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Abstract

Selective segmentation is capable of extracting an object or region in a given image. Recently,
a 3-D convex variational selective segmentation model has been proposed and solved using
projection algorithm. For moderate size of image, the projection algorithm method is effective.
However, as the image size is larger, a fast iterative solver need to be develop. This research
first proposed a fast optimization based multilevel algorithm in 3-D formulation that has the
optimal complexity to solve the recent 3-D selective segmentation model. To achieve faster
convergence, we reformulated the recent 3-D model into a new localized model. The proposed
multilevel algorithm was used to solve the new localized model. MATLAB coding was developed
to implement the segmentation process. The accuracy of the segmented image was evaluated
using the Jaccard similarity measure. The execution time was recorded to measure the efficiency
of the models. Test results demonstrated that our model is capable of successfully segmenting
a targeted object in optimal computational time. Advantages of our algorithm can be seen in
processing large size of 3-D images, where magnitudes of speed-up are observed over competing
algorithms.
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1 Introduction

Image segmentation is vital in imaging and computer vision applications such as object detection,
image classification and medical imaging [32, 19, 18, 17, 30, 31]. The topic remains challenging
because the variety of images emerged from new modalities is vast and the quality of such images
varies. Given an image, often of a fairly large size, two main issues are: i) how to design or select
suitable models for segmenting images to extract interested or meaningful features in an automatic
way; ii) how to solve a mathematical model in a fast way. The second issue of fast solution is
particularly pressing for images in three spatial dimensions (3-D) because of the huge number of
voxels to be processed. This research is concerned with both of these issues in the context of
designing and solving a variational model.

There exist many segmentation models for images in two spatial dimensions (2-D), falling into
categories of either edge based models [20] and domain based [23]. The former category focuses
on edges and its effectiveness is much affected by noise, while the latter focuses on regions with
intensity similarity and it searches for edges of domains if they are present. It is not difficult to
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see that images with low contrast or weak edges pose a challenge to both categories of models.
Often a good model can merge ideas of both categories in terms of weighted edges using domain
information or partitioning domains regularized with edge information. Although most of 2-D based
active contours models and methods may be generalized to 3-D active surfaces [10, 29, 34], not all
models have been generalised to or studied in 3-D. Incorporating extra information such priors
or seed points can improve the robustness of a model. In fact, many application fields demand
segmentation of a specific feature or region defined by a few geometric markers. This is the case
that we consider in this research in the so-called selective segmentation.

One of the earliest 2-D selective segmentation model is [2] that is improved and extended to 3-D
in [27, 33]. As with most models based on level set formulation, such models [27, 33] are non-convex
which result to highly dependent on the initial solution to capture a local minimizer.

Convexification idea by [8] is widely used in the community to solve the issue of sensitive to
initialization. Two models followed this idea. First, [28] proposed such a 2-D convex selective model
termed CDSS. The CDSS model, though capable of capturing a global minimizer, is sensitive to area
and regularization parameters. Thus, a reformulation of the model termed Primal-Dual Selective
Segmentation (PDSS) is introduced in [15] and [14] to overcome the parameter sensitivity issue.
Second, the convex model by Liu et al. [21] was proposed for selective segmentation. It is based on
[2, 4, 26]. Unfortunately as reported in [15], this model requires a lot of geometric markers which
is not reliable for selective segmentation modeling and the model is found to be sensitive to the
threshold value in comparison to PDSS model of [15].

The main ingredient in formulating the above selective segmentation models is geometric con-
straints, introduce by [11, 12] which are partial differential equations (PDEs) based models for
segmentation. We remark that the geometric constraints can be defined in different way as re-
ported in [24] where the authors utilized two different markers i.e., outside and inside a targeted
region. The model, though successfuly in extracting an object selectively, is not effective for fine
and sophisticated images [24]. Comparison between [24] and PDSS suggests that PDSS model is
more successful; see [15]. Recently, a 3-D formulation for PDSS model termed 3-D PDSS has been
introduced in [16], solved by using projection algorithm that was effective for image with moderate
size.

However, in order to segment images of large size especially for 3-D data, there is need in devel-
oping fast iterative solver for 3-D selective image segmentation. Therefore, this research proposes
an optimization based multilevel algorithm in 3-D formulation to solve the 3-D PDSS model. The
multilevel algorithm is based on discretize-optimize scheme (algebraic) where the minimization of
a variational functional is solved directly without deriving the Euler Lagrange equation [13]. To
increase the segmentation efficiency, this research proposes a modified 3-D PDSS model based on
the local property of level set function. An associate multilevel algorithm is proposed to solve the
modified 3-D PDSS model.

This research paper is structured as follows. In Section 2, we will review some 3-D selective
segmentation models. We demonstrate on how to develop a 3-D multilevel method based on [13] to
obtain the solution for the recent 3-D PDSS model [16] in Section 3. To achieve faster convergence,
a new localized version of the 3-D PDSS model will be proposed with its fast multilevel algorithm in
Section 4. In Section 5, an extended version of the algorithm will be formulated and its convergence
will be discussed in Section 6. The experimental results are demonstrated in Section 7 and the
conclusion of the research will be presented in Section 8.
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2 Review of the related models

The extension of Chan and Vese’s 2-D model [9] into 3-D version model [34, 27] will be reviewed.
Following that, we will look at Jumaat and Chen’s recent 3-D selective segmentation model (3-D
PDSS) [16].

2.1 The 3-D Chan and Vese (3-D CV) model

Let x = (x, y, z) and a given 3-D grayscale image defined as I (x) : D ⊂ R3 → R. In the 3-D CV
model [9], it is assumed that the 3-D image I(x) is separated by 2-D surface S into two 3-D regions
of distinct intensity values a1 and a2. The targeted object is represented by the 3-D region D1 with
the value a1 inside the 2-D surface S. Outside S, that is in D2 = D\D1, the intensity of I(x) is
approximated by a2. As D = D1 ∪ D2, the 3-D CV model is defined by the following Equation
(2.1):

min
S,a1,a2

CV 3D (S, a1, a2) = µ length (S) + λ1

∫
D1

(I(x)− a1)
2
dx

+λ2

∫
D2

(I(x)− a2)
2
dx.

