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1. Summary 

 

Delia flies (Diptera: Anthomyiidae) are economically important pests in several horticultural 

crops. The control is commonly relying on chemical insecticides, though there are 

possibilities with biological control from the natural enemies in the field. An important 

natural enemy is the parasitic wasp, Trybliographa rapae Westwood (Hymenoptera: 

Figitidae) that lays eggs in the Delia fly larvae. The parasitoid larva and the host larva have a 

parallel development until the host dies within its puparium and an adult parasitoid emerges. 

The aim of this thesis was to understand the attraction to host- and food-associated plant 

volatiles of T. rapae, in order to enhance the effectiveness of the parasitic wasp as a biological 

control agent. The hypothesis was that female T. rapae would be attracted to the volatiles 

from cabbage plants infested by cabbage root fly larvae (Delia radicum L.) and to the food-

associated volatiles from buckwheat flowers (Fagopyrum esculentum Moench). 

     Two-choice experiments were made in an olfactometer, testing root-infested cabbage 

against non-infested cabbage or against blank odor sources. There was a significant attraction 

to the infested cabbage plants. Both the below- and aboveground parts of the root-infested 

cabbage plants were tested against the below- and aboveground parts of non-infested plants. 

The females significantly chose the belowground parts of infested plants and there was a 

tendency for attraction to the aboveground parts of root-infested plants.  

The volatiles collected from infested and non-infested cabbage plants showed both 

quantitative and qualitative differences. Two compounds from infested plants repeatedly 

elicited responses from the antennae of female T. rapae in a gas chromatograph coupled with 

an electroantennograph (GC-EAD). 

In a semi-field experiment, there was a tendency that the parasitism rate increased due to 

nectar from buckwheat flowers. A strong attraction to buckwheat of female wasps was shown 

in two-choice bioassays, whereas the males showed no interest for either buckwheat or 

infested cabbage. The differences suggested that males would be guided by sex pheromones 

rather than female-associated plant volatiles when locating mating sites. 
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2. Sammanfattning 
 

Delia-flugor (Diptera: Anthomyiidae) är ekonomiskt viktiga skadedjur i ett flertal 

hortikulturella grödor. Vanligen kontrolleras flugorna med kemiska bekämpningsmedel, trots 

att det finns möjligheter för biologisk kontroll med hjälp av naturliga fiender. Parasitstekeln 

Trybliographa rapae Westwood (Hymenoptera: Figitidae) är en naturlig fiende till Delia-

flugor, eftersom de lägger sina ägg i fluglarverna. Parasitstekellarven utvecklas parallellt med 

värdlarven och vid förpuppning dör värden. Istället kläcks en vuxen stekel fram. 

     Syftet med det här examensarbetet var att studera parasitstekelns attraktion till doftämnen 

från en värd- och från en nektar- (energi) planta, för att förstå stekelns sökande efter 

värdlarven och därmed öka stekelns effektivitet som naturlig fiende. Hypotesen var att T. 

rapae har utvecklat en medfödd attraktion till inducerade doftstimuli från kålplantor angripna 

av kålflugan (Delia radicum L.) och till blommor från bovete Fagopyrum esculentum 

Moench). I beteende-experiment med en olfaktometer testades parasitstekelns val mellan 

angripna och icke angripna plantor. Parasitstekelhonorna var starkt attraherade av de 

infesterade kålplantorna. För att undersöka ifall både de underjordiska och ovanjordiska 

delarna utsöndrade attraktiva dofter, utfördes tvåvals-experiment från angripna och icke 

angripna plantor. Det var en stark attraktion till de infesterade kålplantornas dofter när den 

underjordiska delen testades, och det fanns en tendens för attraktion till de infesterade 

plantornas ovanjordiska del.  

     Doftuppsamlingar från angripna och icke angripna kålplantor visade både kvantitativa och 

kvalitativa skillnader. Två doftämnen från angripna plantor gav elektrofysiologisk respons 

från stekelhonans antenn i en gaskromatograf kopplad till en elektroantennograf (GC-EAD). 

I ett semifält-experiment tenderade parasiteringsgraden att öka för parasitstekelhonorna 

när nektar från bovete fanns tillgängligt. Honorna visade en stark attraktion till dofter från 

bovetets blommor i tvåvalsexperiment, medan hanarna inte gjorde något val mellan bovete 

och fuktig luft. Ytterligare skillnader mellan hanar och honor visades när hanarna inte visade 

något intresse för de infesterade kålplantorna. Det spekulerades därför huruvida hanarna 

lokaliserar honorna med hjälp av feromoner än med hon-associerade växtdofter. 
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4. Introduction 

 

4.1. Plant-insect interactions 

 

Parasitoid females are insect natural enemies, which lay their eggs in or on another insect 

(host) and that feed on the host tissues as larvae or adults (reviewed in Harvey, 2005). As 

opposed to parasites, the parasitoid development always causes the host to die, which makes 

them useful biological control agents of many pests. The largest group of parasitoids belongs 

to the order Hymenoptera, which attack the host egg, larva, pupa or adult. Some parasitoids 

are specialized in few hosts and others are generalists with a broader host range. 

      The behavior and development of parasitoids as third trophic level organisms, is 

influenced by the host plant (first trophic level) and by the herbivore host (second trophic 

level) (Turlings et al., 1990; Vet & Dicke, 1992). Natural signals between these organisms are 

referred to as semiochemicals (Schoonhoven et al., 1998). The chemical information that the 

parasitoid receives about the host consists of volatiles directly or indirectly associated with the 

host (Vinson, 1976). Host-associated volatiles are often released from plants and may be part 

of an inducible plant defense (Vet & Dicke, 1992). 

 

4.1.1. Plant defenses 

Plant defense mechanisms have evolved in response to insects that damage the plant by 

feeding or laying eggs (Karban, 1989; Dicke et al., 2003; Zangerl, 2003). Some defense 

mechanisms are constitutive, which means that the plants have chemical compounds or 

mechanical defense structures that are always present. Other plant defenses are inducible and 

are therefore active only after an insect attack, specifically elicited by the insect damage. The 

inducible chemical defenses comprise productions of volatile (e.g. Dicke et al., 1990) and/or 

non-volatile (e.g. Stout et al., 1994) compounds. The inducible defenses are local if released 

from the site of damage and systemic when released from undamaged sites of the plant 

(Karban, 1989). As the defense mechanisms are metabolically costly for a plant, a local 

response would be considered advantageous if it causes the herbivore to change plant 
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(Zangerl, 2003). Systemic inducible defenses are advantageous for the plant to protect the 

most valuable parts from further damage.  

The defense-related plant volatiles consist of blends with different degrees of specificity 

(Dicke et al., 2003). There may be a specific ratio of the volatile components released from 

the infested plants (Visser, 1986). Some induced compounds are produced only from certain 

plant families, other volatiles are emitted specifically according to the species of the herbivore 

and the degree of herbivore‟s damage. Host plants vary in reliability since the plants are 

dependent on growth factors in different habitus and not always guarantee that there are hosts 

present. Diverse habitats with non-host plant volatiles could mask the odor of the host plants 

(Randlkofer et al., 2007). 

 

4.1.2. Induced indirect plant defenses 

Specialized herbivores have evolved different degrees of adaptation to the plant defenses 

(Renwick, 2002). Plant compounds which may be deterrent or toxic to a generalist herbivore 

are used as stimulants or attractants for a specialist. Plants may defend themselves indirectly 

against such specialists by releasing volatiles that attract the natural enemies of the herbivore 

(Dicke, 1999). These volatiles are referred to as „herbivore-induced plant volatiles‟, 

„infochemicals‟ (Vet & Dicke, 1992; Dicke et al., 2003) or „herbivore-induced carnivore 

attractants‟ (Dicke et al., 1990). Since the induced volatiles are released only from attacked 

plants, it may be considered as an honest signaling of the plants (Zangerl, 2003). 

