
SAS® Simulation Studio 14.2
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® Simulation Studio 14.2: User’s Guide.
Cary, NC: SAS Institute Inc.

SAS® Simulation Studio 14.2: User’s Guide

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents
Chapter 1. What’s New in SAS/OR 14.2 . 1
Chapter 2. Overview of SAS Simulation Studio 3
Chapter 3. Introduction to SAS Simulation Studio 17
Chapter 4. Simulation Models . 29
Chapter 5. Experiments . 43
Chapter 6. Blocks . 57
Chapter 7. Compound and Submodel Blocks 65
Chapter 8. Entities . 75
Chapter 9. Queueing . 79
Chapter 10. Resources . 85
Chapter 11. Model Debugging and Verification 107
Chapter 12. Block Templates . 115
Chapter 13. Data Input, Collection, and Analysis 119
Chapter 14. Batch Execution . 129
Appendix A. Templates . 131
Appendix B. Random Variation in a Model . 221
Appendix C. Design of Experiments . 247
Appendix D. Input Analysis . 257
Appendix E. Examples of Simulation Studio Models 265
Appendix F. Expressions . 325

iv

Credits

Documentation

Writing Emily Lada, Hong Chen, Phillip Meanor

Editing Anne Baxter, Ed Huddleston

Documentation Support Tim Arnold, Melanie Gratton

Technical Review Anup Mokashi, Edward P. Hughes

Software
Simulation Studio Hong Chen, Phillip Meanor, Emily Lada

Support Groups

Software Testing Anup Mokashi, Yu-Min Lin, Emily Lada

Technical Support Tonya Chapman

vi

Chapter 1

What’s New in SAS/OR 14.2

Contents
Overview . 1
Mathematical Optimization Updates . 1

Solver Performance Improvements . 1
Discrete-Event Simulation Updates . 2

Overview
SAS/OR 14.2 includes performance improvements in the LP, MILP, network, and NLP solvers.

SAS Simulation Studio 14.2, a component of SAS/OR 14.2 for Windows environments, enhances its selection
of modeling blocks. Details include the following:

� The new Caster block makes it easier to transfer complex objects (entities, observations, and so on)
within a model.

� The Queue block adds extended queueing controls that you can use to help prevent a queue from
becoming blocked.

Mathematical Optimization Updates

Solver Performance Improvements
Several optimization solvers have been updated in SAS/OR 14.2, and as a result they have significantly
improved their performance over that of SAS/OR 14.1. The LP, MILP, NLP, and network solver algorithms
all reduce the time they require to solve benchmark optimization problems. These improvements also include
the decomposition (DECOMP) algorithm for LP and MILP. You should expect to be able to solve individual
optimization problems of these types more quickly. If you invoke one of these optimization solvers repeatedly
(for example, within a loop), the reduction in overall solution time should be much more pronounced.

2 F Chapter 1: What’s New in SAS/OR 14.2

Discrete-Event Simulation Updates
SAS Simulation Studio 14.2, which provides a graphical environment for building and working with discrete-
event simulation models, makes two notable improvements.

The new Caster block provides a compact means of transferring more complex objects such as observations
and data models between blocks in a simulation model. In SAS Simulation Studio 14.2, you can assign a
generic object as an entity attribute and then use a Caster block to “cast” the object back to its original type
and output it to the receiving block. However, note that the Caster block does not function as an object type
converter. You must be aware of the original type of the objects that you are transferring and ensure that the
receiving block expects the same value type.

The new Extended Queueing Controls on the Queue block broaden your control over how entities flow into
and out of a Queue block. The primary purpose of these new controls is to help you lessen the likelihood that
a Queue block becomes blocked. Blocking can occur if the first entity in the queue is unable to flow to any
downstream block in the model. This prevents subsequent entities in the queue from exiting, even if they
would be eligible to exit if they were in the first position in the queue.

Chapter 2

Overview of SAS Simulation Studio

Contents
What Is Simulation? . 3
What Is SAS Simulation Studio? . 4
A Simple M/M/1 Queueing Model . 5

Running the Model . 8
Collecting Statistics . 9

Repair Shop Example . 10
Compound Blocks . 10
Model Logic . 12
Collecting Data . 14

What Is Simulation?
Simulation is a very broad term that is applied across many fields and industries. In its most general sense,
simulation is the process of building or designing a model that mimics the behavior of a particular real-life
system. These models can be either physical or logical. Examples of physical models include flight simulators,
wind tunnels, and earthquake simulators. This document focuses on logical models, which can usually be
represented by computer programs.

For some systems governed by logical and mathematical relationships, you can use traditional mathematical
techniques such as queueing theory and differential equations to derive an analytical solution. For these
systems, obtaining an exact answer is a benefit. However, you often need to make simplifying assumptions
about the system being studied in order to obtain an analytical model; this simplification brings to the
forefront the question of model validity. You can build a simple model of a complex system, but that does not
necessarily mean that the model is valid.

Many real-world systems are composed of not only extremely complicated and intricate mathematical and
logical relationships, but also a significant random component. For these systems, you simply might not
be able to derive an analytical model. Instead, you can use a computer to build a model of the system and
numerically generate data that you can use to foster a better understanding of the behavior of the real-world
system. Part of the art of designing a computer simulation model is deciding which aspects of the real-life
system are necessary to include in the model so that the data generated by the model can be used to make
effective decisions.

One of the main advantages of computer simulation is the ability to model extremely complex systems that
ordinarily would be impossible to model using traditional analytical techniques. On the other hand, the data
generated by a computer simulation model is not exact and, to complicate matters even further, the output
is random if any of the model’s inputs is random. This randomness makes it more difficult to analyze the

4 F Chapter 2: Overview of SAS Simulation Studio

output from computer simulations, and often advanced statistical methods are required to formulate valid
conclusions about the behavior of the system.

The field of computer-based simulation is itself very broad and includes a number of different classes of
modeling techniques. This document focuses primarily on discrete-event modeling methods in which the
state of the model is dynamic and the state of the model changes only at countable, distinct points in time.
For example, the operation of an emergency room at a hospital over a 24-hour period can be modeled using
discrete-event simulation techniques. A state change in this example can be triggered by the arrival of a new
patient or the departure of a nurse for a meal break. Each state change occurs at a distinct point in time, and
the simulation model operates by scheduling these events and proceeds by advancing the simulation time to
the next event or state change.

The popularity of simulation as a tool for design and analysis has grown over recent years, especially with
the advancement of computing technology. Part of simulation’s popularity is also due to the numerous and
diverse areas where it can be applied. Some areas where discrete-event simulation has been successfully used
include manufacturing, telecommunications, transportation, military, and health care.

What Is SAS Simulation Studio?
SAS Simulation Studio is a SAS application that uses discrete-event simulation to model and analyze systems.
Simulation Studio is based on the Java programming language and provides the following user interfaces:

� a graphical user interface that requires no programming and provides all the tools for building,
executing, and analyzing discrete-event simulation models

� a programmatic interface that enables you to run models in batch mode

Although having a comprehensive set of modeling tools is an important quality in a simulation package,
having advanced analysis tools is arguably just as important. As mentioned in the previous section, analyzing
output from discrete-event simulations often requires advanced statistical methods. Simulation Studio is
designed to interact with both SAS software and JMP® software so that you can conduct sophisticated
statistical analyses of your results. Data generated by the model can be saved as a SAS data set or JMP table
for later analysis, or alternatively you can use a SAS block included in the basic template of modeling blocks
to execute SAS or JMP code directly from Simulation Studio.

Simulation Studio includes a state-of-the-art Experiment window that gives you an organized way to
investigate the effects of different parameters on your model output in addition to a place to record results.
For a discrete-event simulation model in general, you might be interested in conducting the following types
of experiments:

� a sensitivity analysis in which you vary a parameter in the model and you examine the effect on some
recorded response. For example, you might be interested in the effect on customer waiting times of
hiring an additional cashier at a store.

� a comparison of two or more systems. For example, given two different factory floor layout options,
you might want to determine which one yields a higher throughput.

A Simple M/M/1 Queueing Model F 5

� an experimental design for a system that has flexibility in how several different parameters can be
set. You might want to use an experimental design (such as a full factorial) to efficiently organize the
testing of different parameter combinations and then study the effect on one or more results.

The Simulation Studio Experiment window can be used to conduct all these different types of simulation
experiments. It can interface with JMP software to generate experimental designs and then seamlessly pass
the simulated results from the design back to the JMP program for analysis. Simulation Studio is also
designed to support multiple models and experiments in a single project so that you can define factors and
responses once and use them for all models in the project. This is especially useful when you compare two or
more systems.

No matter how advanced the available output analysis tools, they are essentially useless if you have not
correctly estimated the inputs to the model. Input analysis is another important aspect of building a simulation
model. In Simulation Studio input analysis can be facilitated by using JMP distribution estimation capabilities.

Simulation Studio is a flexible discrete-event simulation tool designed to provide the necessary modeling and
analysis tools for both novice and advanced simulation users. Furthermore, Simulation Studio attempts to
avoid being simply a black box that takes model inputs and mysteriously produces model outputs. Rather, it
includes features that enable you to customize your models and tailor Simulation Studio to meet your specific
needs.

A Simple M/M/1 Queueing Model
To illustrate some of the basic concepts involved in building models in Simulation Studio, consider a model
of a simple banking system with one teller. Assume that customers arrive at the bank at a rate of 10 per hour
(so that the interarrival time between customers is a sample from the exponential distribution with a mean of
6 minutes). Customers wait in a single line on a first-come, first-served basis. Also assume that the teller
has a service rate of 12 customers per hour (so that the service time for each customer is a sample from the
exponential distribution with a mean of 5 minutes). This simple banking system is an example of an M/M/1
queueing system.

For a queueing system such as this one, the following statistics might be of interest:

� average time a customer waits in line

� length of the queue

� number of customers served in one day

6 F Chapter 2: Overview of SAS Simulation Studio

Figure 2.1 An M/M/1 Queueing Model

Figure 2.1 shows a Simulation Studio model of the banking system. All the blocks used in this example can
be found in the basic template of blocks provided by Simulation Studio. (The labels of blocks in Figure 2.1
have been changed from their default labels to reflect their role in this model. The default labels match the
block type.) Customer arrivals to the bank are modeled using an Entity Generator block labeled Arriving
Customers in Figure 2.1. The Entity Generator block has an input value port for the interarrival time. (See
“Ports” on page 30 for more information about ports.) The Numeric Source block labeled InterArrival
Time generates a sample from the exponential distribution (representing the next interarrival time) and the
Entity Generator block pulls that value through the InterArrivalTime port.

Figure 2.2 shows the dialog box for the Interarrival Time block. Since time in Simulation Studio is
dimensionless, you can use hours or minutes or any other time unit in any Simulation Studio model, as long
as you use the same units consistently throughout the model.

A Simple M/M/1 Queueing Model F 7

Figure 2.2 Numeric Source Block Dialog Box

When the entity that represents a customer leaves the Arriving Customers Entity Generator block, it is pushed
to the FIFO Queue block . The movement of the entity down the link does not advance the simulation
clock. If the queue has a limited capacity and is full when the entity arrives, the entity is pushed out the
Entity Generator block’s OutBalk port. If the queue is not full, the FIFO Queue block attempts to push the
entity to the Server block labeled Teller. If the Teller is available, it accepts the entity; otherwise, the entity
waits in the queue. When the Teller becomes available, it requests an entity from the queue.

When the entity arrives at the Teller block , a service time is sampled from the second Numeric Source
block (labeled Service Time) and pulled by the Teller through the InServiceTime port. After the entity
completes its service, it is pushed out to the Disposer block where it leaves the system. The Teller then
requests another entity from the queue.

8 F Chapter 2: Overview of SAS Simulation Studio

Running the Model
Figure 2.3 shows the Experiment window for this model. A single experimental design point, called point1,
has the number of replications set to 1 and the length of the simulation set to 540 minutes (one banking day).

Figure 2.3 M/M/1 Queueing Model: One Design Point

To display the simulation clock, select RunIShowISimulation Clock from the Simulation Studio menu.
To turn on the animation, click the Animation button . To run this model, click the Start button . To
pause the model, click the Pause button . To restart the model, click the Start button again. When the
model finishes running, only the Reset button is active. You must click the Reset button before you make
changes to the experiment window or rerun the model.

Collecting Statistics F 9

Collecting Statistics
You can use a Number Holder block to collect and display statistics such as minimum, maximum, sum,
and mean as the model is running. In Figure 2.3, a Number Holder block (labeled Average Waiting Time) is
connected to the OutWait port on the FIFO Queue block. (Although the ports on a block are not labeled in
Figure 2.3, when you rest your mouse pointer on a port, a tooltip displays the port name.)

Double-clicking any block in a model opens the properties dialog box for that block. Figure 2.4 shows the
dialog box for this Number Holder block. As each entity leaves the queue, its wait time is pushed into the
Number Holder block, whose Display field is set to Mean. The Number Holder then recomputes the average
waiting time and displays the new value. In this example, the average waiting time for customers computed
over one banking day is 16.81 minutes.

Figure 2.4 Number Holder Block Properties

A second Number Holder block (labeled Current Queue Length), with the Display field set to Value, is
connected to the OutLength port on the FIFO Queue block. Each time an entity enters or leaves the queue,
the new queue length is pushed to the Current Queue Length Number Holder block and the updated queue
length is displayed. Number Holder blocks can display only averages for observation-based statistics, such as
waiting time. For time-dependent statistics such as queue length, Number Holder blocks should be used only
to display the minimum, maximum, sum, or current value. In Figure 2.3, the final queue length is 2.

Finally, there is a third Number Holder block (labeled Number Serviced), with the Display field set to Value,
connected to the OutCount port on the Disposer block . Each time an entity leaves the system, the Number
Serviced Number Holder block updates its value and displays the current number of entities serviced. In this
example, the number of customers served by the end of one day is 88.

10 F Chapter 2: Overview of SAS Simulation Studio

Repair Shop Example
This section discusses a more complicated model to demonstrate some of the additional features and
capabilities of Simulation Studio, including compound blocks, branching based on probability, and using the
various plotting blocks to monitor the status of the model as it is running.

Suppose parts arrive at a repair shop at a rate of four per hour. Upon arrival, a part is taken to the service desk
where it is inspected. The time it takes a person to inspect the part is uniformly distributed between 5 and
15 minutes. The service desk can repair 35% of the parts. The rest require more complicated repairs and
must be sent to the repair station. At the repair station, the part is worked on by a repairman. The time it
takes a repairman to diagnose and fix the problem is uniformly distributed with a minimum of 10 minutes
and a maximum of 45 minutes. With a probability of 0.09, a repairman cannot fix the part, and it is sent to
the scrap area. Otherwise, the repaired part is sent on to a quality control manager who inspects the part to
determine whether it has been repaired properly. The quality control manager sends 10% of the repaired
parts back to the repair center for further repairs. The rest of the parts that pass inspection are sent on to
the part pickup area. The time it takes a quality control manager to inspect a part is uniformly distributed
between 6 and 18 minutes. Two people work at the service desk, and two people work at the repair desk.
Assume the travel time for parts between all stations is 1 minute. The shop is open from 9:00 a.m. to 6:00
p.m., Monday through Friday. The simulation is run for one work week (45 hours).

Compound Blocks
Figure 2.5 shows the completed repair shop model. This model contains several yellow blocks labeled
Arrivals, Delay, and Chance; these are compound blocks. If you double-click the yellow compound block
labeled Arrivals, you see that it is made up of two blocks: a Numeric Source block and an Entity Generator
block. (See Figure 2.6.) Compound blocks are a handy way to organize and streamline your model by
collapsing groups of blocks into one block. Compound blocks are also useful in situations where you have the
same logic repeated more than once because they can be saved to a template and later reused. For example,
double-clicking a Chance compound block reveals that it is made up of three blocks. (See Figure 2.7.) By
combining them into one compound block and saving it to a template, you can easily reuse this same logic at
other places in your model. See Chapter 7, “Compound and Submodel Blocks,” for more information about
creating and saving compound blocks.

Compound Blocks F 11

Figure 2.5 Repair Shop Model

Figure 2.6 Arrivals Compound Block

Figure 2.7 Chance Compound Block

12 F Chapter 2: Overview of SAS Simulation Studio

Model Logic
Entities that represent the parts are created in the Arrivals compound block and are pushed to a Delay
compound block where they are held for one minute, representing the travel time between stations. Next they
are pushed to the Service DeskQ Queue block where they wait for the next available associate at the service
desk. After service is completed at the service desk, the entity is pushed to a Chance compound block, which
is used to model branching based on probability (in particular, to model that 35% of the parts are repaired at
the service desk while the rest are sent on to the repair station).

If you right-click the Switch block inside the first Chance compound block to open the properties dialog box,
you see that two cases are defined: one named FurtherRepair and one named Fixed. (See Figure 2.8.) The
Port option indicates that the switch value comes through the InSwitchValue port. After the two cases have
been defined, two additional entity output ports are dynamically created on the Switch block to allow routing
of entities based on the switch value. The InSwitchValue port is connected to a Formula block.

Figure 2.8 Switch Block Properties

Figure 2.9 shows the properties dialog box for the Formula block. After you add one input variable named
runif of type Number, the Formula block dynamically creates an input port labeled runif. Connected to the
runif input port is a Numeric Source block. This Numeric Source block generates a sample from the uniform
distribution with a minimum of 0 and a maximum of 1. After the value for runif is pulled by the Formula
block, the expression cond(runif>0.35,1,0) is evaluated as follows: If runif is greater than 0.35, then
the value 1 is returned and pushed out of the Formula block and into the Switch block. Otherwise, the value
0 is returned and pushed out. The Switch block then receives either the value of 1 or 0 and uses the value to
determine which output port the entity should use to leave the Switch block.

Model Logic F 13

Figure 2.9 Formula Block Properties

If a part is fixed at the service desk, it leaves the system. Otherwise, it is pushed on to the second Delay
compound block where it is held for one minute. It then waits in the repair desk queue for the next available
repairman. After being serviced by a repairman, the part is pushed into the second Chance block. Here the
expression cond(runif>0.09,1,0) is evaluated so that with probability 0.09 the part cannot be fixed and is
scrapped (that is, the entity leaves the system). Parts that are fixed move on to the third Delay compound block
where they wait for one minute and then are pushed into the quality control queue. After being inspected
by the quality control manager, the condition cond(runif>0.10,1,0) is evaluated so that with probability
0.10 the part does not pass the quality control inspection and is sent back (via the Connector labeled Rework)
to the Repair Desk queue. Parts that do pass the quality control inspection leave the system.

14 F Chapter 2: Overview of SAS Simulation Studio

Collecting Data
Several blocks in Simulation Studio can be used to collect data. One of these blocks used in the repair
shop model is the Server Stats Collector block . This block can be placed anywhere in the model window
because entities do not flow through it. Figure 2.10 shows the properties dialog box for the Server Stats
Collector block. A list of all blocks that implement the ServerStats interface in the model is shown, and you
can select the ones for which you want to collect statistics. The data collected for each replication can be
saved to a file as a SAS data set or JMP table or passed to one of the Simulation Studio plotting blocks.

Figure 2.10 Server Stats Block Properties

In the repair shop model, a Bar Chart block is connected to the OutData port of the Server Stats Collector
block. Figure 2.11 shows the properties dialog box for the Bar Chart block, which requests a bar chart of the
average utilization for each of the three servers in the model. After the model is run, the bar chart shows that
the average utilization at the quality control station is significantly higher than at the repair or service desks.
(See Figure 2.5.)

Collecting Data F 15

Figure 2.11 Bar Chart Block Properties

To further investigate the severity of the bottleneck at the quality control station, you can connect a Number
Holder block (labeled WaitingTimeQC) to the OutWait port on the quality control queue. Then you can pass
the waiting time values to a Scatter Plot block by connecting the OutCollected port of the Number Holder
block to the InData port of the Scatter Plot block. For the plots to display correctly, the Collect Data check
box in the Number Holder Block properties dialog box must be selected. (See Figure 2.4.) As the model runs,
you see that the waiting time at the quality control station continues to increase. Appendix E, “Examples of
Simulation Studio Models,” revisits this repair shop model.

16

Chapter 3

Introduction to SAS Simulation Studio

Contents
Simulation Studio Graphical User Interface . 17
Installing and Starting Simulation Studio . 18

Installing Simulation Studio . 18
Starting Simulation Studio . 19
Configuring Simulation Studio . 19
Launching Local SAS and JMP Servers . 20
Using a Remote SAS Server . 21

Simulation Studio Menu and Toolbar . 22
Block Template Display Area . 24
Simulation Studio Projects . 25

Project Explorer . 25
Project Window . 26
Log, Trace, and Animation Tabs . 28
Project Status Bar . 28

Simulation Studio Graphical User Interface
As mentioned in Chapter 2, “Overview of SAS Simulation Studio,” Simulation Studio provides a graphical
user interface (GUI) and a batch interface. Initially, most users typically use the Simulation Studio GUI to
build and execute simulation models. This chapter provides a high-level overview of Simulation Studio from
the GUI perspective and discusses the major components of the application framework. The batch interface
is detailed in Chapter 14, “Batch Execution.”

18 F Chapter 3: Introduction to SAS Simulation Studio

Figure 3.1 Simulation Studio Application Framework

When you start the Simulation Studio application, the graphical user interface opens on your computer screen
as shown in Figure 3.1. This window consists of six main areas: menu, toolbar, block template display area,
project explorer, project desktop, and project status bar. The following sections provide details about each of
these areas, as well as how to launch the application.

Installing and Starting Simulation Studio

Installing Simulation Studio
The installation program for Simulation Studio asks where you want to install the software on your computer.
The default location is \Program Files\SASHome\SASSimulationStudio\14.2. If you choose
the default location, the installation software loads the software and adds an entry for Simulation Studio to
the Start menu.

Configuring Simulation Studio F 19

Simulation Studio requires you to have a valid version of SAS/OR software installed on your computer. It
also needs to know the location of SASHome on your system. This information is part of the Simulation
Studio configuration data and must be supplied to Simulation Studio for the application to launch.

Starting Simulation Studio
To start Simulation Studio, you can either double-click the Simulation Studio desktop icon or select the
Simulation Studio entry from the Start menu (StartIProgramsISASISimulation Studio 14.2.)

Configuring Simulation Studio
When you attempt to launch Simulation Studio for the first time, it has not yet acquired all of the configuration
data that it needs. The message “SAS Simulation Studio configuration data not specified” appears, because
Simulation Studio does not know where on your machine to look for SAS license information. Then
Simulation Studio displays the SAS Simulation Studio Configuration dialog box for you to enter the
necessary information. (See Figure 3.2.) In the SASHOME Path box, enter the directory for SASHome. A
common default path for this location is \Program Files\SASHome. To open the SAS Simulation Studio
Configuration dialog box after the initial launch, select ToolsIConfiguration from the main Simulation
Studio menu.

Figure 3.2 Configuration Dialog Box

20 F Chapter 3: Introduction to SAS Simulation Studio

If you have both SAS and JMP software installed, you can select either SAS Data Set or JMP Data Table
as your default data format. (This format information is used for reading and writing data when the filename
extension is not provided in an input or output filename.)

SAS Simulation Studio communicates with SAS Workspace Servers to process the input and output requests
of SAS data sets in data streaming and collecting blocks, such as the Numeric Source and Bucket blocks. It
also supports the submission of SAS programs to the SAS Workspace Servers from the SAS Program block.
Currently, you can use up to two SAS Workspace Servers:

� One server can reside on the local machine where Simulation Studio is installed and running.

� Another SAS server can reside on a remote machine and be used as a remote server.

NOTE: In the SAS Simulation Studio Configuration dialog box (shown in Figure 3.2), the only required field
is SASHOME Path. The remote and local SAS Workspace Server fields are optional. For information
about configuring and using the local and remote SAS servers, see the sections “Launching Local SAS and
JMP Servers” on page 20 and “Using a Remote SAS Server” on page 21.

When you run a Simulation Studio model on a multicore machine by selecting Parallel Mode from the Run
menu, different design points and replications are distributed on different cores simultaneously. The actual
distribution of design points and replications depends on the number of cores available and the total number
of design points and replications that are selected to run. You can select Preferred Number of Threads to
Use for Parallel Run Mode to specify the number of threads to use in parallel mode. The maximum value
is machine-dependent, the minimum value is 2, and the default is less than the actual number of cores. If the
machine is not multicore, then the Preferred Number of Threads to Use for Parallel Run Mode option
is not available. For more information about using the Parallel Mode option, see the section “Running a
Model in Parallel Mode” on page 36 in Chapter 4, “Simulation Models.”

Launching Local SAS and JMP Servers
If you want to save data, load data, submit SAS code, or interact with JMP software locally during a
Simulation Studio session, you need to have a SAS Workspace Server or JMP server running locally on your
computer.

Simulation Studio provides two different methods of connecting to a local SAS Workspace Server. First,
you can use the default local workspace server that is launched when Simulation Studio requires it. This
default local workspace server does not require configuration or credentials and is also available when you
are running in batch mode. No action is required to use the default local SAS Workspace Server in either
interactive or batch mode. NOTE: In releases of Simulation Studio before 14.1, you had to launch the local
SAS server manually by using the SAS_Sim_Server.bat file. This step is no longer required.

As an alternative, you can connect to the SAS Simulation Studio Object Spawner for SAS services by using
credentialing. To use this approach, you specify a port number in the Local SAS Workspace Server section of
the SAS Simulation Studio Configuration dialog box (shown in Figure 3.2). You are also required to provide
local credentials in the User Credentials for SAS Workspace Server dialog box (shown in Figure 3.3), which
you can open by selecting ToolsIServer Credentials from the main Simulation Studio menu. After you
enter a port number for the local SAS Workspace Server, SAS Simulation Studio no longer uses its default
local SAS Workspace Server.

Using a Remote SAS Server F 21

Figure 3.3 User Credentials for SAS Workspace Server Dialog Box

The Configure SAS Simulation Studio step of the SAS Simulation Studio install process provides the
default port number 58591 for you to use to connect to the SAS Simulation Studio Object Spawner for SAS
services. If you skipped the Configure SAS Simulation Studio step during the installation process, then
you will not be able to connect to the SAS Simulation Studio Object Spawner for SAS services. If you are
using the SAS Simulation Studio Object Spawner for SAS services and want to run Simulation Studio in
batch mode, then you must first launch Simulation Studio, provide the local port number and your local
credentials, and leave Simulation Studio open.

The local JMP server must be launched manually. The server script is installed in the launchSASServer
folder in your Simulation Studio installation directory. To launch the Simulation Studio JMP server, you
open and run the JMP script file named JMP_Sim_Server.JSL. If you double-click the file JMP_Sim_
Server.JSL, the encrypted script file opens in JMP. You then right-click in the JMP script window and
select Run Script. You can minimize the JMP window, but it must remain open for Simulation Studio to
communicate with JMP.

Using a Remote SAS Server
In the Remote SAS Workspace Server section of the SAS Simulation Studio Configuration dialog box (shown
in Figure 3.2), you use the Host Name field to specify either the host name or the Internet Protocol (IP)
address of the remote server. In the Port Number field, specify the TCP/IP port number for the remote
SAS Workspace Server session on the remote server. Simulation Studio uses this port number to access
the services provided by the remote SAS Workspace Server. Select either Unix or Windows as the Host
System Type of the remote server. In the Default File Path field, specify the default file input and output
root directory or folder path for the data input and output requests. Use the appropriate UNIX or Windows

22 F Chapter 3: Introduction to SAS Simulation Studio

path format convention to specify the path, and make it consistent with the specified Host System Type of
the remote server. When using a remote server, you specify all file paths in the model for loading and saving
data as relative to the path specified in the Default File Path field. For example, if the default file path for
a remote UNIX server is specified as /username/simstudio/projects and the file path for an input
data set is specified as project1/data1.sas7bdat, then at run time Simulation Studio looks for the file
data1.sas7bdat in the folder /username/simstudio/projects/project1.

All data streaming blocks, such as the Numeric Source and Observation Source blocks, have the option
Load from Remote SAS Workspace Server. When this option is selected, data are read from the specified
location on the remote SAS Workspace Server. All data collecting blocks, such as the Number Holder and
Bucket blocks, have the option Submit to Remote SAS Workspace Server. Selecting this option saves any
collected data to a location on a remote SAS Workspace Server. This option is also available in the SAS
Program block. When this option is selected, the specified SAS program on the local machine is executed on
the remote SAS Workspace Server. You specify the remote SAS Workspace Server information in the SAS
Simulation Studio Configuration dialog box, available when you select Configuration from the Tools menu.
(See Figure 3.2.)

The options Submit to Remote SAS Workspace Server and Load from Remote SAS Workspace Server
can be set in the Block Properties dialog box for a specific block. Also, right-clicking on a model name
in the Project Explorer display area and clicking Remote Service Host opens a dialog box where you can
select the blocks in the model for which the Submit to Remote SAS Workspace Server and Load from
Remote SAS Workspace Server options should be selected. If any block in a model has either of these
options selected, then you are also required to provide the credentials necessary to access the remote SAS
Workspace Server. Select ToolsIServer Credentials from the main Simulation Studio menu to open the
User Credentials for SAS Workspace Server dialog box (shown in Figure 3.3). If you are running in batch
mode and using a remote SAS Workspace Server, then you must first launch Simulation Studio, provide your
remote host credentials, and leave Simulation Studio open.

Simulation Studio Menu and Toolbar
The main Simulation Studio menu consists of six items: File, Template, Run, Analyze, Tools, and Help.
Use the File menu (shown in Figure 3.4) to open, create, close, and save projects, models, and experiments in
Simulation Studio. When you open or create a new project, Simulation Studio opens a new project window
in the Project Desktop area of the GUI and updates the Project Explorer accordingly. If this is a new project,
a new (empty) model and experiment are also created. When an existing project is opened, all models and
experiments in that project are opened and entries are created for them in the Project Explorer.

Figure 3.4 File Menu

Simulation Studio Menu and Toolbar F 23

A Simulation Studio template stores information about a collection of Simulation Studio blocks. Template
details are provided in Chapter 12, “Block Templates.” Use the Template menu to open, create, close, and
save Simulation Studio templates. Opening a template adds the template name to the Template list box in the
Block Template Display area of the application. You can use this list box to determine which template palette
is visible in the Block Template Display area of the application. Select TemplateIClose to remove the
current template name from the Template list box and also remove the associated blocks from the Template
palette. Select Save or SaveAs to save the current template to disk storage. More details about templates are
provided in Chapter 12, “Block Templates.”

The Run menu (Figure 3.5) controls the model execution and animation. Many of the controls are also found
on the toolbar. The functionality that is associated with the model execution controls Start, Augment, Pause,
Reset, and Parallel Mode is discussed in Chapter 4, “Simulation Models.” Select Show to enable or disable
the simulation clock, replication count, or animation for the current model. When visible, the simulation
clock and replication count appear in the upper right corner of an individual Project window.

Figure 3.5 Run Menu

To access the JMP distribution-fitting platform, select AnalyzeIFit Distribution. To open the configura-
tion dialog box (Figure 3.2), select ToolsIConfiguration. You can use the Help menu to access online
documentation for Simulation Studio and SAS Technical Support.

The toolbar (Figure 3.6) provides quick access to most of the functionality on the Run menu. The animation
icon acts as a toggle switch for turning execution animation on and off. The parallel mode icon acts as a
toggle switch for turning parallel mode on and off. The remaining toolbar buttons are discussed in Chapter 4,
“Simulation Models.”

Figure 3.6 Toolbar

24 F Chapter 3: Introduction to SAS Simulation Studio

Block Template Display Area
The Block Template Display area (Figure 3.7) consists of two components. The Template list box contains the
names of all the templates currently loaded into Simulation Studio. The selection displayed in the Template
list box represents the currently active template. In Figure 3.7 the template labeled Standard is active. The
area immediately below the list box, called the Template Palette area, displays the templates for the individual
blocks contained in the currently active template.

You can change the format of the displayed items in the Template Palette area by using the pop-up menu
available on the Block Template Display area background. Display options include Large Icons, Small
Icons, List, Text Only, and Icons Only. You can also use this pop-up menu to view specific information
about an individual block. Selecting Block Info from the pop-up menu opens a dialog box to display
information about the corresponding block. This information includes the block name, class path, icon, and
tooltip associated with the block. Menu options are also available via the pop-up menu to remove blocks
from and import blocks to the template.

When you rest the pointer on an individual block icon in the Template Palette, a tooltip appears that contains
a brief description of the block. The Template Palette area is your source for blocks when you are using
the Simulation Studio GUI to build your simulation model. To add blocks to your simulation model, drag
template icons from the Template Palette into a Model window. This process creates an instance of the
associated block in your model. Templates are discussed in detail in Chapter 12, “Block Templates.”

Figure 3.7 Template Display Area

Project Explorer F 25

Simulation Studio Projects
A project in Simulation Studio (ideally) contains models and experiments that are in some way associated
with each other and helps to provide organizational structure to all of your models and experiments. A project
must contain at least one model and experiment, but there is no limit to how many models and experiments
can be in a project. Any number of projects can be loaded into Simulation Studio at one time. In addition
to organizing models and experiments, projects provide storage for factor and response definitions that can
be shared across models and experiments in that project. Factors and responses are discussed in Chapter 5,
“Experiments.”

Project Explorer
The Project Explorer (located on the top left side of the GUI in Figure 3.1) uses a tree structure to display
the projects, associated models, and experiments that are currently loaded into the application. Figure 3.8
shows a Project Explorer with two projects loaded: crane and repairshopDOE, each with one model and one
experiment.

Figure 3.8 Sample Project Explorer

Selecting a project, model, or experiment name listed in the Project Explorer hierarchy causes the windows
associated with that item to activate and pop to the top in the Project window. The activated model and
experiment names are shown in bold. Up to one model and one experiment in a project can be activated.

Context-sensitive pop-up menus are available on the items displayed in the Project Explorer. You can
right-click a project to open a dialog box to edit factors and responses associated with the project and also
to change the base directory location where any simulation results are stored. You can right-click a model
to open the Anchors dialog box to associate block parameters in a model to project factors and responses
and also to set flags in blocks for automatically saving results. You can right-click an experiment to open
a dialog box to include factors and responses. Factors, responses, and anchors are detailed in Chapter 5,
“Experiments.”

26 F Chapter 3: Introduction to SAS Simulation Studio

Project Window
Each project loaded into Simulation Studio has a Project window associated with it in the Project Desktop
area of the GUI. A newly created Project window is displayed in Figure 3.9. Each Project window has a
desktop area at the top and a tabbed window at the bottom. The Project Desktop area contains any Model
windows and Experiment windows associated with the project. When a new Project window is first created,
it has one (empty) Model window, one Experiment window, and at the bottom of the frame, Log, Trace, and
Animation tabs. Project windows can be minimized as needed using controls on the Project window frame.
To open the Factor and Response definition dialog boxes, right-click on the background of a Project window.
See Chapter 5, “Experiments,” for details about factors and responses.

Figure 3.9 Sample Project Window

Project Window F 27

Model Window

Each model in a project has a Model window associated with it. You use this window to graphically construct
and display a simulation model. You drag a block from the Template Palette into a Model window to create
an instance of the block associated with that template in your model. You connect the blocks in your model
by creating links between ports on the various blocks. You can right-click or double-click an individual
block to open a dialog box where you can modify parameters associated with the block. Interacting with
blocks and models is discussed in detail in Chapter 4, “Simulation Models.” Closing a Model window
deletes the window and removes the model entry from the Project Explorer. NOTE: Modified models are not
automatically saved upon closing. You will however be prompted and asked whether you want to save the
model before it is closed. Figure 3.10 displays a sample Model window that contains a simple M/M/1 model.

Figure 3.10 Sample Model Window

Experiment Window

You use Experiment windows to control the initialization and running of simulation models. Each experiment
in a project has an Experiment window in the Project window. By default, each Experiment window contains
columns for controlling the start and end times of a simulation run (or design point) along with a column for
designating how many times you want to repeat this run. An experiment must have at least one design point
in order to run an associated simulation model.

You can use an Experiment window to control initialization of block parameters before running a simulation
model. Any factor or response defined on the project can be included in an experiment. Using this and other
features of experiments is discussed in Chapter 5, “Experiments.”

As with a Model window, closing an Experiment window deletes the window and removes the experiment
entry from the Project Explorer. Figure 3.11 shows a sample Experiment window including a factor labeled

28 F Chapter 3: Introduction to SAS Simulation Studio

maxentities and a response labeled Number Serviced. To modify the content of an Experiment window,
right-click on the background of the Experiment window and select the appropriate item from the pop-up
menu.

Figure 3.11 Sample Experiment Window

Log, Trace, and Animation Tabs
Each Project window also contains a Log, Trace, and Animation window in a tabbed format along the bottom
of the Project window frame. (See Figure 3.9.) The Log tab displays log messages from either the currently
running or most recently run model. Each log message has a Severity Level associated with it along with the
source and simulation time of the message. If you click on a message in the log, the block in the model that
generated the message will be highlighted.

The Tracer feature must be enabled for trace messages to appear in the Trace tab. You enable the Tracer
feature by using a pop-up menu available on the Trace tab background. Trace messages are generated by
individual blocks during the execution of a model and are intended to provide details about events and
execution flow within the blocks.

The Animation tab provides options for controlling the simulation animation as a model runs. You can
enable animation for different regions of the model, as well as adjust the animation speed, start time, and end
time for each selected region.

Additional details about the log, trace, and animation facilities in Simulation Studio are provided in Chapter 11,
“Model Debugging and Verification.”

Project Status Bar
The Project Status bar, located at the bottom of the GUI, displays the path name of the currently active
project.

Chapter 4

Simulation Models

Contents
Overview of Models . 29
Blocks . 30
Ports . 30
Entities and Values . 32
Building a Model . 33

Creating Links . 34
Connectors . 34

Running a Model . 35
Running a Model in Parallel Mode . 36
Searching a Model . 37
Saving a Project . 38
Opening a Project, Model, or Experiment . 38
Model Window Pop-up Menu . 39

Navigation . 39
Managing Anchors . 39

Overview of Models
In Simulation Studio, the term model refers to an abstraction or representation of a system that you want to
investigate or study. Most models represent a simplified version of the real system, but they still must capture
the essence of the system under investigation to be useful. In Simulation Studio, models are composed of
blocks, and blocks communicate with each other through ports. In the Simulation Studio GUI, blocks are said
to be connected if a port on one block has a link to a port on another block, creating a path for information to
flow between them. A model in Simulation Studio is usually a series of blocks arranged or connected in a
configuration that represents the system under investigation.

As described in Chapter 3, “Introduction to SAS Simulation Studio,” models in Simulation Studio are
organized into projects. Each project has at least one Model window, and you use this window to construct
your simulation model. This chapter provides an overview of the components of a model, including blocks,
ports, and the types of information that flow between them. The details about each of these subjects are
provided in later chapters. This chapter also discusses how to use the Simulation Studio GUI to build, run,
and save a simulation model.

30 F Chapter 4: Simulation Models

Blocks
In Simulation Studio, blocks are the most fundamental units used to build a simulation model. Each block
usually encapsulates some well-defined and specialized functionality. Communication between blocks is
accomplished through the ports defined on the individual blocks. In the Simulation Studio GUI, you manually
create a link between the ports on blocks to provide a path for information to flow when the simulation is
running.

Simulation Studio provides a default collection of basic blocks for model construction. These blocks appear
in, and can be accessed through, the Standard template of the application. The details about these individual
blocks is provided in Appendix A, “Templates.” Each block has a pop-up menu associated with it that you
can open by right-clicking the block in the Model window. This menu looks similar to the one displayed in
Figure 4.1.

Figure 4.1 Sample Block Menu

This menu provides various functionalities, including access to the Block Properties dialog box. The Block
Properties dialog box displays any individual parameters for the block along with a block functionality
overview page. You can also open the Block Properties dialog box by double-clicking the block.

In addition to the basic blocks provided by Simulation Studio, you can create compound and submodel blocks
by aggregating a series of blocks. For more information about blocks and compound and submodel blocks,
see Chapter 6, “Blocks,” and Chapter 7, “Compound and Submodel Blocks.”

Ports
Ports represent the basic interface to blocks. Blocks usually have multiple ports. Depending on the
functionality of the block, a block can have static ports (the same ports are always available for this type
of block) or dynamic ports (ports can be dynamically created or deleted based on various properties of the
block). An example of a block with static ports is the Entity Generator block used to create entities. (See
Figure 4.2.) This block always has an InterArrivalTime, BatchSize, Signal, OutEntity, and OutBalk port.

Ports F 31

Figure 4.2 Entity Generator Block with Five Static Ports

The Modifier block has static ports and optional dynamic ports. You use a Modifier block (Figure 4.3) to
assign attributes to an entity that flows through a model. The number of ports available on the Modifier
block is dependent on the number of attributes you have decided to set using that block. In Figure 4.3, three
attributes are assigned using this Modifier block, so the block’s icon displays three dynamic attribute input
ports along with the Modifier block’s standard static input and (two) output entity ports.

Figure 4.3 Modifier Block with Three Dynamic Attribute Ports

Blocks have two types of ports: value ports and entity ports. The ports are color-coded with value ports
displayed in blue and entity ports in red. Value ports are always located on the top and bottom of the block
icon, and entity ports are displayed on the right and left sides of the block icon. In general, values are
data-oriented information such as numbers, character strings, observation objects, and data model objects,
while entities represent special objects that flow through the model during a simulation, potentially carrying
additional information or properties along with them.

Each value port can either be an input value port or an output value port. Similarly, entity ports can be input
or output ports. An input port is used to get information into the block, and an output port is either used by
the block to push information out or used by another block to pull information from the block. Input ports
are drawn as triangles on the perimeter of a block, and output ports are represented by squares. In Figure 4.2,
the InterArrivalTime port represents an input value port and the OutEntity port is an output entity port. When
you first rest the pointer over a port, a tooltip with a brief label for the port appears. The ports for each block
are described on the Overview tab in the block’s properties dialog box.

Each port has associated with it a Port Connections dialog box that is accessed by right-clicking the port. The
Port Connections dialog box shows a list of all ports (and associated blocks) connected to the selected port.
(See Figure 4.4.) The Order column in the dialog box indicates the priority of each port that is connected
to the selected port. The order in which the ports appear in the dialog box is the order in which they are

32 F Chapter 4: Simulation Models

activated when the selected port needs to communicate with another port. The order can be changed by
selecting a row in the Port Connections dialog box and then clicking the Up or Down arrow button to move
the selected row in the list. Connections can also be deleted by selecting a row in the dialog box and clicking
the Delete button located under the arrow buttons.

Figure 4.4 Port Connections Dialog Box

Entities and Values
Two general types of information are communicated between blocks: values and entities. Values can be
numbers, strings, Boolean values, or objects. Frequently used object types include data model objects and
observation objects. Data model objects can be used to store SAS data sets and JMP tables in a simulation
model during a simulation run, and they are also used to store data created within a simulation model run.
Observation objects contain a row of information from a data model, SAS data set, or JMP table. Number
and string values in Simulation Studio are often associated with state information or properties on blocks,
whereas data model and observation object values contain a collection of related data values. Value ports are
used to access or set value information associated with blocks.

As an example, the Queue block has a numeric property called capacity that represents the maximum number
of entities the queue can hold at one time. Although you can use the properties dialog box of a Queue to set
its capacity, you can also connect the InCapacity port (as shown in Figure 4.5) to a numeric output port of
another block that sends out a numeric value while the simulation is running. The Queue block also has a
numeric value output port called OutLength. Every time the number of entities in the queue changes, the
length of the queue is pushed out its OutLength port. It is also possible to query the length of the queue via a
connection to the OutLength port.

Building a Model F 33

Figure 4.5 Queue Block

Although most values are simply numbers or strings, as mentioned previously, values can also be Java objects.
Some blocks collect information or statistics and store the data in a custom Java object called a data model
object. This data model object can be shared with other blocks. An example of this functionality is the
Number Holder block. The Number Holder block provides an option to store data values that pass through
the block in a data model object, and the Number Holder block has an output port called OutCollected to
provide access to this data model object. For example, you might be interested in displaying the values being
collected in the Number Holder block while the simulation is running, so you could connect the DataIn input
port (of value type Object) of a Histogram block to the OutCollected port of the Number Holder block. The
Histogram block would then display a representation of the data passing through the Number Holder block
when the simulation is running.

The second type of information passed between blocks is called an entity. Entities are special objects in
Simulation Studio and have a unique role in this discrete-event simulation application. Although value
information tends to flow between two blocks and is immediately consumed, entities usually flow through
the model and have a much longer life span. Entities can have properties or attributes assigned to them, and
these properties might be modified during the simulation execution. Blocks can use property information
assigned to entities in their internal processing and logic to affect simulation execution.

Consider the simple M/M/1 example presented in Chapter 2, “Overview of SAS Simulation Studio.” Suppose
this example represents customers waiting to check out at a cashier, and the entities that flow through the
model represent customers. You could modify this model to assign a property to the customers (entities) to
represent how many items the customer is purchasing and then use this information to determine how long it
takes the customer to check out at the cashier.

Additional information about entities and their role in Simulation Studio is given in Chapter 8, “Entities.”

Building a Model
Using the Simulation Studio GUI to build a simulation model is straightforward. It consists of dragging icons
from the Template Palette window into a Model window and then creating links between the appropriate
ports on the various blocks in the model. (Of course, the hard part is actually determining the appropriate
composition of the model.)

To create an instance of a specific block in a Model window, you drag the appropriate icon or text in the
Template Palette window into the Model window to the location where you want the block to be created.
During the drag, a transparent icon is attached to the pointer. (You can always drag the new block instance
around in the Model window to move it to another position.) You can modify the properties on any block

34 F Chapter 4: Simulation Models

in your model by using the properties dialog box associated with each block. You can open this dialog by
right-clicking the block and selecting the Block Properties menu item. Double-clicking the block icon also
causes the properties dialog box to open.

One-step undo and redo options are available immediately after you insert or delete a block. If you perform
another action after adding or deleting a block, such as forming a link, then the undo and redo options are no
longer available for that block. The options are available from the model pop-up menu, which you access
by right-clicking in the Model window. To remove the last block added to the model, select Undo Block
Insertion. To insert the block back into the model, select Redo Block Insertion. To insert a deleted block
back into the model, select Undo Block Deletion.

Creating Links
After you have blocks in your Model window, you can begin to create links between the ports on the various
blocks to enable the flow of values and entities between blocks. To create a link, position the pointer over a
port that you want to be an endpoint of the link and hold down the left mouse button. (Note that the port
size enlarges when the pointer is over it, indicating port selection.) A rubber-band line appears that connects
the selected port with the pointer. While holding down the left mouse button, move the pointer until it is
positioned over the port you want to connect to and then release the left mouse button. If the port types that
are associated with the two selected ports are compatible, a link is created between them.

Simulation Studio also offers a two-click method for creating links that is especially useful when the blocks
you want to connect are far apart in the model. You can use the two-click method to create a link by moving
the pointer until it is positioned over the first port to connect and then clicking the left mouse button. Move
the pointer until it is positioned over the compatible port that you want to connect to (scrolling the Model
window if necessary), and then click the left mouse button again to form the link. If you hold down the CTRL
key while performing the second click, then you can continue to click on other input ports to form additional
links. However, you cannot use the two-click method to connect tunnels on compound and submodel blocks.
For information about tunnels, compound blocks, and submodel blocks, see Chapter 7, “Compound and
Submodel Blocks.”

One-step undo and redo options are available for the most recent link insertion or deletion action. These
options are available from the Model window pop-up menu, which you access by right-clicking in the Model
window. To remove the last link formed from the model, select Undo Link Connection. To insert a deleted
link back into the model, select Redo Link Connection.

Connectors
Connecting blocks that are far apart in a model usually results in a link that crosses over other blocks and
links. This can be visually distracting and confusing. You can use Connectors to create invisible links
between blocks. To create an inter-Connector link:

1. Drag a separate Connector block from the Advanced template into the model window, and place it
adjacent to each of the blocks in the model that you want to directly link. When you drag a Connector
into a model, the Connector Type dialog box appears. In this dialog, you select the type of Connector:
Entity, Number, String, Boolean, Observation, DataModel, or Entity Group. As discussed in the section
“Ports” on page 30, each block port has a type associated with it. You base your selection of the type

Running a Model F 35

of Connector on the type of the block ports between which you want to create a hidden link. Only
Connectors of the same type can be connected. The ports on an entity-type Connector are red, and the
ports on a value-type Connector are blue.

2. Create a link from the appropriate port on each block to the adjacent Connector block.

3. Create a link between the two Connector blocks. When the link is created, it briefly flashes and then
disappears.

To show all inter-Connector links in the model, select NavigationIShow Connector Links from the pop-up
menu either on an individual block or on a Model window. Links between entity-type Connectors are
displayed in red when they are visible, and links between value-type Connectors are displayed in blue when
visible. To hide all inter-Connector links, select NavigationIShow Connector Links again.

You can view a list of all input (or output) links by right-clicking on the input (or output) port of a Connector
to open the Port Connections dialog box. To display a Connector link in the model, click on a row in the Port
Connections dialog box (where each row represents a link with another Connector). You can also remove
links or change the precedence order of the links in the Port Connections dialog box.

Running a Model
Before you can run your simulation model, you must have an active model and an active experiment, and
the active experiment must have at least one design point selected or highlighted in the Experiment window.
(For more information about experiments, see Chapter 5, “Experiments.”) Although a project can have
multiple models and experiments associated with it and multiple windows visible in the Project window, only
one model and one experiment are considered active at any particular time. The active model and active
experiment are identified by bold text for their names in the Project Explorer window. To activate a model
or experiment, you can either select the name in the Project Explorer window or select the window that is
associated with the model or experiment in the Project window.

After you have a valid model and experiment selected (that is, active), you can use any of the following
methods to start the simulation running. You can select the icon on the toolbar or select RunIStart
from the main menu. You can also select the icon on the toolbar or select RunIAugment. For more
information about augment run, see Chapter 5, “Experiments.” After you start a simulation run, Simulation
Studio attempts to synchronize the currently active model and experiment. This process involves checking
for correct factor and response anchors and for any other run-time errors (such as a required input port with
no connection). If there is an error, the model execution does not begin and a severe-level message is posted
to the Log window. For more information about the Log window, see Chapter 11, “Model Debugging and
Verification.” If this process is successful and there are no initial run-time errors, then the active model and
experiment transition into the running state and their labels in the Project Explorer are displayed in red.

As a model is executing, a progress bar is displayed and animated in the upper right corner of the SAS
Simulation Studio window, as shown in Figure 4.6. The progress bar displays the percentage of the total
number of replications across all selected design points that have completed execution.

Figure 4.6 Progress Bar

36 F Chapter 4: Simulation Models

By default, the simulation clock and replication count for the current design point are also displayed in the
upper right corner of the SAS Simulation Studio window. As a model is executing, the clock icon is
animated. Controls for displaying the clock and replication count are provided under the RunIShow menu.

While a simulation model is running, only the Pause and Reset icons are selectable on the toolbar.
You can stop or pause a running simulation at any point either by clicking the icon on the toolbar or by
selecting RunIPause from the main menu. When the execution of a model is paused, the paused clock icon

is displayed. When the simulation has finished running, the Pause icon is not selectable and the run
completed clock icon is displayed. The progress bar also displays 100%. NOTE: If a large amount of
data is saved or a SAS or JMP script is executed at some point during a simulation run, then there might be
a visible pause in the model execution during which the simulation clock might not be advancing and no
animation might be visible. However, the simulation engine is still processing data.

During the early stages of developing and validating your simulation model, it is often helpful to use the
animation feature in Simulation Studio. You can switch animation on and off by clicking the toolbar icon
or by selecting ShowIAnimation on the Run menu. When animation is activated during model execution,
the Animate toolbar icon flashes green and the flow of information is graphically depicted in the Model
window; value movement is visualized by blue icons, and entity movement is visualized by red icons. These
blue and red icons are shown traversing the various links in the model. Although animation slows the
execution of the model, it can provide valuable insight when you are debugging your model or demonstrating
the mechanics of your model to others. You can control the animation speed by using the slider control that is
located next to the toolbar icon. You can use the Track Animation option on the Model window pop-up
menu, as described in the section “Navigation” on page 39 to ensure that the part of the model currently
being animated is always visible in the Model window. The Animation tab (which you can expand at the
bottom of the Project window) enables you to select which regions of the model to animate during model
execution. For more information, see Chapter 11, “Model Debugging and Verification.”

Finally, selecting the icon or RunIReset reinitializes the states of the simulation clock and random
number streams; it also invokes a reset method for certain blocks in the active model. In the reset state, the
clock and replication count are unavailable.

Running a Model in Parallel Mode
If you are building a simulation model on a machine that has a multicore processor, then you can select
the Parallel Mode option from the Run menu or the parallel mode icon on the toolbar to improve the
run-time performance of the model. When you select Parallel Mode, different design points and replications
are distributed on different cores simultaneously. The actual distribution of design points and replications
depends on the number of cores available along with the number of design points and replications that are
selected to run. If you do not select Parallel Mode, then one single core is used to run the model. When
Parallel Mode is selected, the progress bar displays the percentage of replications that have completed
execution, and you can use the Start, Augment, Pause, and Reset run options on the toolbar or on the Run
menu in the same way as in nonparallel mode (see the section “Running a Model” on page 35).

The Parallel Mode option is intended to decrease the amount of time it takes to run a model. Because in
parallel mode more than one design point or replication is being run at the same time, the simulation clock,
replication count, animation, and trace are disabled. If you want to run a model in parallel mode, then you
have to ensure that your model does not attempt to save output data to the same location while multiple

Searching a Model F 37

replications or design points are executing. For example, if you use the Dataset Writer block to write a
data set during the simulation run, Simulation Studio might attempt to open and write to the same data set
simultaneously for different replications in parallel mode, resulting in a SEVERE log message. Similarly,
using the SAS Program block during a simulation run can cause an error if multiple replications attempt to
write to the same data set during the execution of the SAS program. Because the data collection blocks (such
as the Number Holder, Bucket, and Stats Collector blocks) automatically save data to a different location
for each replication and design point at the end of a run, using these blocks in a model does not cause any
problems in parallel mode.

NOTE: In parallel mode, SAS should be used to read or write data during a simulation run and to execute
code by using the SAS Program block. JMP should not be used in parallel mode to load data, write data, or
execute a JSL script.

Searching a Model
Simulation Studio includes a search feature that you can use to locate blocks, compound blocks, or submodels
in a particular model that satisfy specified criteria. You can open the Search dialog box, shown in Figure 4.7,
by pressing CTRL-F when the Model window is active. If you click anywhere outside the Search dialog box,
then the Search dialog box automatically closes. You can press CTRL-F to open it again.