(2.1)

The constants a1 and a2 can be defined as the mean intensities values of I(x) inside and outside the
surface S respectively. Here, the non-negative parameters µ, λ1, and λ2 are introduced as weight
parameters to control the length term and the fitting term respectively . The level set method [9]
is applied to minimize Equation (2.1) where the zero level set of the Lipschitz function ϕ(x, y, z) is
used to represent the surface S such that

S = {(x, y, z) ∈ D : ϕ (x, y, z) = 0} ,
D1 = in (S) = {(x, y, z) ∈ D : ϕ (x, y, z) > 0} ,
D2 = out (S) = {(x, y, z) ∈ D : ϕ (x, y, z) < 0} .

Next, the regularized versions of the Heaviside function and the Dirac delta function are intro-
duced, respectively, as

H (ϕ (x, y, z)) =
1

2

(
1 +

2

π
arctan

(ϕ
ε

))
and δ (ϕ (x, y, z)) =

ε

π (ε2 + ϕ2)
.

Now, the Equation (2.1) can be written as the following Equation (2.2):

min
ϕ,a1,a2

CV 3D (ϕ, a1, a2) = µ

∫
D

|∇H (ϕ)| dx + λ1

∫
D

(I(x)− a1)
2
H (ϕ) dx

+λ2

∫
D

(I(x)− a2)
2

(1−H (ϕ)) dx.
(2.2)

The following constants a1 and a2 can be obtained by fixing ϕ and minimizing (2.2) with respect
to both constants:

a1(ϕ) =

∫
Ω
I (x)H (ϕ) dx∫
Ω
H (ϕ) dx

, a2(ϕ) =

∫
Ω
I (x) (1−H (ϕ)) dx∫
Ω

(1−H (ϕ)) dx
. (2.3)
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By fixing constants a1 and a2 in CV 3D (ϕ, c1, c2), first variation with respect to ϕ can be computed
and we arrived to the following Euler-Lagrange partial differential equation (EL-PDE):{

µδ (ϕ)∇ ·
(
∇ϕ
|∇ϕ|

)
− λ1δ (ϕ) (I − a1)

2
+ λ2δ (ϕ) (I − a2)

2
= 0, in D

δ(ϕ)
|∇ϕ|

∂u
∂~n = 0, on ∂D.

(2.4)

To avoid singularity problem due to the total variation term |∇ϕ| = 0, a constant β > 0 was
introduce to (2.2) and (2.4), so the new EL-PDE becomes µδ (ϕ)∇ ·

(
∇ϕ√
|∇ϕ|2+β

)
− λ1δ (ϕ) (I − a1)

2
+ λ2δ (ϕ) (I − a2)

2
= 0, in D

δ(ϕ)
|∇ϕ|

∂u
∂~n = 0, on ∂D.

This is corresponding to the following functional

min
ϕ,a1,a2

CV 3D (ϕ, a1, a2) = µ

∫
Ω

√
|∇H (ϕ)|2 + β dx

+λ1

∫
D

(I − a1)
2
H (ϕ) dx + λ2

∫
D

(I − a2)
2

(1−H (ϕ)) dx.
(2.5)

2.2 The 3-D Zhang and Chen (3-D ZC) model

The 3-D variational selective segmentation formulation by Zhang and Chen (3-D ZC) [33] im-
proves the model by [2]. The 3-D ZC model combines the edge based model of [11, 12] with
the intensity fitting term of 3-D CV [10] in localized formulation. The selective segmentation
idea aims to extract the boundary of a single target object among all homogeneity intensity
object in a given image that are defined in a closed domain to the geometrical points in a set
B = {Vi = (x∗i , y

∗
i , z
∗
i ) ∈ D, 1 ≤ i ≤ n1} ⊂ D. Here, the points n1 (≥ 3) are placed near the target

object [2]. Hence, the 3D-ZC model is defined as the following Equation (2.6):

min
S,a1,a2

{F (S, a1, a2) = µFG (S) + FH (S, a1, a2)} (2.6)

where FG (S) =
∫
S
G (x) ds with G (x) = g (x) d (x) and g (x) = 1

1+q|∇I(x)|2 is an edge detector

function, weighted by a constant q. The function d (x) is a marker distance function, defined as
follows:

d (x) = distance ((x) ,B) =

n1∏
i=1

(
1− e−

(x−∗
i )2

2κ2

)
, ∀ (x) ∈ D

.
The new localized fitting energy FH (S, a1, a2) is given as{

λ1

∫
Din(S)

b1 (ϕ (x) , γin) (I (x)− a1)
2
dx + λ2

∫
Dout(S)

b2 (ϕ (x) , γout) (I (x)− a2)
2
dx

}
.

The term b1 (ϕ (x) , γin) = B (ϕ (x) , γin, 0) and b2 (ϕ (x) , γout) = B (ϕ (x) , 0, γout) with
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B (ϕ (x) , γin, γout) = H (ϕ (x) + γin) (1−H (ϕ (x)− γout)) (2.7)

used to characterize the domain Dγin,γout = {x ∈ D : −γin ≤ ϕ (x) ≤ γout} = Dγin (S) ∪ S ∪
Dγout (S) which is a narrow band region surrounding the local boundary S. The value of ϕ is
assumed to be negative inside S and positive outside S. In level set representation, the 3-D ZC
model is given by the following equation:

min
ϕ,a1,a2

µ

∫
D

G (x) |∇H (ϕ)| dx + λ1

∫
D

(I − a1)
2
b1 (ϕ (x) , γin) (1−H (ϕ)) dx

+λ2

∫
D

(I − a2)
2
b2 (ϕ (x) , γout)H (ϕ) dx

(2.8)

Here, b1 (ϕ, γin) (1−H) = B (ϕ (x) , γin, 0) and b2 (ϕ, γout) (H) = B (ϕ (x) , 0, γout). The 3-D ZC
model was solved by a multigrid method.

2.3 The 3-D Primal Dual Selective Segmentation (3-D PDSS) model

In 2020, Jumaat and Chen [16] proposed a new 3-D Primal Dual Selective Segmentation (3-D
PDSS) model which was the extension of the 2-D model in [15].

Using the marker set B, a polygon Q was constructed to connects up the markers. The 3-D
PDSS model applied the Euclidean distance function C (x) of each point (x) ∈ D from its nearest
point (xq, yq, zq) ∈ Q:

C (x) =

√
(x− xq)2

+ (y − yq)2
+ (z − zq)2

= min
q∈Q
‖(x, y, z)− (xq, yq, zq)‖.

