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中文摘要 

氣候與森林植物的分布緊密關連，而多項研究也證實，臺灣山地的帶狀植群分

化、以及部分泛域植群類型的分布，均與氣候條件高度相關，尤其受到溫度與年

間降水分配差異的影響。為瞭解臺灣森林植群與氣候的關係，進一步建立森林植

群氣候棲位資訊，以及推估氣候變遷的可能影響，本論文整合臺灣既有植群調查

及長期氣候資料，建立預測森林植物現生與未來分布的流程方法，並提出森林分

布變遷之研究結果。茲就各章節研究成果摘述如下： 

一、動態氣候降尺度模型與高解析氣候圖層之產製 

氣候資料是生態研究的重要基礎，然而一般泛用氣候圖資之空間解析度以數公里

至數十公里不等，難以反映山區起伏地形導致的氣溫與降水的劇烈變化。本章節

利用臺灣氣候變遷推估與資訊平台（TCCIP）5公里網格氣候資料，經動態局部

迴歸方法獲得區域範圍之海拔遞減率，作為內插校正參數，於 R 軟體設計一套自

由尺度化之氣候降尺度模型，命名為 clim.regression。經 15處不同海拔氣象測站

實測驗證，clim.regression推估月尺度氣候之平均絕對誤差為 0.56°C（月均溫）、

0.79°C（月均低溫）、0.80°C（月均高溫）及 36.26mm（月累積降水），改善了

TCCIP 原始資料 54.6–66.7%的誤差。Clim.regression共可針對歷史年度（1960–

2009）及三個未來階段產製 73種氣候因子，其自由尺度化、高準確度的特色，

極適合在山地氣候與生態關係研究應用，亦是本論文進行後續章節研究之氣候資

料來源。 

二、以氣候為基礎的臺灣山地植群分布模擬與預測方法 

相較於傳統航遙測影像判釋或現場調查方法，森林植群氣候的棲位模擬預測，是

相對簡易而迅速獲得森林植群空間分布資訊的方法。本章節使用林務局國家植群

多樣性調查計畫樣區資料，以及李靜峯等人建立之森林分類架構，經由
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clim.regression產生各森林類型之氣候幅度，再利用隨機森林方法，建立 13種與

氣候相關森林類型的棲位模型，並完成 13種森林類型的現生分布預測。依據

3817個樣區交叉驗證顯示，隨機森林對於現生植群分布預測之平均錯誤率為

6.59%，森林分布預測結果與地形高度擬合，並反映出不同森林類型交會帶之過

渡現象。本章節證實高解析度、高準確度的氣候資料，配合野外調查樣本及充分

的機器學習訓練，可提供良好的植群現生分布資訊，作為預測未來變遷的基礎工

具。 

三、海拔梯度下，氣候變遷對於臺灣山地森林植群的影響程度為何？ 

目前全球森林與氣候變遷相關研究，主要集中在北半球中緯度，對熱帶森林的研

究較少。以山地森林而言，普遍認為暖化可能導致森林植物的向上遷徙，對高海

拔或山頂植群造成威脅與衝擊。臺灣山地森林跨越近 4000公尺的海拔梯度，涵

蓋熱帶至亞高山森林類型，利用前一章獲得之山地植群模擬預測方法，於本章節

探討不同暖化情境下各森林類型的面積與海拔分布變化。所有暖化情境一致顯

示，高海拔森林及中海拔雲霧林可能出現面積縮減，尤其以亞高山刺柏灌叢及臺

灣水青岡落葉霧林首當其衝，將喪失大多數棲地（RCP 4.5）或瀕臨滅絕（RCP 

8.5）。對於熱帶山地森林的預測結果則較為分歧，雖然熱帶森林的棲地面積在多

數暖化情境下呈現逐步擴張的趨勢，然而在極端暖濕、或極端暖乾的狀況下，可

能因水分有效性劇烈變化因素，導致熱帶山地霧林完全失去適存環境，熱帶季風

林亦將出現顯著的棲地縮減，是不可忽視的氣候變遷威脅。綜上研究結果，本章

節可推測出氣候變遷下的易危森林類型，並提出相對應的保育建議，作為後續監

測及管理工作的參考。 

四、被子植物雌雄異株物種的地理分布與及其生態相關因子之研究 
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本論文收集大量的植物分布紀錄與氣候資料，不僅限於氣候變遷研究應用，也是

生態與生物地理分布研究的珍貴素材。本章節運用上述資料，以植物性別表現的

空間分布型式為例進行研究，希能激發其他生態研究者的興趣與更多的參與。 

雌雄異株是相對罕見的植物生殖模式，藉由不同雌雄個體異交產生種子延續後

代。過去調查統計全球被子植物的雌雄異株種類約佔所有種類的 6%，但許多例

子指出不同區域的雌雄異株物種比例會有差異，地形起伏劇烈的海洋島嶼、熱帶

森林、木本生活型、蟲媒授粉等現象，通常與較高的雌雄異株比例相關。臺灣的

地理環境具有大陸至海洋的過渡特性，本研究發現，臺灣本島被子植物的雌雄異

株整體比例約為 8.2%，但從臺灣海峽至太平洋間，臺灣諸島被子植物相的雌雄異

株比例呈現逐漸升高的梯度，呼應了 Bawa氏提出的海洋島嶼較多雌雄異株物種

的理論。此外，沿本島海拔梯度則發現，自然植群皆存在雌雄異株比例隨海拔升

高而降低的現象，並在海拔 2200公尺處存在顯著的遞減率轉折點；高海拔的雌

雄異株比例劇烈陡降，推測可能與闊葉林與針葉林的交會轉換，以及高海拔授粉

昆蟲相趨於單純化所致。但人工植群之雌雄異株比例則與海拔無顯著相關。搭配

氣候因子分析，顯示雌雄異株植物常見於溫暖環境，兩性花植物則偏好於低溫的

高海拔地區，雜性物種的出現則與氣候條件無顯著關聯。 

 

關鍵字： 

氣候、氣候變遷衝擊、生態棲位模型、山地森林植群、隨機森林、臺灣 
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Abstract 

Climate plays a vital role in shaping the distribution of forest and plant species. Some 

authors had reported that climate, especially the temperature and seasonal partitioning of 

rainfall, is significantly correlated with the altitudinal zonation of mountain forests and 

also to some of the distribution of azonal vegetation. This dissertation incorporated 

vegetation survey and historical climate data to reconstruct climatic niches for mountain 

forests of Taiwan, and project their distributional changes under future climatic scenarios. 

The critical outcomes of each chapter summarized as below: 

1. A dynamic downscaling approach to generate scale-free regional climate data. 

Climate variables, particularly temperature and precipitation, are the most well-

known key factors related to vegetation zonation. However, to obtain climate data 

adequately for the requirement of ecological studies is challenging due to the 

difficulty of data integration and the complexity of downscaling, especially for 

mountainous regions. In this section, a synthetic approach combining bilinear 

interpolation and dynamic local regression was conducted to develop a scale-free 

climate downscaling model in R environment, namely clim.regression. Based on the 

original 5km x 5km gridded climate surface from TCCIP, clim.regression can generate 

73 climatic variable estimates specific to the user-defined points of interest for 

historical (1960–2009) and future periods (2016–2035, 2046–2065 and 2081–2100), 

which reduced prediction error by 54.6–66.7% relative to the original gridded climate 

data for temperatures. The result is adapted to the uses of ecological researches and is 

the source of climate data of this dissertation. 

2. Climate-based approach for modeling the distribution of montane forest 

vegetation. 
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A climate-based ecological niche model may provide an effective alternative to the 

traditional approach for assessing limitations, thresholds, and the potential 

distribution of forests. In this section, a machine-learning method based on scale-free 

climate variable estimates and classified vegetation plots was applied to develop niche 

models for the 13 climate-related forest types in Taiwan, and to generate a fine-scale 

predicted vegetation map. The result supported that the machine-learning approach is 

sufficient to handle a large number of variables and to provide accurate predictions, 

which has the potentials in projecting the distributional changes of forests under 

different climate change scenarios. 

3. How much does climate change alter the distribution of forests across a great 

altitudinal gradient? 

Taiwan is a high-mountain island with substantial altitudinal variations and diverse 

forest types driven by climate. In this study, we used the scale-free climate variable 

estimates and an established machine-learning approach to project the distributional 

changes of 13 climate-related mountain forest types under selected global warming 

scenarios. The results demonstrated a consistent trend of the drastic habitat 

contractions of subalpine Juniperus woodland and the deciduous Fagus broadleaved 

forests. It also revealed that tropical montane cloud forest and tropical winter 

monsoon forest might be highly vulnerable under the extreme warm-humid or warm-

dry climatic conditions because of the sever change of water availability. For 

mitigating the risk of climate change to the vulnerable forest types, adapted 

conservation strategies were suggested according to the environmental characteristic 

of each forest type. 

4. Geographical distribution of dioecy and its ecological correlates based on fine-
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scaled species distribution data. 

A great deal of species occurrence and climate data is valuable in different ecological 

researches. An example is shown here to demonstrate such use in elucidating the 

complicate distribution patterns of plant sexual systems. In this section, I used species 

occurrence and historical climate data in exploring the geographical distribution of 

sexual expression systems of the flowering plants in Taiwan. 

It was reported that the incidence of dioecy varied among local floras and suggested 

inclining to tropical and oceanic environments. We found the average incidence of 

dioecy in the flora of Taiwan to be 8.2%, but it exhibits geographical variations from 

islets in the Taiwan Strait to the Pacific Ocean. An apparent two-step decreasing 

pattern of dioecy percentages with elevation was also found, which shows a distinct 

transition at the altitude of 2200m. The overall analysis indicated that spatial 

variations of dioecy were associated with eco-correlates of land cover, elevation, 

woodiness, species richness, and mean annual temperature. Results of this section 

partially support Bawa’s hypothesis of a higher incidence of dioecy on oceanic islands, 

and consistent with Baker and Cox’s observations of more prosperous dioecious 

species on high-mountain islands in the tropics and subtropics. 