Figure 4.7 Sample Search Dialog Box

In the Search dialog box, you can specify a whole or partial block label name in the Search String box. This
search string is used at the label-matching phase of the search process to select any blocks that have a label
that matches the specified string. Select the Case Sensitive check box to indicate that the search should find
only blocks with a label that matches the specified case-sensitive string. If the Search String box is blank,
then the block label is not used during the search.

38 F Chapter 4: Simulation Models

The Search For section of the dialog box enables you to select one of three categories of blocks to search:
simple block, compound block, or submodel. If you select the Simple Block option, then you can specify
the type of simple block (Entity Generator, Delay, Formula, and so on) in the Type list. Select All Types
to indicate that the search should be applied to all simple block types. If you select the Compound Block
option, then the Type list is not available.

After you select a block category and specify a search string (if necessary), click Search to execute the search
process. When the search is complete, the Search Results box is populated with a list of block labels that
satisfy the specified search criteria. You can then select block labels that are listed in the Search Results
box to locate the corresponding block in your model. If the Show Properties check box is selected when
you execute a search, then the Block Properties dialog box for a selected block in the Search Results field
automatically appears, and you can inspect or edit the block properties as needed. If the Auto Sync Forward
check box is selected when you execute a search, then the Model window scrolls to display the selected block
in the Search Results field. If the block is one or more levels deep inside a collapsed compound block, then
the compound blocks are automatically expanded to show the selected block.

If the Auto Sync Forward check box is not selected, then you can click Sync Forward to manually scroll
the Model window until the selected block is displayed. If you click Sync Forward and the selected block
is inside a collapsed compound block, then the compound block is automatically expanded to display the
selected block. You can then click Sync Backward to automatically undo the sync forward operation and
restore the collapsed status of the selected block’s parent compound block.

Saving a Project
Saving models, experiments, and factor/response definitions is currently done on a project basis. That is, only
entire projects can be saved. All models, experiments, and factor and response definitions that are associated
with a project are saved when a project is saved. To save a project, select FileISave or FileISaveAs from
the main menu. A File dialog box opens where you select the folder or directory location in which to save
the project.

Opening a Project, Model, or Experiment
Although you can save only an entire project, Simulation Studio enables you to open an individual project,
model, or experiment.

Opening a project results in opening all models and experiments associated with that project. To open a
project, model, or experiment, select File from the main menu. There are options to open a project, model,
or experiment. When you open a project, a new entry is created in the Project Explorer tree for that project
along with subentries for any models and experiments that reside in that particular project.

When you open an individual model or experiment, that item is included in the currently active project and a
new leaf is created in the Project Explorer under the appropriate project node.

Navigation F 39

Model Window Pop-up Menu
Each model window has a pop-up menu that includes Navigation and Anchors options, as shown in
Figure 4.8. These two options are described in the sections “Navigation” on page 39 and “Managing
Anchors” on page 39. As described in the section “Building a Model” on page 33, the model pop-up menu
can also contain the Undo Block Insertion, Redo Block Insertion, Undo Link Connection, Redo Link
Connection, and Undo Block Deletion options. If a block or compound block has been copied to the
clipboard, then the Paste option is also available on the Model window pop-up menu. For more information
about copying blocks see Chapter 6, “Blocks.”

Figure 4.8 Model Window Pop-up Menu

Navigation
The Navigation menu item on the block pop-up menu has three submenu items: Show Snapshot, Track
Animation, and Show Connector Links. The features that are associated with these items are particularly
useful when you work with large simulation models. Selecting Show Snapshot creates a new window that
displays a scaled-down version of the entire model in the currently active model window. This new window
is called the Snapshot window. The portion of the model visible in the original model window is depicted by
a highlighted rectangle in the Snapshot window. You can drag the highlighted region in the Snapshot window
to reveal other regions of the model in the associated model window.

When you run a large simulation model, the area of the model where the animation is occurring might not
be visible in the model window. You can select Track Animation to enable the model window to scroll
(when the simulation is running with animation turned on) to ensure that the part of the model currently being
animated is always visible.

By default, the links between Connector blocks are invisible. You can select Show Connector Links from
the Navigation submenu to display all connector links in the model.

Managing Anchors
As mentioned in Chapter 5, “Experiments,” anchors are used in association with experiments. Each project has
a collection of factors and responses that are defined on it, and each experiment in that project might include
any of these factors and responses. Simulation Studio must know how to map the factors and responses in an
experiment to block parameters in the simulation model under investigation. This is accomplished through
anchors. The Anchors dialog box (Figure 4.9) shows all factor and response anchors that are defined on the
model. Use the New, Edit, and Remove buttons in this dialog box to manipulate the entries in these tables.

40 F Chapter 4: Simulation Models

Figure 4.9 Sample Anchors Dialog Box

Clicking New opens the New Anchor dialog box (Figure 4.10), where you can associate block parameters in
your model to factor and response definitions in the project. Selecting a block label in the model tree on the
left side of the New Anchor dialog box causes the names of any factor (or response) parameter candidates
that are associated with the block to be displayed in the center Candidates list. To match a parameter with a
project factor (or response), you must select both the parameter name in the Candidates list and the project
factor name in the Factors list, and then click OK. A new entry is then created in the Anchors dialog box.
The anchors are matched to the experiment factors and responses when you attempt to run an experiment.

Managing Anchors F 41

Figure 4.10 New Anchor Dialog Box

42

Chapter 5

Experiments

Contents
Overview of Experiments . 43
Factors, Responses, and Anchors . 43
Experiment Window . 49

Design Points . 51
Replicate Rows . 52

Running an Experiment . 53
Augment Run . 54
Saving and Loading Design Data . 55

Overview of Experiments
The concept of an experiment can have a variety of meanings or connotations in different contexts and fields
of study. In Simulation Studio, an experiment provides a facility to automate the initialization and running of
simulation models and also to record measures from a simulation run. That is, you can use an experiment to
set parameters on blocks in your model before you run the model (without manually editing the individual
blocks) and also to extract and record measures from blocks at the end of each simulation run. This feature
provides you with a powerful facility to automate running a wide range of simulation scenarios and the
capability to conduct full design of experiment testing.

Factors, Responses, and Anchors
In keeping with traditional design of experiments terminology, the term factor describes a variable or
parameter that is manipulated or changed for each experimental design point. The term response refers
to a measure that is recorded for each experimental run. In Simulation Studio, factors and responses are
defined on a project basis. You use the Factors and Responses dialog boxes (Figure 5.1 and Figure 5.2,
respectively) to define factors and responses for a specific Simulation Studio project. To open a Factors or
Responses dialog box, right-click the Project window background (or right-click the project name in the
Project Explorer) and select Factors or Responses.

44 F Chapter 5: Experiments

Figure 5.1 Factors Dialog Box

Figure 5.2 Responses Dialog Box

The process of creating factor and response definitions essentially creates a factor and response database
for the project. This database facilitates the reuse of these definitions across experiments and models. Any
factor or response defined on a project can be included in any experiment in the project. To include a factor
and response in (or remove it from) an experiment, right-click in an Experiment window and select Factor
Inclusion or Response Inclusion from the pop-up menu shown in Figure 5.3. In the resulting dialog box,
select or clear the factor or response as desired.

Factors, Responses, and Anchors F 45

Figure 5.3 Experiment Menu

Figure 5.4 Factor Inclusion Dialog Box

Simulation Studio must map the factors and responses included in an experiment to block parameters and
measures in the simulation model. This is accomplished using an anchor, which defines the link between a
factor or response defined on a project and an actual block parameter or measure in a specific model. It is
possible to link a single factor to multiple blocks in a model. Anchor information is used to associate factors
and responses in an experiment with simulation models in a particular project at run time.

To demonstrate the anchor definition process, consider the simple M/M/1 model depicted in Figure 5.5 for
simulating waiting in line for a bank teller to become available. To open the Anchor dialog box (Figure 5.6),
which defines both factor and response anchors, right-click in the Model window and select Anchors from
the pop-up menu. The Anchors dialog box presents separate tabs for displaying the factor anchors and the
response anchors. In Figure 5.6, no anchors have been defined on this model yet.

46 F Chapter 5: Experiments

Figure 5.5 Simple Bank Teller Model

Figure 5.6 Sample Anchors Dialog Box

Factors, Responses, and Anchors F 47

The processes for creating response and factor anchors are completely analogous, so this section discusses
only creating response anchors. Click New on the Response Anchors tab in the Anchors dialog box to cause
the New Anchor dialog box for responses to be displayed. (See Figure 5.7.) The Responses list in the upper
right area of the New Anchor dialog box displays the names of all the responses defined on this project. In
this example the project has five defined responses. (Recall that factors and responses are defined on a project
basis.) When you select a response name in this list, the details associated with that response are displayed in
the Details table of the dialog box below the Responses list.

Figure 5.7 Sample New Anchor Dialog Box for Responses

The Blocks area contains a hierarchical representation of the names of all blocks in the model that contain
potential response anchors. Selecting a block name causes the Candidates list to be populated with the
names of the possible response anchors associated with the selected block. In Figure 5.8 the block named
FIFO Queue is selected and all of its potential response anchors appear in the Candidates list. The details
for any item selected in the Candidates list are displayed in the Details table below the Candidates list.

48 F Chapter 5: Experiments

Figure 5.8 New FIFO Queue Response Anchor Dialog Box

To create an anchor link between a response anchor candidate from a block in your model to a response
defined in your project, select an item in the Candidates list and also an item in the Responses list. Then
click OK. This results in an entry being added to the Anchors dialog box. (See Figure 5.9.) You can edit or
remove an entry from this table by selecting the appropriate row in the table and then clicking either Edit or
Remove.

Figure 5.9 Populated Anchors Dialog Box

Experiment Window F 49

When you attempt to run a simulation model-experiment combination, Simulation Studio attempts to map
the factor and response anchors defined on the model to the factors and responses included in the experiment.
If a mismatch exists, Simulation Studio writes an error message to the Log window and stops the model
execution.

Experiment Window
Figure 5.10 shows a sample Experiment window. This table is sometimes referred to as the design matrix for
an experiment. All the information associated with an experiment is displayed in the design matrix. Each
row in the matrix is called a design point, and it can contain values for a label, execution controls, factor
settings, and responses measured during model execution. You can add or remove design points by using the
pop-up menu available on the Experiment window background.

Figure 5.10 Sample Experiment Window

The design matrix is initially populated with four default columns labeled PointName, StartTime, EndTime,
and Replicates. The PointName column assigns a label to the design point. Although a default value (pointN)
is generated for this field when the design point is created, you can edit this field to be any text you choose.
The StartTime and EndTime values control the execution start time and end time (on the simulation clock)
for an individual simulation run. The simulation clock begins running at the value displayed in the StartTime
field for the design point, and the simulation ends or stops when the simulation clock reaches the time entered
in the EndTime field. (Note that time has no unit in Simulation Studio.) The final default column in the
design matrix is labeled Replicates. The value contained in this field represents how many times you want to
run this particular design point. You can edit the default values for StartTime, EndTime, and Replicates by
selecting Properties from the Experiment window pop-up menu and modifying the values in the resulting
properties dialog box. The default values set in the properties dialog box are applied to new design points that
are subsequently added to the Experiment window. Changes to the default values for StartTime, EndTime,
and Replicates are not applied to existing design points. The StartTime, EndTime, and Replicates columns
each have a pop-up menu (available by right-clicking the column name) that has a menu item called Set
Value. Figure 5.11 shows the pop-up menu for the Replicates column.

50 F Chapter 5: Experiments

Figure 5.11 Replicates Column Menu

Selecting Set Value opens the Set Value: Replicates dialog box, which is shown in Figure 5.12. The New
Value text box enables you to specify a value for the number of replications. The All and Selected options
enable you to specify whether the new value should be applied to all design points or to just the selected
ones. The value that initially appears in the New Value field is the default replicates value, which is set in the
Experiment window properties dialog box. The Set Value: EndTime and Set Value: StartTime dialog boxes
have similar functionality to the Set Value: Replicates dialog box.

Figure 5.12 Set Value: Replicates Dialog

Each replication of a design point uses the same factor settings. However, different random substreams
are used in each replication. Additional details about replicates are provided in Appendix C, “Design of
Experiments.”

Only the default columns in the design matrix are necessary to actually run a simulation model. Figure 5.10
shows a design matrix with one additional factor, maxentities, and one response, Number Serviced. Any
factors or responses defined on a project can be added to the design matrix by using the Factor Inclusion
or Response Inclusion dialog boxes, respectively. You can open these dialog boxes via menu entries in the
Experiment window pop-up menu. Figure 5.13 shows a sample Factor Inclusion dialog box. The names of
all the factors defined on the project are listed in the Factors list along with an individual check box for each
entry. In this example three factors have been defined on the project. When you select the factor name, the
details associated with that factor are displayed on the right side of the dialog box. The check box adjacent to
the factor name controls inclusion of the factor into the design matrix. In Figure 5.13 only the factor named
NumServers is included in the experiment. The Response Inclusion dialog box works analogously to the
Factor Inclusion dialog.

Design Points F 51

Color coding in the column header of the design matrix indicates which role that column plays in the
experiment. The default columns have gray headers; any added factors are denoted by yellow background
headers; and a pink background header is used for response columns.

Figure 5.13 Sample Factor Inclusion Dialog Box

Design Points
You can run an experiment with only one design point and only the default execution control parameters. In
fact, this is often the case when you are first building, debugging, and validating your model. However, after
you have confidence in your simulation model and you want to use it for investigating the process you are
trying to model, automating the manipulation of block parameters and running the corresponding simulations
becomes very important and useful.

After you have determined what factors and responses you want to include in your experiment, the next step
is to determine how many design points you need in your experiment and what values are assigned to the
individual cells in your design matrix. The factors you are manipulating, the number of levels in each of the
factors, the goals of the experiment, and so on, all contribute in determining the number of design points and
the contents of the individual cells in your design matrix. Options are available in the Experiment window
pop-up menu to add (and delete) design points to the design matrix. You can manually create new rows in the
matrix and then edit the individual cells to enter the desired parameter or factor values.

If you are interested in an automated approach to designing your experiment and possibly developing a
metamodel for your simulation model, Simulation Studio provides a link to the JMP design of experiments
capabilities. To access this functionality, select Make Design from the Experiment window pop-up menu.
The details about using JMP software to populate your design matrix and create a metamodel for your
simulation model are discussed in Appendix C, “Design of Experiments.”

If your experiment contains a large number of factors or responses, then you might need to scroll and possibly
expand the collapsed columns in the Experiment window to see the desired factor or response value. As an
alternative, the Experiment window provides a design point view that organizes the factors and responses in
rows rather than columns, thereby making it easier to access factor and response values.

52 F Chapter 5: Experiments

To view a design point, select Design Point View from the Experiment window pop-up menu. A sample
design point view is shown in Figure 5.14. This view enables you to edit the parameters for one design point
at a time. You can switch the displayed design point by using the Index field. You can use the Value column
in the Factors area of the dialog box to change factor values. After a design point is run, the summary is
displayed for each response (by default, the mean) over all replications in the Responses area. You can view
individual replicate responses by clicking Replicate Values.

Figure 5.14 Experiment Window Design Point View

Replicate Rows
One of the default columns in the experiment design matrix is labeled Replicates. The value in this column
represents how many times you want to run the associated design point in this experiment. The default value
for the entire column is 1 replicate. To edit the default replicate value, right-click in the Experiment window
to open the properties dialog box. Each replication run for a given design point uses the same factor levels.
However, different random streams (if random streams are used in the model) are used for each replicate.

If the number of replicates for a given design point is greater than 1 (and you have included responses in
your experiment), a small blue triangle precedes the replication value in the design matrix replication cell.
Clicking this triangle causes the replication rows to be expanded or collapsed in the matrix. Figure 5.15 and
Figure 5.16 show the different display states.

Figure 5.15 Replicate Rows Collapsed

Running an Experiment F 53

Figure 5.16 Replicate Rows Expanded

The factor level values are not displayed for each of the replicate rows—only the replication number and any
measured response values are displayed. If a design point has replicate rows and it is in a collapsed state,
the value displayed for any response value is a summary statistic calculated from all the values collected for
that design point for that response. The average value is displayed by default. You can change the summary
statistic displayed by right-clicking the appropriate response column heading in the Experiment window and
selecting from the statistics available. (See Figure 5.17.)

Figure 5.17 Response Summary Menu

Running an Experiment
After you have created and populated the design points in your Experiment window, you are ready to run
your simulation model. (You must have identified the active experiment, and it must have at least one valid
design point.) You can select one or more design points to automatically run in sequence. You can select
a collection of design points either by dragging the pointer over the desired design points or by using the
Control or Shift key in combination with clicking to perform standard extended selection of design points.
Selected design points are highlighted in the design matrix.

You can start running the selected design points in any of the following ways. You can select the icon on
the toolbar or select RunIStart from the main menu. You can also select the icon from the toolbar or the
RunIAugment from the main menu. (Augment run is discussed in more detail in the following section.)

When the Parallel Mode option on the Run menu is not selected, design points are run in the order in
which they appear in the design matrix. The currently running design point is indicated by a red font in
the design matrix. You can pause or suspend a simulation run by selecting the icon on the toolbar or by
selecting RunIPause from the main menu. To restart the simulation execution, simply select the icon or
RunIStart again.

54 F Chapter 5: Experiments

When the Parallel Mode option on the Run menu is selected, different design points and/or replications will
be distributed on different cores simultaneously. For more information about the Parallel Mode option, see
Chapter 4, “Simulation Models.”

Consider the following when you run an experiment:

� It is often useful to display the simulation clock and replication count to monitor the progress of the
experiment. Use the options under the RunIShow menu to display these values.

� Random number streams (substreams) advance with each replication of a design point but reset when
moving on to the next design point.

� Messages can be written to the Log window while the simulation is running. Messages with a SEVERE
level are displayed on the GUI in addition to being written to the log.

Augment Run
Suppose you have created an experiment, run it, and then decide you need additional design points or more
replicates for individual design points. After you have modified your experiment to reflect these needs, you
can select the RunIStart from the main menu (or use the corresponding toolbar option) to run the simulation
again. Simulation Studio clears any previous results and proceeds to run or rerun every selected design point
and replication in the experiment. If no design points are selected, all points in the entire experiment are
rerun.

Alternatively, you can manually select the design points you need to run or rerun and then select RunIStart
or use the corresponding toolbar option. This second approach also has limitations because you cannot select
replications within an individual design point.

Simulation Studio provides another alternative, called augment run, to facilitate this simulation scenario.
When you select the icon from the toolbar or select RunIAugment from the main menu, Simulation
Studio attempts to run any design points and replication rows that have not been previously run in the
experiment. This unique approach provides you an option for incrementally expanding your design matrix
results. When using Augment to run your model, any previously saved data sets in the project results folder
will not be deleted.

Saving and Loading Design Data F 55

Saving and Loading Design Data
Options are available on the Experiment window pop-up menu (Figure 5.3) to save and load experiment
design data. Selecting Save Design from the pop-up menu opens a File Chooser dialog box where you
select or type the filename to which you want to save the data. The data in the experiment design matrix
are saved to either a SAS data set or JMP data table, depending on your configuration data settings or the
filename extension specified. Unlike the data displayed in the Experiment window, all individual replicate
rows are completely populated with all the factor values along with the response values. Any rows that
contain summary information for replication rows are not included in the saved data. The resulting saved
data are in a format that can be passed to SAS procedures or JMP routines.

You can also load saved experiment data into a Simulation Studio Experiment window. Selecting Load
Design from the Experiment window pop-up menu opens a File Chooser dialog box where you enter the
filename for the previously saved data. Simulation Studio attempts to load the data into an Experiment
window. From there, you can select Analyze Results from the Experiment window pop-up menu to pass the
data back to a JMP routine for design of experiments analysis (if the experiment has factors included).

56

Chapter 6

Blocks

Contents
Overview of Blocks . 57
Block Labels . 57
Managing Block Properties . 58
Block Pop-up Menu . 60

Anchors . 61
Block Ranking . 61

Overview of Blocks
The block represents the fundamental component of Simulation Studio models. All blocks are either directly
or indirectly derived from a base block class. The base block class implements the message handling
protocols and defines how blocks communicate with each other through ports. Each block is responsible for
creating any ports it needs to perform the functionality required by the block. From a GUI perspective, ports
completely define the interface to most blocks. Port management and related port message handling are two
vital functions required of all blocks.

For the most part, blocks communicate with other blocks by using links between ports. When using the
Simulation Studio GUI, you can create a link from an output port only to an input port of compatible type. If
you have multiple links on a given port, logic in the port determines which connections are used and in what
order. The default behavior is to use the connections in the order in which they were created.

Block Labels
A default label is generated for each instance of a block. If only one instance of a particular block appears in
a model, the block name is used as the default label. Otherwise, an integer is appended to the default label
to indicate how many instances of the block have previously been created in the model. The block label is
used to identify individual blocks in any lists or dialogs. The label can be displayed next to the block icon in
the Model window, but by default, a block label is not visible. The section “Managing Block Properties” on
page 58 describes how you can edit a block’s label.

58 F Chapter 6: Blocks

Managing Block Properties
The Block Properties dialog box contains a description of a block’s functionality; it is used to edit block
parameters and display properties. You open the Block Properties dialog box for a block by double-clicking
on the block icon in a model window. Figure 6.1 shows the Block Properties dialog box for the Queue
block. Blocks that have specific properties or parameters that can be edited have at least one tab for that
purpose. For example, you use the Attributes tab in Figure 6.1 to edit the Queue block parameters. If a
block supports the saving of data (such as the Number Holder block), then the Block Properties dialog box
contains another tab labeled Save where you can specify options that are related to saving data.

Figure 6.1 Queue Block Properties Dialog Box

All Block Properties dialog boxes have a Visual tab and an Overview tab. The Overview tab provides a
description of the block’s functionality and includes a description of the block’s parameters and ports. The
Visual tab provides controls to manage the display properties of a block. Figure 6.2 shows the Visual tab for

Managing Block Properties F 59

the Queue block. You use the Block Label controls to edit the block label (using the Text field), to show or
hide the label in the model window (using the Visible option), and to position the label around the block icon.
For example, a position of �90ı places the label at the bottom of the icon, and a position of 90ı places it at
the top of the icon. You use the Block Image controls to specify the block’s icon image. Each block has a
default icon image. If you select the Custom option, then you need to specify the file path of the image file.

Figure 6.2 Queue Block Properties Visual Tab

For blocks that have a display component, such as the Number Holder and the Histogram blocks, the Visual
tab contains the To Display Component option, which you can use to show or hide the block’s display
component. Figure 6.3 shows the Visual tab for the Number Holder block with the To Display Component
option selected.

60 F Chapter 6: Blocks

Figure 6.3 Number Holder Block Properties Visual Tab

Block Pop-up Menu
Each block has a pop-up menu that includes the options Block Properties, Toggle Label, Edit Label,
Delete, Save, and Copy, as shown in Figure 6.4. As an alternative to double-clicking the block icon, you can
select the option Block Properties from the block pop-up menu to open the Block Properties dialog box.
As an alternative to the Block Properties dialog box’s Visual tab, you can use the Toggle Label and Edit
Label options to show or hide the block label and to edit and position the label. You can select the Delete
option to remove the corresponding block from the model, and you can select the Copy option to create a
copy of the associated block (or compound block) on the clipboard. When the clipboard contains information,
a Paste menu item is available on the block and model window pop-up menus. Selecting Paste copies the
clipboard’s contents into any model window (when the content is appropriate for a simulation model).

Anchors F 61

Figure 6.4 Sample Block Menu

Selecting Save from the block pop-up menu opens a dialog box that provides options for saving the instance
of the block to disk. This dialog box contains a file selection control for choosing the path and filename for
the saved block. By default, blocks are saved into the Resources\blocks folder and the default filename
extension .blk is automatically added to the saved block name for the default filename. A saved block can
be imported into a new or existing template. For more information, see Chapter 12, “Block Templates.”

The features that are associated with the Navigation menu item are useful for viewing and running large-scale
simulation models. For more information, see Chapter 4, “Simulation Models.”

Anchors
The Anchor option on the block pop-up menu is used to define the link between a factor or response that is
defined on a project and an actual block parameter or measure in a model. Anchor information is used to
associate factors and responses in an Experiment window with simulation models in a particular project at
run time. For more information about anchors, factors, and responses, see Chapter 4, “Simulation Models,”
and Chapter 5, “Experiments.”

Block Ranking
Some blocks in Simulation Studio schedule events in the application’s event queue. For example, an Entity
Generator block schedules when to generate its next entity, and a Server block schedules when service will
be completed for an entity that it is holding. Events are placed in the event queue based on the time the event
is scheduled to occur. It is possible for different blocks to schedule events that occur at exactly the same
simulation time, resulting in an event scheduling tie.

If an event that is put in the event queue has the same scheduled time as an event already in the event queue,
the relative order in which those events actually occur is unpredictable, although reproducible. To address
this potential event timing issue, some blocks provide a RankValue property or factor. The RankValue
property of a block is an integer value that can be used to resolve ties for events that are scheduled in the

62 F Chapter 6: Blocks

application’s event queue. For events that are scheduled to occur at the same simulation time, the event that
has a higher rank value has precedence over an event that has a lower rank value. You can set the RankValue
property of a specific block in your model at run time by including it as a factor in an Experiment window
and assigning the desired value in the Experiment window. For information about experiments and factors,
see Chapter 5, “Experiments.”

The rankable blocks, which support a RankValue property, include Delay, Entity Generator, Queue, Server,
Stopper, and Resource Scheduler. Most blocks have a default rank value of 0. However, the Resource
Scheduler block has a default rank value equal to the Java programming language value Integer.MAX_VALUE
so that it has the highest priority available.

You can also use the Block Ranking dialog box to set the rank value for a block. You open the Block Ranking
dialog box for a model by right-clicking the model name in the project tree and selecting Block Ranking, as
shown in Figure 6.5.

Figure 6.5 Block Ranking Option on the Model Menu

The left side of the Block Ranking dialog box (shown in Figure 6.6) displays a hierarchical check-box tree
that includes blocks that have an adjustable rank value in the current model. For each block in the model that
has an adjustable rank value, there is a horizontal bar that represents the current relative rank value. Initially,
all blocks in the model have the same rank value, unless there is a Resource Scheduler block. By default, a
Resource Scheduler block has a higher rank value than any other block in the model. The horizontal bars in
the Block Ranking dialog box do not show the exact value of the rank for each block, but rather they show
the rank value of a block relative to the other blocks in the model.

To change the rank value of a single block, you can drag the end of the bar representing the rank value to the
right (to increase the rank) or to the left (to decrease the rank). If you select the check box next to the block
name in the check-box tree, the bar representing the rank value is highlighted. You can still drag the bar to
set the rank. Also, you can right-click in either the project tree or the area with the horizontal bars to access a
pop-up menu with options for the selected block. If you select Set Rank Value from the pop-up menu, then
the Set Rank Value dialog box is displayed. You can use the Rank Value field in the Set Rank Value dialog
box to change the current absolute rank value of the selected block. Note that the Rank Value field in the Set
Rank Value dialog box corresponds to the RankValue factor for the block. If you set the RankValue factor
in the Experiment window for the project, then that value overrides the value in the Rank Value field in the
Set Rank Value dialog box at run time.

Block Ranking F 63

The pop-up menu for a selected block also includes options to lock or unlock the rank value for the selected
block. If you select the Lock option, then the rank value for the selected block is locked and cannot be
adjusted. The color of the horizontal bar for the block changes from blue to red. You use the Unlock option
to enable editing of the rank value for the selected block. You can select multiple blocks in the check-box tree
and lock or unlock the rank value for all selected blocks simultaneously. The Unlocked and Locked sections
at the top of the Block Ranking dialog box display tick marks for the rank values of all selected blocks. You
can also use the Set Rank Value option to set the rank value for all selected blocks simultaneously.

Figure 6.6 shows the Block Ranking dialog box for the docSchedule project in the examples directory
under your Simulation Studio installation directory (see the section “Extending the Banking System Model”
on page 94 for a description of the docSchedule example). In this example, three blocks are selected. The
Unlocked and Locked sections show the rank values of the selected blocks. The blocks that are labeled
Arriving Customers and Create Teller have their rank values locked. The Resource Scheduler block has the
highest rank value; the other blocks have the same rank value.

Figure 6.6 Block Ranking Dialog Box

64

Chapter 7

Compound and Submodel Blocks

Contents
Overview of Compound and Submodel Blocks . 65
Assembling and Disassembling a Compound Block . 65
Collapsing and Expanding a Compound Block . 67
Labeling and Saving a Compound Block . 67
Tunnels . 67
Submodel Blocks . 69

Creating a Submodel . 70
Viewing and Editing a Submodel . 71

Overview of Compound and Submodel Blocks
Simulation models can become very large, possibly incorporating hundreds of blocks. Simulation Studio
enables you to assemble blocks into larger aggregates by using compound and submodel blocks. These
blocks encourage hierarchical model building and information hiding, and they facilitate component reuse.
For very large and complicated models, compound and submodel blocks can also greatly reduce the visual
complexity of the model.

Assembling and Disassembling a Compound Block
Figure 7.1 shows a small model that contains a compound block which encapsulates a Numeric Source and
Server block. Figure 7.2 displays the same model, this time with the compound block collapsed.

66 F Chapter 7: Compound and Submodel Blocks

Figure 7.1 Sample Compound Block

Figure 7.2 Sample Compound Block—Collapsed

To create or assemble blocks into a compound block:

1. With the pointer positioned in the appropriate Model window, hold down the Shift + Ctrl keys while
simultaneously holding down the left mouse button and sweep out a rectangular area in the Model
window encompassing the blocks you want to assemble into a compound block. When you release the
mouse button and Shift + Ctrl keys, a red rectangle appears in the Model window replacing the sweep
rectangle. All the blocks entirely within the rectangle also have a red highlight or selection box around
them.

2. Right-click within this red rectangle, and select Assemble Compound. Selecting this menu item
creates a new compound block that contains all the highlighted blocks.

To disassemble a compound block, right-click a compound block and select Disassemble Compound from
the resulting pop-up menu.

Collapsing and Expanding a Compound Block F 67

Collapsing and Expanding a Compound Block
To hide the contents of a compound block, double-click the compound block. This causes the visual
representation of the compound block to be replaced with a small yellow square similar in size to a basic
block icon. This is sometimes referred to as a collapsed compound block.

To expand a collapsed compound block to its original size, double-click the collapsed compound block.

Labeling and Saving a Compound Block
As with basic blocks, you can edit the label associated with a compound block and switch between displaying
and hiding it. It is often useful to give a compound block a descriptive, concise label that reflects its
functionality or usage. Since the contents of a compound block are usually not visible, a good label can be
particularly helpful for understanding its functionality in a simulation model.

The procedure for saving a compound block to disk and also for adding it to a template for reuse is identical
to the procedure described in Chapter 6, “Blocks,” for basic blocks. The default filename extension for a
saved compound block is .cblk and the default save folder is Resources\block.

Tunnels
Usually when you create a compound block you have some specific functionality you want your group of
blocks to perform, and you connect them in a very specific manner. You also know which blocks require
inputs from outside of the compound block and which blocks pass output from the compound block. That is,
you know which ports you are going to use as input ports and which ports you are going to use as output
ports for the compound block to make it function as designed. Additional connections could potentially alter
the desired functionality of your compound block in unpredictable ways.

Simulation Studio provides a feature called a tunnel to facilitate input and output for a compound block.
You can think of tunnels as special ports for a compound block. Blocks (and their ports) located outside the
compound block that need to send information to the compound block connect to input tunnels defined on
the compound block. Similarly, blocks expecting information from the compound block connect to its output
tunnels. Blocks internal to the compound block that need connections outside the compound block also
connect through tunnels. You add or remove tunnels for a compound block using the Add/Remove Tunnels
dialog box (Figure 7.3) available through the pop-up menu on a compound block. This dialog box provides
options for creating various types of ports on a compound block. You can also edit the default name given to
a tunnel to something more meaningful for your compound block. The name cannot contain spaces.

68 F Chapter 7: Compound and Submodel Blocks

Figure 7.3 Tunnels Dialog Box

Figure 7.4 depicts a compound block with an input entity tunnel, an output entity tunnel, and an input value
tunnel. The placement of the various tunnel types around the compound block is automatic and is analogous
to that of ports on basic blocks. The graphic used to depict a tunnel is a combination of the graphics used for
an input port and output port because the tunnel serves both functions depending on whether your perspective
is from inside the compound block or outside it.

Figure 7.4 Compound Block with Tunnels

If you collapse the compound block, as shown in Figure 7.5, the compound block appears much the same as
a basic block. A compound block can be treated essentially as a “black box” in terms of functionality.

Submodel Blocks F 69

Figure 7.5 Collapsed Compound Block with Tunnels

If a compound block is disassembled, the tunnels turn into Connector blocks so that no functionality is lost in
the simulation model. Figure 7.6 shows the result of disassembling the compound block in Figure 7.5.

Figure 7.6 Result of Disassembling a Compound Block with Tunnels

Submodel Blocks
Like a compound block, a submodel block can be used for hierarchical simulation modeling and for facilitating
component reuse. The key difference between a submodel block and a compound block is that the contents
of a compound block are embedded in the model when it is created. Although a compound block can be
saved and reused in the same model or different models, each instance of the compound block must be edited
separately if changes need to be made. All instances of a compound block, whether in the same model or
different models, are independent from each other. On the other hand, a submodel block provides a linkage to

70 F Chapter 7: Compound and Submodel Blocks

its contents from the simulation model. The definition of the submodel contents can be stored as a compound
block file (with file extension .cblk) and modified independently. When the content definition is changed, all
instances of the submodel, whether in the same model or different models, contain the changes.

Creating a Submodel
There are two ways to create a submodel block in a model:

� You can convert an existing compound block to a submodel block by selecting Convert to Submodel
from the compound block pop-up menu (available by right-clicking on a compound block), as shown
in Figure 7.7. If the compound block to be converted does not have tunnels defined, then all input and
output connections to the compound block are converted into tunnels automatically after the submodel
is created.

Figure 7.7 Converting a Compound Block to a Submodel Block

� You can drag the submodel block icon from the Advanced template and drop it into a Model window.
Then you right-click on the submodel block to open its Block Properties dialog box and specify the
path of a previously saved compound block (.cblk file), as shown in Figure 7.8.

Viewing and Editing a Submodel F 71

In the submodel Block Properties dialog box, you select the Visual tab to change the submodel block label,
to make the label visible in the model, to change the position of the label around the block icon, and to select
a custom image for the submodel block icon. As with basic blocks, you can also right-click on a submodel
block and select Edit Label to edit the submodel label and position or select Toggle Label to toggle between
displaying and hiding the label.

Figure 7.8 Submodel Block Properties Dialog Box

Viewing and Editing a Submodel
You double-click a submodel block to view its contents in a separate submodel window. Figure 7.9 shows a
model with one submodel block and the submodel window open.

72 F Chapter 7: Compound and Submodel Blocks

Figure 7.9 A Submodel Block and the Submodel Window

The Submodel window opens with the Instance option selected in the Submodel window combo box. The
Instance option in the submodel window enables you to view (but not edit) the contents of a particular
submodel instance. The Instance option is especially useful for viewing the animation of a submodel instance
as the model runs, and it alleviates the need to open a separate window for each submodel instance. If you
have a submodel window open and you double-click on another submodel block that is linked to the same
submodel that is already open, then both instances are viewed in the same submodel window. Clicking the up
and down arrows adjacent to the Instance option changes the submodel instance being viewed. The label
that is associated with each submodel instance is displayed.
NOTE: The submodel instance number reflects the order in which the submodel instances were opened. If
you close a submodel instance and then open it again, it could have a different instance number.

You open the Definition view in a Submodel window by clicking the down arrow adjacent to the Instance
option and selecting Definition. Figure 7.10 shows a Submodel window in Definition mode. The Definition
option in the submodel window enables you to edit the contents of a submodel. When you edit a submodel
and save the changes, all instances of the submodel in the current model and in any other model reflect

Viewing and Editing a Submodel F 73

the changes. You can drag blocks into the submodel, connect blocks, delete blocks, and perform any other
modeling action that you would perform in the regular Model window. You can drag blocks into a Submodel
window from the template palette in the SAS Simulation Studio window. Alternatively, the Definition view
in a Submodel window has a template palette that appears when you place the mouse over the template image

. This template behaves in the same way as the template in the SAS Simulation Studio window. When you
move the mouse away from the icon, the Submodel window template disappears.

NOTE: In the Submodel window, new blocks can be dropped only within the submodel border, and this
border might be smaller initially than the size of the Submodel window. In Definition mode, you can expand
the border of the submodel by clicking anywhere in the submodel background and then dragging one of the
submodel border corners to the desired size.

NOTE: If a submodel contains any blocks that use a random stream (such as the Numeric Source block),
then every instance of that submodel uses the same random streams. If you want each submodel to use
different random streams, then you could design your submodel so that the blocks that use a random stream
are external to the submodel. Then any random values are input to the submodel through a tunnel. You also
might consider using a compound block instead of a submodel block because each instance of a compound
block in a particular model automatically contains different streams.

To save an edited submodel block, right-click on the submodel and select Save. When you close the Submodel
window, you will also be prompted to save any changes. The default filename extension for a saved submodel
block is .cblk. When the edited submodel definition is saved, all instances of that submodel in the currently
opened simulation model automatically refresh to reflect the new, updated definition. Furthermore, all
instances of the submodel that are in other models (either in the same project or in different projects) are also
updated.

Figure 7.10 A Submodel Window in Definition Mode

74

Chapter 8

Entities

Contents
Overview of Entities . 75
Entity Types . 75
Creating Entities . 76
Disposing of Entities . 77
Entity Attributes . 77
Entity Groups . 77

Overview of Entities
Entities are discrete objects that can traverse a simulation model or network. They can be used to represent
physical or conceptual items in your model such as cars in a traffic model, telephone calls in a telecommuni-
cations system, customers in a retail environment, and so on. You can use various Simulation Studio blocks
to assign attributes to entities as they flow through your simulation model and use other blocks to read entity
attributes and act on them.

When you have the animation feature turned on in Simulation Studio, you can view the movement of entities
through your simulation model while it is executing. If the Tracer is enabled, entity information is also
displayed on the Trace tab in Simulation Studio.

Entity Types
All of the examples in this document so far have used the default regular entity type. If you do not specify an
EntityType in the Entity Generator block, then the default regular entity type is used.

The Entity Types dialog box shown in Figure 8.1 enables you to add attributes to the default entity types, and
it also enables you to create new entity types. Entity types can be defined at the model level. To open the
Entity Types dialog box, right-click the model name in the Project Explorer and then select Entity Types.

76 F Chapter 8: Entities

Figure 8.1 Entity Types Dialog Box

User-created entity types can be either regular entities, resource entities, or resource schedule entities. You
can process all three types of entities by using any of the blocks that are provided in the basic modeling
template. However, resource entities also have capabilities that are used by the blocks that are provided in the
resource modeling template. A resource schedule entity is a special type of resource entity.

Unless otherwise specified, the term entity refers generically to either a regular entity, a resource entity, or a
resource schedule entity. For more information about resource and resource schedule entities, see Chapter 10,
“Resources.”

Creating Entities
The default basic modeling template that Simulation Studio provides contains two blocks capable of generat-
ing entities: the Entity Generator block and the Clone block. These blocks are described in Appendix A,
“Templates.” Entity Generator blocks are usually the primary source of entities in your simulation models.
You can specify the quantity and type of entities that you want your Entity Generator blocks to generate.
If more than one entity is being generated, you need to have a connection to the Entity Generator block’s
InterArrivalTime input port so the Entity Generator can determine when to schedule the next entity creation
event. You can create multiple entities at each entity creation event by using the BatchSize input port on the
Entity Generator block. (See the Entity Generator details in Appendix A, “Templates.”) There is no limit on
the number of Entity Generator blocks that your simulation model can contain, and the limit on the number of
entities of a given type that you can generate is the Java programming language value Integer.MAX_VALUE.

Disposing of Entities F 77

Disposing of Entities
Although it is possible to generate an almost endless number of entities, each entity has associated memory
costs. It is important to let Simulation Studio know when you are finished with an entity so that it can
efficiently manage any memory issues related to entities. In a simulation model, you indicate you are finished
using an entity by routing it to a Disposer block . When an entity enters a Disposer block, it is marked as
free and reduces memory allocation costs at run time in the application.

Entity Attributes
Entities can have attributes associated with them. Attribute names must be unique, are case sensitive, and
cannot contain spaces or blanks. Attribute values can be strings, numbers, Booleans, or Java objects.

Each entity has two default attributes named Id and BirthTime. The Id value is a unique integer assigned (in
sequence) when the entity is created, and the BirthTime value is the simulation clock time when the entity
was created. You can add additional default attributes (along with their default values) to an entity type by
using the Entity Types dialog box at design time. (See Figure 8.1.) Each new entity created of that type
automatically has all the attributes defined on that entity type as shown in the Entity Types dialog box.

The Modifier block in your simulation model can also be used to add or modify entity attributes at
simulation time. Other blocks are provided in Simulation Studio to read entity attribute values and use this
information in their processing. Individual blocks are discussed in Appendix A, “Templates.”

As a simple example of using entity attributes, consider the scenario where you want to model an electronics
repair shop. Your entities could represent customers coming into the repair shop. You could assign attributes
to each of these customers to represent (i) what type of equipment the customer needs to have repaired; (ii)
an indicator of the severity of the problem; and (iii) warranty information. You could then use these attributes
to route customer entities to different technicians in the shop depending on the values of the attributes. You
could use the severity attribute to calculate a time-to-repair value.

Attributes are intended to give your entities unique characteristics that you can use to make your simulation
model more representative of the system that you are investigating.

Entity Groups
Simulation Studio implements an object named entity group that is a collection of entity references. An entity
reference contains information that uniquely identifies a particular entity. Therefore, an entity group holds
information about a collection of entities, but not the actual entities themselves. Entity groups add another
level of modeling sophistication to your simulation modeling environment.

Most holding-type blocks, such as the Queue, Server, and Delay blocks, provide an OutHoldings output
port that you can use to pull an entity group that contains references to the entities currently held by the
block. Other Simulation Studio blocks can use this information to inspect the contents of a holding block and
then act on that information, possibly preempting specific entities from the holding block. Some blocks (the

78 F Chapter 8: Entities

Queue and Server blocks, for example) have an InPreempt input port that accepts an entity group as input.
These blocks compare the entity references in the incoming entity group to the entities currently being held
by the block and preempt any matches.

The Entity Group Holder block can be used to create a new entity group (with characteristics specific to your
model needs) that can then be used by other blocks in your model. The Gate and Seize blocks also make use
of entity groups. See Appendix A, “Templates,” for details about these and other blocks that use entity group
objects.

Chapter 9

Queueing

Contents
Overview . 79
Queueing Policies . 80
Capacity . 81
Extended Queueing Controls . 81

The Nonblocking Push Depth Option . 82
The Nonblocking Pull Depth Option . 82
The Active Pushing and Active Pulling Options . 82

Reneging . 83
Preempting . 83

Overview
The Queue block is one of the fundamental components of SAS Simulation Studio models. It is used for
the transient storage of entities, and you have extensive options for controlling how many entities can be
stored in the queue and the order in which entities are stored, as well as options for reneging, preemption,
and nonblocking. Figure 9.1 shows the Block Properties dialog box with default settings. In this chapter, the
various options available in the Queue block are described and examples are presented.

80 F Chapter 9: Queueing

Figure 9.1 Block Properties Dialog Box with Default Settings

Queueing Policies
The Queueing Policy option in the Block Properties dialog box is used to define the order in which entities
are stored in a Queue block. There are three queueing policies available in the Queue block: FIFO (first-in,
first-out; the default), LIFO (last-in, first-out), and priority. When an entity arrives at a Queue block that is
using a FIFO or LIFO queueing policy, the entity is stored at the appropriate end of the buffer. For Queue
blocks that use a priority policy, the block extracts the priority value from an attribute defined for the entity
and uses that value to determine where to place the entity in the buffer. The priority queueing policy also
enables you to select an appropriate tie-breaking policy: FIFO, LIFO, or random.

In addition to setting the queueing policy by using the Block Properties dialog box, you can define a factor
that is anchored to the QueueingPolicy anchor candidate for the Queue block and then set the queueing policy
by using the Experiment window. For more information about the format of the Queue block QueueingPolicy
factor candidate, see the section “Queue Block” on page 137. For more information about defining factors
and anchors, see Chapter 5, “Experiments.”

Capacity F 81

Capacity
By default, the capacity of a Queue block (the maximum number of entities that it is permitted to store in
its buffer) is infinity. You can set the capacity of a Queue block by using the Capacity field in the Block
Properties dialog box, or you can dynamically set the capacity by using the InCapacity port on the Queue
block. Valid incoming values for the InCapacity port are integers greater than or equal to zero. If the capacity
of a Queue block is reduced dynamically during the simulation run, any excess entities are removed from
the block (according to the selected queueing policy) and sent out through the OutBalk port. If there are no
connections to the OutBalk port, the entities are destroyed.

If you dynamically change the capacity of a Queue block by using the InCapacity port, then you need to reset
the capacity to the initial starting value at the start of the next run. Otherwise, the next run of the model will
use the final capacity from the previous run. When dynamically changing the Queue block capacity during a
run, you can ensure that the capacity is set to the correct initial starting value for each run by defining a factor
for the Queue block capacity. You can then specify the initial starting capacity in the Experiment window so
that the initial Queue block capacity is set at the start of the run. For more information about defining factors
and anchors, see Chapter 5, “Experiments.”

Extended Queueing Controls
In addition to the queueing policy option, there are other controls that you can use to adjust how entities flow
into and out of a Queue block. The Extended Queueing Controls section of the Block Properties dialog
box has the options Nonblocking Push Depth, Nonblocking Pull Depth, Active Pull Threshold, Active
Pull Count, and Active Pushing to Downstream. These extended controls are mostly used to prevent a
Queue block from being blocked.

There are two ways that entities can flow out of a Queue block. First, the block can actively push entities
downstream when possible, where by default the block will attempt to push only one entity at a time. Second,
other blocks can pull entities out of the Queue block. By default, the specified queueing policy determines
which entity in the buffer to push or pull out of a Queue block. However, you can use the extended queueing
controls to indicate whether other entities in the buffer should be pushed or pulled out of the Queue block
in the case where the first entity in the buffer is unable to flow downstream. The order in which additional
entities are examined for pushing or pulling out of the Queue block is dictated by the specified queueing
policy.

To demonstrate how these extended queueing controls are used to prevent a blocked queue, consider the
following example. Suppose patients are assigned a hospital bed on a first-come, first-served basis. Each
patient has certain bed types that he or she can be assigned, depending on which department the patient is
associated with (for example, maternity, orthopedics, or cardiology). If you create a simulation model to
study the effects of different bed assignment policies on patient bed-waiting times, it makes sense to use a
Queue block to hold patient entities that are waiting for a bed. The following sections describe how changing
the default Nonblocking Push Depth and Nonblocking Pull Depth options can prevent a blocked queue.
For more examples on the extended queueing controls, see the section “Extended Queueing Options” on
page 315.

82 F Chapter 9: Queueing

The Nonblocking Push Depth Option
Suppose a patient is waiting at the front of the queue because none of the required bed types are available.
When a new patient entity arrives at the queue, the Queue block attempts to push an entity downstream (the
arrival of a new entity at a queue signals the Queue block to attempt to push an entity out). If the default
absolute value of 1 is used for the Nonblocking Push Depth option, then only the first entity in the queue
will be checked to see whether it can be pushed downstream. In the hospital bed assignment case, the first
entity cannot be pushed out of the queue because its required bed is not available, so it continues to wait in
the queue. Furthermore, the new patient entity that just arrived waits behind the first entity, regardless of
whether one of its bed types is available. That is, the newly arriving patient is blocked by the patient waiting
at the front of the queue.

If you set the Nonblocking Push Depth option in the Queue block to a relative value of 1, then up to 100% of
the capacity is checked when the Queue block attempts to push an entity out. In the hospital bed assignment
case, this means that when a new patient entity arrives at the queue, the Queue block attempts to push the
first entity out, as before. Because the first entity’s required bed is not available, it will continue to wait at the
front of the queue. The Queue block then attempts to push out the second entity (the newly arriving patient).
If the second entity is able to flow downstream (that is, if its bed requirement can be fulfilled), then the Queue
block pushes it out. In this case, the newly arriving patient entity is not blocked by the patient entity that is
waiting for its bed.

The Nonblocking Pull Depth Option
In the hospital bed example, a waiting patient can also exit the Queue block when a bed becomes available and
another downstream block (such as a Seize block) attempts to pull from the Queue block. If the Nonblocking
Pull Depth option is set to the default absolute value of 1, then only the first entity in the Queue block is
checked when a block attempts to pull an entity from the Queue block. If the newly available bed matches
the requirement of the first entity waiting in the queue, then that patient entity will flow out. If it does not
match the requirement, then no entities are pulled from the Queue block, even if the second patient entity
waiting is a match for the newly available bed. In this case, the queue is blocked.

If you set the Nonblocking Pull Depth option in the Queue block to a relative value of 1, then up to 100%
of the queue capacity is checked when another block attempts to pull an entity out of the Queue block. In the
hospital bed assignment case, this means that when another block attempts to pull an entity from the Queue
block, each waiting patient entity is checked to see whether it can flow downstream. The order in which
waiting patient entities are checked is dictated by the queueing policy.

The Active Pushing and Active Pulling Options
By default, the Queue block pushes only one entity out at a time, even if it is possible for other waiting
entities to flow downstream. If you select the Active Pushing to Downstream option in the Block Properties
dialog box, then when the Queue block is able to push out the first waiting entity, it pushes out the first entity
and then attempts to push out as many entities as it can after that.

The Active Pull Threshold, Active Pull Count, and Pull to Full Capacity options control when a Queue
block attempts to pull entities from upstream and how many entities to pull. It would be inefficient to enable

Reneging F 83

the Queue block to continuously check to see whether it can pull entities from upstream, so you can determine
at what point the Queue block should pull from upstream. By default, the Queue block attempts to pull when
its length falls to Capacity – 1 (that is, a Queue block with fixed capacity pulls as soon as it has one space
available). For example, if you set the Active Pull Threshold option to an absolute value of 3, then the
Queue block will not pull from upstream until it reaches a length of three entities. Furthermore, if you set the
Active Pull Threshold option to an absolute value of –5, then the Queue block will not pull from upstream
until it reaches a length of (Capacity – 5).

You use the Active Pull Count box to specify the maximum number of entities that the Queue block will
pull. If the Pull to Full Capacity option is selected, then the Queue block pulls as many entities as it can
until the queue reaches its maximum capacity.

Reneging
In some applications, you might want to model a scenario where an entity enters a queue but is willing to
wait there for only a certain amount of time. If that time is reached and the entity is still in the queue, then it
leaves the queue. For example, a customer arriving at a bank on his lunch hour might be willing to wait in
line for only 30 minutes. After that, he will leave the queue and exit the bank. The term reneging is used for
this type of behavior.

In Simulation Studio, you can enable reneging in a Queue block by selecting the Reneging option in the
Block Properties dialog box. When an entity enters the Queue block and the Reneging option is selected,
the Queue block attempts to pull a numeric value from its InRenegeWait port. If the Queue block pulls a
nonnegative number from the port, it will schedule a time for the entity to exit the block via the OutRenege
port. When the renege time is reached, the Queue block sends the entity out the OutRenege port if the entity is
still in the block and if the OutRenege port has a connection to it. If there is no connection to the OutRenege
port, then no reneging occurs.

Preempting
Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity that is held by another entity has one root entity associated with it. The root entity
for any held entity is found by moving up the entity hierarchy from the held entity.

Entities that are being held by a Queue block can be preempted either by input to the block’s InPreempt
port or by a scheduled resource entity event. In order for a root entity that is held by a Queue block to be
preempted, the OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a
resource entity that is held by a controlling entity that is in turn held by the Queue block to be preempted, the
OutResource port (or OutBalk port) must have at least one link connected to it.

The Queue block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of entity references.) When an Entity Group object is pushed to a Queue block’s InPreempt port, the Queue
block iterates through the Entity Group collection, looking for matches to root entities held by the Queue
block. For any matched entity, the Queue block first tries to push that entity out its OutPreempt port. If this

84 F Chapter 9: Queueing

push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the entity
continues to be held by the Queue block until it either exits the OutEntity port or is preempted again.

The Queue block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities that it holds (either directly or indirectly through a
controlling entity). If the number of units that are associated with a held resource entity decreases or the
state of a held resource entity becomes nonfunctional, the Queue block attempts to preempt that resource
entity. If the resource entity that is identified for preemption is a root entity, then the Queue block follows the
same protocol for pushing an entity out its OutPreempt port that the InPreempt port uses. If the resource
entity is part of a controlling entity, the Queue block removes the resource entity from the controlling entity
and attempts to push the associated root entity out the OutPreempt port. The Queue block then attempts to
push the preempted resource entity out its OutResource port, or if that fails, out its OutBalk port. If there is a
connection to the Queue block’s OutResource port and the block cannot push the resource entity out either
the OutResource or OutBalk port, the resource entity is destroyed.

The Queue block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Queue block.

Chapter 10

Resources

Contents
Overview of Resources . 85
Modeling the Banking System Using Mobile Resources . 86
A Common Resource Usage Pattern . 91

Creating Resource Entities . 91
Storing Resource Entities . 92
Locating Resource Entities . 92
Allocating Resource Entities . 92
Using Resource Entities . 93
Deallocating Resource Entities . 93
Disposing Resource Entities . 94

Extending the Banking System Model . 94
Additional Resource Functionality . 100

Merging and Splitting Resource Entities . 100
Collecting Resource Entity Statistics . 101
Scheduling Resource Entity State and Capacity Adjustments 102
Preempting Resource Entities . 105

Overview of Resources
In Simulation Studio, resources are special objects that provide services or materials to entities. In some
models, the available resources are unlimited; in other models, the number of units of a resource is limited.
You can vary the number of available resource units during a simulation run by using a resource schedule.
The availability of resources can affect the flow of entities during a simulation run.

A system that is modeled in Simulation Studio can use two types of resource objects: stationary resources
and mobile resources. Stationary resources include the entity holding blocks (the Queue, Server, Delay, and
Resource Pool blocks), which delay entities for some period of time during the simulation. The stationary
resources are static, and they are created at model building time. Mobile resources, which are resource
objects that flow in the model, are dynamic and are created during the simulation execution. Mobile resources
are defined as a special type of entity. They have all of the capabilities of regular entities, but they also
have additional functionality that is managed by the blocks on the Resource template. Mobile resources (in
particular, resource entities and their management) are the main focus of this chapter.

