\right) \neq 0$ since $\frac{2^{2}}{2 \pi k-i} \neq \frac{\pi}{2}+h \cdot \pi, h \in \pi$ (it is twe beconse $\frac{2}{2 \pi k-i} \notin R$)

- $\left(2 \pi k \beta+(2 \pi k)^{2}-(2 \pi k)-1 \neq 0\right.$

Let's factorite $z^{3}+z^{2}-z-1=z^{2}(z+1)-1(z+1)$

$$
\begin{aligned}
& =(z+1)\left(z^{2}-1\right) \\
& =(z+1)^{2}(z-1) .
\end{aligned}
$$

Roots are $z=-1, z=+1$.
$2 \pi k$ is a pole of sroder 2 for $f: \lim _{z \rightarrow 2 \pi k}(z-2 \pi k)^{2} f(z)=\lim _{z \rightarrow 2 \pi k} g(t)=g(2 \pi k) \neq 0$.
The singulanities $-1,1, z_{0}, z_{1}$.

$$
\begin{aligned}
f(z) & =\cos \left(\frac{2}{z-i}\right) \cdot \frac{(z+1)^{z}(z-1)}{(\cos (z)-1)(z+1)(z-1)^{2}\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}} \\
& =\frac{\cos \left(\frac{2}{z-i}\right)}{\cos (z)-1} \cdot \frac{z+1}{(z-1)\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}} .
\end{aligned}
$$

$z=-1$ is a renorable singulanity: $\lim _{z \rightarrow-1} \frac{\cos \left(\frac{2}{z-i}\right)}{\cos (z)-1} \frac{z+1}{(z-1)\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}}=0$.
2 -1 ic a mol ador 1 .

$$
\cup \quad \cup \quad+\rightarrow-1 \quad \cos (z)-1 \quad(t-1)\left(t-z_{0}\right)^{(}\left(z-z_{1}\right)^{2}
$$

$z=1$ is a pole of voter 1 :

$$
\begin{aligned}
\lim _{z \rightarrow 1} & \frac{\cos \left(\frac{2}{z-i}\right)}{\cos (z)-1} \frac{z+1}{\left(z-1+\left(z-z_{0}\right)^{2}\left(z-z_{1}\right)^{2}\right.} \cdot(z-1) \\
& =\frac{\cos \left(\frac{2}{1-i}\right)}{\cos (1)-1} \frac{2}{\left(1-z_{0}\right)^{2}\left(1-z_{1}\right)^{2}} \neq 0
\end{aligned}
$$

$z=z_{0}$ is a pal of order 2 :

$$
f(x)=\frac{1}{\left(z-z_{0}\right)^{2}} \cdot \frac{\frac{z}{\cos \left(\frac{2}{z-i}\right)}}{\cos (z)-1} \cdot \frac{z+1}{(z-1)\left(z-z_{1}\right)^{2}}
$$

$g\left(z_{0}\right) \neq 0 \quad$ (easy to check)

$$
\lim _{z \rightarrow z_{0}}\left(z-\left.z_{0}\right|^{2} \cdot f(t)=g\left(z_{0}\right) \neq 0 \Rightarrow t=z_{0} \text { pole of redder } 2\right. \text {. }
$$

$z=7$, is a pole of order 2 (some argument as with $z=z_{0}$).

