
1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Chapter 4

Procedural Abstraction and

Functions That Return a Value

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overview

4.1 Top-Down Design

4.2 Predefined Functions

4.3 Programmer-Defined Functions

4.4 Procedural Abstraction

4.5 Local Variables

4.6 Overloading Function Names

Slide 4- 3 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.1

Top-Down Design

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Top Down Design

 To write a program

 Develop the algorithm that the program will use

 Translate the algorithm into the programming
language

 Top Down Design
(also called stepwise refinement)

 Break the algorithm into subtasks

 Break each subtask into smaller subtasks

 Eventually the smaller subtasks are trivial to
implement in the programming language

Slide 4- 5 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Benefits of Top Down Design

 Subtasks, or functions in C++, make programs

 Easier to understand

 Easier to change

 Easier to write

 Easier to test

 Easier to debug

 Easier for teams to develop

Slide 4- 6

2

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.2

Predefined Functions

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Predefined Functions

 C++ comes with libraries of predefined
functions

 Example: sqrt function

 the_root = sqrt(9.0);

 returns, or computes, the square root
of a number

 The number, 9, is called the argument

 the_root will contain 3.0

Slide 4- 8

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Calls

 sqrt(9.0) is a function call

 It invokes, or sets in action, the sqrt function

 The argument (9), can also be a variable or an

expression

 A function call can be used like any expression

 bonus = sqrt(sales) / 10;

 Cout << “The side of a square with area “ << area

 << “ is “

 << sqrt(area);

Slide 4- 9

Display 4.1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Call Syntax

 Function_name (Argument_List)

 Argument_List is a comma separated list:

(Argument_1, Argument_2, … ,
Argument_Last)

 Example:

 side = sqrt(area);

 cout << “2.5 to the power 3.0 is “
 << pow(2.5, 3.0);

Slide 4- 10

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Libraries

 Predefined functions are found in libraries

 The library must be “included” in a program

to make the functions available

 An include directive tells the compiler which

library header file to include.

 To include the math library containing sqrt():

 #include <cmath>

 Newer standard libraries, such as cmath, also require

the directive

 using namespace std;

Slide 4- 11 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Other Predefined Functions

 abs(x) --- int value = abs(-8);

 Returns absolute value of argument x

 Return value is of type int

 Argument is of type x

 Found in the library cstdlib

 fabs(x) --- double value = fabs(-8.0);

 Returns the absolute value of argument x

 Return value is of type double

 Argument is of type double

 Found in the library cmath

Slide 4- 12

Display 4.2

3

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Random Number Generation

 Really pseudo-random numbers

 1. Seed the random number generator only once

 #include <cstdlib>

 #include <ctime>

 srand(time(0));

 2. The rand() function returns a random integer that is

greater than or equal to 0 and less than RAND_MAX

 rand();

Slide 1- 13 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Random Numbers

 Use % and + to scale to the number range you

want

 For example to get a random number from 1-6 to

simulate rolling a six-sided die:

 int die = (rand() % 6) + 1;

 Can you simulate rolling two dice?

 Generating a random number x where 10 < x <

21?
Slide 1- 14

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Type Casting

 Recall the problem with integer division:

int total_candy = 9, number_of_people = 4;

double candy_per_person;

candy_per_person = total_candy / number_of_people;

 candy_per_person = 2, not 2.25!

 A Type Cast produces a value of one type

from another type

 static_cast<double>(total_candy) produces a double

representing the integer value of total_candy

Slide 4- 15 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Type Cast Example

 int total_candy = 9, number_of_people = 4;

double candy_per_person;

candy_per_person = static_cast<double>(total_candy)

 / number_of_people;

 candy_per_person now is 2.25!

