Solutions Retake Exam: Inleiding Financiele Wiskunde 2019-2020

- (1) Let $\{W(t): 0 \le t \le T\}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): 0 \le t \le T\}$ be its natural filtration, and assume $\mathcal{F} = \mathcal{F}(T)$. Let c(t) be a deterministic function with c(0) = 0. Let r be a given interest rate and consider the price process $\{S(t): 0 \le t \le T\}$ given by $S(t) = e^{W(t)+c(t)}$.
 - (a) Find an expression for c(t) under which the discounted price process $\{e^{-rt}S(t): 0 \le t \le T\}$ is a martingale with respect to the probability measure \mathbb{P} . (1.5 pts)
 - (b) Consider the expression obtained in part (a), i.e. assume that the discounted price process $\{e^{-rt}S(t): 0 \le t \le T\}$ is a martingale under the probability measure \mathbb{P} . Consider a financial derivative with payoff at time T given by $V(T) = \mathbb{I}_{\{S(T)>K\}}$ (i.e. V(T) has value 1 if S(T) > K and 0 otherwise), here K is some given positive constant. Find the *fair* price of this option at time 0. (1.5 pts)

Proof (a): For the process $\{e^{-rt}S(t) : 0 \le t \le T\}$ to be a martingale, it should hold that $\mathbb{E}[e^{-rt}S(t)] = S(0) = 1$ for all $0 \le t \le T$. This gives

$$1 = e^{0} = \mathbb{E}[e^{-rt}S(t)] = e^{-rt+c(t)}\mathbb{E}[e^{W(t)}] = e^{-rt+c(t)+\frac{1}{2}t}.$$

Equating the exponents, we get $c(t) = rt - \frac{1}{2}t = t(r - \frac{1}{2})$. We now check that this expression for c(t) indeed gives us a martingale. So let $s < t \leq T$, since W(s) is $\mathcal{F}(s)$ measurable and W(t) - W(s) is independent of $\mathcal{F}(s)$, we have

$$\begin{split} \mathbb{E}[e^{-rt}S(t)|\mathcal{F}(s)] &= \mathbb{E}[e^{-rt}e^{W(t)+t(r-\frac{1}{2})}|\mathcal{F}(s)] \\ &= \mathbb{E}[e^{W(t)-\frac{1}{2}t}|\mathcal{F}(s)] \\ &= e^{-\frac{1}{2}t}\mathbb{E}[e^{(W(t)-W(s))+W(s)}|\mathcal{F}(s)] \\ &= e^{-\frac{1}{2}t}\mathbb{E}[e^{(W(t)-W(s))}] \\ &= e^{-\frac{1}{2}t+W(s)}\mathbb{E}[e^{(W(t)-W(s))}] \\ &= e^{-\frac{1}{2}t+W(s)}e^{\frac{1}{2}(t-s)} \\ &= e^{-\frac{1}{2}s+W(s)} \\ &= e^{-rs}e^{(r-\frac{1}{2})s+W(s)} \\ &= e^{-rs}S(s). \end{split}$$

Therefore, with $c(t) = (r - \frac{1}{2})t$, the process $\{e^{-rt}S(t) : 0 \le t \le T\}$ is a martingale with respect to the probability measure \mathbb{P} .

Proof (b): From part (a), with $c(t) = t(r - \frac{1}{2})$ the discounted price process is a martingale under \mathbb{P} . Hence \mathbb{P} is a risk-neutral measure and the fair price of the option is given by

$$V(0) = \mathbb{E}[e^{-rT}V(T)]$$

= $e^{-rT}\mathbb{E}[\mathbb{I}_{\{S(T)>K\}}]$
= $e^{-rT}\mathbb{P}(S(T)>K)$
= $e^{-rT}\mathbb{P}\left(e^{W(T)+T(r-\frac{1}{2})}>K\right)$
= $e^{-rT}\mathbb{P}\left(W(T)>\ln K-T(r-\frac{1}{2})\right)$
= $e^{-rT}\mathbb{P}\left(\frac{W(T)}{\sqrt{T}}>\frac{\ln K-T(r-\frac{1}{2})}{\sqrt{T}}\right)$
= $e^{-rT}\left(1-N\left(\frac{\ln K-T(r-\frac{1}{2})}{\sqrt{T}}\right)\right),$

where N(y) stands for the standard normal cumulative distribution function and we have used the fact that $\frac{W(T)}{\sqrt{T}}$ is standard normally distributed.

