
1

Paper 3137-2019

SAS® Viya® and Kerberos: From the Ground Up
Michael Shealy and Spencer Hayes, Cached Consulting LLC

ABSTRACT

Kerberos is a network authentication protocol commonly found in medium and large

enterprises. It uses strong cryptography to prove the identities of users, hosts, and

services. SAS® has long been able to integrate with Kerberos to not only support its

authentication strengths, but to enable user-friendly features such as Integrated Windows

Authentication (IWA). However, SAS delegates some key configuration and operational

tasks to the Kerberos realm and operating system layers, and their respective

administrators. These include Kerberos principal configurations, ticket requests, ticket cache

management, OS-layer authentication, and more. For this reason, it can be difficult for SAS

administrators to fully see and understand the entire SAS and Kerberos integration picture.

We outline the configuration of a real-world proof-of-concept environment, which includes

SAS® Viya® and Hadoop over CentOS, integrated with Microsoft Active Directory Kerberos

authentication, and with support for IWA from the user's desktop. With a deep

understanding of how this specific environment is configured for Kerberos integration from

the OS layer up through the applications, SAS administrators should be able to better

understand deployment and integration options in their own corporate environment. They

should also be able to improve their troubleshooting capabilities in existing environments

with Kerberos integrations.

Note that the key purpose of this paper is not to show each step of the kerberization

process in explicit detail. Our environment consisted of CentOS 7.6, Cloudera 6.1.1, and

SAS Viya 3.4, and if we took that approach this paper would quickly become stale. Instead

our approach is to systematically walk through the key configurations that are common

across all kerberized application deployments on Linux operating systems, using Hadoop

and SAS Viya as examples, in an effort to keep this paper relevant for years to come.

TABLE OF CONTENTS

 Kerberos Basics

 Linux Operating System Configuration

 SSH Kerberos Configuration

 Kerberos Principals – Deep Dive

 Hadoop Kerberos Configuration

 SAS Viya Kerberos Configuration

 Desktop IWA Configuration

KERBEROS BASICS

OVERVIEW

Kerberos is a network authentication protocol that uses encrypted “tickets” to allow users

and services to securely prove their identity to each other. We’ll explain the basics of how

Kerberos uses these tickets to authenticate users in an example shortly, but first a quick

history and a few important definitions.

2

HISTORY

Kerberos was first developed in the late 1980s at the Massachusetts Institute of Technology

(MIT), and the “MIT Kerberos” distribution maintained by MIT remains a popular distribution

in the marketplace. Beginning with the “Windows 2000” software, Microsoft made Kerberos

its default authentication protocol, and now Microsoft’s “Active Directory” (AD) Kerberos

variant is likely the most popular implementation of the Kerberos protocol worldwide.

DEFINITIONS

KDC (Key Distribution Center): The KDC Server is the central “brain” of the Kerberos

infrastructure, and maintains a database of user, host and service identities and their

passwords. The KDC is composed of two components, an Authentication Server (AS) and a

Ticket Granting Server (TGS), which often reside on the same host. A SAS Administrator

normally will not need to worry about the different roles of the AS and TGS, and can simply

refer to the system as the “KDC”, but the two components are important for explaining a

few of the core Kerberos communications we cover below.

Kerberos Realm: A Kerberos realm is a defined set of users, hosts and services (e.g.

instances of SAS CAS, http, ssh, or Hadoop hdfs on a network) which are known and

managed by an instance of a KDC. A realm name frequently looks like a DNS domain, but

by convention it consists of uppercase letters. In our paper, our realm name is

CCLLC.INTERNAL. Note that multiple KDC’s in a Master/Secondary configuration may

support a single Kerberos realm for availability and performance reasons, but they will

operate with the replicated contents of the same Kerberos database.

Kerberos Principal: A Kerberos Principal is a user, host or service known to a Kerberos

realm. The name of a Kerberos Principal consists of three parts: the primary, the instance

and the realm in the format primary/instance@REALM.

 The primary can be any ascii string which can represent a user, host or service in a

realm (e.g., “bill” for user Bill, “sascas” for Viya CAS, or “http” for Web Services).

 The instance is an optional ascii string that qualifies the primary, in order to ensure

naming uniqueness across the realm. It is generally the fully-qualified domain name of

a server or a DNS alias, but in MIT Kerberos the instance-string “admin” often defines

the Kerberos administrator accounts as well.

Here are a few examples of principals we’ll use later in this paper:

 bob@CCLLC.INTERNAL: The User Principal for person “bob” in the CCLLC.INTERNAL

realm.

 d1viyasvclayer1$@CCLLC.INTERNAL: The “User-like” Principal for computer

d1viyasvclayer1 (one of two Viya service-layer/programming hosts in our environment).

These “machine account” principals are only used in AD, and we’ll clarify “user-like” later

in the paper.

 sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL: The Service Principal which

supports the kerberized CAS service on our primary CAS server,

d1casprimary.ccllc.internal.

KERBEROS AUTHENTICATION EXAMPLE

One of the strongest reasons to use Kerberos is because it does not send passwords over a

network, where they are vulnerable to be stolen. Kerberos can do this by encrypting

communications with secret keys created from a password, instead of sending the password

itself to a server to authenticate. As long as both the user and the server know the user’s

mailto:bob@CCLLC.INTERNAL
mailto:d1viyasvclayer1$@CCLLC.INTERNAL
mailto:sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL

3

password, they can send private messages to each other by creating a secret encryption

key with that password via an agreed-upon algorithm.

An example will help explain how this works. Note that we have simplified the Kerberos

communications in this example, to convey the key information necessary to understand the

remainder of the paper. References containing more detailed explanations of the Kerberos

communications are available at the end of the paper.

Imagine we have an environment where user “Bob” wants to access SAS Viya Visual

Analytics in his browser, but SAS is using Kerberos security for authentication. How can

Bob access the system? “klist” is the program used to show which Kerberos credentials a

user has, and at the beginning of our story Bob has none (see Output 1).

Output 1. Klist Display With No Available Credentials

Step 1

In order to acquire the Kerberos credentials he needs, Bob will first send a request to the

KDC “Authentication Server” (see Figure 1), and ask for a “Ticket-Granting Ticket” (TGT).

This TGT will be needed to talk to the KDC “Ticket Granting Server”, who will soon help

facilitate access to the SAS Viya Visual Analytics application.

Figure 1. Initial User Request To The KDC Authentication Server

The process of acquiring a TGT can be started with the “kinit” command, which prompts Bob

for a password, as shown in Output 2.

Output 2. Kinit Command Line Prompt For A Password

4

Step 2

Figure 2. KDC Authentication Server Reply To User (With TGT)

The KDC Authentication Server will send Bob back two messages (see Figure 2), one which

he can decrypt and one which he cannot.

Message B is encrypted with a secret key created with Bob’s password (which the

Authentication Server knows). This message will be decrypted with the password Bob

typed in when he ran “kinit” on his computer. The message contains a second secret

encryption key, which will be used to secure future communications between Bob and the

Ticket Granting Server (the “Bob-to-TGS Session Key”).