 This would also work:

 candy_per_person = total_candy /

 static_cast<double>(number_of_people);

 This would not!

 candy_per_person = static_cast<double>(total_candy /

 number_of_people);

Slide 4- 16

Integer division occurs before type cast

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Old Style Type Cast

 C++ is an evolving language

 This older method of type casting may be

discontinued in future versions of C++

candy_per_person =

double(total_candy)/number_of_people;

Slide 4- 17 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Section 4.2 Conclusion

yx
Slide 4- 18

 Can you

 Determine the value of d?

 double d = 11 / 2;

 Determine the value of

pow(2,3) fabs(-3.5) sqrt(pow(3,2))

7 / abs(-2) ceil(5.8) floor(5.8)

 Convert the following to C++

x
y 7

a

acbb

2

42

4

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.3

Programmer-Defined Functions

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Programmer-Defined Functions

 Two components of a function definition

 Function declaration (or function prototype)

 Shows how the function is called

 Must appear in the code before the function can be called

 Syntax:
Type_returned Function_Name(Parameter_List);
//Comment describing what function does

 Function definition

 Describes how the function does its task

 Can appear before or after the function is called

 Syntax:
Type_returned Function_Name(Parameter_List)
 {
 //code to make the function work
 }

Slide 4- 20

;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Declaration

 Tells the return type

 Tells the name of the function

 Tells how many arguments are needed

 Tells the types of the arguments

 Tells the formal parameter names

 Formal parameters are like placeholders for the actual
arguments used when the function is called

 Formal parameter names can be any valid identifier

 Example:
double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

Slide 4- 21 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Definition

 Provides the same information as the declaration

 Describes how the function does its task

 Example:

double total_cost(int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% tax
 double subtotal;
 subtotal = price_par * number_par;
 return (subtotal + subtotal * TAX_RATE);
}

Slide 4- 22

function header

function body

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

The Return Statement

 Ends the function call

 Returns the value calculated by the function

 Syntax:

 return expression;

 expression performs the calculation

 or

 expression is a variable containing the

calculated value

 Example:

 return subtotal + subtotal * TAX_RATE;

Slide 4- 23 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

The Function Call

 Tells the name of the function to use

 Lists the arguments

 Is used in a statement where the returned value

makes sense

 Example:

double bill = total_cost(number, price);

Slide 4- 24

Display 4.3

5

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Call Details

 The values of the arguments are plugged into

the formal parameters (Call-by-value mechanism

with call-by-value parameters)

 The first argument is used for the first formal

parameter, the second argument for the second

formal parameter, and so forth.

 The value plugged into the formal parameter is used

in all instances of the formal parameter in the

function body

Slide 4- 25

Display 4.4

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Alternate Declarations

 Two forms for function declarations

 List formal parameter names

 List types of formal parmeters, but not names

 First aids description of the function in comments

 Examples:
double total_cost(int number_par, double price_par);

double total_cost(int, double);

 Function headers must always list formal
parameter names!

Slide 4- 26

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Order of Arguments

 Compiler checks that the types of the arguments
are correct and in the correct sequence.

 Compiler cannot check that arguments are in the
correct logical order

 Example: Given the function declaration:
char grade(int received_par, int min_score_par);

 int received = 95, min_score = 60;

 cout << grade(min_score, received);

 Produces a faulty result because the arguments are not in
the correct logical order. The compiler will not catch this!

Slide 4- 27

Display 4.5 (1)

Display 4.5 (2)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Definition Syntax

 Within a function definition

 Variables must be declared before they are

used

 Variables are typically declared before the

executable statements begin

 At least one return statement must end the

function

 Each branch of an if-else statement might have its

own return statement

Slide 4- 28

Display 4.6

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Placing Definitions

 A function call must be preceded by either

 The function’s declaration
 or

 The function’s definition

 If the function’s definition precedes the call, a
declaration is not needed

 Placing the function declaration prior to the
main function and the function definition
after the main function leads naturally to
building your own libraries in the future.

Slide 4- 29 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

bool Return Values

 A function can return a bool value

 Such a function can be used where a boolean

expression is expected

 Makes programs easier to read

 if (((rate >=10) && (rate < 20)) || (rate == 0))

is easier to read as

 if (appropriate (rate))

 If function appropriate returns a bool value based

on the the expression above

Slide 3- 30

6

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function appropriate

 To use function appropriate in the if-statement
 if (appropriate (rate))
 { … }

appropriate could be defined as

bool appropriate(int rate)
{
 return (((rate >=10) && (rate < 20)) || (rate == 0));
}

Slide 3- 31 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Section 4.3 Conclusion

 Can you

 Write a function declaration and a function definition

for a function that takes three arguments, all of type

int, and that returns the sum of its three arguments?