Like regular entities, resource entities are objects that can carry attributes. All resource entities in Simulation
Studio have a predefined entity attribute named ResourceUnits, which represents the capacity (the number
of units) of the resource. Although the ResourceUnits attribute has special uses for resource entities, it can

86 F Chapter 10: Resources

also be used as an ordinary numeric entity attribute for modeling purposes. In addition to the ResourceUnits
attribute, each resource entity also has run-time state information (such as resource state and seize status) that
is used by the simulation system to perform resource management during the run. The resource state can be
Functional, Failed, Maintenance, or Offlined.

Modeling the Banking System Using Mobile Resources
In Chapter 2, “Overview of SAS Simulation Studio,” a model of a simple banking system with one teller
is used to illustrate some of the basic concepts that are involved in building models in Simulation Studio.
In that example, the bank teller is modeled by using a stationary resource (in particular, a Server block).
In this section, the same system is modeled by modeling the bank teller as a mobile resource (a resource
entity). These two examples demonstrate the conceptual differences between stationary resources and mobile
resources. All blocks that are used in these models can be found in the Standard and Resource templates.

To summarize the modeling requirements for this banking system, these models assume that customers
arrive at the bank at a rate of 10 per hour (so that the interarrival time between customers is a sample from
the exponential distribution with a mean of 6 minutes). Customers wait in a single line on a first-come,
first-served basis. The models also assume that the teller has a service rate of 12 customers per hour (so that
the service time for each customer is a sample from the exponential distribution with a mean of 5 minutes).

Figure 10.1 shows the original version of the model from Chapter 2, “Overview of SAS Simulation Studio.”
The bank teller (represented by the Server block) is a stationary resource in the original model and is created
during the model building phase. As a stationary resource, the bank teller never flows or moves through the
model. A customer arrives at the bank teller, the bank teller services the customer, and the customer exits the
system.

Modeling the Banking System Using Mobile Resources F 87

Figure 10.1 The Banking System Model Using Stationary Resources

Figure 10.2 shows an alternative model of the same system. In this model, the bank teller is modeled
as a resource entity. You can find the project files for this example (named docMM1Resources) in
the projects\examples directory under your Simulation Studio installation directory. The following
description of the model is a high-level overview. For more information about the individual blocks used in
the model, see Appendix A, “Templates.”

88 F Chapter 10: Resources

Figure 10.2 The Banking System Model Using Mobile Resources

The customer arrival process is the same as in the original model—an Entity Generator block creates
customers and sends them to a Queue block to wait for service. To model the bank teller as a resource
entity, first a new resource entity type named BankTellers is created by using the Entity Types dialog box,
available by right-clicking on the model name in the project tree and selecting Entity Types. For more
information about the Entity Types dialog box, see Chapter 8, “Entities.” Figure 10.3 shows the attributes that
are associated with the BankTellers resource entity type. The ResourceUnits attribute has value 1 because
there is only one teller.

Figure 10.3 BankTellers Entity Type

Modeling the Banking System Using Mobile Resources F 89

In the Block Properties dialog box for the Entity Generator block labeled “Create Teller,” the BankTellers
entity type is selected from the list in the Name field of the EntityTypes tab, as shown in Figure 10.4.

Figure 10.4 EntityTypes Tab in the Create Teller Block Properties Dialog Box

Because the model requires only one bank teller, you set the Maximum Number of Entities field value to 1

on the Attributes tab of the Create Teller Block Properties dialog box, as shown in Figure 10.5. The bank
teller resource entity must be created before the simulation clock begins to advance. Therefore, you need to
set the Start Time property to 0 and also select the At Start Time option in the First Entity Creation area.
As soon as the bank teller resource entity is created, it is sent to a Resource Pool block (labeled Teller Pool)
to wait until it is needed by a customer entity.

90 F Chapter 10: Resources

Figure 10.5 Attributes Tab in the Create Teller Block Properties Dialog Box

In this example, a Seize block (labeled Seize Teller), a Resource Pool block (labeled Teller Pool), a Delay
block (labeled Hold Teller), and a Release block (labeled Release Teller) work together to mimic the
functionality of the Server block (labeled Teller) in the original model. When a customer entity arrives at the
FIFO Queue block, the FIFO Queue block notifies the Seize Teller block that a customer is waiting. The
Seize Teller block then checks whether the bank teller resource entity is available in the Teller Pool block. If
it is not available, then the customer entity stays in the queue. If the bank teller resource entity is available,
then the Seize Teller block accepts the customer entity from the Queue block, pulls the bank teller resource
entity from the Teller Pool block, and attaches it to the customer entity (forming a hierarchy of entities).
The customer entity is then sent to the Hold Teller block where the customer entity (along with the bank
teller resource entity) is held until its service is completed. It is then routed to the Release Teller block. The
Release Teller block extracts the bank teller resource entity from the customer entity and sends the customer
entity to the Disposer block to exit the model. The bank teller resource entity is routed back to the Teller
Pool block.

A quick inspection of the values in the Number Holder blocks in both models at the end of the simulation run
shows that both the original model and the new resource entity model produce the same results.

For this simple banking system, it is not necessary to use a resource entity to model the bank teller. However,
in a more realistic model of a banking system, it might be necessary to seize multiple resources simultaneously,
to vary the number of available resources according to a schedule, or to preempt a resource either because of
a failure or because a higher priority entity arrives. It is not possible to model these scenarios using only
stationary resources. In general, mobile resources offer more modeling flexibility and options.

A Common Resource Usage Pattern F 91

A Common Resource Usage Pattern
A common usage pattern for resource entities in Simulation Studio consists of the following fundamental
steps: create, store, locate, allocate, use, deallocate, and dispose. Each of these steps might use one or more
Simulation Studio blocks. In addition to all the regular modeling blocks, six resource-specific blocks are
available in Simulation Studio: the Seize, Release, Resource Pool, Resource Scheduler, Resource Agenda,
and Resource Stats Collector blocks. These six blocks, together with the other regular blocks, provide all the
powerful resource management capabilities in Simulation Studio.

The following sections provide a high level overview of each step in the common usage pattern for resource
entities. For additional information about the individual blocks that are mentioned in each of these sections,
see Appendix A, “Templates.”

Creating Resource Entities
Like regular entities, resource entities can be generated by an Entity Generator block. The Name field in the
EntityType tab in the Block Properties dialog box for an Entity Generator block includes the Default (for
regular entities) and DefaultResourceEntity entity types that are defined by Simulation Studio, in addition
to entity types that are defined by the user for the current simulation model. The resource state of all
new resource entities is Functional. The default ResourceUnits value is 1.0, but it can be changed to any
nonnegative value.

You can define new types of resource entities by using the Entity Types dialog box that is associated with each
model. All user-created entity types appear in the Name list on the EntityType tab in the Block Properties
dialog box for the Entity Generator block. For more information about entity types, see Chapter 8, “Entities.”

Resource entities can also be created by the Resource Pool and Release blocks as a result of splitting other
resource entities. Sometimes it is convenient to create a small number of resource entities, each with a large
ResourceUnits attribute value, and store these resource entities in a Resource Pool block with the Merge/split
resource units among resource entities of same types option selected. When a request for resource units
is made, the Resource Pool block can split resource units that are held in a resource entity into smaller units
and assign them to a new resource entity of the same type.

Similarly, a Release block can split units from a resource entity and allocate the split units to a newly created
resource entity (of the same type) that is then released. For more information about merging and splitting of
resources, see the section “Merging and Splitting Resource Entities” on page 100.

Resource entities can also be cloned by using the Clone block. The Clone block clones the attributes from
the original resource entity, but it ignores other run-time information, such as the resource state and seize or
unseize status that is set by the resource management blocks.

Note that using the Entity Generator and Clone blocks to create resource entities affects the total number of
resource units, but using the Resource Pool and Release block to do so does not.

92 F Chapter 10: Resources

Storing Resource Entities
After a resource entity is created, it must be sent to a Resource Pool block for storage before it can be seized
and allocated to meet resource demands. The Resource Pool block performs resource management tasks for
resource entities. These tasks include maintaining the seize or unseize status, processing resource requests,
and merging or splitting resource units.

A resource entity is considered unseized if it resides in a Resource Pool block; it is considered seized if it
leaves the pool and is not directly held by any other Resource Pool block. A newly created resource entity is
also considered unseized before it enters a Resource Pool block.

Occasionally, a common Queue block might be used to hold resource entities if the resource management
tasks performed by a Resource Pool block are not needed. However, this approach should be used carefully
because resource management capabilities are not provided by Queue blocks.

Locating Resource Entities
Resource entities are usually stored in the Resource Pool block. Resource entities need to be located,
requested, and allocated to fulfill the resource requirements of other entities. Locating resources is also
essential for other resource operations, including scheduling, statistics collection, and preemption. For
example, the resource entities of interest need to be identified so their statistics can be collected during the
simulation.

Simulation Studio primarily uses attribute-based rules to locate resource entities. An attribute rule is a
Boolean expression that the attributes of targeted resource entities must satisfy. Run-time resource information,
such as resource state and seize or unseize status, is also used to locate and identify resource entities.

The resource requirements of an entity that enters a Seize block (referred to as a controlling entity) can be
specified using entity type or attribute rules in the Seize block. Multiple types of resource entities can be
seized simultaneously, and resource entities can seize other resource entities. A Seize block dynamically
creates an input resource entity port for each defined resource requirement. The input resource ports of a
Seize block are connected to a Resource Pool block. During the simulation run, the Seize block uses the
links to its input resource ports to locate and request resource entities from a Resource Pool block when a
controlling entity enters the Seize block.

It is also possible to locate resource entities by their object references. Resource entities can flow through
an Entity Group Holder block to form a resource entity group, which holds a group of references to these
resource entities. The entity group and its subgroups can be queried later for locating and requesting the
corresponding resource entity objects.

Allocating Resource Entities
After locating the required resource entities in a Resource Pool block, the Seize block requests the resources.
The Resource Pool block processes the request and allocates the resource entities to the Seize block. In
Resource Pool blocks, only resource entities in the Functional state can be seized.

The Resource Pool block delivers resource entities to a Seize block to fulfill a resource demand. If the
Resource Pool block has its merging/splitting units option disabled, the requested resource entities are

Using Resource Entities F 93

delivered without alteration, even when the delivered resources have more units than requested. If the
merging/splitting option is enabled, the Resource Pool block delivers the new resource entities after the
splitting process. The delivered resource entities contain the exact amount of units requested. For more
information about the merging and splitting feature of the Resource Pool block, see the section “Merging and
Splitting Resource Entities” on page 100.

To decrease the likelihood of a resource deadlock, the Seize block in Simulation Studio does not support
partial allocation of resources. All specified resource requests must be satisfied before resource entities are
allocated to a controlling entity. Otherwise, the Seize block does not accept the request to take the controlling
entity, and the controlling entity must wait (usually in a queue) for all required resources to become available.

The Batch block can also be used to seize resources. For example, if all resource entities have the same
ResourceUnits value and are of the same type, then the Batch block can be used to allocate resources to a
carrier entity as the resource entities become available. In this approach, the Batch block can hold a carrier
entity with a partially completed resource allocation when there is a resource shortage until the additional
resource entities arrive at the Batch block. For this kind of usage, the batch carrier entity used by the Batch
block performs the same role as the controlling entity does for a Seize block, and the entities batched with
the carrier entity are resource entities. When a Batch block is used, required resources do not need to be
available all at the same time. The resource entities can be allocated or batched as they become available, one
after another. For more information about the Batch block, see Appendix A, “Templates.”

The modeling constraints and requirements of the particular system being simulated determine whether a
Seize block or Batch block is appropriate for allocating resource entities. The Batch block offers a more
simplistic approach, but it also provides fewer options than the Seize block provides.

Using Resource Entities
After the resource entities have been allocated to a controlling entity (or in the case of a Batch block, a carrier
entity), the controlling entity usually continues to flow through the model. In the banking system example,
the controlling entity might move on to a Delay block for a period of time and then be routed to a Release
block to have the resource entity deallocated. However, if you are modeling a more complicated system, it is
possible that resource entities stay with a controlling entity as it flows through various parts of the model. For
example, in an emergency room simulation, a patient entity entering the emergency room might require a
nurse, a doctor, and a surgery room simultaneously. After the required resources are seized, then the patient
entity goes to a Delay block that represents the surgery. After surgery, the doctor and surgery room resource
entities might be released from the patient. However, the nurse entity might stay with the patient entity and a
recovery room resource entity might be added.

In a manufacturing example, parts could be modeled as resource entities, and they could be continually added
to the controlling entity as it progresses down a virtual assembly line. In this case, the controlling entity never
releases the part entities because they are essentially consumed to build the final product.

Deallocating Resource Entities
Resource entities that are seized by controlling entities can be released (deallocated) by using the Release
block. Resource constraints can be defined on the Release block to locate targeted resource entities within
the controlling entity to be released. The Release block provides an output resource entity port for each

94 F Chapter 10: Resources

constraint defined. For each controlling entity that enters the Release block during a simulation run, the
user-defined resource constraints are used to locate and deallocate the targeted resources among the resources
held by the controlling entity. The deallocated resources flow out the appropriate output resource ports.

Analogous to the seize process, releasing resource entities is treated as a special entity unbatching operation.
Therefore, the Unbatch block can also be used to release resource entities if the deallocation process does not
require partial resource entities to be released from the controlling entity (no manipulation of resource units)
or if the model logic does not require different types of resource entities to flow to different locations. The
released resource entities from an Unbatch block flow out of the same output port, one after another.

Released resource entities can be routed to any block in the model as dictated by the system logic. In the
emergency room example, the doctor resource entity might be required to complete paperwork after being
released by a patient entity and before being seized by the next patient entity. In this case, the released doctor
resource entity could be routed to a Delay block (representing the paperwork completion time) and then back
to a Resource Pool block, signifying that it is available to be seized by another patient entity.

Disposing Resource Entities
Like regular entities, resource entities can be disposed by the Disposer block. Resource entities that are
attached to a controlling entity (or carrier entity) that enters a Disposer block are disposed along with the
controlling entity.

The Resource Pool block can also dispose resource entities. With the merging/splitting units option enabled,
the Resource Pool block disposes an incoming resource entity if the Resource Pool block can merge the
units of the new resource entity with a compatible resource entity in the pool. For more information about
merging and splitting in a Resource Pool block, see the section “Merging and Splitting Resource Entities” on
page 100.

Using a Disposer block to dispose resource entities affects the total number of resource units (capacity) in the
model. However, the automatic disposal of resource entities by the Resource Pool and Release blocks (when
the merging/splitting option is used) does not.

Extending the Banking System Model
The resource facilities in Simulation Studio provide more advanced functionality than demonstrated in the
previous simple banking system example. To illustrate some of this additional functionality, the previous
banking system model has been extended. The basic premise remains the same—customers arrive at the bank
and wait to be served by a bank teller. However, in this new model there are three bank tellers, not all of
whom are available during the entire simulation run. This model also collects utilization statistics for the
bank teller resource entities.

Figure 10.6 shows the new model. You can find the project files for this example (named projects\
docSchedule) in the examples directory under your Simulation Studio installation directory. The most
obvious difference between this resource model and the previous one is the addition of the Resource Agenda,
Resource Scheduler, and Resource Stats Collector blocks. A less obvious difference is the creation, storage,
and allocation approach used here for the three bank teller resources.

Extending the Banking System Model F 95

Figure 10.6 Banking System Model That Uses Resource Scheduling

There are two options for creating the three bank teller resources. Either you can create three BankTeller
resource entity objects, each of which has a ResourceUnits value of 1, or you can create one BankTeller
resource entity object that has a ResourceUnits value of 3. To demonstrate the merging/splitting feature in
Simulation Studio, this model uses the latter approach.

The Create Teller block generates one BankTeller resource entity object and passes it to the Teller Pool block,
just as in the previous model. This time, the resource entity attribute of the resource entity object is equal
to 3 instead of 1. To make efficient use of the ResourceUnits in the BankTeller resource entity object, it is
necessary to use the Resource Pool block’s merging and splitting resource entities capabilities. Selecting the
Merge/Split resource units among resource entities of same type check box in the Block Properties for
Teller Pool dialog box (see Figure 10.7) enables the block to look at the ResourceUnits attribute of its held
resource entities and possibly subdivide a resource entity into two resource entities, one of which matches
the needs of an incoming resource request. In this example, the Seize Teller block requests a BankTeller
resource entity that has one ResourceUnit. With the merge/split option selected, the Teller Pool block can
take a BankTeller resource entity that has a ResourceUnits value of 3, create a new BankTeller resource
entity object that has a ResourceUnits value of 1, and decrease the ResourceUnits value of the existing
BankTeller resource entity (already in the pool) to 2. The new BankTeller resource entity object (which has a
ResourceUnits value of 1) is sent to the Seize Teller block to satisfy its request.

Similarly, when the BankTeller resource entity object returns to the Teller Pool block, its ResourceUnits can
be merged with a BankTeller resource entity already in the pool, and the incoming BankTeller resource entity
object is disposed.

96 F Chapter 10: Resources

Figure 10.7 Teller Pool Block Properties Dialog Box

For this model, all three bank tellers might not be available during the entire simulation—maybe they take a
staggered lunch break. The previous model used a total simulation time of 9 hours (540 minutes). Assume in
this model that for the first 4 hours (240 minutes) of the work day, all three bank tellers are available. For
the next hour, two of the tellers go on lunch break and when they return, the third teller takes an hour lunch
break. When the third teller returns from lunch break, all three tellers are available for the remainder of the
work day.

A Resource Agenda block and a Resource Scheduler block are used together to implement the scheduling
functionality in this model. A Resource Agenda block is used to create a list of resource adjustment actions
(collectively known as a resource agenda) to be performed during the simulation run. The resource agenda
information is passed to a Resource Scheduler block to arrange and perform the resource adjustment actions
on specific resource entities. Figure 10.8 shows the Resource Agenda Block Properties dialog box for this
model. Each row or entry in the agenda represents a resource adjustment action and consists of three pieces
of information: Duration, Value, and Value Type. For a complete description of each of these fields, see the
Resource Agenda block description in Appendix A, “Templates.” For this model, these entries represent the
changes in the number of bank tellers throughout the simulation period.

Extending the Banking System Model F 97

Figure 10.8 Resource Agenda Block Properties Dialog Box

The Resource Scheduler block receives the resource agenda at the beginning of the simulation run through its
InAgenda input value port, and the scheduler performs the sequence of resource adjustments on a specified
group of targeted resource entities. The block properties dialog box that is associated with the Resource
Scheduler block in this model is shown in Figure 10.9. Each row in the Appointments table is called an
appointment. For more information about using the Resource Scheduler block, see Appendix A, “Templates.”
Only the Start Time, Agenda, and Search Targets By fields are discussed here. The Start Time field
specifies the simulation time to activate the associated agenda. The Agenda field supplies the name of the
incoming agenda to use for this appointment. (Multiple Resource Agenda blocks can be linked to the same
Resource Scheduler block, each sending a named agenda to the scheduler.) The Entity Type field under
Search Targets By indicates which resource entities the associated agenda in the appointment applies to. For
this model, the agenda that is created in the Resource Agenda block is activated at a Start Time of 0 (when the
simulation run begins) and is applied to the BankTellers resource entity objects in the model. The Immediate
Actions options selected here indicate that resource entities that are in a seized state are not preempted. For
more information about preemption, see the section “Preempting Resource Entities” on page 105.

98 F Chapter 10: Resources

Figure 10.9 Resource Scheduler Block Properties Dialog Box

The final new block that is added to this resource model is the Resource Stats Collector block. This block
collects statistics about resource entities during the simulation run. The Resource Stats Collector requires a
minimum of two pieces of information: the resource entities that you want to collect statistics about and the
statistics that you want to compute. The Resource Stats Collector Block Properties dialog box has separate
tabs for you to enter this information. The Groups tab, as shown in Figure 10.10, identifies the targeted
resource entities for statistics collection. In this example, resource entities of the BankTellers Entity Type
have been targeted. The Statistics tab, as shown in Figure 10.11, specifies the statistics that you want to
compute. For more information about the columns in this table, see the Resource Stats Collector block
overview in Appendix A, “Templates.”

Figure 10.10 Groups Tab in Resource Stats Collector Block Properties Dialog Box

Extending the Banking System Model F 99

Figure 10.11 Statistics Tab in Resource Stats Collector Block Properties Dialog Box

In this example, two statistics are defined: Utilization and Idle. Both are computed using the %AvgAvail
statistic type. For the statistic named Utilization, the Seized option is set to true. In this case, the result is the
percentage of time that resource entities of type BankTellers are seized, relative to the time-average number
of available units of resource entities of type BankTellers during the simulation run. For the statistics named
Idle, the Seized option is set to false. In this case, the result is the percentage of time that resource entities of
type BankTellers are not seized, relative to the time-average number of available units of resource entities of
type BankTellers during the simulation run.

The Resource Stats Collector block provides an option to save the defined statistics to a file at the end of each
run (that option was selected for this example). You can also attach a plot block to the OutData outport of the
Resource Stats Collector block to display the statistics during the simulation run. In this example, a Table
block displays the defined statistics. At the end of the run, the Utilization statistic equals 0.361853, and the
Idle statistic equals 0.638147 (as shown in Figure 10.6).

This example provides a glimpse into the modeling capabilities and potential applications of the Resource
Agenda, Resource Scheduler and Resource Stats Collector blocks. Although these blocks are more com-
plex than many of the previously demonstrated blocks, they also provide powerful and flexible modeling
functionality.

100 F Chapter 10: Resources

Additional Resource Functionality
The following sections describe in more detail some of the advanced features related to resource entities,
including merging and splitting, statistics collection, and scheduling resource entity state and capacity
adjustments. The concept of resource preemption is also discussed.

Merging and Splitting Resource Entities
The Resource Pool and Release blocks provide a unique capability, which is called resource entity merging and
splitting. All resource entities have a numeric ResourceUnits attribute, which can be assigned a nonnegative
value. The value contained in this attribute represents the capacity or available units that are associated with
the individual resource entity object. The default value for the ResourceUnits attribute is 1. Therefore by
default, each new resource entity that is created represents one unit of that particular resource.

The Teller Pool block in the previous example used the merging/splitting feature of the Resource Pool block.
When the merging/splitting option is selected in a Resource Pool block, mini-pools of entities based on
a user-defined criteria are kept. A common criterion is to merge and split the resource entities based on
resource entity type. Merging and splitting helps reduce the number of resource entity objects that are needed
in a model during a simulation run. Figure 10.7 shows the Block Properties for Teller Pool dialog box.

If you want to use the merging/splitting feature of a Resource Pool block, you must specify the criteria to use
for grouping the resource entities in the pool. The simplest approach is to select the Merge/Split resource
units among resource entities of same type check box in the Resource Pool block properties dialog box.
This uses the resource entity type as the grouping criteria. You can also specify more definitive grouping
criteria by using the Key Entity Attribute Fields section of the dialog box.

When the merging/splitting option is enabled on a Resource Pool block, the first resource entity for any
defined group that enters the block remains in the block for the duration of the simulation run. It effectively
becomes the mini-pool for that group. Any other resource entities that enter the Resource Pool block and
are a match for the criteria for that group are merged with the first resource entity of that group. That is, the
value of the ResourceUnits attribute of the resource entity just coming into the Resource Pool is added to the
value of the ResourceUnits attribute of the existing, matching resource entity, and the incoming resource
entity is disposed.

When a resource request comes into the Resource Pool block, the block looks for a resource entity in its
possession that has matching criteria. If it finds a matching resource entity, it then looks at the ResourceUnits
attribute on the matching resource to see whether sufficient units are available to fill the request. If enough
units are available, the Resource Pool block creates a new resource entity from the matching resource
entity, populates its ResourceUnits value with the requested number of units, and decreases the value of the
ResourceUnits in the original resource entity accordingly. (The original resource entity might end up with a
ResourceUnits value of 0.)

Although the Release block does not have (or need) any resource entity merging capabilities, it does provide
an option for splitting resource entities. When the Splittable option is selected on a Release block, you can
deallocate or release some of the ResourceUnits that are associated with an incoming resource entity. Fields
are available in the Release Block Properties dialog box for defining the criteria to use for releasing and
splitting resource entities. If the Splittable option is selected and an incoming resource entity meets the
Splittable criteria that you have defined on the Release block, the Release block looks for the ResourceUnits

Collecting Resource Entity Statistics F 101

attribute value on the incoming resource entity and compares it to the value you specified to be deallocated
from the resource entity. If the value to be deallocated is less than the value of units available in the incoming
resource entity, the Release block creates a new resource entity from the incoming resource entity, populates
its ResourceUnits value with the specified number of units, and decreases the value of the ResourceUnits in
the incoming resource entity accordingly. The newly created resource entity then flows out the appropriate
Release block output port. The original resource entity, with its ResourceUnits now decreased, flows out of
the Release block with the controlling entity.

When the simulation model does not have the merging and splitting options enabled in its Resource Pool and
Release blocks, the model is sometimes referred to as an object-based resource model. When the merging or
splitting options in either of these types of blocks are enabled, the model is called a unit-based resource model.
The Resource Pool and Release blocks provide special options that take advantage of the ResourceUnits
attribute in a resource entities for unit-based models.

For more information about the Resource Pool and Release blocks, see Appendix A, “Templates.”

Collecting Resource Entity Statistics
Resource entities are usually scattered throughout the model during a simulation run. For example, some
resource entities might be stored in a Resource Pool block, some might be allocated to controlling entities (that
is, they are seized by other entities), and some might be held in a Server or Delay block. The Resource Stats
Collector block on the Data and Display template organizes resource entities of interest into resource groups,
and it calculates and reports user-defined statistics for a group. For each resource group, resource constraints
can be defined in the Resource Stats Collector block to locate and monitor the group’s targeted resource
entities during a simulation run. Each defined statistic is computed for all groups, and each statistic can also
be defined with its own resource constraints to further limit the computation to a subset of a resource group.
For example, suppose you create a resource entity type called DoctorEntity to represent doctors in a medical
simulation, and one of the attributes you define on this DoctorEntity entity type is named specialty. Valid
values for this specialty attribute might be cardiologist, neurologist, and ENT. You can use the Resource Stats
Collector block to calculate statistics for all instances of the DoctorEntity resource entity that have a specialty
attribute value of “neurologist” by defining a Group named Neurologists such that the group members
have the value DoctorEntity for the Entity Types field and Attribute Rule specialty==“neurologist”. The
Resource Stats Collector block reports its results as a data table, with each group as a data row and each
column containing statistics.

One particular statistic that simulation practitioners are often interested in is utilization, which is usually
defined to be the percentage of time that a resource is “busy” relative to the time-averaged number of
resources available. The definition of a busy resource can vary depending on the system being modeled.
For example, “busy” could mean not idle (seized) and in the Functional state. Alternatively, “busy” could
just mean seized, as in the banking system model in the section “Extending the Banking System Model” on
page 94. The Resource Stats Collector block has a statistic type called %AvgAvail, which can be used to
compute utilization statistics. Furthermore, the Resource Stats Collector block is designed so that you can
specify your own definition of a “busy” resource when computing utilization statistics. You use the Seized,
State, and Attribute Rule fields on the Statistics tab to create your own definition of “busy.”

102 F Chapter 10: Resources

Scheduling Resource Entity State and Capacity Adjustments
Resources often undergo routine adjustments or changes, and the effects of such adjustments often last for a
limited period of time. Examples are a truck having routine maintenance, a worker taking a lunch break, and
salespeople being added for a holiday shopping season.

The scheduling of a resource adjustment often needs to address the following issues:

� what type of adjustment to make—either capacity or state change

� what resources to adjust—locate the targeted resources

� when to adjust

� how long to adjust

� whether the adjustment is preemptive (disruptive)

� where and how the adjustment takes place—in resource pools (unseized) or in other entity holding
blocks (seized)

� how to proceed to the next related adjustment, if any—temporally constrained or not

� whether to repeat this adjustment in the future—repeatable or not

In Simulation Studio, resource scheduling is supported by the Resource Agenda and Resource Scheduler
blocks together. The Resource Agenda block addresses the first issue in the preceding list, and the Resource
Scheduler block addresses the other issues.

Resource adjustments are often related and happen in an orderly fashion. In Simulation Studio, related
adjustment actions can be grouped together. A special type of value object called a Resource Agenda defines
a sequence of related resource-adjustment actions based on a relative simulation time that starts at time zero.
Each resource adjustment action includes a change to either the resource capacity value or the resource state
value in targeted resource entities over a certain time period; it is defined as a resource agenda entry. The
Resource Agenda block provides a resource agenda to describe what type of resource adjustments to make
during a simulation run.

The Resource Scheduler block accepts and stores resource agenda objects during a simulation run. This block
also accepts scheduling requests through an appointment to perform resource adjustments. The resource
agendas are later activated and processed by the Resource Scheduler block as specified by the appointments.
An appointment tells the Resource Scheduler which resource agenda to use for resource adjustments and
how to deal with the second through last issues in the preceding list. After a resource agenda is activated, its
entries are activated and processed sequentially. An appointment is fulfilled when all entries in the specified
resource agenda are processed and all associated resource adjustments are completed.

There are two ways to specify an appointment in a Resource Scheduler block: statically or dynamically. You
can enter a static appointment at the design or modeling time by using the Appointments tab of the Resource
Scheduler block properties dialog box (see Figure 10.9). At simulation time, appointments are processed
as the initial requests by the Resource Scheduler block. After an unrepeatable request is processed and all
associated adjustments are completed, the request is discarded by the Resource Scheduler block.

Scheduling Resource Entity State and Capacity Adjustments F 103

In addition to the appointments that you schedule through the properties dialog box controls, you can also use
resource schedule entities to request a Resource Scheduler block to process resource agendas dynamically
through the InRequest port during a simulation run. If a request is repeatable and the OutRequest port is
connected, the Resource Scheduler block sends a resource schedule entity out through the OutRequest port
to represent the request that can be used again later. You can route these resource schedule entities to a
Resource Scheduler block through its InRequest port as dynamic requests. Before being routed to a Resource
Scheduler block, these resource schedule entities can be processed (delayed, modified, counted, stored, and
so on) to simulate complicated scheduling situations. Resource schedule entities have attributes for each
field that is required in order to define an appointment in a Resource Scheduler block. You can also create
resource schedule entities by using an Entity Generator block, and the values of the resource schedule entity
attributes can be set before routing it to a Resource Scheduler block. Note that if an appointment is repeatable
but the OutRequest port is not connected, then the Resource Scheduler block automatically reschedules the
appointment, using the current simulation time as the new start time.

Sometimes the contents of the resource agenda entries in a resource agenda are fixed and can be specified
completely at the design time. But at other times, the duration or capacity change of an adjustment action is
not fixed or cannot be specified in the corresponding resource agenda entries at the design time. For example,
the downtime or duration of a machine failure is not fixed but follows a certain statistical distribution (such as
a normal distribution). In Simulation Studio, the numeric contents (such as duration, units, and units offset)
of a resource agenda entry can be left unspecified, or blank. Such an agenda entry is called a dynamic agenda
entry. The Resource Agenda block populates the unspecified values by pulling these values dynamically
though the InDuration or InValue input ports during the simulation. The desired values are created through
submodels that are connected to these input ports.

When a resource agenda is active, the Resource Scheduler block performs the appropriate actions as specified
by the Immediate Actions, Search Targets By, and Adjust Units By rules. For each adjustment action,
certain groups of resource entities are identified as follows:

� Potential targets are resource entities in the functional state that satisfy the requirements of the Search
Targets By rule, which contains the Entity Type and Attribute Rule fields. If no rule is specified in
these fields (that is, they are left blank), then all resource entities are potential targets.

� Targets are resource entities from the set of potential targets that the Resource Scheduler block selects
for adjustment so that the set of targeted entities is a subset of the set of potential targets. The resource
entities that are selected to be targets depend on several factors, including the Adjust Units By rule
and an “unseized first” heuristic, which means that the Resource Scheduler block always attempts to
adjust unseized resource entities before seized entities.

Figure 10.12 and Figure 10.13 depict the relationship between the sets of resource entities that are potential
targets and those that are actual targets.

104 F Chapter 10: Resources

Figure 10.12 Resource Entity Groups That Are Formed for an Adjustment Action

Figure 10.13 How Resource Entity Groups Are Formed for an Adjustment Action

When the targeted resource entities are actually adjusted depends on the Immediate Actions rule, which
contains the Unseized, Seized, and Advance Agenda options. The Unseized option specifies when targeted
unseized resource entities are adjusted. When selected, any targeted, unseized resource entities are adjusted
immediately. Examples of when selecting this option is useful include increasing inventory levels immediately
at all inactive warehouses or putting all trucks currently in a garage through routine maintenance. If you
do not select the Unseized option, then any targeted unseized resource entities are adjusted after all seized
resource entities that are potential targets become unseized. This represents the situation when all resource
entities in the potential target group need to be gathered (unseized in a Resource Pool block) before any
targeted entities are adjusted.

The Seized option specifies when seized resource entities (if any) are adjusted. When selected, any targeted
resource entities that are currently seized are adjusted immediately if there are not enough unseized potential
targets available to adjust. Whether the adjustment is a capacity change or a state change, this could trigger a
preemption in a holding block where a seized entity is located at the time of the adjustment. If either the

Preempting Resource Entities F 105

OutPreempt or OutResource port on the holding block is connected, then preemption will occur. If you do
not select the Seized option, then any targeted, seized resource entities are adjusted after all seized resource
entities that are potential targets return to a Resource Pool block and become unseized. Selecting the Seized
option does not guarantee that any seized resource entities are adjusted. Seized entities are identified as
targets for adjustment only if there are not enough unseized entities to cover the scheduled adjustment.

The Advance Agenda option is the third part of the Immediate Actions rule. When selected, the Resource
Scheduler block moves on to process the next agenda entry without waiting for all seized and unseized targets
to be adjusted for the current entry. This could result in a shorter time between actual resource adjustments
than what the agenda specifies. If you do not select the Advance Agenda option, the Resource Scheduler
block waits for all seized and unseized targets for the current entry to be adjusted before moving on to process
the next agenda entry. As a result, the time between resource adjustments could be longer than the duration
time specified in the resource agenda.

The Resource Scheduler block uses several heuristics to adjust the units of targeted resource entities when a
request is made. In general, the Resource Scheduler block always attempts to adjust unseized entities before
seized entities. This “unseized first” heuristic avoids unnecessary preemptive adjustments. The Adjust Units
By field in the Resource Scheduler block dialog box specifies the policy that is used to allocate or deallocate
resource units among targeted resource entities when there is a scheduled resource adjustment. The default
FairIntegerBased policy requires that any adjustment to the units of a resource entity be made on an integer
basis (integrally) and that any fractional resource units be ignored. If there is an increase in resource units,
then those units are distributed integrally and as evenly as possible among all unseized resource entities that
are potential targets (according to the “unseized first” heuristic). If there are not enough unseized potential
targets available to adjust, then seized entities are adjusted. If there is a decrease in resource units, then the
capacities of any unseized resource entities that are potential targets are integrally and evenly reduced. If
there are not enough unseized resource units to cover the scheduled decrease, then the capacities of seized
resource entities that are potential targets are integrally and evenly reduced either immediately (if you select
the Seized option) or when all seized entities that are potential targets return to a Resource Pool block and
become unseized (if you do not select the Seized option). For more information about the functionality of
the Resource Agenda and Resource Scheduler blocks, see Appendix A, “Templates.”

Preempting Resource Entities
In Simulation Studio, the stationary resources (including most of the entity holding blocks, such as the Queue,
Server, and Delay blocks) support two common types of resource preemption: priority-based and scheduled.

Priority-based preemption is primarily for preempting stationary resources, which are the entity holding
blocks such as the Queue, Server, and Delay blocks. The entity that wants to enter such a holding block is
considered a consumer of the static resource that is represented by that block. Allocation of static resources
is usually about accepting entering entities into a holding block to take up space in the block. Preemption of
static resources forces out some entities currently in a holding block to make space for some other entities.
The selected holding blocks (Queue, Server, and Delay) provide an InPreempt input port that accepts an
EntityGroup object as input. These blocks compare the entity references in the EntityGroup to the entities
that are currently held by the block and preempt any matches. This type of preemption is often triggered by
the higher priority of the new entities attempting to enter these blocks.

Scheduled preemption is primarily for preempting mobile resources, which are resource entities, and is based
on a resource adjustment agenda. Sometimes the allocated and seized resource entities need to be preempted
from their current controlling entities so that these resource entities can be re-allocated to other controlling

106 F Chapter 10: Resources

entities. This type of preemption can be triggered by the preemptive resource adjustments that are arranged
and processed by a Resource Scheduler block. Most entity holding blocks, including the Queue, Server,
and Delay blocks, provide OutPreempt and OutResource output ports. If a resource entity that is allocated
to a controlling entity that is currently held in a holding block is adjusted preemptively, the holding block
attempts to force the controlling entity out of the block’s OutPreempt port and the resource entity out of
the OutResource port. If the OutPreempt port is not connected, the controlling entity remains in the entity
holding block. If the OutResource port is not connected, the adjusted resource entity remains allocated to its
controlling entity.

The post-preemption processing of preempted entities and resources is often highly specific to the application.
For example, when a job is preempted from a service, some applications might resume the job to finish its
remaining service time, some might restart the job from the beginning, some might simply scrap the job, and
so on. The modeling facilities that Simulation Studio provides make it possible to construct suitable solutions
to handle these situations.

Additional examples that demonstrate preemption and other resource modeling techniques are provided in
Appendix E, “Examples of Simulation Studio Models.”

Chapter 11

Model Debugging and Verification

Contents
Overview of Debugging and Verification Tools . 107
Log Tab . 107
Trace Tab . 108
Tracing Configuration . 109
Animation Tab . 113

Overview of Debugging and Verification Tools
The Log, Trace, and Animation tabs (which can be expanded at the bottom of the Project window) provide
feedback and debugging capabilities during the execution of a simulation model. Both the application
and individual blocks can post model execution state, event, and error information to the Log and Trace
tabs while the model is running. The Log tab contains messages of varying severity levels about potential
configuration and execution state anomalies. The Trace tab (if the Tracer is enabled) displays simulation
clock timestamps and state information for individual blocks as execution progresses. You can customize
the content of the Trace tab to filter out unwanted trace messages. The Animation tab enables you to select
which regions of the model to animate during model execution. You can also specify the animation speed,
start time, and end time for each selected region.

When parallel mode is selected for model execution, the Trace and Animation tabs are disabled. For more
information about running a model in parallel mode, see the section “Running a Model in Parallel Mode” on
page 36 in Chapter 4, “Simulation Models.”

Log Tab
Messages can be posted to the Log tab by both the application framework and the individual blocks. Each
message consists of five components: message entry, level, description, source, and time.

The Message Entry column uses a tree structure to display the active experiment along with the design points
and replicates that are selected in that experiment for execution. Each message that is posted to the log
is associated with a particular replicate. The value in the Level column represents the severity of the log
message; possible values are SEVERE, WARNING, and INFO. A SEVERE log message indicates that a
major problem has been encountered with the simulation model, and execution is terminated.

108 F Chapter 11: Model Debugging and Verification

Figure 11.1 displays a SEVERE log message from an Entity Generator block for the first replicate of the
design point named point 1. To function properly, an Entity Generator block requires a connection to its
InterArrivalTime input port from which it can pull numeric values. That connection appears to be missing in
this example.

Figure 11.1 Sample Log Tab

A WARNING message usually suggests that a condition has occurred that warrants further investigation.
An example of such a condition might be a block receiving a negative number when it was expecting a
nonnegative value. An INFO message simply contains information but does not indicate a potential problem.

The Time column on the Log tab displays the (simulation clock) time when the message was logged. Some
messages, such as the one in the SEVERE log message example in Figure 11.1, can be logged before the
model execution actually begins; therefore the Time value is empty for these messages.

The Description column contains the message text, and the Source column displays the label of the block that
generated the message. Clicking an entry on the Log tab causes the associated block to be highlighted in
the Model window. The Log tab pop-up menu contains an option called Auto Sync with Model, which is
turned on by default so that the Model window will scroll (if necessary) to display the highlighted block that
is associated with an entry in the Source column.

Trace Tab
Trace messages provide details about state changes, events, and execution flow within individual blocks; they
are useful for debugging and verifying your simulation models. The Tracer must be enabled before any trace
messages are generated. You can enable the Tracer by using the pop-up menu available on the Trace tab
background.

The following types of entries are displayed on the Trace tab:

� simulation clock timestamps (displayed in black)

� entity information (displayed in red)

� value information (displayed in blue)

Tracing Configuration F 109

When the Tracer is enabled, a timestamp is posted to the Trace tab every time the simulation clock advances.
All other trace messages are generated by the individual blocks. Each block is responsible for the content of
its trace messages and for determining when to generate trace messages. Clicking on a message in the Trace
window causes the associated block to be highlighted in the Model window. The Trace tab pop-up menu
contains an option called Auto Sync with Model, which when enabled causes the model window to scroll
(if necessary) to display the highlighted block that is associated with an entry in the Trace window.

Although it is possible (and likely) for any simulation model execution to generate a considerable volume of
trace messages, the Trace tab has a limited size buffer associated with it to store the messages. Therefore,
only the most recent trace messages are retained in the trace buffer when the buffer is full. To change the
maximum number of trace records to display, select Records from the Trace tab pop-up menu to open the
Trace Records dialog box, as shown in Figure 11.2. You can also use the Trace Records dialog box to save
the trace records to a file. Figure 11.3 shows a sample Trace tab.

Figure 11.2 Trace Records Dialog Box

Figure 11.3 Sample Trace Tab

Tracing Configuration
You can control the amount of information that is displayed on the Trace tab by using the Tracing Configura-
tion dialog box. To open the Tracing Configuration dialog box, right-click on the Trace tab background and
select Tracer Configuration.

110 F Chapter 11: Model Debugging and Verification

You can use the Tracing Configuration dialog box to filter trace messages according to various criteria: the
blocks that generate trace messages, the entities that are mentioned in trace messages, and the simulation
clock time of trace messages. You can combine more than one of these criteria to further refine the number
of trace messages that appear on the Trace tab. Changes made in the Tracing Configuration dialog box apply
only to the model that is active when you open the Tracing Configuration dialog box. These settings last only
while Simulation Studio is open. They are not saved when you close Simulation Studio.

Figure 11.4 shows a sample Tracing Configuration dialog box.

Figure 11.4 Tracing Configuration Dialog Box

The following sections appear in the Tracing Configuration dialog box:

� Blocks

� Entities

� Simulation Time

By default, all trace messages that are generated during simulation execution appear on the Trace tab.
Therefore, when you open the Tracing Configuration dialog box for the first time, the default options are
selected to show all block tracing, show all entity tracing, and show tracing for all simulation times.

If you clear the Show All Block Tracing check box, the Block Tracing button becomes enabled. Click
Block Tracing to open the Block Tracing dialog box. Figure 11.5 shows a sample Block Tracing dialog box.

Tracing Configuration F 111

Figure 11.5 Block Tracing Dialog Box

In this dialog box, select the blocks for which you want to see trace messages and click OK. For trace
messages that are generated by blocks, only trace messages generated by the selected blocks are displayed on
the Trace tab. If you want to display trace messages generated by all blocks, simply check the Show All
Block Tracing check box in the Tracing Configuration dialog box.

If you clear the Show All Entity Tracing check box, the Entity Tracing button becomes enabled. Click
Entity Tracing to open the Entity Tracing dialog box. Figure 11.6 shows a sample Entity Tracing dialog
box.

112 F Chapter 11: Model Debugging and Verification

Figure 11.6 Entity Tracing Dialog Box

In this dialog box, select the entity types for which you want to see trace messages. Also, you can specify
a range of Id numbers for each selected entity type, which causes only trace messages for entities with Id
numbers in the specified range to be displayed on the Trace tab. Click OK to apply the settings and close the
Entity Tracing dialog box. For trace messages regarding entities, only trace messages regarding the selected
entity types and Id ranges are displayed on the Trace tab. If you want to display trace messages regarding all
entities, simply check the Show All Entity Tracing check box in the Tracing Configuration dialog box.

To show trace messages only for a specified range of simulation clock time, you can specify a start time, an
end time, or both. To specify a start time, clear the Zero check box in the Tracing Configuration dialog box
and enter a positive integer value in the Start field. Trace messages that are generated before the specified
start time are not displayed on the Trace tab. To specify an end time, clear the Infinity check box and enter a
positive integer value in the End field. Trace messages that are generated after the specified end time are not
displayed on the Trace tab.

The settings in the Blocks, Entities, and Simulation Time sections of the Tracing Configuration dialog box
combine to determine what is ultimately displayed on the Trace tab. For example, if you select to show
tracing for only the Entity Generator A block, select to show tracing for only the Default entity type, and
select to show tracing for only time 10 to 20 on the simulation clock, then the Trace tab displays only
messages that are generated by block Entity Generator A. Furthermore, if this block generates messages for
entity types other than Default, they are not displayed. Lastly, no trace messages are displayed before time
10 or after time 20, regardless of the block that generated the trace message or the entity type that is referred
to by the trace message.

Animation Tab F 113

Animation Tab
Animation can be a useful tool for verifying that your model is operating as intended. The Animation tab
provides options for controlling the animation as a model runs; a sample is shown in Figure 11.7. The Region
column in the Animation tab displays a hierarchical tree of all the compound and submodel blocks in the
current active model. You can use the Region and Enabled columns together to select which parts of the
model to animate during model execution. For a nested group of compound or submodel blocks, you can
select the block name at the highest level to turn on or off the animation for all blocks in the nested group.
Similarly, you can select the model name at the topmost level in the Region column to either turn on or off
the animation for all compound and submodel blocks in the model. If there are no compound or submodel
blocks in the model, then the Region column displays only the model name. Before you run a model and
view the animation, you must enable animation either by clicking the animation icon on the Simulation
Studio toolbar or by selecting Animate from the Run menu.

Figure 11.7 Sample Animation Tab

You can move the sliders in the Speed column to set the animation speed for each region of the model. To
reset all sliders to the default speed, right-click on the Speed column and select Reset All: Speed. The
default animation speed is set by using the slider on the Simulation Studio toolbar.

You specify animation time intervals for each region of the model in the StartTime and EndTime columns.
Figure 11.7 indicates that the compound block labeled Call Arrival will be animated from time 0 to time 50.
You can reset all start times to the default value by right-clicking the StartTime column header and selecting
Reset All: StartTime. Similarly, you can reset all animation end times to the default value by right-clicking
the EndTime column header and selecting Reset All: EndTime.

Clicking an entry on the Animation tab causes the associated block to be highlighted in the Model window.
The Animation tab pop-up menu contains an option called Auto Sync with Model, which when enabled
causes the model window to scroll (if necessary) to display the highlighted block that is associated with an
entry on the Animation tab.

114

Chapter 12

Block Templates

Contents
Overview of Block Templates . 115
Using the Template Menu . 116
Using the Template Palette Pop-up Menu . 116
Template Document Format . 117

Overview of Block Templates
Simulation Studio templates provide a facility for managing the blocks you use to build your simulation
models, and the Simulation Studio template palette offers a visual representation of template content. A
Simulation Studio template contains information about a collection of blocks. This information is stored as
an XML document. There is no limit on the number of templates you can load into Simulation Studio. The
content of any loaded template can be viewed in the Template Palette area of the application. As discussed in
Chapter 4, “Simulation Models,” you drag an item from the Simulation Studio palette into a Model window
to create an instance of the associated block in your simulation model.

When Simulation Studio starts, it automatically loads a series of default templates named Standard, Advanced,
Data and Display, Resource, and Output Analysis. These templates provide collections of blocks useful for
building queuing simulation models. These blocks include Entity Generators, Queues, Servers, and so on;
they are described in detail in Appendix A, “Templates.” These collections of blocks will continue to evolve
in succeeding Simulation Studio releases.

You can also create a custom template and save it to a data file for later use either by using selections described
in “Using the Template Palette Pop-up Menu” on page 116 to modify an existing template or by creating a
template XML document as described in “Template Document Format” on page 117.

Although there are no constraints on the contents of a template (other than the element format described in
“Template Document Format” on page 117), you usually create a collection of blocks that have some theme in
common. For example, you might create a template with blocks for simulating a manufacturing environment,
or you might create a template with blocks specifically designed to address health care services simulation.

116 F Chapter 12: Block Templates

Using the Template Menu
You use the Template menu to load an existing template that is saved on disk, create a new (empty) template,
or save a loaded (probably modified) template back to disk. To load an existing template into Simulation
Studio, select Open. This opens a File Selection dialog box where you choose the template filename and
then click Open. The chosen template is then loaded into the application, and the template name is added to
the Templates list box. Selecting a template name in the Templates list box causes the Template Palette area
of Simulation Studio to be populated with the items contained in the associated template. Only one template
is active at any time.

Using the Template Palette Pop-up Menu
A pop-up menu is available on the Template Palette window area background with options for various
palette display formats with various combinations of icons and labels. (See Figure 12.1.)

Figure 12.1 Template Palette Menu

In addition to the palette formatting options, this menu contains three other items: Block Info, Remove
Block, and Import Block. Select Block Info to view template information that is related to a particular item
displayed in the palette. Editing the values in the Block Info dialog box changes those values for all current
and future instances of the associated block in your models. Select Remove Block to delete an item from
the palette. Select Import Block to add a new entry to the currently visible template (that is, the template
displayed in the palette). Selecting Import Block opens a dialog box that contains fields where you enter
the same information found in the Block Info dialog box. (This is the same information found in a block
element entry in a template XML document.)

Template Document Format F 117

Template Document Format
Figure 12.2 shows a simple template XML document that contains one block. The <block> element in
a template document represents a single item in the template. The <block> element attributes and child
elements are listed and described in the header in Figure 12.2. Only the name and type attributes are required
in each <block> element. The information in any <tabbed_page> child elements in a <block> element
represents the dialog pages that are associated with the Block Properties dialog box for each block.

Figure 12.2 Sample Template Document

118

Chapter 13

Data Input, Collection, and Analysis

Contents
Overview . 119
Data Value Types . 119
Data Input . 121
Data Collection and Output . 121

Block Data Storage . 121
Experiment Window Data Storage . 124

Data Analysis . 124
Output Analysis . 124
Input Analysis . 128

References . 128

Overview
The subject matter of a simulation investigation or the sophistication of a model often dictates what type of
data need to be collected from each simulation run and the amount of data required to perform an appropriate
analysis. Furthermore, the accuracy of the simulation results depends on the suitability of the distributions that
are used as inputs to the model, making input analysis and distribution fitting one of the critical considerations
in the design and construction of a simulation model. Simulation Studio is integrated well with both SAS and
JMP to take advantage of the rich and powerful data processing and analysis capabilities that are available in
each package. This section provides an overview of the data management capabilities in Simulation Studio
and describes how Simulation Studio interacts with both SAS and JMP. Before interacting with SAS or JMP
from Simulation Studio, make sure the appropriate server has been launched. See the section “Launching
Local SAS and JMP Servers” on page 20 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.

Data Value Types
As described in the section “Entities and Values” on page 32 in Chapter 4, “Simulation Models,” data
values in Simulation Studio can be numbers, character strings, Boolean values, or objects. Frequently used
object types include data model objects and observation objects. A data model object can be viewed as an
in-memory representation of a SAS data set or JMP table during a simulation run. It contains information
or values specified in rows, columns, and cells. An observation object represents one row of a data model
object. It can be viewed as the simulation-time representation of a data observation from a SAS data set or a
data row of a JMP table. The data model and observation objects are used in Simulation Studio blocks to

120 F Chapter 13: Data Input, Collection, and Analysis

represent data for various access and collection tasks. For example, you can use the Dataset Holder block
from the Data and Display template as a holding facility for a data model object, making it useful both for
matrix computations and also for modeling scenarios that require repeated access to a data set (look-up table)
to perform a particular computation. During a simulation run, you can access through user-defined output
ports the contents of a data model object (such as individual data cell values and observation objects) that is
stored in a Dataset Holder block and you can pass the queried results to other blocks in the model.

Figure 13.1 is a model of a machining center where parts are processed at four different stations in a particular
sequence that is based on part type. In this example, a Dataset Holder block with one user-defined output
port (located at the bottom right of the Dataset Holder block) is used to hold the machining sequence data set,
which is displayed by using a Table block (located at the bottom left of Figure 13.1). The data set value that
is pulled from the bottom right output port is a particular cell value based on part type; it indicates the next
station in the processing sequence. In this example, the Dataset Holder block holds a data set that is used
repeatedly by all entities. An alternative is to store the information in the machining sequence data set as
entity attributes, but that would result in the same data being stored multiple times. A complete description
of this Machining Center example can be found in the section “Machining Center Model” on page 304 in
Appendix E, “Examples of Simulation Studio Models.”

Figure 13.1 Machining Center Model

The functionality of a Dataset Holder block can be viewed as analogous to that of a Number Holder block
with the To Downstream and From Upstream propagation options turned off. Whereas the Number Holder
block holds a single numeric value, the Dataset Holder block can hold a collection of related numeric or
character data values in the form of a data set.

Data Input F 121

Data Input
The Simulation Studio blocks that can be used to input data to a model are the Numeric Source, Text Source,
and Observation Source blocks. In general, three levels of data can be retrieved: a single value, a single
row, and an entire data set. The Numeric Source and Text Source blocks provide a stream of single data
values by reading a column of data from a SAS data set or JMP table, and the Observation Source block
provides a stream of data observation (row) objects from a SAS data set or JMP table. For example, you
can use the Observation Source block to read a row of data from a data set and either assign the entire row
as entity attributes or assign a subset of the data cell values in the row as attributes. This is demonstrated
in the example “Using the Observation Source Block to Set Entity Attributes” on page 306 in Appendix E,
“Examples of Simulation Studio Models.” Entity objects in Simulation Studio are tightly integrated with data
management schemes, and the Observation Source block provides a straightforward method for creating
entities with specific attributes based on input data.

The Observation Source block can also be used to read in an entire SAS data set or JMP table, as shown in
the machining example in Figure 13.1. An Observation Source block (labeled Read Dataset) is used to read
in the entire machining sequence data set. The data model that represents that data set is passed from the
OutData port of the Observation Source block to the InData port of the Dataset Holder block, where it is held
until needed.

NOTE: SAS data sets or JMP tables that will be loaded into Simulation Studio cannot contain missing values.

Data Collection and Output
Data that are generated by a Simulation Studio model can be collected and saved either through the Experiment
window or through a dedicated data collection block. The following sections describe how to use these data
collection methods.

Block Data Storage
Eight blocks can accumulate data and store it as a data model object: the Bucket, Dataset Writer, Number
Holder, Probe, Queue Stats Collector, Resource Stats Collector, Server Stats Collector, and Stats Collector
blocks. For more information about the functionality of these blocks and the types of information they can
collect, see Appendix A, “Templates.” A data model from a particular data collection block can be accessed
by other blocks via the OutData or OutCollected port. For example, you can connect a plot or table block to
the OutData port of a Queue Stats Collector block to visually display the queue statistics (such as average
waiting time) while the simulation model is running.