(2) Let $\{W_1(t), W_2(t)\} : t \ge 0\}$ be a two dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the two processes $\{Z(t) : t \ge 0\}$ and $\{B(t) : t \ge 0\}$ defined by

$$Z(t) = 1 + e^{-W_1(t)} \int_0^t e^{W_1(u)} dW_2(u)$$

and

$$B(t) = \int_0^t \frac{1}{\sqrt{1 + Z^2(u)}} \, dW_1(u) - \int_0^t \frac{Z(u)}{\sqrt{1 + Z^2(u)}} \, dW_2(u).$$

- (a) Use Lévy's characterization to prove that the process $\{B(t) : t \ge 0\}$ is a one dimensional Brownian motion. (1 pt)
- (b) Prove that the process $\{Z(t) : t \ge 0\}$ can be written as

$$Z(t) = 1 + W_2(t) - \int_0^t Z(u) \, dW_1(u) + \frac{1}{2} \int_0^t Z(u) \, ds.$$

(1.5 pts)

(c) Prove that $\mathbb{E}[Z(t)] = e^{\frac{1}{2}t}$, for $t \ge 0$. (1 pt)

Proof (a): We will use Lévy's characterization of a Brownian motion. Clearly B(0) = 0 and since Itô integrals have continuous paths and are martingales, we see that $\{B(t) : t \ge 0\}$ has continuous paths and is a sum of two martingales hence also a martingale. It remains to show that [B, B](t) = t. Note that

$$dB(t) = \frac{1}{\sqrt{1+Z^2(t)}} \, dW_1(t) - \frac{Z(t)}{\sqrt{1+Z^2(t)}} \, dW_2(t),$$

thus

$$dB(t)dB(t) = \frac{1}{1+Z^2(t)}dt + \frac{Z^2(t)}{1+Z^2(t)}dt = dt.$$

Therefore, [B, B](t) = t and by Lévy's characterization, $\{B(t) : t \ge 0\}$ is a one dimensional Brownian motion.

Proof (b): Let $X(t) = e^{-W_1(t)}$ and $Y(t) = \int_0^t e^{W_1(u)} dW_2(u)$, then Z(t) = 1 + X(t)Y(t). By definition we have $dY(t) = e^{W_1(t)} dW_2(t)$. We will now derive the SDE for the process $\{X(t) : t \ge 0\}$ using Itô-Doeblin applied to the function $f(x) = e^{-x}$. We have $f_x(x) = -f(x)$ and $f_{xx}(x) = f(x)$, thus

$$dX(t) = df(W_1(t)) = -X(t) \, dW_1(t) + \frac{1}{2}X(t) \, dt$$

that is

$$X(t) = 1 + \frac{1}{2} \int_0^t X(u) \, du - \int_0^t X(u) \, dW_1(u).$$

Since $W_1(t)$ and $W_2(t)$ are independent, it is easy to see that dX(t)dY(t) = 0. Applying Itô product rule we have,

$$dZ(t) = d(1 + X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + dX(t)dY(t)$$

= $X(t)\left(e^{W_1(t)}dW_2(t)\right) + Y(t)\left(-X(t)dW_1(t) + \frac{1}{2}X(t)dt\right)$
= $dW_2(t) - X(t)Y(t)dW_1(t) + \frac{1}{2}X(t)Y(t)dt$
= $dW_2(t) - Z(t)dW_1(t) + \frac{1}{2}Z(t)dt.$

Since Z(0) = 1, the above shows that

$$Z(t) = 1 + W_2(t) - \int_0^t Z(u) \, dW_1(u) + \int_0^t \frac{1}{2} Z(u) \, du.$$

Proof (c): Since $\mathbb{E}[W_2(t)] = 0$ and $\mathbb{E}\left[\int_0^t Z(u) \, dW_1(u)\right] = 0$, we have by linearity of the expectation that

$$\mathbb{E}[Z(t)] = 1 + \mathbb{E}\left[\int_0^t \frac{1}{2}Z(u)\,du\right] = 1 + \frac{1}{2}\int_0^t \mathbb{E}[Z(u)]\,du,$$

where the second equality follows from Fubini (in fact Tonelli) since $Z(u) \ge 1$ (i.e. is non-negative). If we set $m(t) = \mathbb{E}[Z(t)]$, then the above equation reads $m(t) = 1 + \frac{1}{2} \int_0^t m(u) \, du$ and in differential form $\frac{dm(t)}{dt} = \frac{1}{2}m(t)$. This has solution $m(t) = m(0)e^{\frac{1}{2}}$. Since $m(0) = \mathbb{E}[Z(0)] = 1$, we have $\mathbb{E}[Z(t)] = e^{\frac{1}{2}t}$ as required.