     The herbivore-induced carnivore attractants may be released systemically from infested 

plants (Dicke et al., 1990). This means that a root herbivore could induce an emission of 

volatiles from the leaves, which then helps the parasitoid‟s detectability of the hosts (Brown 

& Anderson, 1999). When a plant systemically releases volatiles, the odor source becomes 

larger than if only the damaged part had emitted odors (Dicke, 1999).  

 

4. 1.3. Host finding in parasitoids  

Parasitoids can be attracted by general or specific plant- or host volatiles (Dicke, 1999). A 

specific information can tell the parasitoid which herbivore species that is attacking the plant 

or which instars of larvae (Vet et al., 1995). Both the amount of volatile compounds and the 

composition of the blends are used by the natural enemy to distinguish the information. 
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     For the long-distance searching, parasitoids use plant volatiles or plant colors to find their 

habitat or host (Vet et al., 1995). At a short distance from the plant, host-derived cues such as 

host frass or mandibular secretions may be important factors in addition to olfactory, visual, 

tactile and taste stimuli from the host plant. 

     Apart from interactions with sensory cues from plants and hosts, parasitoids‟ host finding 

is determined by genetic factors (Geervliet et al., 1997). Parasitoids can have innate 

attractions host-derived plant cues (Vet et al., 1995; Storeck et al., 2000) or learn to 

discriminate between different blends of plant odors (Dicke et al., 1990; Dicke et al., 1993, 

Smith et al., 1994) and associate these with specific hosts (Vet & Dicke, 1992).  

 

4.2.2. Food needs of adult parasitoids 

While the immature stages of larval parasitoids are provided food from the host organs 

(Slansky Jr, 1986), adult parasitoid females have short-term needs of energy for flying, host 

location and for the production and maturation of eggs (Lewis et al., 1998). The food may be 

provided from host feeding, from host products (honeydew) (Wäckers, 1999), or from 

substrates associated with the host (Wäckers, 1994). Many parasitoid species are known to 

visit flowers to increase their longevity (Baggen & Gurr, 1998; Vattala et al., 2006), fecundity 

(Jervis et al., 1993; Baggen & Gurr, 1998), to get protection (Wäckers, 1994) or to locate 

mates (Jervis et al., 1993). Flowers may be visited for the purpose of feeding on nectar, from 

which the parasitoids obtain mainly carbohydrates such as sucrose, fructose and glucose 

(Wäckers, 1999), as well as smaller amounts of proteins, lipids, amino acids, vitamins and 

secondary metabolites (Wäckers, 2005).  

Parasitoids have innate responses to a wide range of food plants and respond according to 

their motivation and hunger state (Wäckers, 1994, Lewis et al., 1998). Important parameters 

of suitability of a food source are the availability, apparency and accessibility (Wäckers, 

2005). For example, the availability of floral nectar is restricted to the period of flowering and 

parasitoids fail to use the nectar if the flowering occurs during the parasitoids immature 

stages. Only extrafloral nectar is available both during the flowering and the vegetative 

periods of the plant. The apparency of the floral nectar influences the sensory system of the 

parasitoid. The parasitoid detects a food source by olfactory, gustatory, tactile or visual cues 

(Kevan & Baker, 1998). Accessibility is important since many parasitoids have short 
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mouthparts and thus are restricted to certain flower morphologies to use the nectar (Jervis et 

al., 2003; Wäckers, 2005). 

 

4.2. Habitat management 

Habitat management is a form of conservation biological control, which aims to manipulate 

with the agro-ecosystem in order to increase the effectiveness of natural enemies (Landis et 

al., 2000). The performance of natural enemies may be enhanced by more alternatives of 

host/prey, creation of favorable microclimates and extra energy sources provided from nectar 

and pollen plants. In biological control programs, flowering plants may serve as „selective 

food plants‟ to promote the performance of a natural enemy while not the herbivore (Baggen 

& Gurr, 1998). Examples of such plant species are those belonging to the family Apiaceae, 

because of their exposed nectars (Jervis et al., 1993). Another example is buckwheat, 

Fagopyrum esculentum Moench (Polygonaceae), which grows fast and has the blooming 

period during the emergence of some adult parasitoids (Lee & Heimpel, 2005). Lee et al. 

(2006) showed that the wasp parasitoid Diadegma insulare (Cresson) (Hymenoptera: 

Ichneumonidae) had an improved fitness due to buckwheat nectar feeding, which resulted in 

higher parasitism rates and consequently decreased densities of the cabbage pest Plutella 

xylostella (L.) (Lepidoptera: Plutellidae).   

     There are many factors that influence the parasitism rate: the contact chemical stimuli of 

the host (Heinz & Parella, 1994), the host size (Vinson, 1976), the chemical composition of 

the plant (Kainoh & Tatsuki, 1988) or the host plant species (Kacem-Haddjel-Mrabet & 

Nenon, 2003). Because parasitism rates may decline if the distance to the nectar plant 

increases, the selective food plants should be planted in field edges or in floral strips in-

between crop fields (Baggen & Gurr, 1998). 

 

4.3. The parasitic wasp; Trybliographa rapae 

4.3.1. Biology 

The parasitic wasp, Trybliographa rapae Westwood (Hymenoptera: Figitidae) is an 

oligophagous, solitary parasitoid (Wishart & Mounteith, 1954) and an important natural 
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enemy to insect species within the genus Delia (Diptera: Anthomyiidae) (Jones, 1988).  T. 

rapae is a koinobiont parasitoid (Wishart & Mounteith, 1954), which means that the 

parasitoid and host larva have a parallel development until pupation when the adult parasitoid 

emerges and the host dies (Harvey, 2005). T. rapae is a world-wide distributed parasitoid in 

fields abundant in their insect hosts (Jones, 1988). The documented hosts of T. rapae are the 

cabbage root fly, Delia radicum (L.), the onion fly, Delia antiqua (Meig.), the bean seed fly, 

Delia platura (Meig.) or Delia florilega (Zetterstedt) and the turnip root fly, Delia floralis 

(Fall.) (Wishart & Mounteith, 1954). 

T. rapae overwinters in the host puparium under the soil surface. The adult emerges by 

gnawing a hole in the puparium. Female adult wasps may reach their host larvae by following 

the burrows made by the larvae (Jones, 1988). The females are pro-ovigenic parasitoids 

(Wishart & Mounteith, 1954), which means that they can lay eggs immediately after 

emergence, without the need of host feeding (as synovigenic parasitoid females need for their 

egg production) (Jervis et al., 2001). The female lays eggs by penetrating the host larval skin 

with a long ovipositor (Wishart & Mountetih, 1954).  

Unmated females lay haploid eggs, from which only males emerge (Jones, 1988). 

Therefore, it is only after mating with males that female progenies are assured. Most eggs are 

laid between the second and the sixth day after emergence when the female is able to lay 

seven eggs in 48 hours. The total fecundity is on average 37.7 eggs per female. The eggs are 

of an ovoid shape and have long pedicels when newly hatched. The hatching of eggs may 

occur 96 hours after oviposition at 20ºC. Parasitic wasps do not perform superparasitism. 

T. rapae has four larval instars and lives as endoparasitoid (inside the host larvae) in its‟ 

first, second and third larval instars (Wishart & Mounteith, 1954). The larvae of the first instar 

have a distinct head and eucoliform shape with leg-like appendages. The second larval instar 

develops at pupation of the host and has a cylindrical shape with fewer appendages than the 

first instar. The third larval instar has a slightly flattened shape. Shortly after the third instar, 

the parasitoid leaves the host pupa by gnawing a hole from inside the puparium (Jones, 1988). 

In the fourth stage, T. rapae lives as an ectoparasitoid larva when feeding on the outside of the 

host body, embedded in the host puparium. The complete developmental time from egg to 

adult during laboratory conditions (20 ± 1 ºC, 60 ± 10% r.h., 16L:8D photoperiod) varies 

from 50 to 62 days (Neveu et al., 1996). It was shown that the developmental time was 

shorter when the parasitoid eggs were laid in third instar D. radicum larvae, compared to 

when laid in the first instar larvae. Koinobiont parasitoids are dependent on the nutrition value 
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of the host and larger hosts (third instars) are assumed to contain more resources than small 

hosts (first instars) (Harvey, 2005). 

