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a b s t r a c t

Fungal endophytes on citrus plants have been little studied, and the effects of citrus dis-

eases on their incidence and diversity have not been addressed. In this study, we examined

the foliar fungal endophytes of Citrus limon in the vicinity of Yaound�e, Cameroon, with

emphasis on the differences between endophyte communities in healthy and yellowing

leaves. From 82.3 % of the 480 leaf fragments, a total of 482 isolates were recovered and

analysis of ITS sequences revealed 20 phylotypes. All fungal endophytes were ascomycetes

and, except for one species, were common plant pathogens. Mycosphaerella and its ana-

morphs (34.2 % of all isolates), and Colletotrichum gloeosporioides (50.4 % of all isolates), were

isolated most frequently. Mycosphaerellaceous species dominated in healthy leaves, and

were absent from yellowing leaves. C. gloeosporioides was isolated significantly more fre-

quently from yellowing than healthy leaves. Yellowing leaves had a significantly higher

overall infection frequency but, in contrast, the least species diversity. Difference in the

endophyte assemblages of healthy and yellowing leaves suggests that yellowing of leaves

may facilitate the incidence of certain endophytes and impose growth inhibition on others.

ª 2013 Elsevier Ltd and The British Mycological Society. All rights reserved.
Introduction symptoms of diseased citrus plants, the latter characteriz-
Citrus spp. are often affected by abiotic and biotic diseases

causing heavy losses in fruit yields (Sagaram et al. 2009;

Glienke et al. 2011; Wang et al. 2012). Biotic diseases are

associated with different organisms, including fungi such

as zygomycetes, ascomycetes and basidiomycetes (Wright

1998; Baayen et al. 2002; Glienke-Blanco et al. 2002;

Pretorius et al. 2003; Wulandari et al. 2009; Glienke et al. 2011;

Wang et al. 2012). Leaf spots and chlorosis are often
; fax: þ49 561804934215.
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ier Ltd and The British M
ing pathogenic as well as non-pathogenic diseases (Teixeira

et al. 2005). One of the most widespread and devastating

diseases is Huanglongbing (HBL), which is associated with

the bacterium Candidatus liberibacter (Bastianel et al. 2005;

Teixeira et al. 2005). Salient symptoms on HLB-infected

plants include blotchy mottling and vein yellowing of all

or part of the leaves (Sijam et al. 2008). However, abiotic

stress caused to citrus plants by drought and nutrient defi-

ciency (iron, manganese, potassium or zinc) induces leaf
ycological Society. All rights reserved.
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chlorosis similar to that found in HLB disease. In general,

chlorosis caused by HLB, as well as nutrient deficiency,

leads to important changes in the physiology and ecological

niche of the leaves. This environmental alteration may

influence the diversity and interactions of other organisms

inhabiting leaf tissues, such as endophytic fungi (Kriel et al.

2000).

Endophytic fungi live their entire life cycle inside plant

tissues without causing apparent symptoms of infection,

and form associations with all plants (Arnold & Lutzoni 2007;

Hyde & Soytong 2008; Ghimire et al. 2011; Rocha et al. 2011;

Douanla-Meli & Langer 2012; Tadych et al. 2012). Their eco-

logical significance has been well studied, but remains

incompletely understood. They compete with pathogens for

the same ecological niches and improve the interactions and

defence systems of their host plants (Vicari et al. 2002; Arnold

et al. 2003; Holmes et al. 2004; Rubini et al. 2005; Tondje et al.

2006; Zhang et al. 2009; Ghimire et al. 2011). Endophytic

fungi also benefit plants under drought or nutrient stress

(Maki 2006; W€ali et al. 2008; Foyer & Shigeoka 2011; Hamilton

et al. 2010; Hamilton & Bauerle 2012) and, in turn, their inci-

dence frequency and community assemblages are influ-

enced by nutrient variation in host tissues (Gosling et al. 2006;

Larkin et al. 2012). On the other hand, fungal endophyte

species are frequently reported as pathogens on the same or

different hosts, and thus may be pathogens in a latent phase

of their life cycle (Romero et al. 2001; Photita et al. 2004;

Slippers & Wingfield 2007; Cheplick & Faeth 2009). Therefore,

characterizing fungal endophytic communities and their

interactions is crucial to understanding fungal diseases of

the host plant and is a prerequisite for best management

practice.