 

Key words: 

Climate, Climate change impacts, Ecological niche modeling, Mountain forest vegetation, 

Random forest, Taiwan. 
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 Comparison table of abbreviations 

Abbreviation Definition 

AR5 The IPCC Fifth Assessment Report. AR5 is a report announced by 

IPCC in 2014, it provides an overview of the state of knowledge 

concerning the science of climate change, emphasizing new results 

since the publication of the IPCC Fourth Assessment Report (AR4) 

in 2007. 

(https://www.ipcc.ch/report/ar5/syr/) 

CMIP5 The Coupled Model Intercomparison Project (CMIP) is a 

standard experimental framework for studying the output of coupled 

atmosphere-ocean general circulation models. CMIP5 is the most 

current and extensive of the CMIPs. The objectives of CMIP5 are to: 

1. evaluate how realistic the models are in simulating the recent 

past, 

2. provide projections of future climate change on two time scales, 

near term (out to about 2035) and long term (out to 2100 and 

beyond), and 

3. understand some of the factors responsible for differences in 

model projections, including quantifying some key feedbacks 

such as those involving clouds and the carbon cycle. 

(https://climatedataguide.ucar.edu/climate-model-evaluation/cmip-

climate-model-intercomparison-project-overview) 

CoDeK Cocktail determination key. CoDeK is a software application, based 
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Abbreviation Definition 

on R program (R Development Core Team 2012), which allows 

automatic classification of vegetation samples into vegetation types 

defined by Cocktail determination key. The Cocktail Determination 

Key has been published as supplementary materials in Li et al. 

(2013), it allows automatic assignment of vegetation plots into 

predefined vegetation types (supervised classification). 

(https://www.davidzeleny.net/doku.php/software) 

GCM General circulation model. GCM is a type of climate model. It 

employs a mathematical model of the general circulation of a 

planetary atmosphere or ocean based on the basic laws of physics, 

fluid motion, and chemistry. Scientists divide the planet into a 3-

dimensional grid, apply the basic equations, and evaluate the results. 

The calculations include winds, heat transfer, radiation, relative 

humidity, and surface hydrology within each grid and evaluate 

interactions with neighboring points. 

(https://en.wikipedia.org/wiki/General_circulation_model) 

IPCC Intergovernmental Panel on Climate Change. IPCC is the United 

Nations body for assessing the science related to climate change. It 

provides regular assessments of the scientific basis of climate change, 

its impacts and future risks, and options for adaptation and mitigation. 

(https://www.ipcc.ch/) 

LGM Last Glacial Maximum. LGM was the most recent time during the 
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Abbreviation Definition 

Last Glacial Period that ice sheets were at their greatest extent. The 

growth of ice sheets commenced 33,000 years ago and maximum 

coverage was between 26,500 years and 19–20,000 years ago. 

(https://en.wikipedia.org/wiki/Last_Glacial_Maximum) 

LOESS Local polynomial regression. LOESS is a nonparametric technique 

for smoothing scatter plots and modeling functions. For each point, 

x0, a low-order polynomial regression is fit using only points in some 

“neighborhood” of x0. The result is a smooth function over the 

support of the data. 

Avery, M. (2010). Literature Review for Local Polynomial 

Regression. 

MAP Mean annual precipitation. It refers to the sum of precipitation of 

12 months a year. 

MAT Mean annual temperature. It refers to the average of mean 

temperatures of 12 months a year. 

OOB error Out-of-bag error. OOB error is a method of measuring the 

prediction error of random forests, boosted decision trees, and other 

machine learning models utilizing bootstrap aggregating (bagging) to 

sub-sample data samples used for training. Subsampling allows one 

to define an out-of-bag estimate of the prediction performance 

improvement by evaluating predictions on those observations which 

were not used in the building of the next base learner. 
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Abbreviation Definition 

(https://en.wikipedia.org/wiki/Out-of-bag_error) 

RCP Representative Concentration Pathways. RCPs usually refer to the 

portion of the concentration pathway extending up to 2100, 

corresponding emission scenarios. Four RCPs, RCP 2.6, RCP 4.5, 

RCP 6.0, and RCP 8.5, produced from Integrated Assessment Models 

were selected from the published literature and are used in the Fifth 

IPCC Assessment as a basis for the climate predictions and 

projections. 

(https://www.ipcc-

data.org/guidelines/pages/glossary/glossary_r.html) 

RF Random forests. RF is an ensemble learning method for 

classification, regression and other tasks that operate by constructing 

a multitude of decision trees at training time and outputting the class 

that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. This method has been 

recommended for modeling the ecological niche of organisms and 

predicting their potential distribution. 

(https://en.wikipedia.org/wiki/Random_forest) 

TCCIP Taiwan Climate Change Information and Projection. The TCCIP 

coordinated by National Science and Technology Center for Disaster 

Reduction (NCDR) is one of the major climate change projects 

funded by Ministry of Science and Technology. The TCCIP project 

https://en.wikipedia.org/wiki/Random_forest
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Abbreviation Definition 

not only produces climate change data for impact assessments and 

adaptations but also aims to support national adaptation policy 

framework. 

(https://tccip.ncdr.nat.gov.tw/au_eng.aspx) 
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Chapter 1 

General introduction 

Climate is one of the most important factors shaping the distribution of species, 

communities, ecosystems, and biomes (Whittaker, 1975; Woodward and Williams, 1987; 

Davis and Shaw, 2001). To understand the vegetation-climate relationship is not only the 

kernel that most ecologists interested in but also being a piece of equipment for exploring 

the possible changes of organisms in a changing environment. Anthropogenic climate 

change in recent decades has emerged as a major driver affected the characteristics of 

vegetation worldwide, such as the directional range shift of plants and animals (IPCC, 

2014), the disrupted interspecies phenological synchrony (Ovaskainen et al., 2013), and 

local extinction events in particular localities (Pauli et al., 2012), which may cause severe 

impacts to the management of natural resources, biological conservation, and ecosystem 

functions and services. 

The directional range shift, including the poleward and upward migration of species under 

global warming, is an issue of growing concern for many ecologists. A first-order 

approximation regarding the response of organisms to a warming climate is that species 

will migrate upward or poleward to find a suitable climate to survive (Beniston, 2003). 

Mountain environment is a region with dramatic climatic gradient in a very short distance 

that species could find and access a cooler habitat easily. However, the accompanied 

competition, substitution, and progressively replacement of mountain forest communities 

may also occur. 

Taiwan is a mountainous island with territories over 70% occupied by hills and mountains, 

and a total of 58% of this island is covered by forests. It’s already known that regional 

climate, especially the altitudinal temperature gradient and seasonal precipitation 
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differences, shapes the diverse mountain forests of Taiwan (Su, 1984). Since mountain 

forest vegetation plays important role in harboring the plentiful biodiversity of our home 

island, it is needed to study the relationship of forest vegetation with the concurrent 

climatic environment, and to map the possible influence of climate change on forest 

ecosystems. The results, e.g. the estimated range shift of a specific or a rare forest type in 

the coming decades, can be applied in the use of protected area evaluation or threatened 

species conservation. 

Studies of niche modeling for plant species/communities were launched around 20 years 

in Taiwan (Lee et al., 2006), and the climatic characteristics of a few species (Yen et al., 

2008; Nakao, et al., 2014; Lin and Chiu, 2019) or forest types (Chiu et al., 2013; Lin et 

al., 2014) have been reported accordingly. However, intact modeling for the distribution 

of forests at the whole-island scale and the assessment for their future change have still 

received little research attention. Furthermore, most climatic niche modeling studies used 

the worldwide and online accessible climate database such as WorldClim (Hijmans, et al., 

2005), rather than using the fine-scale interpolated climatic surface from historical 

observations of local meteorological stations. Weng and Yang (2012) compared the 

prediction accuracy between East-Asia regional climate model and Taiwan’s local 

observations, and they utilized historical data from thousands of local meteorological 

stations to establish a gridded climate surface improving the performance of regional 

climate model. From 2012 on, a gridded climate surface covers the historical period of 

1960–2012 and the future stages of 2016–2035, 2046–2065, and 2081–2100 was released 

by Taiwan Climate Change Projection and Information Platform (TCCIP), which has 

become the ideal and fundamental materials for conducting climate-relevant researches. 

In this dissertation, my research goal is to incorporate the plant distribution data and the 
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latest released climate surface to model the concurrent vegetation-climate relationship at 

the whole-island scale, which can be applied in projecting the change of forest distribution 

under different climate change scenarios. The main layouts of this study were stated as 

follows: 

(1) Accurate and fine-resolution climate data is essential for modeling forest distribution 

corresponding to the diverse topography in the mountains. We developed a statistical 

approach to downscale the 5 km x 5 km climate data provided by TCCIP to a scale-

free format being environmental factor estimates for the climate niche models. 

(Chapter 2) 

(2) Establishment of a climate-based approach for modeling the vegetation-climate 

relationship based on field sampling data and its corresponding climatic parameters. 

This model framework can be used to generate a predicted vegetation map under the 

selected climatic scenario. (Chapter 3) 

(3) An extended application of the vegetation-climate model. Based on climate data of 

different general circulation models (GCMs) and emission scenarios provided by 

TCCIP, we explored the possible change of forest distribution, including the area 

change and altitudinal range shift, and to evaluate the impact of climate change on 

each forest type. (Chapter 4) 

(4) A further example of using the developed data from above. I used the geographical 

distribution of plant sexual expression system in Taiwan as an example to illustrate 

the extended application of our data. It would be an ideal demonstration for more 

ecological studies to be involved in. (Chapter 5) 

 



	 	

doi:10.6342/NTU202000682

1-4 
 

LITERATURE CITED 

Beniston, M. 2003. Climatic change in mountain regions: A review of possible impacts. 

Climatic Change 59: 5–31. 

Chiu, C.-A., T.-Y. Chen, C.-C. Wang, C.-R. Chiou, Y.-J. Lai and C.-Y. Tsai. 2013. 