Note that Bob cannot acquire the soon-to-be-necessary second secret key unless he can

decrypt Message B, and Message B can only be decrypted by Bob typing in his correct

password…this is the fundamental way Kerberos can authenticate users without a password

actually traversing the network. If Bob types in an incorrect password and Message B

cannot be decrypted, he'll receive a message saying so (see Output 3).

Output 3. Kinit Display With Incorrect Password Entry

Message C is encrypted with a secret key created with the password of the Ticket Granting

Server (which the KDC Authentication Server knows, but Bob does not). The message

contains Bob’s username and a copy of the “Bob-to-TGS Session Key”. It is usually referred

to as the “Ticket Granting Ticket” (TGT) in Kerberos documentation.

When Bob enters his correct password, his klist output will look like Output 4.

5

Output 4. Klist Display Showing Ticket Granting Ticket (TGT)

It shows that User Principal “bob” is in possession of a ticket associated with Service

Principal “krbtgt”, which is a Ticket Granting Ticket supporting communications with the

Ticket Granting Server. The output also shows information such as the location where the

ticket is stored, and its expiration date.

Step 3

Figure 3. User Request To KDC Ticket Granting Server For A Service Ticket

Bob will then ask the Ticket Granting Server (TGS) for a ticket to talk to the Kerberos-

secured SAS Visual Analytics web application. Bob sends two messages to the TGS (see

Figure 3).

Message D consists of the TGT (which Bob could not decrypt, but the Ticket Granting

Server can), along with the name of the application service that Bob wants to talk to (SAS).

Message E is called an “Authenticator”, and it’s essentially Bob’s name and a timestamp,

encrypted with the “Bob-to-TGS Session Key”, which Bob acquired by decrypting Message

B.

6

Step 4

The Ticket Granting Server will then decrypt the TGT in Message D using a secret key

created with the Ticket Granting Server’s own password (which the Authentication Server

used to encrypt it), and acquire Bob’s name and the “Bob-to-TGS Session Key”. With the

“Bob-to-TGS Session Key” it can then decrypt Message E, and if:

 The username in Message E matches the username in Message D, and

 The timestamp in Message E is within a tolerable level (usually 5 minutes)

…then the authentication process will continue forward.

Figure 4. KDC Ticket Granting Server Reply To User (With Client-to-Server Key)

The TGS will return Bob two additional messages (see Figure 4).

Message F will be a “Bob-to-SAS Session Key” that Bob can use to talk securely to the SAS

application, encrypted with the “Bob-to-TGS Session Key”. Bob is able to decrypt this

message immediately.

Message G is encrypted with a secret key created with the password of the SAS Application

(which the KDC Ticket Granting Server knows, but Bob does not). The message contains

Bob’s username and a copy of the “Bob-to-SAS Session Key”. This is known as the “Client-

to-Server” ticket in Kerberos documentation.

Bob’s klist will now look like Output 5.

7

Output 5. Klist Display Showing HTTP Service Tickets

It will show that User Principal “bob” is in possession not only of the Ticket Granting Ticket

acquired earlier, but also “Client-to-Server” service tickets for the SAS application. Since

the SAS Visual Analytics application is web-based, the service’s name begins with “http”.

Step 5

Figure 5. User Request To Kerberized Application Server For Access

Bob will then send two messages to the SAS Application (see Figure 5).

Message H is simply passing Message G (the Client-to-Server ticket) over to SAS, which is

encrypted with the SAS Application’s password (which Bob didn’t know).

Message I is another “Authenticator”: Bob’s name and a timestamp, but this time

encrypted with the “Bob-to-SAS Session Key”, which Bob acquired by decrypting Message F.

The SAS Application Server will then decrypt the Client-to-Server ticket in Message H, using

the secret key created with the SAS Application’s own password (which the Ticket Granting

Server used to encrypt the message), and acquire Bob’s name and the “Bob-to-SAS Session

Key”. With the “Bob-to-SAS Session Key” it can then decrypt Message I, and if:

8

 The username in Message H matches the username in Message I, and

 The timestamp in Message I is within a tolerable level (usually 5 minutes)

…then the SAS Application will consider Bob “authenticated”, and Bob will be allowed to

access his SAS applications.

Success!

KEYTABS

With our Kerberos authentication example complete, we need to cover one more basic

Kerberos topic. Message B above was encrypted with a secret key based on Bob’s

password, and it was decrypted by having Bob type his password in at the command line

when he ran “kinit”. The Ticket Granting Server is part of the KDC, and so it can always

access its password to decrypt the TGT in Message D. But how did the SAS Application

know its password, to decrypt the Client-to-Server ticket in Message H?

Kerberos uses a file called a “keytab” to help application services with this issue. A keytab

stores pairs of principals and encrypted passwords in a non-human-readable form in a file

on a filesystem, and these principal/password pairs can be used to encrypt and decrypt

messages without being prompted for the password. When a kerberized service starts on

Linux, it references its private keytab to acquire what it needs to encrypt/decrypt messages.

We’ll discuss keytabs in more detail later in the paper, but for now just be aware that

kerberized services such as ssh, SAS, http, and others need a keytab file on Linux in order

to perform their function in Step 5 above.

LINUX OPERATING SYSTEM CONFIGURATION

BASIC PREREQUISITES

We’ll need a few prerequisites configured before we can move forward with our Kerberos-

enabled host setup:

1. The fully-qualified domain name (FQDN) of each of our servers must be registered and

at least forward-resolvable in DNS, as Kerberos uses DNS extensively during processing

and communication. Depending on your organization, this may require a request to

your “DNS Team”, or it may be handled automatically during your server’s registration

to an AD domain (below).

2. NTP (Network Time Protocol) must be installed and running on the server, in order to

ensure an accurate server clock. This is critical in order to ensure that the timestamps

on the Kerberos communications we discussed above are within allowed tolerances,

which Kerberos uses to protect against replay-attacks. The ntp package can be installed

with yum:

 yum install ntp

3. Where any installations of Java are involved during the Hadoop and SAS deployment

process, if a version lower than 1.8u161 is used, the Java Cryptography Extension (JCE)

Unlimited Strength Jurisdiction Policy Files must be installed. These are necessary to

support AES-256 encryption by Kerberos. From version 1.8u161 onward, Java includes

the Policy Files in its software distribution.

9

KRB5-WORKSTATION

Next, we need our server to be able to “speak” Kerberos. This functionality is provided by

the krb5-workstation and krb5-libs rpm packages. Install the packages with yum:

 yum install krb5-workstation krb5-libs

These two packages provide key Kerberos tools such as kinit (to obtain and store TGTs),

klist (to show acquired TGTs and service tickets), ktutil (to create and manage keytabs),

and kdestroy (to remove TGTs and service tickets), as well as critical shared libraries and

configuration files needed to support Kerberos functionality on the server.