At the end of a run, you can save the contents of a data model from any data collection block as a SAS
data set or as a JMP table. Furthermore, dedicated Boolean ports enable you to collect event-driven data.
For example, you can save the contents of a data model object at any point during a simulation run by
connecting to the InData port on a Dataset Writer block. The data saving operation is triggered by a
Boolean signal that is sent to the InSaveNow port on a Dataset Writer block from another block in the
model. See the section “Using the Dataset Writer Block to Save Data during a Run” on page 307 in

122 F Chapter 13: Data Input, Collection, and Analysis

Appendix E, “Examples of Simulation Studio Models,” for an example that uses the Dataset Writer block to
save data during a run. Some of the data collection blocks, such as the Number Holder, Bucket, Probe, and
Stats Collector blocks, also have a data clearing port. When a 'true' Boolean signal is received at the data
clearing port, all data collected by the block up to that time during the simulation run are cleared. The data
clearing port facilitates collecting and saving data that correspond to specific periods during the simulation
run.

Simulation Studio saves the data that are collected by blocks on a project basis in a hierarchical directory
structure that is based on the hierarchical structure of the model. This structure reflects any nesting of blocks
that results from the use of compound blocks. By default, a folder called results is created in the project
folder and serves as the root directory for any data collection results. The data that are saved by individual
blocks are stored in folders by block name in the results folder.

NOTE: At the start of each simulation run, the results folder is cleared of its contents. If you want to
save data permanently from a simulation run, you should move them to another location that is not in the
results folder.

For each project, you can change the root directory name for data collection results by selecting Results
from the project pop-up menu in the Project Explorer window. Selecting Results opens the Results dialog
box, where you enter the name of the root directory to be used for storing model execution results. (See
Figure 13.2.)

Figure 13.2 Results Dialog Box

You can supply the filename associated with an individual block’s data storage by using the individual block’s
Block Properties dialog box. If you do not provide a filename, a default filename is generated automatically.

You can also collect data by selecting Auto Save Results in the model pop-up menu in the Project Explorer
window. (See Figure 13.3.)

Block Data Storage F 123

Figure 13.3 Model Menu

All blocks that are capable of collecting and saving data provide an option to automatically save any collected
data at the end of each simulation run. This option is usually set in the Block Properties dialog box for each
individual block. If you have many blocks that are collecting data in your model or the collection blocks
are nested in compound blocks, it might take a considerable amount of effort to open all the individual
dialog boxes and make the appropriate selections. Using a hierarchical format, the Auto Save Results dialog
box displays all the blocks in the model that have data collection capabilities. (See Figure 13.4.) In the
Auto Save Results dialog box, you can set the automatic save option for any of these blocks by selecting its
corresponding check box without having to open the individual block dialog boxes.

Figure 13.4 Auto Save Results Dialog Box

124 F Chapter 13: Data Input, Collection, and Analysis

Experiment Window Data Storage
The Simulation Studio Experiment window provides another option for collecting data on simulation runs.
Recall from Chapter 5, “Experiments,” that experiments are composed of factors and responses; factors
are set before running an experiment, and responses are values extracted from the model at the end of a
simulation run. Another means of collecting and saving simulation data is to select Save Design from the
Experiment window pop-up menu to save the experiment to a file. You can save Experiment window data as
either a SAS data set or a JMP table for analysis purposes.

To systematically study the effect of specific input parameters on the simulation model output, you can create
an experimental design in JMP, run the experiment in Simulation Studio, and select Analyze Results from
the Experiment window pop-up menu to pass the entire contents of the Experiment window directly back
to JMP for analysis. For example, you can use the simulated results to estimate a statistical model, which
in turn you can use to determine optimal levels of the factors so that a particular response is maximized or
minimized. See Appendix C, “Design of Experiments,” for details.

Data Analysis
As discussed in the following sections, Simulation Studio can compute basic summary statistics for data that
are collected during a simulation run. In addition, there is a state-of-the-art block for computing statistically
valid confidence intervals for responses that are generated from a steady-state simulation. Simulation Studio
is also integrated with both SAS and JMP so that you can customize your input and output data analysis
needs.

Output Analysis
Each block that collects data provides an output port (labeled OutData or OutCollected for the Number
Holder block) that other blocks can use to access its data model object. The plot blocks (Histogram and
Scatterplot, for example) are the usual recipients of these data; these blocks can provide real-time data
analysis while the simulation is running. Typically, however, you also want to use SAS or JMP software to
analyze the data that you have saved to data sets during a simulation run. The following sections provide an
overview of output analysis options that are available within Simulation Studio, including the process for
computing statistics for time-dependent and time-independent data, analysis techniques for terminating and
steady-state simulations, and the use of the SAS block for data analysis and report generation.

Classification of Statistics

Data that are collected during a simulation run can be used to estimate the parameters (such as the mean
and variance) of the underlying population from which the data are sampled. For example, consider the
population of waiting times for a particular queue. The waiting time data that are collected during a simulation
run represent a sample from the population that consists of all possible waiting times. When you estimate
population parameters from sample data, you need to consider two classifications of statistics:

� For observation-based statistics, the data collected and used to estimate parameters are time-
independent so that there is interest only in the observed value and not in when it was collected.
Waiting-time data are an example of a time-independent sample, and the average waiting time is an

Output Analysis F 125

example of an observation-based statistic. The following formula can be used to compute the average
waiting time: Nx D

Pn
iD1 xi=n, where x1; x2; : : : ; xn are the set of n observed waiting times.

� For time-persistent statistics, the data collected are time-dependent and it is necessary to record both
the values and the time periods for which each value persisted. Queue length data are an example of a
time-dependent sample, and the average queue length is an example of a time-persistent statistic. To
compute the average queue length NxT , the following formula is used: NxT D

R T
0 x.t/dt=T , where T is

the total time period observed and x.t/ is the number in the queue at time t. The average queue length
is a weighted average of the possible queue lengths, where the weights are the amount of time that a
particular queue length value is observed. Another example of a time-dependent sample is the number
of busy cashiers in a store, and the average utilization of the cashiers is an example of a time-persistent
statistic.

You can use the data collection blocks described in the section “Block Data Storage” on page 121 to collect
both time-dependent and time-independent data and, in some cases, to compute statistics. The Bucket block
collects data—namely, the specified attributes of all entities that pass through the block along with the time
that the attributes were recorded. However, the Bucket block does not compute statistics for those data. The
Queue Stats and Server Stats Collector blocks collect data that are related to specific Queue or Server blocks
in the model and automatically compute summary statistics such as average queue length, average waiting
time, and average utilization. The Resource Stats Collector block can compute user-defined, time-persistent
statistics for specific groups of resource entities. The Stats Collector block can compute statistics for any
time-dependent or time-independent data that are generated by a model. For example, as shown in the
simple bank system example in Figure 13.5, you can use a Number Holder block (labeled NumberInSystem)
connected to a Stats Collector block to record data about the total number of customers in a bank. Each
time the value in the Number Holder block is updated, that value and the current time are stored by the Stats
Collector block. At the end of the run, the Stats Collector block computes the user-defined time-average
number in the system, as displayed in the table labeled NumberInSystem Statistics.

Although you can use the Number Holder block to collect time-independent data and compute observation-
based statistics (such as mean, minimum, and maximum), you should not use the Number Holder
block to compute statistics for time-dependent data. In Figure 13.5, a Number Holder block labeled
Non-WeightedAvgQueueLength is connected to the OutLength port of the FIFO Queue block and the Dis-
play option in the Number Holder block is set to Mean. The average queue length computed by the Number
Holder block is not time-weighted. The correct time-weighted average queue length is computed by con-
necting a Stats Collector block to the OutLength port of the FIFO Queue block. This mean value, in the
table labeled Time-Weighted Average Queue Length in Figure 13.5, matches the value AvgQLength that is
computed by the Queue Stats Collector block, as displayed in the table labeled Queue Stats Collector Results.

126 F Chapter 13: Data Input, Collection, and Analysis

Figure 13.5 Stats Collector Block Example

Terminating and Steady-State Simulations

For some systems, a clear and logical time determines the duration of the simulation run. For example, a
doctor’s office might be open from 8:00 a.m. until 5:00 p.m. Monday through Friday. If you are interested
in estimating the average time that a patient waits to see a doctor, then you can run the simulation for nine
hours, which corresponds to the length of one day. This type of simulation is called a terminating simulation.
On the other hand, some systems have no clear end time. For example, you might be interested in estimating
the long-run average throughput for a manufacturing facility that operates 12 hours a day, with the work
in process carried over to the next day. This type of simulation is called a nonterminating (steady-state)
simulation. In general, you are interested in the long-run behavior of the system while it is operating normally.
Let Xi W i D 1; 2; : : : denote a stochastic process that represents the sequence of outputs that are generated
by a single run of a steady-state simulation. For example, the random variable Xi might represent the time in
the system (cycle time) for the ith piece of work to complete all its processing in a simulation of a production
facility. If the simulation is in steady-state operation, then the random variables Xi have the same steady-state
cumulative distribution function FX .x/ D Pr.Xi � x/ for all real x and for i D 1; 2; : : :.

Typically the data for a particular output process that are collected during a single terminating or steady-state
simulation run are neither independent nor identically distributed (iid); therefore, classic statistical methods
(such as those for computing point and confidence interval estimators) are not applicable. For example, in the
bank system model in Figure 13.5, the individual observed waiting times for customers x1; x2; : : : that are
collected during a single simulation run are nonstationary and autocorrelated. Since the requirement of iid

Output Analysis F 127

observations is violated, you should not use the data x1; x2; : : : from a single simulation run to compute, for
example, a confidence interval for the average waiting time at the bank.

For a terminating simulation, suppose that you run k independent replications of the same simulation model
so that each replication uses the same initial conditions and a different set of random numbers. Furthermore,
you define a response or performance measure, such as the average waiting time, so that for each replication a
single value is collected. Then the observed k responses are iid and classic statistical methods can be applied
to analyze the data. For example, suppose k replications of the bank system model are run and the average
customer waiting time Nxj is computed for each replication j. A statistically valid point estimate of the mean
waiting time in the bank system can then be computed as

Pk
jD1 Nxj =k.

For terminating simulations, the Experiment window provides the most straightforward method for collecting
data and computing basic statistics for defined responses. By default, the Experiment window reports the
average response over all replications for each design point. But you can also display the standard deviation,
minimum value, or maximum value by right-clicking the column heading for a particular response and
selecting the Summary menu item. Furthermore, by default each random stream in the model advances to its
next substream at the start of a new replication. This guarantees that different random numbers are used for
each replication. Alternatively, you can run multiple replications of a model, use the various data collection
blocks to collect data for each replication, and then use SAS or JMP to analyze the data.

As in the case of a terminating simulation, the observations x1; x2; : : : from a single long run of a nonter-
minating simulation are usually correlated. Furthermore, it is usually impossible to start a simulation in
steady-state operation. Thus, it is necessary to decide how long the warm-up period should be so that for each
simulation output that is generated after the end of the warm-up period, the corresponding expected value is
sufficiently close to the steady-state mean. If observations that are generated before the end of the warm-up
period are included in the analysis, then any computed point estimator (such as for the steady-state mean)
might be biased. You could use a replication/deletion approach to analyze data from a steady-state simulation,
similar to the replication method used in the terminating simulation case. You would first make k replications
of the simulation, each of length n, and delete the first l observations from each replication. You would
then compute the truncated sample mean for each replication as

Pn
iDlCl xj;i=n � l for j D 1; 2; : : : ; k. By

deleting those observations at the beginning of the simulation runs, you eliminate the initial bias due to the
model’s initial conditions. The replication/deletion method is simple to understand and implement. However,
it is computationally inefficient because it requires the deletion of a total of l � k observations. In addition, it
can be difficult to determine how large the warm-up period l should be.

An alternate method to replication/deletion for analyzing data from a steady-state simulation is to make one
long simulation run of length n and apply a batch means approach. The Steady State block in Simulation
Studio provides an automated batch means method for producing a statistically valid confidence interval
estimator for a steady-state mean response in a nonterminating simulation model where the delivered
confidence interval satisfies a user-specified precision requirement. The procedure is based on the method of
spaced batch means and has an algorithm built in to automatically detect the end of the warm-up period and
to address the correlation that exists between observations. For more information about the specific batch
means method used by the Steady State block, see Lada, Steiger, and Wilson (2008). For more information
about using the Steady State block specifically, see Appendix A, “Templates.”

Using the SAS Program Block

The SAS Program block enables you to execute a SAS program or JMP script at any point during a simulation
run. This enables you to analyze simulation-generated data automatically either at the end of a run (see the
example “Using the SAS Program Block to Analyze Simulation Results” on page 300) or during a run by

128 F Chapter 13: Data Input, Collection, and Analysis

sending a signal to the InSubmitCode port of the SAS Program block. For example, in a simulation model of
an inventory system it might be necessary, based on the current state of the system, to update a production
plan data set. If the number of backlogged orders exceeds a certain level, a SAS Program block can be
signaled to execute a program that generates a new production plan data set that is used to set production
levels downstream in the model.

Input Analysis
The accuracy of the analysis of any output generated by a simulation model is highly dependent on the
appropriateness of the inputs that are used to drive the simulation model. Often, data are available and you
want to use those data to estimate the parameters of a theoretical distribution and then sample from that fitted
distribution to generate inputs to your model. In this case, you can use the Fitted option in the Numeric
Source block to access the JMP automatic distribution-fitting procedure. After you specify a value for File
Path and click the Fit Distribution button in a Numeric Source block, JMP automatically fits a series of
distributions to the specified data and ranks the results. Either you can select the best fit that is suggested
by JMP or you can investigate other distributions and use the analysis options available in JMP to make a
distribution choice. After you select a distribution, the parameters for that distribution are automatically
passed back to the Numeric Source block. See Appendix D, “Input Analysis,” for details.

In addition to selecting a theoretical distribution to generate inputs to a model, the Numeric Source block
also enables you to generate samples from discrete and continuous empirical distributions, which can be
especially useful when it is difficult to find an appropriate theoretical distribution that accurately represents
the data. Finally, you can also use the Numeric Source block to specify a nonhomogeneous Poisson process
that is based on either count data or rate data. Simulation Studio uses the count data or rate data to generate a
time-dependent arrival process for a specified time interval that can be used as an input to a model. For more
information about using empirical distributions and nonhomogeneous Poisson processes, see Appendix B,
“Random Variation in a Model.”

References

Lada, E. K., Steiger, N. M., and Wilson, J. R. (2008). “SBatch: A Spaced Batch Means Procedure for
Steady-State Simulation Analysis.” Journal of Simulation 2:170–185.

Chapter 14

Batch Execution

Contents
Overview of Batch Execution . 129
Command Line Interface . 129
Log Messages . 130

Overview of Batch Execution
Everything in this document so far has focused on using the SAS Simulation Studio GUI to construct and
run simulation models. You build your simulation model in the Model window, create your experiment, and
then save and run your simulation model. To rerun a saved model, you reload it into a project (along with an
associated experiment) and start the model execution process.

Simulation Studio provides an alternative method of running saved models and experiments that does not
involve using the GUI: a command line executable program named simstudio_batch that enables you to run
models in batch mode.

Command Line Interface
You can use the simstudio_batch program to run simulation models from a Microsoft Windows command
prompt. The simstudio_batch program accepts five command line arguments: -m, -e, -d, -r, and -nonparallel.
The -m argument specifies the pathname of a Simulation Studio model that you want to execute, and the -e
argument specifies the experiment pathname; both the -m and -e arguments are required. The optional -d
argument specifies the pathname of the location where you want to save the contents of the Simulation Studio
Experiment window.

The optional -r argument specifies the location of the simulation output data. When data from Simulation
Studio are saved (either in batch mode or interactively), the current contents of the specified output results
folder are deleted when model execution begins. If you use the -r option, you should specify a location that
is dedicated to storing simulation output data in order to prevent accidental deletion of files. If you do not
use the -r option, then any data collected during the simulation execution are saved in a hierarchical folder
named results that is created in the directory where the simstudio_batch program was launched.

If you want to load SAS data, save SAS data, or submit SAS code locally during your batch run, you need to
have a SAS Workspace Server running locally on your computer. The default local workspace server does not
require configuration or credentials and is available when you are running in batch mode. If you are using the
SAS Simulation Studio Object Spawner for SAS services instead of the default local SAS Workspace Server,

130 F Chapter 14: Batch Execution

then you must first launch Simulation Studio, provide the local port number and your local credentials, and
leave Simulation Studio open before running your model in batch mode. Similarly, if you are using a remote
SAS Workspace Server, then you must first launch Simulation Studio, provide your remote host credentials,
and leave Simulation Studio open before running your model in batch mode. If you want to save data as a
JMP table, load a JMP table, or submit JMP script during your batch run, then you must manually launch the
JMP server before running your model in batch mode. For more information about launching a local SAS or
JMP server, see the section “Launching Local SAS and JMP Servers” on page 20.

In batch mode, different design points and replications are distributed on different cores simultaneously
by default if you are running the model on a machine that has a multicore processor. This is equivalent to
selecting the Parallel Mode icon on the toolbar in the GUI. If you include the optional argument -nonparallel
in your batch run command, then one single core is used to run the model. In parallel mode, SAS should be
used to read or write data during a simulation run and to execute code by using the SAS Program block. If
you are using JMP to load data, write data, or execute a JSL script, then you should use the -nonparallel
option when running your model in batch mode.

To invoke Simulation Studio in batch mode, open a Microsoft Windows command prompt window and
navigate to the location of the executable simstudio_batch. The current default installation location is
\Program Files\SASHome\SASSimulationStudio\<release_number>.

A sample command line for executing a model-experiment pair where INSTALL_DIR is the installation
location looks like this:

C:\INSTALL_DIR> simstudio_batch -m projects\MyProject\MyModel.simmdl -e projects\

MyProject\MyExperiment.simexp -d projects\MyProject\experiment.sas7bdat

-r projects\MyProject\MyResults

Log Messages
Any log messages that are generated during the execution of a model are directed to the command prompt
window.

Appendix A

Templates

Contents
Overview of Templates . 132
Overview of the Standard Template . 132

Entity Generator Block . 133
Value Generator Block . 135
Disposer Block . 136
Queue Block . 137
Delay Block . 141
Server Block . 143
Modifier Block . 145
Extractor Block . 147
Switch Block . 148
Selector Block . 149
Number Holder Block . 151
String Holder Block . 153
Numeric Source Block . 155
Text Source Block . 161
Counter Block . 163
Time Now Block . 164

Overview of the Advanced Template . 165
Batch Block . 165
Unbatch Block . 167
Clone Block . 168
Gate Block . 169
Valve Block . 171
Formula Block . 172
Connector . 174
Caster Block . 175
Submodel Block . 176
SAS Program Block . 177
Entity Filter Block . 178
Entity Group Holder Block . 179
Stopper Block . 182

Overview of the Data and Display Template . 183
Bucket Block . 183
Probe Block . 185

132 F Appendix A: Templates

Observation Source Block . 187
Stats Collector Block . 189
Queue Stats Collector Block . 190
Server Stats Collector Block . 192
Resource Stats Collector Block . 194
Dataset Holder Block . 197
Dataset Writer Block . 199
Data Trimmer Block . 200
Histogram Block . 201
Bar Chart Block . 202
Scatter Plot Block . 203
Box Plot Block . 204
Table Block . 205
Comment Block . 205

Overview of the Resource Template . 206
Seize Block . 206
Release Block . 208
Resource Pool Block . 209
Resource Scheduler Block . 211
Resource Agenda Block . 216

Overview of the Output Analysis Template . 218
Steady State Block . 218

References . 219

Overview of Templates
Simulation Studio templates provide collections of blocks you can use to build simulation models. The
following sections are overviews of the blocks provided in the various Simulation Studio templates. Each
block description includes a brief summary of what the block does along with a description of the fixed ports
for the block and the controls in the block’s properties dialog box. Also included are the Factor and Response
candidates associated with each block for use with the design-of-experiment features in Simulation Studio.

Overview of the Standard Template
The Simulation Studio Standard template provides a fundamental collection of the blocks that are most
commonly used to build simulation models.

Entity Generator Block F 133

Entity Generator Block

Description

The Entity Generator block generates entities. You can control when the entities are created, the total number
of entities created, and how many entities are created simultaneously.

After an entity is created, the Entity Generator block attempts to send the new entity out the OutEntity port.
If this fails, it then tries to push the entity out the OutBalk port. If this also fails, the entity is destroyed and a
message is sent to the Tracer.

Multiple entities can be generated every time an entity creation event occurs in an Entity Generator block.
The number of entities to create at an entity creation event is referred to as the batch size. When the Entity
Generator block is preparing to schedule an entity creation event, it attempts to pull a value from its BatchSize
port and associate this value with the entity creation event. (If nothing is connected to the BatchSize port,
it uses a default batch size of 1.) When the entity creation event occurs in the Entity Generator block, the
Entity Generator block creates the number of entities specified by the associated batch size value (within the
constraints of the maximum limits described in the next paragraph). All entities are sent out individually
either through the OutEntity port or the OutBalk port.

You can specify the maximum number of entities that the Entity Generator block can generate in addition to
the maximum number of batches. The Entity Generator block stops creating entities whenever either of these
limits is reached. Fields are also provided to set the start and end time (in terms of the simulation clock) for
controlling the duration of operation of the block.

The Boolean Signal port can be used to initiate entity creation as well. When a true value arrives at the Signal
port, the Entity Generator block pulls values from its InterArrivalTime and BatchSize ports and schedules an
entity creation event.

You can use the Entity Types dialog box to specify the types of entities the Entity Generator block can create.
To open the Entity Types dialog box, right-click in the Project Explorer window and select Entity Types.
You can enter default values for any of the editable entity attribute fields (indicated by a check in the Editable
column) in the Entity Types dialog box.

Fixed Ports

InterArrivalTime Input numeric port for how long to wait before the next entity creation event.

BatchSize Input integer port for how many entities to create at the next entity creation event.

Signal Input Boolean port that schedules an entity creation event (when true is passed in).

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

134 F Appendix A: Templates

Attributes Dialog Box Controls

Limits The Maximum Number of Entities field specifies the maximum number
of entities this Entity Generator block is permitted to generate. Selecting
the Infinite check box supersedes the value of the Maximum Number of
Entities field. Similarly, the Maximum Number of Batches field spec-
ifies the maximum number of batches of entities this Entity Generator
block is permitted to generate. Selecting the Infinite check box super-
sedes the value of the Maximum Number of Batches field. By default,
both Infinite check boxes are checked. If both the Maximum Number
of Entities field and the Maximum Number of Batches field contain
valid values, the Entity Generator block stops creating new entities as
soon as either of the criteria has been met.

Timing The Start Time field designates the simulation time at which the first
entity is generated by this Entity Generator block. This value must be
greater than or equal to 0. The default Start Time is 0. Similarly, the
End Time field specifies the simulation time when no more entities can
be generated by the Entity Generator block. The End Time must be
greater than or equal to the Start Time. Selecting the Infinite check box
supersedes the value of the End Time field.

First Entity Creation Specifies when the first entity is created by the Entity Generator block.
Select At Start Time to cause the first entity to be created at the time
specified in the Start Time field. This is the default selection. If you se-
lect At First Interarrival Time, then at Start Time the Entity Generator
block pulls the first interarrival time value from the InterArrivalTime port
and schedules the first entity to be created at that time. The pulled value
determines how long the Entity Generator block waits before generating
the first entity. (Whenever the interarrival time value is not a number, the
simulation terminates. If the value is a number less than 0, the Entity
Generator block logs a warning and uses a value of 0.) If you select
After Signal Arrival, the Entity Generator block waits until a true value
arrives at the Signal port before scheduling the first entity creation.

To Schedule the Creation of Next Entity If you check this check box, after the Entity Generator block
has created a new entity and pushed it downstream it automatically pulls
a value from its InterArrivalTime port and uses this value to schedule the
generation of the next entity creation. If you clear this check box, future
entity creation events can be scheduled only by using the Signal port. By
default, this check box is checked.

EntityType Dialog Box Controls

Name Specifies the name of the EntityType used for entity creation.

Fields Displays the default attributes associated with the selected EntityType.
You can set the default value for editable entity attributes directly in the
table.

Value Generator Block F 135

Candidates for Design of Experiments

Factors StartTime (double), EndTime (double), MaxEntities (integer), MaxBatches (integer),
RankValue (double)

Responses None

Value Generator Block

Description

The Value Generator block generates numeric, text, or Boolean values. The Value Generator block pulls a
value from its InterValueTime port to determine how long it waits before generating the next value. (If the
intervalue time value is not a number, the simulation terminates. If the value is less than 0, the Value Generator
block logs a warning and uses a value of 0.) After the Value Generator block has a valid intervalue time
value, it pulls a value from its InValue port and passes it out the OutValue port. If there are no connections to
the InValue port, the value specified in the Default Value field is passed out the OutValue port.

You can specify the maximum number of values the Value Generator block can generate, the default value
generated, and the start and end times (in terms of the simulation clock) for controlling the operation of the
block. You can also specify when the first value is created.

Fixed Ports

InterValueTime Input numeric port for how long to wait before the next value creation event.

InValue Input value port for the next value to create.

OutValue Output value port for the created values.

Properties Dialog Box Controls

Values The Maximum Number of Values field specifies the maximum number
of values the Value Generator block is permitted to generate. Selecting
the Infinite check box supersedes the value in the Maximum Number
of Values field. The Value Type field specifies the type of value that the
Value Generator block generates. The Default Value field specifies the
value to use when the InValue port has no connections.

136 F Appendix A: Templates

Timing The Start Time field designates the simulation time at which the first
value is generated by the Value Generator block. This value must be
greater than 0. Similarly, the End Time field specifies the simulation
time when no more values can be generated by the Value Generator
block. This must be greater than or equal to the Start Time. Selecting
the Infinite check box supersedes the value in the End Time field.

First Value Determines when the first value is created by the Value Generator block.
Select Start Time to cause the first value to be created at the time
specified in the Start Time field. If you select First Intervalue Time,
then at the Start Time the Value Generator block pulls the first intervalue
time value from the InterValueTime port and schedules the first value to
be created at that time.

Candidates for Design of Experiments

Factors StartTime (double), EndTime (double), MaxValues (integer), RankValue(double)

Responses None

Disposer Block

Description

The Disposer block disposes of entities after they are no longer needed in the model, reducing memory usage.
For optimal memory management, you should route entities that are no longer needed to a Disposer block. It
is possible to have more than one Disposer block in a model. The disposer block keeps a count of the number
of entities that enter the block. If there are connections to the block’s OutCount port, the count is pushed out
the port every time its value changes.

Fixed Ports

InEntity Input entity port for entities to be disposed.

OutCount Output integer port for the number of entities that have been disposed.

Queue Block F 137

Candidates for Design of Experiments

Factors None

Responses OutCount (integer)

Queue Block

Description

The Queue block is used for transient storage of entities. Three types of queueing policies are available for a
Queue block: FIFO, LIFO, and Priority.

When a request to send (or push) an entity arrives at a Queue block, the Queue block determines whether it
has room to store the entity. If its buffer is full, the Queue block rejects the request to have the entity sent to
it. If space is available in its buffer, the Queue block responds that it can accept the entity.

When an entity arrives at a Queue block that uses a FIFO or LIFO queueing policy, the entity is stored at the
appropriate end of the buffer. For Queue blocks that use a Priority policy, the Queue block extracts the priority
value from an attribute defined for the entity and uses that value to determine where to place the entity in the
buffer. The Queue block then sequentially notifies each block connected to its OutEntity port to ask whether
it is ready to receive an entity. The Queue block selects an entity (based on the queueing policy—FIFO, LIFO,
or Priority) to send out through the OutEntity port to the first downstream block that responds affirmatively.
(Entities can also be pulled out through the Queue block’s OutEntity port by a downstream block. In this
case the Queue block also selects the entity to release according to the queueing policy.)

When a Queue block’s buffer is no longer full (due to an entity leaving the Queue block or the Queue block’s
capacity being increased), the Queue block attempts to pull entities from upstream through the InEntity port
until it is at capacity or no entities are available to pull.

If the Queue block’s reneging option is activated (by selecting the Reneging option in the properties dialog
box), then after an entity enters the Queue block, the Queue block attempts to pull a numeric value from its
InRenegeWait port. If the Queue block pulls a nonnegative number from the port, it schedules a time for
the entity to exit the Queue block via the OutRenege port if the entity is still in the Queue block’s buffer at
that time. Otherwise no time for reneging is scheduled. If there is no connection to the OutRenege port, no
reneging occurs.

Any time an entity enters or exits the Queue block, the Queue block pushes the value of its buffer’s length
(the number of entities being held by the Queue block) to the OutLength port. Any time an entity exits the
Queue block via its OutEntity port, the Queue block pushes a value that represents how long that entity
waited in the buffer to the OutWait port.

138 F Appendix A: Templates

An integer value can be pushed through the InCapacity port to set the capacity for the Queue block (the
size of its buffer). Valid incoming values for this port are integers in the range of 0 to 2,147,483,647. If the
capacity of a Queue block is reduced dynamically during the simulation run, any excess entities are removed
from the Queue block (according to the queueing policy being used) and are sent out through the OutBalk
port. If there are no connections to the OutBalk port, the entities are destroyed.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Queue block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Queue block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity
that is held by a controlling entity that is in turn held by the Queue block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Queue block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Queue block’s InPreempt port, the
Queue block iterates through the Entity Group collection looking for matches to root entities held by the
Queue block. For any matched entity, the Queue block first tries to push that entity out its OutPreempt port.
If this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Queue block until either it exits out the OutEntity port or it is preempted
again.

The Queue block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Queue block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Queue block follows the same protocol for pushing an
entity out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Queue block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Queue block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Queue block’s
OutResource port and the Queue block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

The Queue block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Queue block.

Fixed Ports

InEntity Input entity port for entities to be added to the Queue block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutRenege Output entity port for entities that are reneged and can be accepted by a downstream
block.

Queue Block F 139

OutPreempt Output entity port for root entities that are preempted and can be accepted by a downstream
block.

OutResource Output entity port for resource entities held by controlling entities that are preempted and
can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity ports.

InRenegeWait Numeric input value port that sets the amount of time to wait before an entering entity is
reneged.

InCapacity Numeric input value port that dynamically sets the capacity of the Queue block.

InPreempt Entity Group input port that causes the Queue block to preempt any root entities it is
holding that match entities in the incoming Entity Group.

OutLength Numeric output value port for the number of root entities held in the Queue block’s buffer.

OutWait Numeric output value port for the amount of time an exiting entity waited in the Queue
block’s buffer.

OutHoldings Entity Group output port from which a group of entity references can be pulled, represent-
ing the entities in the Queue block’s buffer.

Properties Dialog Box Controls

Capacity Specifies the maximum number of entities the Queue block is permitted to store in its
buffer. Valid values for this field are integers in the range from 0 to 2,147,483,647.
Selecting the Infinite check box supersedes any Capacity value.

Reneging Selecting this check box activates the Queue block’s automatic reneging functionality.

Queueing Policy Selecting a policy type in the Type list box specifies the queueing policy that is used
by this Queue block in determining the order in which entities leave the Queue block.
Some policies have additional parameters that can be specified when the policy is selected
from the list box. The FIFO policy has no parameters and uses a first-in-first-out policy
for determining the order of entities leaving the Queue block. The LIFO policy has no
parameters and uses a last-in-first-out policy for determining the order of entities leaving
the Queue block. The Priority policy allows entities to exit the Queue block based on
entity priority. It has the following parameters:

Entity Attribute Type Specifies the type of the attribute (Number or String) used to
extract the priority value from an entity.

Default Priority Number If Entity Attribute Type is Number, this field specifies the
numeric priority value to use for an entity when the Queue block
cannot extract a valid priority value from the specified Entity Attribute.

Default Priority String If Entity Attribute Type is String, this field specifies the string
priority value to use for an entity when the Queue block cannot extract
a valid priority value from the specified Entity Attribute.

Entity Attribute Specifies the name of the attribute to use when extracting the priority
value from an entity.

Priority Order Specifies whether higher values or lower values are interpreted to have
a higher priority.

140 F Appendix A: Templates

Tie Breaking Policy Specifies the algorithm to use for placing entities in the Queue
block’s buffer when entities have the same priority value. Algorithm
options include FIFO, LIFO, and Random (for random placement).

Random Stream Seed If the value of Tie Breaking Policy is Random, this field speci-
fies the random number generator seed.

Extended Queueing Controls Adjust how entities flow into and out of a Queue block by using the
following parameters and options. For a depth or threshold value in general, an Absolute
value specifies an absolute entity count and a Relative value specifies a value between
0.0 and 1.0, representing a proportion of a Queue block’s length relative to its full queue
capacity, as specified in the Capacity option.

Nonblocking Push Depth Specifies how deep the Queue block will search to identify
an entity to push downstream when a new entity enters the Queue
block from upstream, starting at the beginning of the entity holding
list as defined by the queueing policy. This value must be � 0:0; the
default is 1.0.

Nonblocking Pull Depth Specifies how deep the Queue block will search to identify an
entity to send (or push) downstream when there is a new pull request
from another block, starting at the beginning of its entity holding list as
defined by the queueing policy. This value must be � 0:0; the default
is 1.0.

Active Pull Threshold Specifies a queue length threshold so that when the queue length
falls to this threshold value, the Queue block will attempt to pull more
entities from upstream to increase the holding level. If this value is
� 0:0, then the threshold is measured from the back, or end, of the
queue when the queue is empty. If the threshold value is < 0:0, then
the threshold is measured from the front, or beginning, of the queue
when the queue is at full capacity. The default is –1.

Active Pull Count Specifies the maximum number of active pull attempts that the
Queue block can conduct each time the active pull threshold is reached.
Selecting Pull to Full Capacity supersedes any fixed count value.

Active Pushing to Downstream Activates the Queue block to automatically push the
next entity out after the entity currently at the front of the queue
successfully leaves the Queue block.

Candidates for Design of Experiments

Factors Capacity (integer), RankValue (double), QueueingPolicy (string)
The format for specifying the value of the QueueingPolicy factor is as follows:
Type==policyType;Entity Attribute Type==attributeType;Default Priority Number==
priorityNumber;Default Priority String==priorityString;Entity Attribute==
attributeName;Priority Order==priorityOrder;Tie Breaking Policy==tieBreakingPolicy;
Random Stream Seed==seed
where:

Delay Block F 141

policyType is FIFO, LIFO, Priority, or the fully-qualified Java class name of a
queueing policy class.

attributeType is Number or String.

priorityNumber is a decimal number.

priorityString is a string value.

attributeName is the name of an entity attribute.

priorityOrder is one of the following: Highest Value Has Highest Priority, Lowest
Value Has Highest Priority.

tieBreakingPolicy is one of the following: FIFO, LIFO, Random.

seed is an integer number.

Each name==value parameter within the factor value is optional. If it is not specified,
it is assigned the value specified in the properties dialog box if possible; otherwise it is
assigned a default value.

Responses AverageWait (double), MaximumWait (double), AverageLength (double), Maximum-
Length (integer), BalkCount (integer), RenegeCount (integer)

Delay Block

Description

The Delay block delays the progression of an entity through a simulation model. When an entity enters a
Delay block via its InEntity port, the Delay block pulls a value (the delay time) from its InDelay port. If the
delay time value is not a number, the simulation terminates. If the value is less than 0, the Delay block logs a
warning and uses a value of 0. The Delay block holds the entity for the duration of the delay time and then
releases it through its OutEntity port. If the push through the OutEntity port fails, the Delay block attempts to
push the entity out the OutBalk port. If this is not successful, the entity is destroyed and a message is posted
to the Tracer.

Any time an entity enters or exits the Delay block, the Delay block pushes the number of entities held by the
block to the OutNumberHeld port.

142 F Appendix A: Templates

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Delay block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Delay block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity
that is held by a controlling entity that is in turn held by the Delay block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Delay block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Delay block’s InPreempt port, the
Delay block iterates through the Entity Group collection looking for matches to root entities held by the
Delay block. For any matched entity, the Delay block first tries to push that entity out its OutPreempt port. If
this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Delay block until either it exits out the OutEntity port or it is preempted
again.

The Delay block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Delay block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Delay block follows the same protocol for pushing an entity
out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Delay block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Delay block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Delay block’s
OutResource port and the Delay block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

The Delay block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Delay block.

Fixed Ports

InEntity Input entity port for entities to be added to the Delay block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutPreempt Output entity port for controlling (parent) entities that are preempted and can be accepted
by a downstream block.

OutResource Output entity port for resource entities held by controlling entities that are preempted and
can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity ports.

InDelay Input numeric port for how long the Delay block should delay the next entity.

Server Block F 143

InPreempt Entity Group input port that causes the Delay block to preempt any controlling entities it
is holding that match entities in the incoming Entity Group.

OutHoldings Entity Group output port from which a group of entity references can be pulled, represent-
ing the entities held by the Delay block.

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

Server Block

Description

The Server block models a resource used by an entity for a specified period of time. An entity can enter a
Server block only when the Server block is not busy. A Server block is deemed busy if all of its capacity is
being used to service entities. After an entity enters the Server block, the Server block pulls a value from
its InServiceTime port. If the service time value is not a number, the simulation terminates. If the value is
less than 0, the Server block logs a warning and uses a value of 0. The entity is held for the duration of the
service time and then released through the OutEntity port.

The InCapacity port can be used to set the capacity for a Server block. This value represents the number of
entities the Server can service simultaneously. Valid incoming values for this port are integers in the range of
0 to 2,147,483,647. During simulation execution, an integer value can be pushed through the InCapacity port
to dynamically change the capacity. If the value from the port is less than the currently busy capacity, the
capacity reduction request will be deferred and accommodated as entities finish service and leave the Server
block. Entities will not be balked or preempted in this case.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Server block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Server block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity

144 F Appendix A: Templates

that is held by a controlling entity that is in turn held by the Server block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Server block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Server block’s InPreempt port, the
Server block iterates through the Entity Group collection looking for matches to root entities held by the
Server block. For any matched entity, the Server block first tries to push that entity out its OutPreempt port.
If this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Server block until either it exits out the OutEntity port or it is preempted
again.

The Server block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Server block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Server block follows the same protocol for pushing an
entity out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Server block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Server block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Server block’s
OutResource port and the Server block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

The Server block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Server block.

Fixed Ports

InEntity Input entity port for entities to enter the Server block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutPreempt Output entity port for controlling entities that are preempted and can be accepted by a
downstream block.

OutResource Output entity port for resource entities held by controlling entities that are preempted
and can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity ports.

InServiceTime Input numeric port for how long the next entity should remain in the Server block.

InCapacity Input integer port for the number of entities the Server block can service simultaneously.

InPreempt Entity Group input port that causes the Server block to preempt any controlling entities
it is holding that match entities in the incoming Entity Group.

OutUtilization Output numeric port for the current utilization of the Server block’s capacity.

OutAvailable Output integer port for the Server block’s capacity that is not currently busy.

OutNumberBusy Output integer port for the Server block’s capacity that is currently busy.

OutHoldings Entity Group output port from which a group of entity references can be pulled, repre-
senting the entities held by the Server block.

Modifier Block F 145

Properties Dialog Box Controls

Values The Capacity field specifies the capacity of the Server block.

Candidates for Design of Experiments

Factors RankValue (double), Capacity (integer)

Responses AvgUtilization (double), MaxUtilization (double)

Modifier Block

Description

The Modifier block assigns attributes to an entity as it passes through the block. Each attribute has an input
value port associated with it. When an entity enters the block, values are pulled from the input value ports
and assigned to the associated attributes in the entity. If there is no connection to an input value port, then the
Modifier block assigns the default value that is specified for the attribute.

You identify the attributes to be assigned to the entity using one of the assignment options described in the
“Attributes Dialog Box Controls” section that follows.

Fixed Ports

InEntity Input entity port for entities to enter the Modifier block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave by using the OutEntity port.

Attributes Dialog Box Controls

Specify the attributes to be assigned to the incoming entity.

The Modifier block provides two options for assigning entity attributes. The first assignment option is based
on independent value inputs. Each attribute has an input value port associated with it. Different attributes are
associated with different input value ports for assigning values.

The second assignment option is based on an Observation value input. All attributes that are assigned to an
incoming entity are the variable values from the same Observation input value. One Observation input value
port is provided for this option.

146 F Appendix A: Templates

When you select the Assigned from: Independent Value Inputs option, the associated Attributes table
and editing buttons are enabled. You define a new attribute by clicking the Add button beside the Attributes
table. This results in a new attribute (with a default name and value) being added to the Attributes table.
You can edit the name, type, and default value of the attribute directly in the table. The attribute names that a
Modifier block uses must be unique. You can change the attribute type by using a drop-down box on the type
table cell. You can delete attributes from the Attributes table by selecting the attribute row in the table and
then clicking the Remove button. Clicking the Apply button pushes all entries in the Attributes table to the
Modifier block, and input ports are created or deleted as needed. You use the Move Up and Move Down
buttons to reorder the attributes in the Attributes table. The order of the input value ports on the Modifier
block is adjusted to be the same as the order of the attributes in the Attributes table.

Add Adds a new attribute with a default name, type, and default value to the Attributes table.
You can change the name, type, and default value of the attribute directly in the table. The
attribute names in the Modifier block’s Attributes table must be unique. You can change
the attribute type through a drop-down box on the cell in the table. (You cannot change an
attribute Type in the table after you click the Apply button. To change an attribute type
after clicking Apply, you must remove the attribute, add it again, and then modify the
type of the newly added attribute before clicking Apply again.)

Remove Deletes the selected attribute from the Attributes table.

Move Up Moves the row for a selected attribute up in the Attributes table. The value port that is
associated with the selected attribute is moved to the left.

Move Down Moves the row for a selected attribute down in the Attributes table. The value port that is
associated with the selected attribute is moved to the right.

Apply Updates all attributes in the Modifier block as specified in the Attributes table, and creates
or deletes value ports as needed.

When you select the Assigned from: An Observation Value Input option, the following assignment options
are available:

Full Assignment Indicates that all variable values from an input observation are assigned as different entity
attributes. The attribute names are the same as the corresponding variable names.

Selected Assignment Indicates that only the attributes identified by the user will be assigned to an incoming
entity by using the variable values from the input observation. An Assignment table and
editing buttons are provided to specify the entity attributes and the associated observation
variables as assignment pairs. Each row of the Assignment table corresponds to such a
pair. For each pair, you must specify the attribute name. If the observation variable name
is left blank or not specified, the attribute name is used as the variable name during the
simulation.

Excluded Assignment Indicates that specific observation variables identified by the user are to be ex-
cluded. All other variable values from an input observation are assigned as different entity
attributes. An Excluded Observation Variable table and editing buttons are provided to
specify the names of the variables to exclude.

Extractor Block F 147

Candidates for Design of Experiments

Factors None

Responses None

Extractor Block

Description

The Extractor block extracts attribute values from an entity as it passes through the block. Each attribute has
an output value port associated with it. When an entity enters the block, entity attribute values are retrieved
from the entity and pushed to their respective output value ports.

You can also connect an Extractor block’s output value port to an input value port of another block without
any connections to the Extractor block’s InEntity port. For example, you can connect an output value port of
an Extractor block to the InServiceTime port of a Server block. After an entity enters the Server block, it is
passed to the Extractor block (via the InServiceTime port) to extract the appropriate entity attribute value to
be used for the InServiceTime value.

You identify attributes to be extracted from the entity by clicking the Add button on the Properties dialog box
Attributes page. This results in a new attribute entry (with a default name) being added to the Attributes
table. You can edit the name and type of the attribute directly in the table. The attribute names that are
listed in the Extractor block’s Attributes table must be unique. You can change the attribute type through a
drop-down box on the type table cell. You can delete attributes from the Attributes table by selecting the
attribute row in the table and then clicking the Remove button. Clicking the Apply button pushes all entries
in the Attributes table to the Extractor block, and output ports are created or deleted as needed. (Note: You
cannot change an attribute’s type after you close the Properties dialog box.) You use the Move Up and Move
Down buttons to reorder the attributes in the Attributes table. The order of the output value ports on the
Extractor block is adjusted to be the same as the order of the attributes in the Attributes table.

Fixed Ports

InEntity Input entity port for entities to enter the Extractor block.

OutEntity Output entity port for entities to exit the Extractor block.

148 F Appendix A: Templates

Properties Dialog Box Controls

Add Adds a new attribute with a default name and type to the Attributes table. You can
change the name and type of the attribute directly in the table. The attribute names in
the Extractor block’s Attributes table must be unique. You can change the attribute type
through a drop-down box on the cell in the table. (You cannot change an attribute Type
in the table after you click the Close button. To change an attribute type after you click
Close, you must remove the attribute, add it again, and then modify the type of the newly
added attribute.)

Remove Deletes the selected attribute from the Attributes table.

Move Up Moves the row for a selected attribute up in the Attributes table. The output value port
that is associated with the selected attribute is moved to the left.

Move Down Moves the row for a selected attribute down in the Attributes table. The output value
port that is associated with the selected attribute is moved to the right.

Apply Updates all attributes in the Extractor block as specified in the Attributes table, and
creates or deletes value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Switch Block

Description

The Switch block directs the flow of an entity through a simulation model. You define switch cases on the
Switch block. The case names must be unique, and each switch case must have an integer value (called the
switch value) associated with it. When an entity enters a Switch block, the block calculates the switch value
to be used for the entity. Depending on the Switch block configuration, the block either attempts to extract
the switch value from an attribute in the entity or to pull it from the InSwitchValue port. After the switch
value is acquired, the Switch block searches the cases in its Cases table until it finds a case with the same
switch value. The entity is then pushed out through the entity out port associated with the matching case. If a
match is not found, the entity is sent out through the OutDefault port.

Selector Block F 149

Fixed Ports

InEntity Input entity port for entities to enter the Switch block.

OutDefault Output entity port for entities that do not match a switch case defined for the Switch block.

OutBalk Output entity port for entities that cannot leave using the other output entity ports.

InSwitchValue Input integer port for the switch value to be used for the next entity, if the Switch block is
configured to obtain the switch value from this port rather than from an entity attribute.

Properties Dialog Box Controls

Add Adds a new switch case to the Cases table with a default name and value. You can edit
the name and value of the switch case directly in the table. The case names and values
used by a Switch block must be unique.

Remove Deletes the selected switch case from the Cases table.

Switch Value If you select the Port option, the Switch block pulls the switch value from the InSwitch-
Value port. If you select the Entity option, you must also supply the name of an attribute
in the Entity Attribute field. The Switch block attempts to extract the switch value from
the appropriate attribute on the entity.

Apply All values in the Cases table are saved to the Switch block and any entity output ports are
created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Selector Block

Description

The Selector block selects and outputs entities from one of its input entity ports based on its case values.
Each input entity port is associated with a unique case value. Every time the block receives a request from
downstream to output an entity, the InCaseValue input value port checks the current case value to determine
which input entity port to use to fetch an entity. Similarly, when an entity from upstream attempts to enter the

150 F Appendix A: Templates

block through one of the input entity ports, the InCaseValue input value port checks the current case value to
verify that its value matches with the input entity port.

By default, the Selector block provides one input entity port named InDefault. You can create additional
input entity ports in the properties dialog box by adding new cases to the Cases table. Each entry in the
table specifies the case’s Name and Value. At experiment run time, the Value is compared to the current
InCaseValue. If the two match, the corresponding input entity port is active. If the current case value from
the InCaseValue port does not match any case value in the Cases table, an entity is allowed only to enter or
be pulled through the InDefault input entity port.

The case names and values must be unique within each Selector block.

Fixed Ports

InDefault Input entity port that allows entities to enter the block if the value pulled from the
InCaseValue input value port does not match any cases in the Selector block.

OutEntity Output entity port for entities to leave.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InCaseValue Numeric input value port used to determine which of the input entity ports allows entities
to enter.

Properties Dialog Box Controls

Add Adds a new case to the Cases table with a default name and value. The name and value
can be edited directly in the table.

Remove Deletes the selected case from the Cases table.

Apply All values in the Cases table are saved to the Selector block, and any input entity ports
are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Number Holder Block F 151

Number Holder Block

Description

The Number Holder block is used to display a number that represents some user-defined state information.
Values can be pushed to or pulled from a Number Holder block via its InData and OutData ports. A Number
Holder block will automatically attempt to push any value received at its InData port out its OutData port.
Similarly, when a request comes in to pull a value from the OutData port, a Number Holder block will, by
default, attempt to pull a value from upstream using its InData port. The user can modify this default behavior
using the Propagation controls on a Number Holder block.

By default a Number Holder block will display the last value to enter through its InData port, however options
are available to display the minimum value, maximum value, mean value, sum of all values, or a count of
how many values have entered the block.

The Number Holder block provides the capability of storing values that enter it using its data collection
facility. This data can be saved to a SAS data set or JMP table. Values (along with time stamps) are stored
in a data model object and the data model object can be accessed through the block’s OutCollected port.
Display blocks, such as the Histogram block, are often connected to a Number Holder block’s OutCollected
port to visualize the data. Any block using a data model object is automatically notified when the data in the
data model object is modified.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected by the Number Holder block up to that time during the simulation execution (the displayed value
will also be cleared). If the InClearData port receives a false value, the signal will be ignored and data will
not be cleared.

Fixed Ports

InData Input numeric port for the value to be held by the Number Holder block.

InClearData Input Boolean port that is used to clear all data collected by the Number Holder block.

OutData Output numeric port for the value currently held by the Number Holder block.

OutDisplayed Output numeric port for the value currently being displayed by the NumberHolder block.

OutCollected Output port for the data model object representing the data that have been collected by
the Number Holder block.

152 F Appendix A: Templates

Attributes Dialog Box Controls

Current The last value to enter the Number Holder block. The value entered here will be
displayed in the block (if the Display option is set to Value) until a new value
enters the block.

Default The Default Value is used to initialize the Current Value in the Number Holder
block when it is created or when the block is reset.

Display The drop-down box associated with the Display option controls what value is
displayed on the Number Holder block. Options include the current Value,
Minimum, Maximum, or Mean value, the Sum of all values, or the Count of
how many values have entered the block.

Propagation The To Downstream check box is used to control propagation of values sent
to the InData port of a Number Holder block. If this check box is selected any
values entering the InData port will be automatically sent out the OutData port.
Otherwise the value propagation will stop at the Number Holder block. If the
From Upstream check box is selected any attempt to pull a value from the
OutData port of a Number Holder block will result in the Number Holder block
attempting to pull a value from block(s) connected to its InData port.

Data Collection The Collect Data check box is used to turn data collection on or off. The value
entered in the Capacity field determines how many values are saved in the data
model object. If the capacity is exceeded, a warning message is logged and values
are overwritten in the data model object.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base file name specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder containing your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Save Now Forces the Number Holder block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
data.

Base File Name Specifies the base file name for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual file name. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

String Holder Block F 153

Candidates for Design of Experiments

Factors DefaultValue (double)

Responses Value (double), MeanValue (double), SumOfValues (double), MinimumValue (double),
MaximumValue (double), Count (integer)

String Holder Block

Description

The String Holder block displays a string that represents state information that you define. Values can be
pushed to or pulled from a String Holder block via its InData and OutData ports. The String Holder block
displays the last value to enter through its InData port and automatically attempts to push any value that is
received at its InData port out its OutData port. Similarly, when a request comes in to pull a value from the
OutData port, a String Holder block, by default, attempts to pull a value from upstream using its InData port.
You can use the Propagation controls on a String Holder block to modify this default behavior.

The data collection facility of the String Holder block enables you to store values that enter the block. Data
can be saved to a SAS data set or JMP table. Values (along with timestamps) are stored in a data model
object, and the data model object can be accessed through the block’s OutCollected port. Any block that uses
a data model object is automatically notified when the data in the data model object are modified.

When a true Boolean value arrives at the InClearData port, it is used as a signal to clear all the data collected
by the String Holder block up to that time during the simulation execution. If the InClearData port receives a
false value, the signal is ignored and data are not cleared.

Fixed Ports

InData Input string port for the value to be held by the String Holder block.

InClearData Input Boolean port that is used to clear all data collected by the String Holder block.

OutData Output string port for the value currently held by the String Holder block.

OutCollected Output port for the data model object representing the data that have been collected by
the String Holder block.

Properties Dialog Box Controls

Current Displays the last value to enter the String Holder block. The value entered here is
displayed in the block until a new value enters the block.

154 F Appendix A: Templates

Default Specifies the current value for the String Holder block when the block is initial-
ized.

Propagation The To Downstream check box controls propagation of values sent to the InData
port of a String Holder block. If this check box is selected, any values that enter
the InData port are automatically sent out the OutData port. Otherwise, the value
propagation stops at the String Holder block. If the From Upstream check box
is selected, any attempt to pull a value from the OutData port of a String Holder
block results in the String Holder block attempting to pull a value from one or
more blocks that are connected to its InData port.

Data Collection The Collect Data check box turns data collection on or off. The value entered
in the Capacity field determines how many values are saved in the data model
object. If the capacity is exceeded, a warning message is logged and values are
overwritten in the data model object.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file with
the base filename that is specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder that contains your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Save Now Forces the String Holder block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
data.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual filename. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors DefaultValue (string)

Responses Value (string)

Numeric Source Block F 155

Numeric Source Block

Description

The Numeric Source block provides a source of random variation using pseudo-random number generators.
This block can also read numbers from a SAS data set or JMP data table.

A collection of discrete and continuous distributions are available, or you can provide the file path for the
SAS data set or JMP data table along with the numeric variable column name.

The data provided by the Numeric Source block can be viewed as a stream of numbers, and the numbers
are pulled from the stream one after another during a simulation. For example, each time a value is pulled
from the OutValue port of a Numeric Source block, the block outputs a number from its current data stream
by generating a sample from its related distribution or by reading a value from the data set, whichever is
appropriate. If the last observation is reached when reading from a data set, the process resets to the beginning
of the column.

The Numeric Source block provides three types of data streams: Theoretical, Fitted, and Data Driven. The
Theoretical data streams include a collection of theoretical discrete and continuous distributions. The Fitted
data streams are these same distributions that can be fitted using an input data variable (column) in a SAS
data set or JMP data table. After the parameters of the distributions are estimated, the input data set is not
needed during a simulation run. The Data Driven data streams require an input data set and include options
such as empirical distributions and nonhomogeneous Poisson processes, in addition to the numeric SAS data
column.