Using BIOMOD2 to model the species distribution of Fagus hayatae. Quarterly 

Journal of Forest Research 35: 253–272. [In Chinese with English summary.] 

Davis, M. B. and R. G. Shaw. 2001. Range shifts and adaptive responses to quaternary 

climate change. Science 292: 673–679. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones and A. Jarvis. 2005. Very 

high resolution interpolated climate surface for global land areas. International 

Journal of Climatology 25(15): 1965–1978. http://doi.org/10.1002/joc.1276 

IPCC. 2014. Summary for policymakers. In: Climate Change 2014: Impacts, 

adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of 

Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA, pp. 1–32. 

Lee, P.-F., K.-Y. Lue and S.-H. Wu. 2006. Predictive distribution of Hynobiid 

salamanders in Taiwan. Zoological Studies 45: 244–254. 

Lin, C.-T. and C.-A. Chiu. 2019. The relic Trochodendron aralioides Siebold & Zucc. 

(Trochodendraceae) in Taiwan: Ensemble distribution modeling and climate change 

impacts. Forests 10(1): 7. http://doi.org/10.3390/f10010007 

Lin, W.-C., Y.-P. Lin, W.-Y. Lien, Y.-C. Wang, C.-T. Lin, C.-R. Chiou, J. Anthony 

and N. D. Crossman. 2014. Expansion of protected areas under climate change: An 

example of mountainous tree species in Taiwan. Forests 2014(5): 2882–2904. 

Nakao, K., M. Higa, I. Tsuyama, C.-T. Lin, S.-T. Sun, J.-R. Lin, C.-R. Chiou, T.-Y. 

Chen, T. Matsui and N. Tanaka. 2014. Changes in the potential habitats of 10 

dominant evergreen broad-leaved tree species in the Taiwan-Japan archipelago. 

Plant Ecology 215: 639–650. 



	 	

doi:10.6342/NTU202000682

1-5 
 

Ovaskainen, O., S. Skorokhodova, M. Yakovleva, A. Sukhov, A. Kutenkov, N. 

Kutenkova, A. Shcherbakov, E. Meyke and M. M. Delgado. 2013. Community-

level phenological response to climate change. PNAS 110(33): 13434–13439.  

Su, H.-J. 1984. Studies on the climate and vegetation types of the natural forests in 

Taiwan (II). Altitudinal vegetation zones in relation to temperature gradient. 

Quarterly Jounal of Chinese Forestry 17(4): 57–73. 

Whittaker, R. H. 1975. Communities and ecosystems. 2nd Revise Edition, MacMillan 

Publishing Co., New York. 

Weng, S.-P. and C.-T. Yang. 2012. The construction of monthly rainfall and 

temperature dataset with 1km gridded resolution over Taiwan area (1960–2009) and 

its application to climate projection in the near future (2015–2039). Atmospheric 

Sciences 40(4): 349–369. [in Chinese with English summary] 

Woodward, F. I. and B. G. Williams. 1987. Climate and plant-distribution at global 

and local scales. Vegetatio 69: 189–197. 

Yen, S.-M., C.-R. Chiou and K.-T. Chang. 2008. Modeling the species distribution of 

three dominant coniferous species in Taiwan. Taiwan Journal of Forest Science 

23(2): 165–181. 

  



	 	

doi:10.6342/NTU202000682

1-6 
 

 



	 	

doi:10.6342/NTU202000682

2-1 
 

Chapter 2 

A dynamic downscaling approach to generate scale-free regional 

climate data in Taiwan 

This chapter is a published paper in Taiwania 63(3): 251–266, 2018, co-authored by 

Huan-Yu Lin, Jer-Ming Hu, Tze-Ying Chen, Chang-Fu Hsieh, Guangyu Wang, and Tongli 

Wang. 

 

Abstract 

Plenty of climate data from various sources have become available in recent years. 

However, to obtain climate data adequately meeting the requirement of ecological 

studies remains a challenge in some cases due to the difficulty of data integration and 

the complexity of downscaling, especially for mountainous regions. Lapse rate is one 

of the most important factors that influence the change of climatic variables in the 

mountains, and it should be incorporated into climatic models. In this study, we 

applied a synthetic approach combining bilinear interpolation (to produce seamless 

surfaces) and dynamic local regression (to obtain local lapse rates) to develop a scale-

free and topography-correspondent downscaling model in R environment for Taiwan, 

called clim.regression. This model can generate 73 climatic variable estimates 

specific to the user-defined points of interest, including primary climatic variables 

and additional biologically relevant derivatives for historical (1960–2009) and future 

periods (2016–2035, 2046–2065 and 2081–2100). Results of our evaluation 

indicated that clim.regression reduced prediction error by 54.6%–66.7% relative to 

the original gridded climate data for temperatures. In addition, we demonstrated the 

spatiotemporal patterns of lapse rate for different climate variables. 
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KEY WORDS: Climate change, Downscaling model, Dynamic local regression, 

Historical and future climate scenarios, TCCIP. 

INTRODUCTION 

Climate variables, particularly temperature and precipitation, are the most well-known 

key factors related to vegetation zonation. A high-quality and accessible climate dataset 

is essential for ecological studies and applications, especially in regions with diverse 

topography and high climatic heterogeneity. However, to obtain and to process substantial 

climate data were difficult for ecologists in the past, and scientists often use statistically 

interpolated climate data from a few existing stations as substitutes for the continuous 

climate surface (Su, 1984a; Tang and Ohsawa, 1997). 

Over the last decade, a large volume of climate data has become available through various 

sources; most of them were represented in grid format with the finest resolution of arc-

seconds or kilometers in global or regional scale (Hannaway et al., 2005; Hijmans et al., 

2005; Harris et al., 2014). Although such gridded data are suitable for modeling general 

patterns and trends at global and regional scales, they are still too coarse to provide 

detailed climatic information in mountainous and topographically diverse areas to 

facilitate local ecological studies and resources management. To overcome this limitation, 

several downscaling methods have been developed to generate high-resolution spatial 

climate data, such as Ordinary Kriging (Chiu and Lin, 2004), a combination of Kriging 

and polynomial linear regression (Chiou et al., 2004), a combination of bilinear 

interpolation and partial derivative functions for elevational adjustment (Wang et al., 2006; 

2012), and an approach of dynamic local regression (Wang et al., 2016; 2017). ClimateAP, 

a scale-free climate downscaling model based on dynamic local regression approach, was 
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recently developed and covered Asia-Pacific (AP) region (Wang et al., 2017). The 

baseline data of this model used a 4-km gridded climate data from PRISM (Daly et al., 

2002) for China and Mongolia, and WorldClim (Hijmans et al., 2005) for the rest of the 

Asia-Pacific. The model reduces prediction error by up to 27% and 60% for monthly 

temperature and precipitation, respectively, relative to the original baseline data. However, 

the prediction accuracy for a specific region varies depending on the quality of the 

baseline data, which is affected by the density of weather stations used for developing the 

baseline data for the region. Unfortunately, historical climate data from weather stations 

in Taiwan were not included in the climate mapping project of PRISM (Hannaway et al., 

2005). Thus, it could adversely impact the prediction accuracy of ClimateAP in Taiwan. 

Taiwan is a subtropical island on the west edge of the Pacific Ocean with diverse and 

complicated topography. The climate of Taiwan is mainly affected by the northeast 

monsoon during winter and by the southwest monsoon and typhoons in the summer. The 

Central Range occupying more than 70% of the area of Taiwan, runs through the whole 

island from northeast to southwest with the highest peak of 3,952 meters asl, and creates 

an obvious altitudinal temperature zonation (Su, 1984a), as well as the seasonal allocation 

of precipitation (Su, 1985). Many studies have revealed a strong relationship between the 

natural vegetation and the large-scale altitudinal climate zonation (Su, 1984b; Chiu, 2004; 

Chiou et al., 2010; Lin et al., 2012; Li et al., 2013). Furthermore, the local climate is 

induced by the co-effects of monsoon and topography (Sun, 1993; Sun et al., 1998; Chao 

et al., 2007; Chao et al., 2010; Li et al., 2013). Ecologists have a strong demand on fine-

scale climate data to depict the ecological and environmental correlations in detail. 

However, most studies can only utilize indirect variables such as elevation and 

topography as substitutes to climatic variables due to the lack of a high-quality and high-

resolution spatial climate dataset for the island.  
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Meteorologists in Taiwan have accomplished a framework called Taiwan Climate Change 

Projection and Information Platform (TCCIP) and generated a 5km × 5km gridded 

climate surface based on historical observations from thousands of weather stations and 

provided future projections based on different AR5 General Circulation Models (GCMs) 

and scenarios (Hsu et al., 2011; Weng and Yang, 2012). TCCIP’s datasets are powerful 

supplements to the remote and observation-sparse mountains, but its resolution is not fine 

enough to represent the diverse climate situation due to the steep topography within a 

5km × 5km grid. 

In this study, our main objectives were to: (1) establish a statistical downscaling model 

named as clim.regression in R environment to downscale the 5km × 5km gridded climate 

data of TCCIP to a scale-free format based on the algorithm of bilinear interpolation and 

dynamic local regression from ClimateNA (Wang et al., 2016) and ClimateAP (Wang et 

al., 2017); (2) generate additional biologically relevant derivatives for ecological studies; 

(3) analyze the spatiotemporal patterns of variation in lapse rate; and (4) evaluate the 

prediction accuracy of clim.regression in comparison to the original TCCIP data. 