Note that even with a missing master Kerberos configuration file (/etc/krb5.conf, which we’ll

discuss shortly), the toolkit loaded by krb5-workstation and krb5-libs allows our server to

communicate with a Kerberos realm. Assuming our Kerberos realm has DNS “SRV” records

in place to help clients find the KDC (automatically set up with AD Kerberos, common in

enterprise deployments of MIT Kerberos), we could acquire a TGT for a user (see Output 6).

Output 6. User Acquiring A TGT With A Minimal Kerberos Configuration

/ETC/KRB5.CONF

The /etc/krb5.conf file is the main Kerberos configuration file. While the file can be long

and confusing in some environments, Output 7 displays a simple version which covers the

requirements for our paper’s SAS/Hadoop environment.

Output 7. Kerberos Master Configuration File Contents (/etc/krb5.conf)

Entries:

 default_realm: When a specific “@REALM” is not specified in a Kerberos command,

this realm will be assumed. CCLLC.INTERNAL is the realm name of our AD domain in

this paper.

 rdns: Enterprises generally have control of their “Forward DNS” (resolving a hostname

into an IP address), but they frequently do not control their “Reverse DNS” (resolving IP

addresses back to hostnames). Setting rdns=false allows Kerberos to function in such

10

environments, where the Forward DNS and Reverse DNS entries are not in-sync.

 forwardable: Allows the KDC to automatically issue a new TGT for a different host,

based on an original “forwardable” TGT. See the discussion of our ssh configuration

below for how this feature will be used.

 ticket_lifetime/renew_lifetime: Attempts to acquire TGTs with a longer

active/renewable lifetime than the general (short) KDC defaults, in order to ease TGT

management for users. Maximum values can be set at the KDC, however, and so there

is no guarantee that the requested values will be honored.

 default_ccache_name: A pattern for the name of the file that will store acquired TGTs

and service tickets. Although the value above is generally the default, it is good practice

to explicitly set the value as we’ll need to sync it with the pam_krb5/SSSD configuration

later.

 [realms] section: Establishes various properties for each Kerberos realm, such as

where the Realm KDC and Admin Server are located on the network.

JOINING A REALM/DOMAIN

The simple configuration above could be leveraged to provide access to a remote kerberized

Hadoop instance from an unkerberized SAS environment, because we are able to acquire a

valid TGT which could be used downstream to authenticate to the Hadoop instance.

In this paper’s environment, however, we will have a fully-kerberized SAS and Hadoop stack

local on the servers. In order to support this, we will want to “register” the server in the

Kerberos realm, known as “joining the domain” to Active Directory, or “adding the host” to

an MIT realm. Once the server is added to the Kerberos realm, it can serve as a platform

for hosting kerberized OS-layer services that we’ll need later, such as local passwordless ssh

logins using Kerberos tickets.

The easiest way to join an AD domain on CentOS or RedHat is to use the “realmd” rpm

package, available via yum. In one step, it can join the domain as well as implement the

SSSD configuration we’ll cover later. However, using realmd as an “easy button” for our

paper will make it more difficult to truly understand how our Kerberos configuration works,

and so we’ll instead use the individual commands that realmd uses under the covers.

We start with the “adcli” (AD Command Line Interface) tool to join the domain, available via

yum:

 yum install adcli

The adcli command can acquire some basic information about our “ccllc.internal” AD domain

before we even join (see Output 8).

Output 8. Using adcli To Acquire Information About An AD Domain

11

Then it can be used to register our host in AD, using AD’s Administrator password (see

Output 9).

Output 9. Using adcli To Join An AD Domain

After registration, our host will appear in our AD domain (see Display 1).

Display 1. A Host After Joining An AD Domain

HOST KEYTAB

Joining the domain above automatically places a keytab file at /etc/krb5.keytab on a Linux

host and protects it with root-only access (see Output 10).

Output 10. Host Keytab Location And Permissions

As discussed above, a keytab is used by services to be able to decrypt messages created by

the KDC, shown in Step 5 of our Kerberos Authentication Example above. This particular

keytab is called the “Host Keytab”, and it is used to validate kerberized access to specific

OS-layer services such as ssh that run as root on our Linux server.

A keytab’s contents can be examined using the klist command. In Output 11 we can see

that Kerberos Services with primary name “host” and an instance name referring to host

d1krbclient in our environment are among those which can be decrypted and validated with

our Host Keytab.

12

Output 11. Host Keytab Contents

IDENTIFICATION AND AUTHORIZATION

Even though we’ve added our computer to the AD domain, and we have a host keytab that

could be used by ssh to validate Kerberos tickets, our server still can’t “see” the users and

groups in the AD domain as needed for them to actually log in (see Output 12).

Output 12. Failed Check For A User's Existence At The Host Level

In order to enable logins with AD usernames and passwords, we still need to configure our

server to identify the members of the AD domain and their Unix attributes (uid, gid, home

directory, shell), and to authenticate them using Kerberos.

There are a number of systems available which can contain users and their attributes for

identification on a Linux host, but LDAP is by far the most common central repository for

enterprise environments. LDAP also happens to be a hard-requirement for full deployments

of Viya software, and therefore we will be using it for user identification in our

implementation. Note that there are a number of different LDAP variants on the market,

including OpenLDAP, Apache Directory Server, Oracle Directory Server, and Microsoft Active

Directory.

There are also a number of Kerberos variants on the market, including MIT Kerberos,

Heimdal Kerberos, and the Kerberos that comes built-in with Microsoft Active Directory. As

Active Directory is able to provide both LDAP and Kerberos services to our environment and

is a very popular deployment choice in enterprise environments, we will be using it in this

paper. Your company may use a different mix (e.g., OpenLDAP and MIT Kerberos), but the

principles of the implementation will remain the same.

13

NSS AND PAM

While applications can use their own custom methods for identification and authentication,

software running on Unix/Linux frequently takes advantage of a pair of subsystems that

provide a common toolkit for identification and authentication. These are:

 The Name Service Switch (NSS) subsystem which provides a common set of APIs for

identifying users and groups, and is primarily configured with the nsswitch.conf file.

 The Pluggable Authentication Module (PAM) subsystem which provides a standard

framework for user authentication, and is configured with various files in the /etc/pam.d

directory.

During a standard Viya install, one of the first tasks after the software is installed is to

configure a direct connection to an LDAP provider in Environment Manager, which bypasses

NSS and PAM for identification and authentication into the Viya visual interfaces. However,

many of the popular SAS Viya-based product offerings require certain operating system

processes to be launched as the ID of the requesting SAS user, such SAS Studio 4.x and

5.x, SAS Visual Data Mining and Machine Learning, SAS Model Manager, SAS Visual

Forecasting, and SAS Decision Manager. NSS and PAM need to be configured properly in

order to support this functionality, and adding Kerberos authentication brings specific

requirements to the NSS/PAM configurations. Note that we’ll also cover how to configure

Kerberos authentication into the visual interfaces (via IWA) later in the paper.

To show an example configuration of NSS and PAM, Output 13 and Output 14 show selected

contents of the key NSS and PAM configuration files on a CentOS system with no enterprise

integration at all.