T. rapae has only two generations in northern climates (e.g. southern England) (Jones et 

al., 1993), however, it is able to parasitize up to three generations of D. radicum due to the 

long life-span of the females and because the life cycle of the parasitic wasp is well 

synchronized with the life-span of D. radicum (Jones, 1988). It was shown in laboratory that 

adult parasitic wasps emerged 9 days after the adult cabbage root flies.  

Female T. rapae may parasitize D. radicum larvae at approximately 4 cm depths, while 

not at 6 cm depths, indicating that D. radicum can have an „enemy free space‟ from T. rapae 

(Hemachandra et al., 2007).  

 

4.3.2. T. rapae parasitation 

To orientate towards a larva or an infested plant, the wasp uses both visual (Brown et al., 

1998) and olfactory cues (Vet et al., 1985). 

The initiation of probing is dependent on threshold concentrations of host-emitted 

compounds or host-related compounds (Brown & Anderson, 1999). Once the host has been 

located and accepted, oviposition does not take more than one minute (Wishart & Mounteith, 

1954). 

 For many larval parasitoids the main searching modes are vibrotaxis, ovipositor probing 

and antennal searching (Vet & van Alphen, 1985) and for T. rapae the latter two modes are 

suggested to be the most important (Brown et al, 1998). In general, T. rapae adults prefer to 

walk rather than fly (Jones, 1988) but commonly the females mainly stand still while 

intensively probing the substrate with the ovipositor (Vet & van Alphen, 1985). The antennae 

are used in a non-rhythmic way for detecting irregularities in the substrate caused by the 

larval feeding. The searching time on the substrate depends on the response from the sensilla 

located on the ovipositor (Brown & Anderson, 1999). 

 

4.3.3. Olfaction 

At a distance from the host, the volatiles emitted from infested plants are likely to be more 

readily available for T. rapae than those emanating from the host itself (Brown & Anderson, 
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1999; Finch & Collier, 2000). Although the host larvae are feeding under ground, the 

olfactory cues have been suggested to originate from both below- and aboveground parts of 

the plant (Neveu et al., 2002). At the moment of oviposition, the females respond to olfactory 

cues from the larval frass (Jones et al., 1993), apart from physical stimuli from the larval 

movement (Vet & van Alpen, 1985). 

The antennal sensilla are likely to be the mediators of the volatile host stimuli (Brown & 

Anderson, 1999). On the antenna of the parasitic wasp, the olfactory sensilla are described as 

placoid sensilla, recognized as pore plates and distributed from the third until the eleventh 

antennal segment. The female antenna consists of 13 segments: a base segment, a pedicel and 

a flagellum consisting of eleven segments. Most abundant are the olfactory sensilla on the 

proximal part of the flagellum. The antenna of male T. rapae consists of 15 segments. 

 

4.4. The root-feeding insect host: Delia radicum 

4.4.1. Biology 

The cabbage root fly, D. radicum (L.) (Diptera: Anthomyiidae) has been recognized since 

several decades as a serious, economically important pest of Brassica crops (Traynier, 1967; 

Coaker & Finch, 1973). D. radicum is found in the temperate zones of the Northern 

continents of the earth; i.e. in the Holarctic region (35-60°N) (Finch, 1989). In temperate 

climates the cabbage root flies have two or three generations (Finch, 1971) and the timing of 

the generations depend on the air- and soil temperatures (Collier et al., 2008). In Northern 

Europe the first generation may appear in April-May, the second generation in July and the 

third generation in August.  

     The cabbage root fly larva is an oligophagous herbivorous species that feeds on the 

belowground parts of Brassicaceae; white cabbage, Brassica oleracea var. capitata (L.), 

cauliflowers; B. oleracea var. botrytis (L.), Brussel sprouts; B. oleracea var. gemmifera 

(Zenker), radishes; Raphanus sativus (L.), turnips; Brassica rapae (L.), swedes; Brassica 

napus var. napobrassica (L.) and cruciferous weeds (e.g. wild radish; Raphanus raphinistrum 

L.) (Finch & Ackley, 1977). 

The females lay the first batch of 40-60 eggs in the soil clefts around or on the root of the 

host plant (Finch & Coaker, 1969). The hatching occurs within three to seven days and the 

larvae move to feed within the roots and on the stem base. D. radicum larvae have three 
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instars and in situ the second instar may be found six days after hatching of eggs, while the 

third instar larvae are found after 14 days (Neveu et al., 1996). However, the time-spans of 

the different instars vary with environmental factors (Finch, 1971). The larvae move away 

from the roots to pupate and the pupae remain in the soil for two weeks or for the winter 

dormancy (Finch & Coaker, 1969b). Pupae diapauses are induced when the length of daylight 

is less than 15 hours. 

Adult cabbage root fly females feed on nectars composed of mainly fructose and sucrose 

(first generation flies) or fructose and glucose (second generation flies) (Finch, 1974). The 

carbohydrates are necessary for the maturation of eggs. Also protein, obtained from pollen 

(and to some extent from nectars), is needed to mature the eggs, however most females have 

sufficient amounts of absorbed proteins (Finch, 1971). D. radicum females are attracted to 

flowering dill, Anethum graveolens (L.) (Apiaceae) and alyssum, Lobularia maritima (L.) 

(Brassicaceae), while less to buckwheat, F. esculentum (Rännbäck, 2008).  

 

4.4.2. Host plant stimuli 

D. radicum females orientate towards their host plants by olfaction (Traynier, 1967; Kostal, 

1992) or by visual cues (Kostal & Finch, 1994). The cabbage root fly is a specialized insect 

that can use the specific variations of the volatile blends emitted by the Brassicaceae plants to 

discriminate between host- and non-host plants (Ferry et al., 1997). A specific group of 

volatile compounds found in Brassicaceae are the isothiocyanates, which derive from sulfur-

containing glucosinolates (Brown & Morra, 1997). Glucosinolates (contact cues) and 

isothiocyanates (volatile metabolites) are recognized as the major oviposition stimulants for 

the cabbage root flies (Traynier, 1967; Roessingh et al., 1997).  

Although the larvae of D. radicum only need to find a suitable feeding site on the roots 

(Kostal, 1992), the larvae are able to orient themselves by both general plant odors (e.g. CO2) 

and more specific plant metabolites (Jones & Coaker, 1978; Roessingh et al., 1997). For 

example, when turnip plants were attacked by the closely related turnip root fly larvae (D. 

floralis); the glucosinolate composition was altered in the roots (Birch et al., 1990) and in the 

leaves (Birch et al., 1992). 
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4.4.3. Related species 

The species belonging to the genus Delia (Diptera: Anthomyiidae) are all pests of economic 

importance (reviewed in: Finch, 1989). For the control of Delia species, there are no resistant 

cultivars and chemical insecticides are used at conventional farms. However, it would be 

possible to control Delia pests by alternative strategies, such as soil cover crops, crop rotation 

and intercropping. Also sowing earlier in the season could minimize the degree of crop 

damage since the plants would have more established roots.  

     In all species it is the larva that causes damage (Finch, 1989). The turnip root fly larva, D. 

floralis, is similar to D. radicum as it attacks the roots of cruciferous crops (Brassicaceae). 

The bean seed fly larvae, D. platura or D. florilega primarily attack bean crops (Fabaceae) 

and secondarily onion crops (Alliaceae). D. platura oviposits on decaying plant material, e.g. 

on onions damaged by D. antiqua or on seeds that have failed to germinate (Finch, 1989). 

Subsequently the bean seed fly females orientate towards odors associated with microbial 

decomposition of the seed coat (Gouinguené & Städler, 2006).  

     The onion fly, D. antiqua, is a pest of alliaceous crops. The first generation onion fly 

larvae causes young onion plants to wilt and the later generations attack the bulbs (Ellis & 

Scatcherd, 2007). D. antiqua and D. floralis larvae are phytophagous herbivores, while D. 

platura is saprophagous.  