MATERIALS AND METHODS 

Source of historical and future climate data 

The 5km × 5km gridded surfaces of historical meteorological data used in this study were 

developed by TCCIP (Weng and Yang, 2012). The dataset covers the main island of 

Taiwan and spans the period from 1960 to 2009. TCCIP incorporated historical records 

of air temperature from 1,152 weather stations and precipitation from 1,497 rainfall 

stations to construct the gridded dataset through a conventional spatial interpolation 

process. There are four sets of primary climate variables including monthly precipitation 

(precip01 to precip12), monthly minimum temperature (Tmin01 to Tmin12), monthly 
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mean temperature (Tmean01 to Tmean12) and monthly maximum temperature (Tmax01 

to Tmax12). The values of these variables were obtained and united with the coordinate 

(latitude, longitude and elevation) of the center of each grid. There were 48 primary 

monthly climate variables in total. TCCIP has also provided future climate projections in 

the same resolution of 5km × 5km, which were downscaled from GCMs of CMIP5 and 

rectified by observations of Aphrodite (Asia Precipitation Highly-Resolved 

Observational Data Integration Towards Evaluation of the Water Resources) and 

historical climate data of Taiwan (Lin et al., 2016). Projections of 49 GCMs (Table 2.1) 

covering different RCPs (RCP 2.5, RCP 4.6, RCP 6.0 and RCP 8.5) and periods (2016–

2035, 2046–2065, 2081–2100). 

The downscaling process of historical and future climate data 

To obtain smooth and continuous climate surface estimates, clim.regression utilized the 

combination of bilinear interpolation and dynamic local regression approach to 

downscale the original 5km × 5km gridded climate dataset to scale-free point estimates, 

which is the same as in ClimateNA (Wang et al., 2016) and ClimateAP (Wang et al., 2017). 

The downscaling process included four steps for each of the 48 primary monthly climate 

variables as illustrated in Fig. 2.1: 

(1). Extraction of a primary climate variable and elevation from the grid covering the 

point of interest and eight neighboring grids (Fig. 2.1A); 

(2). Calculation of the bilinear interpolated estimate of the primary monthly climate 

variable (t’
p) and elevation (Z’

p) of the location of interest from the nearest four grids 

(Fig. 2.1B, Formula 1 & 2); 

(3). Calculation of the differences in the primary monthly climate variable (∆t) and in 
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elevation (∆z) between each of the 36 unique pairs among the nine neighbor grids 

(Fig. 2.1C, Formula 3); 

(4). Construction of a simple linear regression based on the 36 pairs to represent the local 

relationship between ∆t and ∆z with the slope of the regression line, m, representing 

the local lapse rate of the cell where the interest point is located. Elevation adjustment 

was based on the lapse rate (m) and the difference between actual elevation (Zp) and 

the bilinear interpolate (Z’
p) of the interest point (Fig. 2.1D, Formula 4). 

 

Table 2.1. All the 49 GCMs and emission scenarios provided by TCCIP available for clim.regression. 

GCM 
RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 
GCM 

RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 

10th-percentile V V V V GFDL-ESM2M  V V V 

25th-percentile V V V V GISS-E2-H V V V V 

75th-percentile V V V V GISS-E2-H-CC  V  V 

90th-percentile V V V V GISS-E2-R V V V V 

ACCESS1-0  V  V GISS-E2-R-CC  V  V 

ACCESS1-3  V  V HadGEM2-AO V V V V 

bcc-csm1-1 V V V V HadGEM2-CC  V  V 

bcc-csm1-1-m V V V V HadGEM2-ES V V V V 

BNU-ESM V V  V inmcm4  V  V 

CanESM2 V V  V IPSL-CM5A-LR V V V V 

CCSM4 V V V V IPSL-CM5A-MR V V V V 

CESM1-BGC  V  V IPSL-CM5B-LR  V  V 

CESM1-CAM5 V V V V maximum V V V V 

CESM1-CAM5-1-

FV2 
 V  V media V V V V 

CMCC-CESM    V minimum V V V V 

CMCC-CM  V  V MIROC5 V V V V 

CMCC-CMS  V  V MIROC-ESM V V V V 

CNRM-CM5 V V  V 
MIROC-ESM-

CHEM 
V V V V 

CSIRO-Mk3-6-0 V V V V MPI-ESM-LR V V  V 

EC-EARTH    V MPI-ESM-MR V V  V 

ensemble V V V V MRI-CGCM3 V V V V 

FGOALS-g2 V V  V MRI-ESM1    V 

FIO-ESM V V V V NorESM1-M V V V V 

GFDL-CM3 V V V V NorESM1-ME V V V V 

GFDL-ESM2G V V V V      
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Fig. 2.1. Four steps of the downscaling process. (A) The grid tiles covering the point of interest p and its 

eight neighbors were extracted from the original climate dataset. (B) Bilinear interpolated estimates of 

temperature, precipitation and elevation of the point p were calculated by the weighting of distance to the 

center of the four nearest grid tiles. (C) A total of 36 unique pairs were subset to calculate the paired 

differences for temperature, precipitation (∆t) and elevation (∆z), respectively. (D) A simple linear 

regression of Δtmn~ΔZmn was conducted to obtain the slope m, representing the local lapse rate of the nine 

grids surround point of interest for each of the climate variables. 

Clim.regression generated 73 climate variable estimates (Table 2.2) for either a single 

point location or a continuous surface. These climate variables were either directly 

calculated from the four primary climate variables or derived as indicated in Table 2.2. 

The formula for the downscaling process included: 

 

 

 

 

𝑡𝑝
′ =

𝑡1𝑑2𝑑4 + 𝑡2𝑑2𝑑3 + 𝑡3𝑑1𝑑3 + 𝑡4𝑑1𝑑4

𝑑2
 (1) 

(2) 

(3) 

(4) 

𝑍𝑝
′ =

𝑍1𝑑2𝑑4 + 𝑍2𝑑2𝑑3 + 𝑍3𝑑1𝑑3 + 𝑍4𝑑1𝑑4

𝑑2
 

∆𝑡𝑚𝑛 ~Δ𝑍𝑚𝑛 ,    𝑚 =  1,2,3, … ,9 , 𝑛 =  1,2,3, … ,9 ,  𝑚 ≠ 𝑛 

𝑡𝑝 = 𝑡𝑝
′ + 𝑚 𝑍𝑝 − 𝑍𝑝

′   
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Future climate projections of TCCIP were presented as anomalies relative to the baseline 

of 1986–2005 at the same spatial resolution of historical climate data. The anomalies of 

5km × 5km gridded future climate projections were added to the baseline portion (1986–

2005) to create a ‘gridded future climate data’ prior to the downscaling procedure. 

 

Table 2.2. Primary climate variables and the biologically relevant derivatives generated by clim.regression 

(1) Primary climate variable estimates. 

Category Climate variables 

Precipitation 

Monthly precipitation (precip01 to precip12) 

Seasonal precipitation (PPT_DJF, PPT_MAM, PPT_JJA, PPT_SON) 

Mean annual precipitation (MAP) 

Mean annual summer precipitation (MSP) 

Temperature 

Minimum 

Mean monthly minimum temperature (Tmin01 to Tmin12) 

Mean seasonal minimum temperature (Tmin_DJF, Tmin_MAM, 

Tmin_JJA, Tmin_SON) 

Average 

Mean monthly temperature (Tmean01 to Tmean12) 

Mean seasonal temperature (Tave_DJF, Tave_MAM, Tave_JJA, 

Tave_SON) 

Mean annual temperature (MAT) 

Maximum 

Mean monthly maximum temperature (Tmax01 to Tmax12) 

Mean seasonal maximum temperature (Tmax_DJF, Tmax_MAM, 

Tmax_JJA, Tmax_SON) 

(2) Derivative estimates. 

Derivative variable Definition 

Temperature difference (TD) Tmean07 minus Tmean01 

Summer heat:moisture index 

(SHM) 
(Tmean07)/(MSP/1000) 

Annual heat:moisture index 

(AHM) 
(MAT+10)/(MAP/1000) 

Ratio of winter precipitation 

(WPR) 
PPT_DJF/MAP (Li et al., 2013) 

Warmth index (WI) 
Annual summation of mean monthly temperature higher than 5℃. (Su, 

1984b) 

Precipitation deficiency (PD) 
Difference between annual potential evapotranspiration and MAP. (Su, 

1985) 

Dry month (DM) 
The month with rainfall less than 2X mean monthly temperature. 

DM is a factor variable in 0/1. (Su, 1985) 
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Evaluations of climate variable estimates 

We collected historical records covering the period of 1961 to 2009 from 15 weather 

stations to evaluate the accuracies of clim.regression model. Ten of the 15 stations are 

subordinate to the Central Weather Bureau (CWB), which is the main corporation agency 

of TCCIP. The remaining five stations belong to the Taiwan Forestry Research Institute 

(TFRI), which is independent of the samples of TCCIP network. The observations from 

the 15 weather stations were also used to evaluate the magnitude of improvement over 

the original TCCIP gridded surfaces. Four sets of climate variable estimates generated by 

clim.regression, including monthly precipitation, monthly minimum temperature, 

monthly mean temperature and monthly maximum temperature, were evaluated against 

observations from the 15 weather stations (Table 2.3, Fig. 2.2). Prediction errors of 

clim.regression were assessed and compared using the following three statistical 

measures: 

Mean error (ME): 

where n is the number of samples, fi is the predicted value of the i-th sample and yi its 

real value. 

Mean absolute error (MAE): 

Root mean squared error (RMSE): 
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Table 2.3. Localities of 15 weather stations and the period of observed data that available for model 

evaluation. 