Fixed Ports

InUpdate Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

InStreamPolicy Input string value port from which the new stream parameter specifications are pulled
after an update signal is received. The format for specifying the value for the Theoretical
data streams is as follows:

class==distributionName;attribute1==attribute1Value;...;attributeN==attributeNValue;
Random Stream Seed==seedValue

where:

156 F Appendix A: Templates

distributionName is the distribution name as specified by the Type option.

attribute1 is the name of the first parameter associated with the specified data
stream type.

attribute1Value is the value of the first parameter associated with the specified data
stream type.

attributeN is the name of the last parameter associated with the specified data
stream type.

attributeNValue is the value of the last parameter associated with the specified data
stream type.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java Long.MAX_VALUE.

The following examples show (case-sensitive) string values for the InStreamPolicy port.
Quotation marks are not required around the string value, and you can specify only the
parameters that need to be updated. The distribution and parameter names are specified
exactly as they are in the Theoretical option in the Numeric Source Block Properties
dialog box, including any spaces or hyphens. For a list of Simulation Studio distribution
and parameter names, see Appendix B, “Random Variation in a Model.”

class==Exponential;Mean==10;Random Stream Seed==100

class==Gamma;Scale==5;Shape==3.2

class==Chi-Square;degrees of freedom==2

If you want to keep the same distribution but alter one or more parameter settings for the
distribution, you can supply only the information that is required for the parameter that
you want to change. For example, if you are using a normal distribution and you want to
change the mean value that is associated with the distribution, the following values are
possible for the string input value:

Mean==1.2

Mean==10

The format for specifying the InStreamPolicy value for the Data Driven data stream is as
follows:

Lazy Loading==BooleanValue;Random Stream Seed==seedValue

where:

BooleanValue is either true or false.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java.Long.MAX_VALUE. The SAS Data Column type
does not have the Random Stream Seed option.

OutValue Output number port for the numeric values to be pulled.

Numeric Source Block F 157

Dynamic Ports

InDataPolicy Input string value port from which the new input data specifications are pulled after an
update signal is received. This port is available only for the Data Driven data streams.
The format for specifying the value is as follows:

attribute1==attribute1Value;attribute2==attribute2Value;...;attributeN==attributeNValue

where:

attribute1 is the name of the first parameter associated with the specified Data
Driven Type.

attribute1Value is the value of the first parameter associated with the specified Data
Driven Type.

attributeN is the name of the last parameter associated with the specified Data
Driven Type.

attributeNValue is the value of the last parameter associated with the specified Data
Driven Type.

Each Type value for the Data Driven option has different required Input Data parameters.
Parameter names must be specified in the case-sensitive string value exactly as they appear
in the Numeric Source Block Properties dialog box, including any spaces. Quotation
marks are not required around the string value. For example, the following InDataPolicy
port value for the Discrete Empirical Data Driven type is possible:

File Path==C:\SimStudio\projects\discemp1.sas7bdat;X==age;Y=pmf

You can also specify only the parameters that need to be updated. In the following
example, the File Path parameter remains the same, but the X and Y parameters change:

X=group2;Y=prob2

Properties Dialog Box Controls

Specify the type of data stream to be provided by this Numeric Source block.

When the Theoretical type is selected, the following dialog box controls are available:

Type From the list, select the distribution to sample from. The Parameters section will be
updated to reflect the distribution.

Stream Parameters This area provides fields for modifying the parameter values associated with the
selected distribution. Each distribution has a Random Stream Seed entry field. Although
Simulation Studio automatically assigns a different seed for each source of randomness,
you can use this field to specify the seed value. Valid values for this field are integers in
the range of 0 to the Java Long.MAX_VALUE.

Reset Sampling at Update This option can be used to reset the random substream for the current replica-
tion during a simulation run. If selected, this option resets the random substream back to
the beginning when a true Boolean value is received at the InUpdate port. By default,
this option is not selected.

158 F Appendix A: Templates

When the Fitted option is selected, the following dialog box controls are available:

Input Data This area provides fields to specify the file path of input SAS data set or JMP data table
and the variable (column) name for distribution fitting. Click Fit Distribution to send the
fitting request to the JMP program to perform the fitting. If you do not provide the file
path or variable name, you can provide these directly using the JMP user interface before
the fitting operation proceeds. The fitting results can be sent back from the JMP program
to update the rest of the dialog box contents, including the associated distribution Type
and Stream Parameters controls described below. You can also use these controls to edit
the parameters.

Type From the list, select the distribution to sample from. The Parameters section will be
updated to reflect the distribution.

Stream Parameters This area provides fields for displaying and modifying the parameter values associated
with the selected distribution. Each distribution has a Random Stream Seed entry field.
Although Simulation Studio automatically assigns a different seed for each source of
randomness, you can use this field to specify the seed value. Valid values for this field are
integers in the range of 0 to the Java Long.MAX_VALUE.

Reset Sampling at Update This option can be used to reset the random substream for the current replica-
tion during a simulation run. If selected, this option resets the random substream back to
the beginning when a true Boolean value is received at the InUpdate port. By default,
this option is not selected.

When the Data Driven option is selected, the following dialog box controls are available:

Type From the list, select the distribution or data stream to sample from. The following Input
Data and Stream Parameters section will be updated to reflect the selection.

Input Data This area provides fields to specify the file path of an input SAS data set or JMP data table
and the variable or column names. The Load from Remote SAS Workspace Server
check box indicates that the input SAS data set file is to be loaded from the remote SAS
Workspace Server host specified in the Configuration dialog box.

Stream Parameters This area provides fields for modifying the parameter values that are associated with
the selected distribution or data stream. The Discrete Empirical, Empirical, NHPP Count,
and NHPP Rate type have a Random Stream Seed entry field. Although Simulation
Studio automatically assigns a different seed for each source of randomness, you can use
this field to specify the seed value. Valid values for this field are integers in the range of 0
to the Java Long.MAX_VALUE.

All Data Driven Type values have the Lazy Loading Boolean field. If the Lazy Loading
field is false, the input data set file has to be loaded at the start of simulation. Otherwise,
the data file is loaded only when its contents are needed during simulation.

Reset Sampling at Update For the SAS Data Column type value, this option resets the current data set
back to the first observation when a true Boolean value is received at the InUpdate port.
If the InDataPolicy port is also connected and a new data set is specified, then the new
data set starts at the beginning with the first observation if the Reset Sampling at Update
option is selected. For the Discrete Empirical, Empirical, NHPP Count, and NHPP Rate
type values, this option, if selected, resets the random substream for the current replication
back to the beginning when a true Boolean value is received at the InUpdate port.

Numeric Source Block F 159

Candidates for Design of Experiments

Factors DataStreamDescription (string), InputDataPolicy (string), ResetStreamAtUpdate
(Boolean)

When the Theoretical option is selected, the format for specifying the value of
the DataStreamDescription factor is the same as for the InStreamPolicy port:

class==distributionName;attribute1==attribute1Value;...;attributeN==attributeNValue;
Random Stream Seed==seedValue

where:

distributionName is the distribution name as specified by the Type option.

attribute1 is the name of the first parameter associated with the specified data
stream type.

attribute1Value is the value of the first parameter associated with the specified data
stream type.

attributeN is the name of the last parameter associated with the specified data
stream type.

attributeNValue is the value of the last parameter associated with the specified data
stream type.

seedValue is the value of the random stream seed, with valid integer values in the
range of 0 to the Java Long.MAX_VALUE.

The following examples show (case-sensitive) string values for the DataStreamDescription
factor. Quotation marks are not required around the string value, and you can specify
only the parameters that need to be updated. The distribution and parameter names are
specified exactly as they are in the Theoretical option in the Numeric Source Block
Properties dialog box, including any spaces or hyphens. For a list of Simulation Studio
distribution and parameter names, see Chapter B, “Random Variation in a Model.”

class==Discrete Uniform;i==10;j==20

class==Normal;Mean==1;Std Dev==2

If you want to keep the same distribution but alter one or more parameter settings for the
distribution, you only need to supply the information that is required for the parameter
that you want to change. For example, if you are using an exponential distribution and
you want to change the mean value associated with the distribution, possible values for
the DataStreamDescription factor might be as follows:

Mean==4

Mean== 4.5

When the Data Driven option is selected, the format for specifying the value of the
DataStreamDescription factor is as follows:
Lazy Loading==BooleanValue;Random Stream Seed==seedValue
where:

160 F Appendix A: Templates

BooleanValue is either true or false.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java.Long.MAX_VALUE. The SAS Data Column type
does not have the Random Stream Seed option.

When the Data Driven option is selected, the format for specifying the value of the
InputDataPolicy factor is as follows:
attribute1==attribute1Value;attribute2==attribute2Value;...;attributeN==attributeNValue
where:

attribute1 is the name of the first parameter associated with the specified Data
Driven Type.

attribute1Value is the value of the first parameter associated with the specified Data
Driven Type.

attributeN is the name of the last parameter associated with the specified Data
Driven Type.

attributeNValue is the value of the last parameter associated with the specified Data
Driven Type.

Each Type value for the Data Driven option has different required Input Data parameters.
Parameter names must be specified in the case-sensitive string value exactly as they appear
in the Numeric Source Block Properties dialog box, including any spaces. Quotation
marks are not required around the string value. For example, the following values are
possible for the InputDataPolicy factor for the SAS Data Column Data Driven type:

File Path==C:\SimStudio\projects\data1.sas7bdat;Variable Name==age

You can specify only the parameters that need to be updated. In the following example,
the File Path parameter remains the same, but the Variable Name parameter is changed.

Variable Name==cost

Responses None

Text Source Block F 161

Text Source Block

Description

The Text Source block reads strings from a SAS data set. You supply the file path for the SAS data set or
JMP data table along with the text variable column name. Each time a value is pulled from the OutValue port
of a Text Source block, the block reads a value from the data set. If the last observation in the data set is
reached, the process resets to the beginning of the column.

Fixed Ports

InUpdate Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

InStreamPolicy Input string value port that allows new stream parameter specifications to come in when
an update signal is received. The format for specifying the value is as follows:
Lazy Loading==BooleanValue
where BooleanValue is either true or false.

InDataPolicy Input string value port from which the new input data specifications are pulled when an
update signal is received. The format for specifying the value is as follows:
File Path==filePathValue;Variable Name==variableNameValue where:

filePathValue is the pathname for the SAS data set or JMP table.

variableNameValue is the column name from the SAS data set or JMP table.

It is not necessary to specify all arguments for the input string value. For example, if you
want to continue sampling from the same data set but change the column from the data
set, then you can specify a string for the InDataPolicy port that contains only the Variable
Name==variableNameValue option.

OutValue Output string value port for text values to be pulled.

Properties Dialog Box Controls

Input Data This area provides fields for modifying the input data specifications associated with the
Text Source block. The File Path field specifies the absolute or relative file path for the
input SAS data set or JMP data table file. The Variable Name field identifies the variable
or column name in input data file. The Load from Remote SAS Workspace Server

162 F Appendix A: Templates

check box indicates whether the input SAS data set file is to be loaded from the remote
SAS Workspace Server host.

Stream Parameters This area provides fields for modifying the stream parameter specifications that
control how the stream of text values from the Text Source block is prepared. The field
Lazy Loading is Boolean. If the Lazy Loading field is false, the input data set file has
to be loaded at the start of simulation. Otherwise, the data file is loaded only when its
contents are needed during simulation.

Reset Sampling at Update This option resets the current data set back to the first observation when a true
Boolean value is received at the InUpdate port. If the InDataPolicy port is also connected
and a new data set is specified, then the new data set starts at the beginning with the first
observation if the Reset Sampling at Update option is selected.

Candidates for Design of Experiments

Factors DataStreamDescription (string), InputDataPolicy (string), ResetStreamAtUpdate
(Boolean)

The format for specifying the value of the InputDataPolicy factor is as follows:
File Path==filePathValue;Variable Name==variableNameValue
where:

filePathValue is the pathname for the SAS data set or JMP table.

variableNameValue is the column name from the SAS data set or JMP table.

The format for specifying the value of the DataStreamDescription factor is as follows:
Lazy Loading==BooleanValue
where BooleanValue is either true or false.

Responses None

Counter Block F 163

Counter Block

Description

The Counter block counts the number of entities that pass through it. If the OutCount value port has any
connections to it, the Counter block pushes its count value to the port every time it changes.

After an entity enters the Counter block, the block determines whether any block downstream of the Counter
block’s OutEntity port can accept the entity before pushing the entity out the OutEntity port. If this acceptance
fails, the entity is either pushed out the OutBalk port or destroyed if there are no connections to the OutBalk
port.

When a true Boolean value arrives at the InClear port, it will be used as a signal to reset the current count
value to zero. If the InClear port receives a false value, the signal will be ignored and the count will not be
cleared.

Fixed Ports

InEntity Input entity port for entities to enter the Counter block.

InClear Input Boolean port that is used to reset the current count value to zero.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

OutCount Output integer port for the number of entities that have passed through the Counter block.

Candidates for Design of Experiments

Factors None

Responses Count (integer)

164 F Appendix A: Templates

Time Now Block

Description

The Time Now block can be used to access the current simulation time while the model is running. This is
accomplished by pulling a value from the OutValue port on the Time Now block. The indices of the current
design point and replication for the current simulation experiment are also provided.

Fixed Ports

OutValue Output number port that can be pulled for the current simulation clock time. (NOTE: The
clock value is not pushed out from the port automatically.)

PointIndex Output number port for the 1-based index of the current design point during the run of a
simulation experiment.

ReplicateIndex Output number port for the 1-based index of the current replication within the current
design point during the run of a simulation experiment.

Candidates for Design of Experiments

Factors None

Responses None

Batch Block F 165

Overview of the Advanced Template
The Simulation Studio Advanced template provides a collection of blocks used to build more complex
simulation models.

Batch Block

Description

The Batch block groups entities so that they flow together through a simulation model. Entities arrive at a
Batch block individually through its InEntity input entity port. The Batch block holds the entities until the
number of entities it is holding reaches the value that is specified in the Batch block’s batch size parameter.
At this point, the Batch block attaches the held entities to a carrier entity and attempts to send the carrier
entity out through the OutCarrier output entity port. The carrier entity carries the batched group of entities
through the simulation model, but only the attributes of the carrier entity are accessible by other blocks. That
is, the attributes of the entities that are included in the batch are not accessible by other blocks. Downstream
in the simulation model, an Unbatch block can be used to separate the individual entities from the batch
carrier entity. At that point all unbatched entities have their original attributes.

If nothing is attached to the InCarrier input entity port, a Default entity is created and used as the carrier
entity whenever a batch of entities is ready to be sent out through the OutCarrier port. If there is a connection
to the InCarrier port, the entities that arrive at that port are used as the carriers. If there is a connection to
the InCarrier port, the Batch block waits until it has both a carrier entity and a complete batch of entities
before it attempts to send the carrier entity out through the OutCarrier port. The Batch block can hold only a
single carrier and a single batch of entities at any given time. Therefore, if there is a connection to the Batch
block’s InCarrier port and the Batch block is holding a carrier entity but is not holding a complete batch of
entities, the Batch block does not accept another carrier entity through its InCarrier port. Similarly, if there is
a connection to the Batch block’s InCarrier port and the Batch block is holding a complete batch of entities
but is not holding a carrier entity, the Batch block does not accept another entity through its InEntity port.

The InSignal input value port is used to force the Batch block to send out a carrier regardless of the number
of entities it is holding. If a true value arrives at the InSignal port, the Batch block attempts to attach any
entities it is holding to a carrier entity and send the carrier entity out through the OutCarrier port. In this case
the carrier might not hold any entities or it might hold a smaller number of entities than the batch size. If
there is a connection to the InCarrier port and a true value arrives at the InSignal port but the Batch block is
not holding a carrier, the signal is ignored. A false signal arriving at the InSignal port is always ignored since
it signifies that no action needs to be taken.

166 F Appendix A: Templates

An integer value can be pushed through the InBatchSize port to set the batch size for the Batch block. If the
batch size is decreased while the Batch block is holding more entities than the new batch size, the existing
entities are batched together according to the new batch size, and the Batch block attempts to send a carrier
entity out through its OutCarrier port for each smaller batch of entities. If there is a connection to the Batch
block’s InCarrier port, the Batch block waits for a carrier to arrive before sending out each smaller batch of
entities.

Fixed Ports

InEntity Input entity port for entities that are batched together.

InCarrier Input entity port for entities used as carriers for entity batches.

OutCarrier Output entity port for carriers (containing batches of entities) that can be accepted by a
downstream block.

OutBalk Output entity port for carriers (containing batches of entities) that cannot leave using the
OutCarrier port.

InSignal Boolean input port that forces the Batch block to send out a carrier (if one is available) that
contains any entities being held by the Batch block. The carrier can be empty (containing
no entities).

InBatchSize Numeric input port that dynamically sets the batch size of the Batch block.

Properties Dialog Box Controls

Batch Size Specifies the number of entities the Batch block stores in its buffer before attempting to
send out those entities on a carrier. Valid values for this field are integers in the range
from 0 to 2,147,483,647. Selecting the Infinite check box supersedes any value entered.
If the Infinite check box is selected, a connection should be made to the InSignal port
of the Batch block to determine when the Batch block should attempt to release a carrier
containing a batch of entities.

Queueing Policy Specifies the queueing policy for the queue used internally by the Batch block. See the
Queueing Policy control in the section “Queue Block” on page 137 for details.

Candidates for Design of Experiments

Factors QueueingPolicy (string)
See the Queueing Policy design-of-experiment factor in the section “Queue Block” on page 137
for details.

Responses None

Unbatch Block F 167

Unbatch Block

Description

The Unbatch block is used to separate individual entities from a batch carrier entity. Carrier entities (populated
with a group of zero or more entities by a Batch block) arrive at an Unbatch block through its InCarrier input
entity port. The Unbatch block first separates individual entities from the carrier entity. Then it attempts
to send the carrier entity (which might or might not be empty depending on whether the Unbatch block
separated all of the individual entities from the carrier) out its OutCarrier output entity port. It also attempts
to send each of the separated individual entities (if any) out its OutEntity port.

Fixed Ports

InCarrier Input entity port for carrier entities that contain a batch of zero or more entities.

OutCarrier Output entity port for a carrier to leave that can be accepted by a downstream block.

OutEntity Output entity port for each of the individual entities separated from the carrier to leave
that can be accepted by a downstream block.

OutCarrierBalk Output entity port for a carrier to leave that cannot leave using the OutCarrier port.

OutEntityBalk Output entity port for each of the individual entities separated from the carrier to leave
that cannot leave using the OutEntity port.

Properties Dialog Box Controls

Identify Candidate Entities Use these fields to define the criteria for selecting possible entities to be
separated from the carrier. The Unbatch block considers separating from the carrier only
entities that satisfy all of the criteria specified in this section.
For Primary Usage, you can select to have either regular entities or resource entities
separated from the carrier.
For Entity Type (optional), you can specify the name of a particular entity type for entities
to be separated from the carrier.
For Attribute Rule (optional), you can specify a Boolean expression that includes at-
tribute values for entities to be separated from the carrier. You can type the expression
in the Attribute Rule field, or you can right-click on the Attribute Rule field and select
the Edit option to open the Edit Expression window. For more information about how to
write the Boolean expression, see Appendix F, “Expressions.”
If you select Resource Entity for Primary Usage, then you can specify a Resource
State (optional) for entities to be separated from the carrier. Valid values are Functional,
Failed, Maintenance, and Offlined.

168 F Appendix A: Templates

Unbatch Entities among Candidates Use these fields to specify which entities meeting the criteria speci-
fied in the Identify Candidate Entities section should be separated from the carrier.
Begin At specifies where in the buffer of entities to begin separating them from the carrier
and attempting to send them out through the OutEntity port. First means to start with the
first entity in the buffer and then proceed with the following entities in order, stopping
if the end of the buffer is reached. Last means to start with the last entity in the buffer
and then proceed backwards through the entities, stopping if the beginning of the buffer
is reached. Middle means to start with the entity at the index specified in the entry field
and then proceed with the following entities in order, stopping if the end of the buffer is
reached.
Count specifies a maximum number of entities to separate from the carrier. Checking All
causes any Count value to be ignored. If All is checked and Begin At is set to First or
Last, all of the entities that meet the criteria in the Identify Candidate Entities section
are separated from the carrier. If All is checked and Begin At is set to Middle, all of the
entities except the ones before the specified middle index are separated from the carrier.

Candidates for Design of Experiments

Factors None

Responses None

Clone Block

Description

The Clone block creates clones of entities that pass through it. A clone is a new entity with the same type
and all of the same attributes as the original entity. When an entity enters a Clone block, the block first
determines whether anything is connected to its NumClonesPerPort port. If it finds a connection, the Clone
block attempts to pull a value from the NumClonesPerPort port. This value represents the number of clones
of the original entity that the Clone block generates for each clone output port. If this value is greater than 1,
multiple clones flow sequentially out of each clone output port.

If there are no connections to the NumClonesPerPort port, the Clone block uses the value specified in its
ClonesPerPort properties dialog box field for the number of clones to generate per clone output port.

You can set the number of clone output ports in the properties dialog box. If no clone output ports exist, the
new clone entities are pushed through the OutEntity port. The original entity is always the first entity to

Gate Block F 169

exit the Clone block, and it exits via the OutEntity port. If the original entity or a clone cannot be accepted
downstream, it flows out through the OutBalk port.

Fixed Ports

InEntity Input entity port for entities to enter the Clone block.

OutEntity Output entity port for the input entity if it can be accepted by a downstream
block. If there are no clone output ports, clone entities that can be accepted by a
downstream block also go out through this port.

OutBalk Output entity port for any entities that cannot be accepted by a downstream block.

NumClonesPerPort Input integer port for the number of clone entities for the clone block to generate
for each clone output port.

Properties Dialog Box Controls

Clones Per Port Specifies how many clones are generated for each clone output port. This value
is used only if there are no connections to the NumClonesPerPort port.

Cloning Ports Specifies how many clone output ports are available.

Candidates for Design of Experiments

Factors ClonesPerPort (integer)

Responses None

Gate Block

Description

The Gate block provides a facility to pull and push multiple values every time an entity passes through the
block. For each action that is defined on a Gate block, an input value port and an output value port are created
on the block. When an entity enters a Gate block, the block steps through its list of actions, first pulling from
the input value port associated with the action and then pushing the retrieved value to the output value port
associated with the action. If there is no connection to an input value port, the Gate block uses the default
value associated with that action.

You specify a new action by clicking the Add button on the Properties dialog box Actions tab. This results in

170 F Appendix A: Templates

a new action (with a default name, type, and value) being added to the Actions table. You can edit the name,
type, and value of the action directly in the table. The action names that a Gate block uses must be unique.
You can change the action type through a drop-down box on the type table cell. You can delete actions from
the Actions table by selecting the action row in the table and then clicking the Remove button. Clicking the
Apply button pushes all entries in the Actions table to the Gate block, and any input and output value ports
are created or deleted as needed. (Note: You cannot change an action’s type after the action is pushed to
the Gate block.) You use the Move Up and Move Down buttons to reorder the actions in the Actions table.
The order of the input and output value ports is also adjusted to be the same as the order of the actions in the
Actions table.

Fixed Ports

InEntity Input entity port for entities to enter the Gate block.

OutEntity Output entity port for entities to exit the Gate block.

Properties Dialog Box Controls

Add Adds a new action with a default name, type, and value to the Actions table. You can
change the name, type, and default value of the action directly in the table. The action
names in the Gate block’s Actions table must be unique. You can change the action type
through a drop-down box on the cell in the table. (You cannot change an action type in the
table after you click the Apply button. To change an action type after you click Apply,
you must remove the action, add it again, and then modify the type of the newly added
action before clicking Apply again.)

Remove Deletes the selected action from the Actions table.

Move Up Moves the row for the selected action up in the Actions table. The value ports that are
associated with the selected action are moved to the left.

Move Down Moves the row for the selected action down in the Actions table. The value ports that are
associated with the selected action are moved to the right.

Apply Updates all actions in the Gate block as specified in the Actions table, and creates or
deletes input and output value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Valve Block F 171

Valve Block

Description

The Valve block controls the flow of entities through a simulation model. If the Valve block is closed, an
entity cannot flow through the Valve block. If the Valve block is opened, its behavior depends on which flow
directions are enabled:

� If the Push To Downstream option is enabled, a block connected to the InEntity port can push entities
through the Valve block to a block connected to the OutEntity port. If disabled, pushing is not allowed
through the Valve block.

� If the Pull From Upstream option is enabled, a block connected to the OutEntity port can pull entities
through the Valve block from a block connected to the InEntity port. If disabled, pulling through the
Valve block is not allowed.

Fixed Ports

InEntity Input entity port for entering entities.

OutEntity Output entity port for entities to leave that can be accepted by a downstream block.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InSignal Boolean input port that allows the Valve block to be dynamically opened (true) or closed
(false).

InFlowTrigger Boolean input port that (by passing in true) can trigger the flow of entities through the
Valve block. The flow of entities is still subject to the settings specified in the Flow
Directions section of the Valve block’s properties dialog box and whether the Valve block
is opened or closed. An input value of false is ignored.

OutOpened Boolean output port that pushes out whether the Valve block is opened (true) or closed
(false) each time the Valve block changes state between opened and closed.

Properties Dialog Box Controls

Initial State Specifies whether the Valve block is Opened or Closed when the model starts executing.

Flow Directions Specifies the flow directions supported by the Valve block: Push To Downstream and
Pull From Upstream can be enabled or disabled independently.

172 F Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Formula Block

Description

The Formula block can evaluate an expression based on state or model information. You create variables
(called input variables) to be used in the expression, and you formulate them into an expression that is
evaluated every time a value is pulled from the Formula block’s OutValue port. The expression is also
evaluated and pushed out the Formula block’s OutValue port every time input is pushed into one of the
Formula block’s input value ports. The value that is associated with an input variable can come either from
an entity attribute or from an input value port. If the source for an input variable is designated to be a port, an
input value port is created on the block and is associated with the appropriate input variable. Whenever a
value is requested from a Formula block or new input arrives at a Formula block, the Formula block first
determines which values that are associated with its input variables need to be acquired (based on the setting
for the To Acquire Port Values Only When Needed properties dialog box option) and then attempts to
evaluate its expression. The result of this evaluation leaves through the OutValue port.

You use the Expression text box to enter the expression to be evaluated in the Formula block. Appendix F,
“Expressions.” contains a complete list of available expressions. You define variables that are used in the
expression in the Input Variables Table. The operators available for building expressions include Boolean
(&&, ||, !), arithmetic (+, -, *, /, %), and comparison (<, >, �, �, ==, !=) operators. Available functions
include arithmetic (abs), trigonometric (sin, cos, tan, asin, acos, atan, sinh, cosh, tanh), and logarithmic (exp,
log, ln) functions, along with floor, ceil, round, min, max, and power functions. The min and max functions
can be called with any number of numeric arguments. In addition, you can use the conversion functions
degrees and radians to convert between degrees and radians. You can use the concat function to concatenate
strings. Two logical functions, cond and switch, are also provided. The format for the cond function is
cond(Boolean expression, true return value, false return value). The value returned by this function is
determined by evaluating its Boolean expression. The format for the switch function is switch(Boolean
expression1, value1, Boolean expression2, value2, ..., default value). The value returned by the switch
function is the value that follows the first Boolean expression that evaluates to true. The default value is
returned if none of the Boolean expressions is true. You can also use the minindex and maxindex functions,
which return the zero-based index of the minimum (or maximum) value in the list of values passed into the
function.

Formula Block F 173

The Formula block also supports a dot (.) operator. When you use an input variable of type Observation, you
can use the dot operator to access the values of the observation’s member variables. For example, suppose
an observation input variable named Record has member variables Name and GPA (so that the observation
Record is a row from a data set with columns Name and GPA). The expression Record.Name returns the
value of Name for the current observation. Similarly, the following expression returns a string that depends
on the value of GPA: cond(Record.GPA < 60.0, "Fail", "Pass").

Fixed Ports

OutValue Output value port for the result of the Formula block’s expression.

Properties Dialog Box Controls

Add Adds a new input variable with a default Name, Type, and Source to the Input
Variables table. You can edit the Name, Type, and Source of the variable directly
in the table. The variable names listed in the Formula block’s Input Variables
table must be unique. You can change the Type through a drop-down box on the
cell in the table. A variable Type cannot be changed in the table after the Apply
button is clicked. If you want to change a variable Type after Apply has been
clicked, you must remove the variable, add it again, and then modify the Type of
the newly added variable before clicking Apply again.

Remove Deletes the selected variable from the Input Variables table.

Move Up Moves the row for the selected input variable up in the Input Variables table.
The value port associated with the selected input variable is moved to the left.

Move Down Moves the row for the selected input variable down in the Input Variables table.
The value port associated with the selected input variable is moved to the right.

To Acquire Port Values Only When Needed If this option is turned off, the Formula block always ac-
quires values for all of its input variables. If this option is turned on, the Formula
block acquires only the values for its input variables that are required in order to
determine the result of the expression.

Expression Contains the expression to be evaluated in the Formula block. Any variables
used in the expression must be defined in the Input Variables table. Appendix F,
“Expressions.” contains a complete list of available expressions.

Result Type Identifies the value type that results from evaluating the expression. The selected
option specifies the output port type for the Formula block.

Result Precision Specifies the decimal precision for rounding a numeric result value, if the Result
Type is Number. A positive precision value rounds the numeric result to the
specified number of digits to the left of the decimal point. A negative precision
value rounds the numeric result to the specified number of digits to the right of
the decimal point. A precision value of zero rounds the numeric result to the
nearest integer.

Apply Validates the expression and saves the input variables, the expression, and the
expression result. Input value ports are created or deleted and the type of the
output value port is set as needed.

174 F Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Connector

Description

Connecting blocks that are far apart in a model usually results in a link that crosses over other blocks and
links. This can be visually distracting and confusing. You can use Connectors to create invisible links
between blocks. To create an inter-Connector link:

1. Drag a separate Connector block into the model window and place it adjacent to each of the blocks in
the model that you want to directly link. When you drag a Connector into a model, the Connector Type
dialog box appears. In this dialog, you select the type of Connector (Entity, Number, String, Boolean,
Observation, Data Model, or Entity Group) based on the type of the block ports between which you
want to create a hidden link. Only Connectors of the same type can be connected. The ports on an
entity-type Connector are red, and the ports on a value-type Connector are blue.

2. Create a link from the appropriate port on each block to the adjacent Connector block.

3. Create a link between the two Connector blocks. When the link is created, it briefly flashes and then
disappears.

To show all inter-Connector links in the model, select NavigationIShow Connector Links from the pop-up
menu either on an individual block or on a Model window. Links between entity-type Connectors are
displayed red when they are visible, and links between value-type Connectors are displayed blue when visible.
To hide all inter-Connector links, select NavigationIShow Connector Links again.

You can view a list of all input (or output) links by right-clicking on the input (or output) port of a Connector
to open the Port Connections dialog box. To display a Connector link in the model, click on a row in the Port
Connections dialog box (where each row represents a link with another Connector). You can also remove
links or change the precedence order of the links in the Port Connections dialog box.

Caster Block F 175

Caster Block

Description

The Caster block casts a value from a generic object value back to its original or concrete value type.

Fixed Port

InValue Input value port for a generic object value.

Dynamic Port

OutValue Output value port for the user-specified output value type.

Properties Dialog Box Controls

Output Type From the list, select the output value type to cast the input object value to.

Propagation The To Downstream option controls propagation of values sent to the InValue port of
a Caster block. If this option is selected, any values that enter the InValue port are
automatically sent out the OutValue port. Otherwise, the value propagation stops at the
Caster block. If the From Upstream option is selected, any attempt to pull a value from
the OutValue port of a Caster block results in the Caster block attempting to pull a value
from block(s) connected to its InValue port.

Candidates for Design of Experiments

Factors None

Responses None

176 F Appendix A: Templates

Submodel Block

Description

The Submodel block creates hierarchical models and facilitates component reuse. It is similar to a compound
block except for one key difference: the contents of a compound block are embedded in a model when it is
created, whereas a Submodel block provides a linkage from the simulation model to its content definition.
Once the content definition of a Submodel block is changed, all instances of the submodel, whether in the
same simulation model or in different simulation models, reflect those changes.

You double-click a Submodel block to view and edit its content in a separate submodel window. The Instance
option in the submodel window enables you to view (but not edit) the contents of a submodel. If you have a
submodel window open and you double-click on another submodel block that is linked to the same submodel
that is already open, then both instances are displayed in the same submodel window. Clicking the up
and down arrows adjacent to the Instance option changes the submodel instance being viewed. The label
that is associated with each submodel instance is displayed. You can click the Close button to close the
current submodel instance. The Instance option is especially useful for viewing the animation of a submodel
instance as the model runs.

The Definition option in the submodel window enables you to edit the contents of a submodel. You can
drag blocks into the submodel, connect blocks, delete blocks, and perform any other modeling action that
you would perform in the regular Model window. To save an edited submodel block, right-click on the
submodel and select Save. The default filename extension for a saved submodel block is .cblk. When the
edited submodel definition is saved, all instances of that submodel in the currently open simulation model
automatically refresh to reflect the new, updated definition.

To open the Submodel Block Properties dialog box, right-click on the Submodel block and select Block
Properties.

Properties Dialog Box Controls

Submodel Path Specifies the filename for the compound block (.cblk file) that is associated with
this Submodel block.

SAS Program Block F 177

SAS Program Block

Description

The SAS Program block can be used to execute a SAS program or a JMP script. Optionally, the InQueueData
and InServerData ports can be used to generate custom SAS reports based on the output of a Queue Stats
Collector or Server Stats Collector block, respectively.

Fixed Ports

InQueueData Input data port for the pathname of a folder that contains the output data set of a Queue
Stats Collector block. This port is typically connected to the ResultLocation output data
port of a Queue Stats Collector block. A SAS program can use the Queue library reference
name (libref) to access the Queue Stats Collector data set location. This port is ignored
for JMP scripts.

InServerData Input data port for the pathname of a folder that contains the output data set of a Server
Stats Collector block. This port is typically connected to the OutResultLocation output
data port of a Server Stats Collector block. A SAS program can use the Server library
reference name (libref) to access the Server Stats Collector data set location. This port is
ignored for JMP scripts.

InSubmitCode Input Boolean data port that starts the execution of the SAS program or JMP script if the
value true is passed in. For example, a Value Generator block that produces Boolean data
can have its OutValue port connected to a SAS Program block’s InSubmitCode port.

Properties Dialog Box Controls

SAS Code Path Specifies the pathname of the SAS program or JMP script to be executed.

Auto Submit If selected, causes the SAS program or JMP script to automatically execute at
the end of each design point replication run. If the Submit to Remote SAS
Workspace Server option is selected, then the SAS program or JMP script will
execute on the remote SAS workspace server host specified in the Simulation
Studio Configuration dialog box.

178 F Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Entity Filter Block

Description

The Entity Filter block routes incoming entities to one of two output paths: one for entities that pass the filter
criteria and another for entities that do not.

When an entity arrives at the InEntity port of an Entity Filter block, the Entity Filter block tests the entity
against a set of filter criteria including primary usage, entity type, attribute rule, and (if the primary usage is
resource entity) resource state. If any filter criterion does not have a value, that criterion is ignored. If the
entity matches all of the specified criteria, the entity is sent out the OutPassed output entity port. Otherwise,
the entity is sent out the OutFailed output entity port.

Fixed Ports

InEntity Input entity port for entering entities.

OutPassed Output entity port for entities that meet the Entity Filter block’s criteria.

OutFailed Output entity port for entities that do not meet the Entity Filter block’s criteria.

Properties Dialog Box Controls

Primary Usage Selects whether an entity must be a Regular Entity or a Resource Entity in
order to meet the filter criteria.

Entity Type (optional) Specifies the name of a particular entity type that an entity must have
in order to meet the filter criteria.

Attribute Rule (optional) Specifies a Boolean expression that includes attribute values of an
entity that must evaluate to true in order to meet the filter criteria. You can type
the expression in the Attribute Rule field, or you can right-click on the Attribute
Rule field and select the Edit option to open the Edit Expression window. For
more information about how to write the Boolean expression, see Appendix F,
“Expressions.”

Entity Group Holder Block F 179

Resource State If you select Resource Entity for Primary Usage, then you can specify a Re-
source State (optional) that a resource entity must have in order to meet the filter
criteria. Valid values are Functional, Failed, Maintenance, and Offlined.

Candidates for Design of Experiments

Factors None

Responses None

Entity Group Holder Block

Description

The Entity Group Holder block serves as a holding facility for an entity group, which is a collection of entity
references. Rather than holding each actual entity in an entity group, an entity reference (which is information
that uniquely identifies a particular entity) is held.

The Entity Group Holder block stores only references to entities that pass a set of filter criteria defined in the
properties dialog box. When a single entity enters the block through the InEntity port and passes the input
filter criteria, a single entity reference for the entity is added to the Entity Group Holder block. When a group
of entity references arrives through the InGroup port, those entity references that pass the input filter criteria
can either replace any existing entity references being held by the block or be merged with the existing
group of entity references (combining the new and existing entity references but not storing duplicate entity
references), depending on how the Entity Group Holder block is configured in the properties dialog box.

OutSubgroup ports can be configured for the Entity Group Holder block that allow a group of entity
references to be pulled from the block, based on a set of output filter criteria. When a pull request arrives at
an OutSubgroup port, the Entity Group Holder block applies the output filter criteria associated with that
port to the group of entities it is currently holding. The resulting entity group is then passed out through the
OutSubgroup port.

Fixed Ports

InEntity Input entity port for entering entities. An entity reference for the entity is added to the
Entity Group Holder block’s set of entity references if the entity passes the input filter
criteria.

OutEntity Output entity port for entities to leave that can be accepted by a downstream block.

180 F Appendix A: Templates

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InGroup Input data port for an incoming entity group. For entities in the incoming entity group
that pass the input filter criteria, entity references for those entities either replace any
existing entity references being held by the block or are merged with the existing group
of entity references, depending on the setting of Handling of Input Entity Group in the
properties dialog box.

InUpdate Input Boolean port that, if true is passed in, forces the EntityGroup block to pull an entity
group from the first (zero ordered) link connected to its InGroup port.

InClear Input Boolean port that, if true is passed in, clears the Entity Group Holder block’s set of
entity references.

Properties Dialog Box Controls

Input Filter These fields define the criteria for selecting the incoming entity references to be
stored by the Entity Group Holder block.
For Primary Usage, select to have references to either entity type Regular En-
tity or Resource Entity stored by the Entity Group Holder block.
For Entity Type (optional), you can restrict the Entity Group Holder block to
store only references to entities of a particular entity type.
For Attribute Rule (optional), you can restrict the Entity Group Holder block to
store only references to entities that satisfy a Boolean expression that includes
entity attribute values. You can type the expression in the Attribute Rule field,
or you can right-click on the Attribute Rule field and select the Edit option to
open the Edit Expression window. For more information about how to write the
Boolean expression, see Appendix F, “Expressions.”
If you select Resource Entity for Primary Usage, then you can specify a Re-
source State (optional) that entities must have in order to be stored by the Entity
Group Holder block. Valid values are Functional, Failed, Maintenance, and
Offlined.

Handling of Input Entity Group Select Override the current group to make the Entity Group Holder
block replace its current entity group with a new entity group whenever an entity
group arrives through the InGroup port.

Select Merge with the current group to make the Entity Group Holder block
add any nonduplicate entity references to its current entity group whenever an
entity group arrives through the InGroup port.
For entities that arrive through the InEntity port, an entity reference is always
merged with the current group if the entity passes the input filter criteria.

Query Outputs The Query Outputs table defines the entity group output ports for the Entity
Group Holder block. Each output port has an associated name and set of filter
criteria that determine which entity references are included in the entity group
to be pulled from the port. Click Add Query to add a new row to the Query
Outputs table that represents a new entity group output port. The column values
for the new row can be edited directly in the table:

� Port Name uniquely names the entity group output port for the Entity
Group Holder block.

Entity Group Holder Block F 181

� Key Attribute (optional) sets the name of the key attribute in the group of
entity references. In order for an entity reference in the group to match this
filter criterion, the referenced entity must have an attribute by this name,
and the attribute value must be equal to the value of an attribute by the same
name that is defined on an entity that enters an input entity port of another
block that the entity group output port is connected to. In other words, an
entity attribute name/value pair for an entity that enters some other block
is used as a key to search the holdings of the Entity Group Holder block
in order to determine which entity references can be included in the entity
group to be pulled from the port by the other block.

� Entity Type (optional) restricts the port to allow only references to entities
of a particular entity type to be included in the entity group to be pulled
from the port.

� Attribute Rule (optional) restricts the port to allow only references to
entities that satisfy a Boolean expression for entity attribute values to be
included in the entity group to be pulled from the port. For more information
about how to write the Boolean expression, see Appendix F, “Expressions.”

� Offset (optional) specifies an index into the group of references being held
by the Entity Group Holder block. The entity references that are selected to
exit through the output port begin at this index, and any entity references that
occur prior to this index are not included in the output entity group. A value
of 0 or 1 is equivalent to a blank value, causing the first entity reference
to be selected first. A negative value is an index that starts at the end of
the entity references. For example, an index of –1 causes the last entity
reference to be selected first. A negative value causes entity references to be
selected by traversing backwards through the list of entity references. If the
absolute value of the offset is larger than the number of entity references
that satisfy the criteria, an empty entity group exits the port. The ordering
of the entity references within the Entity Group Holder block reflects the
ordering of the holding block that originally generated the entity references.

� Maximum Count (optional) specifies a maximum number of entity refer-
ences that can be included in the entity group that exits the port.

Click Remove Query to remove the selected row from the Query Outputs table,
indicating that the corresponding entity group output ports should be removed.

Apply Saves all information to the Entity Group Holder block, creating or removing
entity group output ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

182 F Appendix A: Templates

Stopper Block

Description

The Stopper block outputs the simulation stop time when a simulation replication ends normally. It can also
be used to stop the current simulation replication with an input stopping signal.

In many simulation applications, the actual end time of the simulation replication is often not known ahead
of time. However, certain processing steps (such as data collection and special-purposed computation) might
need to occur right before the end of the simulation. To facilitate the modeling of this type of simulation
task, the Stopper block also warns about the upcoming end of a simulation replication. When the end of the
simulation replication is near, the number output port OutWarnTime delivers the current simulation time of
the warning. This value can then be converted to a Boolean signal (for example) to trigger data collection
before the actual end of the simulation.

If the simulation ends abnormally, either because of errors or user interference, the Stopper block does not
provide the stop or warning time values.

Fixed Ports

InSignal Input Boolean port that stops the current simulation replication with a true input value. A
false input value is ignored.

OutWarnTime Output number port for the simulation time when a warning of simulation ending occurs.

OutStopTime Output number port for the simulation time when the current replication ends.

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

Bucket Block F 183

Overview of the Data and Display Template
The Simulation Studio Data and Display template provides a collection of blocks used to collect and display
data in simulation models.

Bucket Block

Description

The Bucket block is used to extract and store entity attribute values from entities that enter the block.
Attributes to be extracted from the entity are identified in the Bucket block’s Attributes Table. When an
entity enters the block, entity attribute values are retrieved from the entity and stored in a data model object
during the simulation run. The age of the entity is calculated and pushed to the bucket’s OutLatestAge port.

The data model object can be accessed through the block’s OutData port. Display blocks, such as the
Histogram block, are often connected to a Bucket block’s OutData port to visualize the data. Any block using
a data model is automatically notified when the data in the data model is modified.

The user identifies attributes to be extracted from the entity using one of the attribute collecting options
described in the Dialog Controls section below.

The user can limit the number of observations stored in a Bucket block through its Capacity control. If the
capacity is exceeded, a warning will be logged and observations will be overwritten.

The Bucket block provides the capability of saving values it extracts to a SAS data set or JMP table. Saving
options are available on the Save Dialog.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected by the Bucket block up to that time during the simulation execution. If the InClearData port receives
a false value, the signal will be ignored and data will not be cleared.

Properties Dialog Box Controls

Specify the attributes to be extracted from the incoming entity.

The Bucket block provides two options for collecting entity attributes. With the Collect Selected Entity
Attributes option selected, the associated attribute table and editing buttons are enabled. The user identifies
attributes to be extracted from the entity by selecting the Add button beside the attribute table. This results in
a new attribute entry (with a default name) being added to the Attributes Table. The Name and Type of the

184 F Appendix A: Templates

attribute can be edited directly in the table. The attribute names listed in the Bucket block’s Attributes Table
must be unique. The attribute type can be changed through a drop-down box on the Type table cell. Attributes
can be deleted from the Attributes Table by selecting the attribute row in the table and then selecting the
Remove button. Selecting the Apply button causes all entries in the Attributes Table to be pushed to the
Bucket block.

When the Collect All Entity Attributes option is selected, all attributes (except the internal entity ID) will
be extracted from the incoming entities.

Add adds a new attribute to the Attributes table.

Remove deletes an attribute that has been selected from the Attributes table.

Capacity controls how many observations the Bucket block stores.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base file name specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder containing your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Save Now Forces the Bucket block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
data.

Base File Name Specifies the base file name for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual file name. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors Capacity (integer)

Responses None

Probe Block F 185

Probe Block

Description

The Probe block pulls and stores other block state information values at specified time intervals. Attributes to
be pulled from other blocks are named in the Probe block’s Attributes Table. The names are arbitrary but
must be unique within each Probe block. When values are pulled from other block ports, they are stored in a
data model object. The data model object can be accessed through the block’s OutData port. Display blocks,
such as the Histogram block, are often connected to a Probe block’s OutData port to visualize the data. Any
block that also uses a data model object is automatically notified when the data in the data model object is
modified.

You create attribute entries in the Probe block’s Attributes Table by clicking the Add button on the properties
dialog box Attributes page. This results in a new attribute entry (with a default name and type) being added
to the Attributes Table. You can edit the Name and Type of the attribute directly in the table. The attribute
names listed in the Probe block’s Attributes Table must be unique. You can change the attribute type through
a drop-down list in the Type table cell. You can delete attributes from the Attributes Table by selecting the
attribute row in the table and then clicking the Remove button. Clicking the Apply button causes all entries
in the Attributes Table to be pushed to the Probe block and any input value ports to be created or deleted as
needed.

Each attribute in the Probe block’s Attributes Table has an input value port associated with it. At the specified
time interval, the Probe block attempts to pull values from each of its attribute input ports and store those
values in its data model instance. The frequency with which the Probe block pulls values is controlled
through its Poll Interval options. You can decide to pull at a constant interval by selecting the Constant
option and entering a valid value in the Interval field. You can also have the Probe block pull a value
from its InPollInterval port to determine when the next attributes pull should be scheduled. In this case,
you must select the Port option and attach a valid numeric source (such as a Numeric Source block) to the
InPollInterval port.

You can limit the number of observations stored in a Probe block through its Capacity control. If the capacity
is exceeded, a warning is logged and observations are overwritten.

The Probe block can save values that it extracts to a SAS data set or JMP table. Saving options are available
on the Save dialog box.

When a true Boolean value arrives at the InClearData port, it is used as a signal to clear all the data that have
been collected by the Probe block up to that time during the simulation execution. If the InClearData port
receives a false value, the signal is ignored and data are not cleared. When a true Boolean value arrives at the
InSignal port, the Probe block attempts to pull values from each of its attribute input ports and store those
values in its data model instance. If the InSignal port receives a false value, the signal is ignored.

186 F Appendix A: Templates

Fixed Ports

InClearData Input Boolean port that is used to clear all collected data.

InSignal Input Boolean port that is used to signal the Probe block to pull a value from each attribute
input port and store those values in its data model.

InPollInterval Input numeric port for how long to wait before the next time the Probe block pulls and
stores data from its input attribute value ports. This port is used only if the Probe block is
configured to use the Port option for its Poll Interval in the properties dialog box.

OutData Output port for the latest updated data model object that contains the data held by the
Probe block.

Properties Dialog Box Controls

Add Adds a new attribute to the Attributes Table.

Remove Deletes an attribute that has been selected from the Attributes Table.

Capacity Controls how many observations the Probe block stores.

Poll Interval Selecting the Constant option and entering a valid value in the Interval field causes the
Probe block to pull at a constant time interval. Selecting the Port option causes the Probe
block to pull a value from the InPollInterval port to determine its next sampling time.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base filename specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder that contains your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Save Now Forces the Probe block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
data.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual filename. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the filename, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Observation Source Block F 187

Candidates for Design of Experiments

Factors Capacity (integer), PollingInterval (double)

Responses None

Observation Source Block

Description

The Observation Source block provides a stream of data observation (row) objects from a SAS data set or
JMP table. Each time an observation object is pulled from the OutObservation port, the block pulls a new
observation of the data set. If you reach the last observation from the data set, the process resets to the
beginning of the data set.

Fixed Ports

InUpdate Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

InStreamPolicy Input string value port from which the new stream parameter specifications are pulled
when an update signal is received. The format for specifying the value is as follows:
Lazy Loading == BooleanValue
where BooleanValue is true or false.

InDataPolicy Input string value port from which the new input data specifications are pulled when an
update signal is received. The format for specifying the value is as follows:

File Path == filePathValue

where filePathValue is the path name plus file name for the SAS data set or JMP
table. Quotation marks are not required around the filePathValue string value.

OutObservation Output observation object port for observations to be pulled.

OutData Output data model port for accessing the data model object that holds the contents of the
input data set.

188 F Appendix A: Templates

Properties Dialog Box Controls

Input Data This area provides fields for modifying the input data specifications associated with the
Observation Source block. The File Path field specifies the absolute or relative file
path for the input SAS data set or JMP data table file. The Load from Remote SAS
Workspace Server check box indicates that the input SAS data set file is to be loaded
from the remote SAS Workspace Server host.

Stream Parameters This area provides fields for modifying the stream parameter specifications that
control how the stream of observations from the Observation Source block is prepared.
The field Lazy Loading is Boolean. If the Lazy Loading field is false, then the input
data set file has to be loaded at the start of simulation. Otherwise, the data file is loaded
only when its contents are needed during simulation.

Reset Sampling at Update This option resets the current data set back to the first observation when a true
Boolean value is received at the InUpdate port. If the InDataPolicy port is also connected
and a new data set is specified, then the new data set starts at the beginning with the first
observation if the Reset Sampling at Update option is selected.

Candidates for Design of Experiments

Factors DataStreamDescription (string), InputDataPolicy (string), ResetStreamAtUpdate
(Boolean)

The format for specifying the value of the InputDataPolicy factor is as follows:

File Path==filePathValue

where filePathValue is the path name plus file name for the SAS data set or JMP
table. Quotation marks are not required around the filePathValue string value. The format
for specifying the value of the DataStreamDescription factor is as follows:
Lazy Loading==BooleanValue
where BooleanValue is either true or false.

Responses None

Stats Collector Block F 189

Stats Collector Block

Description

The Stats Collector block is used to calculate simple statistics on its incoming input data. You can define
as many data inputs on the block as needed using the Inputs table in the dialog box. A new input port is
created for each row in the Inputs table. You select which statistics you want to compute using the Statistics
Selection hierarchy provided on the Properties tab. The Stats Collector block creates an output data model
object to hold the computed statistics with one row for each input and one column for each selected statistic.
This data model object can be accessed through the block’s OutStatistics port.

In the Inputs table you can choose to have the statistics associated with an input entry computed as time-
weighted statistics by checking the Time Persistent check box in the corresponding table entry. You can
store the individual data values associated with a specific input port in a data model object for later access by
selecting the DataModel Port option in an Inputs table entry. An individual output port is created for each
DataModel Port selection.

You choose the statistics you want to be computed from the Statistics Selection hierarchy. By default, the
Stats Collector block calculates the statistics at the end of each design point replication run. You can use
the InSignal port to force a statistics calculation during a simulation run. You can also use the InClearData
port to clear all accumulated data at any point during the simulation run. Both of these ports expect Boolean
values as inputs.

The Stats Collector block can store the statistics it calculates using its data collection facility. This data can
be saved to a SAS data set or JMP table and can also be passed to other Simulation Studio blocks. Values are
stored in a data model object, and you can access the data model object through the block’s OutStatistics port.

Properties Dialog Box Controls

Add Adds a new input entry to the Inputs table.

Remove Deletes an input entry that has been selected from the Inputs table.

Apply All entries in the Inputs table are pushed to the Stats Collector block, and input ports
(and output ports) are created or deleted as needed. Statistic selections are pushed to the
Stats Collector block.

190 F Appendix A: Templates

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design point
replication run. If automatic saving is turned on, data are saved to a file with the base file
name specified in the Base File Name field. Simulation Studio automatically determines
the pathname of the folder for this file based on the pathname of the folder that contains
your saved project. If the Submit to Remote SAS Workspace Server option is selected,
any collected statistics are saved to a file on a remote SAS server. Simulation Studio
automatically determines the pathname of the folder for this file on the remote SAS server
by using the Default File Path specified in the Simulation Studio Configuration dialog
box.

Save Now Forces the Stats Collector block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected data.

Base File Name Specifies the base file name for the SAS data set or JMP table that is used to save any
collected data. This name will be the prefix of the actual file name. The zero-based index
of the design point and the zero-based index of the replication number will be added as
suffixes to the file name, separated by underscore characters. For example, the data for the
first replication of the first design point will be saved in a file named BaseFileName_0_0,
and the data for the second replication of the first design point will be saved in a file
named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

Queue Stats Collector Block

Description

The Queue Stats Collector block accumulates statistics generated by Queue blocks in your model. In the
properties dialog box associated with the Queue Stats Collector block, you can select from a list of available
Queue blocks from which you want to collect statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication run.
Options are provided to collect statistics on a continuous basis (whenever the statistics change) or to force an
instantaneous update of the statistics.

Queue Stats Collector Block F 191

The Queue Stats Collector block uses its data collection facility to store values it collects. The statistics
can be saved to a SAS data set or JMP table. The statistics are stored in a data model object, which can
be accessed through the block’s OutData port. To visualize the statistics, you can connect a display block
(such as the Bar Chart block) to the OutData port. Any block connected to the OutData port is automatically
notified when the statistics in the data model object are modified.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected up to that time during the simulation execution. If the InClearData port receives a false value, the
signal will be ignored and data will not be cleared.

Fixed Ports

OutData Output port for the latest updated data model object that contains the statistics held by the
Queue Stats Collector block.

ResultLocation Output text port for the pathname of a folder that contains the output data set, if the Queue
Stats Collector block is configured to save its statistics.

InClearData Input Boolean port that is used to clear all collected data.

Attributes Dialog Box Controls

You use the hierarchical check-box tree to choose Queue blocks in the simulation model from which you want
to collect statistics. The leaf nodes in the tree represent Queue blocks in the model, whereas the intermediate
tree nodes represent compound blocks or submodels, which can contain one or more Queue blocks. Selecting
the check box for a Queue block designates that block as a target for statistic collection.