Output 13. Selected Contents Of The /etc/nsswitch.conf File After OS Installation

Output 14. Selected Contents Of The /etc/pam.d/password-auth File After OS Installation

 The nsswitch.conf file, which controls the user identification process, refers all

identification requests to “files”. This means that it looks only to the local /etc/passwd,

/etc/shadow, and /etc/group files for information.

 While understanding PAM files can be its own art, the key line above is the

“pam_unix.so” entry. The pam_unix library is the standard Unix authentication module,

and it looks as well to local files such as /etc/passwd and /etc/shadow for authentication

information.

Combining our new understanding of the roles of NSS and PAM with our need for LDAP

identification and Kerberos authentication, we can state the following:

 We need to configure the nsswitch.conf so that NSS can talk to an LDAP, either directly

or via a system that communicates with LDAP on NSS’s behalf.

 We need to configure PAM so that it can talk to a Kerberos realm, either directly or via a

system that communicates with a Kerberos realm on PAM’s behalf.

14

We outline three different options for configuring NSS and PAM below. At the end of each,

we should be able to “see” bob as an available ID on the system (see Output 15).

Output 15. Successful Check For A User's Existence At The Host Level

Bob should also be able to log in to the server using his AD username and password, have a

home directory created if he needs one, and have a Kerberos TGT created automatically

which he can use to gain access to kerberized applications such as Hadoop in his enterprise

environment (see Output 16).

Output 16. User Accessing A Server Via SSH With NSS/PAM Configured For AD Authentication

NSS/PAM OPTION 1: NSS_LDAP AND PAM_KRB5

In order to have direct connections to LDAP and Kerberos from NSS and PAM, we’ll load a

specific pair of NSS/PAM rpm packages, along with a companion “oddjob-mkhomedir”

package:

 yum install nss-pam-ldapd pam_krb5 oddjob-mkhomedir

The oddjob-mkhomedir package will be used to automatically create a home directory for

our users upon first access, if they do not already have one.

With our krb5.conf file already in place for Kerberos, if we have a valid CA certificate for our

KDC’s TLS-secured LDAP configured on our host in /etc/openldap/certs, we can simply

uncomment the “Mappings for Active Directory” section of the default /etc/nslcd.conf file

(which configures the local LDAP Name Service Daemon: nslcd) and update just a few other

lines to tell the daemon how to connect to our AD LDAP (see Output 17).

Output 17. Selected Contents Of /etc/nslcd.conf For Access To AD LDAP

Then we can run a few commands to enable our nss_ldap/pam_krb5 configuration:

 systemctl enable nslcd

 systemctl start nslcd

 authconfig --enableldap --enablekrb5 --enablemkhomedir --update

After running these commands, our nsswitch.conf will now include “ldap” as a target for

passwd/shadow/group queries (identification), as shown in Output 18.

15

Output 18. Selected Contents Of The /etc/nsswitch.conf File After Authconfig Enableldap/krb5

Additionally, a number of files in the pam.d directory will be updated to support Kerberos

authentication with pam_krb5. Looking at just the top of the /etc/pam.d/password_auth file

in Output 19, for example, we can now see that the “pam_krb5.so” module has been added

to our system’s authorization “stack”.

Output 19. Selected Contents Of The password_auth PAM File After Authconfig Enableldap/krb5

NSS/PAM OPTION 2: SSSD

While using nss_ldap and pam_krb5 remains a common configuration to implement LDAP

identification and Kerberos authentication in enterprise environments, RedHat deprecated

pam_krb5 with the RedHat Enterprise Linux 7.4 (RHEL) release and does not plan to include

pam_krb5 with RHEL 8. The target replacement for pam_krb5, which is already available in

both RHEL 6 and RHEL 7, is the System Security Service Daemon (SSSD). SSSD

implements features which are not available in a standard nss_ldap/pam_krb5

configuration, such as authentication when AD is offline, better performance and LDAP ID-

mapping (discussed later).

Its architecture is to reside between NSS/PAM and the LDAP/Kerberos systems, and to

make requests to LDAP/Kerberos on behalf of NSS/PAM as shown in Figure 6.

Figure 6. SSSD Integration Architecture With NSS/PAM and AD

16

For configuration of SSSD in non-AD Kerberos environments, the “sssd-ldap” and “sssd-

krb5” rpm packages can be installed with yum and then configured. However, SSSD offers

a dedicated “sssd-ad” rpm package for Active Directory environments, which includes

specific optimizations for communicating with AD infrastructure. We’ll install sssd-ad for our

paper’s environment, along with a companion “oddjob-mkhomedir” package:

 yum install sssd-ad oddjob-mkhomedir

The oddjob-mkhomedir package will be used to automatically create a home directory for

our users upon first access, if they do not already have one.

Like the krb5.conf, sssd’s main configuration file at /etc/sssd/sssd.conf can be long and

confusing in some environments. However, only a few core lines are actually needed in our

paper’s environment, as shown in Output 20.

Output 20. SSSD Master Configuration File Contents (/etc/sssd/sssd.conf)

Entries:

 [sssd] section: Configures ccllc.internal as one available domain to use for user

identification and authorization (sssd can support multiple user repositories), and also

sets up sssd to service both nss and pam system calls.

 [domain/ccllc.internal] section: Configuration specific to the ccllc.internal domain.

 id_provider/auth_provider: Sets SSSD to use our AD domain for both identification

and authorization purposes.

 ldap_id_mapping: Supports automatic translation of Active Directory User/Group SIDs

into Unix UIDs/GIDs. Kerberos will function properly with this setting true or false. In

our paper’s environment, we manually managed uids/gids/shells from each user’s

“Attribute Editor” tab in the Windows “Active Directory Users and Computers”

application, so that the uids/gids would match in both the nss_ldap/pam_krb5 and the

SSSD configurations (nss_ldap does not support LDAP ID mapping). But most

enterprise environments with Active Directory will have ldap_id_mapping set to true.

 krb5_ccachedir/krb5_ccname_template: These settings sync the location where

Kerberos TGT and service tickets will be stored, with the krb5.conf file which we

configured earlier. Having the two files in-sync is important for SAS, so that when a

Kerberos TGT is acquired by authenticating through PAM/SSSD and stored on the

filesystem, SAS applications (who look in the default_ccache_name location we defined

in the krb5.conf file) are able to “find” the TGT.

17

With our /etc/sssd/sssd.conf file in-place, we can now enable SSSD to service NSS

identification requests, Kerberos authorization requests, and create home directories for

new users with the following:

 systemctl enable sssd

 systemctl start sssd

 authconfig --enablesssd --enablesssdauth --enablemkhomedir –update

After running these commands, our nsswitch.conf will now include “sss” as a target for

passwd/shadow/group queries (identification), as shown in Output 21.

Output 21. Selected Contents Of The /etc/nsswitch.conf File After Authconfig Enablesssd

Also, a number of files in the pam.d directory will be updated to support Kerberos

authentication managed by SSSD. Looking at just the top of the /etc/pam.d/password_auth

file in Output 22, for example, we can now see that the “pam_sss.so” module has been

added to our system’s authorization “stack”.

