
Swedish University of Agricultural Sciences 

Faculty of Natural Resources and Agricultural Sciences 

Department of Forest Mycology and Plant Pathology  

Uppsala 2011 

 

 

Taxonomic and phylogenetic study of rust fungi 

forming aecia on Berberis spp. in Sweden 

Iuliia Kyiashchenko 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master‟ thesis, 30 hec 

Ecology Master‟s programme 

 



 
 

2 
 

SLU, Swedish University of Agricultural Sciences 

Faculty of Natural Resources and Agricultural Sciences 

Department of Forest Mycology and Plant Pathology  

Iuliia Kyiashchenko 

Taxonomic and phylogenetic study of rust fungi forming aecia 

on Berberis spp. in Sweden 

Uppsala 2011 

 

     

Supervisors: Prof.  Jonathan Yuen, Dept. of Forest Mycology and Plant  Pathology  

 Anna Berlin, Dept. of Forest Mycology and Plant  Pathology  

Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant  Pathology 

 

Credits: 30 hp 

Level: E 

Subject: Biology 

Course title: Independent project in Biology 

Course code: EX0565 

Online publication: http://stud.epsilon.slu.se 

 

 

Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, 

phylogenetic analysis 

 

 

 

 

 

 

 

 

 

 

 

Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: 

Anna Berlin  



 
 

3 
 

 

  



 
 

4 
 

Content 

1  Introduction…………………………………………………………………………. 6 

 1.1 Life cycle…………………………………………………………………………….. 7 

 1.2 Hyphae and haustoria………………………………………………………………... 9 

 1.3 Rust taxonomy……………………………………………………………………….. 10 

  1.3.1 Formae specialis………………………………………………………………. 10 

 1.4 Economic importance………………………………………………………………... 10 

2  Materials and methods……………………………………………………………... 13 

 2.1 Rust and barberry collection ………………………………………………………… 13 

 2.2 Genomic DNA extraction……………………………………………………………. 13 

 2.3 PCR amplification and sequencing…………………………………………………... 13 

 2.4 Phylogenetic analysis………………………………………………………………… 15 

 2.5 Spore collection and morphology …………………………………………………… 16 

3  Results……………………………………………………………………………….. 17 

 3.1 DNA sequences analysis…………………………………………………………….. 17 

 3.2 Morphology………………………………………………………………………….. 20 

 3.3 Phylogenetic analysis………………………………………………………………… 26 

4  Discussion …………………………………………………………………………... 37 

 4.1 Morphology………………………………………………………………………….. 37 

 4.2 DNA sequences analysis and species identification ………………………………… 38 

 4.3 Phylogenetic analysis………………………………………………………………… 40 

  4.3.1 Neighbor-joining analysis……………………………………………………… 40 

  4.3.2 Neighbor-joining analysis comprising sequences downloaded from GenBank 42 

  4.3.3 Bayesian phylogeny……………………………………………………………. 43 

5  Conclusions………………………………………………………………………….. 44 

6  References…………………………………………………………………………… 46 

  Appendices  

 

 

 

 



 
 

5 
 

Abstract 

Rust fungi are important plant pathogens that have been studied for a long time. They are of 

great economic importance due to the severe damage they cause on agricultural crops. Rust fungi 

are very interesting organisms in terms of biology because their life cycle is quite complex: it 

alternates between two hosts and consists of up to five distinct spore stages. This makes these 

organisms difficult to study.  

The barberry plant was known to be associated with stem rust (Puccinia graminis) from the 

Middle Ages but only recently these plants were identified as an alternative hosts for stripe rust 

of important cereal crops and grasses Puccinia striiformis (Jin et al. 2010). Since 1994 barberry 

eradication is no longer taking place in Sweden so these plants can be found around the country. 

The aecial stage in the rust fungi life cycles have got less attention because it is not economically 

important compared with uredinial and telial stages that have been studied a lot for the species 

infecting cereal crops. That is why the main objective of this study was to identify aecia of rusts 

species that may be found on Berberis spp. collected in different parts of Sweden.  

To answer this question spore measurement and aecia description as well as DNA sequences 

analysis (using ITS region, EF1-α and β-tubulin partial genes) were performed. Also 

phylogenetic analysis of obtained sequences was conducted. 

According to spore and aecia morphology four different species were distinguished. DNA 

sequences analysis (by the comparison of obtained sequences with BLAST library) identified 

four different species P. graminis f.sp. avenae, P. graminis f.sp. tritici, P. poae-nemoralis and P. 

striiformis that fitted well to the morphology data. The identity of the Berberis spp. was also 

checked.  

Phylogenetic analysis showed that all obtained species and formae speciales are distinct from 

each other and form separate clades with high branch support.  
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1 Introduction 

Rust fungi (kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales) 

are important plant pathogens. Rusts are obligate parasites (depend upon living host in order to 

complete its life cycle) and biotrophic (invade living plant tissue and with the help of haustoria 

drag nutrients from the host cell without killing it) parasites (Deacon, 1997). This type of 

parasitism cause serious crop losses and in the case of favorable condition (viable spores, 

susceptible or moderately susceptible host plants, dew on the leaves and favorable temperatures) 

may lead to epidemics (McMullen et al. 2010). The number of recognized rust species in 

different sources varies from 5000 (Cummins and Hiratsuka, 2003) to 7000 species 

(Hawksworth et al. 1995; Maier et al. 2003; Ono and Aime, 2006). Rusts fungi parasitize 

angiosperms, conifers, and ferns. At the same time, rust species have narrow and specific host 

ranges (Cummins and Hiratsuka, 2003).  

The rust fungi are very interesting organisms in terms of biology. Their life cycle is complex and 

consists of up to five distinct spore stages (macrocyclic rust taxa). Some rust fungi have all of 

these stages but others lack uredial stage (demicyclic rust taxa) or both aecial and uredial stages 

(microcyclic rust taxa). All these types of life cycle may lack pycnia stage (Cummins and 

Hiratsuka, 2003). In addition there are rust fungi that require two unrelated hosts to complete 

their life cycle (heteroecious fungi) and those who can complete it on a single host species 

(autoecious fungi). In rust fungi three distinct nuclear stages in the life cycle may be identified: 

the haploid monokaryon, the dikaryon, and the diploid (Petersen, 1974).  

In terms of evolutionary biology it is generally concidered that the species with a reduced life 

cycle (microcyclic) is a descendent of the species with the all spore stages (macrocyclic) 

(Shattock and Preece, 2000). In microcyclic rust taxa the telia simulate the habit of the aecia of 

the parental macrocyclic rust taxa and occur on the aecial host originally colonised by the 

ancestral heteroecious species (Shattock and Preece, 2000). This was used in the Tranzschel‟ 

method of identifying the alternate host of the rust assumed to be heteroecious. According to this 

method one should look for aecial stages of microcyclic species that have morphologically 

similar telia and teliospores to the suspected heteroecious rust. Such species that exhibit similar 

telia and teliospore morphology, and share a common host but with different life cycles are 

called “correlated species” (Cummins and Hiratsuka, 1983). 

Rust fungi are well known and very successful plant pathogens that have been studied for a long 

time, but because they are obligate parasites and due to their complicated life cycle they are very 

difficult to work with. One can find a lot of historical records about rust attack on cereals. This is 

mainly due to the economic losses from rust pathogens and also because of its clearly 

distinguishable features. Aristotle (384 - 322 BC) as well as Theophrastus (371 - 287 BC) 

described years with a heavy damage of cereals crops caused by rust fungi induced by “warm 

vapors” (Roelfs et al. 1992). The purpose of the Roman festival of Robigalia was to pray to the 

rust god Robigo to reduce the damage caused by cereal rust (Chester, 1946), which indicates that 

rust was a serious problem for wheat crops in Italy at that time. Only in 1767 Fontana and 

Tozzetti provided the first report on stem rust as a parasite on cereals. This organism was named 

Puccinia graminis by Person in 1797 (Roelfs et al. 1992).  

http://en.wikipedia.org/wiki/Basidiomycota
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1.1 Life cycle 

Most rust fungi have complex life cycle that consists of five spore stages and require two hosts. 

This macrocyclic heteroecious life cycle of rust fungi (Figure 1) starts in the end of the growing 

season by formation of two-celled teliospore with two nuclei in each cell (Leonard and Szabo, 

2005). In some genera instead of teliospores, lactospores are formed; they usually have thinner 

walls and germinate without a resting period (Petersen, 1974). Teliospores that form dark 

pustules (telia) on dead host tissue usually have thick walls and serve as overwintering and 

resting stage (Kolmer et al 2009). When the uredinial host starts to get old the shift in the type of 

spore production is occurring: teliospores are formed in the uredinium as a second type of spores, 

Figure 1. Life cycle of rust fungi (Leonard and Szabo, 2005). 

following after urediospore production (Mendgen, 1984). The uredium transforms into telium or 

telial sorus (Mendgen, 1984). Telia can have different form and location. In some genera 

(Uredinipsos) teliospores remain on telia enclosed with the host plant epidermis; in Melampsora 

teliospores form a monolayer while in Phakopsora they can be found in more than one rank 

(Petersen, 1974). According to Anikster (1986) teliospores together with basidia are two of the 

most important stages in the life cycle of rust fungi. Teliospores are important for overwintering 

for at least half of all Uredinales. Often is an after-ripening period of the teliospores necessary 

for promoting germination (Cumminis and Hiratsuka, 1983). In addition, mainly teliospores 
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contribute to formation of new physiological races of the rust fungi (Anikster and Wahl, 1979). 

In each cell of the teliospore, karyogamy occurs and right after this, the teliospores germinates 

into a short tube, the promycelium (or basidium) (Petersen, 1974). The diploid nucleus migrates 

into the promycelium and goes through two meiotic divisions (Petersen, 1974). The four haploid 

nuclei are separated by three transverse septa and from each promycelium cell projecting 

sterigma are formed (Leonard and Szabo, 2005). Through these sterigma the haploid nuclei 

migrates into the newly formed basidiospores at the tips of each sterigma (Roelfs, 1985). Each 

mature basidiospore contains two haploid nuclei as a result of a mitoic division (Leonard and 

Szabo, 2005). In the study of 27 rust species of the genera Puccinia, Uromyces, Tranzschelia, 

Frommea (Phragmidium), and Melampsora the optimal temperature for teliospore germination 

was determined (Anikster, 1986). It varied between 16 and 18°C with the limits between 12 and 

25°C (Anikster, 1986). Teliospores lose their ability to germinate if they are exposed to sunlight 

or kept in shade for one year, while under favorable condition (at 5°C in partial vacuum and dry 

conditions) teliospores can maintain vitality for more than 14 years (Anikster, 1986). 

Mature basidiospores of heteroecius rusts are actively discharged into the air and carried by wind 

to their alternative host (Leonard and Szabo, 2005). Basidiospores infect their host by direct 

penetration by the germ tube through the intact wall of the epidermal cell (Longo et al. 2006). As 

a result, infection structures such as vesicles and infection hypha develop inside the plant tissue 

under the epidermis (Bushnell and Roelfs, 1984). Apparently basidiospores are not able to infect 

older plants because a thick cuticle on the leaf surface will not allow the germ tube to penetrate 

into the leaf tissue (Leonard and Szabo, 2005). Basidiospores are fragile and cannot tolerate dry 

conditions and are mainly released during nights and during moisture periods (Kolmer et al. 