Globally, in contrast to the intensively studied fungal

pathogens of citrus plants (Baayen et al. 2002; Ezeibekwe &

Unamba 2009; Glienke et al. 2011; Wang et al. 2012), the

diversity of their fungal endophytes remains poorly known

(Wright 1998; Glienke-Blanco et al. 2002; Dur�an et al. 2005). It is

well known that endophyte diversity is shaped by the host

identity (Higgins et al. 2007; Johnston et al. 2012), and also that

the endophyte community depends on geographic situation

(Saikkonen 2007; Thomas et al. 2008; Hoffman & Arnold 2008).

The latter combinedwith environmental factors and fitness of

host plant (Gundel et al. 20011; Zimmerman & Vitousek 2012),

should be considered for estimating the overall endophyte

diversity. Citrus limon that originated in Asia is currently

commercially grown in all warm regions of the world. Avail-

able data on its fungal endophyte diversity are based on

limited studies from Brazil (Glienke-Blanco et al. 2002; Dur�an

et al. 2005) and South Asia (Wright 1998), and show a general

low diversity and difference in communities of foliar endo-

phyte in the two geographical regions. No study so far has

assessed the effects of leaf disease on foliar endophyte com-

munities of C. limon. In the present study, our objectives were

to: (1) examine the assemblage of foliar endophyte fungi of

C. limon with focus on material from tropical Africa; (2) con-

duct a comparative study of fungal endophyte communities in

green healthy leaves and yellowing leaves in order to verify

whether yellowing of lemon leaves influences the fungal

endophytes; and (3) assess the possible interactions among

these endophytes.
Materials and methods

Sampling site and plant material

Lemon leaves were collected on 12 Feb. 2012 in the vicinity of

Yaound�e, Central Region of Cameroon (750masl; N 3� 520, E 11�

310), which is characterized by a warm and humid climate,

with an annual mean temperature of 25 �C and total annual

mean precipitation of 1 747 mm. Citriculture is not practised

in this area, but plantations and domestic gardens contain

lemon and orange trees, which are usually not managed.

Mostly, plants showing branches with both healthy and yel-

lowing leaves were sampled. Plants were considered suitable

for sampling when leaves had no other disease symptom than

yellowing leaves. In each plantation or domestic garden, 24

trees were randomly selected and two leaves were collected

from branches accessible at a standing height from ground

level. Healthy and yellowing leaves from the same tree rep-

resented one collection. Leaves were kept in paper bags at 4 �C
and processed within 48 hr.

Isolation and culture of fungal endophytes

Leaves were initially washed with tap water, then surface-

sterilized by dipping in 96 % ethanol for 1 min, in bleach sol-

ution containing 3.5 % sodium hypochlorite for 5 min, in 96 %

ethanol for 30 s and finally were rinsed twice (5 min each) in

deionized and autoclaved water. To confirm whether the

sterilization process was successful, the final rinse water was

plated onto 2 % malt-extract agar (MEA); there was neither

fungal nor bacterial growth after 2 weeks of incubation at

25 �C.
Using a flame-sterilized scalpel, 10 leaf fragments (or

samples) of 2 � 5 mm were cut per leaf for a total of 480

samples. Five samples were placed on each MEA plate with

1 % tetracycline added to inhibit bacterial growth. Plates were

incubated at 25 �C in darkness for 4 weeks and were checked

daily for hyphal growth. Emerging hyphae were transferred

onto a new MEA plate. Pure isolates were further grown on

MEA and PDA (potato dextrose agar; Roth, Germany) at 25 �C
under a regime of 12 hr darkness/12 hr cool white fluorescent

light to study cultural characteristics such as growth rate,

conidiation, diffusing pigment, surface texture and aerial

hyphae. All isolates are preserved in the private culture col-

lection of the Ecology Laboratory at the University of Kassel,

Germany.

Identification of fungal endophytes

Data, recorded from culture and microscopy, were used to

group isolates into morphotaxa. Representative isolates of

morphotaxa were chosen for DNA extraction and sequencing.

Genomic DNA extraction, PCR amplification of the internal

transcribed spacer (ITS1-5.8S-IT2) regions with primers ITS1f

and ITS4 (White et al. 1990) and sequencing conditions were

the same as those used by Douanla-Meli & Langer (2012).

Sequences were assembled using Sequencher� 5.0 (Gene

Codes, Ann Arbor, MI) and deposited in GenBank with the

corresponding accession numbers JX436777eJX436807.
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Morphotaxa were provisionally identified from morphol-

ogy when diagnostic characters were evident. ITS rDNA

sequences were analyzed to verify and confirm identification

where possible. Generated sequences were initially assem-

bled into contigs based on�98 % similarity using Sequencher�

5.0. A representative sequence of each contig was analyzed

by a BLAST search (http://www.ncbi.nlm.nih.gov/BLAST/;

accessed 15.12.2012) to test for similarity with sequences

present in the GenBank database and the first three sequences

with high similarity were downloaded. For species appearing

in the top three hits, sequences of type, ex-type or ex-epitype,

if available in GenBank, were used for comparison and

included in phylogenetic reconstruction as suggested in Ko Ko

et al. (2011). Accession numbers of additional sequences from

GenBank are provided in the phylogenetic tree.