 

Subordination/ 

Station 
Longitude Latitude Altitude (m) Observation period 

Central Weather Bureau (CWB) Incorporated by TCCIP 

Kaohsiung 120.32 22.57 2 

1961–2009 

Taitung 121.15 22.75 9 

Hualien 121.61 23.98 16 

Hengchun 120.75 22.00 22 

Keelung 121.74 25.13 27 

Taichung 120.68 24.15 84 

Anbu 121.53 25.18 826 

Sunmoon Lake 120.91 23.88 1,018 

Alishan 120.81 23.51 2,413 

Yushan 120.96 23.49 3,845 

Taiwan Forestry Research Institute (TFRI) independent from TCCIP 

Taimali 120.98 22.60 120 1980–2009 

Liukuei 120.63 23.00 230 1999–2009 

Fushan 121.60 24.76 634 1992–2003 

Lienhuachih 120.90 23.93 666 1999–2009 

Piluhsi 121.31 24.23 2,150 1991–2009 
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RESULTS 

Scale-free climate surfaces from the downscaling model 

Clim.regression is a scale-free and topography-correspondent downscaling model, which 

attributes to the continuous and smooth characteristics of bilinear interpolation and the 

elevational adjustment by lapse rate from a dynamic local regression. Regular grids for 

MAT (mean annual temperature) and MAP (mean annual precipitation) surfaces were 

generated by the model at the spatial resolution of the original baseline data (5km × 5km) 

and a downscaled spatial resolution (250m × 250m) (Fig. 2.3). The results showed that 

MAT in Taiwan ranges from 1°C to 28°C and exhibits a trend of decline from lowland to 

Fig. 2.2. Long-term observation data from fifteen 

weather stations were incorporated to evaluate 

the downscaling model. Solid stars demonstrate 

stations subordinate to the Central Weather 

Bureau of Taiwan (CWB). Open stars represent 

stations belonging to the Taiwan Forestry 

Research Institute (TFRI), which were 

independent from TCCIP system. 
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alpine and from south to north. A more detailed spatial distribution of temperature due to 

geographical effect, such as warm basin of Puli and cool tablelands of Linkou and Pagua, 

could also be revealed by the downscaled surface (Fig. 2.3A–B). The spatial distribution 

of MAP demonstrated a different pattern from that of MAT; it exhibited two-ended humid 

regions in the northeast and the southwest of Taiwan. The northeastern mountains in 

Taipei and Ilan and the southwestern edge of the Central Mountain Range in Kaohsiung 

and Pingtung are the moistest regions of Taiwan, and the downscaled surface more clearly 

revealed some precipitation hotspots with annual rainfall up to 6,000mm (Fig. 2.3C–D). 

In comparison with the original climate dataset at the resolution of 5km × 5km, the 

downscaled one offers a detail depiction on the climatic alternation with topographies as 

the examples showed in Fig. 2.3. The scale-free modeling approach not only has the 

advantage in providing continuous and seamless climatic surface for large-scale studies 

(e.g., the classification of ecological-climatic regions, climatic niche modeling, and 

projections, etc.), but also generates accurate and point-specific climatic estimates as 

environmental correlates for plot-based researches (e.g., vegetation survey and plotting, 

etc.). 

 

Table 2.4. The r-squared values of the local linear regressions for different monthly climate variables. 

 

Monthly variable 
r2 value / Month 

1 2 3 4 5 6 7 8 9 10 11 12 Average 

Tmean 0.82  0.82  0.81  0.84  0.86  0.87  0.88  0.88  0.88  0.87  0.86  0.84  0.85  

Tmin 0.79  0.80  0.81  0.83  0.85  0.85  0.85  0.85  0.86  0.84  0.83  0.80  0.83  

Tmax 0.79  0.79  0.78  0.81  0.84  0.85  0.85  0.86  0.85  0.82  0.81  0.79  0.82  

Precipitation 0.20  0.21  0.24  0.23  0.25  0.26  0.23  0.25  0.22  0.21  0.22  0.22  0.23  

 



	 	

doi:10.6342/NTU202000682

2-13 
 

 

Fig. 2.3. Spatial distributions of mean annual temperature (MAT) and mean annual precipitation (MAP) for 

original climate data at the resolution of 5km and downscaled to the resolution of 250m. (A) Original and 

(B) downscaled MAT; (C) Original and (D) downscaled MAP. Data period: 1986–2005. 
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Lapse rate and effectiveness of the elevational adjustment 

The dynamic local linear regression among the nine neighboring cells explained, on 

average, 85.3% of the total variation in monthly mean temperature. The amount of 

variance explained for monthly minimum temperature (83.1%) and monthly maximum 

temperature (81.9%) were slightly lower (Table 2.4). The average temperature lapse rate 

in the mountain areas was -5.65°C/km but displayed an obvious seasonal variation. Fig. 

2.4A–C illustrate the same pattern in three primary temperature variables with a higher 

variation of lapse rate in winter (from Nov. to Apr.) than in summer (from May to Sep.). 

The relationships revealed in the local regressions were weaker for precipitation than for 

temperatures. Only 20.3–25.7% of precipitation’s variation can be explained by the local 

regressions (Fig. 2.4D, Table 2.4). 

We compared the relationships between the changes in temperature and the elevation 

between two mountains, Alishan and Taipingshan. Such a relationship was stronger for 

Alishan with a steady lapse rate from -6.00 to -6.44°C/km from winter to summer. In 

contrast, a higher seasonal variation and a weaker relationship between temperature and 

elevation were observed in Taipingshan (Fig. 2.5). 

The spatial distributions of the estimated lapse rates varied among seasons and regions. 

In winter, lower lapse rates for monthly average temperature (from -2 to -5°C/km) were 

exhibited in the central and western parts of the Central Mountain Range, especially in 

the hills from Hsinchu, Miaoli, Nantou, Chiayi to Kaohsiung. In contrast, very steep lapse 

rates (from -6 to -9°C/km) were demonstrated in the northeastern mountains and 

Hengchun peninsula (Fig. 2.6A). The spatial differentiation in lapse rate in most areas 

mitigated in summer, and demonstrated a mild geographical divergence with a range from 

-4 to -7°C/km (Fig. 2.6C). In some regions, such as the northeastern mountains in Taipei 
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and Ilan, Hengchun peninsula, Tawu Mountain and the Costal Mountain Range, the steep 

lapse rates (<-6°C/km) could be found across all seasons of the year. Our dynamic local 

regression approach revealed the variation in the lapse rate both spatially and temporally 

over the island, and thus produced accurate adjustment for elevation. 

 

Table 2.5. Summaries of statistical evaluations of clim.regression against historical observed data from 

Central Weather Bureau (CWB) and Taiwan Forestry Research Institute (TFRI).  

Subordination Climate variable 

Clim.regression  TCCIP 

MAE RMSE 
Variance  

explained (%) 

 
MAE RMSE 

Variance explained 

(%) 

CWB 

(10 stations) 

Tmean (℃) 0.56 0.73 99.10  1.73 3.40 87.83 

Tmin (℃) 0.79 0.98 98.72  1.92 3.51 87.04 

Tmax (℃) 0.71 1.00 98.22  1.67 3.25 88.29 

Precipitation (mm) 34.65 64.63 94.39  31.10 67.08 93.75 

TFRI 

(5 stations) 

Tmean (℃) 0.58 0.74 98.56  1.34 1.56 96.75 

Tmin (℃) 0.82 1.17 97.27  1.24 1.49 96.51 

Tmax (℃) 1.52 1.85 95.61  2.53 2.78 92.27 

Precipitation (mm) 49.56 105.39 79.77  46.39 106.14 79.62 

Average 

(15 stations) 

Tmean (℃) 0.56 0.73 99.06  1.68 3.25 86.71 

Tmin (℃) 0.79 1.00 98.52  1.85 3.35 86.61 

Tmax (℃) 0.80 1.13 97.61  1.76 3.21 84.76 

Precipitation (mm) 36.26 70.16 93.00  32.74 72.30 92.43 
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Fig. 2.4. Proportions of variance explained by local linear regressions in total variation among the nine 

neighboring cells for the four primary climate variables: (A) monthly mean temperature (Tmean), (B) monthly 

minimum temperature (Tmin), (C) monthly maximum temperature (Tmax) and (D) monthly precipitation, by 

month. The black horizontal solid lines inside the boxes indicate the medium. For temperature variables, a 

similar trend of higher variation in winter and lower variation in summer can be observed. Data period: 1961–

2009. 
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Fig. 2.5. Comparisons in lapse rates for winter and summer between two mountains, Alishan (A, B) and 

Taipingshan (C, D). Alishan (120.81E, 23.51N) is a mountain located in the south-west Taiwan, while 

Taipingshan (121.53E, 24.49N) is located in the north-east part. The two mountains have a similar elevation 

around 2,000m. Data period: 1961–2009. 
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Fig. 2.6. Spatial distributions of estimated lapse rate for monthly mean temperature in the mountain areas 

(regions higher than 100m asl) in Taiwan: (A) January, (B) April, (C) July and (D) October. Data period: 

1961–2009; resolution: 250m.  
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Statistical evaluations of the downscaling model and its improvement over TCCIP dataset 

The prediction accuracy of clim.regression was evaluated by comparing to historical 

observations from the 15 weather stations (Table 2.5). Clim.regression demonstrated a 

high prediction accuracy for monthly mean temperature with a low prediction error 

(0.56°C in MAE) and a high percent of variance explained (99.1%). The prediction 

accuracy and variance explanation were slightly lower for monthly minimum temperature 

and monthly maximum temperature in terms of the prediction error (0.79°C and 0.80°C) 

and the percent of variance explained (98.5% and 97.6%, respectively). However, the 

prediction accuracy was considerably lower for precipitation. The precipitation estimates 

explained 93.0% of the total variance of observations with a prediction error of 36.26mm 

in MAE. 

Monthly mean temperature was the most predictable climate variable. The prediction 

accuracy of monthly mean temperature in regions lower than 2,500m asl could reach the 

level of 0.3–0.6°C in MAE. However, we found that the prediction error increased with 

elevation (r2=0.55, p=0.0015). For example, in the subalpine area of Taiwan, 

clim.regression had a comparatively weak predict ability with the MAE of 1.02°C. 

Interestingly, such a relationship was not observed for monthly minimum temperature 

and monthly maximum temperature (r2=0.07 and 0.35, p=0.3252 and 0.0209). The 

prediction accuracy for precipitation was lower and accompanied with a higher variation 

and a less amount of variance explained (92.1%). In addition, there was no obvious trend 

found between prediction error in precipitation and altitude (r2=0.01, p=0.7612). It 

suggests that the pattern of precipitation could be dominantly influenced by regional 

terrains rather than a local elevational gradient within the 5km × 5km grids. 