2009). Infection of leaf tissue by basidiospores results in the production of haploid hyphal 

colonies from which a flask-shaped pycnia arise (Leonard and Szabo, 2005; Kolmer et al. 2009; 

Bushnell and Roelfs, 1984). There are studies that show that some rusts have a defect in 

basidiospore formation (Pavgi, 1975; Anikster et al. 1980) which can lead to production of two 

basidiospores with nuclei of both mating type that gives a possibility to skip formation of pycnia 

and produce aecia straightforward (Puccinia sorghi and Uromyces spp.).  

Within the pycnium, small, simple pycniospores are produced. The pycnia are surrounded by a 

cap of insect-attracting nectar (Leonard and Szabo, 2005; Kolmer et al. 2009). Insects as well as 

rain drops scatters the pycniospores among pycnia on one plant or between surrounding plants 

(Kolmer et al. 2009). In this stage of the rusts life cycle, mating takes place during which 

pycniospores of one mating type (+) fertilize pycnia of another (-) mating type (Anikster, 1999). 

In this process, pycniospores represent male gametes and flexuous hypha that grows from the top 

of the pycnia represents the female gametes (Leonard and Szabo, 2005). For successful mating 

e.g. production of aecia, formation of pycniospore caps is essential (Anikster, 1999). The main 

component of this cap consists of a protein that probably serves as fungal mating-type specific 

pheromones (Anikster, 1999). After the fusion of haploid nucleus of pycniospore and a flexuous 

hypha, the dikariotic stage is established (Leonard and Szabo, 2005) and the fungus forms an 

aecium below the pycnium (Kolmer et al. 2009). 

The aecium is the dikaryotic cup-like fruiting structure on the leaf surface containing multiple 

aecia (Bushnell and Roelfs, 1984). The location of the pustule may vary in different rust species. 

In cereal rusts, it usually reflects the pycnial clusters on the opposite side of the leaf while in 
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other rust species aecia can appear at the periphery of pycnia or even in the same place where the 

pycnia were formed (Kolmer et al. 2009). Sato and Sato (1985) distinguish 14 morphological 

types of aecia: eridermia, roestelia, aecidium, 3 types of peridermium, 6 types of caeoma and 3 

types of uraecium. This classification is based on a number of morphological characteristics such 

as spore ontogeny, hymenium, peridium, aeciospores morphology, and position of aecia in the 

leaf tissue, and some others. Inside each aecium, numerous dikaryotic aeciospores are formed. 

Aeciospores may travel long distances since they serve as infective agents to the other host in 

heteroecious fungi (Petersen, 1974). Aeciospores are unicellular (Cummins and Hiratsuka, 2003) 

and usually produced in chains (Kolmer et al. 2009). Once a suitable host is infected, aeciospores 

germinate by producing a dense net of hyphae (Leonard and Szabo, 2005), which invade the host 

tissue through stomata openings (Petersen, 1974). Dikaryotic mycelium is formed and as a result 

of the infection, pustules known as uredinium (containing single-celled urediniospores) are 

formed (Leonard and Szabo, 2005).  

Urediniospores are dikaryotic and produced singly on stalks (Kolmer et al. 2009). They are 

dispersed by wind and serve as re-infecting agent of the gramineous host (Petersen, 1974; 

Leonard and Szabo, 2005). At the end of the growing season, the production of the teliospores 

begins. Transformation into the telium can occur from both original uredium or from uredial sori 

produced by re-infecting mycelium (Petersen, 1974). The uredinial and telial stages in the life 

cycle of the rust fungi have had the most research interest because of its obvious economic 

importance (Leonard and Szabo, 2005). 

1.2 Hyphae and haustoria 

The hyphae of the rusts are intercellular and septate (Cummins and Hiratsuka, 2003). Rusts have 

two major types of septa: the typical hyphal septa that are formed after conjugate nuclear 

division (Harder 1984), and so called “pseudosepta” (Ehrlich et al. 1968) that is characterized by 

the absence of a pore apparatus and occur in hyphae of axenic growth or in hyphae near the 

leading edge of colonies (Harder 1984). 

It is generally assumed that the haustorium (the structure that formed by parasitic fungi in host‟s 

tissue) is involved in the uptake of nutrients from the living host‟s cells (Cummins and 

Hiratsuka, 2003) by increasing relative surface area of contact with the host (Jennings and Lysek, 

1996). However, there is as yet no direct evidence for this role. Depending on which sexual stage 

rust fungi have (monokaryotic or dikaryotic), haustoria of different morphology are produced 

(Staples, 2001). D-haustoria are produced from dikaryotic hyphae and M-haustoria from 

monokaryotic hyphae (Cummins and Hiratsuka, 2003). For example, among the cereal rusts, the 

M-haustoria produced by the monokaryon differ from the D-haustoria formed by the dikaryon 

because growth of the M-haustorium is filamentous and the neck ring, which seals the haustorial 

membrane from the apoplast, does not form (Staples, 2001), although each type has an 

extrahaustorial matrix (Harder and Chong, 1984). For some group of rust fungi shape and size of 

D-haustoria are considered to be a useful morphological character for species systematics 

(Berndt and Oberwinkler, 1995, 1997). 
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1.3 Rust taxonomy  

According to Cummins and Hiratsuka (1983) the Uredinales consist of 14 families and of 120 

(160 according to Ono and Aime (2006)) holomorph genera but later these authors (Cummins 

and Hiratsuka, 2003) reduced the number of families to 13 (Chaconiaceae, Coleosporiaceae, 

Cronartiaceae, Melampsoraceae, Mikronegeriaceae, Phakopsoraceae, Phragmidiaceae, 

Pileolariaceae, Pucciniaceae, Pucciniastraceae, Pucciniosiraceae, Raveneliaceae, and 

Uropyxidaceae) by merging Sphaerophragmiaceae with Raveneliaceae.  

Most classifications of rust fungi are based on teliospore morphology (Cummins and Hiratsuka, 

2003). At the same time, it has been demonstrated that the morphology of life stages other than 

teliospore also have significant characters for taxonomical and phylogenetical studies (Maier et 

al. 2003). It includes aecia morphology (Sato and Sato, 1985), urediniospore germ pore 

arrangement and spore shape (Cummins, 1936), uredinia morphology (Kenney 1970), and 

morphology of pucnia (spermogonia) (Hiratsuka and Cummins 1963).  

1.3.1 Formae specialis 

The concept of forma specialis has been reviewed by Anikster (1984) and is used to classify 

varieties or subspecies of rust fungi. This concept is applied for the cereal rusts, like Puccinia 

graminis. In general, a forma specialis designation is given according to the most common genus 

on which the particular rust fungi causes diseases (Anikster, 1984), like Puccinia graminis f.sp. 

tritici causing stem rust on wheat. This classification emphasizes that Triticum spp. is the most 

important host (Staples 2000). Another study (Abbasi et al. 2005) shows that P. graminis is a 

complex species and that subspecific classification and formae specialis do not represent natural 

monophyletic groups. The authors claim that a new taxonomic concept for this species is needed. 

Nevertheless, the awareness that many rust species, and especially economically important cereal 

pathogens exist as highly adapted and specialized forms to specific host, have greatly improved 

the breeding of rust-resistant crops (Staples 2000).      

1.4 Economic importance 

Rust fungi are of great economic importance due to their potential to cause severe damages on 

crops. Rust pathogens on agricultural crops have got special interest in research.  

Rust on cereal crops include rust on wheat (stem rust Puccinia graminis f.sp. tritici Erikss. and 

Henn., leaf rust P. triticina Erikss., and stripe rust P. striiformis f.sp. tritici Erikss.), oats (crown 

rust P. coronata f.sp. avenae P. Syd & Syd., stem rust P. graminis f.sp. avenae Erikss. and 

Henn.), barley (stem rust P. graminis f.sp. tritici Erikss. and Henn., leaf rust P. hordei G. H. 

Otth, stripe rust P. striiformis f. sp. hordei Erikss., crown rust P. coronata Corda), rye (P. 

recondita Roberge), and corn (P. sorghi Schwein). 

Furthermore, other important crop plants that may be infected by rust fungi are: coffee (coffee 

leaf rust Hemileia vastatrix Berk. & Broome), soybean (soy bean rust Phakopsora pachyrhizi 

Syd. & P. Syd., Phakopsora meibomiae Arthur), beans (common bean rust Uromyces 

appendiculatus F. Strauss, Uromyces phaseoli (Pers.) Wint. var. typica Arth., broad bean rust 
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Uromyces viciae-fabae (Pers.) J. Schröt., faba bean rust Uromyces viciae-fabae var. viciae-fabae 

(Pers.) J. Schröt.), cowpea (cowpea rust Uromyces phaseoli (Pers.) Wint. var. vignae (Barel.) 

Arth.), chickpea (chickpea rust Uromyces ciceris-arietini (Grognot) Jacz. & Boyd), alfalfa 

(alfalfa rust Uromyces striatus Schrot.), pea (pea rust Uromyces pisi-sativi (Pers.) Liro), flax 

(flax rust Melampsora lini (Pers.) Lév.), mint (mint rust Puccinia menthae Pers.), sugarcane 

(sugarcane rust Puccinia Melanocephela Syd.), chives, garlic, leek and onion (Puccinia allii 

(DC.) F. Rudolphi), and many others. 

A number of fruit and ornamental species are also attacked by rusts. It has been reported that rust 

fungi occur on 46 % of the species of European Rosaceae (Helfer, 2005) including leaf rust on 

plum (Tranzschelia pruni-spinosa (Pers.) Dietel var. discolor), rust on peach (Tranzschelia 

discolor (Fuckel) Tranzschel & Litwinow f.sp. persica Bolkan, J.M. Ogawa, Michailides & 

Kable), blackberry cane and leaf rust (Kuehneola uredinis (Link) Arthur), rusts on roses 

(Phragmidium tuberculatum Jul. Müll., Phragmidium mucronatum (Pers.) Schltdl., and 

Phragmidium rosae-multiflorae Dietel), and cedar-apple rust (Gymnosporangium juniperi-

virginianae Schwein). Rusts fungi can be also found on several tree species such as eucalyptus 

(Puccinia psidii G. Winter); birch (Blastospora smilacis Dietel); mulberry (Aecidium mori 

Barclay); willow and poplar (Melampsora spp.).  

The most important rust pathogens on conifers are white pine blister rust (Cronartium ribicola 

J.C. Fisch.), western gall rust (Endocronartium harknessii J.P. Moore), pine gall rust 

(Cronartium quercuum f.sp. fusiforme (Hedgc. & N. Hunt) Burdsall & G. Snow), pine needle 

rusts (Coleosporium asterum (Dietel) Syd. & P. Syd.), spruce needle rust (Chrysomyxa ledicola 

Lagerh.), and chrysomyxa rust of spruce (Chrysomyxa ledi (Alb. & Schwein.) de Bary). 

According to Arthur (1924) ferns have the most ancient lineage of rust fungi, and there are only 

three fern families (Osmundaceae, Polypodiaceae and Schizaeaceae) that may be infected by 

rusts. On the fern species from the family Osmundaceae, only one rust species occurs 

(Uredinopsis osmundae Magn.), on Polypodiaceae spp. Hyalopsora aspidiotus (Magn.) Magn., 

Milesia magnusiana (Jaap) Faull, Calidion lindsaeae (Henn.) Syd. & P. Syd. and Calidion 

dumontii Buriticá occur, and Schizaeaceae spp. are bearing rust species from the genus 

Dicaeoma (Arthur, 1924).  