Sequences were automatically aligned using the online

version of MAFFT v. 6 (http://mafft.cbrc.jp/alignment/server/

index.html) under the default settings and optimized in Se-

Al v2.0a11 (Rambaut 2002). Maximum parsimony (MP) ana-

lyzes in PAUP* 4.0b10 (Swofford 2002) used the following

settings: 1 000 random stepwise addition sequences, TBR

branch swapping algorithm, and MAXTREES set to auto-

increase, retaining 100 trees after each replicate. Bootstrap

support values (BSS) were calculated with 1 000 replicates

(Felsenstein 1985). The best-scoring Maximum likelihood (ML)

tree was estimated in RAxML 7.2.6 (Stamatakis 2006) using

raxmlGUI (Silvestro & Michalak 2012), under the GTRGAM-

MAmodel of sequence evolution. Robustness of nodes was

tested using 1 000 replicates bootstrap analysis. Endophyte

morphotaxa were assigned to phylotypes with respect to the

contig assemblage and topology of the phylogenetic tree.

Dual-culture experiments

Dual-culture testswere conducted to verifywhether antagonist

activity exists between dominant taxa in healthy and yellowing

leaves. Agar disks (4 mm diameter) from 5-d-old colonies of

antagonist isolates were placed 40 mm apart on 90 mm diam-

eter PDA plates. Slow-growing isolates were also plated 2 or 4

weeks before the other antagonist. Control plates contained a

mycelial disk of one isolate only. Experiments were conducted

in a Completely Randomized Design with four replicates. Plates

were incubated in the dark at 25 �C, and after 3 d the colony

radius (R1) of each isolate towards its antagonist wasmeasured

every day for 10 d. Competitive interactions were interpreted

using the rating scale of Badalyan et al. (2002) and estimated

based on the percentage inhibition of radial extension (PIRG)

(Jinantana & Sariah 1997) calculated as follows: PIRG ¼ R2eR1/

R2 � 100, with R2 being the radius of the control colony.

Detection of HLB bacteria in lemon leaves and origin of
yellowing of lemon leaves

As the type of yellowing observed in the field varied and could

not be unambiguously assigned either to abiotic stress or HLB

disease (Supplementary Fig S1), detection of C. liberibacter in

healthy and yellowing leaves was performed. HLB bacteria

cannot be cultured, both detection and identification rely

exclusively on molecular methods, such as conventional and

Real-Time PCR (Hung et al. 2004; Li et al. 2009). DNA extraction
and PCR amplificationwere conducted as described in Coletta-

Filho et al. (2005). To detect the three known Liberibacter

species, we used three sets of PCR primers specific to ampli-

fication of 16S rDNA of Liberibacter, OA1/OI2c and OI1/OI2c for

Ca. L. africanus and Ca. L. asiaticus respectively (Jagoueix et al.

1996), and GB1/GB3 for Ca. L. americanus (Teixeira et al. 2005).

Data analysis

For statistical analysis, each collection was considered as a

repetition. Infection frequency (IF) was determined for both

healthy and yellowing leaves in each collection, as follows: IF

(%) ¼ Ni/Ns � 100, where Ni is the number of samples yielding

at least one isolate, and Ns is the total number of samples

investigated. Similarity of species composition between

healthy and yellowing leaves was estimated using the Jaccard

index (J) and Sørenson index (S) (Magurran 2004) calculated

using Estimate S Win version 8 (Colwell 2006). Data were

analyzed by one-way analysis of variance (ANOVA) and a

Duncan’s test was used to determine significant differences

( p < 0.05) between the means.
Results

Detection of HLB bacteria and origin of yellowing of lemon
leaves

Samples of healthy and yellowing lemon leaves were all

negative in the three primer sets tested. The negative outcome

of this test implied that yellowing leaves result from non-

pathogenic disease caused by either nutrient deficiency or

drought stress.