Other distance functions in [1] are possible to consider. Thus, the 3-D PDSS model is given as the
following Equation (2.9):

min
u,w∈[0,1]

PDSS3D (u,w) =

∫
D

|∇u|gdx +

∫
D

rw dx + θ

∫
D

Cw dx +
1

2ρ

∫
D

(u− w)
2
dx. (2.9)

Here, r = (a1 − I)
2− (a2 − I)

2
and |∇u|g = g (|∇z|) |∇u| . The dual variable, w was introduced.

For sufficiently small ρ > 0, the right-most term enforces w ≈ u. The parameter θ was the weight
of the distance fitting term. If the parameter θ is too strong the final result will just be the polygon
Q while the final result is potentially includes the neighboring object if it is too weak.

Following the idea from [6, 3], a unique minimizer of 3-D PDSS model can be computed using
the alternating minimization method. Therefore, the formulation of Equation 2.9 was equivalent
to solve the following functional alternately until convergence:

min
u

M1 (u,w) =

∫
D

|∇u|gdx +
1

2ρ

∫
D

(u− w)
2
dx, (2.10)

min
w∈[0,1]

M2 (u,w) =

∫
D

rw dx + θ

∫
D

Cw dx +
1

2ρ

∫
D

(u− w)
2
dx. (2.11)

A projection algorithm was used to solve 2.10 while the solution of 2.11 can be found analytically,
defined as

w = min {max {u(x)− ρr − ρθC, 0} , 1} . (2.12)
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3 A 3-D optimization based multilevel algorithm

In this section, a 3-D multilevel algorithm is discussed to solve (2.10). We assume n = 2L for a
given image I of size N = n× n× n. The standard coarsening defines L+ 1 levels: s = 1 (finest)
, 2, ..., L, L + 1 (coarsest) such that level s has τs × τs × τs “superpixels” with each “superpixels”
having pixels bs × bs × bs where τs = n/2s−1 and bs = 2s−1 . If n 6= 2L, the multilevel method can
still be developed with some coarse level superpixels of cube shapes and the rest of cuboid shapes.

3.1 3-D optimization based multilevel algorithm

The multilevel algorithm is developed only to solve (2.10) in discretize-optimize scheme as the
solution of (2.11) is analytically defined by the equation 2.12. By refering the related works in
[5, 7], (2.10) is discretized using the standard finite difference method with Neumann’s boundary
condition as follows

min
u
M1 (u) ≡ min

u
Ma

1 (u1,1,1, u2,1,1, ..., ui−1,j,k, ui,j,k, ui+1,j,k, ..., un,n,n)

=

n−1∑
i=1

n−1∑
j=1

n−1∑
k=1

gi,j,k

√
(ui,j,k − ui,j+1,k)

2
+ (ui,j,k − ui+1,j,k)

2
+ (ui,j,k − ui,j,k+1)

2
+ β

+
1

2ρ

n∑
i=1

n∑
j=1

n∑
k=1

(ui,j,k − wi,j,k)
2
.

(3.1)

Using a coordinate descent method, (3.1) is minimized on the finest level 1:
Given u(m) =

(
u

(m)
i,j,k

)
with m = 0,

Solve u
(m+1)
i,j,k = arg min

ui,j,k∈R
M loc

1 (ui,j,k, a1, a2) for i, j, k = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(3.2)

where

M loc
1 (ui,j,k)

≡M loc
1

(
u

(m−1)
1,1,1 , u

(m−1)
2,1,1 , ..., u

(m−1)
i−1,j,k, ui,j,k, u

(m−1)
i+1,j,k, ..., u

(m−1)
n,n,n

)
−M (m−1)

1

= gi,j,k

√(
ui,j,k − u(m)

i+1,j,k

)2

+
(
ui,j,k − u(m)

i,j+1,k

)2

+
(
ui,j,k − u(m)

i,j,k+1

)2

+ β

+gi−1,j,k

√(
ui,j,k − u(m)

i−1,j,k

)2

+
(
u

(m)
i−1,j,k − u

(m)
i−1,j+1,k

)2

+
(
u

(m)
i−1,j,k − u

(m)
i−1,j,k+1

)2

+ β

+gi,j−1,k

√(
ui,j,k − u(m)

i,j−1,k

)2

+
(
u

(m)
i,j−1,k − u

(m)
i+1,j−1,k

)2

+
(
u

(m)
i,j−1,k − u

(m)
i,j−1,k+1

)2

+ β

+gi,j,k−1

√(
ui,j,k − u(m)

i,j,k−1

)2

+
(
u

(m)
i,j,k−1 − u

(m)
i+1,j,k−1

)2

+
(
u

(m)
i,j,k−1 − u

(m)
i,j+1,k−1

)2

+ β

+ 1
2ρ (ui,j,k − wi,j,k)

2
.

The last termM
(m−1)
1 refers to the sum of all terms inMa

1 that do not involve ui,j,k. We applying the
Newton method to solve the one-dimensional problem from (3.2) by iterating u(m) → u→ u(m+1).
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It is of interest to rewrite (3.2) as the following form in order to introduce the multilevel algo-
rithm: 

Given u(m) =
(
u

(m)
i,j,k

)
with m = 0,

Solve ĉ = arg min
c∈R

M loc
1

(
u

(m)
i,j,k + c

)
,

Update u
(m+1)
i,j,k = u

(m)
i,j,k + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(3.3)

The problem (3.3) can be viewed as finding the best correction constant ĉ at the current approxi-

mation u
(m)
i,j,k on level 1.

Next, the formulation for each of the subproblems associated with these blocks on level s is
derived. We illustrate the method for level 3 of image size 16×16×16 as shown in Figure 1. Figure
1(a) demonstrates one of τ3

3 = 43 superpixel in level 3. Each superpixel contains b33 = 43 pixels.
(b) shows the top surface of (a). Using equation (3.1), the interaction of a pixel with neighbouring
pixel (red •) is demonstrated in (c). The interaction of pixels in (b) based on equation (3.1) and
(c) is shown in (d).