Summarizing all that was mentioned above, one could say that rust fungi have been a well-

known group of organism for a long time due to their distinct features and economic importance. 

At the same time, they exhibit rather complicated life cycles that make them difficult to study. A 

good example of this is the recent identification of barberry (Berberis spp.) an alternative hosts 

for P. striiformis (Jin et al. 2010). Even though barberry plants were known to be associated with 

cereal rusts since the Middle Ages and eradication of barberry bushes near cereals fields was 

established by law in many countries (Zadoks and Bouwman 1985). Barberry bushes in Sweden 

were also eradicated until 1994, when the law was repealed (Berberislag, SFS 1976:451, SFS 

1994:103). Uredinial and telial stages in the life cycle of the rust fungi are the two stages that 

mostly have been studied due to their ability to cause damage on economically important crops 

(Leonard and Szabo 2005), while others like the aecial stage have got less attention. For 

example, the morphological study of aecia of some rust species was made by Sato and Sato in 

1985 and the review of the grass fungi that have Berberis and Mahonia spp. as uredinial and 

http://species.wikimedia.org/wiki/DC.
http://species.wikimedia.org/w/index.php?title=F._Rudolphi&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=J.C.Fisch.&action=edit&redlink=1
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aecail host was made by Cummins and Greene in 1966. In addition to morphological description 

of rust species, nowadays various PCR technologies are available that makes it possible to detect 

and effectively amplify even small parts of fungal DNA for sequencing. But at the same time, 

one cannot rely only on DNA sequence data, morphological features also give useful information 

about species and their biology (Abbasi et al. 2005).   

Considering this, the main aim of this study was to examine which species of rust fungi that form 

aecia on Berberis spp. collected in different parts of Sweden by using molecular techniques and 

spore and aecia morphology description.  

Images of barberry bushes from several locations are presented in Figure 2.  

Figure 2. Infected barberry bushes from different locations: 52 (A, F), 55 (B), 59 (C), 61 (D) and 

69 (E). Arrows indicates where aecia are found on the leaves. Photo: Anna Berlin. 

Three different genes were used in DNA sequencing: the internal transcribed spacer (ITS) 

region, β-tubulin and elongation factor 1-α partial (EF1-α). The ITS region is the most popular 

locus for species identification and phylogenetic inference in sequence-based mycological 

research (Roose-Amsaleg et al. 2002; Nilsson et al. 2008) and is the most frequently sequenced 

region among fungi (Wang et al. 2009). This region is situated between the 18S and 28S 

ribosomal genes, which are found in multiple copy number in eukaryotes (Weider et al. 2005). 

Another two genes (β-tubulin and EF1-α) were selected because they have been successfully 

used in fungal systematics. A number of fungal phylogenies have been inferred from a 
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combination of three gene regions (de Jong et al., 2001; Slipper et al., 2004; Frøslev et al., 2005; 

Hansen et al., 2005). As an example, Slippers et al. (2004) in their study have used combination 

of ITS, β-tubulin and EF1-α to reidentify several fungi species. Moreover EF1-α, β-tubulin, and 

mitochondrial ATPase 6 genes, have been used in many recent multi-locus phylogenetic studies 

(Chaverri et al., 2003; Reeb et al., 2004; Tanabe et al., 2004; Thell et al., 2004; Cai et al., 2005). 

The main advantage of using these protein-coding genes is that they are strictly single copies in 

fungi and thus avoid the pitfalls of paralogous comparisons. In addition these genes (ITS region, 

β-tubulin and EF1-α) have previously been successfully used in phylogenetic studies of rust 

fungi (van der Merve et al. 2007; M. van der Merve et al. 2008; Liu & Hambelton, 2010). 

2 Materials and methods 

2.1 Rust and barberry collection  

The rust and barberries specimens were collected by Anna Berlin during 11
th

 - 15
th

 of June 2010 

in south-eastern Sweden (Figure 3). All collected samples were kept as herbarium samples.  

2.2 Genomic DNA extraction 

For DNA extraction as well as for image analysis the same aecia were investigated. For each 

sample one aecium was cut in to two pieces; one half was used for DNA extraction and the other 

one for morphological study of the spores and aecia. For DNA extraction, rust samples were 

taken from infected herbarium specimens and put in 2 ml test tubes with the screw cap together 

with 6 cm of dried oat leaf, 20 pieces of 2 mm glass beads and a knife point of diamateous earth. 

The samples were shaken in a FastPrep shaker (Precellys24-Dual, Bertin technologies) at 5,000 

rpm for 2×20 seconds to a fine powder. Genomic DNA was isolated using the OmniPrep™ kit 

(G-Biosciences, St Luis, MO) according to the manufacture‟s protocol for fungal tissue. The 

DNA concentration was estimated using a spectrometer (ND-1000 Nano Drop®, Saveen 

Warner) and each sample was diluted to 20 ng /μL. 

Genomic DNA of barberry leaf samples were isolated as described above (without adding dried 

oat leaf) with the OmniPrep™ kit (G-Biosciences, St Luis, MO) according to the manufacture‟s 

protocol for solid tissue. 

2.3 PCR amplification and sequencing 

In this study the ITS region, β-tubulin and elongation factor 1-α partial (EF1-α) genes were 

sequenced.  

To produce the ITS sequences, a 50 µl PCR reaction solution was used. It contained 80 ng of 

template DNA, 5 µl 10× Dream Taq™ Buffer (Fermentas, Helsingborg, Sweden), 5µl 0,2 mM 

dNTP (Larova, GmbH), 0,8 µM of each primer: forward TS1rustF10d and reverse StdLSUR2a 

(Barnes and Szabo 2007), 1,25 units Dream Taq™ DNA Polymerase (Fermentas, Helsinborg, 

Sweden) and 1,5 µl MgCl2. 
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Figure 3. Map representing locations from where samples were collected. 

The PCR 2720 Thermal Cycler (Applied Biosystems) was programmed to implement following 

cycling conditions: 1 cycle of 94°C for 5 min; 35 cycles of 94°C for 30 s, 55°C for 30 s and 72°C 

for 30 s; 1 cycle of 72°C for 7 min and holding at 4°C. Part of the samples (532, 551, 552, 571, 

612, 613, 621, 701, 702, 703 and 704) did not produce amplifications with primers mentioned 

above. For them, the forward primer ITS3 (White et al, 1990) was used.  

For amplification of the ITS region of the nuclear ribosomal DNA of barberry samples, a PCR 

reaction using 50 µl was conducted. The reaction mixture contained 80 ng of template DNA, 10 

µl 5× Phusion® HF Buffer (Finnzymes OY), 2 µl 10 mM dNTP (Larova, GmbH), 1,3 µl each of 

the universal ITS1 (White et al, 1990) and ITS2 primers (White et al, 1990), 1 unit Phusion® 

DNA Polymerase (Finnzymes OY), 1,5 µl MgCl2 and 1,5 µl DMSO. The PCR Thermal Cycler 

was programmed to implement following cycling conditions: 1 cycle of 98°C for 5 min; 35 

cycles of 98°C for 30 s, 62°C for 30 s and 72°C for 30 s; 1 cycle of 72°C for 7 min and holding 

at 4°C. The PCR products evaluation, purification and sequencing were performed as described 

above.  
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EF1-α DNA sequences amplification of rust samples was performed in 50 µl reaction mixtures 

using the same protocol as for ITS but without MgCl2 (more water was added instead) and with 

forward primer EF1 (Anne-Marie Justesen, unpublished) and reverse primer EfbasidR (van der 

Merve et al 2007). The following cycling conditions were used: 1 cycle of 94°C for 5 min; 35 

cycles of 94°C for 30 s, 57°C for 30 s and 72°C for 30 s; 1 cycle of 72°C for 7 min and holding 

at 4°C. The PCR products evaluation, purification and sequencing were performed using the 

same procedure as for the ITS sequences. 

The amplification of β-tubulin DNA sequences was conducted using the same protocol as for 

ITS amplification with the following thermal conditions: 1 cycle of 94°C for 5 min; 38 cycles of 

94°C for 30 s, 57°C for 30 s and 72°C for 30 s; 1 cycle of 2°C for 7 min and holding at 4°C. 

About 77 % of the samples were amplified using the Tub1 (Anne-Marie Justesen, unpublished) 

and Tub2 (Anne-Marie Justesen, unpublished) primers. Two samples (582 and 672) were 

amplified using a nested PCR. During the first PCR reaction, a 20 µl mixture containing 80 ng of 

template, 2µl 10× Dream Taq™ Buffer (Fermentas, Helsingborg, Sweden), 2µl 0,2 mM dNTP 

(Larova, GmbH), 0,4 µM of each primer β-tub 1317F (van der Merve et al 2007) and β-tub 

2662R (van der Merve et al 2007), 0,6 units Dream Taq™DNA Polymerase (Fermentas, 

Helsinborg, Sweden) and 0,7 µl MgCl2. The thermal cycling conditions were: 1 cycle of 94°C 

for 5 min; 38 cycles of 94°C for 30 s, 58°C for 30 s and 72°C for 30 s; 1 cycle of 72°C for 7 min 

and holding at 4°C. The second PCR reaction was performed analogically with the 1317F and 

2662R primers. For successfully amplified samples, a 50 µl reaction was conducted using the 

PCR products from the first cycle. 

For all reactions, the success of the PCR reactions was evaluated using 1 % agarose gel 

electrophoresis. Successfully amplified samples were purified with Agencourt® AMPure® PCR 

Purification kit (Backman Coulter Inc.). All purified PCR products were sent to Macrogen Inc. 

(Seoul, South Korea) for sequencing from both directions using the same primers as for the PCR 

reactions respectively. 

2.4 Phylogenetic analysis 

All sequences were checked using SeqMan™II 5.07 (1989-2003 DNASTAR Inc.) and a 

consensus sequence was generated. Sequences of each gene were edited using the program 

MEGA 5 (Tamura et al. 2011) and all sequences for each gene were aligned separately using 

CLUSTAL W (Thompson et al. 1994). In order to check single apparent misalignment, the three 

sequence alignments were checked by eye and compared with the primary sequences. Even 

though this process is time consuming it was important to get reliable sequence alignment since 

following analysis will be carried out on their basis. For species identification, all aligned and 

checked sequences were compared with the available sequences in the BLAST database 

(Altschul et al. 1997). Three analyses were conducted. In the first analysis for all obtained 

sequences phylogenetic tree was made in MEGA 5 using neighbor-joining analysis (Saitou and 

Nei, 1987), which was conducted using a bootstrap method with 1000 replicates (Felsenstein, 

1985). Transitions and transversions (with the equal ratio) were included in the analysis. A 

maximum composite likelihood method was used in the substitution model. Cut-off values of the 

condensed trees were set to 75 %. The trees were drawn to scale, with branch lengths in the same 

units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary 

distances were computed using the Maximum Composite Likelihood method (Tamura et al. 
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2004) and were in the units of the number of base substitutions per site. All ambiguous positions 

were removed for each sequence pair. In the second analysis, only controversial sequences were 

included; for each gene the alignments were compounded by 44 sequences downloaded from 

GenBank (33 for ITS, 1 for EF1-α and 12 for β-tubulin) (Appendix A-C). Bayesian Markov 

chain Monte Carlo analyses (MCMC) were performed using cross-platform BEAST 1.4. Using 

BEAUti graphical software, the Hasegawa-Kishino-Yano substitution model and strict molecular 

clock (assumes a global clock rate with no variation among lineages in a tree) models were 

conducted. The starting trees in the MCMC run were randomly generated and the MCMC 

algorithm was run for 100,000,000 generations. The information from a sample of trees produced 

by BEAUti/BEAST package was summarized using the program TreeAnnotator. Posterior 

probability limit was set to 0,5 and the target trees were set as Maximum clade credibility tree for 

each gene separately.  