Frequency and diversity of culturable endophytic fungi of
lemon leaves

We obtained a total of 482 isolates, with an overall infection

frequency of 82.3 % and isolation rate of 1.0, because some

samples yieldedmore than one endophytic isolate. All isolates

were grouped into 26 morphotaxa. Distribution of isolates

among morphotaxa was highly heterogeneous, with few

common and many rare morphotaxa (Table 1). A total of 21

OTUs were identified using ITS sequences of representative

isolates. MP andML trees were largely congruent andMP strict

consensus tree yielded a similar topology to the optimal best

ML tree (�1 nL ¼ 7 941.891507). In Fig 1, one of the MP trees

(TL ¼ 1 540 steps; CI ¼ 0.492; RI ¼ 0.927; RC ¼ 0.456) presents

the phylogenetic relationships of lemon foliar fungal endo-

phytes. Six major clades were resolved and lemon fungal

endophytes assigned to 20 phylotypes. All phylotypes belong

to the Ascomycota, in three orders of Dothideomycetes (40 %

of the isolates) and three orders of Sordariomycetes (60 % of

the isolates). Identification of completely named morphotaxa

was corroborated on phylogenetic tree by the resolution with

sequences from ex-type or ex-epitype cultures, and many

incomplete names must be treated with caution (Fig 1).

Xylariaceous species were rare, represented by Xylaria (one

single isolate) and Pestalotiopsis (1.9 % of all isolates), from

which morphology and ITS analysis distinguished four

http://www.ncbi.nlm.nih.gov/BLAST/
http://mafft.cbrc.jp/alignment/server/index.html
http://mafft.cbrc.jp/alignment/server/index.html


Table 1 e Number of isolates, infection frequency and
distribution of different phylotypes of fungal endophytes
between healthy and chlorotic leaves of C. limon

Phylotypes Total
number of
isolates

Number of isolates and
IF (%)

Healthy
leaves

(n ¼ 360)

Yellowing
leaves

(n ¼ 120)

A. 248 104 (28.8 %)D 144 (95.8 %)E

B. 20 12 (3.3 %)C 8 (6.6 %)B

C. 1 1 (0.28 %)A 0 (� %)A

D. 3 2 (0.56 %)A 1 (0.83 %)A

E. 2 2 (0.56 %)A 0 (� %)A

F. 2 2 (0.56 %)A 0 (� %)A

G. 1 1 (0.28 %)A 0 (� %)A

H. 1 1 (0.28 %)A 0 (� %)A

I. 2 2 (0.56 %)A 0 (� %)A

J. 3 2 (0.56 %)A 1 (0.83 %)A

K. 1 1 (0.28 %)A 0 (� %)A

L. 1 1 (0.28 %)A 0 (� %)A

M. 61 61 (10.4 %)B 0(� %)A

N. 9 9 (2.5 %)C 0 (� %)A

O. 2 2 (0.56 %)A 0 (� %)A

P. 47 47 (9.1 %)B 0 (� %)A

Q. 34 34 (6.9 %)B 0 (� %)A

R. 12 12(3.3 %)C 0 (� %)A

S. 29 27 (7.5 %)C 2 (1.7 %)A

T. 3 3 (0.83 %)A 0 (� %)A

20 482 326 (71 %) 156 (98 %)

Mean IF values of a phylotype between HL and CL with the same

letter are not significantly different by Duncan’s test ( p < 0.05). IF

values were calculated from the number of samples yielding at

least one isolate of fungal endophyte.
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phylotypes.Mycosphaerella and their asexual states (34.2 % of all

isolates) constituted one dominant group and included six

phylotypes (Table 2). Passalora loranthi (9.8 % of all isolates) and

Mycosphaerellaceae sp. 2 (12.65 % of all isolates) were isolated

particularly frequently. Colletotrichum isolates were grouped

into six morphotaxa and yielded three phylotypes. Colleto-

trichum gloeosporioides, which had the highest recovery (50.4 %

of all isolates) of the endophytic assemblage, also showed high

morphological variation in four morphotaxa (Supplementary

Fig S5). However, ITS sequences from all morphotaxa had less

than 1 % base pair differences, formed a unique OTU and clade

including the type sequence. Colletotrichum boninense was

recovered only in small numbers, while the last Colletotrichum

morphotaxon, which included only a single isolate, was not

fully identified. Botryosphaeriaceae isolates (6 % of all isolates)

were grouped into two morphotaxa; both were, however,

identified as one phylotype, Phyllosticta capitalensis. Isolates

related to Diaporthe/Phomopsis species (1.5 % of all isolates)

belonged to four OTUs and resolved into four phylotypes.

Sequences of the three Phoma-like isolates formed one OTU,

and they obviously represent the same species.