 Describe the call-by-value parameter mechanism?

 Write a function declaration and a function definition

for a function that takes one argument of type int and

one argument of type double, and that returns a value

of type double that is the average of the two

arguments?

Slide 4- 32

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.4

Procedural Abstraction

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Procedural Abstraction

 The Black Box Analogy

 A black box refers to something that we know how
to use, but the method of operation is unknown

 A person using a program does not need to know
how it is coded

 A person using a program needs to know what the
program does, not how it does it

 Functions and the Black Box Analogy

 A programmer who uses a function needs to know
what the function does, not how it does it

 A programmer needs to know what will be produced if
the proper arguments are put into the box

 Slide 4- 34

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Information Hiding

 Designing functions as black boxes is an

example of information hiding

 The function can be used without knowing how

it is coded

 The function body can be “hidden from view”

Slide 4- 35 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Function Implementations

and The Black Box

 Designing with the black box in mind allows us

 To change or improve a function definition without

forcing programmers using the function to change

what they have done

 To know how to use a function simply by reading the

function declaration and its comment

Slide 4- 36

Display 4.7

7

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Procedural Abstraction and C++

 Procedural Abstraction is writing and using

functions as if they were black boxes

 Procedure is a general term meaning a “function like”

set of instructions

 Abstraction implies that when you use a function as

a black box, you abstract away the details of the

code in the function body

Slide 4- 37 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Procedural Abstraction and Functions

 Write functions so the declaration and comment

is all a programmer needs to use the function

 Function comment should tell all conditions

required of arguments to the function

 Function comment should describe the returned

value

 Variables used in the function, other than the

formal parameters, should be declared in the

function body

Slide 4- 38

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Formal Parameter Names

 Functions are designed as self-contained modules

 Different programmers may write each function

 Programmers choose meaningful names for
formal parameters

 Formal parameter names may or may not match
variable names used in the main part of the program

 It does not matter if formal parameter names
match other variable names in the program

 Remember that only the value of the argument is
plugged into the formal parameter

Slide 4- 39

Display 4.8

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Case Study Buying Pizza

 What size pizza is the best buy?

 Which size gives the lowest cost per square

inch?

 Pizza sizes given in diameter

 Quantity of pizza is based on the area which

is proportional to the square of the radius

Slide 4- 40

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza Problem Definition

 Input:

 Diameter of two sizes of pizza

 Cost of the same two sizes of pizza

 Output:

 Cost per square inch for each size of pizza

 Which size is the best buy

 Based on lowest price per square inch

 If cost per square inch is the same, the smaller size

will be the better buy

Slide 4- 41 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza Problem Analysis

 Subtask 1

 Get the input data for each size of pizza

 Subtask 2

 Compute price per inch for smaller pizza

 Subtask 3

 Compute price per inch for larger pizza

 Subtask 4

 Determine which size is the better buy

 Subtask 5

 Output the results

Slide 4- 42

8

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza Function Analysis

 Subtask 2 and subtask 3 should be implemented

as a single function because

 Subtask 2 and subtask 3 are identical tasks

 The calculation for subtask 3 is the same as the

calculation for subtask 2 with different arguments

 Subtask 2 and subtask 3 each return a single

value

 Choose an appropriate name for the function

 We’ll use unitprice

Slide 4- 43 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza unitprice Declaration

 double unitprice(int diameter, int double price);

//Returns the price per square inch of a pizza

//The formal parameter named diameter is the

//diameter of the pizza in inches. The formal

// parameter named price is the price of the

// pizza.