Output 22. Selected Contents Of The password_auth PAM File After Authconfig Enablesssd

NSS/PAM OPTION 3: VAS, WINBIND, CENTRIFY

There are a number of other products on the market for integrating Linux systems with

Active Directory domains, including VAS, Winbind, and Centrify. These all work in a similar

fashion to SSSD, in that NSS and PAM make calls to the product when they need

identification or authorization support, and the product contacts AD on NSS/PAM’s behalf.

Many offer similar features to SSSD, such as authentication when AD is offline, better

performance and LDAP ID-mapping.

The principles remain the same as SSSD for configuration as well. For example, VAS uses

its own command called “vastool” instead of “authconfig” to enable VAS, but after running

the vastool command there will be updates to /etc/nsswitch.conf for user identification as in

Output 23.

Output 23. Selected Contents Of The /etc/nsswitch.conf File After Vastool Execution

There will also be updates to various files in /etc/pam.d for user authorization, for example

the update to /etc/pam.d/password_auth shown in Output 24.

18

Output 24. Selected Contents Of The password_auth PAM File After Vastool Execution

SSH KERBEROS CONFIGURATION

At this point, Bob is able to log into our server successfully using his username and

password, and he has a Kerberos TGT created for him upon initial login. However, we are

not able to use that Kerberos TGT to log in passwordless to the server itself, and we’ll need

to enable that functionality in order to access and use our kerberized Hadoop cluster. To do

that, we’ll change a group of “GSSAPI” settings in the /etc/sshd/sshd_config and

/etc/sshd/ssh_config files.

What is GSSAPI? GSSAPI can be used as a common programming interface for applications

to make calls to Kerberos, and ensures the same application code can be used no matter

which flavor or revision of Kerberos is actually being used in an environment. A SAS

Administrator does not normally need to worry about the specifics of GSSAPI, and it’s

generally easier to figure out what a particular GSSAPI setting does by imagining the word

“Kerberos” swapped for the word “GSSAPI”, e.g. when you see “GSSAPIAuthentication” in a

configuration file, think “this really means KerberosAuthentication”.

We’ll update our /etc/ssh/sshd_config file (which controls the ssh server for inbound

connections) with the settings outlined in Output 25.

Output 25. Selected Contents Of The /etc/ssh/sshd_config File Enabling Kerberos Support

Entries:

 GSSAPIAuthentication yes: Allows the server to accept Kerberos credentials for ssh

logins

 GSSAPIKeyExchange yes: Uses Kerberos to validate hosts instead of ssh host-keys,

which means users will not need to worry about host-authentication prompts like the

one shown in Output 26 each time they log into a server for the first time.

Output 26. An SSH Host Authenticity Check

 GSSAPIStrictAcceptorCheck no: In enterprise environments, hosts often have

aliases in addition to their real hostnames (e.g., server “g7236039.example.org” might

have an easy-to-remember alias “sascasprimary.appl.example.org” registered in DNS).

19

Setting the StrictAcceptorCheck to “no” allows users to ssh to alias names instead of just

the real hostname, and still successfully use Kerberos tickets to authenticate.

We’ll also update the /etc/ssh/ssh_config file (which controls the ssh client on outbound

connections) with the settings shown in Output 27.

Output 27. Selected Contents Of The /etc/ssh/ssh_config File Enabling Kerberos Support

Two of the entries are the same as in our sshd_config file. The new entry is:

 GSSAPIDelegateCredentials yes: Configures the ssh client to forward Kerberos

credentials to the target server, if possible.

What does forwarding credentials mean, and why do we need it? Forwarding with ssh

means that after you acquire a TGT on one server, that when you log in to another server a

TGT will be automatically created for you there.

Notice in the example in Output 28 that Bob acquired his original TGT on host d1krbclient,

that he then ssh’ed (passwordless) to host d1casprimary where a TGT was automatically

created for him, which he then used to ssh (also passwordless) into host d1casworker1,

where another TGT was automatically created for him. He only needed to kinit once at the

beginning of the process.

Output 28. Multi-Server Passwordless SSH Access With Forwarded Kerberos Credentials

In order to fully implement forwarding we also included “forwardable = true” in our

krb5.conf above, as “forwardable” is a TGT attribute that has to be specifically requested

from the KDC.

This forwarding capability is also needed in order to support Kerberos TGT delegation for

SAS and Hadoop, and will be discussed in greater detail later in the paper.

KERBEROS PRINCIPALS - DEEP DIVE

A few notes about Kerberos Principals before we proceed with our kerberization of Hadoop

and SAS. The SAS Administrator will not normally need to remember this information in-

depth during day-to-day support of an environment, but it is used when an environment is

20

initially configured, and therefore it will help clarify some of the configurations we’ll discuss

later in the paper.

 Service Principals such as sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL (CAS on

host d1casprimary) and host/d1casworker1.ccllc.internal@CCLLC.INTERNAL (OS services

on d1casworker1) are “Standalone Kerberos Principals” in MIT Kerberos. All principals

are the same as one another in MIT, whether they represent a user, a host, or a service

on the network. All principals are also able to acquire TGTs, provided the password is

known or a valid keytab is available.

 In Active Directory, however, Service Principals are an attribute of either a User Principal

(e.g. bob@CCLLC.INTERNAL) or a Machine Principal (e.g.

D1CASPRIMARY$@CCLLC.INTERNAL). Only User and Machine Principals can acquire

TGTs. Service Principals cannot.

 “Machine Principal” is not the commonly used term in Active Directory documentation. A

host in AD is normally referred to as a “Computer Object” or a “Machine Account”.

However it is important to understand that computers in an Active Directory domain are

Kerberos Principals, and that they are very “User-Like” in that they can have Service

Principals as attributes, and can acquire TGTs.

 In Active Directory Kerberos, all User and Machine Principal Names must be unique, and

all Service Principal Names must be unique. However, a User or Machine Principal can

be the same name as a Service Principal. Machine Principals traditionally end in a “$”,

which helps reduce naming conflicts with User Principals. In MIT Kerberos, where all

User/Host/Service Principals are equal, all Principal names must be unique across all

types.

 In Active Directory, a User or Machine Principal is allowed to have more than one Service

Principal as an attribute. However, a Service Principal cannot be an attribute to multiple

Users or Machines, as this breaks the uniqueness requirement above.

 On Windows servers in Active Directory environments, Service Principals associated with

User Principals represent services that run as that User Principal account on a Windows

server.

 On Linux servers in Active Directory environments, Service Principals associated with

User Principals do not need to run as the User Principal account. As long as the Linux

service is in possession of a valid keytab for the User Principal, the service can run under

any account on the Linux host.

 On Windows servers in Active Directory environments, Service Principals associated with

Machine Principals represent services that run as the LocalSystem account on the

Windows server.

 On Linux servers in Active Directory environments, Service Principals associated with

Machine Principals represent OS services that run as root on the Linux server and

validate using the host/<fqdn>@REALM Service Principal (e.g.

host/d1casworker1.ccllc.internal@CCLLC.INTERNAL). These services use the

/etc/krb5.keytab file that gets created when a host joins an AD domain.