 

4.5. Aims and hypotheses 

The main aim of this thesis was to study the attraction of T. rapae to cues emitted from 

cabbage plants infested by cabbage root fly larvae. The hypothesis was that the female wasps 

would associate the plant cues with their root living hosts and therefore choose the infested 

plants in olfactometer experiments. Males were hypothesized to be attracted to infested 

cabbage plants because of the probability to find females and consequently have best 

possibilities for offspring. Moreover, the attractive cues were thought to be emitted from both 

above- and belowground parts of infested cabbage plants, due to a systemic production of 

herbivore-induced compounds.  

     Volatile collections from infested and non-infested plants were thought to be quantitatively 

different and the antennae of female wasps would respond to the active compounds in 

electrophysiological (GC-EAD) experiments.  
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     Buckwheat flowers were hypothesized to increase the wasps‟ parasitism rate in a semi-

field experiment, since the floral nectar would be an extra energy source. Both male and 

female wasps were thought to be attracted to buckwheat in two-choice experiments. Two 

different age classes were tested in the olfactometer experiments, where the hypothesis was 

that 3-5 day old wasps would be hungrier than 1-2 day old wasps. 

      Taken together, the long-term goal of this thesis was to contribute knowledge about the 

attraction of T. rapae to host- and food plant cues, in order to enhance the effectiveness of the 

parasitic wasp in a vegetable crop system.  

 

5. Materials and methods 

 

5.1. Insects 

Parasitic wasp adults (T. rapae) originated from pupae provided by the University of Rennes 

(France) and from KVL (Denmark). Additionally adults were collected at different cabbage 

fields at Torslunda Experimental Station (Öland, Sweden).  

The field sampling of adult wasps was made during clear days, from 11:00 h to 14:00 h, 

with temperatures of 15 ± 5ºC. Since T. rapae previously had been described as “walkers” 

rather than flying wasps (Jones, 1986), and had been observed on lower plant leaves next to 

the stem base (Pers. obs., A. Eriksson), the method of sampling was dependent on the plants 

and on the field conditions. In cabbage fields where the plants (swedes; B. napus var. 

napobrassica) were of smaller size (5 true leaves), the adults were caught by carefully hitting 

the leaves with a net. In fields exposed to strong winds or with larger plants (8-10 leaves), 

(white cabbage; B. oleracea var. capitata f. alba, cv. „Castello‟), it was not possible to use the 

net; instead the leaves close to the stem base were examined for walking adults. All wasps 

were blown with a Teflon pipe (6 mm i.d.) into test tubes (37 × 12 mm), protected by lids. 

Due to the low number of field collected wasps, these were however not used in experiments. 

Cabbage root fly adults (D. radicum) originated from field collections of larval infested 

cabbage plants at Torslunda Experimental station. The larvae were reared into lab colonies 

(see: Rearing of D. radicum), from which eggs were taken to the wasp experiments.  
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5.2. Rearing of D. radicum 

A modified rearing technique, first described by Finch & Coaker (1969b) was used for the 

rearing of the cabbage root fly. The flies were kept in a rearing cage (33 × 33 × 33 cm) placed 

in a controlled temperature cabinet (19°C, 16L:8D photoperiod).  

As an oviposition site, a Petri dish (92 × 16 mm) was half-filled with moist sand (0.1-2.0 

mm) and with a small piece (4 × 5 cm) of cabbage root (swede, commercial cultivar). The 

oviposition site was sprayed daily with water to avoid the eggs from drying out. Collection of 

eggs was made by carefully adding water until the eggs were floating. The eggs were rinsed 

into a 2-cm deep cavity of moist sand (0.1 – 2.0 mm), kept within 3-L pots. Half a root of 

swede (approximately 700 g) had been scored on the surface with a knife and subsequently 

put into the cavity. Each pot was protected by a polyester net (holes; 1.5 × 1 mm i.d.), then 

placed in room temperature for 4-5 weeks until pupation. The collection of pupae was made 

by floatation in water, and the pupae were stored at 9°C within plastic beakers (250 ml or 850 

ml) containing moist vermiculate, until further rearing.  

D. radicum adults were provided food twice every week. The food consisted of honey, 

smoothed out thinly on Petri dishes and with a teaspoon of milk powder and dry yeast on top. 

As an additional energy source for the flies, two small plastic cups with cotton rolls were 

filled with tap water and a lump of sugar. Another two small plastic cups with cotton rolls 

were filled with tap water only. 

 

5.3. Rearing of T. rapae 

For the rearing of the parasitic wasp, a modified method initially described by Neveu et al. 

(1996) was used. The rearing was based on larvae of the host D. radicum, which were fed on 

swede.  

The eggs of D. radicum were collected by a careful floatation with water poured into a 

cavity of moist sand (0.1-2.0 mm, Fogsand), kept in pots of various sizes. On the cavity, a 

scored swede half was pushed down slightly. The pot was kept in room temperature for 10-13 

days to assure an adequate amount of eggs hatched and to have D. radicum larvae of at least 

the 2
nd

 instar for T. rapae. The swede half was placed with the scored side up to facilitate for 

the female wasps.  
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After one week in the rearing cage, the swede was put on moist sand (1.2 - 2 mm) in a 

plastic box (19 × 19 × 11 cm) covered by a lid. This was left for 20 days in room temperature 

(20 ± 2°C) for the flies to complete the larval development and pupate. 

The parasitized and unparasitized pupae were collected by flotation in water and carefully 

taken up with a pair of tweezers. All pupae were counted and examined under a binocular 

microscope and then put in moist vermiculate within glass beakers (8 × 6 cm) or in Petri 

dishes (9 × 15 × 1.6 cm), placed on moistened kitchen paper within plastic boxes (19 × 19 × 

11 cm). The boxes were kept in a temperature controlled cabinet (19°C, 16L:8D photoperiod) 

until the emergence of T. rapae.  

In the rearing cage the adult wasps were provided water and food twice a week. Similar to 

the cabbage root flies, the diet consisted of honey, dried milk powder and yeast. Two plastic 

lids with small dabs of honey served as an additional energy source for the wasps and one 

plastic cup protected by lid with a cotton roll was filled with tap water and a lump of sugar. 

 

5.4. Plants 

White cabbage plants (B. oleracea var. alba, cv. „Castello‟) and buckwheat plants (F. 

esculentum) were grown individually from seeds (cabbage: Lindbloms Frö, Kivik, and 

buckwheat: Olssons Frö, Helsingborg, Sweden) in 1.5–L pots, kept in a controlled glasshouse 

chamber (22 ± 2°C, RH 75%, 16L:8D photoperiod) until start of the experiments. The 

substrate for the plants consisted of a peat and sand mixture (NPK PG Mix 14-7-15). At the 

start of an experiment, the white cabbage plants were approximately one month old, grown in 

3-L pots and with 8-10 true leaves. The buckwheat plants were grown in 5-L pots when used 

for the semi- field experiments and in 1.5-L pots for the laboratorial olfactometer 

experiments. The buckwheat plants were used when having 14 open flowers present. Swede 

roots (B. napus var. napobrassica), used for the rearing of the insects, were bought from 

commercial stores and were cut in halves to each with a weight of approximately 700 gram.  

 

5.5. Infesting plants 

Twenty-five D. radicum eggs moistened in water were deposited on the stem base of white 

cabbage, using a small paintbrush. For the semi-field experiment, the white cabbage plants 
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with D. radicum eggs were kept outdoors (day: 19 ± 2°C, night: 14 ± 2°C), protected from 

surrounding insects by using a fiber cloth until start of experiment. For the laboratorial 

experiments, the infested white cabbage plants were kept in a controlled glasshouse chamber 

(22 ± 2°C, RH 75%, 16L: 8D photoperiod) until start of experiments. 

 

5.6. Two-choice bioassays 

 

5.6.1. Set up 

T. rapae females or males were presented two different odors in a mobile two-choice 

olfactometer. The set-up and procedure for the two-choice bioassays were according to 

Jönsson et al. (2005). The experiments were performed either outdoors during days of 

sunlight, between 10.00 h and 17.00 h at 15-20°C, or in a bioassay room (25°C, 60% RH, 

12L:12D photoperiod). In the bioassay room, a mercury-vapor lamp provided illumination.  