To proceed, we define the following: b = 2s−1, k1 = (i− 1) b + 1, k2 = ib, `1 = (j − 1) b + 1,
`2 = jb, m1 = (k − 1) b + 1, m2 = kb, and c = (ci,j,k) . Let ũ be the current solution. Next, a
general computational stencil involving c on level s can be illustrated as follows

(3.4)

Then, minimizing for c, the problem 3.3 is equivalent to minimize the following



134 A. K. Jumaat, K. Chen

(a) (b)

(c) (d)

Figure 1. Illustration of level 3 for image size 16 × 16 × 16. (a) demonstrates one of τ33 = 43 superpixel
in level 3. Each superpixel contains b33 = 43 pixels. (b) shows the top surface of (a). Using equation (3.1),
the interaction of a pixel with neighbouring pixel (red •) is demonstrated in (c). The interaction of pixels
in (b) based on equation (3.1) and (c) is shown in (d).
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F3−DPDSS(ci,j,k) =
k2−1∑
k=k1

gk,`2,m1

√
T1 + β +

`2−1∑
k=`1

gk2,`,m1

√
T2 + β + gk2,`2,m1

√
T3 + β

+
`2−1∑
`=`1

gk1,`,m2

√
T4 + β +

k2−1∑
k=k1

gk,`2,m2

√
T5 + β + gk2,`2,m2

√
T6 + β

+
`2−1∑
`=`1

gk2,`,m2

√
T7 + β +

k2−1∑
k=k1

gk,`1,m2

√
T8 + β +

m2−1∑
m=m1+1

gk1,`2,m
√
T9 + β

+
m2−1∑

m=m1+1
gk2,`2,m

√
T10 + β +

m2−1∑
m=m1+1

gk2,`1,m
√
T11 + β

+
k2−1∑
k=k1+1

`2−1∑
`=`1+1

gk,`,m2

√
T12 + β +

`2−1∑
`=`1+1

m2−1∑
m=m1+1

gk2,`,m
√
T13 + β

+
k2−1∑
k=k1+1

m2−1∑
m=m1+1

gk,`2,m
√
T14 + β +

k2∑
k=k1

`2∑
`=`1

gk,`,m1−1

√
T15 + β

+
`2∑
`=`1

m2∑
m=m1

gk1−1,`,m

√
T16 + β +

k2∑
k=k1

m2∑
m=m1

gk,`1−1,m

√
T17 + β

+ 1
2ρ

k2∑
k=k1

`2∑
`=`1

m2∑
m=m1

(uk,`,m + ci,j,k − wk,`,m)
2
.

(3.5)

where

T1 = (ũk,`2,m1 + ci,j,k − ũk,`2+1,m1)
2

+ (ũk,`2,m1 − ũk+1,`2,m1)
2

+ (ũk,`2,m1 − ũk,`2,m1+1)
2

T2 = (ũk2,`,m1 + ci,j,k − ũk2+1,`,m1)
2

+ (ũk2,`,m1 − ũk2,`+1,m1)
2

+ (ũk2,`,m1 − ũk2,`,m1+1)
2

T3 = (ũk2,`2,m1
+ ci,j,k − ũk2+1,`2,m1

)
2

+ (ũk2,`2,m1
+ ci,j,k − ũk2,`2+1,m1

)
2

+(ũk2,`2,m1
− ũk2,`2,m1+1)

2

T4 = (ũk1,`,m2
+ ci,j,k − ũk1,`,m2+1)

2
+ (ũk1,`,m2

− ũk1+1,`,m2
)
2

+ (ũk1,`,m2
− ũk1,`+1,m2

)
2

T5 = (ũk,`2,m2
+ ci,j,k − ũk,`2+1,m2

)
2

+ (ũk,`2,m2
+ ci,j,k − ũk,`2,m2+1)

2
+ (ũk,`2,m2

− ũk+1,`2,m2
)
2

T6 = (ũk2,`2,m2
+ ci,j,k − ũk2+1,`2,m2

)
2

+ (ũk2,`2,m2
+ ci,j,k − ũk2,`2+1,m2

)
2

+(ũk2,`2,m2
+ ci,j,k − ũk2,`2,m2+1)

2

T7 = (ũk2,`,m2
+ ci,j,k − ũk2,`,m2+1)

2
+ (ũk2,`,m2

+ ci,j,k − ũk2+1,`,m2
)
2

+ (ũk2,`,m2
− ũk2,`+1,m2

)
2

T8 = (ũk,`1,m2
+ ci,j,k − ũk,`1,m2+1)

2
+ (ũk,`1,m2

− ũk,`1+1,m2
)
2

+ (ũk,`1,m2
− ũk+1,`1,m2

)
2

T9 = (ũk1,`2,m + ci,j,k − ũk1,`2+1,m)
2

+ (ũk1,`2,m − ũk1,`2,m+1)
2

+ (ũk1,`2,m − ũk1+1,`2,m)
2

T10 = (ũk2,`2,m + ci,j,k − ũk2+1,`2,m)
2

+ (ũk2,`2,m + ci,j,k − ũk2,`2+1,m)
2

+ (ũk2,`2,m − ũk2,`2,m+1)
2

T11 = (ũk2,`1,m + ci,j,k − ũk2+1,`1,m)
2

+ (ũk2,`1,m − ũk2,`1+1,m)
2

+ (ũk2,`1,m − ũk2,`1,m+1)
2

T12 = (ũk,`,m2
+ ci,j,k − ũk,`,m2+1)

2
+ (ũk,`,m2

− ũk+1,`,m2
)
2

+ (ũk,`,m2
− ũk,`+1,m2

)
2

T13 = (ũk2,`,m + ci,j,k − ũk2+1,`,m)
2

+ (ũk2,`,m − ũk2,`+1,m)
2

+ (ũk2,`,m − ũk2,`,m+1)
2

T14 = (ũk,`2,m + ci,j,k − ũk,`2+1,m)
2

+ (ũk,`2,m − ũk+1,`2,m)
2

+ (ũk,`2,m − ũk,`2,m+1)
2

T15 = (ũk,`,m1
+ ci,j,k − ũk,`,m1−1)

2
+ (ũk,`,m1−1 − ũk+1,`,m1−1)

2
+ (ũk,`,m1−1 − ũk,`+1,m1−1)

2

T16 = (ũk1,`,m + ci,j,k − ũk1−1,`,m)
2

+ (ũk1−1,`,m − ũk1−1,`+1,m)
2

+ (ũk1−1,`,m − ũk1−1,`,m+1)
2

T17 = (ũk,`1,m + ci,j,k − ũk,`1−1+1,m)
2

+ (ũk,`1−1,m − ũk,`1−1,m+1)
2

+ (ũk,`1−1,m − ũk+1,`1−1,m)
2
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On the coarsest level (L+ 1), a single constant update for the current ũ is defined as

min {
c

F3−DPDSS (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

n∑
k=1

(ui,j,k + c− wi,j,k)
2} (3.6)

Algorithm 1 summarized the proposed method to solve the 3-D PDSS termed 3-D MPDSS.