HADOOP KERBEROS CONFIGURATION

We’ve now reached the point where we will configure kerberized applications on our Linux

hosts which are not part of the operating system distribution. These configurations will

support Step 4 (where the TGS sends tickets to a user to enable communication with an

application service) and Step 5 (where a user authenticates to the application service) of

the Kerberos Authentication Example earlier in the paper.

mailto:sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL
mailto:host/d1casworker1.ccllc.internal@CCLLC.INTERNAL
mailto:D1CASPRIMARY$@CCLLC.INTERNAL
mailto:host/d1casworker1.ccllc.internal@CCLLC.INTERNAL

21

The fundamental requirements to configure a kerberized application are:

1. A uniquely-named Kerberos Service Principal Name (SPN) for each service, including

location information (e.g., hdfs/d1casprimary.ccllc.internal@CCLLC.INTERNAL, the SPN

for the hdfs service on host d1casprimary.ccllc.internal).

2. In Active Directory (only), a User Principal (generally a service account) which the SPN

above will be an attribute of. A dedicated User Principal is not needed with MIT

Kerberos.

3. The keytab above stored locally on the application server.

4. The configuration of the application to activate Kerberos authentication, identify the

application’s Service Principal, and find its keytab.

Cloudera 6.x Hadoop offers an “Easy Button” to kerberize an instance. After setting up a

single user account in AD with the privileges to create new User Principals (or an equivalent

admin account in MIT Kerberos), “Enable Kerberos” can be chosen from a pull-down menu

in the Cloudera Manager Admin GUI (see Display 2).

Display 2. Cloudera Manager "Enable Kerberos" Option

The wizard will ask a few relevant questions, and then kerberize and restart the cluster.

Once the kerberization is complete, we can see that the wizard created about 20 User

Principals in AD for us (see Display 3), which can be used to associate SPNs with. This

satisfies the AD-Specific Requirement #2 above (this would not be necessary in MIT

Kerberos).

mailto:hdfs/d1casprimary.ccllc.internal@CCLLC.INTERNAL

22

Display 3. AD Service Account Users After Cloudera Kerberization

We can also see in AD that SPN’s have been created and assigned as attributes of the new

User Principals (see Display 4). (With MIT Kerberos, standalone Service Principals would be

created.) This satisfies Requirement #1 above.

Display 4. Hadoop Service Principal Attributes in AD

23

When the “Easy Button” path is chosen for Cloudera kerberization, the Cloudera Manager

manages the keytabs on each Hadoop host. Output 29 shows the keytabs on the running

Hadoop Namenode server right after kerberization. This satisfies Requirement #3 above.

Output 29. Cloudera Hadoop Keytab Files

Finally, the application itself needs to be configured to support Kerberos. In the selected

contents of the Hadoop *-site.xml configuration files shown in Output 30, we can see that

Kerberos is enabled as the authentication method, and the Service Principal Names (SPNs)

are identified. This satisfies the final Requirement #4 for a kerberized application.

Output 30. Selected Entries From Cloudera Hadoop *-site.xml Files Enabling Kerberos Support

One note from the screenshot above: you’ll often see the word “spnego” when configuring

kerberized applications accessible through a browser. SPNEGO stands for “Simple and

Protected GSSAPI Negotiation Mechanism”, but a SAS Administrator generally only needs to

be aware that SPNEGO is used to support Kerberos over HTTP. In the screenshot above, for

example, you can see that the Service Principal that will be used to support SPNEGO

communications with the namenode will be “HTTP/_HOST@CCLLC.INTERNAL” (“_HOST” is a

wildcard that will be replaced with a server’s FQDN).

Before we kerberized our Hadoop cluster, anyone with a valid username on the server was

able to execute Hadoop commands, as shown in Output 31.

Output 31. HDFS Access Before Cloudera Hadoop Kerberization

24

But after kerberization, a valid Kerberos ticket is needed to access the Hadoop instance (see

Output 32).

Output 32. HDFS Access Only With Kerberos Credentials After Cloudera Hadoop Kerberization

SAS VIYA KERBEROS CONFIGURATION

There is no “easy button” yet in SAS Viya for configuring end-to-end Kerberos support

including Single Sign-On through Integrated Windows Authentication (IWA), and therefore a

number of manual steps will be needed for its implementation. However, it is important to

realize that our system as-is can connect to downstream kerberized Hadoop instances with

SAS Studio 4.x, and with very little additional configuration can connect to kerberized

Hadoop with SAS Studio 5.x and CAS.

Our key reference material for the various Viya 3.4 authentication options below is Stuart

Roger’s excellent blog post “SAS Viya 3.4 Authentication Overview”. In it and a group of

follow-on blog posts related to Viya 3.4, he covers numerous possible SAS Viya

authentication configurations in detail both with and without IWA support. We begin with

SAS Viya without IWA support.

SAS VIYA WITHOUT IWA

If we do not need to implement IWA inbound to our SAS Viya environment, then with just a

few changes we can enable comprehensive outbound connectivity to kerberized downstream

datasources such as Hadoop from our SAS Viya environment.

SAS STUDIO 4.X

Upon login to SAS Studio 4.x, a SAS Object Spawner uses the host’s PAM configuration to

validate the username and password, as shown in Figure 7.

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244

25

Figure 7. SAS Object Spawner PAM-Based Authentication

Since our environment’s PAM configuration includes Kerberos authentication, a TGT will

automatically be acquired for us upon SAS Studio 4.x login, as shown in Output 33.

Output 33. Filesystem Location Of The User's TGT After SASStudio 4.x Login

This TGT can then be used to access our kerberized Hadoop instance in our SAS Studio 4.x

session without any additional changes, as shown in Display 5.

Display 5. Successful Access to Kerberized Hadoop In SASStudio 4.x

26

SAS STUDIO 5.X

SAS Studio 5.x follows a different instantiation and authentication path than SAS Studio 4.x.

SAS Studio 5.x users authenticate against the SAS Logon Manager (instead of a SAS Object

Spawner), and then the SAS Launcher Microservice and Server work together to launch an

instance of a SAS Compute Server to host the SAS Studio 5.x session.

The critical piece of the flow for us to access downstream kerberized applications in IWA-

less environments, is that the SAS Launcher Microservice will attempt to pull a user’s stored

credentials from the Credentials Microservice and use them in the process of launching the

Compute Server. If it finds a set of credentials, the SAS Launcher Server will validate them

through PAM, which will cause a Kerberos TGT to be created that can be used in our SAS

Studio 5.x session (see Figure 8).

Figure 8. SAS Viya Launcher Server PAM-Based Authentication

How do users store credentials in the Credentials Service in SAS Viya 3.4? Each user can

log into SAS Viya Environment Manager as their own account, and choose the “My

Credentials” key icon from the left-side menu. There they can add their username and

password to the “DefaultAuth” domain, as shown in Display 6.