     The olfactometer consisted of a box (50 × 50 × 50 cm) with three of the sides covered by 

white fabric and an observation side covered by a dark blue fabric. Within the box, a Y-

shaped glass tube (arm length 220 mm, 155 mm i.d.) was placed. The air was pumped with a 

battery (Micropump, 7 Ah, 12 V, KNF Neuberger, Germany) into the odor source kept in 

polyethylene cooking bags (control, buckwheat flowers, cabbage roots: 25 × 38 cm; cabbage 

plants, cabbage leaves, buckwheat plants: 45 × 55 cm, Toppits, Melitta). From these odor 

sources, Teflon tubings were connected to the arm of the Y-tube. 

     The initial air was first pumped through a bottle (250 ml) with activated charcoal to 

eliminate surrounding odors and secondarily through a bottle with water to provide humidity. 

The airflow within the cooking bag was adjusted by a flow meter, at an airflow rate set at 1.1 

L/min. Moreover, a piece of black plastic tube (2 cm) was placed one cm from the Y-tube 

junction, in order to calm down the insect before choosing direction. For equal light on the Y-

tube arms, the box was placed towards the light.   

Before an olfactometer experiment, the Teflon tubes and the cork plugs were sterilized 

with ethanol (70 %) and the Y-shaped glass-tube was heated in an oven at 350°C for 10 h. To 

use T. rapae of identified ages; females and males, newly emerged within the pupae boxes, 

were daily separated and transferred into plastic beakers (250 ml), kept in a controlled climate 
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chamber (19°C, 16L:8D photoperiod) with only water provided. Thus, the wasps could be 

defined as unfed and inexperienced females/males when used for the experiments.  

 

Table 1. Odor sources that were tested in two-choice bioassays for 1-2 or 3-5 days old T. rapae males (M) and 

females (F). 

 

Exp. Sex Age (days) Odor sources 

 

1a, b
1
 F 1-2, 3-5 Buckwheat flowers

2
 vs. Blank (air) 

2 F 1-2 Non-infested Cabbage
3
 vs. Infested Cabbage

4 

3 F 1-2 Infested Cabbage vs. Blank (soil) 

4 F 1-2 Infested Cabbage vs. Non-infested Cabbage 

5a F 1-2 Aboveground inf.
5
 vs. Aboveground non-inf.

6 

5b F 1-2 Aboveground inf. vs. Blank (air) 

6a F 1-2 Belowground inf. 
7
 vs. Belowground non-inf.

8 

6b F 1-2 Belowground inf. vs. Blank (soil) 

7 F 1-2 Belowground inf. vs. Aboveground inf. 

 

8a, b
1
 M 1-2, 3-5 Buckwheat flowers vs. Blank (air) 

9 M 1-2 Buckwheat plant vs. Inf. Cabbage 

10 M 1-2 Infested Cabbage vs. Blank (soil) 

11 M 1-2 Infested Cabbage vs. non-infested Cabbage 

 

1 Experiments performed outdoors 

2Three bunches of buckwheat flowers cut off with a razor blade. The first three cm of the flower stalks were 

wrapped with moist tissue paper and secured by parafilm  

3 Intact white cabbage plant (8-10 true leaves), including roots and soil  

4 White cabbage plant (8-10 true leaves) infested with D. radicum eggs 10-13 days prior to experiment 

5 The leaves and stem of a D. radicum root-infested plant 

6 The leaves and stem of an intact plant 

7 The roots and stem base of a D. radicum root-infested plant, including larvae and soil 

8 The roots and stem base of an intact plant, including soil 
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5.6.2. Experimental procedure 

The insects were introduced to the Y-tube 21 cm from the beginning of the bifurcation. An 

observation was recorded with a timekeeper from when the insect passed the first 5-cm-limit. 

The insect was considered to have made a choice when it had entered 5 cm into one of the two 

branches and remained there for 30 seconds. The n-number was calculated as the number of 

T. rapae that had made a choice. If the insect not made a choice during 5 minutes, it was 

recorded as a “No choice”. The percentage of these no-responders was calculated from the 

total number (N) of responding and not responding T. rapae tested in the bioassay. 

 

5.7. Semi-field experiment 
 

5.7.1. Set up 

Eight cages (1.2 × 1.2 × 1.5 m) were placed at 1.5-meter distances on a clay soil field. The 

cages consisted of transparent polyester fabric (4 × 3 m, „Sarita‟, Ikea, Sweden), placed on top 

of three strings, fastened on two curved bows (2.5 m) made of elastic plastic tubes (16 mm 

i.d.). These plastic tubes were standing on iron rods (8 mm i.d.) stationed in the ground, 40 cm 

above the soil surface. On the sides of the cage, the polyester fabric was dug down and 

covered by stones and soil, to prevent any insects from escaping or entering.  

Four white cabbage plants with 7-8 true leaves, 13 days previously infested with D. 

radicum eggs were placed in the cage corners with 45 cm distances in-between. One 

buckwheat plant, either with 14 flowers (Flower treatment) or with no flowers present 

(control) was placed in the center of the cage. 

 

5.7.2. Experimental procedure 

Four 2-5 days old starved T. rapae females, kept in open test tubes were put on the buckwheat 

plant in a cage. After 72 hours, the wasps were removed and counted. In addition, the D. 

radicum larval mortality within the cabbage roots was calculated. If all wasps were not found, 

the cabbage roots were washed and carefully searched through for T. rapae females that had 

dug down. To let parasitized and unparasitized D. radicum larvae develop, all cabbage plants 
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were cut off approximately 4 cm from the stem base and put into plastic boxes (19 × 19 × 5.5 

cm) containing moist sand (0.1 - 2.0 mm). Next, two small pieces of a scored root of swede (3 

× 4 × 1 cm), were put on the moist sand close to the white cabbage roots to provide additional 

food for the larvae.  

The plastic boxes were kept in room temperature for three weeks. Then, the sand and 

cabbage roots were carefully rinsed by floatation for collecting the D. radicum pupae. The 

pupae were studied under a binocular microscope in order to identify pupae filled to three 

fourths, which thus were parasitized with 4
th

 instars T. rapae. In case of difficulties in 

differentiating the parasitized pupae from the unparasitized, the pupae were left in the 

temperature controlled cabinet (19°C, 16L:8D photoperiod) until emergence of adult 

parasitoids. The parasitism rate was defined as the number of parasitized D. radicum pupae 

per cages in a treatment. 

 

5.8. Electrophysiological experiments 

 

5.8.1. Volatile collections 

The headspace collections from infested and non-infested cabbage plants were modified 

according to previous methods described for crucifers (Brussel sprouts: Mattiacci et al., 1994; 

Oilseed rape: Jönsson et al., 2005), as well as from discussions with an experienced chemist 

(Birgersson, G. pers comm). The plants infested by D. radicum or the non-infested plants 

were kept with both the roots and substrate (NPK PG Mix 14-7-15), since the sites of odor 

emission were unknown. One Blank, consisting of only the growth substrate, was made as 

control to a sample. The adsorptions were performed in room temperature (20-22ºC) either 

during night for 17 hours or during 8 day hours.  

The volatiles were absorbed into aeration columns made of 25 mm Teflon-tubes (3 mm 

i.d), filled by 15 mm adsorbent; Porapack Q, 80/100 mesh (Supelco Inc., Bellefonte, PA, 

USA), held by two stoppers of Teflon-tube (2 mm i.d.) and glass wool. Shortly before 

collections the columns were rinsed with 1 ml methanol, 1 ml dichloromethane, 1 ml pentane 

and dried with nitrogen gas. 