Algorithm 1 3-D MPDSS – Multilevel Algorithm to solve the 3-D PDSS

Set w = u,

1) Solve (2.10) to update u using the following steps:

i). Set ũ = u.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve (3.2) for
i, j, k = 1, 2, ...n

iii). Iterate for t times on each coarse level s = 2, 3, ...L, L+ 1 :
> If s ≤ L, compute the minimizer c of (3.5)
> Solve (3.6) on the coarsest level s = L+ 1
> Add the correction u = u + Qsc where Qs is the interpolation operator distributing ci,j
to the corresponding bs × bs × bs block on level s as illustrated in (3.4).

2) Solve (2.11) to update w:

i). Set w̃ = w.

ii). Compute w using the formula (2.12).

3) Repeat the steps until the solution converges.

4 A new 3-D localized model

To further speed up the convergence, we propose to compute the solution in a narrow band region.
We first defined two local functions b1 and b2 that characterize the domain of narrow band region
DΓ = D1(Γ) ∪ S ∪D2(Γ) around the 2-D surface S such that

b1(ϕ(x),Γ) = 1−H (ϕ(x)− Γ)

b2(ϕ(x),Γ) = H (ϕ(x) + Γ)

We remark that similar notation can be found in [22, 35, 33].
Then, the fitting term of the 3-D PDSS model is modified as∫

D1

(I − a1)
2
dx→

∫
D

(I − a1)
2
b1(ϕ,Γ)H(ϕ) dx∫

D2

(I − a2)
2
dx→

∫
D

(I − a2)
2
b2(ϕ,Γ)(1−H(ϕ)) dx
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By applying the relaxation of the Heaviside function to u ∈ [0, 1], the final solution u(x) defining
the targeted object by

∑
= {(x) : u(x) ≥ η}, normally η = 0.5. We set ϕ = u−η, thus the functions

b1 and b2 are modified as

b1(u(x),Γ) = 1−H (u(x)− η − Γ)

b2(u(x),Γ) = H (u(x)− η + Γ)

Finally, the new 3-D localized version of 3-D PDSS model is given as

min
u,w∈[01]

PDSS3D
L (u,w) =

∫
D

|∇u|gdx +

∫
D

(I − a1)
2
wb1 dx + θ

∫
D

Cwdx

+

∫
D

(I − a2)
2
(1− w)b2 dx +

1

2ρ

∫
D

(u− w)
2
dx

(4.1)

which is equivalent to minimizing the following functional alternately

min
u
ML1(u,w) =

∫
D

|∇u|gdx +

∫
D

(I − a1)
2
wb1 dx +

1

2ρ

∫
D

(u− w)
2
dx

+

∫
D

(I − a2)
2
(1− w)b2 dx

(4.2)

min
w∈[01]

ML2(u,w) =

∫
D

(I − a1)
2
wb1 dx +

∫
D

(I − a2)
2
(1− w)b2 dx

+ θ

∫
D

Cwdx +
1

2ρ

∫
D

(u− w)
2
dx

(4.3)

The analytical solution for For (4.3) is defined as

w = min
{

max
{
u−

(
(I − a1)

2
b1 − (I − a2)

2
b2

)
ρ− ρθC, 0

}
, 1
}

(4.4)

To solve (4.2) using multilevel method, we first introduce the set falling into the Γ-band where
b1 = b2 = 1 :

V (u) = {(i, j, k) |−Γ ≤ ui,j,k ≤ Γ}

All the steps to solve (4.2) using multilevel algorithm are identical except u = u + ci,j,k only
needs an updated if the set [k1, k2] × [`1, `2] × [m1,m2] ∩ V (u) is non-empty. We will call 3-D
MPDSS2 to refer the multilevel algorithm to solve localized version of 3-D PDSS model.

5 New variant of the multilevel algorithms 3-D MPDSS and 3-D
MPDSS2

Our above proposed method for an optimization problem defines a sequence of search directions
based in a multilevel setting . In this section,we modify it so that the new algorithm has a formal
decaying property.

Denote the functional in ( (3.1)) by g(u) : Rn3 → R and represent each subproblem by

c∗ = arg min
c∈R

g(u` + cp`), u`+1 = u` + c∗p`, p` = ẽ`(mod K)+1, ` = 0, 1, 2, . . .
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where ẽ and K will be defined below, mod(·) denotes modulo operator. Noting that bs = 2s−1 and
τs = n/bs .

Now we investigate the search direction {ẽ};

level 1 : 1× 1 block′s index (i, j, k), 1 ≤ i, j, k ≤ n
ẽf = ef , f = 1, 2, ...n3

level 2 : 21 × 21 block′s indices (k1 : k2, `1 : `2,m1 : m2), 1 ≤ i, j, k ≤ τ2

ẽK0+(k−1)τ2
2 +(j−1)τ2+i =

k2∑
i1=k1

`2∑
j1=`1

m2∑
q1=m1

en2(q1−1)+n(j1−1)+i1

k1 = 21(i− 1) + 1, k2 = 21i; `1 = 21(j − 1) + 1, `2 = 21j;
m1 = 21(k − 1) + 1, m2 = 21k

level 3 : 22 × 22 block′s indices (k1 : k2, `1 : `2,m1 : m2), 1 ≤ i, j, k ≤ τ3

ẽK0+K1+(k−1)τ2
3 +(j−1)τ3+i =

k2∑
i1=k1

`2∑
j1=`1

m2∑
q1=m1

en2(q1−1)+n(j1−1)+i1

k1 = 22(i− 1) + 1, k2 = 22i; `1 = 22(j − 1) + 1, `2 = 22j;
m1 = 22(k − 1) + 1, m2 = 22k

...
level L+ 1 : 2L × 2L block′s indices (1 : n, 1 : n, 1 : n)

ẽK =

n∑
i1=1

n∑
j1=1

n∑
q1=1

en2(q1−1)+n(j1−1)+i1 =

n3∑
V=1

eV

where eι ∈ n3

is the ι-th unit (coordinate) vector,

K =

L∑
Y=0

KY =

L∑
Y=0

τ2
Y

=

L∑
Y=0

n3

8Y
=

8n3 − 1

7

Here K represents the total number of search direction across all levels 1, 2, ...L, L + 1 for this
unconstrained type optimization problem. As shown above, the sequence {p`} is clearly essentially

periodic (finitely many) and free-steering (spanning Rn3

) [25].
Recall that a sequence {u`} is strongly downward (decaying) with respect to g(u) i.e.

g(u`) ≥ g(v`) ≥ g(u`+1), v` = (1− t)u` + tu`+1 ∈ D0, ∀ t ∈ [0, 1]. (5.1)

This property is much stronger than the usual decaying property g(u`) ≥ g(u`+1) which is auto-
matically satisfied by our Algorithm 3-D MPDSS and 3-D MPDSS2.

