Autonomic Nervous System

studyaid 🔀

Table of Contents

- Basic organization & functions
- ANS anatomy
- Neurotransmission
- Adrenergic receptors & autonomic effects in end-organs
- Basic ANS pharmacology
- Pupillary light reflex
- Wooclap!

Basic ANS organization & function (i)

Basic ANS organization & function (ii)

- Sympathetic division prepares the body for action
- Parasympathetic division supports rest, recovery, digestion (i.e. "maintenance functions")
- Sympathetic & parasympathetic divisions **oppose each other**

Table of Contents

- Basic organization & functions
- ANS anatomy
- Neurotransmission
- Adrenergic receptors & autonomic effects in end-organs
- Basic ANS pharmacology
- Clinical correlations
- Wooclap!

General terminology

- Both branches of ANS use a two-neuron connection to transmit a signal from CNS to target organ!
- First neuron = "preganglionic neuron" (found in CNS i.e. brain stem or spinal cord)
- Second neuron = "postganglionic neuron" (*usually* found in periphery) innervates the target organ

Note the relative axon lengths for sympathetic vs parasympathetic pre- and post-ganglionic neurons!

Sympathetic NS

- Cell bodies of <u>pre-ganglionic</u> neurons are found in thoracolumbar spinal cord
- Cell bodies of <u>post-ganglionic</u> neurons are found in the <u>sympathetic chain</u> (aka paravertebral chain) & preaortic ganglia
- <u>Post-ganglionic</u> neurons innervate **target tissues**

Sympathetic NS

- <u>Cell bodies of pre-ganglionic</u> sympathetic neurons are found in lateral horn of spinal cord
- Axons of pre-ganglionic sympathetic neurons exit the ventral root of spinal cord (alongside somatic motor fibers)
- reach the autonomic ganglia of sympathetic chain via the white ramus communicans
- the (long) post-ganglionic neuron innervates its target organ

(a) Autonomic pathway

Parasympathetic NS

- Cell bodies of <u>pre-ganglionic</u> neurons are in **parts of the brainstem** (i.e. CN III, VII, IX, X) & sacral part of spinal cord
- "Cranio-sacral" distribution
- Cell bodies of <u>post-ganglionic</u> neurons are in cranial ganglia & ganglia embedded in the walls of target organs

Parasympathetic NS

Cranial nerves with parasympathetic functions

innervate autonomic ganglia of the head (CN's III, VII, IX) or autonomic ganglia near their target organs (CN X)

• Post-ganglionic fibers then innervate their target organs

Table of Contents

- Basic organization & functions
- ANS anatomy
- Neurotransmission
- Adrenergic receptors & autonomic effects in end-organs
- Basic ANS pharmacology
- Pupillary light reflex
- Wooclap!

Neurotransmission: Sympathetic NS (i)

- First synapse:
- ACh from pre-ganglionic neuron binds to nicotinic
 receptor on post-ganglionic
 neuron → Na+ influx
- <u>Second synapse:</u>
- NE from post-ganglionic neuron binds adrenergic receptor* in target organ
- * $\alpha_1, \alpha_2, \beta_1, \beta_2$ (G-protein coupled receptors)

Neurotransmission: Sympathetic NS (ii)

- <u>Adrenal medulla:</u>
- ACh from pre-ganglionic neuron binds to nicotinic receptor in adrenal medulla
- Stimulates the **release of** epinephrine & norepinephrine from adrenal glands into the blackstream

Sympathetic Neurotransmission: Cocaine

- Blocks monoamine reuptake by several membrane transporters (DAT, SERT, NET)
- NET blockade **increases NE levels** \rightarrow <u>overstimulation</u> of adrenergic receptors ($\alpha_1, \alpha_2, \beta_1, \beta_2$)
- Possible complication: coronary vasospasm

Neurotransmission: Parasympathetic NS

- First synapse:
- ACh from pre-ganglionic neuron binds to nicotinic
 receptor on post-ganglionic
 neuron → Na+ influx
- <u>Second synapse:</u>
- ACh from post-ganglionic neuron binds to muscarinic receptor* in target organ
- * M_1 , M_2 , M_3 (G-protein coupled receptors)

Parasympathetic Neurotransmission: Atropine

- Blocks muscarinic ACh receptors (M₁, M₂, M₃), hence inhibiting parasympathetic effects at target organs
- Administered before intubation to prevent vagal overstimulation. Also helps reduce mucus secretions in airways.
- Administered before ophthalmology procedures to induce mydriasis

Table of Contents

- Basic organization & functions
- ANS anatomy
- Neurotransmission
- Adrenergic receptors & autonomic effects in end-organs
- Pupillary light reflex
- Wooclap!