Display 6. Storing User Credentials In SAS Viya Environment Manager

27

With our credentials stored in Environment Manager, we will then be able to have a

Kerberos TGT available in our SAS Studio 5.x session, which can be used to access our

kerberized Hadoop instance, as shown in Display 7.

Display 7. Successful Access to Kerberized Hadoop In SASStudio 5.x

SAS CLOUD ANALYTIC SERVICES (CAS)

CAS authenticates and instantiates in a similar fashion to our SAS Studio 5.x flow. Users

authenticate against the SAS Logon Manager, but this time the SAS CAS Controller launches

a SAS CAS Session for the user.

The critical piece of the flow for us to access downstream kerberized applications in IWA-

less environments, is that the SAS CAS Controller will attempt to pull a user’s stored

credentials from the Credentials Microservice and use them in the process of launching a

SAS CAS Session for the user when the user is a member of the “CASHostAccountRequired”

group. (Members of the “CASHostAccountRequired” group have their CAS sessions

launched as their user account, instead of as the “cas” service account.) If it finds a set of

credentials, the SAS CAS Controller will validate them through PAM, which will cause a

Kerberos TGT to be created that can be used in our SAS CAS session (see Figure 9).

28

Figure 9 . SAS Viya CAS Server PAM-Based Authentication

If our credentials are stored in Environment Manager as described above, we will have a

Kerberos TGT available in our CAS session, as shown in Output 34.

Output 34. Filesystem Location Of The User's TGT After CAS Login

SAS VIYA WITH IWA

Fundamentals

Integrated Windows Authentication (IWA) is a technology on Windows platforms which

allows users to access secured applications without a password prompt after their initial

login to their workstation or laptop. IWA can use Kerberos authentication as one way to

enable this seamless-access functionality. Because Microsoft implemented Kerberos as its

default authentication method beginning with Windows 2000, when a user logs in to a

computer which is a member of an AD Domain, a Kerberos TGT is automatically requested

for the user (see Display 8). This TGT can then be used to access SAS Viya in a

passwordless manner.

29

Display 8. Kinit Output From An AD Domain Member Computer Immediately After Login

In order to implement full end-to-end Kerberos functionality in our SAS Viya environment,

from front-end authentication inbound via IWA to back-end connectivity outbound to

kerberized data sources like Hadoop, we need to kerberize a group of individual services in

the SAS Viya architecture:

 SAS Logon Manager: To accept Kerberos credentials from the end-user’s desktop

 SAS Launcher Server: To propagate Kerberos credentials into SAS Compute sessions

 SAS CAS Server Controller: To propagate Kerberos credentials into SAS CAS sessions

A key component of this functionality will be TGT delegation. In our SSH configuration

above, we showed how Bob’s TGT could be forwarded to another server upon login by

setting the parameters “forwardable = true ” and “GSSAPIDelegateCredentials on” in our

/etc/krb5.conf and /etc/ssh/ssh_config, respectively. In our SAS Viya architecture, we are

now going to allow our TGT to be delegated to the SAS Viya Logon Manager, for further

delegation across the Viya ecosystem.

Figure 10. SAS Viya 3.4 Kerberos TGT Delegation Flows

30

The flows are as follows (shown in Figure 10):

A. Bob uses the Kerberos credentials on his Windows workstation to login passwordless to

the SAS Logon Manager (this is Integrated Windows Authentication). Because Bob has a

forwardable TGT and the SAS Logon Manager is “Trusted for Delegation” (see later in

the paper), Bob’s TGT will be forwarded to the SAS Logon Manager. The SAS Logon

Manager will then store the Kerberos credentials in the Credentials Microservice.

B. When Bob wants to access CAS from an application such as Visual Analytics, VA will

fetch Bob’s Kerberos TGT from the Credentials Microservice, and use it to acquire a

Service Ticket to communicate with the SAS CAS Controller (Step 3 in our earlier

Kerberos Authentication Example). After authenticating to the SAS CAS Controller (Step

5 in the example), his TGT will be delegated again to the SAS CAS Controller, and then

added to the credentials cache in the SAS CAS Session running under his own ID.

C. When Bob logs into SAS Studio 5.x and needs a Compute Server, the Launcher

Microservice will fetch Bob’s Kerberos TGT from the Credentials Microservice, and use it

to acquire a Service Ticket to communicate with the SAS Launcher Server (Step 3 in our

earlier Kerberos Authentication Example). After authenticating to the SAS Launcher

Server (Step 5 in the example), his TGT will be delegated again to the SAS Launcher

Server, and then added to the credentials cache in the SAS Compute Server running

under his own ID.

Service Kerberization

Recall the four fundamentals of kerberizing a service from our earlier Hadoop kerberization

exercise:

1. A uniquely-named Kerberos Service Principal Name (SPN).

2. In Active Directory, a User Principal which the SPN above will be an attribute of.

3. A keytab stored locally on the application server.

4. The configuration of the application to accept Kerberos authentication, identify the

application’s Service Principal, and find its keytab.

We’ll walk through the kerberization of the SAS Logon Manager.

First we create a User Principal in Active Directory, as shown in Display 9. This satisfies AD-

specific Requirement #2 (this would not be necessary in MIT Kerberos).

Display 9. The SAS Logon User Principal In AD

31

Then we need to add Service Principal Names as attributes of our User Principal (see Display

10). We add SPNs for our service (http, as SAS Logon Manager is accessed through a

browser), with instance-names representing each server which runs the SAS Logon

Manager, in both short-hostname and FQDN formats. (With MIT Kerberos, standalone

Service Principals would be created.) This satisfies Requirement #1.

Display 10. The SAS Logon User Principal’s Service Principal Attributes In AD

After we create our SPNs, we also need to enable “Trusted For Delegation” on the SAS

Logon User Account (see Display 11), in order to support the SAS Viya TGT-delegation flow

outlined above. Without this setting, Bob may authenticate to the Logon Manager, but his

TGT will not be forwarded to the Logon Manager for storage in the Credentials Microservice.

Display 11. Trusted For Delegation Enablement In AD

32

We then need to create a keytab, and store it on the filesystem. On Linux, we can use the

ktutil command to create the keytab. Before we run it, we need to determine the “kvno”

(Key Version Number) of the User Principal which we will be creating a keytab for: this

number is incremented each time a User Principal’s password is changed. Acquire a TGT in

order to be able to communicate with the KDC, and then run “kvno <username>”, as shown

in Output 35.

Output 35. Determining A User Principal's Key Version Number With Kvno

With the kvno in-hand, we will build a keytab using the following pattern:

 ktutil

 addent password –p <UserPrincipal> -k <kvno> -e <encryption-type>

 addent password –p <ServicePrincipal> -k <kvno> -e <encryption-type>

 repeat for each UserPrincipal/ServicePrincipal/EncryptionType combo

 wkt <output-file>

 quit

Notes:

 After each “addent” command, you will be prompted for a password. The password for

the User Principle associated with the keytab needs to be carefully entered. (With MIT

Kerberos, the password for the Service Principal itself would be used.) The password is

not being checked against the KDC, and an incorrect entry will cause the application

service to not be able to decrypt the contents of Message H in Step 5 of our Kerberos

Authorization Example, which will prevent users from being able to access the service.