Slide 4- 44

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza Algorithm Design

 Subtask 1

 Ask for the input values and store them in variables

 diameter_small diameter_large

price_small price_large

 Subtask 4

 Compare cost per square inch of the two pizzas using

the less than operator

 Subtask 5

 Standard output of the results

Slide 4- 45 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza unitprice Algorithm

r
2

Slide 4- 46

 Subtasks 2 and 3 are implemented as calls to

function unitprice

 unitprice algorithm

 Compute the radius of the pizza

 Computer the area of the pizza using

 Return the value of (price / area)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza unitprice Pseudocode

 Pseudocode

 Mixture of C++ and english

 Allows us to make the algorithm more precise
without worrying about the details of
C++ syntax

 unitprice pseudocode

 radius = one half of diameter;
area = π * radius * radius
return (price / area)

Slide 4- 47 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza The Calls of unitprice

 Main part of the program implements calls

of unitprice as

 double unit_price_small, unit_price_large;

unit_price_small = unitprice(diameter_small,

price_small);

unit_price_large = unitprice(diameter_large,

price_large);

Slide 4- 48

9

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza First try at unitprice

 double unitprice (int diameter, double price)

{

 const double PI = 3.14159;

 double radius, area;

 radius = diameter / 2;

 area = PI * radius * radius;

 return (price / area);

}

 Oops! Radius should include the fractional part

Slide 4- 49 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Buying Pizza Second try at unitprice

 double unitprice (int diameter, double price)
{
 const double PI = 3.14159;
 double radius, area;

 radius = diameter / static_cast<double>(2) ;
 area = PI * radius * radius;
 return (price / area);
}

 Now radius will include fractional parts
 radius = diameter / 2.0 ; // This would also work

Slide 4- 50

Display 4.10 (1)

Display 4.10 (2)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Program Testing

 Programs that compile and run can still
produce errors

 Testing increases confidence that the program
works correctly

 Run the program with data that has known output
 You may have determined this output with pencil and paper

or a calculator

 Run the program on several different sets of data
 Your first set of data may produce correct results in

spite of a logical error in the code

 Remember the integer division problem? If there is no fractional
remainder, integer division will give apparently correct results

Slide 4- 51 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Use Pseudocode

 Pseudocode is a mixture of English and the

programming language in use

 Pseudocode simplifies algorithm design by

allowing you to ignore the specific syntax of

the programming language as you work out

the details of the algorithm

 If the step is obvious, use C++

 If the step is difficult to express in C++, use

English

Slide 4- 52

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Section 4.4 Conclusion

 Can you

 Describe the purpose of the comment that

accompanies a function declaration?

 Describe what it means to say a programmer

should be able to treat a function as

a black box?

 Describe what it means for two functions to be

black box equivalent?

Slide 4- 53 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.5

Local Variables

10

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Local Variables

 Variables declared in a function:

 Are local to that function, they cannot be used

from outside the function

 Have the function as their scope

 Variables declared in the main part of a

program:

 Are local to the main part of the program, they

cannot be used from outside the main part

 Have the main part as their scope

Slide 4- 55

Display 4.11 (1)

Display 4.11 (2)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Global Constants

 Global Named Constant

 Available to more than one function as well as the
main part of the program

 Declared outside any function body

 Declared outside the main function body

 Declared before any function that uses it

 Example: const double PI = 3.14159;
 double volume(double);
 int main()
 {…}

 PI is available to the main function
and to function volume

Slide 4- 56

Display 4.12 (1)

Display 4.12 (2)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Global Variables

 Global Variable -- rarely used when more

than one function must use a common

variable

 Declared just like a global constant except

const is not used

 Generally make programs more difficult to

understand and maintain

Slide 4- 57 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Formal Parameters

are Local Variables

 Formal Parameters are actually variables that are
local to the function definition

 They are used just as if they were declared in the
function body

 Do NOT re-declare the formal parameters in the
function body, they are declared in the function
declaration

 The call-by-value mechanism

 When a function is called the formal parameters
are initialized to the values of the
arguments in the function call

Slide 4- 58

Display 4.13 (1)

Display 4.13 (2)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Block Scope

 Local and global variables conform to the rules of

Block Scope

 The code block (generally defined by the { })

where an identifier like a variable is declared

determines the scope of the identifier

 Blocks can be nested

Slide 1- 59

Display 4.14

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Namespaces Revisited

 The start of a file is not always the best place

for

 using namespace std;

 Different functions may use different namespaces

 Placing using namespace std; inside the starting

brace of a function

 Allows the use of different namespaces in different

functions

 Makes the “using” directive local to

 the function

Slide 4- 60

Display 4.15 (1)

Display 4.15 (2)