In comparisons to TCCIP original dataset, clim.regression reduced prediction errors by 
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1.12°C (66.7%), 1.06°C (52.3%) and 0.96°C (54.6%) for Tmean, Tmin and Tmax, 

respectively (Fig. 2.7A–C, Table 2.5). These results demonstrated that clim.regression 

effectively improved the accuracy and refined the spatial resolution of temperature 

estimates relative to the original dataset from TCCIP, especially with advantages in 

temperature projection for mountains with diverse topography. However, the 

improvement in precipitation is limited (Fig. 2.7D). Both TCCIP baseline and 

clim.regression had a higher prediction error for precipitation during summer months 

(May to Oct.). As illustrated in Fig. 2.8, the magnitude of the improvement was more 

substantial at higher elevations (the lower end of the temperatures), especially in the 

alpine area of Yushan (3,952 m) and Alishan (2,413 m). The downscaled temperatures 

followed a 1:1 relationship with observations much closer than the TCCIP predictions. 
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Fig. 2.7. Comparison in prediction error between baseline data (directly from TCCIP) and Clim.regression 

output of 15 weather stations for: (A) monthly mean temperature (Tmean), (B) monthly minimum 

temperature (Tmin), (C) monthly maximum temperature (Tmax) and (D) monthly precipitation. 

 

Downscaling for future climate projections 

Based on the estimated lapse rate of future scenarios, clim.regression was also effective 

to downscale the ‘gridded future climate data’ to a scale-free and continuous surface with 

the same 73 climate variables as for the historical period. Downscaled MAT by 

clim.regression for the reference period and future scenario in the mountainous area of 

Taiwan were illustrated in Fig. 2.9. The benefit of the downscaled MAT is clearly shown 
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in this example in term of fine spatial resolution and high topographical correspondence. 

Based on the comparison among current and future climate under the RCP 4.5 scenario, 

not only an evident warming can be found in the valleys and plains but also demonstrate 

an obvious retreat of isothermals to the subalpine area (Fig. 2.9). Clim.regression has a 

solid advantage in generating current and future climate data with the same and desirable 

spatial resolution, which is a convenient for modeling biological response to climate 

change and for advanced comparative studies. 

  



	 	

doi:10.6342/NTU202000682

2-23 
 

 

 

Fig. 2.8. An illustration to demonstrate the difference between observations from 15 weather stations and 

its corresponding climatic estimates from TCCIP outputs (red) and clim.regression in May for (A) monthly 

mean temperature (Tmean05), (B) monthly minimum temperature (Tmin05), (C) monthly maximum 

temperature (Tmax05) and (D) monthly precipitation (Precipitation05). It was clearly revealed that TCCIP 

outputs are biased as the decreasing of observed temperature, which is highly correspond to the raise of 

altitude. 
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Fig. 2.9. Illustration of the effectiveness of downscaled climatic surface in the mountainous area of Taiwan, 

stretching from the coast of the Pacific Ocean up to the highest peak, Yushan, at 3,952m asl. (A) 

Downscaled mean annual temperature (MAT) by clim.regression in the resolution of 250m for the reference 

period of 1986–2005; (B) downscaled future MAT for the period of 2090–2100 based on the GCM of 

CSIRO-Mk3-6-0 in RCP 4.5 scenario. 
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DISCUSSION 

Spatio-temporal heterogeneity of temperature lapse rate in Taiwan 

Temperature lapse rate, the rate of change in temperature with elevation in the troposphere, 

is widely used as the most important predictor in mountain climate (Su, 1984a; Tang, 

2006; Chiu et al., 2014). Many authors have revealed the spatio-temporal variation of 

lapse rate caused by atmospheric processes, interaction of prevailing monsoon, 

geographical and topographical positions, etc. (Su, 1984a; Tang and Ohsawa, 1997; Pepin, 

2001; Chiu et al., 2014), thus suggested using regional observed data to derive the lapse 

rate as a local climate predictor rather than the commonly used global constant (-

6.5°C/km in Barry and Chorely, 2009; or -6.0°C/km in Willmott and Matsuura, 2009). In 

Taiwan, a high spatio-temporal variation of lapse rate has been reported. Su (1984a) 

mentioned that temperature in the mountain area is highly correlated to elevations, and 

represented a lapse rate ranges from -3.08 to -6.98°C/km but varies among regions and 

seasons. Guan et al. (2009) has modeled a steeper temperature lapse rate from April to 

December with a range between -4.93 and -5.62°C/km, and a shallower rate from -3.22 

to -3.61°C/km during January to March according to historical observation data from 43 

meteorological stations, mostly located in the west of the Central Mountain Range and 

Snow Mountain. A full exploration of the spatio-temporal variation of lapse rate was 

accomplished by Chiu et al. (2014). Based on historical records from 219 weather stations, 

Chiu et al. (2014) depicted that the average temperature lapse rate for all of Taiwan is -

5.17°C/km with a general tendency to be steeper in summer and shallower in winter. They 

also found that the lapse rate exhibits a pronounced contrast between the windward side 

(steeper, -5.97°C/km) and the leeward side of the Central Mountain Range (shallower, -

4.51°C/km) due to the atmospheric effect of prevailing winter monsoon. However, to 
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obtain a lapse rate for specific locations remained a challenge. 

Through the approach of dynamic local regression, we have delineated a fine scale of 

lapse rate and used it as the key adjustment for the downscaling procedure. The 

distribution maps of lapse rate for the monthly temperature (Fig. 2.6) have shown a 

similar spatio-temporal pattern to that of Chiu et al. (2014), which exhibited a steeper 

lapse rate in regions exposed to the northeast monsoon (e.g., The northeast mountains, 

the Coastal Mountain Range from Hualien to Taitung, and Hengchun peninsula) and 

shallower in the leeward side (e.g., The west of the Central Mountain Range) during 

winter, and became obscure in summer. In the context of high spatio-temporal variation 

of lapse rate in Taiwan, clim.regression shows an excellent performance by using the local 

lapse rate to facilitate a high-resolution downscaling. Our evaluations have proved that 

this model considerably improves prediction accuracy relative to the original TCCIP 

climate data and it is suitable for the steep and mountainous areas and provides accurate 

and topography-corresponded climate variable estimates. 

In addition, Lenoir et al. (2008) have pointed out that temperature lapse rate is the most 

important predictor of temperature variability in mountains, and can be one of the key 

contributions to predict the response of plants to climate change. In this study, steep lapse 

rates (<-6°C/km) are found all year round in several areas, such as the northeast 

mountains, Hengchun peninsula, Tawu Mountain and Coastal Mountain Range. Some 

studies have reported the compression of vegetation zones in these areas due to a dramatic 

change in temperature along the altitudinal gradient (Su, 1984a; Su, 1984b; Chiou et al., 

2010). In consequence of the feature of local regression, clim.regression can provide a 

deep insight into the entire spatial and temporal distribution of lapse rate in Taiwan, and 

our results show a great promise for providing high quality scale-free climate variables 
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for a wide spectrum of research and application activities in biology, ecology, and 

adaptation to climate change. 

Benefits of the dynamic local downscaling model 

Dynamic local regression is a simple but effective method to achieve a scale-free 

downscaling. This method has been utilized to develop ClimateNA for North America 

(Wang et al., 2016) and ClimateAP for Asia-Pacific region (Wang et al., 2017) to 

downscale WorldClim and PRISM gridded datasets to scale-free climate estimates. The 

model evaluation demonstrated that the prediction error of ClimateNA and ClimateAP 

are 0.77°C and 1°C (in MAE). Clim.regression is a R script based on the same algorithm 

of ClimateNA and ClimateAP but use TCCIP 5km × 5km gridded climate surface, an 

interpolation based on historical data from thousands of weather stations of Taiwan, as 

the data source. Our statistical evaluations revealed that the prediction error of 

clim.regression is 0.56°C in monthly mean temperature and 36.26mm in monthly 

precipitation, which are substantially smaller than that for the original TCCIP data (in 

MAE, Table 2.5). These results suggest that the dynamic local regression approach is 

effective in downscaling climate variables to meet the requirement for ecological studies 

in mountain areas in Taiwan. 

Chiu and Lin (2004) utilized regression and Ordinary Kriging to develop a scale-free 

model based on 219 meteorological stations and 877 rainfall stations to interpolate the 

distribution of monthly temperature and monthly precipitation. A cross validation 

revealed that the prediction errors of monthly temperature ranged from 1.57–1.74°C and 

monthly precipitation ranged from 17.51–53.07mm (in RMSE). In addition, some authors 

applied polynomial regression to model the distribution of monthly temperature based on 

historical observations from 156 weather stations, but exhibited a lower prediction 
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accuracy ranging from -5.15°C to 4.68°C (in ME) due to the inflexibility of universal 

regression coefficient (Chiou et al., 2004). In contrast, clim.regression provides more 

accurate temperature estimates (0.73–1.13°C in RMSE) than using Kriging and 

polynomial regression, due to its flexibility of local lapse rate and the effectiveness of 

elevational adjustment. However the rainfall prediction error of our model is 70.16mm in 

RMSE, it does not meet the level shown in Chiu and Lin (2004).  

We found that clim.regression is not effective in downscaling precipitation (Fig. 2.7D). 

In Taiwan, the co-effect of humid monsoons and strong typhoons with diverse topography 

creates dramatic changes of precipitation in the mountains. For a windward slope at the 

middle elevation, the monthly precipitation during wet seasons can reach 

2,000mm/month but decrease to less than 800mm/month as the change of aspect in a short 

distance of kilometers at the same elevation. Bilinear interpolation with a sampling 

window of 2 by 2 cells (10km x 10km) and the dynamic local regression within a 

sampling unit of 3 by 3 cells (15km × 15km) are the kernel of clim.regression to produce 

climatic estimates for the point of interest, however, the severe change of precipitation in 

mountains may neither linearly correlate with the change of elevation nor correspondently 

fit with the coverage of sampling windows to lead to a poor performance in precipitation 

prediction than temperature. It is worthy of advanced researches to explore the spatial 

pattern and its statistical correlates of precipitation to achieve an accurate predict model 

in the future. 