(3) Let $\{W(t): 0 \le t \le T\}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): 0 \le t \le T\}$ be its natural filtration, and assume $\mathcal{F} = \mathcal{F}(T)$. Consider a stock with price process $\{S(t): 0 \le t \le T\}$ with

$$S(t) = S(0) \exp \Big\{ \int_0^t e^{-u} dW(u) + \int_0^t (1 - \frac{1}{2}e^{-2u}) du \Big\}.$$

- (a) Let $X(t) = \int_0^t e^{-u} dW(u) + \int_0^t (1 \frac{1}{2}e^{-2u}) du$. Determine the distribution of X(t). (1 pt)
- (b) Prove that $\{S(t) : t \ge 0\}$ is an Itô process. (1 pt)
- (c) Let r be a constant interest rate. Find the risk-neutral measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} (i.e. $\widetilde{\mathbb{P}}(A) = 0$ if and only if $\mathbb{P}(A) = 0$, $A \in \mathcal{F}$) such that the discounted price process $\{e^{-rt}S(t) : 0 \le t \le T\}$ is a martingale under $\widetilde{\mathbb{P}}$. (1.5 pts)

Proof (a): Let $Y(t) = \int_0^t e^{-u} dW(u)$. Since Y(t) is the Itô integral of a deterministic process, by Theorem 4.4.9 Y(t) is normally distributed with $\mathbb{E}[Y(t)] = 0$ and $\operatorname{Var}[Y(t)] = \int_0^t e^{-2u} du = \frac{1}{2}(1-e^{2t})$. Since $X(t) = Y(t) + \int_0^t (1-\frac{1}{2}e^{-2u}) du = Y(t) + t + \frac{1}{4}(e^{-2t}-1)$, we see that X(t) is **normally** distributed with mean $\mathbb{E}[X(t)] = t + \frac{1}{4}(e^{-2t}-1)$ and variance $\operatorname{Var}[X(t)] = \operatorname{Var}[Y(t)] = \frac{1}{2}(1-e^{2t})$.

Proof (b): With $X(t) = \int_0^t e^{-u} dW(u) + \int_0^t (1 - \frac{1}{2}e^{-2t}) dt$ we have $dX(t) = e^{-t} dW(t) + (1 - \frac{1}{2}e^{-2t}) dt$ and $dX(t)dX(t) = e^{-2t} dt$. Note that $S(t) = S(0)e^{X(t)}$, so let $f(x) = S(0)e^x$, then $f_x(x) = f_{xx}(x) = f(x)$. By Itô Doeblin we have,

$$\begin{split} dS(t) &= df(X(t)) = S(t) \, dX(t) + \frac{1}{2}S(t) \, dX(t) dX(t) \\ &= S(t) \left(e^{-t} \, dW(t) + (1 - \frac{1}{2}e^{-2t}) \, dt \right) + \frac{1}{2}S(t)e^{-2t} \, dt \\ &= S(t) \, dt + S(t)e^{-t} \, dW(t). \end{split}$$

This shows that $S(t) = S(0) + \int_0^t S(u) du + \int_0^t S(u) e^{-u} dW(u)$, hence $\{S(t) : t \ge 0\}$ is an Itô process.

Proof (c) : Define $\theta(t) = \frac{1-r}{e^{-t}} = e^t(1-r)$. Consider the random variable Z defined by

$$Z = \exp\left(-\int_0^T \theta(u) \, dW(u) - \frac{1}{2} \int_0^T \theta^2(u) \, du\right)$$

= $\exp\left(-\int_0^T e^t (1-r) \, dW(u) - \frac{1}{2} \int_0^T e^{2u} (1-r) \, du\right).$

Note that $\int_0^t \theta(u) dW(u)$, $\int_0^t \theta^2(u) du$ and θ are continuous functions on the compact interval [0,T], hence they are all bounded. This implies that $\mathbb{E}\left[\int_0^T \theta^2(u)Z^2(u) du\right] < \infty$. Define the

measure $\widetilde{\mathbb{P}}$ on \mathcal{F} by $\widetilde{\mathbb{P}}(A) = \int_A Z \, d\mathbb{P}$ and consider the process $\{\widetilde{W}(t) : 0 \le t \le T\}$ with $\widetilde{W}(t) = \int_0^t \theta(u) \, du + W(t) = \int_0^t e^u (1-r) \, du + W(t) = (1-r)(e^t - 1) + W(t)$. By Girsanov's Theorem, the process $\{\widetilde{W}(t) : 0 \le t \le T\}$ is a Brownian motion under $\widetilde{\mathbb{P}}$ and hence is a martingale under $\widetilde{\mathbb{P}}$. Using the SDE obtained in part (a), together with Itô product rule, we have

$$d(e^{-rt}S(t)) = e^{-rt} dS(t) - re^{-rt}S(t) dt$$

= $e^{-rt} \Big(S(t) dt + S(t)e^{-t} dW(t) \Big) - re^{-rt}S(t) dt$
= $e^{-rt}S(t) \Big((1-r) dt + e^{-t} dW(t) \Big)$
= $e^{-rt}S(t) \Big(e^{-t}\theta(t) dt + e^{-t} dW(t) \Big)$
= $e^{-t(r+1)}S(t) d\widetilde{W}(t).$

4

Since $e^{-rt}S(t)$ is an Itô integral, we see that the discounted price process is a martingale under $\widetilde{\mathbb{P}}$.