11

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Example: Factorial

 n! Represents the factorial function

 n! = 1 x 2 x 3 x … x n

 The C++ version of the factorial function
found in Display 3.14

 Requires one argument of type int, n

 Returns a value of type int

 Uses a local variable to store the current product

 Decrements n each time it
does another multiplication
 n * n-1 * n-2 * … * 1

Slide 4- 61

Display 4.16

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

4.6

Overloading Function Names

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Function Names

 C++ allows more than one definition for the

same function name

 Very convenient for situations in which the “same”

function is needed for different numbers or types

of arguments

 Overloading a function name means providing

more than one declaration and definition using

the same function name

Slide 4- 63 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Examples

 double ave(double n1, double n2)
{
 return ((n1 + n2) / 2);
}

 double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3) / 3);
}

 Compiler checks the number and types of arguments
in the function call to decide which function to use

 cout << ave(10, 20, 30);

uses the second definition

Slide 4- 64

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Details

 Overloaded functions

 Must have different numbers of formal

parameters

 AND / OR

 Must have at least one different type of

parameter

 Must return a value of the same type

Slide 4- 65

Display 4.17

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Overloading Example

 Revising the Pizza Buying program

 Rectangular pizzas are now offered!

 Change the input and add a function to compute

the unit price of a rectangular pizza

 The new function could be named unitprice_rectangular

 Or, the new function could be a new (overloaded) version of the

unitprice function that is already used

 Example:

 double unitprice(int length, int width, double price)

 {

 double area = length * width;

 return (price / area);

 }

Slide 4- 66

Display 4.18 (1 – 3)

12

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Automatic Type Conversion

 Given the definition

 double mpg(double miles, double gallons)

 {

 return (miles / gallons);

 }

 what will happen if mpg is called in this way?

 cout << mpg(45, 2) << “ miles per gallon”;

 The values of the arguments will automatically be

converted to type double (45.0 and 2.0)

Slide 4- 67 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Type Conversion Problem

 Given the previous mpg definition and the

following definition in the same program

 int mpg(int goals, int misses)

 // returns the Measure of Perfect Goals

 {

 return (goals – misses);

 }

what happens if mpg is called this way now?

 cout << mpg(45, 2) << “ miles per gallon”;

 The compiler chooses the function that matches parameter

types so the Measure of Perfect Goals will be calculated

Slide 4- 68

Do not use the same function name for unrelated functions

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Section 4.6 Conclusion

 Can you

 Describe Top-Down Design?

 Describe the types of tasks we have seen so far

that could be implemented as C++ functions?

 Describe the principles of

 The black box

 Procedural abstraction

 Information hiding

 Define “local variable”?

 Overload a function name?

Slide 4- 69 Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Chapter 4 -- End

Slide 4- 70

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.1

Slide 4- 71

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.2

Slide 4- 72

Back Next

13

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.3 (1/2)

Slide 4- 73

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.3

(2/2)

Slide 4- 74

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.4

Slide 4- 75

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.5 (1/2)

Slide 4- 76

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.5

(2/2)

Slide 4- 77

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.6

Slide 4- 78

Back Next

14

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.7

Slide 4- 79

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.8

Slide 4- 80

Next Back

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.9

(1/3)

Slide 4- 81

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.9

(2/3)

Slide 4- 82

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.9

(3/3)

Slide 4- 83

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.10 (1/2)

Slide 4- 84

Back Next

15

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.10 (2/2)

Slide 4- 85

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.11 (1/2)

Slide 4- 86

Next Back

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.11

(2/2)

Slide 4- 87

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.12 (1/2)

Slide 4- 88

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.12

(2/2)

Slide 4- 89

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.13 (1/2)

Slide 4- 90

Back Next

16

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.13

(2/2)

Slide 4- 91

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.14

Slide 4- 92

Next Back

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.15 (1/2)

Slide 4- 93

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.15

(2/2)

Slide 4- 94

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.16

Slide 4- 95

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.17

Slide 4- 96

Back Next

17

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.18 (1/3)

Slide 4- 97

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.18 (2/3)

Slide 4- 98

Back Next

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Display 4.18

(3/3)

Slide 4- 99

Back Next