The sample and the blank odor sources were enclosed in polyethylene cooking bags 

(sample: 45 × 55 cm, blank: 25 × 38 cm, Toppits), sealed with scotch 10 cm from the top of 
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the bag. In order to have the same pressure within the bags, the airflow through the Teflon 

tubing (3 mm i.d.) was adjusted by a flow meter to 50-100 ml/min. A glass tube with 

activated charcoal was inserted into the bottom of the cooking bag through a hole, sealed with 

scotch, to have charcoal filtered air pumped through the system. The sample and the blank 

adsorbent columns were each connected to one reversed aquarium pump Rena 300 (Mars 

Fishcare, Chalfont, PA, USA). Within the cooking bag containing the cabbage plant, one pair 

of aeration columns (Teflon-tubes, 3 mm i.d.) were placed close to the plant, while in the 

blank cooking bag, one single aeration column was placed next to the soil. The air pushed 

through the Teflon tubing and the inlet air filtered by the activated charcoal were arranged 

diagonally to get airflow across the plant. 

The adsorbents were extracted by adding 500 µl pentane (Purix p.a., Fluka, Buchs, 

Switzerland) with a 500 µl syringe into 1.5 ml vials enclosed with polyethylene lids. The 

extracts were stored at - 22 ºC until usage. 

 

5.8.2. GC-EAD recordings 

The electrophysiolgical activity of the volatiles collected from infested or non-infested 

cabbage plants on the antenna of female T. rapae were analyzed using coupled gas 

chromatography electroantenna detection (GC-EAD), following the method described by 

Jönsson & Anderson (1999). The volatile collections extracted with pentane were evaporated 

until approximately 6 µl remained. From this evaporated extract, 2 µl were injected into a 

Hewlett Packard (HP 6890) gas chromatograph (GC) with an HP-INNOWax column (30 m × 

0.25 mm i.d.). The programmed velocity of the N2 carrier gas within the GC was 45 cm/s and 

an injector temperature was set at 225ºC.  

The female wasps were 1-5 days old and inexperienced to white cabbage plants when 

used for the experiment. For the recordings, the antenna was cut off from the insect head 

using a pair of scissors. Approximately half the antennal base segment was carefully inserted 

into a glass capillary (1.5 cm i.d.), filled with a Ringer solution. This was then brought in 

contact with a silver wire of a recording electrode connected to a DC amplifier (Syntech, 

Hilversum, The Netherlands). Next, the tip of the antenna (i.e. the 13
th

 segment) was cut off 

with a razor blade to minimize disturbances during the recordings. The cut end of the antenna 

was brought in contact with a glass capillary filled with Ringer solution, thereafter connected 
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to a grounded silver wire. By carefully adjusting the antenna through the two glass capillaries, 

a closed electric circuit (measured in µV) was obtained.  

Before start of an injection, the condition of the antenna was tested by odor puffs from a 

Pasteur pipette containing a small piece of infested plant leaf (1 cm × 1 cm). The plant 

volatile extract was injected into the GC, in order to make the antenna exposed to an air 

stream carrying the eluting compounds during 32 minutes. Voltage responses of the parasitoid 

antenna were shown on a computer with EAG software (Syntech). A compound was 

considered electrophysiologically active when it elicited an antennal response greater than the 

background noise (Faccoli et al., 2008), which was repeated in at least three different 

recordings. 

 

5.9. Statistical analysis 

The percentage parasitized or non-parasitized pupae in the semi-field experiments, as well as 

the responses by the wasps in two-choice Y-tube experiments were analyzed with a G-test 

after Williams‟ correction, against an expected ratio of 50:50 (Sokal & Rohlf, 1981). 

 

6. Results 

 

6.1. T. rapae female responses to cabbage volatiles 

 

When odors from non-infested cabbage plants were compared with soil (Blank), female T. 

rapae did not show any preferences (Figure 1a) (G = 0.11; df = 1; P = 0.74). Instead, when 

infested cabbage plants were tested against soil (Blank), the females were significantly 

attracted to the infested cabbage odors (Figure 1b) (G = 15.42; df = 1; P < 0.001) and the 

females showed strong preference for infested cabbage when tested against non-infested 

cabbage (Figure 1c) (G = 34.14; df = 1; P < 0.001). 
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Fig. 1. Trybliographa rapae female (1-2 days old) response in Y-tube experiments. N, the total number of 

responding and non-responding parasitoids. The percentages to the right represent the individuals not making a 

choice. The graphs show the proportions of the females‟ responses. The results from the statistical tests (G-test); 

ns, not significant; significant differences *** P < 0.001 are based on n, the number of females making a choice. 

 

The females which were tested odors from the belowground parts of infested and non-infested 

cabbage plants significantly chose the odors from infested plants (Figure 2a) (G = 8.40; df = 

1; P < 0.01). Also when the odors from belowground parts of infested cabbage were tested 

against soil (Blank), the females showed strong preference for the belowground parts of 

infested cabbage (Figure 2b) (G = 39. 57, df = 1, P < 0.001). 

     There was a non-statistically significant difference between the choice of odors from 

aboveground parts of root-infested plants and from non-infested plants, however a tendency 

was shown for the choice of the root-infested plant odors (Figure 2c) (G = 3.66, df = 1, P = 

0.057). Instead there was a significant preference for the odors from aboveground parts of 

root-infested plants when these were tested against humid air (Blank) (Figure 2d) (G = 8.40, 

df = 1, P < 0.05).   

     The female wasps showed no statistical differences between the choice of odors from 

aboveground parts of root-infested plants and from belowground parts of the infested plants 

(Figure 2e) (G = 1.61, df = 1, P = 0.21). 
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Fig. 2. Trybliographa rapae female (1-2 days old) response in Y-tube experiments. N, the total number of 

responding and non-responding parasitoids. The percentages to the left represent the individuals not making a 

choice. The graphs show the proportions of the females‟ responses. The results from the statistical tests (G-test); 

ns, not significant; significant differences *** P ˂ 0.001; ** P < 0.01; * P < 0.05 are based on n, the number of 

females making a choice. 

 

6.1.1. Volatile collections from cabbage plants 

The GC-chromatograms showed a tendency for quantitative and qualitative differences 

between infested and non-infested cabbage plant volatiles, collected during 17 night hours 

(Figure 3). The GC-chromatogram of an infested cabbage plant showed 165 compounds with 

an area larger than 1 pAs (Figure 3a) and the GC chromatogram of a non-infested cabbage 

plant extract showed 30 compounds with an area larger than 1 pAs (Figure 3b).  
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Fig. 3. GC chromatograms (FID responses) of volatiles collected during 17 night hours from a) infested cabbage 

plants (black colored FID response) and b) non-infested cabbage plants (blue colored FID response). 

 

6.1.2. GC-EAD 

From a simultaneously recorded gas chromatograph-electroantennodetection (GC-EAD) of 

volatiles collected from infested white cabbage plants, two compounds eluting at retention 

times 6.650 minutes and 8.414 minutes elicited responses from three T. rapae female 

antennae (Figure 4). Repeated disturbances on the antennae were shown from the retention 

time 8,414 minutes. 

 

 

a 

b 
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Fig. 4. Selected time section (5 min - 9 min) of a gas chromatography-electroantennadetection analysis (GC-

EAD) of volatiles from infested cabbage plants collected from 8 day hours. Possible antennal responses from 

Trybliographa rapae females are indicated with the arrows. The upper black colored trace represents the 

compounds from the GC (FID response) and the lower blue colored trace represents antennal responses (EAD) 

of the parasitic wasp females. n, number of recordings. 

 

6.2. The effect of buckwheat flowers on T. rapae females 

From the initial number of 400 D. radicum eggs per flower treatment cages and control cages, 

the natural larval mortality in the semi-field was 62% in the cages with flower treatment and 

61% in the control cages (Table 2). Two out of sixteen female wasps in the flower treatment 

and in the control were found within roots next to the D. radicum larvae (Table 2). 

 

Table 2. Larval mortality of Delia radicum and the number of Trybliographa rapae females found during semi-

field experiment. The numbers represent the total sum of eggs, mortal larvae (also shown in percentage), T. 

rapae females found after 72 hours in four cages. The total number of pupae and the number of parasitized 

pupae were calculated from four cages after three weeks. n, number of cages per treatment. 