Endophytic fungal communities of healthy and yellowing
leaves

We examined 360 samples from healthy leaves and 120

samples from yellowing leaves. Each leaf showed endophytic
colonization, but IF varied between healthy and yellowing

leaves. Yellowing leaves were significantly more colonized

( p < 0.05) than healthy leaves (Table 1). The average number

of endophyte isolates per sample was 0.92 and 1.3 for healthy

leaves and yellowing leaves, respectively. Endophyte species

richness of healthy leaves was higher than that of yellowing

leaves. All 20 phylotypes identified were found in healthy

leaves (Table 1) and the endophytic assemblage of yellowing

leaves comprised only five phylotypes (J ¼ 0.23, QS ¼ 0.37).

Mycosphaerella and allied anamorphic species were the

dominant endophytic group in healthy leaves, and no

isolate was recovered in yellowing leaves. Among non-

mycosphaerellaceous fungi, C. gloeosporioides was isolated at

levels of statistical significance ( p < 0.05) more frequently

from yellowing leaves than from healthy leaves (Table 1,

Fig 2). In contrast, IF of all other phylotypes decreased in yel-

lowing leaves.

Interactions among fungal endophytes

More than one endophyte isolate was recovered from 33 % to

10.5 % of healthy leaf and yellowing leaf samples, respectively.

In healthy leaf samples, there was dominance of mycos-

phaerellaceous fungal species coexisting and with

P. capitalensis. Multiple isolates from some yellowing leaf

samples were indeed culture variants of the same phylotype.

The highest number (five) of culture variants was obtained for

C. gloeosporioides. Co-infection in yellowing leaf samples

occurred only between Colletotrichum and Pestalotiopsis.

In dual culture, the pairing of C. gloeosporioides with

mycosphaerellaceous taxa yielded variable antagonistic

effects. With simultaneous plating, C. gloeosporioides had a

significantly ( p < 0.05, compared to control) higher inhibitory

effect, PIRG 30e65 %, on mycosphaerellaceous isolates. After

mycelial contact, C. gloeosporioides overgrew mycosphaerella-

ceous isolates and suppressed their growth (Supplementary

Fig S2). Mycosphaerellaceous isolates, which had been

plated a week in advance, were similarly overgrown without

initial deadlock. Interestingly, inverse competitive inter-

actions occurred when mycosphaerellaceous fungi were

plated 4weeks in advance. The growth of C. gloeosporioideswas

significantly ( p < 0.05) reduced in the range of 20e45 %, and a

deadlock occurred at distance. Colonies of C. gloeosporioides

were mostly sparse, poorly sporulating, and in particular

formed a darker pigmented marginal zone (Supplementary

Fig S3). Light microscopic examination of the dark zones

revealed consistent hyphal modifications, including cell

shortening, swelling, distortion and pigmentation

(Supplementary Fig S4). However, malformed hyphae inocu-

lated onto a new PDA plate were able to revitalize and produce

normal sporulating colonies of C. gloeosporioides.
Discussion

Endophytic colonization and effects of yellowing in C. limon
leaves

All examined lemon leaves were densely colonized and IF

values characterizing the endophytic community profile were
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Fig 1 e Phylogenetic relationships of fungal endophytes isolated from healthy and yellowing leaves of Citrus limon, as

shown by one of the most parsimonious trees constructed based on ITS1-5.8S-ITS2 sequences. Number above branches

indicate MP and ML bootstrap values > 50 % respectively. In bold case are isolate codes of fungal endophytes from leaf

tissues of C. limon. AeT designate the identified phylotypes. Sequences of type, ex-type or ex-epitype cultures from

GenBank are marked with an asterisk. The tree was rooted by midpoint.
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Table 2 e Molecular identification and classification of fungal endophytes isolated from healthy and yellowing leaves of
Citrus limon

Selected
isolates

GenBank
accession
numbers

Query coverage and identity (%),
highest match in GenBank

Reference Identified
phylotypes

Family,
order

C3a9 JX436790 Fungal endophyte HM537032 100/99 He et al. 2012 A. Colletotrichum

gloeosporioides

G, Phy

Ck13b7 JX436791 Colletotrichum

gloeosporioides

JQ580704 100/99 e e

C1b5a JX436792 Colletotrichum

boninense

JX258772 100/100 B. Colletotrichum

boninense

e

C3a1 JX436793 Fungal endophyte HM537031 100/100 He et al. 2012 e e

C4c3 JX436794 Colletotrichum

gloeosporioides

GU066701 99/100 C. Colletotrichum sp. d

C7b8a JX436800 Pestalotiopsis

microspora

EU935587 100/99 Wu et al. 2009 D. Pestalotiopsis

microspora

A, Xyl

C10c5 JX436801 Pestalotiopsis

pallidotheae

JQ676182 99/99 d d

C2a4 JX436802 Pestalotiopsis sp. HQ608091 97/99 Rodrigues et al. 2011 E. Pestalotiopsis adusta d