2.5 Spore collection and morphology  

Cross-sections of aecium were done by cryostat 

using a Leica CM 1850 (Leica Microsystems 

Nussloch Gmb H). Jung Tissue Freezing 

Medium® for frozen tissue specimens (Leica 

Microsystems Nussloch Gmb H) was used in 

order to prepare samples for cross-section. The 

cross-sections were examined only for samples 

that visually differed from others, eight in total 

(Table 2). All samples were put in lactophenol. 

For obtaining digital images of cross-sections, 

the same equipment was used as for 

aeciospores.  

Figure 4. Aecia (aecidium type). Hymenia (H),  

peridia (P), aeciospores (AS), peridial cells 

(PC). Bar = 75 µm.  

The morphological type of aecia obtained from cross-sections was analyzed according to Sato 

and Sato (1985). For each aecium characteristics such as type of hymenia, peridia and peridial 

cells were evaluated (Figure 4).  

In order to get aeciospores for analysis, different methods of sample rehydration were tested 

(with water, 70% ethanol and KOH). The shapes of rehydrated aeciospores were compared with 

spore samples that had been deep frozen (-70 °C) within two days after collection, which were 

considered to be fresh. Rehydration was conducted in Petri dishes filed with water for at least 1 

hour at room temperature (Liu and Hambleton, 2010). Aeciospores were scratched from the leaf 

material using a single-edged blade and put under cover slips on slides in lactophenol to avoid 

accumulation of air bubbles around their hydrophobic surface (Anikster et al. 2005).  

For description of aeciospore morphology length, width and spore projection area was measured 

(Anikster et al. 2005). An observation field under the microscope was selected randomly and all 

http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Monte_Carlo_method


 
 

17 
 

spores within this field were measured except those touching field boundaries, other spores or 

plant debris. The best fitting ellipse was used for spore projection area measurement; the larger 

axis was assumed as length and the smaller axis as width (Anikster et al. 2005). At least 20 

spores were measured within each sample. More spores were measured if the obtained data was 

not normally distributed. Spore images were produced using differential interference contrast 

(DIC) and bright field (BF) microscopy (Figure 2) with Leica DM 5500 B Digital Microscopes 

(Leica Microsystems CMS Gmb H) and Leica Application Suite Advanced Fluorescence 235 

build 5371 software. Length, width and spore area was analyzed for significance in differences 

by one-way ANOVA and Student‟s t-test. Using these statistical analyses all samples were put in 

different groups. Samples from one group differ significantly from other groups, whereas the 

difference between the samples within each group was not significant. For length, width and 

projection area, separate analyses were conducted. This grouping was then compared with the 

BLAST results and arranged in tables 4-6.     

3 Results 

This study investigated the rusts forming aecia on barberry in Sweden. The aeciospores and 

morphology of the aecia as well as DNA sequences of ITS, β-tubulin and EF1-α from 45 aecial 

samples collected form 18 barberry bushes were analyzed.  

3.1 DNA sequences analysis 

In total 138 sequences were successfully amplified and sequenced (18 for barberry plants, 44 for 

ITS, 44 for EF1-α and 32 for β-tubulin). The effective length of the ITS region fragment varied 

between 782 and 1056 bp, between 411 and 638 bp for EF1-α, and from 659 to 1180 bp for β-

tubulin. The effective length of the ITS region for barberry varied between 206 and 368 bp. 

In accordance with sequences in the BLAST reference database, five different rust species were 

distinguished: P. graminis f.sp. avenae, P. graminis f.sp. tritici, P.coronata, P. striiformis and P. 

poae-nemoralis (Table 1). The presence of species P. graminis f.sp. avenae, P. graminis f.sp. 

tritici and P. coronata was confirmed by all three genes with high level of maximum identity (97 

to 100%). 

The rest of the 12 samples were identified differently: P. striiformis (according to the sequences 

from ITS region) and P. poae-nemoralis (according to β-tubulin and EF1-α partial gene). For the 

most ITS sequences maximum identity was 94 %, sample number 701 had maximum identity 

96% and sample number 703 – 97%. For most EF1-α sequences maximum identity was the 

lowest (from 90 to 91 %) except sample number 704 that had maximum identity of 93 %. The 

highest maximum identity was obtained for β-tubulin sequences (98 %) except 97 % for samples 

number 632 and 704.  

DNA sequences analysis gave no clear results about species identity of the collected barberry 

plants and indicated with the same maximum identity for three different species for each sample. 

The following species were identified: Berberis aetnensis, Berberis croatica, Berberis vulgaris 

and as out-group Rhamnus cathartica was identified for location 72 (Table 2). 
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Table 1. Species name identified according to sequences from BLAST database for ITS region, EF1-α and β-tubulin genes. Maximum 

identity indicates similarity of obtained sequence to a database sequence. Sample identity: first two numbers specify location, the last 

one – the number of replication; -, sequences were not amplified. 

Sample ITS EF1-α β-tubulin 

Species name Maximum 

identity, % 

Species name Maximum 

identity, % 

Species name Maximum 

identity, % 

521 P. graminis f.sp. tritici 100 - - - - 

522 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 96 P. graminis f. sp. avenae 99 

523 P. graminis f.sp. tritici 99  P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

531 P. graminis f.sp. tritici 100 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

532 P. graminis f.sp. tritici 99  P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 99 

533 P. graminis f.sp. tritici 100  P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

551 P. graminis f.sp. avenae 100 P. graminis f.sp. avenae 98 - - 

552 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 99 

553 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 98 

571 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 96 P. graminis f.sp. tritici 99 

572 P. graminis f.sp. avenae 99  P. graminis f.sp. avenae 97 - - 

581 P. graminis f.sp. avenae 100 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 99 

582 P. coronata 99 P. coronata 96 P. graminis f.sp. avenae 99 

591 P. graminis f.sp. tritici 100 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

592 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

601 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 99 

602 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 97 P. graminis f.sp. tritici 98 

603 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 97 P. graminis f.sp. tritici 99 

604 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 99 

611 P. striiformis 94 P. poae-nemoralis 90 P. poae-nemoralis 98 

612 P. striiformis 94 P. poae-nemoralis 90 - - 

613 P. striiformis 94 P. poae-nemoralis 90 P. poae-nemoralis 98 

614 P. striiformis 94 P. poae-nemoralis 90 - - 

621 P. graminis f.sp. tritici 99 P. graminis f. sp. tritici 98 P. graminis f.sp. tritici 98 

622 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 97 P. graminis f.sp. avenae 99 

631 P. striiformis 94 P. poae-nemoralis 90 P. poae-nemoralis 98 



 
 

19 
 

Sample ITS EF1-α β-tubulin 

Species name Maximum 

identity, % 

Species name Maximum 

identity, % 

Species name Maximum 

identity, % 

632 P. striiformis 94 P. poae-nemoralis 91 P. poae-nemoralis 97 

633 P. striiformis 94 P. poae-nemoralis 91 P. poae-nemoralis 98 

634 P. striiformis  94 P. poae-nemoralis 91 P. poae-nemoralis 98 

641 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 99 

642 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 90 P. graminis f.sp. avenae 98 

661 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 98 

662 - - P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

663 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 98 - - 

664 P. coronata 99 P. coronata 98 - - 

671 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 98 P. graminis f.sp. avenae 99 

672 P. graminis f.sp. avenae 99 P. graminis f.sp. avenae 99 - - 

691 P. graminis f.sp. tritici 99 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

692 P. graminis f.sp. tritici 100 P. graminis f.sp. tritici 98 P. graminis f.sp. tritici 99 

701 P. striiformis 96 P. poae-nemoralis 91 - - 

702 P. graminis f.sp. tritici 100 P. graminis f.sp. tritici 98 - - 

703 P. striiformis 97 P. poae-nemoralis 91 - - 

704 P. striiformis 94 P. poae-nemoralis 93 P. poae-nemoralis 97 

721 P. coronata 99 P. coronata 99 - - 

722 P. coronata 100 P. coronata 98 - - 
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Table 2. Species name identified according to similarity to sequences from the BLAST database 

for the ITS region. Maximum identity indicates similarity of obtained sequence to a database 

sequence. The numbers specifies the locations from where the samples were collected  

Sample Species name Max identity, % Sample Species name Max identity, % 

52 B. aetnensis 100 63 B.  aetnensis  100 

 B. croatica  100  B.  croatica 100 

 B. vulgaris 100  B.  vulgaris  100 

53 B. aetnensis  100 64 B.  aetnensis  100 

 B. croatica  100  B.  croatica  100 

 B. vulgaris  100  B.  vulgaris  100 

55 B. aetnensis  98 66 B. aetnensis  98 

 B. croatica  98  B.  croatica  98 

 B. vulgaris  98  B.  vulgaris  98 

57 B. aetnensis  99 67 B.  aetnensis  99 

 B. croatica  99  B.  croatica  99 

 B. vulgaris  99  B.  vulgaris  99 

58 B. aetnensis  100 68 B.  aetnensis  100 

 B. croatica 100  B.  croatica  100 

 B. vulgaris  100  B.  vulgaris  100 

59 B.  aetnensis 88 69 B.  aetnensis  92 

 B.  croatica  88  B.  croatica  92 

 B.  vulgaris  88  B.  vulgaris  92 

60 B.  aetnensis  100 70 B.  aetnensis 97 

 B.  croatica  100  B.  croatica 97 

 B.  vulgaris  100  B.  vulgaris 97 

61 B.  aetnensis  100 71 B.  aetnensis  99 

 B.  croatica  100  B.  croatica  99 

 B.  vulgaris 100  B.  vulgaris 99 

62 B.  aetnensis  97 72 R.  cathartica  99 

 B.  croatica 97    

3.2 Morphology 

Between the samples, there were two distinct patterns of aecia appearance on the leaves. Mostly 

(in 72 % or 31 samples) aecia on leaf appeared in yellow, light orange, cup-like, gregarious 

spots. On the rest of the samples, aecia resembled from bright yellow to brownish powder that 

covered the whole surface of the leaf, which were stunted and curled (Figure 5). These two types 

of aecia were denominated spot like (S) and powder like (P) respectively and specified for each 

sample in table 3. 

Cross-sections for 4 different rust species were obtained (Figure 6).  
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Figure 5. Aecia on barberry leaf. Spot like (S) (left) and powder like (P) (right). 
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Figure 6. Cross-section of aecium. P. graminis f.sp. tritici (A, B, C, D), P. graminis f.sp. avenae 

(E, F, G) and P. striiformis/P. poae-nemoralis (H, I, J). Bar = 100 µm. 

According to Sato and Sato (1985), all aecia obtained from cross-sections in this study have 

morphological type aecidium. It is cupulate, gregarious, yellowish, and erumpent with elliptical 

or oval peridial cells, intramesophyllic, flat hymenium, peridiate sori with single-layered, fragile 

peridium (Sato and Sato, 1985).  