 

   Flower treatment cages (n=4)      Control cages (n=4) 

Number of eggs      400   400 

Larval mortality      247 (62%)   244 (61%)
 

Number of T. rapae in cabbage roots     2   2 
 

 

Total number of pupae     153    156 
 

Number of parasitized pupae    51    33
  

40 µV 

Retention time (min) 

n = 3 
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     The total parasitism of D. radicum larvae was shown by the number of parasitized pupae 

three weeks after the removal of female wasps from the cages. No statistically significant 

difference in parasitation rate was found between cages with flowering buckwheat (parasitism 

33%) and control cages (parasitism 21%) (G = 2.69; df = 1; P = 0.10) (Figure 5). 
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Fig. 5. The percentage of Delia radicum pupae parasitized by Trybliographa rapae in cages with a flowering 

buckwheat plant (Flower) or a non-flowering buckwheat plant (Control). The results of the statistical tests (G-

test); ns, not significant. n, number of cages per treatment. 

 

6.3. T. rapae female attraction to buckwheat volatiles 

 

Both 1-2 days old and 3-5 days old female T. rapae showed significant preferences for 

flowering buckwheat when tested against air (Figure 6a) (G= 17.68; df = 1; P < 0.001), 

(Figure 6b) (G = 18.03; df = 1; P < 0.001).  
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Fig. 6. Trybliographa rapae female response in Y-tube experiments to volatiles from flowering buckwheat and 

air (Blank); a) 1-2 days old females; b) 3-5 days old females. N, the total number of responding and non-

responding parasitoids. The percentages to the right represent the individuals not making a choice. The graphs 

show the proportions of the females‟ responses. The results from the statistical tests (G-test); significant 

differences *** P<0.001 are based on n, the number of females making a choice. 

 

6.4. T. rapae male responses 

 

The newly emerged 1-2 days old males showed a tendency to avoid buckwheat when tested 

against air (Blank) (Figure 7a) (G = 1.33; df = 1; P = 0.16) however there was a significant 

number of no-responders (Figure 8a) (G = 12.80; df = 1; P <0.001). During the experiments, 

the males were observed to either stand still or move backwards in the direction away from 

the odor sources.  

     Of the 3-5 days old males, 55% did not make a choice between buckwheat and air, which 

was a non-statistically significant behavior (Figure 8b), (G = 0.40; df = 1; P = 0.53). The 3-5 

days old males that made a choice showed non-significant avoidance of buckwheat (Figure 

7b) (G = 2.04; df = 1; P = 0.16). 
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Fig. 7. Trybliographa rapae male response in Y-tube experiments to volatiles from buckwheat and air (Blank); 

a) 1-2 days old males; b) 3-5 days old males. N, the total number of responding and non-responding parasitoids. 

The percentages to the left represent the individuals not making a choice. The graphs show the proportions of the 

males‟ responses. The results from the statistical tests (G-test); ns, not significant are based on n, the number of 

males making a choice. 
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 Fig. 8. Trybliographa rapae males that made a choice or that not made a choice in Y-tube experiments with 

volatiles from buckwheat / air (Blank). a) 1-2 days old males; b) 3-5 days old males. The results of the statistical 

tests (G-test); ns, not significant; significant differences *** P<0.001 are based on N, the total number of 

responding and no-responding males. 

 

The males showed no significant differences in the choices between buckwheat and infested 

cabbage plants (Figure 9a) (G = 0.03; df = 1; P = 0.86). Similarly, when the infested cabbage 

plant was tested against soil (Blank), no significant differences were found (Figure 9b) (G = 

0.40; df = 1; P = 0.53). When odors from infested cabbage plants were tested against non-

infested cabbage plants, the males showed no differences between the odor sources (Figure 

9c) (G = 0.48; df = 1; P = 0.50). 
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Fig. 9. Trybliographa rapae male (1-2 days old) response in Y-tube experiments; N, the total number of 

responding and non-responding parasitoids. The percentages to the left represent the individuals not making a 

choice. The graphs show the proportions of the males‟ responses. The results from the statistical tests (G-test); 

ns, not significant are based on n, the number of males making a choice. 

 

7. Discussion 

 

Female parasitic wasps were strongly attracted to odors emitted by infested cabbage plants 

when these were tested against odors from non-infested cabbage plants or against blank odor 

sources. These results indicate that T. rapae females are guided by herbivore-induced plant 

volatiles when searching for D. radicum. Previous studies have also shown the importance of 

infested plant cues for T. rapae to locate their host larvae (Jones, 1988; Brown & Anderson, 

1999; Neveu et al., 2002; Hemachandra et al., 2007). The behavioral experiments of this 

thesis support the previous studies and provide new suggestions about the male and female 

wasp‟s relation to floral nectar, both in semi-field and in laboratory conditions. 

 

7.1. Attraction to host plant cues 

Contrarily to the attraction for infested cabbage cues, the non-infested plants were not 

attractive for the female wasps in the two-choice experiments. This shows that parasitoids 

distinguish between volatiles from infested and non-infested plants. The GC-chromatograms 

showed that non-infested plants released low quantities of volatiles, which may suggest that 
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the cabbage plant aims to be invisible, possibly in order to avoid herbivores, and that it is only 

after the root damage that it releases significant amounts of volatiles. The volatile collections 

indicated both quantitative and qualitative differences between the infested and non-infested 

plants. This result was surprising since previous volatile collections on Brassicaceae have 

revealed mainly quantitative differences (Agelopolous & Keller, 1994; Geervliet et al., 1997; 

Mattiacci et al., 1994; 2001). It is however possible that the volatile collections from the non-

infested plants should have been performed differently, because of the expected low quantity 

of volatiles. Further collections may use longer adsorbent columns or modify the previously 

described for undamaged Brussel sprouts (Mattiacci et al., 1994).  

     The electrophysiological activity was not statistically tested due to antennal disturbances in 

most GC-EAD recordings. From the recordings only two compounds from infested plant 

extracts were found to repeatedly elicit response. Most likely the infested white cabbage 

extracts contained more than two active compounds, because previous studies showed e.g. 13 

antennal responses from a pollen beetle parasitoid to volatile compounds from infested 

oilseed rape (Jönsson et al., 2005). Comparisons may be made from volatile collections of 

other cruciferous plants (e.g.; Brussel sprouts: Mattiacci et al., 1994; oilseed rape: Jönsson et 

al., 2005; Jönsson et al., 2008), in order to speculate on which volatile compounds that were 

released. Mattiacci et al. (1994) and Jönsson et al. (2008) reported that herbivore damaged 

Brussel sprouts and oilseed rape plants released enhanced levels of green-leaf volatiles 

(GLVs) in response to herbivore damage. GLVs are commonly produced in altered quantities 

from lipid degradations within damaged tissues and are released from the green parts of the 

plant (Hatanaka, 1993). 

     Other likely volatile compounds are isothiocynates, since these glucosinolate products 

constitute important oviposition stimuli for D. radicum (Roessingh et al., 1997) and 

„glucobrassicin‟ has been shown by Gouinguené et al. (2006) to stimulate oviposition in both 

the turnip root fly as well as in the cabbage root fly. The isothiocyanate „dimethyl disulfide‟ 

(DMDS) was identified as a major volatile constituent of swede roots infested by cabbage 

root fly larvae (Ferry et al., 2007). DMDS has a sulphur-containing end-product that occurs 

both in Brassicaceae and in Alliaceae. This is interesting considering T. rapae, since the 

wasps could associate this compound with the alliaceous herbivore D. antiqua. 
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7.2. Below- and aboveground released cues 

Further electrophysiological studies from both night and day headspace collections could 

show if cabbage plants depend on light or time of day for the release of volatiles, as well as it 

could indicate whether the host finding in parasitic wasps depends on light. It is possible that 

there are differences between the night and day headspace collections from white cabbage 

plants since a previous study of turnips showed that the emission of limonene and sabinene 

was three times higher in light than in darkness (Jakobsen et al., 1994). In addition, headspace 

collections should be made on the belowground parts of cabbage to investigate if there is a 

different volatile blend released from these parts than from the whole plant.  