C6b2b JX436803 Uncultured

Xylariales

GU056016 100/99 F. Pestalotiopsis

foedans

d

C1b5b JX436804 Pestalotiopsis theae HQ832793 97/99 G. Pestalotiopsis theae d

C2c2 JX436805 Fungal sp. FJ612855 93/99 U’ren et al. 2009 H. Xylaria sp. X, Xyl

Ck14a7 JX436797 Diaporthe sp. FJ799938 95/99 Van Bael et al. 2009 I. Diaporthe

phaseolorum

D, Dia

C7b4b JX436798 Diaporthe sp. FJ799938 100/99 d e d

C2c7 JX436799 Diaporthe sp. FJ799941 97/98 d J. Phomopsis sp. d

C1c7b JX436795 Diaporthe

eucalyptorum

JX069862 99/99 Crous et al. 2012 K. Phomopsis

eucalyptorum

d

C1c7a JX436796 Fungal endophyte HM537034 100/97 He et al. 2012 L. Diaporthe sp. d

C12c1 JX436786 Mycosphaerellaceae

sp.

JN601144 80/97 M. Mycosphaerellaceae

sp. 1

M, Cap

C8c9 JX436787 Ramichloridium

cerophilum

EU041798 100/91 Arzanlou et al. 2007b d d

C6c7 JX436777 Mycosphaerella

thailandica

EU882120 99/100 Cheewangkoon et al.

2008

N. Mycosphaerella

thailandica

d

C6a1 JX436778 Mycosphaerella

thailandica

EU882120 99/100 d d d

C10c9c JX436779 Cercospora cf. zinniae JX143759 100/99 Groenewald et al.

2013

O. Cercospora sp. d

C8a8 JX436780 Mycosphaerella

laricina

EU167595 100/98 Simon et al. 2009 P. Palassora loranthi d

C7c2 JX436781 Palassora loranthi EU853479 99/99 d d

C8c4b JX436782 Uncultured fungus HM572246 100/99 Singh et al. 2011 Q. Zasmidium

scaevolicola

d

C9a1 JX436783 Stenella mucicola EU514294 100/98 Arzanlou et al. 2008 d d

C12b2 JX436784 Uncultured fungus JF497135 100/99 Singh et al. 2011 R. Mycosphaerellaceae

sp. 2

d

C12c10 JX436785 Uncultured fungus GU370737 100/98 d d d

C9b5 JX436788 Fungal endophyte JQ743587 100/100 Wong et al. 2012 S. Phyllosticta

capitalensis

B, Bot

C8b5 JX436789 Fungal endophyte EF419973 99/100 Hoffman & Arnold

2008

d d

C6a10 JX436806 Uncultured

ascomycete

EU489902 97/99 T. Phoma sp. Is, Ple

C13c4 JX436807 Peyronellaea pomorum JN003244 99/99 d d

Family: A¼ Amphisphaeriaceae; B¼ Botryosphaeriaceae; D ¼ Diaporthaceae; G ¼ Glomerellaceae; Is ¼ Incertae sedis; M ¼Mycosphaerellaceae;

X ¼ Xylariaceae. Order: Bot ¼ Botryosphaeriales; Cap ¼ Capnodiales; Dia ¼ Diaporthales; Phy ¼ Phyllachorales; Ple ¼ Pleosporales;

Xyl ¼ Xylariales.
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very similar to those obtained from some tropical plants

(Fr€ohlich et al. 2000; Crozier et al. 2006; Thomas et al. 2008;

Rakotoniriana et al. 2008). In previous studies on citrus fungal

endophytes, Glienke-Blanco et al. (2002) found an 81 % IF in

tangerine plants in Brazil, but Dur�an et al. (2005) reported
lower values of 69.7e72.3 % IF from Argentinian lemon leaves.

In contrast to the above-mentioned studies, our sampling was

limited geographically and temporally, and the accumulation

curve (not shown) was not asymptotic, indicating that endo-

phyte diversity of lemon leaves was not fully recovered.



Fig 2 e Infection frequencies of fungal endophytes from

healthy and yellowing leaves of Citrus limon. Means within

a phylotype with the same letter are not significantly

different by Duncan’s test ( p < 0.05).