Continuous Collection Turns on or off statistics collection during a simulation run whenever a monitored
block changes state. If Continuous Collection is not selected, then statistic collection will
only occur at the end of the run.

Now Forces the Queue Stats Collector block to attempt an immediate collection of any statistics.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Save Now Forces the Queue Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
statistics.

192 F Appendix A: Templates

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to
save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0_0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

Server Stats Collector Block

Description

The Server Stats Collector block accumulates statistics generated by Server blocks in your model. In the
properties dialog box associated with the Server Stats Collector block, you can select from a list of available
Server blocks from which you want to collect statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication run.
Options are provided to collect statistics on a continuous basis (whenever the statistics change) or to force an
instantaneous update of the statistics.

The Server Stats Collector block uses its data collection facility to store statistics it collects. The statistics
can be saved to a SAS data set or JMP table. The statistics are stored in a data model object, which can
be accessed through the block’s OutData port. To visualize the statistics, you can connect a display block
(such as the Bar Chart block) to the OutData port. Any block connected to the OutData port is automatically
notified when the statistics in the data model object are modified.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected up to that time during the simulation execution. If the InClearData port receives a false value, the
signal will be ignored and data will not be cleared.

Fixed Ports

OutData Output port for the latest updated data model object that contains the statistics held by the
Server Stats Collector block.

Server Stats Collector Block F 193

OutResultLocation Output text port for the pathname of a folder that contains the output data set, if the
Server Stats Collector block is configured to save its statistics.

InClearData Input Boolean port that is used to clear all collected data.

Attributes Dialog Box Controls

You use the hierarchical check-box tree to choose Server blocks in the simulation model from which you want
to collect statistics. The leaf nodes in the tree represent Server blocks in the model, whereas the intermediate
tree nodes represent compound blocks or submodels, which can contain one or more Server blocks. Selecting
the check box for a Server block designates that block as a target for statistic collection.

Continuous Collection Turns on or off statistics collection during a simulation run whenever a monitored
block changes state. If Continuous Collection is not selected, then statistic collection will
only occur at the end of the run.

Now Forces the Server Stats Collector block to attempt an immediate collection of any statistics.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Save Now Forces the Server Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
statistics.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to
save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0_0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

194 F Appendix A: Templates

Resource Stats Collector Block

Description

The Resource Stats Collector block accumulates statistics for resource entities in your model. In the Block
Properties dialog box that is associated with the Resource Stats Collector block, you specify the resources
for which you want to collect statistics and the types of statistics you want to collect. Statistics are gathered
on a continuous basis (whenever the statistic changes). The Resource Stats Collector block is very flexible
and enables you to base definitions of groups of resource entities on both entity type and Boolean rules for
attribute values. You define statistics that are based on certain criteria for each group of resource entities.
Possible criteria include whether the resource entities in the group are seized, whether the resource entities in
the group are in a particular resource state, and whether the attribute values of the resource entities in the
group satisfy a particular Boolean expression. For example, you could define a statistic named “utilization”
that computes a statistic of type %AvgAvail that has the criterion Seized=TRUE. The result would be
the percentage of time that the resource entities in the defined group are seized (“busy”), relative to the
time-averaged number of available resource units in the group during the simulation run.

The Resource Stats Collector block uses its data collection facility to store values it collects. The statistics
can be saved to a SAS data set or JMP table. The statistics are stored in a data model object, which can
be accessed through the block’s OutData port. To visualize the statistics, you can connect a display block
(such as the Bar Chart or Table block) to the OutData port. Any block connected to the OutData port is
automatically notified when the statistics in the data model object are modified.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected up to that time during the simulation execution. If the InClearData port receives a false value, the
signal will be ignored and data will not be cleared.

Fixed Ports

OutData Output port for the latest updated data model object that contains the statistics held by the
Resource Stats Collector block.

InClearData Input Boolean port that is used to clear all collected data.

Groups Dialog Box Controls

Use the Groups table to define the groups (collections of resource entities) for which you want to collect
statistics. Each group is represented by a single row in the Groups table. For each group, you can set criteria
(columns in the Groups table) to restrict the resources included in the group.

Add Defines a new group for which to collect statistics. Each group represents one
observation (row) in the collected data. A group has the following properties:
Name, Entity Types, and Attribute Rule. You can edit each property directly
in the Groups table.

Resource Stats Collector Block F 195

� Name specifies a name for the group of resource entities. This name appears
as the first variable in the observation, with the title GroupName.

� Entity Types (optional) restricts the group to include only those resource
entities that have a particular entity type.

� Attribute Rule (optional) restricts the group to include only those resource
entities that satisfy the specified Boolean expression for their attributes.
You can type the expression in the Attribute Rule field, or you can right-
click on the Attribute Rule field and select the Edit option to open the Edit
Expression window. For more information about how to write the Boolean
expression, see Appendix F, “Expressions.”

If Entity Types and Attribute Rule are left blank, all resource entities in your
model are included in the group.

Remove Removes the selected groups from the collected data.

Statistics Dialog Box Controls

You use the Statistics table to name and define the statistics to be gathered for the defined groups. Each
statistic is represented by a single row in the Statistics table. For each statistic, you set properties (columns
in the Statistics table) that define the rules for how the statistic is calculated. Specifically, the Seized, State,
and Attribute Rule fields define the resource entity criteria that are used in calculating the statistic.

Resource entities contain resource units, as specified in the ResourceUnits attribute field. A resource entity
can represent multiple resource units. The total number of available units of a resource in a group is the sum
of the ResourceUnits attribute values for all resource entities in the group. A resource entity must meet all
of the specified criteria in order for its associated resource units to be included in the computation of the
statistic.

Add Defines a new statistic in the collected data model. Each statistic represents
one variable (column) in the collected data model. A statistic has the following
properties: Name, Statistics, Seized, State, and Attribute Rule. You can edit
each property directly in the Statistics table.

� Name specifies the name of the statistic in the data model object.

� Statistics specifies how to calculate the statistic for each defined resource
entity group. The following definitions are used in the statistics descriptions:
N.t/ is the total number of resource units in the group at time t, S.t/ is
the number of resource units in the group whose associated resource entity
satisfies the criteria at time t, and T is the simulation run length.

– %AvgAvail is the percentage of time that the resource units in a group
meet the specified criteria relative to the time-averaged number of
available resource units in the group during the simulation run. The
statistic is computed as a ratio of two time-averaged statistics. The
denominator of this ratio is computed as

R
N.t/=T and the numerator

of the ratio is computed as
R
S.t/=T so that the statistic

%AvgAvail=
R
S.t/=

R
N.t/.

196 F Appendix A: Templates

– TimeAvg is the time-weighted average of the total number of re-
source units in the group that satisfy the specified criteria: TimeAvg =R
S.t/=T .

– Current is the proportion of resource units in the group that meet the
criteria for the statistic, relative to the number of available resource
units at time t: Current=S.t/=N.t/. At the end of a design point
replication, Current equals the proportion of resource units in the
group that meet the criteria for the statistic when the design point
replication ends. This statistic is particularly useful as an indication
of how the proportion of resource units that meet the criteria changes
with time.

– Min is the minimum value of the Current statistic.
– Max is the maximum value of the Current statistic.
– Count is the current number of resource units in the group whose

associated resource entity meets the criteria for the statistic. At the end
of a design point replication, it holds the number of resource units in
the group that meet the criteria for the statistic when the design point
replication ends.

Seized, State, and Attribute Rule are the resource criteria used in calculating
the statistic. A resource entity must meet all of the specified criteria in order for
its resource units to be included in the statistic.

� For the Seized criterion, false means a resource entity is available in a
resource pool, true means a resource entity is not available in a resource
pool, and an empty value means a resource entity can be either seized or
unseized.

� For the State criterion, you can specify that a resource entity must have
a particular state. Valid values are Functional, Failed, Maintenance, and
Offlined. An empty value means a resource entity can be in any state.

� For the Attribute Rule criterion, you can specify that a resource entity’s
attribute values satisfy a Boolean expression. For more information about
how to write the Boolean expression, see Appendix F, “Expressions.” An
empty value means a resource entity’s attributes can have any value.

Remove Removes the selected statistics from the collected data.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Dataset Holder Block F 197

Save Now Forces the Resource Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
statistics.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to
save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0_0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

Dataset Holder Block

Description

The Dataset Holder block serves as a holding facility for a data model object, whose contents resemble those
of a SAS data set or JMP data table. During a simulation run, the data contents (including data cell values
and observation objects) can be pulled through query output ports.

Custom query output ports can be configured for the Dataset Holder block to allow either the data cell values
or the observation objects to be pulled from the block, based on a set of output query criteria. When a pull
request arrives at an output port, the Dataset Holder block applies the output query criteria associated with
that port to the data contents it is currently holding. The resulting value or observation object is then passed
out the output port.

The Dataset Holder block also supports dynamic located queries with dynamic row or column index values
(or both) that are not prespecified. When a dynamic query output is pulled and its output processing is
activated at simulation time, the needed index values are pulled dynamically through the InRow or InColumn
port (or both).

198 F Appendix A: Templates

Fixed Ports

InData Input data port for the entering data model object.

OutData Output data port for accessing the data model object held in the Dataset Holder block.

InUpdateNow Input Boolean port that forces the Dataset Holder block to pull a data model object from
the first (zero-ordered) link connected to its InData port when a value of true is passed in.

InRow Input number port for dynamically providing the row index, if needed, of a leaving query
output object.

InColumn Input number port for dynamically providing the column index, if needed, of a leaving
query output object.

Dialog Box Controls

Query Outputs The Query Outputs table defines the value or observation query output ports for the
Dataset Holder block. Each output port has an associated name and set of query criteria
that determine the result of the query to be pulled from the port. Click Add Query to add
a new row to the Query Outputs table that represents a new output port. The column
values for the new row can be edited directly in the table.

� Port Name uniquely names the query output port for the Dataset Holder block.

� Target Type specifies the value type for the query outputs to be pulled from the
port.

� Row Index optionally specifies the observation (row) index of the query output to
be pulled from the port. If the observation index is not specified, the index can be
pulled from the InRow port dynamically every time the output port is pulled.

� Column Index specifies the variable (column) index of the query output to be pulled
from the port. If the variable index is not specified, its actual value can be pulled
from the InColumn port dynamically every time the output port is pulled.

Click Remove Query to remove the selected rows from the Query Outputs table, indi-
cating that the corresponding query output ports should be removed.

Apply Saves all information to the Dataset Holder block, creating or removing query output
ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Dataset Writer Block F 199

Dataset Writer Block

Description

The Dataset Writer block saves the contents of a data model object as either a SAS data set or JMP data table
during a simulation run.

The data saving operation is triggered by a saving signal to the InSaveNow port. The data model to output
can be pushed into the Dataset Writer block through the InData port before the saving signal arrives.

When a true Boolean value arrives at the InSaveNow port, it is used as a signal to save the contents of the
data model object that is currently provided to the Dataset Writer block. If the data model has never been
provided before the saving signal arrives, the Dataset Writer block attempts to pull a data model to save after
receiving the saving signal.

If the InSaveNow port receives a false value, the signal is ignored and data are not saved.

The output file location can be specified statically before simulation using the Save dialog box. It can also be
dynamically generated and pushed into the Dataset Writer block during simulation through the InPolicy port.

Fixed Ports

InData Input data port for an entering data model object.

InSaveNow Input Boolean port for saving the current data model to an output file. If the data model is
not available yet, the Dataset Writer block pulls a data model object from the first link
that connects to the InData port before saving.

InPolicy Input string port for dynamically providing the output file location, if needed, for the
current data model object.

Save Dialog Box Controls

Automatic Save Turns on or off the automatic saving of any data in the existing data model at the end
of each design point replication run. If automatic saving is turned on, data are saved to
a file with the base filename specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the pathname of
the folder that contains your saved project. If the Submit to Remote SAS Workspace
Server option is selected, any collected data are saved to a file on a remote SAS server.
Simulation Studio automatically determines the pathname of the folder for this file on
the remote SAS server by using the Default File Path specified in the Simulation Studio
Configuration dialog box.

200 F Appendix A: Templates

Save Now Forces the Dataset Writer block to immediately attempt to save any data in the existing
data model. Data are saved to the same location as when automatic saving is turned on.

Location Displays the pathname for the file in which to save any data in the existing data model.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used to save any data
in the existing data model.

If the saving operation is triggered by a saving signal during a simulation replication
run, this name or the filename from InPolicy port is the actual filename. At the end of
the replication, if the Automatic Save option is enabled, this name is the prefix of the
actual filename. The zero-based index of the design point and the zero-based index of
the replication number are added as suffixes to the filename, separated by underscore
characters. For example, the data for the first replication of the first design point is saved
in a file named BaseFileName_0_0, and the data for the second replication of the first
design point is saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

Data Trimmer Block

Description

You can use the Data Trimmer block to notify data collection blocks (such as the Bucket, Probe, Stats
Collector, and Number Holder blocks) to clear or reset their accumulated data during a simulation run. The
accumulated data for a particular block can be in the form of individual data values or computed statistics.
For some blocks (such as the Number Holder block), the reset also causes the block’s Current Value to
reset to the block’s Default Value. You select which data collection blocks you want to notify for trimming
(clearing) by using a hierarchical check-box tree that displays potential block targets.

When a true Boolean value arrives at the InTrimNow port of the Data Trimmer block, it is used as a signal to
notify the targeted data collection blocks to clear or trim their data. If the InTrimNow port receives a false
value, then the signal is ignored.

Fixed Ports

Histogram Block F 201

InTrimNow Input Boolean port that triggers the data trimming operation in the targeted data collection
blocks.

Properties Dialog Box Controls

Targets Provides a hierarchical check-box tree to display and choose data collection blocks in the
simulation model to be targeted for trimming during simulation execution. The leaf nodes
in the tree represent specific data collection blocks in the model, whereas the intermediate
tree nodes represent compound blocks or submodels, which can contain one or more data
collection blocks. Selecting the check box for a data collection block designates that block
as a target for trimming by the Data Trimmer block during simulation execution.

Candidates for Design of Experiments

Factors None

Responses None

Histogram Block

Description

The Histogram block creates a visual estimate of the distribution of data from a discrete or continuous
variable. The range of the variable is divided into a certain number of subintervals (bins). The height of
the bar in each bin is proportional to the number of data points that have values in that bin. The Histogram
block expects a data model object as input via its InData port. Some examples of blocks that can produce a
data model object as output are the Bucket, Number Holder, and Stats Collector blocks. You must supply
the name of the variable from the data model object to be used to construct the histogram bins or bars.
Context-sensitive pop-up menus are available on the plot for manipulating various aspects of the plot such as
axis scaling; right-click on the histogram display to access these menus.

Fixed Ports

InData Input data port for a data model object to enter the block.

202 F Appendix A: Templates

Properties Dialog Box Controls

Name Specifies the name of the variable from the data model object to use to create the histogram.

Candidates for Design of Experiments

Factors None

Responses None

Bar Chart Block

Description

The Bar Chart block graphically depicts the distribution of data from a discrete variable. The height of each
bar represents the frequency, which is either the number of data points in each category or the sum of the
attribute values of a particular attribute in each category. The Bar Chart block expects a data model object as
input via its InData port. Some examples of blocks that can produce a data model object as output are the
Bucket, Number Holder, and the Stats Collector blocks. You must supply the names of the X and Frequency
(optional) variables from the data model object to be used to construct the bar chart display. Context-sensitive
pop-up menus are available on the plot for manipulating various aspects of the plot such as axis scaling;
right-click on the bar chart display to access these menus.

Fixed Ports

InData Input data port for a data model object to enter the block.

Properties Dialog Box Controls

Variables X specifies the name of the variable from the data model object used to categorize data
on the X axis. Frequency specifies the value to show on the Y axis for each category.
You can choose By Count to calculate frequency as the total number of items in each
category. Alternatively, you can choose By Variable to calculate frequency as the sum of
a particular Variable for all items in each category.

Scatter Plot Block F 203

Candidates for Design of Experiments

Factors None

Responses None

Scatter Plot Block

Description

A Scatter Plot block displays a graphical representation of the relationship between two variables. The Scatter
Plot block expects a data model object as input via its InData port. Some examples of blocks that can produce
a data model object as output are the Bucket, Number Holder, and the Stats Collector blocks. You must
supply the names of the X and Y variables from the data model object to be used to construct the scatter plot
display. Context-sensitive pop-up menus are available on the plot for manipulating various aspects of the plot
such as axis scaling; right-click on the scatter plot display to access these menus.

Fixed Ports

InData Input data port for a data model object to enter the block.

Properties Dialog Box Controls

Variables Specifies the names of the X and Y variables from the data model object to use to create
the scatter plot.

Candidates for Design of Experiments

Factors None

Responses None

204 F Appendix A: Templates

Box Plot Block

Description

The Box Plot block is a schematic summary of the distribution of data from a continuous numeric variable.
The central line in a box plot indicates the median of the data, and the bottom and top of the box indicate
the first and third quartiles (that is, the 25th and 75th percentiles). Extending from the box are whiskers that
represent data that are a certain distance from the median. Beyond the whiskers are outliers—observations
that are relatively far from the median.

The Box Plot block expects a data model object as input via its InData port. Some examples of blocks that
can produce a data model object as output are the Bucket, Number Holder, and the Stats Collector blocks.
You must supply the name of the Y variable from the data model object to be used to construct the box plot
display. Optionally you can also provide the name of a variable to be used as a group variable for producing
individual box plots for each unique category found in the group variable. Context-sensitive pop-up menus
are available on the plot for manipulating various aspects of the plot such as axis scaling; right-click on the
scatter plot display to access these menus.

Fixed Ports

InData Input data port for a data model object to enter the block.

Properties Dialog Box Controls

Variables Specifies the name of the Y variable from the data model object to use to create the
box plot. Optionally you can select the Use Groups option and provide the name of the
Group variable from the data model object to use to create multiple box plots.

Candidates for Design of Experiments

Factors None

Responses None

Comment Block F 205

Table Block

Description

The Table block displays a tabular representation of a data model. The Table block expects a data model
object as input via its InData port. Some examples of blocks that can produce a data model object as output
are the Bucket, Number Holder, and the various Stats Collector blocks.

Fixed Ports

InData Input data port for a data model object to enter the block.

Candidates for Design of Experiments

Factors None

Responses None

Comment Block

Description

The comment block is used to hold text comments that describe the model or a portion of the model. This
block is for visual purposes only and has no effect on running the model.

To enter or edit the comment, first click on the icon in the upper left corner in order to activate the comment
block. Then click in the editor area to activate the editor.

The comment can contain multiple lines of text, and it can be resized by clicking and dragging any edge or
corner while the comment is active for editing.

Candidates for Design of Experiments

Factors None

Responses None

206 F Appendix A: Templates

Overview of the Resource Template
The Simulation Studio Resource template provides a collection of blocks used to manipulate resources in a
simulation model.

Seize Block

Description

The Seize block obtains resource entities from resource holding blocks (for example, Resource Pool blocks)
and allocates them to a controlling entity. The controlling entity must have acquired all the required resources
before it can pass through the Seize block.

The required resources are specified by one or more resource constraints. Each resource constraint is defined
in the Seize block’s Constraints properties dialog box table and is associated with an input resource entity
port on the block. The input resource ports are meant to be connected to resource holding blocks. When
a controlling entity attempts to enter a Seize block, the resource constraints associated with all resource
ports are checked for availability. If all needed resources are available, they are pulled from the resource
input ports and allocated to the controlling entity. If any of the resource constraints cannot be satisfied, the
controlling entity is not allowed to enter the block.

The Input Variables table can be used to define variables that can be used in the Constraints table.

The InFocusedResources port, if connected, can be used to provide a reference group of resource entities as
the initial set of the resources to be examined and seized from resource input ports. If no qualified resources
are found among these focused resources to satisfy a resource constraint, the Seize block attempts to look for
other resources to seize from the resource holder blocks connected to the input resource entity ports.

Fixed Ports

InEntity Input entity port for entering controlling entities.

OutEntity Output entity port for exiting controlling entities.

InFocusedResources Input entity group port for pulling the references of a group of resource entities to
be used as initial resource entity candidates to seize from the resource input ports.

Seize Block F 207

Input Variables Dialog Box Controls

The Input Variables dialog box enables you to specify the table entries for input variables. Variables defined
in the Input Variables table can be used to define constraints in the Constraints table.

Add Adds a new input variable (with a default name) to the Input Variables table and creates
a new input value port on the Seize block. Each field of an input variable can be edited
directly in the table.

� The Name field of the entry specifies the name of the variable and the name of its
associated input port. You can use the input port during the simulation execution to
dynamically assign a value to the input variable. For example, an Extractor block
could be connected to the input port to extract an attribute from the controlling entity
to be used as the value of the input variable.

� The ValueType field specifies the input variable value type. The type can be number,
string, or Boolean.

� The optional Default Value field specifies the value that will be used in the case
where there is no connection to the input port associated with the variable.

Remove Deletes an input variable that has been selected from the Input Variables table.

Constraints Dialog Box Controls

You can specify the table entries for input resource entity ports and associated resource constraints in the
Constraints dialog box.

Add Adds a new resource port (with default values for its fields) to the Constraints table. Each
field can be edited directly in the table.

� The PortName field of the entry is the name of the input resource entity port to use
when attempting to seize a resource entity for use by a controlling entity.

� The Units field specifies the desired amount of resource units in the resource to be
seized using the port. Its default value is 1. If the Units field is left blank, a numeric
port is created, from which the Seize block dynamically pulls the units value for the
current controlling entity during simulation.

� The Separable flag indicates whether the needed resource units can be provided by
two or more resource entities jointly.

� The optional Attributes field can be used to specify a Boolean expression that includes
attribute values for the targeted resource entities. You can type the expression in the
Attributes field, or you can right-click on the Attributes field and select the Edit option
to open the Edit Expression window. For more information about how to write the
Boolean expression, see Appendix F, “Expressions.”

� The optional Entity Type field specifies the type of the resource entity to be seized.

The optional fields are available by clicking the down arrow next to the Constraints table.

Remove Deletes the selected resource ports from the Constraints table.

Apply All entries in the Constraints table are saved to the Seize block. Input value and resource
entity ports are created or deleted as needed.

208 F Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Release Block

Description

The Release block releases resource entities from a controlling entity as the controlling entity passes through
the block.

The released resources are specified by one or more resource constraints. Each resource constraint is
associated with an output resource port defined in the ResourcePorts properties dialog box table. When a
controlling entity enters the block, the resource constraints associated with all resource ports are checked for
matches. If matched resources are found, they are released from the controlling entity and pushed through
the corresponding resource output ports. If a matched resource cannot flow out through the corresponding
output resource port, the resource remains with the controlling entity.

Fixed Ports

InEntity Input entity port for entering controlling entities.

OutEntity Output entity port for exiting controlling entities.

Properties Dialog Box Controls

Add port Adds a new resource port (with default values for its fields) to the ResourcePorts
table. Each field can be edited directly in the table.

� The PortName field of the entry is the name of the output resource entity
port to use to release a resource entity from a controlling entity.

� The Units field specifies the desired amount of resource units in the resource
to be released from the controlling entity. Its default value is blank, which
allows any resource that satisfies the other constraints to be released.

� The Splittable flag indicates whether the desired resource units can be
obtained by splitting a resource with more units than desired.

Resource Pool Block F 209

� The Separable flag indicates whether the desired resource units can be
provided by two or more resource entities jointly.

� The optional Attributes field can be used to specify a Boolean expression
that includes attribute values for the targeted resource entities. You can
type the expression in the Attributes field, or you can right-click on the
Attributes field and select the Edit option to open the Edit Expression
window. For more information about how to write the Boolean expression,
see Appendix F, “Expressions.”

� The optional Entity Type field specifies the type of the resource entity to
be released.

The optional fields are available by clicking the down arrow next to the Resour-
cePorts table.

Remove port Deletes the selected resource ports from the ResourcePorts table.

Apply All entries in the ResourcePorts table are saved to the Release block, and output
resource entity ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Resource Pool Block

Description

The Resource Pool block accepts and maintains unseized resource entities. These resource entities can be
seized later by other blocks. The Resource Pool block also processes resource requests from other blocks (a
Seize block, for example) that can result in a distribution of unseized resource entities from the Resource
Pool block.

A resource entity is considered unseized if it resides in a resource pool. Once it leaves a resource pool (and
is not directly held by any other resource pool), it is treated as seized. Any newly created resource entity
(generated outside a resource pool) is also considered unseized, even if it has not yet entered a Resource Pool
block.

210 F Appendix A: Templates

The Resource Pool block manages resource entities as objects. More than one type of resource entity can be
maintained by an individual resource pool. The number of resource entity objects in a Resource Pool block
can be monitored using its OutLength port. The Resource Pool block can also manage compatible resource
entities with its merging/splitting units option.

To process a resource request from another block, the Resource Pool block chooses resource entities (from
those it is maintaining) with enough units to satisfy the capacity needs of the request. Sometimes, resource
entities with more units than are requested are chosen and distributed.

When the merging/splitting units option is enabled, the Resource Pool block can split resource units held in a
resource entity currently in the resource pool into smaller units to satisfy a request and assign the smaller
units to new resource entities. The new resource entities created by the Resource Pool block have the same
entity type and attribute values as the existing resource entity, but are assigned the smaller resource units. The
new resource entities are then distributed out of the resource pool. The original resource entity remains in the
pool, even if its capacity reaches zero units after splitting. Similarly, when a resource entity enters the pool,
its units can be merged into a compatible resource entity currently in the pool. The newly arrived resource
entity is disposed and ceases to exist as an object in the simulation run. To be considered compatible resource
entities, the resource entities must first be of the same entity type; in addition, you can specify optional key
attribute fields to use for merging resources. Units merging between resource entities can take place only if
their entity types and all of their key attribute fields, if any, match.

Fixed Ports

InEntity Input entity port for entering resource entities.

OutEntity Output entity port for exiting resource entities

OutLength Output integer port for the number of resource entity objects currently in the pool.

Units Dialog Box Controls

Merge / split resource units among resource entities of same types Turns on or off optional merging
and splitting of resource units.

Key Entity Attribute Fields for Merging Units Specifies optional key attribute fields to use during the
units merging process when the merge/split units check box is checked.
There are two ways to specify key attribute fields for a resource entity type. For
specific entity types, the key field table can be used to list key fields for any
specific resource entity type. Each entry in the table contains a Resource Entity
Type value and the corresponding Key Attribute Field. The latter lists either
one attribute name or multiple comma-separated attribute names. You can create
a new entry by clicking Add beside the table. Entries can be deleted from the
table by selecting the entry rows in the table and then clicking Remove.
For any unspecified resource entity types, you can either choose the key attribute
fields to be All adjustable fields or use No key fields. In the latter case, different
resource entities are considered compatible for merging if and only if they are of
the same resource entity type. In the former case, all adjustable attribute fields
must match as well.

Resource Scheduler Block F 211

ResourceQueue Dialog Box Controls

Queueing Policy Specifies the queueing policy for the queue used internally by the Resource Pool
block. For more information, see the Queueing Policy control in the section
“Queue Block” on page 137.

Candidates for Design of Experiments

Factors QueueingPolicy (string)
For more information, see the Queueing Policy design-of-experiment factor in the section
“Queue Block” on page 137.

Responses None

Resource Scheduler Block

Description

The Resource Scheduler block arranges and performs sequences of resource adjustments on targeted resource
entities. The description of an adjustment sequence is specified in a resource agenda object received
through the InAgenda port from an agenda provider (for example, a Resource Agenda block). Using the
properties dialog box controls, you can schedule an appointment with various scheduling options to request
that the Resource Scheduler block process a resource agenda. The Resource Scheduler block activates its
appointments and conducts the resource adjustment sequences in the corresponding resource agendas based
on the scheduling options during a simulation run.

When all the adjustment actions within the sequence of an activated appointment are performed and the
resulting changes pass their respective duration periods, the current processing of the appointment by the
Resource Scheduler block is considered finished.

If needed, the Resource Scheduler block can activate multiple appointments and process their respective
sequences of resource adjustments at the same time.

In addition to the appointments scheduled through the properties dialog box controls, you can use resource
scheduling entities to request that a Resource Scheduler block process resource agendas dynamically through
the InRequest port during a simulation run. The resource scheduling entity is a special type of resource entity
that is defined and generated by either a Resource Scheduler block or an Entity Generator block.

212 F Appendix A: Templates

Fixed Ports

InAgenda Input object port to receive a resource agenda object.

InRequest Input entity port to receive resource scheduling entities to dynamically schedule resource
adjustments.

OutRequest Output entity port for resource scheduling entities to leave the block.

OutBalk Output entity port for resource scheduling entities that cannot leave through the OutRe-
quest port.

Appointments Dialog Box Controls

Add Adds a new appointment entry (with default values) to the Appointments table. The
appointments in the table are used as the initial set of appointments to be processed by
the Resource Scheduler block during a simulation run. Each appointment entry has the
following fields:

� Start Time specifies the time to activate the adjustment sequence listed in the
specified agenda.

� Agenda specifies the identifier of the agenda to use for the appointment.

� To Repeat specifies whether to repeat the appointment at a later time. When the
Resource Scheduler finishes an appointment and the To Repeat option is selected
and the OutRequest port is not connected, the block automatically reschedules the
appointment with the current simulation time as the new start time. Otherwise,
the block sends a resource scheduling entity out through its OutRequest port for
that repeating appointment. This entity can be sent to the InRequest port of any
Resource Scheduler block to repeat the appointment at a different time. The resource
scheduling entity has a numeric StartTime attribute field, an object Agenda attribute
field, and a Boolean ToRepeat attribute field that you can adjust dynamically for
complicated scheduling needs. If the current simulation time exceeds the start
time value in a newly arrived scheduling entity, then the repeating appointment is
activated immediately with the current simulation time as the start time value.

� Immediate Actions contains three check boxes that specify the immediate actions
taken by the Resource Scheduler block when it processes a resource agenda entry.
The Adjust Resources check boxes specify when a resource entity adjustment
(either capacity or state change) should occur, depending on whether that entity
is unseized or seized at the time of the scheduled adjustment. In the description
that follows, specific terminology is used to distinguish certain groups of resource
entities for a particular resource unit adjustment action. Potential targets are resource
entities in the functional state that satisfy the requirements specified in the Entity
Type and Attribute Rule fields. Not all potential targets are necessarily adjusted.
Targets are resource entities from the set of potential targets that have been selected
for adjustment. The selection of a resource entity to be a target depends on several
factors, including the Adjust Units By rule and an “unseized first” heuristic, which
means the scheduler always attempts to adjust unseized resource entities before
seized resource entities.

Resource Scheduler Block F 213

– Unseized specifies when targeted unseized resource entities are adjusted. When
selected, any targeted unseized resource entities are adjusted immediately.
When not selected, any targeted unseized resource entities are adjusted after all
seized resource entities that are potential targets (that satisfy the Entity Type
and Attribute Rule specifications) return to a Resource Pool block and become
unseized.

– Seized specifies when targeted seized resource entities are adjusted. When
selected, any targeted resource entities that are currently seized are adjusted
immediately (seized resource entities are targeted only if there are remaining
units to adjust after targeting all available unseized entities). Whether the
adjustment is a capacity change or a state change, this could result in preemptive
changes that could trigger a preemption in a holding block where a seized
resource entity is located at the time of the adjustment. Preemption occurs if
either the OutPreempt or OutResource port on the holding block where the
adjusted seized entity is located is connected. Selecting the Seized option does
not guarantee that any seized resource entities will be adjusted. Seized entities
are identified to be adjusted only if there are not enough unseized entity units to
cover the scheduled adjustment. If the Seized option is not selected, then any
targeted, seized entities are adjusted after all seized resource entities that are
potential targets return to a Resource Pool block and become unseized.

– Advance Agenda causes the Resource Scheduler block to move on to process
the next agenda entry without waiting for all seized and unseized targets to
be adjusted for the current agenda entry. This could result in a shorter time
between actual resource adjustments than what is specified in the agenda. If the
Advance Agenda option is not selected, the Resource Scheduler block waits
for all seized and unseized targets to be adjusted before moving on to process
the next agenda entry. As a result, the time between resource adjustments could
be longer than the duration time specified in the resource agenda and could
delay other succeeding adjustments.

If a resource scheduling entity is used to dynamically process a resource agenda,
then you use the Boolean attribute fields named AdjustUnseized, AdjustSeized,
and AdvanceAgenda on the resource scheduling entity to specify the immediate
actions that the Resource Scheduler block should take.

� Search Targets By specifies the criteria used to identify a collection of resource
entities as the potential adjustment targets of the appointment. Not all resource enti-
ties that satisfy the Entity Type and Attribute Rule specifications are necessarily
selected for adjustment. The resource entities from the group of potential targets
that are actually adjusted depends on several factors, including the Adjust Units By
rule and an “unseized first” heuristic, which means the scheduler always attempts to
adjust unseized entities before seized entities.

– Entity Type identifies the type of resource entities to adjust.
– Attribute Rule specifies a filtering rule that the resource entities must satisfy.

The rule is a Boolean expression that includes attribute values of a resource
entity that must evaluate to true for the entity to be considered as a potential
adjustment target. You can type the expression in the Attribute Rule field, or
you can right-click on the Attribute Rule field and select the Edit option to

214 F Appendix A: Templates

open the Edit Expression window. For more information about how to write the
Boolean expression, see Appendix F, “Expressions.”

If a resource scheduling entity is used to dynamically process a resource agenda,
then you use the TargetSearchRule attribute field to specify the criteria to identify
a collection of resource entities as the potential adjustment targets. The Target-
SearchRule attribute is of the type object; an example of the format follows:
Entity Type== Doctor; Attribute Rule== “Specialty==1 || Specialty==2”
If necessary, you can specify only the Entity Type or only the Attribute Rule part
of the TargetSearchRule object. Double quotation marks are optional around the
Entity Type and Attribute Rule values.

� Adjust Units By specifies the policy used to allocate or deallocate resource units
among targeted resource entities when there is a scheduled resource adjustment. In
the following description, a potential target is a resource entity that satisfies the
Entity Type and Attribute Rule specifications. There are three policies to select
from:

– FairIntegerBased indicates that any adjustment to the units of a resource entity
is made on an integer basis (integrally) and that any fractional resource units are
ignored. If there is an increase in resource units, then those units are distributed
integrally and as evenly as possible among all unseized resource entities that
are potential targets (the “unseized first” heuristic). If the set of potential targets
includes only seized resource entities and the Seized option in the Resource
Scheduler is selected, then the units are distributed integrally and evenly among
all targeted seized resource entities. If the set of potential targets includes only
seized resource entities and the Seized option is not selected, then the units
are assigned integrally and evenly among the targeted seized resource entities,
but the actual capacity increase for each resource entity does not occur until
all seized entities that are potential targets return to a Resource Pool block and
become unseized.
If there is a decrease in resource units, then the capacities of any unseized
resource entities that are potential targets are integrally and evenly reduced. If
there are not enough unseized resource units to cover the scheduled decrease
(that is, there is a balance after targeting unseized entities), then the capacities
of seized resource entities that are potential targets are integrally and evenly
reduced either immediately (if the Seized option is selected) or when all seized
resource entities that are potential targets return to a Resource Pool block and
become unseized (if the Seized option is not selected). The FairIntegerBased
policy is the default allocation policy.

– IntegerBased indicates that any adjustment to the units of a resource entity is
made on an integer basis (integrally) and that any fractional resource units are
ignored. If there is an increase in resource units, then those units are distributed
integrally and as evenly as possible among all unseized resource entities that
are potential targets (the “unseized first” heuristic). If the set of potential targets
includes only seized resource entities and the Seized option in the Resource
Scheduler is selected, then the units are distributed integrally and evenly among
all targeted seized resource entities. If the set of potential targets includes only
seized resource entities and the Seized option is not selected, then the units
are assigned integrally and evenly among the targeted seized resource entities,

Resource Scheduler Block F 215

but the actual capacity increase for each resource entity does not occur until
all seized resource entities that are potential targets return to a Resource Pool
block and become unseized. Note that in the case of an increase in units, the
IntegerBased option is the same as the FairIntegerBased option.
If there is a decrease in resource units, then the capacity of the first unseized
resource entity that is a potential target is integrally reduced. If the first targeted
unseized resource entity does not have enough resource units to cover the
capacity change, then a second unseized resource entity is targeted and its
resource units are integrally reduced, and so forth. If there are not enough
unseized resource units to cover the scheduled decrease, then the capacity of
the first seized resource entity that is a potential target is integrally reduced
either immediately (if the Seized option is selected) or when all seized resource
entities that are potential targets return to a Resource Pool block and become
unseized (if the Seized option is not selected). If the first targeted seized
resource entity does not have enough units to cover the capacity change, then
additional seized resource entities are targeted, one by one.

– FractionBased indicates that any adjustment to the units of a resource entity
could result in fractional units. If there is an increase in resource units, then
those units are distributed evenly among all unseized resource entities that
are potential targets. This could result in fractional resource units for some
targeted resource entities. If the set of potential targets includes only seized
resource entities and the Seized option in the Resource Scheduler is selected,
then the units are distributed evenly among all targeted seized resource entities,
possibly resulting in fractional units for some resource entities. If the set of
potential targets includes only seized resource entities and the Seized option
is not selected, then the units are assigned evenly among the targeted seized
resource entities, but the actual capacity increase for each resource entity does
not occur until all seized resource entities that are potential targets return to a
Resource Pool block and become unseized.
If there is a decrease in resource units, then the capacity of the first unseized
resource entity that is a potential target will be reduced, including any fractional
units. If the first targeted unseized resource entity does not have enough resource
units to cover the capacity change, then a second unseized resource entity is
targeted and its resource units are reduced, and so forth. If there are not enough
unseized resource units to cover the scheduled decrease, then the capacity of the
first seized resource entity that is a potential target is reduced either immediately
(if the Seized option is selected) or when all seized resource entities that are
potential targets return to a Resource Pool block and become unseized (if the
Seized option is not selected). If the first targeted seized resource entity does not
have enough units to cover the capacity change, then additional seized resource
entities are targeted, one by one. Note that the FractionBased policy and the
IntegerBased policy are the same except for the use of fractional resource
units. The FractionBased allocation policy is the default in versions before
Simulation Studio 14.1.

Remove Deletes the selected appointment entries from the Appointments table.

216 F Appendix A: Templates

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

Resource Agenda Block

Description

The Resource Agenda block holds a resource agenda that describes and organizes a series of resource
adjustment actions sequentially.

An adjustment action is a change to either the resource units or the resource state of one or more targeted
resource entities. Each action is specified as a resource agenda entry, which lists the change type and value,
in a resource agenda. The entry also lists a duration value to indicate how long the new value is expected to
be effective starting from the change time. An agenda organizes its entries based on a relative starting time of
0. The agenda can be used and activated by a resource scheduling facility, such as a Resource Scheduler
block, to schedule resource adjustments with an absolute starting time during a simulation run. The targeted
resource entities are identified by the scheduling facility at simulation time.

The Resource Agenda block also supports dynamic entries with dynamic durations or adjustment values or
both that are not prespecified. When a dynamic entry is activated by a resource scheduling facility to become
the current entry at simulation time, the dynamic values are pulled through the InDuration port or InValue
port or both.

Fixed Ports

InDuration Input numeric port to pull the dynamic duration value, if needed, of the agenda entry
being activated.

InValue Input numeric port to pull the dynamic adjustment value, if needed, of the agenda entry
being activated.

OutAgenda Output object port to provide an instance of the resource agenda held in this block.

OutCurrentEntry Output integer port for the zero-based index of the entry being activated.

Resource Agenda Block F 217

Properties Dialog Box Controls

ID Specifies a textual identifier for the agenda.

Entries Specifies the table of agenda entries.
You can create a new resource agenda entry by clicking Add beside the Entries
table. This results in a new agenda entry (with default values) being added to the
Entries table. You can edit the field values directly in the table:

� Duration specifies how long the result of the resource adjustment is ex-
pected to last.

� Value specifies the adjustment value.

� Value Type specifies the adjustment type, which is one of the following:

– UNITS indicates the adjustment of total resource units for targeted
resource entities. The adjustment value is the new units count, which is
a nonnegative number.

– UNITS_OFFSET indicates the adjustment of total resource units for
targeted resource entities by offsetting the current units. The adjustment
value is the units offset amount. A positive offset increases the units
count, and a negative offset decreases it. Because resource units should
never be negative, the maximum amount of units to decrease is the
existing units count.

– STATE indicates the adjustment of resource state for targeted resource
entities. The adjustment value is the new resource state, which can be
one of Functional, Failed, Maintenance, and Offlined.

To create a dynamic entry with a dynamic numeric value for duration or adjust-
ment value, erase the current contents of the Duration or Value field, leaving it
blank. If an agenda contains dynamic entries, it is recommended to limit its use
to only one resource scheduling facility to ease the modeling task of providing
the needed dynamic values. For the same reason, when your model uses the
transient entry index from the OutCurrentEntry port of a Resource Agenda block,
the modeling process might be easier if the agenda block provides its agenda to
only one resource scheduling facility.
You can delete agenda entries from the Entries table by selecting the entry rows
in the table and then clicking Remove.

Candidates for Design of Experiments

Factors None

Responses None

218 F Appendix A: Templates

Overview of the Output Analysis Template
The Simulation Studio Output Analysis template provides a collection of blocks used to analyze the output of
a simulation model.

Steady State Block

Description

The Steady State block provides an automated procedure for producing a confidence interval estimator for a
steady-state mean response in a nonterminating simulation model. The procedure is based on spaced batch
means (see Lada, Steiger, and Wilson 2008). You specify the precision and coverage-probability requirements
for the desired confidence interval. You can also specify whether the precision is relative or absolute. You
can use the Steady State block for both time-dependent and time-independent data.

The Steady State block requires a link to either its InData port or InValue port. If there are no connections to
either port, or if the connection is to its InData port and the Steady State block cannot pull a data model from
its InData port, then the block does not start. If you are using the InData port, then you use the properties
dialog box to specify the name of the data model variable that contains the numeric values to use to construct
a confidence interval. You also use controls in the properties dialog box to set the desired precision of the
half-width of the confidence interval along with the coverage-probability parameter.

You can specify whether the value that you are measuring is time-persistent in nature by using the Time
Persistent check box. The Time Interval field is used with time-persistent values to indicate how often the
accumulated values are collapsed into a single, time-weighted average data point. For example, if the value
in the Time Interval field is 1.0, then the computation of the time-averaged statistic occurs every 1.0 time
units during the simulation run.

The Steady State block controls the length of the simulation run within the limits of the EndTime system
parameter specified in the current Experiment window. If the Steady State block fails to acquire sufficient
data to calculate the desired confidence interval before reaching the EndTime value of the experimental
design point, the simulation terminates and no confidence interval is output. If the block is successful in
calculating the desired confidence interval, it pushes the lower and upper limits of the confidence interval out
through its OutLowerLimit and OutUpperLimit ports, respectively, and pushes the sample mean out through
its OutMean port. If the EndTime value is infinity, then the model runs until the Steady State block can
deliver a confidence interval that satisfies the specified precision requirement.

The Steady State block pushes the simulation time value associated with the last data value of the estimated
warm-up period out through its OutWarmUpTime port at the point when its algorithm detects this value.

References F 219

If you use multiple Steady State blocks in the same model, then the simulation terminates when one of the
Steady State blocks successfully calculates a confidence interval.

Fixed Ports

InData Input port for a data model object.

InValue Input port for individual numeric data values.

OutMean Output numeric port for the sample mean.

OutLowerLimit Output numeric port for the lower limit of the confidence interval.

OutUpperLimit Output numeric port for the upper limit of the confidence interval.

OutWarmUpTime Output numeric port for the simulation clock time associated with the last data
value of the estimated warm-up period.

Properties Dialog Box Controls

Variable Name Specifies the name of the variable in the data model object to be used for data
values.

Desired Precision Specifies the desired relative half-width of the calculated confidence interval. For
example, a desired precision of 0.075 indicates that you want the final confidence
interval half-width to be within +/– 7.5% of the estimated mean.

Relative Precision Specifies whether the precision is relative or absolute.

Beta Specifies the coverage probability for the confidence interval. For example, a
Beta value of 0.05 indicates that you want a 95% (1.0 – 0.05) confidence interval.

Time Persistent Specifies whether the data are time-persistent or not.

Time Interval Specifies how often to compute the time-averaged statistic when the Time Per-
sistent option is selected.

Candidates for Design of Experiments

Factors DesiredPrecision (double), PrecisionRelative (Boolean), Beta (double)

Responses LowerLimit (double), UpperLimit (double), Mean (double)

References

Lada, E. K., Steiger, N. M., and Wilson, J. R. (2008). “SBatch: A Spaced Batch Means Procedure for
Steady-State Simulation Analysis.” Journal of Simulation 2:170–185.

220

Appendix B

Random Variation in a Model

Contents
Overview of Random Variation . 222
Discrete Distributions . 224

Binomial . 224
Discrete Uniform . 225
Geometric . 225
Negative Binomial . 226
Poisson . 227

Continuous Distributions . 228
Beta . 228
Chi-Square . 229
Erlang . 229
Exponential . 230
Gamma . 231
Johnson Bounded Distribution (JohnsonSB) . 232
Johnson Lognormal Distribution (JohnsonSL) . 233
Johnson Unbounded Distribution (JohnsonSU) . 234
Lognormal . 235
Normal . 236
Pearson Type V . 236
Pearson Type VI . 237
Triangular . 238
Uniform . 239
Weibull . 240

Empirical Distributions . 241
Discrete . 241
Continuous . 242

Nonhomogeneous Poisson Process . 242
Count-Based . 243
Rate-Based . 244

References . 245

222 F Appendix B: Random Variation in a Model

Overview of Random Variation
Random and exogenous sources of variation play a central role in discrete- event simulation. Blocks such as
the Entity Generator, Value Generator, Server, and Delay blocks usually require a connection to a source of
variation. The principal source of variation is the Numeric Source block. The functionality of the Numeric
Source block is described in Appendix A, “Templates,” but this section also provides a quick overview.

The Numeric Source block provides an OutValue output port to which other blocks can connect to pull numeric
values. The values produced by this block are dependent on their parameter settings. Figure B.1 shows the
Block Properties dialog box for a Numeric Source block with the default settings. The Theoretical option is
selected and the Type list box provides a list of the statistical distributions available in Simulation Studio for
sampling purposes. You select a distribution from the Type list and then supply the desired parameters in the
approripate fields for the distribution that you have chosen. (The details about the distributions available in
Simulation Studio are presented later in this appendix.) When a request for a sample comes into the Numeric
Source block, the block generates a value based on its parameter settings.

Figure B.1 Sample Numeric Source Block Dialog Box

In the Numeric Source Block Properties dialog box, the Fitted option enables you to specify the location of a
data set. Then JMP is used to automatically fit a theoretical distribution to the data. The Type and Parameters
fields of the Block Properties for Numeric Source dialog box are populated with the appropriate information
from the JMP distribution-fitting tool. As indicated in the distribution descriptions in this appendix, some

Overview of Random Variation F 223

of the distributions available in Simulation Studio are not available in the JMP distribution-fitting tool. For
more information about the Fitted option, see Appendix D, “Input Analysis.”

The Data Driven option in the Numeric Source block properties has a Type list box that provides you with a
variety of methods for generating samples that are based on a specific data set. For example, the Discrete
Empirical and the Empirical options are especially useful when it is not possible to find a theoretical
distribution that fits the data accurately. Furthermore, the nonhomogeneous Poisson process options NHPP
Count and the NHPP Rate allow you to generate a time dependent arrival process that is based on either
count or rate data. Finally, the SAS Data Column option can be used to read values from a SAS data set or a
JMP data table that are then used directly as a source of input to a simulation model. When using this option
in the Numeric Source block, you must supply the file pathname along with the column or variable name in
the data set. (See Figure B.2.) Simulation Studio uses the filename extension to determine whether the file is
a SAS data set or JMP data table. If a filename extension is not specified, Simulation Studio assumes the file
is of the type (SAS data set or JMP table) specified in the Default Data Format section of the SAS Simulation
Configuration dialog box.

Figure B.2 Sample Numeric Source Block That Uses a SAS Data Set

224 F Appendix B: Random Variation in a Model

Discrete Distributions

Binomial
The probability mass function of the binomial distribution is

p.x/ D
nŠ

xŠ.n � x/Š
px.1 � p/n�x

for x 2 Œ0; 1; : : : ; n�.

Parameters:
n is a positive integer that represents the number of independent Bernoulli trials.

p 2 Œ0; 1� is the probability of success on each trial.

Table B.1 shows how the binomial distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block) and in JMP.

Table B.1 Binomial Distribution Parameter Names

Simulation Studio JMP

n N n
p Probability p

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Binomial;N == 5;Probability == 0.5

Probability == 0.1

Discrete Uniform F 225

Discrete Uniform
The probability mass function of the discrete uniform distribution is

p.x/ D
1

j � i C 1

for x 2 Œi; i C 1; : : : ; j �, where i and j are integers with i � j .

Parameters:
i is a location parameter.

j � i is a scale parameter.

Table B.2 shows how the discrete uniform distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block). The discrete uniform distribution is not available with the
Distribution option in JMP.

Table B.2 Discrete Uniform Distribution Parameter Names

Simulation Studio JMP

i i –
j j –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Discrete Uniform;i == 5;j == 10

j == 100

Geometric
The probability mass function of the geometric distribution is

p.x/ D p.1 � p/x�1

for x 2 f1; 2; : : : g.

Parameter:

p 2 .0; 1/ is the probability of success on each trial.

226 F Appendix B: Random Variation in a Model

Table B.3 shows how the geometric distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block). The geometric distribution is not available with the Distribution option
in JMP.

Table B.3 Geometric Distribution Parameter Names

Simulation Studio JMP

p Probability –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Geometric;Probability == 0.5

Probability == 0.3

Negative Binomial
The probability mass function of the negative binomial distribution is

p.x/ D
.nC x � 1/Š

xŠ.n � 1/Š
pn.1 � p/x

for x 2 f0; 1; : : : g.

Parameters:
n is a positive integer � 1 which represents the number

of successes in a series of independent Bernoulli trials.
p 2 .0; 1/ is the probability of success on each trial.

Table B.4 shows how the negative binomial distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block). The negative binomial distribution is not available with the
Distribution option in JMP.

Table B.4 Negative Binomial Distribution Parameter Names

Simulation Studio JMP

n N –
p Probability –

Poisson F 227

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Negative Binomial;N == 5;Probability == 0.5

Probability == 0.3

Poisson
The probability mass function of the Poisson distribution is

p.x/ D
e���x

xŠ

for x 2 f0; 1; : : : g.

Parameter:

� is the mean, � > 0.

Table B.5 shows how the poisson distribution parameter names are specified in Simulation Studio (specifically,
in the Numeric Source block) and in JMP.

Table B.5 Poisson Distribution Parameter Names

Simulation Studio JMP

� Mean � (Scale)

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Poisson;Mean == 2

Mean == 6

228 F Appendix B: Random Variation in a Model

Continuous Distributions

Beta
The density function of the beta distribution is

f .x/ D
�.˛ C ˇ/

�.˛/�.ˇ/.b � a/˛Cˇ�1
.x � a/˛�1.b � x/ˇ�1

for a � x � b. The gamma function �.z/ is defined for any real number z > 0 as

�.z/ D

Z 1
0

tz�1e�tdt

Parameters:
˛ > 0 is a shape parameter.
ˇ > 0 is a shape parameter.

a is the minimum value, a < b.
b is the maximum value.

Table B.6 shows how the beta distribution parameter names are specified in Simulation Studio (specifically,
in the Numeric Source block) and in JMP.

Table B.6 Beta Distribution Parameter Names

Simulation Studio JMP

˛ Shape 1 ˛

ˇ Shape 2 ˇ

a Min �

b Max � C �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Beta;Min == 0;Max == 1;Shape 2 = 5;Shape 1 == 1.5

Shape 1 == 5;Shape 2 == 1.5

Chi-Square F 229

Chi-Square
The chi-square distribution with k degrees of freedom is the same as the gamma distribution with ˛ D k

2
and

� D 2.

Parameter:

k is an integer � 1 which represents the degrees of freedom.

Table B.7 shows how the chi-square distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block). The chi-square distribution is not available with the Distribution option
in JMP.

Table B.7 Chi-Square Distribution Parameter Names

Simulation Studio JMP

k degrees of freedom –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Chi-Square;degrees of freedom == 4

degrees of freedom == 6

Erlang
The Erlang distribution is a special case of the gamma distribution. The density function of the Erlang
distribution is

f .x/ D
1

.k � 1/Š
��kxk�1e�

x
�

where x � 0.

Parameters:
� is a real number > 0.
k is an integer � 1.

If X1; X2; : : : ; Xk are independent exponential random variables with mean �, then X1 CX2 C � � � CXk
has the k-Erlang distribution.

230 F Appendix B: Random Variation in a Model

Table B.8 shows how the erlang distribution parameter names are specified in Simulation Studio (specifically,
in the Numeric Source block). The erlang distribution is not available with the Distribution option in JMP.

Table B.8 Erlang Distribution Parameter Names

Simulation Studio JMP

k K –
� Lambda –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Erlang;K == 2;Lambda == 1.0

K == 3

Exponential
The density function of the exponential distribution is

f .x/ D
1

�
e�

x
�

where x � 0.

Parameter:

� is the mean, � > 0.

Table B.9 shows how the exponential distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block) and in JMP.

Table B.9 Exponential Distribution Parameter Names

Simulation Studio JMP

� Mean �

Gamma F 231

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Exponential;Mean == 1.0

Mean == 1.25

Gamma
The density function of the gamma distribution is

f .x/ D
��˛x˛�1e�

x
�

�.˛/

where x � 0. The function �.z/ is defined in the section “Beta” on page 228.

Parameters:
˛ is the shape parameter, ˛ > 0.
� is the scale parameter, � > 0.

Table B.10 shows how the gamma distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block) and in JMP.

Table B.10 Gamma Distribution Parameter Names

Simulation Studio JMP

� Scale �

˛ Shape ˛

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Gamma;Shape == 2;Scale == 1

Shape == 2

232 F Appendix B: Random Variation in a Model

Johnson Bounded Distribution (JohnsonSB)
The density function of the Johnson bounded distribution (JohnsonSB) is

f .x/ D
ı

�
p
2�
g0
�
x � �

�

�
exp

�
1

2

�
 C ıg

�
x � �

�

��2!

where

g.y/ D ln
�
y
1�y

�
g0.y/ D 1

y.1�y/

and x 2 Œ�; � C ��.

Parameters:
ı (delta) is a shape parameter, ı > 0.
 (gamma) is a shape parameter.
� (xi) is the location parameter.
� (lambda) is the scale parameter, � > 0.

Table B.11 shows how the Johnson bounded distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block) and in JMP.