Even though all obtained aecia belong to the same morphological type by visual evaluation of 

images from figure 6, some obvious dissimilarity between aecia of different species was found. 

Aecia of P. graminis f.sp. tritici are deep-seated into leaf tissue, have roundish shape with close 

disposition to each other. The ending of the peridium is bent inside the aecia cup. Aecia of P. 

graminis f.sp. avenae differ from others and have oblong shape. The ending of the peridium is 

A 
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slightly bent outside the aecia cups, which are densely located. Finally, samples identified as P. 

striiformis/P. poae-nemoralis have wide aecia with peridium ends fairly folded outside. Aecia 

are placed deeply into the leaf tissue and on a relatively large distance from each other compared 

with the other species.   

In total, 984 spores were measured. Table 3 summarizes all obtained measurements. For samples 

521, 531, 553, 572 and 722 spore measurements are missing because no spores were found in 

those samples. 

Spore images of five different species are presented in figure 7. 

Table 3. Mean values and standard deviation (SD) of measured length, width and projection 

area by sample. Sample identity: first two numbers denote location, the last one the number of 

repetition, letters specify type of aecium on barberry leaves: spot like (S) or powder like (P); “*” 

marks the samples from which cross-sections of aecia were taken. Number of spores – number of 

spores measured for each sample 

Sample Number 

of spores 

Mean 

length, μm 

SD Mean width, 

μm 

SD Mean 

projection area, 

μm
2
 

SD 

521S 22 16,98 1,09 15,56 1,14 207,15 20,58 

522S 21 16,73 0,87 15,06 1,02 198,53 20,69 

531S 22 17,70 1,68 15,11 1,46 209,48 36,38 

532S 23 18,32 1,44 15,57 1,00 222,92 18,13 

551S* 36 17,49 0,85 16,14 0,74 222,96 17,13 

552S 22 16,41 1,36 13,78 0,86 177,95 19,75 

571S 20 20,76 1,68 16,63 0,98 265,38 26,00 

581S 20 16,37 1,26 15,25 0,86 196,68 21,40 

582S 30 21,96 0,93 18,68 0,94 322,82 13,83 

591S 20 18,88 1,32 16,98 1,27 252,66 32,40 

592S 37 18,51 1,42 16,12 1,00 236,10 23,31 

601S* 26 18,45 1,33 15,84 1,37 228,64 30,36 

602S 34 18,52 1,61 16,47 1,02 239,62 30,54 

603S 20 18,25 1,73 15,84 1,07 227,27 32,10 

604S 21 16,65 1,21 14,49 1,06 189,34 21,13 

611P* 36 24,52 2,58 20,43 2,04 396,61 63,88 

612P 21 23,42 1,85 19,64 1,76 364,94 54,20 

613P 21 23,82 1,41 19,55 1,39 366,19 38,52 

614P 29 24,47 1,29 20,80 1,47 400,95 27,87 

621S 20 18,20 1,17 16,34 0,98 240,36 22,56 

622S 25 18,22 0,86 15,83 1,08 229,12 17,84 

  631P* 36 24,54 1,92 20,71 1,44 400,21 47,29 

632P 25 24,09 1,53 20,59 1,75 397,43 35,60 
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633P 21 23,75 1,58 19,91 1,26 371,90 38,90 

634P 24 23,77 2,15 19,78 1,18 373,23 42,66 

641S 21 18,29 1,63 15,82 1,05 227,68 27,63 

642S 20 17,68 1,22 15,51 0,79 221,56 18,45 

  661S* 20 19,58 1,18 16,98 1,08 263,65 25,55 

662S 23 19,69 1,53 17,02 1,06 265,93 24,76 

663S 21 18,42 1,14 16,00 0,96 230,64 24,05 

664S 30 20,10 1,83 16,89 0,87 265,68 30,21 

671S 26 19,50 1,57 15,78 0,98 244,46 28,26 

672S 20 18,06 1,33 15,94 0,89 227,18 24,52 

691S 25 18,24 1,19 16,12 0,92 231,42 22,79 

692S 21 18,58 1,15 16,13 0,85 236,06 21,37 

701P 27 26,94 2,44 19,64 1,75 414,13 43,22 

  702S* 22 20,44 0,93 18,55 0,82 297,26 17,73 

703P 23 28,10 2,62 20,79 1,28 458,60 37,79 

704P 27 24,70 2,14 20,36 1,50 393,32 46,21 

721S 26 19,55 1,53 18,68 0,93 337,31 28,10 
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Figure 7. Spore images obtained by DIC (left) and BF (right) microscopy. P. graminis f.sp. 

avenae (A, B), P. graminis f.sp. tritici (C, D), P.coronata (E, F) and P. striiformis/P. poae-

nemoralis (G, H). Bar = 25 µm. 

P. graminis f.sp. avenae and P. graminis f.sp. tritici have roundish spores compared with 

P.coronata and P. striiformis/P. poae-nemoralis which have spores with more prolonged shape. 

The mean length, width and projection area for all detected species are presented in table 4-6. 

Samples P. striiformis and P. poae-nemoralis are written in quotation marks because of the 

inconsistency in the species names based on the different genes. According to ITS P. striiformis 

was obtained and according to EF1-α and β-tubulin P. poae-nemoralis while morphological data 

analysis indicates that it is the same species.  

Table 4. Species obtained from ITS sequence (according to the BLAST database) and one-way 

ANOVA analysis of spore dimensions (P-value < 0,0001) 

ITS Number 

of 

spores 

Mean 

length, 

μm 

SD Mean 

width, 

μm 

SD Mean 

projection 

area, μm
2
 

SD 

P. graminis f.sp. 

avenae 

259 17,69 1,54 15,50 1,19 216,95 29,33 

P. graminis f.sp. 

tritici 

326 18,63 1,64 16,27 1,30 239,14 33,97 

P. coronata 86 20,58 1,79 17,32 1,37 280,51 40,32 

„P. striiformis‟ 290 24,76 2,40 20,25 1,61 395,58 50,38 
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Table 5. Species obtained from EF1-α sequence (according to the BLAST database) and one-

way ANOVA analysis of spore dimensions (P-value < 0,0001) 

EF1-α Number 

of 

spores 

Mean 

length, 

μm 

SD Mean 

width, 

μm 

SD Mean 

projection 

area, μm
2
 

SD 

P. graminis f.sp. 

avenae 
259 17,69 1,54 15,50 1,19 216,95 29,33 

P. graminis f.sp. 

tritici 
349 18,70 1,65 16,32 1,30 241,02 33,91 

P. coronata 86 20,58 1,79 17,32 1,37 280,51 40,32 

‟P. poae-nemoralis‟ 290 24,76 2,40 20,25 1,61 395,58 50,38 

 

Table 6. Species obtained from β-tubulin sequence (according to the BLAST database) and one-

way ANOVA analysis of spore dimensions (P-value < 0,0001) 

β-tubulin Number 

of 

spores 

Mean 

length, 

μm 

SD Mean 

width, 

μm 

SD Mean 

projection 

area, μm
2
 

SD 

P. graminis f.sp. 

avenae 
233 18,24 2,13 15,77 1,64 228,78 46,70 

P. graminis f.sp. 

tritici 
327 18,58 1,62 16,17 1,19 237,24 31,30 

‟P. poae-nemoralis‟ 190 24,23 2,00 20,26 1,60 387,88 48,28 

3.3 Phylogenetic analysis 

The phylogenetic analysis involved 44 nucleotide sequences with the total of 1147 positions in 

the final dataset (for ITS region sequences); 44 nucleotide sequences with the total of 738 

position (for EF1-α gene sequences), and 32 nucleotide sequences with the total of 1219 

positions (for β-tubulin gene sequences). The number of position resembles the longest 

sequences in each alignment. The percentages of replicate trees in which the associated taxa 

clustered together in the bootstrap test are shown next to the branches (Felsenstein, 1985).   

Evolutionary relationship between species for different genes is presented in figure 8 to10. 

For better visualization, well-distinguishable clusters were joined together with a brace and 

named as group A for P. graminis f.sp. tritici, group B for P. graminis f.sp. avenae, group C for 

„P. striiformis‟ or „P. poae-nemoralis‟ and group D for P. coronata, respectively. The main tree 

branches was marked by arrows and named as Clade 1, 2 and 3. Also within each group, tree 

branches with support value more than 75 % were pointed by arrows and named according to the 

group (e.g. A1 or B2).     
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Figure 8. Evolutionary relationships of taxa obtained using partial gene sequence of the ITS 

region. Arrows indicate nodes linking taxa into sub-clades. The optimal tree with the sum of 

branch length = 1.16307078 is shown. Species identity is based on sequence similarities to 

sequences deposited in the BLAST database. 
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Figure 9. Evolutionary relationships of taxa obtained using partial gene sequence of the EF1-α 

gene. Arrows indicate nodes linking taxa into sub-clades. The optimal tree with the sum of 

branch length = 0.74639005 is shown. Species identity is based on sample sequence similarities 

to sequences deposited in the BLAST database. 
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Figure 10. Evolutionary relationships of taxa obtained using partial gene sequence of the β-

tubulin gene. Arrows indicate nodes linking taxa into sub-clades. The optimal tree with the sum 

of branch length = 0,23053799 is shown. Species identity is based on sequence similarities to 

sequences deposited in the BLAST database. 

The phylogenetic tree shown in figure 8 indicates two distinct clades (with 80% and 100% 

support respectively). Clade 2 represents only one species (P. graminis f.sp. avenae) and within 

group B, P. graminis f.sp. tritici is placed in Clade 1 and has two sub-clades with the 75 % and 

79% of support. Puccinia striiformis forms a separate group (with two rather well supported sub-

clades) within Clade 1. Group D within Clade 1 represents P. coronata and is characterized by 

well-supported sub-clades.  

In figure 9, three clades within this phylogenetic tree can be distinguished. The EF1-α gene 

phylogeny (compared with ITS) indicates that Clade 1 consists of only one group (group A), 

which represents P. graminis f.sp. tritici. This clade has one sub-clade, which divides samples 

523 and 553, with a support of 85%. Clade 2 also consists of one group, group B. This group 

represents P. graminis f.sp. avenae, which is similar to the ITS region tree phylogeny. Within 
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this group, three sub-clades are present which is not the case for ITS. The third clade contains 

two groups: group C (P. poae-nemoralis) and group D (P. coronata). Group C forms two sub-

clades, one of which (D1) has 100 % support and separates sample 704 from the others. Group D 

consists of two sub-clades, which separate samples 664 and 721 from two other samples (722 

and 582).  

Figure 10 shows the phylogenetic tree for the β-tubulin gene with three clades. Clade 1 contains 

group A, which represents P. graminis f.sp. tritici which is also confirmed by the EF1-α gene 

phylogeny. This group has three sub-clades, but none of them correspond to any of the sub-

clades in the comparable group in the EF1-α gene phylogeny. Clade 2 consists of group B (P. 

graminis f.sp. avenae) which is the same for the two other genes. Finally, clade 3 represents P. 

poae-nemoralis (group C) without any sub-clades. P. coronata was not identified due to failing 

in PCR amplification. 

Figure 11-13 represent trees that consist of controversial sequences and sequences of the same 

species downloaded from GenBank. Puccinia striiformis (identified according to ITS sequences) 

and P. poae-nemoralis (identified according to EF1-α and β-tubulin sequences) belong to the 

controversial sequences because morphological data indicates that it is the same species.   