By [25, Theorem 14.2.7], to ensure the minimizing sequence {u`} to be strongly downward, we
modify the subproblem minM loc

1 (u` + cp`) to the following

u`+1 = u` + c∗q`, c∗ = arg min{c ≥ 0 | ∇MT q` = 0}, ` ≥ 0 (5.2)
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where the `-th search direction is modified to

q` =

{
p`, if ∇MT p` ≤ 0,
−p`, if ∇MT p` > 0.

Here the equation ∇MT q` = 0 for c and the local minimizing subproblem (3.3) that is
mincM

loc
1 (ûi,j + c) are equivalent. Now the new modification is to enforce c ≥ 0 and the sequence

{q`} is still essentially periodic.
We shall call the modified algorithm 3-D MPDSS and 3-D MPDSS2 as 3-D MPDSSM and 3-D

MPDSS2M respectively.

6 Convergence and complexity analysis

The convergence of the algorithms 3-D MPDSS-3-D MPDSS2

min
u∈R

g(u)

is challenging to prove unless a stronger assumption of uniform convexity for the minimization of
functional g is made. However there is another approach to prove the convergence of 3-D MPDSSM-
3-D MPDSS2M for solving problem ((3.1)) without such an assumption. We first assume the
functional g = g(u) is hemivariate i.e. g(u+ t(v−u)) = g(u) for t in [0, 1] and u 6= v (for theoretical
purpose).

There are five sufficient conditions must be met in order to prove the convergence of 3-D
MPDSSM-3-D MPDSS2M,

i) g(u) is continuously differentiable in D0 = [0, 1]n
3 ⊂ Rn3

;

ii) the sequence {q`} is uniformly linearly independent;

iii) the sequence {u`} is strongly downward (decaying) with respect to g(u);

iv) lim
`→∞

g′(u`)q`/‖q`‖ = 0,

v) the set S = {u ∈ D0 | g′(u) = 0} is non-empty.

Here q′(u) = (∇g(u))T . Then we have the convergence of {u`} to a critical point u∗ [25, Theorem
14.1.4]

lim
`→∞

inf
u∈S
‖u` − u∗‖ = 0.

The condition i) is met since we set β 6= 0 and condition ii) also holds since ‘essentially periodic’
implies ‘uniformly linearly independent’ [25, §14.6.3]. We make an assumption of existence of
stationary points for g(u) to verify condition v). Next, we now focus on verifying condition iii)-iv).
From [25, Theorem 14.2.7], the construction of {u`} via (5.2) ensures that the sequence {u`} is
strongly downward and further lim`→∞ g′(u`)q`/‖q`‖ = 0. Hence conditions iii)-iv) are satisfied.

Note condition iii) and the assumption of g(u) being hemivariate imply lim`→∞ ‖u`+1−u`‖ = 0
from [25, Theorem 14.1.3]. Further condition iv) and the fact lim`→∞ ‖u`+1 − u`‖ = 0 lead to the
result lim`→∞ g′(u`) = 0.

Finally by [25, Theorem 14.1.4], the condition lim`→∞ g′(u`) = 0 implies lim`→∞ infu∈S ‖u` −
u∗‖ = 0. Hence the convergence is proved.
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Next, we will give the complexity analysis of our 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM
and 3-D MPDSS2M. Let N = n3 be the total number of pixels (unknowns). First, we compute the
number of floating point operations (flops) for 3-D MPDSS for level s as follows:

Quantities Flop counts for 3-D
MPDSS

ρ term 2N
w term 6N

r smoothing
steps

125bsτ
3
s r

Then, the flop counts for all level is W3−DMPDSS = 6N +
L+1∑
s=1

(
2N + 125bsτ

3
s r
)

where s = 1

(finest) and s = L + 1 (coarsest). Noting bs = 2s−1, τs = n/bs, N = n3, we compute the upper
bound for 3-D MPDSS as follows:

W3−DMPDSS = 6N + 2(L+ 1)N +

L+1∑
s=1

(
125Nr

bs

)
= 6N + 2(L+ 1)N + (125r)N

L∑
s=0

(
1

2s

)
< 2N log n+ 8N + 250Nr ≈ O (N logN)

The complexity of the new 3-D MPDSS2 is expected will be directly linked to the length of

the segmented objects at each iteration; at the discrete level, this length is usually O
(

3
√
N
)

. The

upper bound for 3-D MPDSS2 is computed as follows:

W3−DMPDSS2 = 6 3
√
N + 2(L+ 1) 3

√
N +

L+1∑
s=1

(
135r 3

√
N

bs

)
= 6

3
√
N + 2(L+ 1)

3
√
N

+(135r) 3
√
N

L∑
s=0

(
1
2s

)
< 2 3
√
N log n+ 8 3

√
N + 270r 3

√
N ≈ O

(
3
√
N logN

)
The approximate cost of an extra operation ∇MT q` in 3-D MPDSSM and 3-D MPDSS2M is 2N

that results to the total flop counts for 3-D MPDSSM asW3−DMPDSSM = 6N+
L+1∑
s=1

(
4N + 125bsτ

3
s r
)
.