Table B.11 Johnson Bounded Distribution Parameter Names

Simulation Studio JMP

 gamma

ı delta ı

� xi �

� lambda �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Johnson Bounded;gamma == 0;delta == 2;xi == 0;lambda == 1

gamma == 0.5;delta == 0.8

Johnson Lognormal Distribution (JohnsonSL) F 233

Johnson Lognormal Distribution (JohnsonSL)
The density function of the Johnson lognormal distribution (JohnsonSL) is

f .x/ D
ı

�
p
2�
g0
�
x � �

�

�
exp

�
1

2

�
 C ıg

�
x � �

�

��2!

where

g.y/ D ln.y/
g0.y/ D 1

y

and x 2 Œ�;1/.

Parameters:
ı (delta) is a shape parameter, ı > 0.
 (gamma) is a shape parameter.
� (xi) is the location parameter.
� (lambda) is the scale parameter, � D ˙1.

Table B.12 shows how the Johnson lognormal distribution parameter names are specified in Simulation
Studio (specifically, in the Numeric Source block) and in JMP.

Table B.12 Johnson Lognormal Distribution Parameter Names

Simulation Studio JMP

 gamma

ı delta ı

� xi �

� lambda �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Johnson Lognormal;gamma == 3;delta == 2;xi == 5;lambda == 1

lambda == -1

234 F Appendix B: Random Variation in a Model

Johnson Unbounded Distribution (JohnsonSU)
The density function of the Johnson unbounded distribution (JohnsonSU) is

f .x/ D
ı

�
p
2�
g0
�
x � �

�

�
exp

�
1

2

�
 C ıg

�
x � �

�

��2!

where

g.y/ D ln
h
y C

p
y2 C 1

i
g0.y/ D 1p

y2C1

and x 2 .�1;1/.

Parameters:
ı (delta) is a shape parameter, ı > 0.
 (gamma) is a shape parameter.
� (xi) is the location parameter.
� (lambda) is the scale parameter, � > 0.

Table B.13 shows how the Johnson unbounded distribution parameter names are specified in Simulation
Studio (specifically, in the Numeric Source block) and in JMP.

Table B.13 Johnson Unbounded Distribution Parameter Names

Simulation Studio JMP

 gamma

ı delta ı

� xi �

� lambda �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Johnson Unbounded;gamma == 0;delta == 2;xi == 0;lambda == 1

gamma == 3;delta == 2

Lognormal F 235

Lognormal
The density function of the lognormal distribution is

f .x/ D
1

x
p
2��2

exp
�
�.ln.x/ � �/2

2�2

�

where x > 0.

Parameters:
� is the mean of ln.x/ � Normal.�; �2/.
� is the standard deviation of ln.x/ � Normal.�; �2/, � > 0.

Table B.14 shows how the lognormal distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block) and in JMP.

Table B.14 Lognormal Distribution Parameter Names

Simulation Studio JMP

� Mean �

� Std Dev �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Lognormal;Mean == 0;Std Dev == 0.5

Std Dev == 0.25

236 F Appendix B: Random Variation in a Model

Normal
The density function of the normal distribution is

f .x/ D
1

p
2��2

e
�.x��/2

2�2

for all real values of x.

Parameters:
� is the mean, � 2 .�1;1/.
� is the standard deviation, � > 0.

Table B.15 shows how the normal distribution parameter names are specified in Simulation Studio (specifically,
in the Numeric Source block) and in JMP.

Table B.15 Normal Distribution Parameter Names

Simulation Studio JMP

� Mean �

� Std Dev �

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Normal;Mean == 0;Std Dev == 1

Std Dev == 0.5

Pearson Type V
The Pearson Type V distribution has the same density function as the gamma distribution with shape parameter
˛ and scale parameter � D 1

ˇ
.

Parameters:
˛ is the shape parameter, ˛ > 0.
ˇ is the scale parameter, ˇ > 0.

Table B.16 shows how the Pearson Type V distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block). The Pearson Type V distribution is not available with the
Distribution option in JMP.

Pearson Type VI F 237

Table B.16 Pearson Type V Distribution Parameter Names

Simulation Studio JMP

˛ Shape –
ˇ Scale –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Pearson Type V;Shape == 4;Scale == 1

Shape == 2

Pearson Type VI
The density function of the Pearson Type VI distribution is

f .x/ D

�
x
ˇ

�˛1�1
ˇG.˛1; ˛2/

h
1C

�
x
ˇ

�i˛1C˛2
where x > 0 and

G.˛1; ˛2/ D
�.˛1/�.˛2/

�.˛1 C ˛2/

The function �.z/ is defined in the section “Beta” on page 228.

Parameters:
˛1 is a shape parameter, ˛1 > 0.
˛2 is a shape parameter, ˛2 > 0.
ˇ is a scale parameter, ˇ > 0.

If X1 and X2 are independent random variables with X1 � Gamma.˛1; ˇ/ and X2 � Gamma.˛2; 1/, then
Y D X1

X2
� PearsonTypeVI.˛1; ˛2; ˇ/.

Table B.17 shows how the Pearson Type VI distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block). The Pearson Type VI distribution is not available with the
Distribution option in JMP.

238 F Appendix B: Random Variation in a Model

Table B.17 Pearson Type VI Distribution Parameter Names

Simulation Studio JMP

˛1 Shape 1 –
˛2 Shape 2 –
ˇ Scale –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Pearson Type VI;Shape 2 == 4;Shape 1 == 0.5;Scale == 1

Shape 2 == 2

Triangular
The density function of the triangular distribution is

f .x/ D

(
2.x�a/

.m�a/.b�a/
a � x � m

2.b�x/
.b�m/.b�a/

m < x � b

where a, b, and m are real numbers with a < m < b.

Parameters:
a is the minimum.
b is the maximum.
m is the mode.

Table B.18 shows how the triangular distribution parameter names are specified in Simulation Studio
(specifically, in the Numeric Source block). The triangular distribution is not available with the Distribution
option in JMP.

Table B.18 Triangular Distribution Parameter Names

Simulation Studio JMP

a Min –
b Max –
m Mode –

Uniform F 239

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Triangular;Min == 3;Max == 10;Mode == 5

Mode == 5.5

Uniform
The density function of the uniform distribution is

f .x/ D

�
1
b�a

a � x � b

0 otherwise

where a and b are real numbers with a < b.

Parameters:
a is the minimum.
b is the maximum.

Table B.19 shows how the uniform distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block). The uniform distribution is not available with the Distribution option in
JMP.

Table B.19 Uniform Distribution Parameter Names

Simulation Studio JMP

a Min –
b Max –

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Uniform;Min == 0;Max == 1

Max == 10

240 F Appendix B: Random Variation in a Model

Weibull
The density function of the Weibull distribution is

f .x/ D ˛ˇ�˛x˛�1e�.
x
ˇ
/˛

for x > 0.

Parameters:
˛ is the shape parameter, ˛ > 0.
ˇ is the scale parameter, ˇ > 0.

Table B.20 shows how the weibull distribution parameter names are specified in Simulation Studio (specifi-
cally, in the Numeric Source block) and in JMP.

Table B.20 Weibull Distribution Parameter Names

Simulation Studio JMP

˛ Shape ˇ

ˇ Scale ˛

The following examples show (case-sensitive) string values that can be used as Numeric Source block
DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and
parameter names in the string value are the names that are used in the Theoretical option in the Numeric
Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required
around the string value, and you can specify only the parameters that need to be updated (as demonstrated in
the second example).

class == Weibull;Shape == 4;Scale == 1

Shape == 2

Discrete F 241

Empirical Distributions

Discrete
The Discrete Empirical option under the Data Driven option of a Numeric Source block requires the
following input data, as shown in Figure B.3:

� Data Name: The location of the SAS data set or JMP table that contains the data to be used to specify
a discrete empirical distribution.

� X : Name of the column in the data set that contains the set of n possible discrete values x1; x2; :::; xn,
ordered so that x1 < x2 < ::: < xn.

� Y : Name of the column in the data set that corresponds to the probability mass function values
p.xi / for each xi W i D 1; 2; :::; n so that yi D p.xi /;

Pn
kD1 p.xk/ D 1; and 0 � p.xi / � 1 for

i D 1; 2; :::; n.

Figure B.3 Discrete Empirical Option for the Numeric Source Block

242 F Appendix B: Random Variation in a Model

Continuous
The Empirical option under the Data Driven option of a Numeric Source block requires the following input
data:

� Data Name: The location of the SAS data set or JMP table that contains the data to be used to specify
a continuous empirical distribution.

� X : Name of the column in the data set that corresponds to the set of n ordered values x1; x2; :::; xn.

� C : Name of the column in the data set that corresponds to the cumulative probability values
c1; c2; :::; cn so that 0 � cj � 1 for j D 1; 2; :::; n; cj < cjC1 for j D 1; 2; :::; n � 1; and
cn D 1.

The probability density function is defined as

f .x/ D

8<:
c1 if x D x1
cj � cj�1 if xj�1 � x < xj ; j D 2; 3; :::; n
0 if x < x1 or x � xn

If c1 > 0, then the result is a mixed continuous-discrete distribution that returns x1 with probability c1
and with probability 1 � c1 a continuous random variate on .x1; xn� using linear interpolation. If a true
continuous distribution on Œx1; xn� is desired, then specify c1 D 0.

Nonhomogeneous Poisson Process
There are many systems in which the arrival rate of entities depends strongly on time (for example, arrivals
of patients at an emergency room and the arrival of calls at a customer service center). In Simulation Studio,
a nonhomogeneous Poisson process (NHPP) based on either count or rate data can be used to generate a
time-dependent arrival process on the time interval .0; S�.

For either the count-based or rate-based case, a Numeric Source block with the NHPP option specified
under the Data Driven option can be connected to the InterArrival time port of an Entity Generator block.
In the Entity Generator block, the option At First Interarrival Time for First Entity Creation should be
selected to ensure that the first arrival time is an actual event time for the NHPP. If either the At Start Time
or After Signal Arrival option is selected, the first entity is generated at the start time specified in the Entity
Generator block or the signal time and is not an arrival (event) time generated from the specified NHPP.
However, all subsequent arrival times are generated from the NHPP.

Count-Based F 243

Also, the start time of the NHPP might not correspond to the start time of the simulation. For example,
suppose an NHPP is defined on the time interval from noon to 2:00 p.m., but the simulation start time is 8:00
a.m. In this case, if the time unit is in hours, an extra subinterval from 8:00 a.m. to noon with count (or rate)
0 could be added so that the NHPP is defined on the time interval .0; 6�. No events are generated for the time
interval .0; 4� and the process effectively begins at simulation time 4 (which corresponds to noon).

After the simulation clock reaches time S, the entity generator block associated with the NHPP shuts down
and no more entities are generated. If necessary, a signal can be sent to the Entity Generator block to generate
an entity at a specific time after S.

Count-Based
A method described in Leemis (2004) is used for generating arrival times from an estimated NHPP. This
method uses event-time data that are given as counts that occur in disjoint subintervals (as opposed to the
event times themselves). For the NHPP Count option under the Data Driven option of a Numeric Source
block, the following inputs are required as shown in Figure B.4:

� Data Name: The location of the SAS data set or JMP table that contains the data to be used to estimate
a cumulative intensity (rate) function.

� X: Name of the column in the data set that specifies the subinterval cutoff points x0; x1; :::; xm
so that the NHPP has an intensity function that is piecewise constant on each subinterval
.x0; x1�; .x1; x2�; :::; .xm�1; xm�. The subintervals do not necessarily have equal widths. The NHPP is
defined on the time interval .0; S� so that x0 D 0, xm D S , and m is the number of subintervals. The
time units must be consistent with the data. For example, if the interval of interest is from 1:00 p.m.
to 5:30 p.m., then the interval .x0; xm� is .0; 4:5� if the data are in hours or .0; 270� if the data are in
minutes.

� Counts: Name of the column in the data set where each value c1; c2; :::; cm is the total number of
observed events in each subinterval over all replications. Specifically, c1 is the total number of observed
events in the subinterval .x0; x1�. The length of the Counts column should be one less than the length
of the X column.

� Number of Replications: The number of realizations of the observed process.

244 F Appendix B: Random Variation in a Model

Figure B.4 NHPP Count Option for the Numeric Source Block

Rate-Based
For the NHPP Rate option under the Data Driven option of a Numeric Source block, the following inputs
are required as shown in Figure B.5:

� Data Name: The location of the SAS data set or JMP table that contains the data to be used to estimate
a cumulative intensity (rate) function.

� X: Name of the column in the data set that specifies the subinterval cutoff points x0; x1; :::; xm
so that the NHPP has an intensity function that is piecewise constant on each subinterval
.x0; x1�; .x1; x2�; :::; .xm�1; xm�. The subintervals do not necessarily have equal widths. The NHPP is
defined on the time interval .0; S� so that x0 D 0, xm D S , and m is the number of subintervals. The
time units must be consistent with the data. For example, if the interval of interest is from 1:00 p.m.
to 5:30 p.m., then the interval .x0; xm� is .0; 4:5� if the data are in hours or .0; 270� if the data are in
minutes.

References F 245

� Rates: Name of the column in the data set where each value r1; r2; :::; rm is the estimated rate of
arrivals over each subinterval. Specifically, r1 is the rate of arrivals over the subinterval .x0; x1�. The
length of the Rates column should be one less than the length of the X column. Furthermore, the units
of the rates r1; r2; :::; rm must be consistent with the rest of the simulation model. For example, if the
units used in the model are minutes, then the rates r1; r2; :::; rm must be specfied in number of arrivals
per minute.

Figure B.5 NHPP Rate Option for the Numeric Source Block

References

Leemis, L. M. (2004). “Nonparametric Estimation and Variate Generation for a Nonhomogeneous Poisson
Process from Event Count Data.” IIE Transactions 36:1155–1160.

246

Appendix C

Design of Experiments

Contents
Define Factors and Responses . 247
Set Model Anchors . 248
Set Up the Experiment Window . 250
Generate a Design Using JMP Software . 251
Run the Experiment . 252
Analyze the Simulated Results . 253

This chapter uses the repair shop example in Chapter 2, “Overview of SAS Simulation Studio,” to demonstrate
how you can use JMP software to generate experimental designs for a Simulation Studio model. One of the
goals in that example is to ease the bottleneck at the quality control station. Suppose you have the option of
adding additional workers at the service desk, repair desk, and quality control station so that each station can
have one, two, or three workers. These are the factors of your experiment. The responses you could monitor
are the average utilizations at all three stations (to make sure workers are not idle or overworked), the number
of fixed parts, and the average waiting time at each of the three stations. Since you now have three factors,
each defined at three levels, you might want to generate an experimental design (such as a full or fractional
factorial design) to guide your simulation runs. This is a more efficient way to explore the effects of different
parameters on your model responses than just randomly selecting combinations of your factor values to try.
You can do this with the Simulation Studio Experiment window and JMP software.

Define Factors and Responses
To set up your experimental design, first define three factors for the project: NumQC, NumRepair, and
NumService to represent the number of workers at each of the three stations. See Chapter 5, “Experiments,”
for more details about factors. To define the factors, first right-click the project name in the project window
and select Factors to open the Factor Creation dialog box. Also define seven responses for the project by
right-clicking the project name again and selecting Responses to open the Response Creation dialog box.
Figure C.1 and Figure C.2 show the Factor Creation and Response Creation dialog boxes for the repair shop
model.

248 F Appendix C: Design of Experiments

Figure C.1 Factor Creation Dialog Box

Figure C.2 Response Creation Dialog Box

Set Model Anchors
After you have established the database of factors and responses for the project, you need to link each factor
and response to a specific block in the model. To do this, right-click in the Model window and select Anchors
to open the Anchors dialog box. Click New to open the New Anchor dialog box where you can link a block
in your model to your defined factor. For example, as shown in Figure C.3, the capacity of the Service Desk
block is linked to the factor NumService. The responses are linked to blocks in a similar fashion, as shown
in Figure C.4. You can also define new factors and responses for the project directly from the New Anchor
window.

Set Model Anchors F 249

Figure C.3 Factor Anchors

Figure C.4 Response Anchors

250 F Appendix C: Design of Experiments

Set Up the Experiment Window
After all factors and responses have been linked to blocks in the model, you need to include them in the
experiment. To include factors, right-click in the Experiment window and select Factor Inclusion. In the
Factor Inclusion dialog box, you can select the factors defined for your project that you want to include in the
experiment. See Figure C.5. Include responses in the experiment in similar fashion by right-clicking in the
Experiment window and selecting Response Inclusion. See Figure C.6.

The Experiment window with all factors and responses included is shown in Figure C.7. The end time for
all design points has been changed to 2700 minutes, and the number of replications has been changed to
5 by right-clicking in the Experiment window and selecting Properties. The Properties dialog box for the
Experiment window enables you to set default values for StartTime, EndTime, and Replicates. Each new
design point has the default values for these parameters.

Figure C.5 Including Factors in the Experiment

Generate a Design Using JMP Software F 251

Figure C.6 Including Responses in the Experiment

Figure C.7 Experiment Window with Factors and Responses Included

Generate a Design Using JMP Software
Now you are ready to generate a JMP experimental design. First, ensure that the JMP server has been
launched. See Chapter 3, “Introduction to SAS Simulation Studio.” Then, right-click in the Experiment
window and select Make Design from the pop-up menu. To use the Make Design option, the Experiment
window must include at least one factor and one response. The default design created by the JMP custom
designer is automatically passed back to the Experiment window in Simulation Studio. You can alter the
JMP design by adding additional design points, replicates, or interaction terms. See the JMP documentation
for specific information about design of experiments. However, you must create all factors and responses in
Simulation Studio since they must be linked to specific model blocks. If you create new factors or responses
in the JMP program, they will not be passed back to Simulation Studio. If any changes are made to the JMP
design, you must click the Commit button in the JMP Simulation Studio DOE window to automatically pass
the new design back to Simulation Studio. Figure C.8 shows the JMP Simulation Studio DOE window with
the Commit button in the top left corner.

252 F Appendix C: Design of Experiments

Figure C.8 JMP Simulation Studio DOE Window for the Repair Shop Model

Run the Experiment
To run the experiment in Simulation Studio, highlight all the rows in the table by holding down the left mouse
button on the first design point and dragging the mouse to highlight all the remaining design points. Now
click the Play icon on the toolbar to run all replications of all the design points.

Figure C.9 shows the Experiment window after running all 12 design points. By default, the value reported
for each response is the average over all five replications. To view the minimum or maximum value over all
replications, right-click in the column header for a response and select Summary. The resulting dialog box
enables you to display the average, minimum, or maximum value for the selected response. You can view the
individual response values for each of the five replications for each design point by clicking the blue arrow
next to the number of replications within a design point. Figure C.10 shows the five replications for design
point 1. To hide the replication results, click the blue arrow again.

Analyze the Simulated Results F 253

Figure C.9 Experiment Window Showing Simulated Results

Figure C.10 Experiment Window Showing Results for All Five Replications of Design Point 1

Analyze the Simulated Results
From the results in Figure C.9, design point 6 (which represents three workers at quality control, one worker
at the repair desk, and two workers at the service desk) seems to satisfy the goal of reducing the bottleneck at
the quality control station while providing a reasonable balance between the waiting time and the utilization at
all three stations. However, you can also use the JMP software to conduct a more formal statistical analysis of
the results. For example, you can estimate a statistical model (or metamodel) that can be used for prediction
purposes.

To pass the simulated results in the Experiment window back to the JMP GUI, right-click in the Experiment
window (be sure the Reset button has been pushed) and select the Analyze Results option. This automatically
creates a JMP data table with the results for all replications of all the design points. The Experiment window
must include at least one factor and one response in order to use the Analyze Results option. Note that the
JMP table for this experiment has 60 rows, one for each of the five replicates for each design point. See
Figure C.11.

To fit a model to the results, click Model and then Run Script in the JMP Simulation Studio DOE Analyzer
window to open the Model Specification window. See the JMP documentation for specific details about how
to estimate models.

254 F Appendix C: Design of Experiments

Figure C.11 JMP Simulation Studio DOE Analyzer Window

From the JMP Simulation Studio DOE Analyzer window, you can also choose to augment the design. Select
the Run Script option from the Augment This Design menu (in the upper left corner of Figure C.11) to
open the JMP Augment Design window. See Figure C.12. See the JMP documentation for details about
using the JMP augment design feature. If you make any changes in the Augment Design window, you can
click Commit to pass the augmented design back to Simulation Studio. Figure C.13 shows the Experiment
window in Simulation Studio after selecting the JMP default augmented design. Six design points are added,
and one replication is added to design point 2.

You can run the new design points by highlighting all rows in the Experiment window and then clicking
Augment on the Run menu or the Augment icon on the toolbar. Only points with new or additional
replications (such as point 2) are run. For example, one additional run of point 2 is made, and then the new
points 13–18 are run. Notice that the design points in the Experiment window might now be in a different
order than they were before augmenting the design. For example, design point 1 in Figure C.10 is now design
point 4 in Figure C.13, but the results are the same.

Analyze the Simulated Results F 255

Figure C.12 JMP Augment Design Window

Figure C.13 Experiment Window after Using the JMP Augment Design Feature

256

Appendix D

Input Analysis

Contents
Overview of Input Analysis . 257
Use JMP Software for Automated Input Analysis . 257
Use JMP Software for General Input Analysis . 262

Overview of Input Analysis
When you build a simulation model of a system, part of the process is likely to include analyzing data in
various formats so that they can be used as inputs to drive the simulation model. This data might be in
the form of raw data sets that must be read directly by the simulation model or from which a statistical
distribution must be estimated and then sampled in the model. In any case, extreme care must be taken to
determine appropriate inputs for a simulation model because the accuracy of a model’s output data is directly
dependent on how accurately you estimate the inputs.

Use JMP Software for Automated Input Analysis
When data are available and you want to estimate a statistical distribution from them, you can use the JMP
distribution-fitting tool. To access the JMP distribution-fitting tool:

1. Make sure the JMP server has been launched. (See the section “Launching Local SAS and JMP
Servers” on page 20 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.)

2. In a Simulation Studio model, open the Block Properties dialog box for a Numeric Source block. (See
Figure Figure D.1). Select the Fitted option on the Numeric Data Source tab.

3. In the Data Name field of the Input Data section, specify the pathname of the data set that you want to
fit a theoretical distribution to. The data could be a specific column from a SAS data set or JMP table
or it could be contained in a text file.

4. In the Column Name field, specify the name of the column in the data set that you want to fit. If the
data are contained in a text file, the column name should be the first entry.

5. Click Fit Distribution.

258 F Appendix D: Input Analysis

Figure D.1 Numeric Source Block Fitted Option

6. Simulation Studio displays a message to alert you that the JMP server is waiting for input. (See
Figure D.2).

Figure D.2 JMP Request Message

7. Click OK in this message box.

8. Change focus to your JMP window to view the distribution-fitting results in the Compare Distribu-
tions section of the Distribution for Simulation Studio-JMP window. (See Figure D.3). See the JMP
documentation for specific information about distribution fitting (specifically, the JMP Fit All option
is used by Simulation Studio to generate the distribution fitting results).

Use JMP Software for Automated Input Analysis F 259

Figure D.3 Distribution for Simulation Studio - JMP Window

9. In the Compare Distributions section, select the check box beside each distribution that you are
interested in viewing. Figure D.3 shows the Distribution for Simulation Studio - JMP window for
a data column labeled bvar. The first distribution in the list (Weibull) is the top-ranked fit. The
distribution Johnson Su is also checked. For each selected distribution, the corresponding density curve
is shown overlaid on a histogram of the data. The fitted parameters are also provided for each selected
distribution.

260 F Appendix D: Input Analysis

10. After viewing the fits, click Commit to Simulation Studio at the top of the window. A dialog box
appears with a list of the selected distributions.

11. Click the distribution that you want to pass back to Simulation Studio to use in the model. Figure D.4
shows the Distribution Selection dialog box with the 2 parameter Weibull selected.

12. Click OK in this dialog box. The Type and Parameters fields of the Block Properties for Numeric
Source dialog box are populated with the appropriate information from the JMP distribution-fitting
tool.

Figure D.4 Distribution Selection Dialog Box

If you select a distribution in JMP that is not currently supported in Simulation Studio, then you receive an
unsupported distribution error message.

The JMP Fit All option does not include bounded distributions (such as beta or Johnson bounded) in its
automated fitting algortihm. However, these bounded distributions can be fit using the Continuous Fit option
from the JMP menu that is associated with the current data set in the Distribution for Simulation Studio –
JMP window, as shown in Figure D.5. The parameters for fitted distributions that are obtained by using the
Continuous Fit option can still be automatically passed back to Simulation Studio by clicking the Commit
to Simulation Studio button.

Use JMP Software for Automated Input Analysis F 261

Figure D.5 Continuous Fit Option

262 F Appendix D: Input Analysis

Use JMP Software for General Input Analysis
It is also possible to access the JMP distribution-fitting tool outside of a Numeric Source block. Unlike
the method described in the previous section, this method does not automatically pass fitted distribution
parameters back to Simulation Studio. To access the JMP distribution-fitting tool:

1. Make sure the JMP server has been launched. (See the section “Launching Local SAS and JMP
Servers” on page 20 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.)

2. From the Simulation Studio menu, select Analyze IFit Distribution, as shown in Figure D.6.

Figure D.6 Input Analysis Menu Entry

3. Simulation Studio displays a message box to alert you that the JMP server is waiting for input from
you. See Figure D.2. Click OK in this message box.

4. Change focus to your JMP window, which shows the Open Data File dialog box.

5. In this dialog box, select the location of the data file that you want to analyze and click Open.

6. The JMP distribution-fitting tool opens. Select appropriate variables from your data set. Figure D.7
shows an example of this step for a data set that contains one variable labeled bvar.

Figure D.7 JMP Distribution Fitting Dialog

Use JMP Software for General Input Analysis F 263

7. Use the JMP distribution-fitting tool to estimate an appropriate statistical distribution for the data. See
the JMP documentation for specific information about fitting distributions to data.

8. From this point, the distribution fitting information from JMP can be used in a Simulation Studio
model. However, you must manually enter the fit information in Simulation Studio: In the Block
Properties for Numeric Source dialog box, select the entry for the distribution you want to use from the
Type field. Enter the parameters for that distribution into the appropriate fields in the dialog box.

Note: The JMP definition for some distributions might be different from the Simulation Studio definition, so
be careful when you map distribution parameters from a JMP distribution to a Simulation Studio distribution.
It is also possible that JMP software provides support for distributions that Simulation Studio does not, and
vice versa. The automated method for input analysis outlined in the previous section handles any required
parameter mappings for you and also does not allow you to select a distribution in JMP that is not supported
in Simulation Studio.

264

Appendix E

Examples of Simulation Studio Models

Contents
Overview of Simulation Studio Model Examples . 265
A Simple M/M/1 Queueing Model . 266
Using the Stats Collector Block for Output Analysis . 267
Routing to Shortest Queue . 269
Reneging from a Queue . 274
Repair Shop Model . 276
PERT Network Model . 278
Modeling the Banking System by Using Mobile Resources 281
The Banking System Model with Resource Scheduling . 285
Priority-Based Preemption of Service . 290
A Model of an Incoming Call Center . 293
Modeling Assembly Operation and Parts Inventory System 297
Using the SAS Program Block to Analyze Simulation Results 300
Machining Center Model . 304
Using the Observation Source Block to Set Entity Attributes 306
Using the Dataset Writer Block to Save Data during a Run 307
Using the Steady State Block for Output Analysis . 309
Updating an Input Distribution . 312
Extended Queueing Options . 315

Overview of Simulation Studio Model Examples
This chapter provides examples of several modeling structures and illustrates uses and combinations of
various blocks. The examples are meant only to show how you can use Simulation Studio to model
various applications. They are not meant to show how you would analyze or evaluate these models or
identify optimal parameterizations. The actual model construction process is not included in these example
descriptions. The projects in this chapter can be found in the folder \projects\examples in the direc-
tory where Simulation Studio is installed. The default install location is \Program Files\SASHome\
SASSimulationStudio\<version>.

266 F Appendix E: Examples of Simulation Studio Models

A Simple M/M/1 Queueing Model
Chapter 2, “Overview of SAS Simulation Studio,” first introduced this example, and it is discussed here
because of its wide applicability. You can find the project files for this example in the folder \projects\
examples\docMM1 in your Simulation Studio installation directory.

An M/M/1 queueing model can be used to represent many different real-life situations such as customers
checking out at a supermarket, customers at a bank, and so on. This model illustrates the basic concepts
involved in building models in Simulation Studio, and it is a good starting point for constructing more
sophisticated models. In some ways this example is analogous to the “hello, world” introductory example
used to illustrate many programming languages.

Figure E.1 An M/M/1 Queueing Model

The details for building and running the M/M/1 queueing model depicted in Figure E.1 are provided in
Chapter 2, “Overview of SAS Simulation Studio”; rather than repeating them here, this section provides
suggestions for experimenting with this model to familiarize yourself with various features and functionality
in Simulation Studio.

This model provides a good vehicle for acquainting yourself with the Log and Trace features in Simulation
Studio. If you delete the link between the blocks labeled Interarrival Time and Arriving Customers and
then attempt to run the model, a SEVERE level message is posted to the log with the description “Arriving
Customers has no inter-arrival time connections.” The model does not run because SEVERE log messages
always halt the execution of the simulation model.

Using the Stats Collector Block for Output Analysis F 267

Reconnect the Interarrival Time and Arriving Customer blocks and change the distribution associated with
the Interarrival Time block to one that is likely to produce negative numbers, such as the uniform distribution
with parameters min=–2 and max=2. When you run the model now, you see WARNING messages posted
to log with the message “Arriving Customers inter-arrival time value is negative; using 0.0 instead.” The
simulation continues to run after WARNING messages are posted.

If you enable the Tracer (Chapter 11, “Model Debugging and Verification”) and then run the model, trace
messages are generated by the various blocks and displayed in the Trace window. Each line in the Trace
window contains the name of the block that creates the message and a short description of the event. An
example trace message here might be “Numeric Source: Sampling, value = 0.136.” The Tracer facility can
generate many, many trace messages. See the section “Tracing Configuration” on page 109 for details about
how to reduce the number of generated trace messages.

You can also use this model to practice defining factors, responses, and anchors and then use them to set up a
simple experiment. Details are found in Chapter 5, “Experiments.” For this example you can define a factor
for changing the capacity of the Teller block and a response for recording the average wait time at the Queue
block. After you create anchors between the new factor and response to the appropriate blocks in the model,
you can include the factor and response in an Experiment window. After the factor and response are included
in an Experiment window, you can create multiple design points with different values for the capacity factor,
run the experiment, and compare the results.

It is easy to extend this M/M/1 model to incorporate many other Simulation Studio blocks and features such
as data collection, plots, and so on to familiarize yourself with these capabilities so that you can apply them
later in more sophisticated models.

Using the Stats Collector Block for Output Analysis
Chapter 13, “Data Input, Collection, and Analysis,” first introduced this example. You can find the project
files for this example in the folder \projects\examples\docStatsCollector in your Simulation
Studio installation directory.

You can use the data collection blocks described in the section “Block Data Storage” on page 121 to collect
both time-dependent and time-independent data and, in some cases, to compute statistics. For example,
as shown in the simple bank system example in Figure E.2, you can use a Number Holder block (labeled
NumberInSystem) connected to a Stats Collector block to record data about the total number of customers
in a bank. Each time the value in the Number Holder block is updated, that value and the current time are
stored by the Stats Collector block. At the end of the run, the Stats Collector block computes the user-defined
time-average number in the system, as displayed in the table labeled NumberInSystem Statistics. The output
that is generated by the Stats Collector block can also be saved as a SAS data set.

Although you can use the Number Holder block to collect data (in the form of time/value pairs) and compute
observation-based statistics (such as mean, minimum, and maximum), you should not use this block to
compute statistics for time-dependent data, such as queue length. In Figure E.2, a Number Holder block
labeled Non-WeightedAvgQueueLength is connected to the OutLength port of the FIFO Queue block, and
the Display option in the Number Holder block is set to Mean. This is not the correct way to compute
the average queue length because the mean that the Number Holder block computes is not time-weighted.
The correct time-weighted average queue length is computed by connecting a Stats Collector block to the
OutLength port of the FIFO Queue block. This mean value, in the “Time-Weighted Average Queue Length”

268 F Appendix E: Examples of Simulation Studio Models

table in Figure E.2, matches the value AvgQLength that is computed by the Queue Stats Collector block, as
displayed in the “Queue Stats Collector Results” table.

Figure E.2 Stats Collector Block Example

Routing to Shortest Queue F 269

Routing to Shortest Queue
This example demonstrates how to use Switch and Formula blocks to route entities to the queue that has the
shortest length when multiple queues are available. It also uses the Queue Stats Collector block, the Bucket
block, and various Plot blocks to illustrate statistics collection and visualization. You can find the project files
for this example in the folder \projects\examples\docQueueRouting in your Simulation Studio
installation directory.

Entities are created according to an exponential distribution with a mean of 1. Figure E.3 shows three queues
in which entities wait for a single server. Entities are routed to the queue with the shortest length. If all three
queues have the same length, the entity routes to Queue1. The time it takes for each entity to be served is
sampled from an exponential distribution with a mean of 1. The simulation is run for 5,000 time units, and the
Entity Generator block shuts down after 4,970 time units to make sure that entities are being pulled from all
three queues. (By default, the server checks Queue1 first to determine whether any entities are waiting, and
then Queue2, and then Queue3. Thus entities move out of Queue3 only if Queue1 and Queue2 are empty.)

Figure E.3 Routing Example

270 F Appendix E: Examples of Simulation Studio Models

After the Entity Generator block creates an entity, the entity flows to the Switch block for routing to the
desired queue. When an entity arrives at the Switch block, the Switch block pulls a value from the Formula
block attached to the Switch block’s InData port. Figure E.4 shows the Formula block’s expression. The
Formula block pulls the queue length from each of the queues in the model and then returns a value of 1, 2,
or 3 (indicating the shortest queue) to the Switch block based on the comparison of the queue lengths.

Figure E.4 Routing Formula

The Switch block attempts to match the value returned by the Formula block with the cases defined on the
Switch block. (See Figure E.5.) The entity is then pushed out the port associated with the matched case.

Routing to Shortest Queue F 271

Figure E.5 Routing Switch Cases

When the Server block becomes available, it attempts to pull an entity from a link connected to its InEntity
port. In this example, three links are connected to the Server block’s InEntity port. By convention in
Simulation Studio, the pull is attempted from the first link connected to the Server block’s InEntity port
during the model construction process. If this is unsuccessful, the Switch block attempts to pull from the
second link, and so on. In this example, the link from Queue1 to the Server block was created first, followed
by the link from Queue2 to the Server block, and finally from Queue3 to the Server block.

272 F Appendix E: Examples of Simulation Studio Models

Figure E.6 shows the model in Figure E.3, extended to use the Queue Stats Collector block and the Bucket
block to collect statistics and data.

Figure E.6 Sample Routing Example Results

The Bucket block is configured to collect the age attribute of every entity that passes through it and store the
value in a SimDataModel. The SimDataModel is passed to a Histogram block where the user has selected to
display a histogram of the age variable from the incoming SimDataModel.

Routing to Shortest Queue F 273

The Queue Stats Collector block in the model has been configured to collect data on all three queues. (See
Figure E.7.)

Figure E.7 Queue Stats Collector Dialog Box

By default, the Queue Stats Collector block saves the following information for each queue it monitors:

Time time the statistic was recorded

BlockName name of the queue

BlockId numeric ID of the queue

InCount number of entities that enter the queue

OutCount number of entities that exit the queue via the OutEntity port

BalkCount number of entities that exit the queue via the OutBalk port

RenegeCount number of entities that exit the queue via the OutRenege port

QLength length of the queue at time Time

AvgQLength average length of the queue

MaxQLength maximum length of the queue

AvgWait average wait time in the queue

MaxWait maximum wait time in the queue

The data are saved in a SimDataModel that is accessible through the OutData port of the Queue Stats Collector
block. For this example the Queue Stats Collector block sends its SimDataModel to a Bar Chart block, where
the AvgQLength is displayed for each queue. (See Figure E.6.)

274 F Appendix E: Examples of Simulation Studio Models

Reneging from a Queue
This model demonstrates the reneging feature of a Queue block along with the use of the Modifier, Extractor,
and Gate blocks. You can find the project files for this example in the folder \projects\examples\
docRenege in your Simulation Studio installation directory. Two very different applications of the Extractor
block are depicted in this example. A special feature of the Number Holder block is also illustrated here.

This example models a queueing system in which customers arrive randomly over time with one server to
process customers. Individual customers wait in the queue for service on a first-in-first-out basis.

After waiting 5 minutes in the queue, a customer reneges (that is, leaves the queue and the system) if the
amount of time that customer requires for service is greater than 3.5. The goal is to estimate the average time
between customers who renege.

Figure E.8 Reneging Example

The arrival of customers is modeled by using an Entity Generator block with a Numeric Source block attached
to its InterArrivalTime port. In the Numeric Source block, an exponential distribution with a mean of 5 is
specified.

After entities are generated, they are sent to a Modifier block where an attribute called servicetime is assigned.
The servicetime for each entity is sampled from an exponential distribution with a mean of 4.651. (The
Extractor block immediately following the first Modifier block is used only to verify that the value is set in
the Modifier block; it serves no other purpose in this model.)

Next the entities are sent to the Queue block (FIFO policy). As each entity enters the queue, a renege
time is computed and assigned using a Formula block. Figure E.9 shows the properties dialog box for the

Reneging from a Queue F 275

Formula block connected to the Queue block. In the Formula block, the servicetime attribute for the entity
is compared to the value 3.5. If the servicetime is greater than 3.5, then a renege time of 5 is returned.
Otherwise, a very large renege time (specifically, 5,000,000) is returned. For those entities with a servicetime
of 3.5 or less, their renege time is set sufficiently large to ensure that they wait until they can be serviced
and do not leave the queue. Note that the reneging option in the Queue block properties dialog box must be
selected for reneging to be used by the queue.

Figure E.9 Renege Time Formula Dialog Box

Entities that do not renege are processed in the Server block. The InServiceTime port of the Server block is
connected to an Extractor block. When an entity arrives at the Server block, the Server block passes the entity
to the Extractor block. The Extractor block extracts the servicetime attribute from the entity and passes the
value to the Server block for use as the server processing time. Note that use of the Extractor block here does
not require connections to its InEntity or OutEntity ports.

Entities that renege from the Queue block are sent out its OutRenege port, and the time at which they renege
is stored in the entity by using a Modifier block. In this Modifier block the entity attribute renegetime is
assigned the value Time Now. The entity is then sent to a Count block to determine whether it is the first
entity to renege. The value of Count is passed to a Switch block. If the entity is the first entity to renege, the
Switch block returns a value of 1 and the entity is sent to an Extractor block where the renegetime attribute
value is extracted and passed into the Number Holder block labeled Last Renege Time.

If the entity is not the first entity to renege, it is sent to a Gate block, and a Formula block computes the
time between reneging entities by subtracting the previous entity’s renegetime from the current entity’s
renegetime. The renegetime for the previous entity is stored in the Number Holder block labeled LastRe-
negeTime. In order for this computation to work, the From Upstream option in the LastRenegeTime Number
Holder block properties dialog box must be cleared, as shown in Figure E.10. If the From Upstream option is
selected, then the Number Holder block pulls a value from upstream, which in this case means it pulls the
value from the Extractor block. If this happens, the value of the previous entity’s renegetime is replaced
with the current entity’s renegetime, resulting in a value of zero for the time between reneging customers.

276 F Appendix E: Examples of Simulation Studio Models

Figure E.10 LastRenegeTime Number Holder Dialog Box

After the time between reneging entities is computed, the value is passed from the Gate block to the Number
Holder block labeled AvgTimeBetweenRenegingEntities. The entity is then sent to the Extractor block. The
renegetime attribute for the entity is extracted and sent to the Number Holder block LastRenegeTime, to be
used when the next entity reneges from the system. The entity is then destroyed.

Repair Shop Model
Like the M/M/1 Queueing Model example discussed earlier, this model was also first introduced in Chapter 2,
“Overview of SAS Simulation Studio,” and the details and motivation for the model are found there. This
section presents an enhancement to the original Repair Shop Model, which is shown in Figure E.11 and
corresponds to model1 in the project docRepairshop found in the folder \projects\examples in the
directory where Simulation Studio is installed.

Repair Shop Model F 277

Figure E.11 The Repair Shop Model

In this model,an attribute (named PartType) is added to the Part entities and is then used to dynamically
generate a service time for a particular Part entity at each of the Server blocks in the model. In Figure E.11, a
Modifier block has been added after the Arrivals compound block where the attribute PartType is assigned
to be a random sample from the discrete uniform distribution on the interval [1,3]. At the Service Desk
Server block, a Formula block is used to set the service time based on the value of PartType using the
following expression: switch(PartType==1,5,PartType==2,10,15). Similar expressions are used at the Repair
and Quality Control Server blocks so that the service time at each station is based on the value of PartType.

The Repair Shop model also provides an appropriately sized model for exploring the Simulation Studio
linkage with the JMP routines for design of experiments. Details for defining factor and responses for
the repair shop example and using JMP to generate a design are provided in Appendix C, “Design of
Experiments.”

278 F Appendix E: Examples of Simulation Studio Models

PERT Network Model
This example is a program evaluation and review technique (PERT) network model of a repair and retrofit
project. You can find the project files for this example in the folder \projects\examples\docPERT in
your Simulation Studio installation directory. All activity times are assumed to be triangularly distributed.
The activities relate to power units, instrumentation, and a new assembly, and they involve standard types of
operations.

At the beginning of the project, three parallel activities can be performed: the disassembly of power units
and instrumentation (Activity 1), the installation of a new assembly (Activity 2), and the preparation for a
retrofit check (Activity 3). Cleaning, inspecting, and repairing the power units (Activity 4) and calibrating
the instrumentation (Activity 5) can be done only after the power units and instrumentation have been
disassembled. Thus, Activities 4 and 5 must follow Activity 1 in the network. Following the installation
of the new assembly (Activity 2) and after the instruments have been calibrated (Activity 5), a check of
interfaces (Activity 6) and a check of the new assembly (Activity 7) can be made. The retrofit check (Activity
9) can be made after the assembly is checked (Activity 7) and the preparation for the retrofit check (Activity
3) has been completed. The assembly and test of power units (Activity 8) can be performed following
the cleaning and maintenance of power units (Activity 4). The project is considered completed when all
nine activities are completed. Since Activities 6, 8, and 9 require the other activities to precede them, their
completion signifies the end of the project. The goal is to estimate the project completion time.

Figure E.12 PERT Network Model

PERT Network Model F 279

This model uses a common compound block (which consists of a Numeric Source block and a Delay block)
to model the individual activities. Figure E.13 shows the structure of this compound block.

Figure E.13 PERT Model Activity Compound Block

As was mentioned earlier, a triangular distribution is associated with each Numeric Source block. The
distributional parameters for each of the activities are shown in Figure E.14.

Figure E.14 PERT Model Activity Table

A Clone block is used to initiate parallel activities. When an entity enters a Clone block, the Clone block
makes copies of the original entity and sends them out its various ports, depending on the cloning directives
in Clone block. Figure E.15 shows the cloning directives for the first Clone block an entity encounters in this
model. This Clone block has two additional output ports and sends one cloned entity out each port. This
simulates the initiation of the disassembly of power units and instrumentation (Activity 1), the installation of
a new assembly (Activity 2), and the preparation for a retrofit check (Activity 3) from the initial entity.

280 F Appendix E: Examples of Simulation Studio Models

Figure E.15 PERT Network Cloning Directives

The combination of a Counter block with a Switch block is used in multiple places in the model. The Counter
block simply counts how many entities have flowed through it and makes this count available via its OutCount
port. Every time an entity enters a Switch block, the Switch block pulls the count value from its associated
Counter block and then routes the entity accordingly. Each Switch block is essentially waiting until N entities
have reached it (indicating completion of all preceding activities) before initiating the next activity in the
model.

Each execution of the simulation model results in one estimate of how long it might take to complete the
project. A large number of replications of the model execution are needed to produce enough data to construct
a valid estimate for project completion time.

Modeling the Banking System by Using Mobile Resources F 281

Modeling the Banking System by Using Mobile Resources
Chapter 10, “Resources,” first introduced this example. You can find the project files for this example in the
folder \projects\examples\docMM1Resources in your Simulation Studio installation directory.

In Chapter 2, “Overview of SAS Simulation Studio,” and in the section “A Simple M/M/1 Queueing Model”
on page 266, a model of a simple banking system with one teller is used to illustrate some of the basic
concepts that are involved in building models in Simulation Studio. In that example, the bank teller is
modeled by using a stationary resource (in particular, a Server block). In this section, the same system is
modeled by using the bank teller as a mobile resource (a resource entity). These two examples demonstrate
the conceptual differences between stationary resources and mobile resources. All blocks that are used in
these models can be found in the Standard and Resource templates.

To summarize the modeling requirements for this banking system, these models assume that customers
arrive at the bank at a rate of 10 per hour (so that the interarrival time between customers is a sample from
the exponential distribution with a mean of 6 minutes). Customers wait in a single line on a first-come,
first-served basis. The models also assume that the teller has a service rate of 12 customers per hour (so that
the service time for each customer is a sample from the exponential distribution with a mean of 5 minutes).

Figure E.1 shows the original version of the model. The bank teller (represented by the Server block) is a
stationary resource in the original model and is created during the model building phase. As a stationary
resource, the bank teller never flows or moves through the model. A customer arrives at the bank teller, the
bank teller services the customer, and the customer exits the system.

Figure E.16 shows an alternative model of the same system. In this model, the bank teller is modeled as a
resource entity. The following description of the model is a high-level overview. For more information about
the individual blocks used in the model, see Appendix A, “Templates.”

Figure E.16 The Banking System Model Using Mobile Resources

282 F Appendix E: Examples of Simulation Studio Models

The customer arrival process is the same as in the original model—an Entity Generator block creates
customers and sends them to a Queue block to wait for service. To model the bank teller as a resource
entity, first a new resource entity type named BankTellers is created by using the Entity Types dialog box,
available by right-clicking on the model name in the project tree and selecting Entity Types. For more
information about the Entity Types dialog box, see Chapter 8, “Entities.” Figure E.17 shows the attributes that
are associated with the BankTellers resource entity type. The ResourceUnits attribute has value 1 because
there is only one teller.

Figure E.17 BankTellers Entity Type

In the Block Properties dialog box for the Entity Generator block labeled “Create Teller,” the BankTellers
entity type is selected from the list in the Name field of the EntityTypes tab, as shown in Figure E.18.

Modeling the Banking System by Using Mobile Resources F 283

Figure E.18 EntityTypes Tab in the Create Teller Block Properties Dialog Box

Because the model requires only one bank teller, you set the Maximum Number of Entities field value to 1

on the Attributes tab of the Create Teller Block Properties dialog box, as shown in Figure E.19. The bank
teller resource entity must be created before the simulation clock begins to advance. Therefore, you need to
set the Start Time property to 0 and also select the At Start Time option in the First Entity Creation area.
As soon as the bank teller resource entity is created, it is sent to a Resource Pool block (labeled Teller Pool)
to wait until it is needed by a customer entity.

284 F Appendix E: Examples of Simulation Studio Models

Figure E.19 Attributes Tab in the Create Teller Block Properties Dialog Box

In this example, a Seize block (labeled Seize Teller), a Resource Pool block (labeled Teller Pool), a Delay
block (labeled Hold Teller), and a Release block (labeled Release Teller) work together to mimic the
functionality of the Server block (labeled Teller) in the original model. When a customer entity arrives at the
FIFO Queue block, the FIFO Queue block notifies the Seize Teller block that a customer is waiting. The
Seize Teller block then checks whether the bank teller resource entity is available in the Teller Pool block. If
it is not available, then the customer entity stays in the queue. If the bank teller resource entity is available,
then the Seize Teller block accepts the customer entity from the Queue block, pulls the bank teller resource
entity from the Teller Pool block, and attaches it to the customer entity (forming a hierarchy of entities).
The customer entity is then sent to the Hold Teller block where the customer entity (along with the bank
teller resource entity) is held until its service is completed. It is then routed to the Release Teller block. The
Release Teller block extracts the bank teller resource entity from the customer entity and sends the customer
entity to the Disposer block to exit the model. The bank teller resource entity is routed back to the Teller
Pool block.

A quick inspection of the values in the Number Holder blocks in both models at the end of the simulation run
shows that both the original model and the new resource entity model produce the same results.

For this simple banking system, it is not necessary to use a resource entity to model the bank teller. However,
in a more realistic model of a banking system, it might be necessary to seize multiple resources simultaneously,
to vary the number of available resources according to a schedule, or to preempt a resource either because of
a failure or because a higher priority entity arrives. It is not possible to model these scenarios using only
stationary resources. In general, mobile resources offer more modeling flexibility and options.

The Banking System Model with Resource Scheduling F 285

The Banking System Model with Resource Scheduling
The resource facilities in Simulation Studio provide more advanced functionality than demonstrated in the
previous simple banking system example, described in the section “Modeling the Banking System by Using
Mobile Resources” on page 281. This example, first introduced in Chapter 10, “Resources,” illustrates some
of this additional functionality. The basic premise remains the same: customers arrive at the bank and wait to
be served by a bank teller. However, in this new model there are three tellers, not all of whom are available
during the entire simulation run. This model also collects utilization statistics for the bank teller resource
entities.

Figure E.20 shows the new model. You can find the project files for this example (named projects\
docSchedule) in the examples folder in your Simulation Studio installation directory. The most obvious
difference between this resource model and the previous one is the addition of the Resource Agenda,
Resource Scheduler, and Resource Stats Collector blocks. A less obvious difference is the creation, storage,
and allocation approach that is used here for the three bank teller resources.

Figure E.20 Banking System Model That Uses Resource Scheduling

There are two options for creating the three bank teller resources. Either you can create three BankTeller
resource entity objects, each of which has a ResourceUnits value of 1, or you can create one BankTeller
resource entity object that has a ResourceUnits value of 3. To demonstrate the merging/splitting feature in
Simulation Studio, this model uses the latter approach.

The Create Teller block generates one BankTeller resource entity object and passes it to the Teller Pool block,

286 F Appendix E: Examples of Simulation Studio Models

just as in the previous model. This time, the resource entity attribute of the resource entity object is equal
to 3 instead of 1. To make efficient use of the ResourceUnits in the BankTeller resource entity object, it is
necessary to use the Resource Pool block’s merging and splitting resource entities capabilities. Selecting the
Merge/Split resource units among resource entities of same type check box in the Block Properties for
Teller Pool dialog box (see Figure E.21) enables the block to look at the ResourceUnits attribute of its held
resource entities and possibly subdivide a resource entity into two resource entities, one of which matches
the needs of an incoming resource request. In this example, the Seize Teller block requests a BankTeller
resource entity that has one ResourceUnit. With the merge/split option selected, the Teller Pool block can
take a BankTeller resource entity that has a ResourceUnits value of 3, create a new BankTeller resource
entity object that has a ResourceUnits value of 1, and decrease the ResourceUnits value of the existing
BankTeller resource entity (already in the pool) to 2. The new BankTeller resource entity object (which has a
ResourceUnits value of 1) is sent to the Seize Teller block to satisfy its request.

Similarly, when the BankTeller resource entity object returns to the Teller Pool block, its ResourceUnits can
be merged with a BankTeller resource entity already in the pool, and the incoming BankTeller resource entity
object is disposed.

Figure E.21 Teller Pool Block Properties Dialog Box

For this model, all three bank tellers might not be available during the entire simulation—maybe they take a
staggered lunch break. The previous model used a total simulation time of 9 hours (540 minutes). Assume in
this model that for the first 4 hours (240 minutes) of the work day, all three bank tellers are available. For
the next hour, two of the tellers go on lunch break and when they return, the third teller takes an hour lunch
break. When the third teller returns from lunch break, all three tellers are available for the remainder of the
work day.

The Banking System Model with Resource Scheduling F 287

A Resource Agenda block and a Resource Scheduler block are used together to implement the scheduling
functionality in this model. A Resource Agenda block is used to create a list of resource adjustment actions
(collectively known as a resource agenda) to be performed during the simulation run. The resource agenda
information is passed to a Resource Scheduler block to arrange and perform the resource adjustment actions
on specific resource entities. Figure E.22 shows the Resource Agenda Block Properties dialog box for this
model. Each row or entry in the agenda represents a resource adjustment action and consists of three pieces
of information: Duration, Value, and Value Type. For a complete description of each of these fields, see the
Resource Agenda block description in Appendix A, “Templates.” For this model, these entries represent the
changes in the number of bank tellers throughout the simulation period.

Figure E.22 Resource Agenda Block Properties Dialog Box

The Resource Scheduler block receives the resource agenda at the beginning of the simulation run through its
InAgenda input value port, and the scheduler performs the sequence of resource adjustments on a specified
group of targeted resource entities. The block properties dialog box that is associated with the Resource
Scheduler block in this model is shown in Figure E.23. Each row in the Appointments table is called an
appointment. For more information about using the Resource Scheduler block, see Appendix A, “Templates.”
Only the Start Time, Agenda, and Search Targets By fields are discussed here. The Start Time field
specifies the simulation time to activate the associated agenda. The Agenda field supplies the name of the
incoming agenda to use for this appointment. (Multiple Resource Agenda blocks can be linked to the same
Resource Scheduler block, each sending a named agenda to the scheduler.) The Entity Type field under
Search Targets By indicates which resource entities the associated agenda in the appointment applies to. For
this model, the agenda that is created in the Resource Agenda block is activated at a Start Time of 0 (when the
simulation run begins) and is applied to the BankTellers resource entity objects in the model. The Immediate
Actions options selected here indicate that resource entities that are in a seized state are not preempted. For
more information about preemption, see the section “Preempting Resource Entities” on page 105.

288 F Appendix E: Examples of Simulation Studio Models

Figure E.23 Resource Scheduler Block Properties Dialog Box

The final new block that is added to this resource model is the Resource Stats Collector block. This block
collects statistics about resource entities during the simulation run. The Resource Stats Collector requires a
minimum of two pieces of information: the resource entities that you want to collect statistics about and the
statistics that you want to compute. The Resource Stats Collector Block Properties dialog box has separate
tabs for you to enter this information. The Groups tab, as shown in Figure E.24, identifies the targeted
resource entities for statistics collection. In this example, resource entities of the BankTellers Entity Type
have been targeted. The Statistics tab, as shown in Figure E.25, specifies the statistics that you want to
compute. For more information about the columns in this table, see the Resource Stats Collector block
overview in Appendix A, “Templates.”