Figure 11 shows that sequences obtained using the ITS region sequences and were identified as 

P. striiformis are clustered separately from the other P. striiformis sequences. They form a 

separate clade that has a rather strong support and consists of four well supported sub-clades. 

These sub-clades separate samples 631-634, 611, 613, 614 and 704 from the other three samples. 

At the same time, these three sequences (612, 701 and 703) are clustered together with five of 

the downloaded sequences identified as P. poae-nemoralis and P. brachypodii f.sp. poae-

nemoralis.   

The tree that represents sequences obtained using the EF-1α gene sequences (Figure 12) contains 

only one downloaded sequence of P. poae-nemoralis because no other sequences for this gene 

was found in the GenBank database. Nevertheless, all our sequences except one (704) have 

formed an individual clade with 99% support. Within this clade, sample 633 and 634 has formed 

a sub-clade, which is similar to the previous tree. The sample 704 is cluster separately both from 

the downloaded and from the sequences obtained in this study. 

In the tree with sequences obtained using the β-tubulin gene sequences (Figure 13), all sequences 

from this study clustered separately from the downloaded ones. This clade consists of three well 

supported sub-clades that isolate samples 631, 632 and 704 from 633 and 634, and from 611 as 

well as from 613. The reference sequences formed individual clades for P. striiformis, P. 

striiformides, P. pseudostriiformis and P. poae-nemoralis.  

Figures 14-16 represent Bayesian phylogeny trees for the three genes that have been computed in 

the software BEAST.  
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Figure 11. Evolutionary relationships of taxa obtained using the ITS region and sequences 

downloaded from GenBank (details resented in Appendix A). Dotted line is highlighting the area 

in which sequences acquired in this study are presented.  
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Figure 12. Evolutionary relationships of taxa obtained using the EF-1α gene and sequences 

downloaded from GenBank (details are presented in Appendix A). Dotted line is highlighting the 

area with sequences obtained in this study. The sample 704 was not included into the highlighted 

area because it is cluster separately from the clade with sequences obtained in this study. 

According to the Bayesian phylogeny, two clades are formed in all presented trees (Figure 14 - 

16). One clade consists of „P. striiformis‟ (in the ITS tree), „P. poae-nemoralis‟ (in the β-tubulin 

tree) and of „P. striiformis‟ and P. coronata in the EF-1α tree. Another clade contains P. 

graminis f.sp. tritici, P. graminis f.sp. avenae and P. coronata (in the ITS tree), and P. graminis 

f.sp. tritici and P. graminis f.sp. avenae (in the EF-1α and β-tubulin tree β-tubulin trees). In all 

trees, different species (group A-D) are separated from each other by well-supported clades with 

the high posterior probabilities.  
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Figure 13. Evolutionary relationships of taxa obtained using the β-tubulin gene and sequences 

downloaded from GenBank (details are presented in Appendix A). Dotted line is highlighting the 

area with sequences from this study. 
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Figure 14. Bayesian phylogeny for ITS region assessed by BEAST (using HKY substitution model). Numbers represent posterior 

probabilities.
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Figure 15. Bayesian phylogeny for EF1-α gene assessed by BEAST (using HKY substitution model). Numbers represent posterior 

probabilities. 
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Figure 16. Bayesian phylogeny for β-tubulin gene assessed by BEAST (using HKY substitution model). Numbers represent posterior 

probabilities.
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4 Discussion  

4.1 Morphology 

In this study combinations of morphological and molecular tools for identification of different 

rust fungi species were implemented. In general, these two techniques gave similar result: four 

species were distinguished using spore image analysis and five species were identified according 

to sequence data. This is well represented in tables 4 to 6, where correlation between spores size 

and the species identity based on DNA sequences obtained from three different genes could be 

observed. Therefore these two tools could be successfully used for species identification as a 

complement to each other. In the taxonomic study of P. graminis (Abbasi et al. 2005), the 

authors suggests that in species identification, only sequence data is not enough because 

morphological features can give much more information about species and their biology; at the 

same time they claim that the aecieal stage from Berberis spp. could not be used for rusts 

intraspecific classification, and only urediniospores are required for such morphological analysis 

(Abbasi et al. 2005). 

Spore image analysis included measurements of spore width, length, pixels and projection area 

and indicated the presence of four different rust species. The difference in spore size was 

statistically significant (P-value < 0,0001) and could easily be observed on obtained spore 

images.   

The approach in spore measurements utilized in this study has earlier been used by Anikster et 

al. (2005). Despite the fact that the same technique was used (using the best fitting ellipse for 

spore projection area measurement; measuring length and width as the larger and smaller axis of 

the ellipse respectively; random selection of an observation field under microscope and 

measurement at least 20 spores for each sample), the results obtained here differ from those 

received by Anikster et al. (2005). In their study, Anikster et al. (2005) measured all spore stages 

for five different species (P. triticina, P. graminis, P. coronata, P. recondita, P. hordei and P. 

striiformis); at the time this article was published aecial host for P. striiformis was not known, 

thus the aeciospores measurements are missing. That is why spore size of only two species could 

be compared (their P. graminis with ours P. graminis f.sp. avenae and P. graminis f.sp. tritici 

and their P. coronata with our P. coronata). According to these comparisons, we have received 

smaller spore‟s dimensions in all parameters. This could be explained by difference in used 

software and also by such factor as subjective view on the best fitting ellipse as well as spore 

boundaries.  

Besides analysis of spore images, the description of aecia was also involved in the identification 

of the rust fungi species on the barberry plants. Aecium images of P. graminis f.sp. avenae, P. 

graminis f.sp. tritici and P. striiformis/P. poae-nemoralis were obtained and in accordance with 

Sato and Sato (1985) classification, all of them exhibit the morphological type aecidium. At the 

same time, figure 6 shows that aecia of different species has distinguishable features (shape, 

disposition to each other, location in the leaf tissue and peridium ends direction) which make it 

possible to use it as an additional tool in species identification. Moreover, according to Sato and 

Sato (1985), related genera usually have the same type of aecia thus it can be used in the natural 

classification and phylogenetic studies to reflect relationship within the Uredinales genera. 
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Additionally Leppik (1953) in the phylogenetic study of conifer rusts states that aecium is a 

valuable tool in phylogeny while aeciospores morphology and cell-wall structure have no special 

significance for phylogenetic distinction. In another taxonomical study of rust fungi on spruce 

(Crane, 2001), the author argue that in addition to aeciospore description certain morphological 

characteristics of aecia (the ornamentation of inner and outer peridial surfaces of the aecia, size 

and whether sori are confluent) may be a useful characters since it is difficult to identify 

Chrysomyxa to the species level. Cummins and Green (1966) describe morphology of 

urediospores, teliospores and aeciospores as well as morphological characteristics of uredia and 

telia while the description of aecia morphology is lacking in their review of the grass rust fungi 

that have Berberis and Mahonia spp. as an alternative host. Also in the morphological and 

taxonomical study of the Puccinia spp. on corn and sorghum (Pavgi, 1972) morphological 

distinctions of the pycnia and aecia at generic level were defined but assumed not to be much 

helpful in the species identification. 

Summarizing all the above it is obvious that most taxonomic and phylogenetic studies involving 

aecia and aeciospores morphology were made on conifer rusts; there is a lack of studies on aecia 

on other rust species in general and on Berberis spp. in particular; also there is no common view 

on importance of morphological features of this structures in taxonomic and phylogenetic 

studies. This study contributes the knowledge about aecia and aeciospore morphology in 

different rust species, proves the possibility of rusts intraspecific classification not only on 

uredinial (Abbasi et al. 2005) but also on aecial stage, and shows how the information could be 

used as a good supplement to existing knowledge in this area.  

4.2 DNA sequences analysis and species identification  

Another part of this study focused on DNA sequences analysis and phylogenetic relationship 

between the species. Three different partial genes (ITS region, β-tubulin and EF1-α) were used. 

In general it was more difficult to obtain sequences of partial β-tubulin gene, even when different 

primers and primer combinations were used, still less sequences were obtained in the end. This 

tendency was also noticed in other studies of rust fungi. In the taxonomic study of P. striiformis 

Liu and Hambilton (2010) successfully amplified 48 sequences from ITS and 33 sequences from 

β-tubulin; in the study about evolutionary relationship among Puccinia spp. and Uromycetes 

(van der Merwe et al. 2007) 66 sequences from EF1-α and only 31 β-tubulin were amplified. The 

lengths of obtained sequences vary between different genes: the shortest sequences were 

obtained from EF1-α partial gene and the length of sequences from β-tubulin partial genes and 

ITS region had about the same length as previous studies.  

All obtained sequences from the ITS region, and EF1-α and β-tubulin genes were compared with 

the BLAST database and the following rust species were identified: P. graminis f.sp. avenae, P. 

graminis f.sp. tritici and P. coronata. The sequence‟s matching (maximum identity) to those in 

the BLAST database was quite high and varied between 97 and 100% (two samples from EF1-α 

had 96% and one had only 90%). Moreover, morphology data perfectly fitted to this species 

identification.  

Puccinia coronata was identified in four samples (582, 664, 721 and 722). The ITS sequences‟ 

matching to the BLAST database for all these samples was 99 %; the EF1-α sequences matched 
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little bit less (96 % for sample number 582, 98 % - for samples number 664 and 722, and 99 % - 

for sample 721). This identification was not confirmed by β-tubulin sequences because we failed 

to amplify samples number 664, 721 and 722 while amplified sequence from sample number 582 

was identified as P. graminis f.sp. avenae (with 99 % of maximum identity). Despite this 

inconsistency the species name P. coronata was kept because of the strong support from 

sequences from ITS region and EF1-α gene, and also because of correspondence to the 

morphology data. 

In total 12 samples (611-614, 631-364, 701, 703, 704) were identified differently. According to 

the sequences from ITS region they were identified as Puccinia striiformis and according to the 

sequences form β-tubulin and EF1-α genes – as P. poae-nemoralis. The most obvious 

explanation of this disagreement could be that the sequence‟s matching to BLAST database in 

general was rather low in quality for these sequences. First and foremost it concerns the EF1-α 

sequences since they had the lowest maximum identity that varied from 90 to 91 % (except 93 % 

for sample number 704). Another important factor was that all these sequences were identified 

based on only one reference sequences (Appendix B), which makes obtained species 

identification less reliable. This is followed by the ITS sequences that got 94 % of maximum 

identity (except 96 % for sample number 701 and 97 % - for sample number 703). In this case, 

there were more reference sequences available that were submitted by different authors 

(Zambino and Szabo 1993; Barnes and Szabo, 2007; Jin, Szabo and Carson, 2010; Liu and 

Hambleton, 2010) (Appendix A). Nevertheless all these reference sequences did not helped to 

identify these particular species and this will be discussed later in the text. On the other hand, all 

β-tubulin sequences have got quite high maximum identity (97 and 98 %) even though only two 

reference sequences submitted by one author (van der Merwe et al. 2008) were found in BLAST 

database (Appendix C).  The spore image analysis indicated that all these samples are belonging 

to one species. 