The results of validation by weather stations of CWB and TFRI demonstrated that the 

estimates of clim.regression were more approximate to observations from CWB rather 

than TFRI. It could be partly attributed to the reason that most historical observation data 

of CWB stations were the main component of TCCIP system, so that it might not be an 
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independent validation and could lead to an over estimation of both TCCIP and 

clim.regression model performances, but it would not affect the evaluation of the 

improvement in prediction accuracy relative to TCCIP. Historical observation data from 

TFRI was not included by TCCIP, so that an independent validation could be achieved 

theoretically. However, due to the lack of sustainable maintenance and long-term 

financial support, data quality of these independent weather stations could be harsher than 

CWB. It could be another effect leading to an under estimation of the downscaling model. 

Applications and future works for clim.regression model 

Ecologists have accumulated a large amount of field investigation data in Taiwan. Many 

studies exploring vegetation-climate relationship have also been published. However, due 

to the difficulty in accessing climate data in the past, researchers usually used 

geographical variables, such as elevation, longitude, latitude, aspect, the distance to 

seashore and exposure to prevailing monsoon as substitutions for climate variables in data 

analysis. Results of these studies based on indirect variables could lead to a biased result 

of ecological-climate relationships. The scale-free climate variables generated by 

clim.regression offer a solution to this problem. Users not only can generate a continuous 

and seamless surface for climate niche modeling but also possible to estimate historical 

and future climate condition for specific locations such as numerous vegetation survey 

plots. It provides a large number of climate variables for scientists to explore, delineate 

and quantify the relationships between climate and vegetation. 

However, some limitations still exist in our downscaling approach. Clim.regression 

downscales gridded source climate variables through a combination of bilinear 

interpolation and concise elevational adjustment. Therefore, the performance of 

clim.regression is mostly determined by two factors in addition to the effectiveness of the 
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downscaling algorithm: the quality of the original climate dataset and the accuracy of the 

imported digital elevation surface. The quality of baseline data strongly depends on the 

number of historical observations and the number of weather stations being incorporated. 

Therefore, we regard both of the robust meteorological observation network and the 

effective interpolation approaches are the critical issues to provide a high-quality gridded 

dataset for downscaling. TCCIP has an ongoing project to improve the accuracy and the 

coverage of periods for gridded climate data of Taiwan, which serves as an ideal baseline 

data to be used in clim.regression to generate high-resolution and high-quality climate 

data for ecological studies. 
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Chapter 3 

Climate-based approach for modeling the distribution of montane 

forest vegetation in Taiwan 

This chapter is a published paper in in Applied Vegetation Science (DOI: 

10.1111/AVSC.12485) co-authored by Huan-Yu Lin, Ching-Feng Li, Tze-Ying Chen, 

Chang-Fu Hsieh, Guangyu Wang, Tongli Wang, and Jer-Ming Hu. 

 

Abstract 

Climate shapes forest types on our planet and also drives the differentiation of zonal 

vegetation at regional scale. A climate-based ecological model may provide an 

effective alternative to traditional approach for assessing limitations, thresholds, and 

the potential distribution of forests. The main objective of this study is to develop 

such a model, with a machine-learning approach based on scale-free climate variable 

estimates and classified vegetation plots, to generate a fine-scale predicted vegetation 

map of Taiwan, a subtropical mountainous island. In this paper, a total of 3,824 plots 

from 13 climate-related forest types and 57 climatic variable estimates for each plot 

were used to build an individual ecological niche model for each forest type with 

Random Forest (RF). A predicted vegetation map was developed through the 

assemblage of RF predictions for each forest type at the spatial resolution of 100m. 

It displays a distinct altitudinal zonation from subalpine to montane cloud forests, 

followed by the latitudinal differentiation of subtropical mountain forests in the north 

and tropical montane forests in the south, with an average mismatch rate of 6.59%. 

An elevational profile and 3-D visualization demonstrate the excellence of the model 

in estimating a fine, precise, and topographically-corresponded potential distribution 
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of forests. This study supports that machine-learning approach is effective to handle 

a large number of variables and to provide accurate predictions. 

 

KEY WORDS: Climate, Eastern Asia, Ecological niche modeling, Montane forest, 

Subtropical forest, Random Forest, Vegetation mapping, Taiwan. 

INTRODUCTION 

Climate is the primary element that governs the distribution of plant species, and most 

species are adapted to a specific range of climatic conditions, which is referred to as their 

climatic niche (Pearson and Dawson, 2003; Wang et al., 2016a). The vegetation-climate 

relationship has long been recognized by ecologists, and the concept has been applied to 

depict the regionalization of ecoregions or vegetation types for decades (Holdridge, 1947; 

Bailey, 1983; Su, 1984b; Fang et al., 2002). Recent progress in ecological niche modeling 

and the accessibility of accurate and fine-scale climate data have enabled vegetation-

climate relationships to be used in numerous studies for a variety of purposes, including 

projection of the historical and current distribution of biomes and forests for management 

purposes (Rehfeldt et al., 2006), prediction of changes in species (Matsui et al., 2018) or 

ecosystems (Brinkmann et al., 2011; Rehfeldt et al., 2012; Wang et al., 2012) under 

various global warming scenarios, and provision of strategic tools for conservation and 

adaptation to the impact of climate change (Hansen and Phillips, 2015; Klassen and 

Burton, 2015; Wang et al., 2016a). 

Most predictive ecological niche modeling studies focused on large landscapes and 

dominant forests in temperate zones, but these studies seldom explored the complex, 

highly mixed, and species-diverse forests in tropical and subtropical regions. 

Distinguishing the boundaries of tropical and subtropical forest communities is difficult 



	 	

doi:10.6342/NTU202000682

3-3 
 

due to their similar broad-leaved physiognomy and variable composition (Zhu et al., 

2015). Comprehensively and clearly-tagged samples are requisite for training an effective 

and robust statistical classifier, however, the lack of high-quality field inventory data and 

the variable species composition in tropics and subtropics greatly limited the performance 

of statistical models in these extensive territories (Martin et al., 2007). 

Taiwan is an island located in middle of the monsoon region of Asia with more than 200 

peaks over 3,000m asl. The diverse climatic conditions along the altitudinal gradient 

create a distinct altitudinal zonation of forests within the island, from tropical lowland 

rainforest (Chao et al., 2010) to subalpine coniferous forest (Lin et al., 2012). The overall 

vegetation patterns on the island have been studied over the past few decades, recognizing 

and characterizing six distinct altitudinal vegetation zones within mesic to humid habitats 

(Su, 1984b). A national vegetation inventory was completed by the Taiwan Forestry 

Bureau in 2008. This inventory revealed that 58% of Taiwan’s territory was covered by 

forests, 53% of which are broad-leaved forests, with the remainder approximately 47% 

of the forested lands comprised of coniferous or mixed forests. Li et al. (2013) established 

a vegetation classification scheme based on the floristic data of 8804 plots from the 

National Vegetation Database of Taiwan, which included 922 tree and shrub species in 

the analysis. They used the Cocktail determination key (CoDeK), a software application 

to formalize classification definitions, and developed automatic assignments of new plots 

to the defined vegetation classification scheme. Based on the formalized approach, a total 

of 6574 plots were successfully classified into 21 forest types in which 12 types were 

zonal while 9 types were azonal. Li et al. (2013) suggested that the main factors 

responsible for the differentiation of zonal forests are temperature and moisture, which 

vary according to the latitudinal distribution and altitudinal stratification in mesic to 

humid habitats. In contrast, most azonal forests are affected by specific soil properties or 
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disturbance rather than climate, and their habitats are usually warmer and drier or colder 

and wetter than those of zonal forests. 

Since climate is the main factor controlling the differentiation of zonal vegetation, precise 

and fine-scaled climate data are considered to be a reasonable alternative for assessing 

limitations, thresholds, and the potential distribution of forests across a large landscape, 

if an effective statistical classifier exists. Machine learning is a new, high-performance 

approach applied in ecological niche modeling, which works outstandingly when a 

continuous supply of information for improving its performance is available. In Taiwan, 

intensive sampling plots tagged by the classification scheme and its corresponding 

climate variable estimates would be ideal sources to train a machine-learning model for 

exploring the vegetation-climate relationship. The main objectives of this study were to: 

(1) reveal the climatic factors responsible for the current distribution of dominant forest 

types in Taiwan; (2) develop an effective and reproducible statistical model for predicting 

the potential distribution of climate-related forests; and (3) use Taiwan’s zonal vegetation 

as an example to evaluate the performance of the model. 
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Fig. 3.1. Location and digital elevation surface of Taiwan island. 
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MATERIALS AND METHODS 

Study area 

Taiwan (21.83°–25.33° N, 120.00°–122.00° E) is a subtropical island on the western edge 

of the Pacific Ocean. Hills and mountains occupy more than 70% of the island’s 

36,000km2. A principle mountain range, the Central Mountain Range, runs through the 

whole island in a NNE–SSW trend, and the highest peak is 3,952m asl (Fig. 3.1). The 

climate in Taiwan is mainly affected by prevailing monsoons and typhoons. In winter, the 

northeast monsoon from Siberia passes through Japan and the East China Sea, bringing 

plentiful precipitation and cold temperature to the windward slopes of northeast Taiwan. 

By contrast, the southwest monsoon from Indochina and the South China Sea brings 

heavy rains and a humid climate in the summer, inducing the rainy season in south Taiwan 

(Su, 1984a; Lin et al., 2009). Typhoons occur only occasionally but they represent severe 

climatic events in Taiwan. They contribute a sizable portion of the annual rainfall and are 

the primary trigger of landslides and disturbances in mountain areas. 

Topographical variations in the form of lofty mountains and steep gorges result in a wide 

temperature range that forms distinct stratification of climatic zones in mountain areas 

and creates diverse microhabitats harboring many vascular plant species (~4,200 species). 

The zonation of forest types along the altitudinal gradient of Taiwan was first reported by 

Sasaki (1924), which was followed by a series of studies depicting the physiognomy and 

species composition of native flora (Suzuki, 1938; Liu and Su, 1972; Chang, 1974). Su 

(1984a, 1984b, 1985) evaluated overall vegetation patterns in Taiwan and concluded that 

distribution of natural vegetation is governed by the alternating winter and summer 

monsoons, coupled with the steep topography. He also proposed a widely accepted 

scheme for classifying six altitudinal vegetation zones in mesic to humid habitats and for 
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some parts of the azonal vegetation in the drier successional regions of Taiwan. 