Figure E.24 Groups Tab in Resource Stats Collector Block Properties Dialog Box

The Banking System Model with Resource Scheduling F 289

Figure E.25 Statistics Tab in Resource Stats Collector Block Properties Dialog Box

In this example, two statistics are defined: Utilization and Idle. Both are computed using the %AvgAvail
statistic type. For the statistic named Utilization, the Seized option is set to true. In this case, the result is the
percentage of time that resource entities of type BankTellers are seized, relative to the time-average number
of available units of resource entities of type BankTellers during the simulation run. For the statistics named
Idle, the Seized option is set to false. In this case, the result is the percentage of time that resource entities of
type BankTellers are not seized, relative to the time-average number of available units of resource entities of
type BankTellers during the simulation run.

The Resource Stats Collector block provides an option to save the defined statistics to a file at the end of each
run (that option was selected for this example). You can also attach a plot block to the OutData outport of the
Resource Stats Collector block to display the statistics during the simulation run. In this example, a Table
block displays the defined statistics. At the end of the run, the Utilization statistic equals 0.361853, and the
Idle statistic equals 0.638147 (as shown in Figure E.20).

This example provides a glimpse into the modeling capabilities and potential applications of the Resource
Agenda, Resource Scheduler and Resource Stats Collector blocks. Although these blocks are more com-
plex than many of the previously demonstrated blocks, they also provide powerful and flexible modeling
functionality.

290 F Appendix E: Examples of Simulation Studio Models

Priority-Based Preemption of Service
This example illustrates how to use several of the more advanced Simulation Studio blocks (Gate, Clone,
Entity Group, Entity Filter) to model a system in which higher-priority customers can preempt lower-priority
customers who are already receiving service. The preempted customers do not leave the system but instead
wait for a server to become available again so that they can complete their service at a later time. You can
find the project files for this example in the folder \projects\examples\docPriorityPreempt in
your Simulation Studio installation directory. Figure E.26 below depicts this model.

Figure E.26 Priority-Based Preemption Example

Priority-Based Preemption of Service F 291

Entities are created by two distinct Entity Generator blocks—one for Priority 1 (lower priority) and one for
Priority 2 (higher priority). Five Priority 1 entities are created (arrive) at time zero and five Priority 2 entities
arrive one per time unit, starting at time 2. All entities are created from the entity type named Arrival, defined
for this model with additional attributes ServiceTime and Priority, as shown in Figure E.27. ServiceTime
for each entity is assigned a value of 10 units, and the Priority attribute is defined with a default value of 0
that is overwritten with 1 or 2 by the respective Entity Generator blocks.

Figure E.27 Entity Types Dialog Box for the Priority-Based Preemption Model

The entities enter a Queue block (Priority queueing policy) and await service from one of three servers.
Priority 1 entities enter the Queue block immediately, but due to the fact that Priority 2 entities can preempt
Priority 1 entities, their path (through the Preemption Logic section of the model) is more complex. A Priority
2 entity first enters a Switch block that receives input on available servers in the Server block (via output
from the OutAvailable port on the Server block, fed through a Number Holder block for monitoring and then
via a Formula block that evaluates whether the number of available servers is zero or positive). If a server is
available, then the entity is routed to the Priority Queue block via a Connector; if no server is available, then
the model must check to see whether a Priority 1 entity is currently in service that can be preempted.

In this case, the Priority 2 entity is first sent through a Clone block, which creates an additional copy of
the entity. The original entity is routed to the Priority Queue block via the Connector, awaiting possible
preemption of a Priority 1 entity, while its clone is sent to a Gate block. The Gate block is designed to pull
and push values each time an entity passes through it. In this case, the Gate block pushes a true value to the
InUpate port of an Entity Group block, causing it to pull values to create a new entity group. This link is
made via Connectors for visual simplicity. This Entity Group block is intended to identify one Priority 1
entity in service that can be preempted. It pulls values from the OutHoldings port of the Server block, which
supplies data on entities currently in service, and selects one with Priority value less than 2, as shown in the
properties dialog box in Figure E.28.

292 F Appendix E: Examples of Simulation Studio Models

Figure E.28 Properties Dialog Box for Entity Group Block

This dialog box specifies that the group be created from entities with a Priority value less than 2 (here, that is
equivalent to Priority=1) and that the group has a maximum count of 1. Thus the Entity Group block either
identifies a single Priority 1 entity currently in service that can be preempted or finds that none exists. In
either case, it sends its entity group (with either one member or none) back to the Gate block via a connection
between the OutSubgroup1 port of the Entity Group block and the InServiceIn port of the Gate block. The
Gate block then sends the entity group out its InServiceOut port to the InPreempt port of the Server block,
effectively telling the Server block which in-service entity (if any) it should preempt.

The InServiceIn and InServiceOut ports on the Gate block are created by defining an attribute InService for
the Gate block with type Entity Group; the SignalIn and SignalOut ports are created similarly by defining a
Boolean attribute Signal. The SignalIn port is not needed in this model. The properties dialog box for the
Gate block is shown in Figure E.29. Note that the checked box in the Default column for Signal indicates
that its value is true by default—needed in order to signal the Entity Group block to attempt to find a Priority
1 entity to preempt.

A Model of an Incoming Call Center F 293

Figure E.29 Defining InService and Signal Attributes for the Gate Block

When a Priority 1 entity is preempted from the server, it is sent via the OutPreempt port on the server to
a Count block (in the Preempted Customers Compound block) and then to a Modifier block where the
remaining service time is computed. Before an entity enters the Server block, the current time is saved in the
attribute EnterServTime. If an entity is preempted from service, the EnterServTime attribute is used by a
Formula block to compute the remaining service time. The preempted entity is then routed to an Entity Filter
block where the value of the attribute ServiceTime is checked. If the remaining ServiceTime is greater than 0,
the preempted entity is routed back to the queue. If the remaining ServiceTime equals 0, the entity is routed
to the Disposer block and leaves the system.

A Model of an Incoming Call Center
This example demonstrates the use of both regular entities and resource entities to model the operations and
performance of an incoming call center, in which a finite number of telephone lines are allocated among
callers who want to conduct one of two types of business. Several of the standard Simulation Studio blocks
are used along with some advanced blocks and some blocks specialized for resource entities. The model
is shown in Figure E.30 and you can find the project files for this example in the folder \projects\
examples\docCallCenter in your Simulation Studio installation directory.

Callers choose whether to use the call center’s automated call routing system or to speak with an operator.
They also choose one of two activities: placing an order or speaking with customer service. Calls might be
lost initially due to a lack of open phone lines (the caller gets a busy signal) or when a caller is forced to wait
an excessive amount of time to speak with an operator or service representative.

294 F Appendix E: Examples of Simulation Studio Models

Figure E.30 Incoming Call Center Model

NOTE: Although the time units of the simulation clock in Simulation Studio do not denote any specific time
units, for the purposes of this model each time unit represents one second.

The Manage Phone Lines section of the model creates and maintains the resource entities in this model,
representing the available telephone lines in the call center. An Entity Generator block creates 15 Telephone
Line resource entities at time zero and routes them to the Resource Pool block labeled Phone Lines; the
Number Holder block attached to its OutLength port reports the current number of available lines.

In the Call Arrival section, incoming calls are created as regular entities. Calls arrive via an Entity Generator
block according to an exponential distribution with mean 30. Each entity is created as a member of an entity
type named Caller, with an attribute named Choice that is used to designate the type of business that the
caller wishes to conduct. A second attribute, Operator, specifies whether the caller wishes to speak with an
operator or use the automated routing system solely.

These Caller entities proceed immediately to a Seize block, which attempts to allocate one Telephone Line
resource entity to the Caller entity. If no telephone lines are available, the caller receives a busy signal and
hangs up; this is modeled by the Caller entity exiting its Entity Generator block via the OutBalk port to a
Disposer block. A Number Holder blocks tallies these calls.

If a Telephone Line is allocated, the Caller entity moves next to the Route Call section of the model. A Delay
block simulates the time (5 seconds) taken by the initial dialogue of the automated answering system, and the
Caller entity moves next to a Modifier block that randomly assigns values to the Choice attribute (1=place
order, 2=customer service) and the Operator attribute (0=use automated system, 1=speak with operator). An
Entity Filter block checks the value of the Operator attribute, and routes the Caller entity accordingly. The
properties dialog box for this Entity Filter block, shown in Figure E.31, show that it simply checks whether
the value of Operator is equal to zero.

A Model of an Incoming Call Center F 295

Figure E.31 Properties Dialog Box for Entity Filter

If the caller prefers to speak with an operator (the value of the Operator attribute is not zero), the Caller
entity is routed to the lower section of the model, which consists chiefly of a Queue block (FIFO queueing
policy) and a Server block (capacity 2, indicating two operators on staff). The Caller entity might renege from
this queue, indicating a hang-up by a caller who has been waiting too long to speak with an operator. The
distribution of the renege time is uniformly distributed from 75 to 120; this indicates that each caller waits at
this point between 75 and 120 seconds before hanging up. Service time with an operator is exponentially
distributed with mean 45 seconds.

If the caller hangs up while awaiting an operator, the Caller entity passes out the OutRenege port of the
Queue block to a Release block that frees up the Telephone Line resource entity, sending it back to the Phone
Lines Resource Pool block via a Connector. The Caller entity proceeds to a disposer, is counted, and exits
the system.

296 F Appendix E: Examples of Simulation Studio Models

If the caller completes service with the operator, the Caller entity moves next to the Operator Switch block,
which routes the Caller entity according to the value of the Choice attribute. An identical Switch block,
labeled Automatic, is encountered by Caller entities that exit the Entity Filter block with an Operator
attribute value of zero. These two Switch blocks could easily be combined but are modeled separately for the
sake of clarity.

The Switch blocks route Caller entities to either the Order queue or the Cust. Svc. queue, both located in
the upper right corner of the model. The model is identical in each case, except for differences in renege
time and service time distribution parameters. For each, the Caller entity might renege (the caller might hang
up) and if so is routed (via a Connector) to the Hang Ups section of the model. Otherwise the Caller entity
eventually proceeds to the corresponding Server block (capacity 4 for Order and 3 for Cust. Svc.) and then is
routed (via a Connector) to the Completed Calls section of the model.

In both the Hang Ups section and the Completed Calls section the treatment of the Caller entity is identical.
First, a Release block releases the Telephone Line resource entity back to the Phone Lines Resource Pool
block. Next, a Switch block routes the Caller entity to a specific Disposer block and Number Holder block
based on the value of the Choice attribute; this enables hang ups and completed calls according to the type of
service desired or provided.

The model is run for 86,400 seconds, equal to 24 hours of continuous operation of the call center. Tracking
of the number of busy signals, hang ups, and completed calls in each category can provide invaluable
information about the performance of the call center under varying conditions. This model can be made even
more useful by specifying key controls (number of lines, staffing levels, service times, and so on) as factors
and key performance indicators (the aforementioned counts, staff utilization, queue lengths, and so on) as
responses so that experimental design can be used to create a number of different scenarios for which the
simulation can be run and the results tracked.

Modeling Assembly Operation and Parts Inventory System F 297

Modeling Assembly Operation and Parts Inventory System
This example shows how regular entities and resource entities, along with both standard and resource-oriented
Simulation Studio blocks, can be used to model an assembly system and an associated parts inventory system.
Each order (subassembly) arrives with a need for a given number of each of two parts. The parts needed are
withdrawn from inventory and the assembly operation is executed; the completed order leaves the system.
The part inventories are checked and replenished on a periodic basis. If the needed parts for an order are
not immediately available, then the order must await inventory replenishment before it can proceed to the
assembly operation. The model of this system is shown in Figure E.32 and you can find the project files for
this example in the folder \projects\examples\docInventory in your Simulation Studio installation
directory.

Figure E.32 Assembly and Parts Inventory Model

Entities that represent orders are created by the Entity Generator block labeled Order Arrival. Next, a Modifier
block creates attributes NumPart1 and NumPart2, which correspond to the quantities of Part1 and Part2
needed, for each order, drawing values from the Numeric Source blocks in the Part Requirements compound
block. The order then proceeds to a Queue block (FIFO policy) where it waits until its needed parts are
available. The length of the queue is monitored.

Following the Queue block is a Seize block that executes the procurement of needed parts. For this Seize
block two resource ports, Part1 and Part2, were created as shown in the properties dialog box in Figure E.33.

298 F Appendix E: Examples of Simulation Studio Models

Each defined resource port for a Seize block creates a resource entity input port through which units of the
corresponding resource entity enter the Seize block and are given to the requesting entity (the order). Because
the Units column for each port is left blank, additional input ports called Part1_units and Part2_units are
created so that the Seize block can pull the needed units of each resource for the current requesting entity. In
this model, an Extractor block supplies the values of the NumPart1 and NumPart2 attributes to be used for
the number of units for Part1 and Part2, respectively.

Figure E.33 Properties Dialog Box for Seize Block

The order proceeds next to a Delay block that models the time needed for assembly (distributed uniformly
between 30 and 60). Once assembly is complete, a Release block releases the previously seized units of the
resource entities Part1 and Part2. In this case, since the parts are consumed during the assembly operation,
they are routed to a Disposer block upon release. If the resource entities represented nondisposable resources,
then they would be routed back to their respective resource pools or elsewhere in the model upon release.

Finally, the order proceeds to a Bucket block, which records the current age (time in the model) of each entity
and (via a connection to the Bucket block’s OutLatestAge port) passes the information to a Number Holder
block for reporting and possible data collection. The order entity then exits the system via a Disposer block.

In the lower half of the model are two areas (expanded compound blocks) labeled Part1 Inventory and Part 2
Inventory. These sections of the model simulate inventory management and replenishment for the two parts.
The functionality for both parts is identical; so this example focuses on Part1. Inventory is checked every 180

Modeling Assembly Operation and Parts Inventory System F 299

time units and, if the inventory of Part1 is below the Part1 reorder level, an order equal to the Part1 reorder
level is placed.

In order to simulate this inventory policy, a Number Holder block supplies a constant value of 180 as the
InterValue Time for a Value Generator block. Thus, every 180 time units the Value Generator block pulls
a Boolean value through its InValue port from a Formula Block that compares the current Part1 inventory
level to its reorder level. The formula produces a true value (indicating the need for inventory replenishment)
if inventory is under the reorder level and a false value otherwise. The details are shown in the properties
dialog box for the Formula Block in Figure E.34.

Figure E.34 Comparing Current Inventory to Reorder Level in the Formula Block

This Boolean value flows out the OutValue port of the Value Generator block to the Signal input port of
an Entity Generator block that represents inventory replenishment; if the value is true, it signals the Entity
Generator block to produce entities according to its configuration—to replenish the Part1 inventory. The
BatchSize input port of the Entity Generator is connected to the Number Holder block that holds the reorder
level (10) for Part1, and the InterArrivalTime input port is attached to a Number Holder block that holds the
value zero. Collectively, this means that upon receiving a true value from the Value Generator block, the
Entity Generator block creates 10 Part1 resource entities immediately, sending them to the Part1 Resource
Pool block. This completes the inventory replenishment operation, and all units of Part1 are available to be
given to requesting order entities via the Seize block.

The reorder levels for Part1 and Part2 are declared as factors, and the order completion time is declared
as a response; these factors and responses are included in the Experiment window. Three design points,
with varying reorder levels for Part1 and Part2, are run for 10,080 time units, equal to one week if each

300 F Appendix E: Examples of Simulation Studio Models

time unit corresponds to one minute. Details about creating factors and responses and including them in the
Experiment window are provided in Appendix C, “Design of Experiments.”

Each design point is run for ten replications and the results are recorded. The Experiment window for this
model is shown in Figure E.35. The first design point is expanded to show all ten replications.

Figure E.35 Experiment Window for Assembly and Inventory Model

Using the SAS Program Block to Analyze Simulation Results
This very simple model illustrates the use of the SAS Program block to receive data from a run of the
simulation model, analyze the data using SAS procedures, and produce SAS graphical output from the
analyses. Note that although a SAS program is used in this example, the SAS Program block can also be used
with a program written in JMP Script. This model simulates an M/M/1 system; arrivals and service times are
exponentially distributed and there is a single server. The model is shown in Figure E.36 and you can find the
project files for this example in the folder \projects\examples\docMM1SAS in your Simulation Studio
installation directory.

Using the SAS Program Block to Analyze Simulation Results F 301

Figure E.36 M/M/1 Model with a SAS Program Block

Two additional blocks gather data from the model: a Queue Stats Collector block and a Server Stats Collector
block. The Queue Stats Collector block can collect data from every Queue block in the model, and the Server
Stats Collector block can do the same for every Server block. For this model there is only one Queue block
and one Server block, and so the properties dialog box for the Queue Stats Collector block lists only one
possible source of data, as shown in Figure E.37.

302 F Appendix E: Examples of Simulation Studio Models

Figure E.37 Properties Dialog Box for Queue Stats Collector Block

The remaining block in the model is the SAS Program block labeled Analyze Results, which pulls data from
the Queue Stats Collector and Server Stats Collector blocks via its InQueueData and InServerData input
ports, respectively. The SAS Program block then runs the SAS program specified in the SAS Code Path
field of its properties dialog box, as shown in Figure E.38.

Figure E.38 Properties Dialog Box for SAS Program Block

Using the SAS Program Block to Analyze Simulation Results F 303

The SAS program generatereportmm1.sas uses the Base SAS MEANS and UNIVARIATE procedures
to analyze the waiting times and length for the queue and the utilization of the single server. It produces
output in HTML format, excerpts of which are shown in Figure E.39 and Figure E.40. In order to generate
data for these analyses, the model is run for 50 replications of 10,000 time units each.

Figure E.39 PROC MEANS Output for M/M/1 Model

Figure E.40 PROC UNIVARIATE Analysis of Queue Waiting Times for M/M/1 Model

304 F Appendix E: Examples of Simulation Studio Models

Machining Center Model
This example demonstrates how you can use the Observation Source and Dataset Holder blocks to read in
and store a SAS data set or JMP table that is used repeatedly by all entities. You can find the project files
for this example in the folder \projects\examples\docDatasetHolder in your Simulation Studio
installation directory. In Figure E.41, five different types of parts arrive at a machining center for processing
at four different stations: milling (station 1), turning (station 2), drilling (station 3), and chamfering (station
4).

Figure E.41 Machining Center Model

The interarrival time of parts to the center has an exponential distribution with a mean of 2 minutes. Each
part that arrives has an equal probability of being one of the five types; each part type follows a different
machining sequence. For example, parts of Type 1 visit the stations in the following order: chamfering,
turning, drilling, and milling. Parts of Type 2 visit the station in the following order: milling, turning,
chamfering, drilling, and turning (they visit the turning station twice).

Each of the four stations can work on one part at a time, and a queue in front of each station holds waiting
parts. At each station, part-processing times are exponentially distributed with a mean of 1 minute (for
milling), 1.5 minutes (for turning), 1.6 minutes (for drilling), and 1.8 minutes (for chamfering).

The entities in this model are the parts. You define an entity type called Parts, which includes Row and
Column attributes. After each Parts entity is generated, it is sent to a Modifier block where the value of the
Row attribute is randomly assigned from the discrete uniform distribution on 0 to 4. This determines the part
type (because the row attribute is used to access a specific row in a data set, the values must be between 0 and
4, rather than between 1 and 5). The initial value of the Column attribute is set to 1 in the Entity Types dialog
box.

Machining Center Model F 305

An Observation Source block reads in the entire machining sequence data set, and the data model that
represents that data set is passed from the OutData port of the Observation Source block to the InData port of
the Dataset Holder block where it is held until needed. You can display the machining sequence data set in
the top left of Figure E.41 by connecting the OutData port of the Dataset Holder block to the InData port of a
Table block. Each row in the data set represents the machining sequence for a particular part type. The end of
the machining sequence is indicated with a missing value “.” in the sequence data set. In the Dataset Holder
block, one query output called NextStation is created. The value to be returned by this query (Target Type) is
of type Number. Because the default values for the Row Index and Column Index fields are blank, the row
and column values are entity-dependent and are pulled from the InRow and InColumn ports of the Dataset
Holder block.

When a Parts entity flows into the Switch block, it is routed either to one of the four stations for processing
or to the Parts Depart compound block (signaling that it has completed its machining sequence). The
InSwitchValue port of the Switch block is connected to an output port of the DataSetHolder block called
NextStation. When machining at any station is complete, the Parts entity attribute Column is incremented
by 1 (see the Formula block labeled IncrementColumn). The Extractor block uses this updated value to
determine the next station in the sequence by passing the Row and updated Column attribute values as inputs
to the InRow and InColumn ports of the Dataset Holder block.

The value NextStation is then passed to the Switch block to route the entity to the correct station. When
machining is complete, the value extracted from the DataSet Holder block is “.”. When “.” is passed to
the Switch block, the entity is forced to be routed out the OutDefault port of the Switch block because the
value “.” does not match any of the defined case values. The completed parts are routed to the Parts Depart
compound block, which computes the total number of parts processed.

In this example, the Dataset Holder block is used to hold a data set that is used repeatedly by all entities. An
alternative is to store the information in the machining sequence data set as attributes on the entities, but that
would result in the same data being stored multiple times.

306 F Appendix E: Examples of Simulation Studio Models

Using the Observation Source Block to Set Entity Attributes
This simple queueing example contains two models to demonstrate features of the Observation Source block
and how it can be used to quickly set multiple entity attributes in a Modifier block. You can find the project
files for this example in the folder \projects\examples\docObsSource in your Simulation Studio
installation directory.

In model0 in Figure E.42, you create entities and send them to a Modifier block where you set five attributes.

Figure E.42 Observation Source Block Example

Using the Dataset Writer Block to Save Data during a Run F 307

Each attribute is read from a separate column in a SAS data set using Numeric Source and Text Source
blocks. After the attributes are set, the value of attrib2 is extracted and sent to a String Holder block. The
entity then waits in a queue for the Server to become available. The service time for each entity is the value
of the attribute attrib5. The value of attrib5 is extracted using an Extractor block, which is connected to
the InServiceTime port of the Server block. When an Extractor block is used in this way, it does not require
connections to its InEntity and OutEntity ports. After being serviced, the entity leaves the system.

model1 in Figure E.42 is the same model as model0 except that an Observation Source block is used to
read in the attribute values from the same data set as is used in model0. In the Modifier block in model1,
you select An Observation Value Input for the Assigned from option and you select Full Assignment, as
shown in Figure E.43. This means that as each entity enters the Modifier block, an entire row from the SAS
data set is read in and each column is assigned as an attribute on the entity (using the column names in the
data set for the attribute names). This eliminates the need to use five separate Numeric Source and Text
Source blocks to read in the attribute values.

Figure E.43 Modifier Block Dialog Box

Using the Dataset Writer Block to Save Data during a Run
This simple queueing example demonstrates the Dataset Writer block functionality. You can find the project
files for this example in the folder \projects\examples\docDatasetWriter in your Simulation
Studio installation directory.

In Figure E.44, the Entity Generator block in the upper left corner creates entities every two minutes and
sends them to a Queue block where they wait for a server to become available. After being serviced, each

308 F Appendix E: Examples of Simulation Studio Models

entity passes through a Bucket block where the attributes Time and Age are collected. Then the entity leaves
the system.

Every five minutes, the Entity Generator block in the lower left creates an entity. The entity is sent to a Gate
block where first a Boolean signal (with value true) is sent to the InSaveNow port of the Dataset Writer block.
Once the true Boolean signal arrives at the InSaveNow port, it is used as a signal to save the contents of the
data model currently provided to the Dataset Writer block through the InData port. In this example, the InData
port is connected to the OutData port of the Bucket, so the information collected up to that point by the Bucket
is saved. Since the InPolicy port of the Dataset Writer block has a connection, the location of the saved data
is set dynamically. The following string expression is passed from the Formula block to the InPolicy port of
the Dataset Writer block to set the location: concat("result",toString(timeNow()),".sas7bdat").
For example, the first data set saved is named result5.sas7bdat.

After the entity generated by the second Entity Generator block signals the Dataset Writer block to save the
Bucket data, another Boolean true signal is generated by the Gate block and sent to the InClearData port of
the Bucket. This signal clears all data that have been collected by the Bucket block up to that time during the
simulation execution. So the first data set saved by the Dataset Writer block contains the data collected by
the Bucket between time 0 and time 5, and similarly the second data set saved contains the data collected by
the Bucket between time 5 and time 10.

Figure E.44 Dataset Writer Block Example

Using the Steady State Block for Output Analysis F 309

Using the Steady State Block for Output Analysis
This example demonstrates the functionality of the Steady State block, which is located in the Output
Analysis template. You can find the project files for this example in the folder \projects\examples\
docSteadyState in your Simulation Studio installation directory.

Parts arrive at a repair facility at a rate of one part per hour and wait in a queue to be serviced by a machine
that processes them at a rate of 1.25 parts per hour, or 48 minutes per part. Suppose this processing facility
never shuts down and you are interested in estimating the long-run average time that parts wait to be repaired.
In Figure E.45, the OutWait port of the Queue block is connected to the InValue port of the Steady State
block. The InValue port of the Steady State block is used for individual data values (such as waiting time
values). The Steady State block can also take a data model object as input through its InData port (such as a
data model collected by a Number Holder block).

Figure E.45 Steady State Block Example for Observation-Based Statistics

310 F Appendix E: Examples of Simulation Studio Models

Figure E.46 shows the Block Properties dialog box for the Steady State block. Because the InValue port is
used to pass individual data values, you do not need to specify a data model variable name. A precision value
of 0.15 is specified, and the Relative Precision option is selected. This means that the Steady State block will
return a confidence interval that is within˙15% of the estimated mean. The beta value is 0.10, indicating that
you want a 90% confidence interval for the average waiting time. The option Time Persistent is not selected
because waiting time is an observation-based statistic. For more information about observation-based and
time-persistent statistics, see the section “Output Analysis” on page 124.

Figure E.46 Steady State Block Dialog Box for Observation-Based Statistics

When the simulation is executed, the Steady State block controls the run length, and the simulation termi-
nates as soon as the Steady State block delivers a confidence interval that satisfies the specified precision
requirement. At that point, the estimated mean and the lower and upper limits of the confidence interval are
returned. The estimated warm-up time is also returned at the point during the run at which the algorithm
detects the value. For this example in steady state operation, the expected waiting time is 3.2 time units. In
Figure E.45, the confidence interval (2.93, 3.43) that is returned by the Steady State block covers this value.
The estimated mean waiting time is 3.18, so the delivered confidence interval has an actual precision of about
7.9%. This is less than the requested precision level of 15%.

Suppose you are now interested in computing the long-run average number of parts in the system. Figure E.47
shows the same model as in Figure E.45, except two Formula blocks and two Gate blocks have been added to
calculate and update the number of parts in the system. When a part arrives at the first Gate block, the Gate
block triggers the execution of the expression in the first Formula block, which adds 1 to the current value in
the Number Holder block labeled NumberInSystem. When the entity is ready to leave the system, it flows
through a second Gate block and triggers the execution of the expression in the second Formula block. The
second Formula block subtracts 1 from the current value in the NumberInSystem Number Holder block. The
Gate blocks are connected to the Number Holder block by using value Connectors.

Using the Steady State Block for Output Analysis F 311

Figure E.47 Steady State Block Example for Time-Persistent Statistics

In the Steady State block properties dialog box in Figure E.48, the option Time Persistent is selected, and the
Time Interval value is 1. This means that the computation of the time-averaged number in system statistic
occurs every 1 time unit during the simulation run. The time-averaged values are then used in the spaced
batch means algorithm for computing the confidence interval. In steady state operation, the expected number
of parts in the system for this example is four. The confidence interval (3.682, 4.262) that is returned by the
Steady State block covers this value.

Figure E.48 Steady State Block Dialog Box for Time-Persistent Statistics

312 F Appendix E: Examples of Simulation Studio Models

Updating an Input Distribution
In certain scenarios, you might want to change a particular input distribution at the start of a simulation
run. Other times, you might want to change a distribution dynamically during the simulation run. This
example demonstrates both of these possibilities. You can find the project files for this example in the folder
\projects\examples\docUpdateDistribution in your Simulation Studio installation directory.

The easiest way to change the parameters for a distribution at the beginning of the run is to use the
DataStreamDescription factor for the Numeric Source block, as demonstrated in the model in Figure E.49.
In this example, two processing times are randomly sampled for each entity and are saved as its attributes.
These processing times are used downstream in the model as service times in two different Server blocks.

To explore different processing time distributions, you first define two factors. One factor, called Exponen-
tialMean, is anchored to the DataStreamDescription factor candidate for the block labeled Numeric Source1.
Assume that the distribution type for the first processing time is fixed as Exponential and only the mean of
the distribution will vary. The block Numeric Source1 has its distribution type defined as Exponential in its
Block Properties dialog box. After including the ExponentialMean factor in the Experiment window, you can
vary the mean of the Exponential distribution for the Numeric Source1 block for different runs of the model
in the Experiment window.

Figure E.49 Using Factors to Change an Input Distribution

The second factor, called ProcessTime2, is anchored to the DataStreamDescription factor candidate for the
block labeled Numeric Source2. For the second processing time, suppose you are interested in varying the
type of its distribution. In this case, it does not matter what distribution type is currently specified in the
Numeric Source2 Block Properties dialog box. The factor ProcessTime2 is used to set the distribution type
and parameters in the Experiment window at the start of the run.

Updating an Input Distribution F 313

Figure E.50 shows the Anchors dialog box for the model, and Figure E.51 shows the Experiment window with
the processing time factors included. Two responses have also been created for the average processing times.
Each response is anchored to the MeanValue candidate of the corresponding Number Holder block. For the
first design point in the Experiment window, the mean of the Exponential distribution for the block Numeric
Source1 is set to 3, and the distribution for the block Numeric Source2 is set to Normal with a mean of 10 and
a standard deviation of 1. The second design point specifies different values for each of these settings. The
format for a DataStreamDescription factor is the same as for a value that is supplied to the InStreamPolicy
port of the Numeric Source block. For more information about the format of the DataStreamDescription
factor candidate, see the Numeric Source block overview in Appendix A, “Templates.”

Figure E.50 Anchors Dialog Box for Updating Distributions Using Factors

Figure E.51 Experiment Window for Updating Distributions Using Factors

The following example demonstrates how the InStreamPolicy port of a Numeric Source block can be used to
dynamically change a distribution during a run rather than at the beginning. In the model in Figure E.52,
each entity samples a processing time from a different normal distribution. To accomplish this, an entity first
randomly samples mean and standard deviation values and assigns those values as its attributes. Because the
InStreamPolicy port of a Numeric Source block requires a string input, a Formula block is used to concatenate
the mean and standard deviation values into a single string that the InStreamPolicy port can process.

314 F Appendix E: Examples of Simulation Studio Models

Figure E.52 Dynamically Updating a Distribution during the Simulation Run

Figure E.53 shows the format of the expression used in the Formula block to generate the string for the
InStreamPolicy port. As shown in Figure E.52, a Gate block triggers the evaluation of the expression in the
Formula block, and the resulting string is then passed to a String Holder block, where it is held until needed.

Figure E.53 Formula Block Properties Dialog Box for Generating the InStreamPolicy Port String

Extended Queueing Options F 315

Next, the Gate block generates a 'true' Boolean signal. This signal is passed to the InUpdate port of
the Numeric Source block labeled Numeric Source3. When the Numeric Source block receives a 'true'
Boolean value in its InUpdate port, it pulls the value from its InStreamPolicy port, which in this example
is connected to the OutData port of the String Holder block. The string that is held by the String Holder
block is passed to the block labeled Numeric Source3, updating the parameters of the Normal distribution.
Note that the order of actions in the Gate block is important because the string value that is pulled by the
InStreamPolicy port must be available before the 'true' Boolean value is passed to the InUpdate port of
the Numeric Source block.

Extended Queueing Options
In this example, there are five separate models that illustrate the extended queueing controls in the Queue block.
You can find the project files for this example in the folder \projects\examples\docQueueOptions
in your Simulation Studio installation directory.

In the docQueueOptions project, model1 demonstrates the use of the Nonblocking Pull Depth option, as
shown in Figure E.54. At time 0, two entities are created: one with attribute type 1 and one with attribute
type 2. Both entities are routed to a Queue block, where the type 1 entity enters the queue first. Also at time
0, two resource entities are created, and an attribute called Specialty is assigned with value 2 for both entities.
The resource entities are routed to a Resource Pool block. All entities are created at time 0, but the Entity
Generators were added to the model so that type 1 entities are created first, then type 2 entities, and finally
the resource entities. By default, when multiple events are scheduled at the same simulation time, precedence
on the event calendar is given to the block that was created first. Block creation order is one way to control
the precedence of block events. For more information about setting the rank order of blocks in a simulation
model, see the section “Block Ranking” on page 61.

Figure E.54 Using the Nonblocking Pull Depth Queueing Option

316 F Appendix E: Examples of Simulation Studio Models

When the resource entities enter the Resource Pool block, the Seize block attempts to pull an entity from
the Queue block that satisfies the attribute rule Specialty==Type. Because the first entity in the Queue
block is type 1, it will wait because there is no resource entity with Specialty=1. In the Queue block, the
Nonblocking Pull Depth option is set to a relative value of 1, as shown in Figure E.55. This means that any
block attempting to pull an entity from the Queue block triggers a checking of 100% of the capacity of the
queue for a match. In this case, the second entity in the queue is then checked to see whether it satisfies the
attribute rule specified in the Seize block. Because the second entity is type 2, it seizes one of the resource
entities with Specialty=2, proceeds to the Delay block, and exits the system. At the end of the simulation run,
the type 1 entity remains in the Queue block. Note that setting the Nonblocking Pull Depth option to an
absolute value of 2 would produce the same result (because there can never be more than two entities in the
queue).

Figure E.55 Nonblocking Pull Depth Option in the Queue Block Properties Dialog Box

In this example, the Nonblocking Pull Depth option is used to allow other blocks to pull entities from the
queue other than the one at the front. If the nonblocking pull depth was left at the default absolute value of
1, then no entities would leave the Queue block. The type 2 entity would be blocked by the type 1 entity
because an absolute nonblocking pull depth of 1 means that only the first entity in the Queue block is checked
when a downstream block attempts to pull an entity from the Queue block.

Extended Queueing Options F 317

The second model in the docQueueOptions project, labeled model2 and shown in Figure E.56, demonstrates
the use of the Nonblocking Push Depth option. One type 1 entity is created at time 0 and routed to the
Queue block. Also at time 0, two resource entities with attribute Specialty=2 are created and routed to the
Resource Pool block. The type 1 entity will wait in the Queue block because it does not satisfy the attribute
rule Specialty==Type that is specified in the Seize block. At time 1, one type 2 entity is generated and routed
to the Queue block. When the type 2 entity arrives at the Queue block, the block attempts to push an entity
downstream. The Nonblocking Push Depth option in the Queue block has a relative value of 1 as shown in
Figure E.57, which means that up to 100% of the queue capacity is checked when the Queue block attempts
to push an entity out. (Note: Specifying an absolute nonblocking push depth of 2 would have the same
effect.) Because the first entity in the Queue block does not satisfy the attribute rule for the downstream Seize
block, the second entity is checked. The second entity does satisfy the Seize attribute rule, so the Queue
block pushes that entity downstream to the Seize block. If the default absolute value of 1 was used for the
nonblocking push depth in the Queue block, then the second incoming entity would not be pushed out of the
Queue block at time 1, and it would wait in the Queue block behind the first entity. The second entity would
be blocked by the first entity, and the simulation would end with two entities in the Queue block.

Figure E.56 Using the Nonblocking Push Depth Queueing Option

318 F Appendix E: Examples of Simulation Studio Models

Figure E.57 Nonblocking Push Depth Option in the Queue Block Properties Dialog Box

The model labeled model3 in the docQueueOptions project demonstrates the Nonblocking Push Depth
and Nonblocking Pull Depth options together. In this model, shown in Figure E.58, 25 type 1 entities and
25 type 2 entities are generated with exponential interarrival times. At time 0, two resource entities are
generated: one resource entity with attribute Specialty=1 and one resource entity with attribute Specialty=2.
In the Queue block, both the nonblocking push depth and the nonblocking pull depth have a relative value of
1, as shown in Figure E.59. As type 1 and type 2 entities enter the Queue block, the relative nonblocking
push depth of 1 (100% of the queue capacity) ensures that an incoming entity to the Queue block will not be
blocked by an entity of a different type that is waiting for its resource entity. Furthermore, when a resource
entity returns to the Resource Pool after being released by another entity, a relative nonblocking pull depth of
1 in the Queue block connected to the downstream Seize block ensures that all entities in the queue will be
checked for a match to the returning resource entity (not just the entity at the front of the queue). Using both
the Nonblocking Pull Depth and the Nonblocking Push Depth options in the Queue block allows entities
to leave the Queue block as soon as their associated resource entity is available for seizing.

Extended Queueing Options F 319

Figure E.58 Modeling a Nonblocking Queue

320 F Appendix E: Examples of Simulation Studio Models

Figure E.59 Queue Block Properties Dialog Box for a Nonblocking Queue

If you run model3 with the default extended queueing options (the Nonblocking Push Depth and the
Nonblocking Pull Depth options both have an absolute value of 1), then you will notice that the average
utilization of the resource entity with the attribute Specialty=1 drops from 1.0 to 0.69 and the average
utilization of the resource entity with Specialty=2 drops from 0.84 to 0.49. Also, the simulation run length
increases from 30.38 time units to 47.58 time units. The lower resource utilizations and the longer simulation
time are a result of entities being blocked in the Queue block, even when their matching resource is available.
For example, a type 2 entity arrives at the Queue block at time 1.42 and waits behind two type 1 entities. At
time 2.69, the resource entity with Specialty=2 is released and returns to the Resource Pool block. However,
the type 2 entity in the Queue block does not seize the waiting Specialty=2 resource entity, because the
nonblocking pull depth has a value of 1, which means that only the first entity in the queue is checked for
a match. Because the first entity in the Queue block is type 1, the resource entity with Specialty=2 waits
in the Resource Pool until the type 2 entity in the Queue block reaches the front of the queue and another
entity arrives at the Queue block to trigger the block to attempt to push an entity downstream, which does not
happen until time 6.3.

Extended Queueing Options F 321

Model4 demonstrates the functionality of the Active Pushing to Downstream option in the Queue block, as
shown in Figure E.60. At time 0, three entities are created and sent into a Queue block. There is a Valve block
that is initially set to Closed downstream from the Queue block. At time five, another entity is generated and
routed to a Gate block. In the Gate block, one action is defined that sends a 'true' Boolean signal to the
InSignal and the InFlowTrigger ports of the Valve block. This action changes the state of the Valve block
from closed to open and sends out a message to blocks connected to the Valve block that its state has changed.
With the Active Pushing to Downstream option selected in the Queue block as shown in Figure E.61, the
Queue block pushes out the first entity and then attempts to push out as many entities as it can. Because
downstream from the Queue block is a Disposer block (which can always take an entity from upstream),
all three entities are pushed out of the Queue block. If the Active Pushing to Downstream option is not
selected in the Queue block, then only one entity is pushed out of the Queue block when the InFlowTrigger
port of the Valve block receives the 'true' Boolean value.

Figure E.60 Using the Active Pushing to Downstream Queueing Option

322 F Appendix E: Examples of Simulation Studio Models

Figure E.61 Active Pushing to Downstream Option in the Queue Block Properties Dialog Box

The model labeled model5 demonstrates the Active Pull Threshold option, as shown in Figure E.62. This
model has two Queue blocks in series, where the Queue block labeled Queue2 has a fixed capacity of 5. The
Server block has a capacity of 1. At time 0, 20 entities are created, and the first one flows through the two
Queue blocks and starts service at the Server block. The next five entities wait in Queue2, and the remaining
14 entities wait in Queue1. The Active Pull Threshold option in the Queue2 block has an absolute value of
–4, as shown in Figure E.63. This means that Queue2 will not actively pull entities from upstream until its
length falls to 5–4=1. The Pull to Full Capacity option is also selected in Queue2, which means that when
Queue2 reaches a length of 1 and pulls from upstream, it will pull as many entities as it can until the length of
Queue2 reaches its capacity of 5. At time 12, the length of Queue2 falls to 1, and subsequently four entities
are pulled from Queue1.

Extended Queueing Options F 323

Figure E.62 Using the Active Pull Threshold Queueing Option

Figure E.63 Active Pull Threshold Option in the Queue Block Properties Dialog Box

324

Appendix F

Expressions

Contents
Overview of Expressions . 325
Operators . 325
Functions . 326
Examples . 328

Overview of Expressions
Expressions are used in various places in Simulation Studio:

1. in writing expressions in the Expression field of a Formula block;

2. in writing Boolean criteria in the Attribute Rule field of the Unbatch, Entity Filter, Entity Group
Holder, Resource Stats Collector, and Resource Scheduler blocks; and

3. in writing Boolean criteria in the Attributes field of the Seize and Release blocks.

All blocks that have an Attribute Rule or Attributes field also have a pop-up editing window for writing
expressions. You open the editing window for expressions by right-clicking in the Attribute Rule or
Attributes field and selecting the option Edit. This appendix documents the operators and functions for
Simulation Studio expressions.

Operators
The following Boolean operators can be used in an expression.
The syntax is operand1 operator operand2 or operator operand.

&& logical and (valid for two Boolean operands)

|| logical or (valid for two Boolean operands)

! logical not (valid for one Boolean operand)

326 F Appendix F: Expressions

The following arithmetic operators can be used in an expression.
The syntax is operand1 operator operand2 or operator operand.

+ add (valid for two numeric operands)

– subtract (valid for one or two numeric operands)

* multiply (valid for two numeric operands)

/ divide (valid for two numeric operands)

% remainder (valid for two numeric operands)

The following equality or inequality operators can be used in an expression.
The syntax is operand1 operator operand2.

== equal to (valid for two numeric, Boolean, or text operands)

!= not equal to (valid for two numeric, Boolean, or text operands)

< less than (valid for two numeric operands)

> greater than (valid for two numeric operands)

<= less than or equal to (valid for two numeric operands)

>= greater than or equal to (valid for two numeric operands)

Functions
The following function requires no arguments and can be used in an expression.

timeNow() returns the current simulation clock value.

The following arithmetic functions can be used in an expression.

abs(arg1) returns the absolute value of a single numeric argument.

floor(arg1) returns the largest integer that is less than or equal to a single numeric argument.

ceil(arg1) returns the smallest integer that is greater than or equal to a single numeric
argument.

round(arg1,arg2) returns the numeric argument arg1 rounded off to the specified precision arg2,
where arg2 > 0 rounds off arg1 up to arg2 decimal places to the left of the
decimal point, arg2 < 0 rounds off arg1 up to arg2 decimal places to the right of
the decimal point, and arg2=0 rounds off arg1 to the closest integer. The default
value for arg2 is 0. The rounding function returns 0 for any invalid value of arg2
(where valid values of arg2 depend on the value of arg1).

min(arg1,arg2,...) returns the minimum value among two or more numeric arguments.

max(arg1,arg2,...) returns the maximum value among two or more numeric arguments.

Functions F 327

power(arg1,arg2) returns the first numeric argument arg1 raised to the power of the second numeric
argument arg2.

sin(arg1) returns the trigonometric sine of a single numeric radians argument.

cos(arg1) returns the trigonometric cosine of a single numeric radians argument.

tan(arg1) returns the trigonometric tangent of a single numeric radians argument.

asin(arg1) returns the trigonometric arc sine of a single numeric radians argument.

acos(arg1) returns the trigonometric arc cosine of a single numeric radians argument.

atan(arg1) returns the trigonometric arc tangent of a single numeric radians argument.

sinh(arg1) returns the trigonometric hyperbolic sine of a single numeric radians argument.

cosh(arg1) returns the trigonometric hyperbolic cosine of a single numeric radians argument.

tanh(arg1) returns the trigonometric hyperbolic tangent of a single numeric radians argument.

log(arg1) returns the base 10 logarithm of a single numeric argument.

ln(arg1) returns the natural logarithm of a single numeric argument.

exp(arg1) returns e (Euler’s number) raised to the power of a single numeric argument.

The following string functions can be used in an expression.

concat(arg1,arg2,...) returns the concatenation of two or more string arguments.

substring(string,index,length) returns the substring of string starting at the specified zero-based index.
For length > 0, the substring starting at index is returned; for length < 0,
the substring ending at index is returned; if length is not specified, the
substring from index to the end of string is returned.

The following conversion functions can be used in an expression.

degrees(arg1) returns the degrees equivalent of a single numeric radians argument.

radians(arg1) returns the radians equivalent of a single numeric degrees argument.

toString(arg1) returns a string representation of a single argument.

toNumber(arg1) returns a numeric representation of a single argument (if possible).

toBoolean(arg1) returns the Boolean value false for a numeric argument with value 0 or a string
argument with value other than "true". Returns the Boolean value true for a
nonzero numeric argument or a string argument with value "true".

The following argument-index functions can be used in an expression.

minindex(arg1,arg2,...) returns the zero-based index of the argument with the smallest value among two
or more numeric arguments.

maxindex(arg1,arg2,...) returns the zero-based index of the argument with the largest value among two or
more numeric arguments.

328 F Appendix F: Expressions

The following logical functions can be used in an expression.

cond has the following syntax: cond(Boolean expression, true return value, false
return value). The value returned by this function is determined by evaluating
the Boolean expression that is the first argument. If the Boolean expression
evaluates to true, the second argument is returned. Otherwise, the third argument
is returned.

switch has the following syntax: switch(Boolean expression 1, value 1, Boolean expres-
sion 2, value 2, ..., default value). The value returned by this function is the
value argument immediately following the first Boolean expression argument that
evaluates to true. The default value is returned if none of the Boolean expression
arguments evaluate to true.

Examples
The following are some sample expressions and how they are evaluated in Simulation Studio.

1. The expression (AttributeA || AttributeB) && (! AttributeC) evaluates to true if the following two
conditions are both satisfied: either AttributeA or AttributeB is true, and AttributeC is false.

2. Assume the following values:

Attribute = 1, Attribute2 = 2, Attribute3 = 1, Attribute4 = 5, Attribute5 = 2, and Attribute6 = 4.

((Attribute + Attribute2 – Attribute3) * Attribute4 / Attribute5) % Attribute 6 evaluates to 1
because 1 + 2 – 1 is 2, the result 2 multiplied by 5 is 10, the result 10 divided by 2
is 5, and the remainder of 5 divided by 4 is 1.

Attribute2 == Attribute5 evaluates to true because both Attribute2 and Attribute 5 have the same
value.

max(Attribute6,Attribute5,Attribute4) evaluates to 5 because Attribute4 has a value of 5, which
is larger than the values of the other two attributes.

maxindex(Attribute6,Attribute5,Attribute4) evaluates to 2 because Attribute4 has a value that is
larger than the values of the other two attributes. Furthermore, the zero-based index
of Attribute4 in the list of arguments is 2 (Attribute6 has index 0 and Attribute5 has
index 1).

3. Assuming MyNum is –13.5, the expression abs(floor(MyNum)) evaluates to 14 because the floor of
–13.5 is –14 and the absolute value of –14 is 14.

Examples F 329

4. If MyNum=2000/3=666.666666, then

round(MyNum) D 667:0

round(MyNum,0) D 667:0

round(MyNum,1) D 670:0

round(MyNum,2) D 700:0

round(MyNum,3) D 1000:0

round(MyNum,-3) D 666:667

5. Assume the following values: A="One", B="Two", and C="Three". Then the expression
concat(A,B,C) evaluates to "OneTwoThree".

6. The expression substring("Attribute1",2,4) evaluates to "trib".

7. The expression substring("Attribute1",2,-3) evaluates to "Att".

8. Assume Input=3. Then the expression cond(Input%2==0,1,2) evaluates to a value of 2 because the
Boolean expression in the first argument is false. Therefore, the third argument is returned.

9. Assume the following values: X=3, Y=2, and Z=4. Then the expression
cond(X < Y,0, cond(X < Z, 1, 2)) evaluates to 1 because X < Y is false and X < Z is true.

10. Assume Input=45. Then the expression
switch(Input <= 10, 1, Input > 10 && Input <= 20, 2, Input > 20 && Input <= 30 ,3, 0) evaluates
to 0 because the three Boolean expressions all evaluate to false. If Input=25, then the same expression
evaluates to 3.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

	Contents
	Documentation
	Software
	Support Groups

	What's New in SAS/OR 14.2
	Overview
	Mathematical Optimization Updates
	Solver Performance Improvements

	Discrete-Event Simulation Updates

	Overview of SAS Simulation Studio
	What Is Simulation?
	What Is SAS Simulation Studio?
	A Simple M/M/1 Queueing Model
	Running the Model
	Collecting Statistics

	Repair Shop Example
	Compound Blocks
	Model Logic
	Collecting Data

	Introduction to SAS Simulation Studio
	Simulation Studio Graphical User Interface
	Installing and Starting Simulation Studio
	Installing Simulation Studio
	Starting Simulation Studio
	Configuring Simulation Studio
	Launching Local SAS and JMP Servers
	Using a Remote SAS Server

	Simulation Studio Menu and Toolbar
	Block Template Display Area
	Simulation Studio Projects
	Project Explorer
	Project Window
	Log, Trace, and Animation Tabs
	Project Status Bar

	Simulation Models
	Overview of Models
	Blocks
	Ports
	Entities and Values
	Building a Model
	Creating Links
	Connectors

	Running a Model
	Running a Model in Parallel Mode
	Searching a Model
	Saving a Project
	Opening a Project, Model, or Experiment
	Model Window Pop-up Menu
	Navigation
	Managing Anchors

	Experiments
	Overview of Experiments
	Factors, Responses, and Anchors
	Experiment Window
	Design Points
	Replicate Rows

	Running an Experiment
	Augment Run
	Saving and Loading Design Data

	Blocks
	Overview of Blocks
	Block Labels
	Managing Block Properties
	Block Pop-up Menu
	Anchors

	Block Ranking

	Compound and Submodel Blocks
	Overview of Compound and Submodel Blocks
	Assembling and Disassembling a Compound Block
	Collapsing and Expanding a Compound Block
	Labeling and Saving a Compound Block
	Tunnels
	Submodel Blocks
	Creating a Submodel
	Viewing and Editing a Submodel

	Entities
	Overview of Entities
	Entity Types
	Creating Entities
	Disposing of Entities
	Entity Attributes
	Entity Groups

	Queueing
	Overview
	Queueing Policies
	Capacity
	Extended Queueing Controls
	The Nonblocking Push Depth Option
	The Nonblocking Pull Depth Option
	The Active Pushing and Active Pulling Options

	Reneging
	Preempting

	Resources
	Overview of Resources
	Modeling the Banking System Using Mobile Resources
	A Common Resource Usage Pattern
	Creating Resource Entities
	Storing Resource Entities
	Locating Resource Entities
	Allocating Resource Entities
	Using Resource Entities
	Deallocating Resource Entities
	Disposing Resource Entities

	Extending the Banking System Model
	Additional Resource Functionality
	Merging and Splitting Resource Entities
	Collecting Resource Entity Statistics
	Scheduling Resource Entity State and Capacity Adjustments
	Preempting Resource Entities

	Model Debugging and Verification
	Overview of Debugging and Verification Tools
	Log Tab
	Trace Tab
	Tracing Configuration
	Animation Tab

	Block Templates
	Overview of Block Templates
	Using the Template Menu
	Using the Template Palette Pop-up Menu
	Template Document Format

	Data Input, Collection, and Analysis
	Overview
	Data Value Types
	Data Input
	Data Collection and Output
	Block Data Storage
	Experiment Window Data Storage

	Data Analysis
	Output Analysis
	Input Analysis

	References

	Batch Execution
	Overview of Batch Execution
	Command Line Interface
	Log Messages

	Templates
	Overview of Templates
	Overview of the Standard Template
	Entity Generator Block
	Value Generator Block
	Disposer Block
	Queue Block
	Delay Block
	Server Block
	Modifier Block
	Extractor Block
	Switch Block
	Selector Block
	Number Holder Block
	String Holder Block
	Numeric Source Block
	Text Source Block
	Counter Block
	Time Now Block

	Overview of the Advanced Template
	Batch Block
	Unbatch Block
	Clone Block
	Gate Block
	Valve Block
	Formula Block
	Connector
	Caster Block
	Submodel Block
	SAS Program Block
	Entity Filter Block
	Entity Group Holder Block
	Stopper Block

	Overview of the Data and Display Template
	Bucket Block
	Probe Block
	Observation Source Block
	Stats Collector Block
	Queue Stats Collector Block
	Server Stats Collector Block
	Resource Stats Collector Block
	Dataset Holder Block
	Dataset Writer Block
	Data Trimmer Block
	Histogram Block
	Bar Chart Block
	Scatter Plot Block
	Box Plot Block
	Table Block
	Comment Block

	Overview of the Resource Template
	Seize Block
	Release Block
	Resource Pool Block
	Resource Scheduler Block
	Resource Agenda Block

	Overview of the Output Analysis Template
	Steady State Block

	References

	Random Variation in a Model
	Overview of Random Variation
	Discrete Distributions
	Binomial
	Discrete Uniform
	Geometric
	Negative Binomial
	Poisson

	Continuous Distributions
	Beta
	Chi-Square
	Erlang
	Exponential
	Gamma
	Johnson Bounded Distribution (JohnsonSB)
	Johnson Lognormal Distribution (JohnsonSL)
	Johnson Unbounded Distribution (JohnsonSU)
	Lognormal
	Normal
	Pearson Type V
	Pearson Type VI
	Triangular
	Uniform
	Weibull

	Empirical Distributions
	Discrete
	Continuous

	Nonhomogeneous Poisson Process
	Count-Based
	Rate-Based

	References

	Design of Experiments
	Define Factors and Responses
	Set Model Anchors
	Set Up the Experiment Window
	Generate a Design Using JMP Software
	Run the Experiment
	Analyze the Simulated Results

	Input Analysis
	Overview of Input Analysis
	Use JMP Software for Automated Input Analysis
	Use JMP Software for General Input Analysis

	Examples of Simulation Studio Models
	Overview of Simulation Studio Model Examples
	A Simple M/M/1 Queueing Model
	Using the Stats Collector Block for Output Analysis
	Routing to Shortest Queue
	Reneging from a Queue
	Repair Shop Model
	PERT Network Model
	Modeling the Banking System by Using Mobile Resources
	The Banking System Model with Resource Scheduling
	Priority-Based Preemption of Service
	A Model of an Incoming Call Center
	Modeling Assembly Operation and Parts Inventory System
	Using the SAS Program Block to Analyze Simulation Results
	Machining Center Model
	Using the Observation Source Block to Set Entity Attributes
	Using the Dataset Writer Block to Save Data during a Run
	Using the Steady State Block for Output Analysis
	Updating an Input Distribution
	Extended Queueing Options

	Expressions
	Overview of Expressions
	Operators
	Functions
	Examples