For the barberry plants species identification, the ITS region was sequenced for 18 samples and 

identified using the BLAST database. Unfortunately this did not allow us to identify exactly the 

barberry species. For each sample, three different Berberis spp. were found (B. aetnensis, B. 

croatica and B. vulgaris) and they had the same maximum score and maximum identity (it varied 

between the samples from 88 to 100 %). The probable explanation of this could be short 

effective length of the obtained sequences (it varied from 206 and 368 bp) as well as the lack of 

studies on barberry. According to the DNA sequences analysis and spore morphology P. 

coronata was identified (locations number 58, 66 and 72). That is why in this study the 

alternative host of P. coronata (Rhamnus cathartica) was also identified (at least for location 

72). In the other two location R. cathartica was not identified since only one sample from each 

location was taken for DNA analysis, (in location 58 and 66 barberry and buckthorn plants were 

put in the same bag) and they happened to be Berberis spp.  

The ITS region has been suggested as a possible plant barcode locus because of its broad utility 

across photosynthetic eukaryotes and fungi (with the exception of ferns) (Stoeckle, 2003) and 

currently it is the most commonly sequenced locus for plant molecular systematic investigations 

at the species level (Alvares and Wendel, 2003). Most phylogenetic studies that employed ITS 

have proved its high species-level discrimination and technical ease, and a large sequence data 

already exists for this region (Kress et al. 2003). Several other studies have also reported ITS as 
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one of the suitable markers for barcoding in plants (Kress et al. 2005, Edwards et al. 2008). But 

there are also other studies that indicate ITS‟ inherent difficulties, e.g. low PCR success (Chase 

et al. 2007, Kress et al. 2004), problem of secondary structure formation, resulting in poor 

quality sequence data (Desalle, 2007; Waugh 2007) and multiple copy numbers (Alvarez and 

Wendel 2003), etc. This also concerns Berberis spp. identification. Roy et al. (2010) in his study, 

the ITS region was amplified for all the tested species of Ficus and Gossypium but only one 

species of Berberis. Also according to Bottini et al. (2007), the taxonomy of Berberis is 

considered to be uncertain. This complexity in Berberis taxonomy has been attributed mainly to 

hybridization (Bottini et al. 1999; Bottini et al. 2007; Lubell et al. 2008a; Lubell et al. 2008b). 

Furthermore Kim et al. (2004) claims that divergence of the ITS sequence in Berberis is not high 

enough to provide a reliable relationship at the species level. 

Considering obtained results and information mentioned above it is obvious that Berberis spp. 

identification could be difficult due to several reasons. Nevertheless in this study approximate 

identification of the Berberis spp. was assumed to be sufficient and no other attempts were made 

in this direction. 

4.3 Phylogenetic analysis 

4.3.1 Neighbor-joining analysis 

Three different phylogenetic analysis were conducted in order to explore phylogenetic 

relationship of taxa obtained using sequences of the ITS region, EF1-α and β-tubulin genes. In 

the first analysis the neighbor-joining methods was used for tree construction. They share a 

common structure: different species in all trees have clustered apart and formed separate well-

distinguishable groups.  

In the phylogenetic tree of rusts taxa obtained from the ITS sequences, P. graminis f.sp. tritici, P. 

graminis f.sp. avenae, „P. striiformis‟ and P. coronata have clustered together with the high level 

of branch support. Clade 1 has 80 % of support and consists of three groups (A, C and D). In 

group A, almost all samples that were identified as P. graminis f.sp. tritici are phylogeneticaly 

very close to each other. This group has two sub-clades: A1 (with 79 % of support) and A2 (with 

75 % of support) that separate samples number 521, 532, 602 and 692 from the others. In group 

D, all four samples (582, 664, 721 and 722) are separated from each other. Sample number 582 

is clustered apart with the support of 100 %, sample 721 – with support of 79 % and samples 664 

and 722 – with 91 %. This result probably could be explained by different evolutionary history 

of the sequenced P. coronata samples. Group C also belongs to Clade 1. Within this group, 

samples number 612, 701 and 703 are clustered separately but only sample 612 has strong 

support (81 %). Finally, group B forms a perfect clade with 100 % of support and it has no sub-

clades. 

The most interesting feature of this ITS tree is that P. graminis f.sp. avenae is thought to be more 

closely related to P. graminis f.sp. tritici than other obtained species, is actually placed distant 

from each other. At the same time, P. graminis f.sp. tritici could be found in one clade with P. 

coronata and „P. striiformis‟. The distance of P. graminis f.sp. avenae and P. graminis f.sp. 

tritici samples could be explained by the following. Zambino and Szabo (1993) found that DNA 
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sequences of ITS region of some formae specialis of Puccinia graminis were identical (ff.spp. 

avenae, dactylis, lolii and poae) while f.sp. avenae and f.sp. lolii appeared to have different ITS 

sequences. In addition Anikster (1984) claims that some formae specialis are more closely 

related even though they belong to different host varieties; at the same time formae specialis that 

share the same variety appeared to be less related to each other. According to Savile (1984) P. 

graminis f.sp. tritici and P. graminis f.sp. secalis belong to two different varieties (var. graminis 

(on barley, rye, and oats) and var. stakmanii (predominantly on wheat, but also on rye, barley, 

and Agropyron) and crossing experiments have shown that they are more closely related to each 

other than to P. graminis f.sp. avenae (Anikster, 1984).  

As it was mentioned earlier, the ITS region has been considered as one of the suitable regions for 

barcoding in plants (Kress et al. 2005, Edwards et al. 2008). In addition, the ITS region has 

become commonly used in fungi research as well (Peay et al. 2008), mainly because of the high 

number of copies and thus the ability to amplify from small and targeted DNA samples as well 

as its high variation between morphologically distinct fungal species (Gardes and Bruns, 1993).  

The phylogenetic tree of rusts species acquired from EF1-α sequence represents P. graminis f.sp. 

tritici, P. graminis f.sp. avenae, „P. poae-nemoralis‟ and P. coronata clustered differently than in 

the ITS tree. The presence of three clades is the main distinction. Well-supported (99 %) Clade 1 

represents only P. graminis f.sp. tritici. Within this clade, two samples (523 and 553) are 

clustered separately from the other P. graminis f.sp. tritici. The location of P. graminis f.sp. 

avenae is different compares with ITS tree (it is more close to P. graminis f.sp. tritici) but is still 

in individual clade with 100 % support. This clade has three sub-clades (it is also differ from ITS 

tree), which isolate samples number 522, 572, 622 and 642 from the others. Another distinction 

from the ITS tree is that Clade 3 consists of P. coronata and „P. poae-nemoralis‟ (group D and C 

respectively). The appearance of group D is slightly similar with the ITS tree (samples number 

664 and 721 are clustered apart from the samples number 582 and 722). „P. poae-nemoralis‟ 

formed one well-supported clade except for the sample number 704, which is clustered 

separately with 100 % support. The ITS tree did not indicate the same pattern for this sample, but 

showed that samples from the same location (701 and 703) also are different from the others. 

The EF-1a gene has been used for a variety of phylogenetic studies in fungi (Gentile et al. 2005; 

Kristensen et al. 2005). Also, the EF1-α gene that is characterized by the high discriminating 

power at the species level, and has been used as a genetic marker for phylogenetic studies for 

several Fusarium species for the accurate distinction of formae specialis (O‟Donnell et al. 1998; 

O‟Donnell, 2000). As a whole, it is assumed that EF1-α gene is suitable for studies of closely 

related species because of its highly variable introns (van der Merwe et al. 2007). 

The last phylogenetic tree from the neighbor joining (NJ) analysis is obtained from β-tubulin 

sequences. It also has three cladeseach of which consists of one group. Clade 1 (88 % of support) 

contains P. graminis f.sp. tritici (group A). In this group, three sub-clades are present: one of 

which sets apart samples number 553 and 661, another separates samples 531 and the last one 

detaches samples number 523 and 533 from the rest of the P. graminis f.sp. tritici. In Clade 2 

(branch support 99 %) only one sub-clade is present (that separates samples number 522 and 

582). In the two previous trees, sample 582 was identified as P. coronata. The last clade 

represents group C (with the 100 % branch support) without any sub-clades. Sample number 704 



 
 

42 
 

do not clustered separately (as in the EF1-α tree) and samples number 701 and 703 were not 

amplified and thus cannot be compared with those in the ITS tree. It might be explained by 

mutation at one or both of the primer sites. 

The β-tubulin tree has more common features with the EF1-α tree (compared with ITS tree) such 

as three clades, detached samples number 523 and 553 in the group A, as well as sample number 

522 in group B, and close location of P. graminis f.sp. avenae and P. graminis f.sp. tritici.  

The β-tubulin gene has been used successfully used in fungal phylogenetic analysis (Ayliffe et 

al. 2001; Craven et al. 2001; Begerow et al. 2004; Wirsel et al. 2004). β-tubulin sequence 

together with the ITS region were assume to be suitable for exploring relationships at the species 

level (White et al. 1990; Schardl et al. 1994) and also provided a good resolution of relationships 

within the Puccinia and Uromyces group (van der Merve et al. 2008). Moreover the β-tubulin 

gene has been successfully used in phylogenetic studies of rust fungi as a support for the EF1-α 

trees (van der Merve et al. 2007; van der Merve et al. 2008) as well as a support to the ITS trees 

(Liu & Hambelton, 2010).  

By comparison of all phylogenetic trees mentioned above, some common features can be 

distinguished. At first, P. graminis f.sp. avenae forms one group within separate clades in all 

trees and (in case of ITS region) without any sub-clades. Secondly, for both EF1-α and β-tubulin 

genes, the phylogeny forms three well-supported clades, one of which consists only P. graminis 

f.sp. tritici; also for all relevant samples they both indicate P. poae-nemoralis instead of P. 

striiformis (as it stated by ITS). Finally P. coronata and P. striiformis/P. poae-nemoralis are 

found in one clade (in the ITS and EF1-α trees).  

4.3.2 Neighbor-joining analysis comprising sequences downloaded from GenBank 

In order to clarify the species of the sequenced P. striiformis or P. poae-nemoralis, new trees 

were constructed (using the same NJ method) in which sequences from taxonomic studies 

concerning this were included (Zambino and Szabo, 1993; Barnes and Szabo, 2007; van der 

Merwe et al. 2008; Jin, Szabo and Carson, 2010; Liu and Hambleton, 2010) (Appendix A to C).  

The ITS tree contained P. striiformis, P. striiformis f.sp. tritici, P. striiformis f.sp. hordei, P. 

striiformoides, P. pseudostriiformis, P. poae-nemoralis, P. gansesnsis, P. montanensis and P. 

brachypodii f.sp. poae-nemoralis. Most of the sequences clustered separately from the reference 

sequences as in the previous ITS tree, samples number 612, 701 and 703 clustered separately. P. 

striiformis f.sp. tritici and P. striiformis f.sp. hordei have grouped separately as well as P. 

striiformis. P. striiformoides has also clustered separately but within this clade several sub-clades 

are formed. The other species (P. montanensis, P. gansesnsis, P. pseudostriiformis and P. 

brachypodii) have not formed any clusters and are located separately from each other. The most 

interesting thing in this tree is that sequences from this study were more closely located to P. 

poae-nemoralis and P. brachypodii f.sp. poae-nemoralis than to any other species, including the 

reference sequences of P. striiformis.  
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For the EF1-α tree, only one reference sequence of P. poae-nemoralis sequence was found in the 

GenBank database. According to this tree, all sequences are misidentified but one reference 

sequences probably is not enough to make the final conclusion about the species name.  