This gives the upper bound for 3-D MPDSSM as

W3−DMPDSSM = 6N + 4(L+ 1)N +

L+1∑
s=1

(
125Nr

bs

)
= 6N + 4(L+ 1)N + (125r)N

L∑
s=0

(
1

2s

)
< 4N log n+ 10N + 250Nr ≈ O (N logN)

.
Finally, for 3-D MPDSS2M, the upper bound for 3-D MPDSS2M is computed as follows:

W3−DMPDSS2M = 6 3
√
N + 4(L+ 1) 3

√
N +

L+1∑
s=1

(
135r 3

√
N

bs

)
= 6

3
√
N + 4(L+ 1)

3
√
N

+(135r) 3
√
N

L∑
s=0

(
1
2s

)
< 2 3
√
N log n+ 10 3

√
N + 270r 3

√
N ≈ O

(
3
√
N logN

)
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Notice that the complexity is optimal for all multilevel algorithm: 3-D MPDSS, 3-D MPDSS2,
3-D MPDSSM and 3-D MPDSS2M and W3−DMPDSS2 < W3−DMPDSS2M < W3−DMPDSS <
W3−DMPDSSM .

7 Numerical experiment

In this research, the performance of all algorithms were compared. The list of the algorithms are
listed as follows:

Name Algorithm Description

3-D
MPDSS

New : The multilevel Algorithm 1 for the 3-D PDSS model.

3-D
MPDSS2

New : The localized model of 3-D MPDSS.

3-D
MPDSSM

New : The modified multilevel algorithm for 3-D MPDSS.

3-D
MPDSS2M

New : The modified multilevel algorithm for 3-D MPDSS2.

3-D
PDSS

Old : The projection method for the 3-D PDSS model [16].

3-D ZC Old : The proposed model by [33].

Four different types of experiments were conducted. In Experiment 1, we segment 3-D synthetic
images with different size using 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D MPDSS2M.
Each image was added with noise. To measure the segmentation performance, we record the
computation time. A similarity coefficient namely Jaccard (JSC) was computed to measure the
segmentation accuracy such that

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

.

Here, the set of segmented domain D1 is denoted by Sn while the true set of D1 is denoted by S∗.
The return values of JSC was in the range of [0, 1]. A perfect segmentation quality is indicated by
a value of 1 while a poor quality of segmentation is indicated by a value of 0.

This is followed by Experiment 2 that demonstrates the performance of 3-D MPDSS, 3-D
MPDSS2, 3-D MPDSSM, and 3-D MPDSS2M in segmenting 3-D medical images which are more
challenging. The best multilevel algorithm will be selected based on the results from Experiment 1
and 2. In Experiment 3, the chosen method was compared with 3-D PDSS while in Experiment 4,
the chosen method was compared with 3-D ZC model. The list of test images are shown in Figure
2. The markers are shown in red, while the built polyhedral surface in green indicates the first
(initial) solution based on the markers’ locations. MATLAB R2017a was used to implement all
experiments, installed in a 16 GB RAM computer with a 3.60GHz processor of Intel Core i7.

For the parameters setting, we fixed the value of β = 10−4. The value of ρ ∈ [7× 10−4, 10−3],
Γ ∈ [1, 10], ε ∈ [1/n2, 0.01], q ∈ [1, 10] and the inner iteration t = 1. The program stop when the
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(a) (b)

(c) (d)

Figure 2. List of test images (a) is a synthetic image used in Experiment 1, (b) and (c) are medical
images used in Experiment 2 and (d) is a synthetic image used in Experiment 3. The markers are shown in
red, while the built polyhedral surface in green indicates the first solution based on the marker’s locations.



A Fast method for 3-D Selective Segmentation 143

Table 1. Experiment 1–The computation time, tn and the JSC values for each algorithm with different
image resolutions.

Algorithm
Size

N = n3 JSC
Time,

tn

tn
tn−1

323 1.0 17.2
3-D MPDSS 643 1.0 67.2 3.9

1283 1.0 481.5 7.2

2563 1.0 3690.6 7.8

323 1.0 15.3
3-D

MPDSS2
643 1.0 39.1 2.6

1283 1.0 70.8 1.8

2563 1.0 158.2 2.2

323 1.0 24.3
3-D

MPDSSM
643 1.0 84.7 3.5

1283 1.0 565.1 6.7

2563 1.0 4668.5 8.3

323 1.0 28.3
3-D

MPDSS2M
643 1.0 61.7 2.2

1283 1.0 108.5 1.8

2563 1.0 234.9 2.2

outer iteration maxit = 8000 or max
(
‖ũ−u‖2
‖ũ‖2

,
‖w̃−w‖2
‖w̃‖2

)
< tol. In this research, tol = 10−2 unless

stated otherwise. The value of θ varies depending on the images. Basically, the value of θ is large
for an object that is close to the nearby object, while a smaller value of θ is needed for clearly
separated object.

7.1 Experiment 1: Segmentation on 3-D synthetic image.

In Experiment 1, the performance of 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D MPDSS2M
were compared in segmenting 3-D synthetic image in Figure 2(a). Here, multiple size of images
were used and each image was added with additive noise. We use the value of θ = 30/(n× 10−4).

Figure 3 demonstrates that the algorithms 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and
3-D MPDSS2M successfully segmenting the targeted object in an image of size 128 × 128 × 128
in the first column. Some samples of slice representation results are displayed in the second and
third columns. The computation time of 3-D MPDSS2 is 70.8s ( 1.2 min) which is faster than
3-D MPDSS, 3-D MPDSSM and 3-D MPDSS2M about 6.8, 8 and 1.5 times respectively. Table 1
shows the overall result of computing time for each algorithm in Experiment 1. We also evaluate
the computing times ratio in column 5 using the formula tn/tn−1. The ratio value close to 8.8
shows that the complexity of 3-D MPDSS and 3-D MPDSSM are O (N logN). Moreover, both

3-D MPDSS2 and 3-D MPDSS2M having O
(

3
√
N logN

)
complexity as indicated by the ratio 2.2.

The computation time for 3-D MPDSS2 is faster than other algorithms for all tested images. We
remark that high segmentation accuracy are delivered by all algorithms as indicated by the JSC
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3-D MPDSS 3-D MPDSS Slice 51 3-D MPDSS Slice 74

3-D MPDSS2 3-D MPDSS2 Slice 51 3-D MPDSS2 Slice 74

3-D MPDSSM
3-D MPDSSM Slice

51
3-D MPDSSM Slice

74

3-D MPDSS2M
3-D MPDSS2M Slice

51
3-D MPDSS2M Slice

74

Figure 3. Experiment 1 –The first column demonstrates that the algorithms 3-D MPDSS, 3-D MPDSS2,
3-D MPDSSM, and 3-D MPDSS2M successfully segmenting the targeted object in an image of size 128 ×
128 × 128. Some samples of slice representation results are shown in the second and third columns.
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Table 2. Experiment 2–The processing time of 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D
MPDSS2M in segmenting Figure 2(b) and Figure 2(c).