218 C. Douanla-Meli et al.
Interestingly, as hypothesized, the IF and species compo-

sition of fungal endophytes were significantly different

between healthy and yellowing leaves. Probable explanations

for the higher IF in yellowing leaves relate to physiological

changes in leaf tissues and the endophyteehost plant and

fungal interactions. Leaf yellowing is an important plant

problem, which, as assumed in this study, may be caused by

nutrient deficiency or drought stress, and negatively affects

photosynthetic processes. This was to some extent, demon-

strated for Rapeseed (Baryla et al. 2001; Zhu et al. 2005). On the

other hand, many studies have pointed out that endophy-

teehost plant interactions respond to these disturbances by

enhancing either the accumulation of mineral nutrients by

the plant (Lyons et al. 1990; Hamilton et al. 2010; Mei & Flinn

2010) or resistance to drought stress (Maki 2006; Spiering

et al. 2006; Bayat et al. 2009; Hamilton & Bauerle 2012). It is

also recognized that these interactions are mediated by

means of fungal metabolites (Kuldau & Bacon 2008) that are,

however, also active against other fungi (Christensen 1996;

Campanile et al. 2007; Zhang et al. 2009; Sumarah et al. 2011).

Despite the decline in incidence of most species in yel-

lowing leaves, IF increased significantly, but solely as a result

of the quadrupled incidence of C. gloeosporioides. This species

may be advantageous for yellowing leaves in coping with

physiological disturbances, or is simply tolerant of environ-

mental changes (Lappalainen et al. 1999). Since fungal endo-

phytes receive nutrition and protection from the host plant,

their incidence can be lowered or even hindered by physio-

logical variation within host tissue (Lappalainen et al. 1999;

Kriel et al. 2000). This may explain the alteration of species

composition in yellowing leaves that implies growth inhib-

ition of Mycosphaerella and allied species. Additionally, inhib-

itory activity among endophytes affects the patterns of their

within-tissue distribution and composition (Hata et al. 2002;

Bandara et al. 2006; Rakotoniriana et al. 2008). In this context,

we noted the in vivo mutual exclusion between C. gloeospor-

ioides and other endophytes. Wright (1998) found
C. gloeosporioides to be an important niche competitor with

stem end rot fungi on citrus. It is likely that its competitive

ability also extends to endophytic species, as confirmed by the

results of in vitro dual culture in the present study. However,

old grown mycosphaerellaceous isolates had a significant

antagonistic activity towards C. gloeosporioides, possibly

through late production of diffusible secondary metabolites.

It, therefore, seems that an increasing frequency of C. gloeo-

sporioides in yellowing leavesmay also result from the absence

of mycosphaerellaceous fungi; further studies are, however,

necessary to test this hypothesis.
Diversity and ecology of foliar endophytic fungi of C. limon

Endophytic diversity recovered from lemon leaves in Came-

roon was two times higher than that found in Argentina

(Dur�an et al. 2005). In addition, a comparison of the species

composition in endophytic fungal assemblages showed that,

except for one common species, the recovered endophytic

communities were rather different between the two coun-

tries. As found in previous studies (Wright 1998; Dur�an et al.

2005), C. gloeosporioides was also the dominant endophyte in

Cameroon lemon leaves. This species has a broad ecological

diversity and host range (Freeman et al. 1998; Cannon &

Simmons 2002; Rojas et al. 2010; Lima et al. 2011; Weir et al.

2012) and is an anthracnose pathogen of many hosts, includ-

ing citrus plants (Sonoda & Pelosi 1988; Kuramae-Izioka et al.

1997; Wright 1998; Benyahia et al. 2003; Lima et al. 2011). Two

further Colletotrichum species were newly recovered from

lemon leaves, namely Colletotrichum sp. and C. boninense. The

latter, similarly to C. gloeosporioides, is endophytic, but is also a

frequent pathogen causing anthracnose on various host

plants (Moriwaki et al. 2003; Lubbe et al. 2004; Tarnowski &

Ploetz 2010; Silva-Rojas & �Avila-Quezada 2011; Damm et al.

2012). Co-occurrence of the three species on lemon leaves

indicates that the Colletotrichum diversity on citrus plants may

be higher than expected based on current knowledge

(Kuramae-Izioka et al. 1997; Damm et al. 2012). Although a

pathogenicity test with Colletotrichum isolates on lemon leaves

was not conducted in the present study, it is worth noting

that, during field sampling, anthracnose symptoms were not

observed. This confirms that Colletotrichum were isolated

either in their endophytic lifestyle or as latent pathogens

(Brown et al. 1998; Wright 1998; Photita et al. 2004).