The β-tubulin tree also did not help to solve the problem with the species identification because 

obtained sequences have formed well-supported clades and are isolated from the clade of 

reference sequences (such as P. striiformis, P. pseudostriiformis, P. poae-nemoralis and P. 

striiformoides). Concerning downloaded sequences, they also grouped separately with high 

branch support, and each clade consists of different species.    

These three trees have some common features: obtained P. striiformis or P. poae-nemoralis 

sequences grouped separately from the reference sequences and formed well-supported clades 

(with 92 %, 99% and 100% of branch support for the ITS region, EF1-α and β-tubulin genes 

respectively). In the main tree, downloaded sequences of different species also have formed 

well-supported clades. Despite the fact that it is a great number of sequences available for the 

ITS region and β-tubulin gene in the GenBank database, still all controversial sequences (P. 

striiformis/P. poae-nemoralis) were not identified. There is also a lack of submitted EF1-α 

sequences.  

In general, from 56 downloaded sequences only 5 have clustered close to the sequences obtained 

in this study. The main reason for this might be the difference in the sequences length. Some 

sequences were much shorter (in the β-tubulin alignment) but some were much longer (in the 

ITS alignment) than obtained sequences in this study. In the EF1-α alignment the sequence 

length was almost the same.  

4.3.3 Bayesian phylogeny 

The last three trees in this study were conducted by Bayesian MCMC method. The main purpose 

of this analysis was to confirm the trees obtained by the NJ method.  

In general, all obtained trees have confirmed our previous result even though some differences 

exist. If compare Bayesian and NJ trees some common features could be observed: P. graminis 

f.sp. tritici (group A), P. graminis f.sp. avenae (group B) f P. coronata (group D), and „P. 

striiformis‟/„P. poae-nemoralis‟ (group C) have clustered separately with posterior probability 1 

(except 0,9999 for P. graminis f.sp. avenae in the EF-1α tree); in the P. graminis f.sp. tritici 

clade, samples 523 and 533, 532 and 633 have formed a well-supported clade (in the ITS and β-

tubulin tree respectively); in the P. graminis f.sp. avenae clade, samples number 622 and 642 

have formed sub-clade (in the EF-1α tree); within the P. coronata cluster samples number 664 

and 721, 582 and 721 located separately from each other with posterior probability from 0,78 to 

1 (in the EF-1α and ITS tree respectively).  

There are also some differences in the Bayesian trees compared with the trees obtained by NJ 

analysis. At first, for all genes, only two main clades have been formed. Secondly, P. graminis 

f.sp. tritici and P. graminis f.sp. avenae samples are always present in the same clade. P. 

coronata and „P. striiformis‟/„P. poae-nemoralis‟ are also found in one clade.  
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5 Conclusions  

The results of this study indicate that morphology (spore measurement and aecia description) is 

an important tool in identification of rust fungi. Even with the employment of PCR technologies 

in taxonomic and phylogenetic studies on fungi in general and on rust fungi particular, 

morphological characteristics have not lost their significance because before any further 

investigation e.g. sequence analysis one should consider species morphology. 

We also tried to identify rust species using molecular tools. For this purpose DNA sequences 

obtained from ITS region, EF1-α and β-tubulin partial genes were compared with the BLAST 

database. In our study, the BLAST database appeared to be very useful because it indicates if the 

obtained sequences correspond to the assumed species. With its help, the species identity 

problem was solved almost completely but not entirely. That is why the main conclusion that 

could be made from this part of the study is that one should be very careful when identifying 

species only according to BLAST database.  

Even with the help of sequences obtained in other taxonomic research (Zambino and Szabo, 

1993; Barnes and Szabo, 2007; van der Merwe et al. 2008; Jin, Szabo and Carson, 2010; Liu and 

Hambleton, 2010), we were not able to identify one species and answer the question whatever it 

is P. striiformis or P. poae-nemoralis. According to the ITS phylogenetic trees, this controversial 

samples were clustered close to P. poae-nemoralis and P. brachypodii f.sp. poae-nemoralis and 

therefore it is not P. striiformis; but two other trees showed that these samples clustered 

separately from the rest of the sequences which indicate that it is neither P. poae-nemoralis nor 

P. striiformis. This inconsistency might be explained by the differences in the sequence length as 

well as their quality. Future work to resolve this unclarity could be to investigate other spore 

stages such as teliospores or urediniospores and include more sequence data.   

The last part of this study concerned identification of phylogenetic relationship between obtained 

species using different methods. They showed that all four species P. graminis f.sp. tritici, P. 

graminis f.sp. avenae, P. coronata, and „P. striiformis‟/„P. poae-nemoralis‟ are phylogeneticaly 

distant from each other. The majority of the trees showed that P. graminis f.sp. tritici and P. 

graminis f.sp. avenae are more close to each other than to others. Also most trees showed that 

certain samples within one species clustered separately. These samples are 582, 664 and 721 in 

the P. coronata group; 522, 642 and 622 in the P. graminis f.sp. avenae group, and 523, 532, 

533, 555, 663 and 661 in the P. graminis f.sp. tritici group.  

To summarize, the combination morphological and molecular tools enables reliable 

identification of rust fungi. Those species that was found on barberry plants were more or less 

expected, but one species (or species complex) remained unidentified. DNA sequence analysis 

did not help to identify Berberis spp. Phylogenetic analysis using both neighbor-joining and 

Markov chain Monte Carlo methods gave in general the same result. 
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Appendix A  

Origin of reference sequences included in the figure 11, GenBank accession number, host plant 

and location of collection that have been used for construction of phylogenetic tree  for taxa 

obtained using partial gene sequence of the coding regions of the ITS region. Sample 9130 was 

not deposited in GenBank 

GenBank 

Accession 

number  

Fungus name Host plant Location 

(origin) 

Deposited by 

 M057109 P. striiformoides Dactylis 

glomerata 

USA Liu and Hambleton, 2010 

HM057110 P. striiformoides  Dactylis 

glomerata 

Canada Liu and Hambleton, 2010 

HM057125 P. striiformoides  Dactylis 

glomerata 

UK Liu and Hambleton, 2010 

HM057111 P. striiformoides  Dactylis 

glomerata 

USA Liu and Hambleton, 2010 

HM057129 P. striiformoides  Dactylis 

glomerata 

Chile Liu and Hambleton, 2010 

HM057137 P. striiformoides  Dactylis 

glomerata 

China Liu and Hambleton, 2010 

HM057113 P. pseudostriiformis  Poa pratensis Canada Liu and Hambleton, 2010 

HM057131 P. pseudostriiformis Poa pratensis Canada Liu and Hambleton, 2010 

HM057134 P. pseudostriiformis  Poa nemoralis USA Liu and Hambleton, 2010 

HM057112 P. striiformis Triticum 

aestivum 

USA Liu and Hambleton, 2010 

HM057115 P. gansensis Achnatherum 

inebrians 

China Liu and Hambleton, 2010 

HM057127 P. striiformis Aegilops 

ligustica 

Turkey Liu and Hambleton, 2010 

HM057130 P. striiformis Elymus 

elymoides 

USA Liu and Hambleton, 2010 

HM057132 P. striiformis Triticum 

aestivum 

USA Liu and Hambleton, 2010 

HM057152 P. poae-nemoralis Poa pratensis Canada Liu and Hambleton, 2010 

HM057153 P. poae-nemoralis Arctagrostis 

latifolia 

Canada Liu and Hambleton, 2010 

HM057154 P. poae-nemoralis Poa annua New 

Zealand 

Liu and Hambleton, 2010 

HM057155 P. poae-nemoralis Koeleria 

litvinowii 

China Liu and Hambleton, 2010 

L08706 P. montanensis Berberis 

fendlery 

USA  Zambino and Szabo, 1993 

L08730 P. brachypodii f.sp. 

poae-nemoralis 

Poa nemoralis Netherla

nds 

Zambino and Szabo, 1993 
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GenBank 

Accession 

number  

Fungus name Host plant Location 

(origin) 

Deposited by 

     

L08735 P. striiformis f.sp. 

tritici 

Triticum 

aestivum 

USA Zambino and Szabo 1993 

     

GQ457303 P. brachypodii   Jin, Szabo and Carson,  

2010 

GQ457306 P. striiformis   Jin, Szabo and Carson,  

2010 

GQ457307 P. striiformis   Jin, Szabo and Carson,  

2010 

GU382672 P. striiformis f.sp. 

tritici 

  Jin, Szabo and Carson,  

2010 

DQ417408 P. striiformis f.sp. 

hordei 

  Barnes and Szabo, 2007 

DQ417407 P. striiformis   Barnes and Szabo, 2007 

DQ417403 P. striiformis   Barnes and Szabo, 2007 

DQ417402 P. striiformis f.sp. 

hordei 

  Barnes and Szabo, 2007 

DQ417400 P. striiformis f.sp. 

tritici 

  Barnes and Szabo, 2007 

DQ417397 P. striiformis f.sp. 

tritici 

  Barnes and Szabo, 2007 

DQ417396 P. striiformis f.sp. 

tritici 

  Barnes and Szabo, 2007 

DQ417397 P. striiformis f.sp. 

tritici 

  Barnes and Szabo, 2007 

 

9130 P. striiformis Triticale, variety 

Dinaro 

Öland, 

Sweden 

Collected by Anna Berlin 

in 2010 

 

Appendix B  

Origin of reference sequences included in the figure 12,, GenBank accession number, host plant 

and location of collection that have been used for construction of phylogenetic tree for taxa 

obtained using partial gene sequence of the coding regions of the EF1-α gene 

GenBank 

Accession 

number  

Fungus name Host plant Location 

(origin) 

Deposited by 

DQ925279 P. poae-nemoralis Anthoxanthum 

odoratum 

Europe van der Merwe et al. 

2008 
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Appendix C  

Origin of reference sequences included in the figure 13,, GenBank accession number, host plant 

and location of collection that have been used for construction of phylogenetic tree for taxa 

obtained using partial gene sequence of the coding regions of the β-tubulin gene 

GenBank 

Accession 

number  

Fungus name Host plant Location 

(origin) 

Deposited by 

HM067991 P. striiformis  Triticum aestivum China Liu and Hambleton, 

2010 

HM067990 P. striiformis  Triticum aestivum China Liu and Hambleton, 

2010 

HM067986 P. gansensis  Achnatherum 

inebrians 

China Liu and Hambleton, 

2010 

HM067984 P. pseudostriiformis  Poa pratensis Canada Liu and Hambleton, 

2010 

HM067996 P. pseudostriiformis  Poa pratensis Canada Liu and Hambleton, 

2010 

HM067999 P. striiformoides  Dactylis 

glomerata 

China Liu and Hambleton, 

2010 

HM067982 P. striiformoides  Dactylis 

glomerata 

Canada Liu and Hambleton, 

2010 

HM067983 P. striiformoides  Dactylis 

glomerata 

USA Liu and Hambleton, 

2010 

HM067981 P. striiformoides  Dactylis 

glomeratae 

USA Liu and Hambleton, 

2010 

EF570843 P. striiformis Triticum aestivum Australia van der Merwe et al. 

2008 

EF570826 P. poae-nemoralis Anthoxanthum 

odoratum 

Europe van der Merwe et al. 

2008 

EF570827 P. poae-nemoralis Anthoxanthum 

odoratum 

Europe van der Merwe et al. 

2008 

 

 

 

 

 