Algorithm Figure 2(b) Figure 2(c)

3-D MPDSS 560.1 682.2

3-D MPDSS2 265.3 373.6

3-D MPDSSM 702.0 855.3

3-D MPDSS2M 396.2 520.7

values in third column of Table 1.
The residual plots of 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D MPDSS2M are

illustrated in Figure 4 for segmenting a 64×64×64 3-D synthetic data in Figure 2(a). The residual
approaches 0 as the iteration is extended up to 10 iterations which indicates the convergence of the
algorithms.

7.2 Experiment 2: Segmentation on 3-D medical image

Besides synthetic images, we also tested 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D
MPDSS2M algorithms in segmenting 3-D medical images. They are blood vessel in Figure 2(b)and
kidney in 2(c) of size of 128×128×128 with θ = 11200 and θ = 7000 respectively. The computation
time are recorded in Table 2.

Based on the Table 2, the algoritm 3-D MPDSS2 is faster than 3-D MPDSS, 3-D MPDSSM and
3-D MPDSS2M. We are unable to compute the JSC value because the ground truth solutions are
not available. To visualize the result, we demonstrate the segmentation output from 3-D MPDSS2
in Figure 5. The first column shows the successful results in 3-D representation while the results
in slice representation are demonstrated in the second and third column respectively.

Based on Experiment 1 and 2, the algorithm 3-D MPDSS2 is better compare to the 3-D MPDSS,
3-D MPDSSM, and 3-D MPDSS2M. Hence, we have chosen the algorithm 3-D MPDSS2 to be
compared with the existing models.

7.3 Experiment 3: Comparison of 3-D MPDSS2 with 3-D PDSS

In Experiment 3, we make a comparison between the algorithm 3-D MPDSS2 with the existing
model, 3-D PDSS by [16]. The 3-D PDSS was solved using projection algorithm in [16]. Here, the
object in Figure 2(d) is segmented with different stopping accuracy: tol = 10−1, 10−3, 10−6 and
10−9. The size of the image is 256× 256× 256 and we used θ = 70/(256× 10−4). The computation
time is tabulated in Table 3. For tol = 10−1, it can be seen that 3-D PDSS is almost as efficient as
3-D MPDSS2. However, as the stopping precision decreases, 3-D MPDSS2 outperforms 3-D PDSS
in terms of efficiency. Hence, we deduce that when the degree of stopping accuracy employed is
smaller, the convergence of 3-D PDSS is slower than 3-D MPDSS2. Figure 6 shows the segmentation
result from both techniques using tol = 10−6.

7.4 Experiment 4: Comparison of 3-D MPDSS2 with 3-D ZC

In the final Experiment 4, by utilizing two different initialization, we evaluate the performance of
our 3-D MPDSS2 and 3-D ZC [33] in segmenting MRI medical image containing breast illness.
tol = 10−2 and θ = 104 are used in this example. Figure 7(a) depicts the 3-D image with an initial
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3-D MPDSS 3-D MPDSSM

3-D MPDSS2 3-D MPDSS2M

Figure 4. Experiment 1–Convergence curve of 3-D MPDSS, 3-D MPDSS2, 3-D MPDSSM, and 3-D
MPDSS2M based on the residual value.
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1(a) 2(a)

(a) 3(a) 4(a)

1(b) 2(b)

(b) 3(b) 4(b)

Figure 5. Experiment 2–The segmentation output from 3-D MPDSS2.
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Table 3. Experiment 3–Computation time of 3-D PDSS and 3-D MPDSS2 with different accuracy, tol.

Algorithm
Stopping
Accuracy

CPU Time JSC

10−1 8.9 1.0
3-D

MPDSS2
10−3 10.3 1.0

10−6 11.8 1.0

10−9 13.5 1.0

10−1 12.1 1.0
3-D PDSS 10−3 99.2 1.0

10−6 103.7 1.0

10−9 757.8 1.0

3-D PDSS 3-D MPDSS2

Figure 6. Experiment 3–Results of selective segmentation by 3-D PDSS and 3-D MPDSS2 using tol =
10−6.
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Initialization 3-D ZC [33] 3-D MPDSS2

(a) 1(a) 2(a)

(b) 1(b) 2(b)

Figure 7. Experiment 4–Results of selective segmentation by 3-D ZC and 3-D MPDSS2 using 2 different
initial solutions.

solution constructed using the position of markers, whereas Figure 7(b) depicts a 3-D image with
an initial solution that is somewhat distant from the marker.

Using the starting solution in Figure 7(a), Figures 7 1(a) and 2(a) show the successful outputs
by 3-D ZC and 3-D MPDSS2 algorithms, respectively. The algorithm 3-D MPDSS2 produces
a consistent segmentation curve for the second initialization in 7(b), as seen in Figure 7 2(b),
demonstrating the benefits of our approach. However, because the minimization issue involves
extremely non-convex terms, the segmentation results of 3-D ZC are inconsistent, implying that
3-D ZC is largely reliant on the initialization.

8 Conclusion

To solve the current model, 3-D PDSS, we successfully designed a new 3-D optimization-based
multilevel method named 3-D MPDSS in this research. We renamed the 3-D MPDSS algorithm
3-D MPDSS2 after modifying it to take use of a local feature of a targeted item in an image.
To improve the decaying property of 3-D MPDSS and 3-D MPDSS2, new variants named 3-D
MPDSSM and 3-D MPDS2M are suggested. Experiments on 3-D synthetic and 3-D medical data
demonstrate that 3-D MPDSS2 is significantly quicker than 3-D MPDSS, 3-D MPDSSM, and 3-D
MPDS2M.

When comparing 3-D MPDSS2 to the existing 3-D PDSS, it is clear that 3-D MPDSS2 outper-
forms 3-D PDSS at lower stopping accuracy values. There is also a comparison of 3-D MPDSS2
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with 3-D ZC. In comparison to 3-D ZC, which is sensitive to initial surface, the results demonstrate
that 3-D MPDSS2 is consistent with diverse starting solutions (less dependent on initialization).
In the future, we want to provide a 3-D formulation in segmenting 3-D vector valued image
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