     There was a strong, significant attraction of the female wasps to the belowground parts of 

infested cabbage plants, both when tested against non-infested cabbage plants and against 

blank odor sources. It may be discussed whether the volatiles were emitted systemically or 

locally, since both damaged and undamaged roots, as well as the stem base of the plant were 

tested. A systemic emission of volatiles from undamaged parts of damaged turnip plants was 

previously suggested by Neveu et al. (2002). A possible hypothesis is therefore that a cabbage 

plant attracts T. rapae with a systemic release of volatiles from both the roots and the leaves. 

This is likely also because the aboveground part of the plant constitutes a larger odor source 

than the belowground part (Dicke, 1999). 

     The aboveground parts from infested plants were significantly attractive when tested 

against a blank odor source and the parasitoids tended to be attracted when these were tested 

against the parts from non-infested plants. The belowground parts of the infested plant tended 

though to be more attractive than the aboveground parts. 

     Further studies may test the below- and/or aboveground parts of infested plants against an 

entire infested plant, in order to indicate a synergism between the different plant parts. It is 

possible that cues emanating from belowground elicit responses according to the wasps‟ 

behavior at a short distance from the host and that the long-distance host searching behavior is 

guided by aboveground cues. Further studies should test this hypothesis in wind tunnel 

experiments. Although T. rapae are known to be walking wasps (Jones, 1988), they most 

likely have a flying behavior, considering that the parasitoids otherwise only would get 

offspring with the same individuals of the population.  
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7.3. Differences between male and female wasps 

T. rapae males and females differ in their olfactory responses to host and food (nectar) plants. 

Both younger and older females significantly chose buckwheat odors against blank odor 

sources in the olfactometer experiments, which indicated that olfaction is important for their 

orientation to a food source. Contrarily, both younger and older males tended to avoid the 

buckwheat odors and the youngest male wasps showed a significant no-response behavior. 

This no-choice behavior of males may be due to that males are less interested in nectar during 

their relatively short life span (9.5 ± 1.2 days) (Jones, 1988) and the fact that they do not lay 

eggs. Yet, further studies are needed to verify the nectar requirements of T. rapae males and 

also consider other flower species. The present results have revealed primarily suggestions 

about the flower attractiveness for male parasitoids, because most previous studies have 

investigated the behavior of females rather than males (Lee et al., 2006; Winkler et al., 2005). 

      

The females were not tested in the olfactometer experiments between buckwheat and infested 

cabbage, since Wäckers (1994) showed that the physiological state of parasitoids has an 

influence on their mode of choosing between host and food odors. For example, the female 

could have chosen flower odors in laboratory where it may be food deprived, while it likely 

could be attracted to infested plant cues as sugar-fed wasps in the field.  

     The male wasps were tested with buckwheat and cabbage odors since the males had been 

suggested by the present results to not associate buckwheat volatiles with food. However, the 

males did not choose either the infested cabbage or buckwheat. Surprisingly, this result 

suggests that the males do not respond to plant volatiles which could have given them best 

possibilities for offspring. Consequently, it may be speculated whether T. rapae males use 

female sex pheromones for mating site orientation. The males have also larger antenna (15 

segments) than the females (13 antennal segments), and this could indicate that the males 

have antenna with pheromone specific receptor cells that do not occur on the female antenna. 

    Indeed, volatile sex pheromones have been identified in a number of other hymenopteran 

parasitoid families: Aphelinidae, Chalcididae, Cynipidae, Pteromalidae, Scelionidae, 

Braconidae, Ichneumonidae (reviewed in Eller et al., 1984), Eulophidae (Finidori-Logli et al., 

1996) and in Trichogrammatidae (Pompanon et al., 1997). The sex pheromone may be 

substrate-borne and have low volatility (Pompanon et al., 1997; Sullivan, 2002) or the 

recognition of the female by the male may occur only at close range (Finidori-Logli et al., 

1996). Yet, if a possible pheromone in T. rapae has these characteristics, the males would find 
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the females while walking on the cabbage plant. Therefore, the males are likely to first locate 

the host habitat. Surprisingly the males did not respond to the cabbage plants in the 

olfactometer experiments, however further studies should be made also on vision and taste.  

 

7.4. Semi-field observations of female wasps 

In the semi-field, the female wasps showed a tendency of an increased parasitism rate due to 

the nectar of buckwheat flowers, although there was a low n-value to show any statistically 

significant differences. Nectar has been shown in previous studies to either enhance female 

parasitoids‟ egg maturation or increase their capacity to fly and find or attack hosts (Jervis et 

al., 1993; Baggen & Gurr, 1998). In addition, Vattala et al. (2006) showed that another 

parasitoid species had an increased mean longevity when feeding on buckwheat flowers.  

     It is possible that the host plant characteristics (chemical properties or root structure and 

texture) had an influence on the capacity of T. rapae to attack D. radicum. A previous study 

of T. rapae showed that cauliflowers resulted in pupae with a higher percentage of parasitism 

(50.5 %) than swedes (28.5 %) (Kacem-Haddjel-Mrabet & Nenon, 2003). It is also possible 

that the cabbage root fly larvae were in an „enemy free space‟ within the cabbage roots. 

Hemachandra et al. (2007) showed that a D. radicum larva feeding at a 6 cm depth was in a 

physical refuge from parasitism by T. rapae. 

     Another possibility of a low parasitism rate may be due to the high mortality of the D. 

radicum larvae and that the female wasps could have avoided unhealthy or already parasitized 

larvae. In addition, abiotic conditions in the field (strong winds, heavy rain and low 

temperatures), could have decreased the potential parasitoid activity. Therefore, further semi-

field experiments should be performed during at least two seasons. 

    In a real field situation there are other biotic factors that influence the parasitism success. 

Pathogens or predators are risk factors for parasitoids (Rosenheim, 1998) and some parasitoid 

species constitute competition factors. For example, it is likely that T. rapae would compete 

with the pupa parasitoid or egg and larvae predatory beetle Aleochara bilineata (Gyll.) and A. 

bipustulata (L.) (Coleoptera: Staphylinidae). A. bilineata larvae make punctures on the pupal 

cuticle of D. radicum and thereafter feed on the semi-fluid content (Jones, 1988). The effect 

of the Aleochara ssp. on the parasitism by T. rapae needs to be investigated in further studies. 

 



37 

 

7.5. Application options 

Biological control in cruciferous crops is difficult since these plants are attacked by a wide 

range of specialist pests (Finch, 1989). Therefore, both selective and broad-spectrum 

insecticides are used in the field. However, specialist insects often develop resistance to 

insecticides (Kanga et al., 2003). Studies similar to this thesis are needed to minimize the use 

of insecticides by applying the understandings of the natural enemies into the management 

strategies. The enhancement of natural enemies in an agro-ecosystem is an approach of 

habitat management (Landis et al., 2000).  

     The understandings of the host and food cues that attract T. rapae enable us to create 

alternate growing systems. The crop rotation systems have mostly been used to avoid soil 

pathogens (Finch, 1989); however an alternate growing of host plants and non-host plants 

may avoid maintenance of D. radicum. Alternatively, a rotation of host plants could maintain 

the populations of T. rapae. Potential crops to alternate are bean, onion and cabbage, since T. 

rapae may attack the bean seed flies (D. platura, D. florilega) or the onion fly (D. antiqua), 

apart from D. radicum (Wishart & Mounteith, 1954). 

     An increased biodiversity with non-host nectar plants is an important tool for a successful 

conservation biological control strategy (Landis et al., 2000). Rännbäck, (2008) suggested 

that D. radicum was less attracted to buckwheat than other nectar plants. Therefore, 

buckwheat may be used as a „selective food plant‟ for enhancing mainly the populations of T. 

rapae. 

 

7.6. Concluding remarks 

Further ecological studies are required about the parasitoids, their hosts and host plants, in 

order to increase the knowledge about the parasitoids long distance- or short distance host 

searching. This thesis has contributed understandings to the chemical ecology of a cabbage- 

parasitoid- root herbivore- system, which should help future management strategies to 

develop practices for reducing cabbage root fly infestation without dependence of 

insecticides.  
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