Surprisingly, mycosphaerellaceous fungi were the most

diverse and second most frequently isolated endophytic

group, including Mycosphaerella and its anamorphs. Mycos-

phaerella species are saprobic or pathogenic on a wide range of

hosts (Goodwin et al. 2001; Crous et al. 2006, Crous 2009;

Arzanlou et al. 2007a), but may also occur as symptomless

endophytes (Wright 1998; Crous 2009). Mycosphaerella citri,

Mycosphaerella horii and Mycosphaerella lagenniformis, known

to be associatedwith citrus fruit and leaf spot diseases (Wright

1998; Pretorius et al. 2003), were not found in the present

study. Anamorphic mycosphaerellaceous species recovered

as endophytes on lemon leaves are common leaf blight

pathogens of several plant species (Goodwin et al. 2001; Crous

et al. 2006, Crous 2009; Arzanlou et al. 2007b), but Cercospora,

which is an agent of fruit and leaf spot, is the only one known
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to be a citrus pathogen (Pretorius et al. 2003). Passalora and

Zasmidium have not been reported as citrus endophytes.

Although host preference in mycosphaerellaceous species,

at least for pathogen species, is high (Pretorius et al. 2003;

Crous et al. 2006; Arzanlou et al. 2008), we found species pre-

viously described from other host plants as endophytes in

lemon leaves. Numerous isolates had a high affinity for, and

also clustered with, Passalora loranthi and Zasmidium scaevoli-

cola, originally described as pathogens on Musa and Scaevola

taccada, respectively (Arzanlou et al. 2008; Shivas et al. 2010).

Likewise Mycosphaerella isolates were identical in terms of

percentage to sequences ofMycosphaerella thailandica, but also

Mycosphaerella colombiensis and Mycosphaerella etlingerae, and

their type sequences all clustered in the same highly sup-

ported clade in our ITS analysis. In Crous et al. (2011), ITS and

LSU sequences were identical for the three species, but with

combined actin, calmodulin and histone datasets, M. thai-

landica was resolved as a distinct species from M. colombiensis

(Crous et al. 2004). The ecology seems to be important for

differentiating the three species. Both M. thailandica and

M. colombiensiswere described as leaf spot pathogens, the first

on Acacia mangium and the second onMusa sp. and Eucalyptus,

whereas M. etlingerae was found on dead leaves of Etlingera

elatior (Crous et al. 2004 2011). Some further lemon mycos-

phaerellaceous isolates were not satisfactorily identified,

because the sequences did not match with those of known

species in GenBank, and further analysis is needed to confirm

whether they represent new species.

Another specific pattern evident for the endophytic

assemblage in lemon leaves is the low IF and diversity of

xylariaceous species, four species represented by 1.9 % of all

isolates, in contrast with the prevalence found in leaves of

many other tropical plants (Bayman et al. 1998; Santamaria &

Bayman 2005; Douanla-Meli & Langer 2012; Linnakoski et al.

2012). Dur�an et al. (2005) found 0.9e1.7 % IF for Xylariaceae

in Argentinian lemon leaves. In the leaves of C. sinensis col-

lected from our study area, xylariaceous fungi also had (at 1 %)

the lowest frequency (unpublished data). An explanation of

the paucity of endophytic xylariaceous fungi on citrus plants

may be more due to the influence of the host plant on the

endophytic assemblage than the geographic environment or

isolation method (Hoffman & Arnold 2008; Johnston et al.

2012). Xylariaceous species recovered in the present study,

Pestalotiopsis andXylaria, are ubiquitous (Suryanarayanan et al.

2002; Douanla-Meli & Langer 2012). If Xylaria are mainly sap-

robic or endophytic, Pestalotiopsis additionally occur as plant

pathogens (Chang et al. 1997; Wei et al. 2007), but no species is

to date known as a pathogen on citrus plants. On the other

hand, of the isolated Diaporthe/Phomopsis and Phyllosticta spe-

cies, none is pathogenic for citrus. P. capitalensis, previously

isolated (also as G.mangiferae) as a non-pathogenic endophyte

from citrus plants (Baayen et al. 2002; Glienke-Blanco et al.

2002; Glienke et al. 2011), was confirmed to be a common

lemon foliar endophyte.

In conclusion, this study, although based on a relatively

limited sampling, has demonstrated that fungal endophytes

densely inhabit lemon leaves and that the species composi-

tion would appear to be very variable due to factors that

remain to be determined. Our results support the hypothesis

that the yellowing of leaves affect foliar endophytic
communities, and that interactions among endophytes may

also underlie the difference in species composition and

structure observed between healthy and yellowing leaves.

Importantly, it remains to be determined whether pathogenic

and non-pathogenic chlorosis of lemon leaves lead to the

same effects. Although this study has increased the known

diversity of lemon foliar endophytes, other methods than

culture need to be applied if the total diversity is to be deter-

mined. Further investigations aimed at a better understanding

of the precise role of lemon fungal endophytes, as well as their

interactions, could be beneficial to biological control of many

species of pathogens of this plant.
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