 If you are unsure of the encryption types being used in your Kerberos environment, the

most common three are RC4-HMAC, aes128-cts-hmac-sha1-96 and aes256-cts-hmac-

sha1-96. Create entries for all three for each of the User and Service Principals.

The ktutil command sequence to create our SAS Logon Service keytab is shown in Output

36.

33

Output 36. Creating A Keytab With Ktutil

Once the keytab has been created, the contents can be listed for validation with klist, as

shown in Output 37.

Output 37. Displaying The Contents Of A Keytab With Klist

The keytab’s ability to acquire a TGT without needing a password prompt can then be tested

for the User Principal in AD (or the Service Principal in MIT Kerberos), as shown in Output

38.

34

Output 38. Acquiring A TGT Passwordless Using A Keytab

By storing the keytab on the local filesystem and making it readable only by the sas account

which runs the SAS Logon Manager process, Requirement #3 above is met.

Finally, we need to configure the application to support Kerberos authentication, identify the

application’s Service Principal, and find its keytab. This will allow us to meet kerberization

Requirement #4 above. We’ll do that on a pair of screens in SAS Viya 3.4’s Environment

Manager as an Administrator.

One screen looks like Display 12.

Display 12. SAS Logon Manager Kerberos Configuration In SAS Environment Manager

35

Two non-intuitive entries:

 holdOnToGSSContext: Tells the SAS Logon Manager to store the delegated user TGT

in the Credentials Microservice, for later use with the CAS Controller and Launcher

Servers

 stripRealmForGSS: Removes the “@REALM” from the end of usernames for OS-layer

activities

The other Environment Manager screen simply adds Kerberos as an available authentication

option under the “spring” settings of the SAS Logon Manager (see Display 13).

Display 13. SAS Logon Manager Kerberos Enablement In SAS Environment Manager

With a restart of the SAS Logon Manager, it will now be kerberized and able to validate

Kerberos service tickets for authentication. The kerberization of the SAS CAS Controller and

SAS Launcher Server follow the same fundamentals, but with slightly different steps as

outlined in the SAS Viya 3.4 Administration Guide.

Load Balancers

You may have noticed above that our environment has two servers hosting SAS Logon

Services (d1viyasvclayer1 and d1viyasvclayer2). If we have a load balancer in front of our

multiple SAS Viya Service Layer servers, support for Kerberos through the load balancer is

very straightforward: we just need a Service Principal Name for our Load Balancer address,

as shown in Display 14.

Display 14. Adding A Load Balancer Address As Service Principal Attribute In AD

We can then add the SPN to our Kerberos keytab with ktutil, as shown in Output 39.

36

Output 39. Adding A Load Balancer Address To A Keytab With Ktutil

We can then validate that our entries are available in our klist, as shown in Output 40.

Output 40. Displaying The Contents Of A Keytab With A Load Balancer Using Klist

DESKTOP IWA CONFIGURATION

Each major browser has a bit different configuration to enable IWA. We’ll use Firefox as an

example.

In about:config there are two Kerberos-related settings that need the hostnames and/or

aliases of the SAS Logon webservers added, as shown in Display 15.

Display 15. Firefox Configuration For IWA Access To The Load Balancer URL

 network.negotiate-auth.trusted-urls: The list of hosts that Firefox will attempt to

authenticate with using Kerberos

 network.negotiate-auth.delegation-urls: The list of hosts that Firefox will delegate

our TGT to if asked

Once these two settings are in-place, and our SAS/Hadoop environments are fully

kerberized, we can use Firefox to log in to our SAS Viya visual applications (e.g., Visual

37

Analytics, SAS Studio 5.x) without a password check, and have full outbound access to

kerberized downstream datasources also without a password check (see Display 16).

Display 16. SASStudio 5.x Access Through A Load Balancer With IWA

CONCLUSION

Kerberos is an enterprise-grade network authentication protocol which can significantly

improve application and data security in a corporate environment. However the complexity

of the protocol, along with the variety of ways it can be implemented and configured, can

make it difficult for SAS administrators to fully understand the entire SAS and Kerberos

integration picture.

We hope that this paper, where we took the approach of systematically explaining the key

configurations that are common across all kerberized application deployments instead of

focusing on the granular steps tied to a particular revision of the OS or application, has been

helpful towards better understanding the deployment and integration options in your own

corporate environment, and improving your Kerberos troubleshooting skills.

REFERENCES

Rogers, Stuart. “SAS Viya 3.4 Authentication Overview.” Available at

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-

Overview/ta-p/523244.

Pal, Dmitri. “Overview of Direct Integration Options.” Available at

https://rhelblog.redhat.com/2015/02/04/overview-of-direct-integration-options/.

Microsoft. “How the Kerberos Version 5 Authentication Protocol Works.” Available at

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-

2003/cc772815(v%3dws.10).

RedHat. “Red Hat Enterprise Linux 7 System-Level Authentication Guide.” Available at

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-

single/system-level_authentication_guide/index.

Cloudera. “Enabling Kerberos Authentication for CDH.” Available at

https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cm_sg_intro_kerb.html.

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244
https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244
https://rhelblog.redhat.com/2015/02/04/overview-of-direct-integration-options/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772815(v%3dws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772815(v%3dws.10)
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/index
https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cm_sg_intro_kerb.html

38

SAS. “SAS Viya 3.4 Administration Guide.” Available at

https://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calchkcfg&docset

Target=n00004saschecklist0000config.htm&locale=en.

SAS. “SAS Viya 3.4 for Linux: Deployment Guide.” Available at

https://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&do

csetVersion=3.4&locale=en.

ACKNOWLEDGMENTS

We would like to thank Stuart Rogers for his excellent work in developing best practices and

documentation in the area of SAS, Hadoop and Kerberos integrations. It has been

invaluable in supporting our SAS clients with kerberized environments.

We would also like to thank Carlos Phillips, Don Hayes, and Rebecca Hayes for reviewing

this paper and offering valuable suggestions.

RECOMMENDED READING

Root, Lynn. “Explain like I’m 5 Kerberos.” Available at

http://www.roguelynn.com/words/explain-like-im-5-kerberos.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Michael Shealy

Cached Consulting LLC

michael.shealy@cachedconsulting.com

Spencer Hayes

Cached Consulting LLC

spencer.hayes@cachedconsulting.com

www.cachedconsulting.com

https://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calchkcfg&docsetTarget=n00004saschecklist0000config.htm&locale=en
https://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calchkcfg&docsetTarget=n00004saschecklist0000config.htm&locale=en
https://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&docsetVersion=3.4&locale=en
https://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&docsetVersion=3.4&locale=en
http://www.roguelynn.com/words/explain-like-im-5-kerberos
mailto:michael.shealy@cachedconsulting.com
mailto:spencer.hayes@cachedconsulting.com
http://www.cachedconsulting.com/