ANS receptor effects at target organs

G-protein–linked second messengers		
RECEPTOR	G-P▶ <lass< th=""><th>MAJOR FUNCTIONS</th></lass<>	MAJOR FUNCTIONS
Sympathetic		
α	q	t vascular smooth muscle contraction, t pupillary dilator muscle contraction (mydriasis), t intestinal and bladder sphincter muscle contraction
α2	i	↓ sympathetic (adrenergic) outflow, ↓ insulin release, ↓ lipolysis, ↑ platelet aggregation, ↓ aqueous humor production
β ₁	S	† heart rate, † contractility (one heart), † renin release, † lipolysis
β ₂	S	Vasodilation, bronchodilation (two lungs), † lipolysis, † insulin release, † glycogenolysis, ↓ uterine tone (tocolysis), † aqueous humor production, † cellular K ⁺ uptake
	S	† lipolysis, † thermogenesis in skeletal muscle, † bladder relaxation
Parasympathetic		
M ₁	q	Mediates higher cognitive functions, stimulates enteric nervous system
M ₂	i	I heart rate and contractility of atria
M ₃	q	 t exocrine gland secretions (eg, lacrimal, sweat, salivary, gastric acid), t gut peristalsis, t bladder contraction, bronchoconstriction, t pupillary sphincter muscle contraction (miosis), ciliary muscle contraction (accommodation), t insulin release, endothelium-mediated vasodilation

Basic Adrenergic pharmacology

Examples of agonists:

- Epinephrine: pure α agonist + pure β agonist
- **Clonidine:** selective α₂ agonist
- Albuterol: selective β₂ agonist

Examples of antagonists:

- **Prazosin:** selective α₁ antagonist
- Propanolol: non-selective β antagonist
- Atenolol: selective β₁ antagonist

Table of Contents

- Basic organization & functions
- ANS anatomy
- Neurotransmission
- Adrenergic receptors & autonomic effects in end-organs
- Pupillary light reflex
- Wooclap!

Pupillary light reflex (i)

- Clinically assess the parasympathetic innervation of pupillary sphincter muscle by CN III & ciliary ganglion
- Important to always check <u>both</u> the direct and consensual responses to light (i.e. pupillary constriction)
- Normal result: **positive direct & consensual responses** upon lighting each eye separately.
- Nb: nerve fibers from nasal hemiretina cross at the optic chiasm while fibers from the temporal retina remain ipsilateral!

Pupillary light reflex (ii)

- **Q:** Can pupillary constriction be elicited in the left eye if the left optic nerve (CN) is severed?
- A: Yes! A consensual response may be elicited by <u>lighting the right eye</u>.
- Why?: Nerve fibers from the <u>right</u> nasal hemiretina decussate at the optic chiasm, and reach the <u>left</u> pretectal nucleus.

Localized spinal cord trauma at the level of T5-T7 would be most likely to affect which of the following?

- a) Parasympathetic preganglonic fibers
- b) Parasympathetic postganglionic fibers
 - c) Sympathetic preganglionic fibers
 - d) Sympathetic postganglonic fibers

Which of the following is true regarding ANS synapses & neurotransmission?

- a) Sympathetic preganglionic are long
- b) Muscarinic receptors are stimulated by NE
- c) Parasympathetic postganglionic fibers are short
 - d) Preganglionic sympathetic fibers release NE

What is the most likely side-effect of Phenoxybenzamine; a non-selective alpha-1 antagonist?

- a) Tachycardia
- b) Sweating
- c) Hypotension
- d) Heart failure

Find the correct statement:

- a) NE always causes smooth muscle contraction
 - b) Cocaine stimulates release of NE
- c) NE release from postganglionic neuron is ACh-dependent
- d) Selective alpha-1 agonists are used to treat hypertension

Find the correct statement:

- a) Non-selective beta-blockers may increase heart rate
 - b) Non-selective beta-blockers may be used to treat hypertension in asthmatic individuals
 - c) Albuterol, a B2 antagonist, is a short-acting bronchoconstrictor
- d) Selective B1 blockers may be used to treat hypertension

Absent pupillary light reflex (<u>both</u> direct and consensual) upon lighting the right eye could indicate which of the following?

- A) Optic chiasm lesion
 - B) Left CN III lesion
- C) Right prechiasmatic CN II lesion
 - D) All correct