Vegetation data 

The geographic coordinates of 6,574 plots and its corresponding 21 vegetation 

classification types were received from Li et al. (2013); then, a preliminary inspection 

was conducted to eliminate coordinate-duplicate plots. Eight forest types, which were 

climate-unrelated or geographically isolated, were removed from the original dataset: two 

types were seashore woodlands and mangroves; three types were successional woodland 

related to historical landslides and disturbances; two types were rock-outcrop forests 

associated with uplifted coral reef tableland, limestone, and scree slopes; and the last type 

was tropical forest on Green Island and Orchid Island isolated from the Taiwan main 

island. Finally, a total of 3,824 plots belonging to 13 climate-related forest types (Table 

3.1) were retained to explore the relationship between climate and vegetation. 
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Table 3.1. The training data incorporated in this study, including 13 climate-related forest types and their 

corresponding 3,824 field plots. The abbreviations of each forest type followed the classification by Li et 

al. (2013). 

Forest type 
Number of 

plots 

High-mountain coniferous woodlands and forests (C1)  

 Juniperus subalpine coniferous woodland and scrub (C1A01) 102 

 Abies–Tsuga upper-montane coniferous forest (C1A02) 89 

Subtropical mountain zonal forests (C2)  

 Chamaecyparis montane mixed cloud forest (C2A03) 543 

 Fagus montane deciduous broad-leaved cloud forest (C2A04) 55 

 Quercus montane evergreen broad-leaved cloud forest (C2A05) 1,058 

 Machilus–Castanopsis sub-montane evergreen broad-leaved forest (C2A06) 359 

 Phoebe–Machilus sub-montane evergreen broad-leaved forest (C2A07) 410 

 Ficus–Machilus foothill evergreen broad-leaved forest (C2A08) 145 

Tropical mountain zonal forests (C3)  

 Pasania–Elaeocarpus montane evergreen broad-leaved cloud forest (C3A09) 57 

 Drypetes–Helicia sub-montane evergreen broad-leaved forest (C3A10) 425 

 Dysoxylum–Machilus foothill evergreen broad-leaved forest (C3A11) 27 

Tropical mountain azonal forests (C5)  

 Illicium–Cyclobalanopsis tropical winter monsoon forest (C5A13) 40 

Subtropical mountain azonal woodlands and forests (C6)  

 Pyrenaria–Machilus subtropical winter monsoon forest (C6A15) 514 

  Total 3,824 
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Climate data 

Grid-based climate data were easily accessible and suitable for modeling general patterns 

at global and regional scales (Hannaway et al., 2005; Hijmans et al., 2005; Harris et al., 

2014). However, for detailed ecological research, such climate data were usually too 

coarse to provide exact climate estimates for each plot in mountainous and 

topographically diverse areas. In Taiwan, a meteorological framework named Taiwan 

Climate Change Projection and Information Platform (TCCIP) has integrated historical 

observations from thousands of weather stations to develop a 5 × 5km2 gridded climate 

surface covering the period of 1960–2012 (Hsu et al., 2011; Weng and Yang, 2012). A 

climate data downscaling process named clim.regression (Lin et al., 2018), which is based 

on a synthetic approach of bilinear interpolation and dynamic local regression (Wang et 

al., 2016a; Wang et al., 2017), was used to downscale the TCCIP 5 × 5km2 dataset to a 

scale-free and seamless surface by conducting reasonable elevational adjustments using 

local lapse rate estimates. The accuracy of the climate downscaling model has been 

evaluated by comparing to historical observations from the 15 weather stations over 

different altitudinal zones. It demonstrated prediction errors of 0.56°C, 0.79°C, 0.80°C, 

and 36.26mm in Tave, Tmin, Tmax, and PPT (measured by the mean absolute error 

between monthly estimation and observation), respectively, and these were considerably 

improved over the TCCIP data (Lin et al., 2018). A total of 73 climate variable estimates 

were obtained through the downscaling process, including annual, seasonal, and monthly 

variables, alongside biologically relevant derivatives. 

For exploring the relationship between vegetation and climate, 57 of the 73 climate 

variable estimates (Table 3.2), specific to the location of vegetation survey plots from Li 

et al. (2013) for the reference period of 1986–2005, were selected and were used as 
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parameters to construct raw climate niche models for each forest type. Seasonal climate 

variables were not considered because of the large number of monthly variables. A 

gridded climate surface at a resolution of 100 × 100m2, which covers regions higher than 

100m asl in Taiwan (2.7 million hectares in total), was generated from the same set of 57 

climate variable estimates by clim.regression for predicting the climatic suitability of 

forests over the study area. 

 

Table 3.2. The 57 climate variables, which were generated by the climate downscaling process of 

clim.regression, were incorporated in the random forest models. 

Climate variables Definition 

Monthly precipitation (PPT1 to PPT12)  

Mean annual precipitation (MAP)  

Mean summer precipitation (MSP) Summation of precipitation from May to September 

Ratio of winter precipitation (WPR) (PPT12+PPT1+PPT2)/MAP (Li et al., 2013) 

Mean monthly minimum temperature (Tmin1 to 

Tmin12) 
 

Mean monthly temperature (Tave1 to Tave12)  

Mean annual temperature (MAT)  

Mean monthly maximum temperature (Tmax1 to 

Tmax12) 
 

Temperature difference (TD) Tave7 minus Tave1 

Annual heat:moisture index (AHM) (MAT+10)/(MAP/1000) 

Summer heat:moisture index (SHM) (Tave7)/(MSP/1000) 

Warmth index (WI) 
Annual summation of mean monthly temperature 

higher than 5°C (Su, 1984b) 

Precipitation deficiency (PD) 
Difference between annual potential 

evapotranspiration and MAP (Su, 1985) 

 

Construction of the ecological niche model and vegetation prediction 

The R version (Liaw and Wiener, 2002) of the random forest (RF) algorithm (Breiman, 
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2001) was used to model the relationship between the occurrence of each forest type and 

the climatic variables. RF works best when the samples are relatively balanced between 

classes (Breiman, 2001; Rehfeldt et al., 2006); however, most empirical classification 

problems and ecological samplings are imbalanced. A total of 13 RF models, which 

represented the climatic niche of each forest type, were constructed in this study. For each 

RF model, plots belonging to the target forest type were treated as “presence”, and the 

remnants were regarded as “absence”. In most cases, occurrences of absence were much 

more common than those of presence for each forest type, leading to imbalanced samples, 

which can result in poor predictive performance for the minority (presence) class. 

Therefore, balanced random forest (Chen et al., 2004) and multiple forest approaches 

(Wang et al., 2016b) were applied to build an ensemble of RF models to reduce the effect 

of imbalanced samples. Presence points (in minority) were combined with the same 

number of randomly selected points of absence (in majority), to establish the training 

dataset of each RF model. The identical sample size of absence and presence can ensure 

balanced sampling between classes. The above-mentioned model-building process was 

repeated 100 times to achieve “multiple forests”—the ensemble predictions from multiple 

forests were used to represent the climatic suitability of each forest type. 

Although RF can handle confounding variables, a final model with the parsimonious set 

of variables that optimized variance is necessary to reduce the risk of over-fit and speed 

up the prediction. The R package VSURF was implemented to select a minimum set of 

predictors (Genuer et al., 2015) from the 57 climate variable estimates provided by 

clim.regression for each forest type. VSURF first calculates the importance scores of all 

variables and eliminates variables of small importance, based on a descending importance 

rank. The variables that result in the lowest model out-of-bag (OOB) error are selected as 

explanatory variables. This set of explanatory variables is further truncated to eliminate 
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all but one of any correlated variables, resulting in a minimum set of predictors for 

constructing the most parsimonious prediction model. For each simulation, we set the 

number of trees as 500 and used the default square root of the number of climate variables 

at each node (Liaw and Wiener, 2002). 

Each geographical cell of the 100 × 100m2 projecting surface received climatic suitability 

for the 13 forest types based on predictions from multiple forests. Fig. 3.2 presents a flow 

diagram evaluating the most suitable forest type for each cell according to the following 

criteria: (1) cells with climatic suitability lower than 0.3 for all forest types were classified 

as “uncertain”; (2) cells that shared the same suitability for two (or more) forest types 

(e.g., forest type i and j) and had suitability higher than 0.3 (included) were assigned as 

“mixed stands” between forest type i and j; and (3) the remnant cells, namely those with 

high suitability for a single forest type, were defined as “pure stands” of the predicted 

forest type. The cut-off threshold of 0.3 in the first step affects the proportion of the study 

areas being identified as an “uncertain” entity. We tested values between 0 and 0.5 for 

being the threshold and found a slight difference in resulting areas as uncertain type, 

ranging from 0 to 1418 ha (accounting for 0–0.05% of the total study area). Thus, we 

arbitrarily chose the midpoint value 0.3 as the threshold, which demonstrates a 

performance similar to our field experience. The ensemble of climatic suitable forest 

types and their suitability were composed as a raster layer to produce the predicted 

vegetation map using ESRI ArcGIS Pro 2.4. 
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Fig. 3.2. The workflow diagram for the ensemble of RF predictions of each forest type to evaluate the most 

suitable forest type(s) of each geographic cell. 

 

RESULTS 

Climatic niche and important variables of forest types 

The result of VSURF variable truncation revealed that the importance and number of 

selected climate variables varied among forest types. The OOB error arising from the 

model-building process of 500 trees is 7.9% on average, ranging from 1.2% to 18.2% 

depending on forest type (Table 3.3). The vegetation-climate relationships of high-

mountain, and subtropical mountain zonal forests (from Juniperus woodland and scrub 

to Ficus–Machilus forest in Table 3.3) are strongly driven by temperature factors (Tmax, 

Tave, and Tmin); that is, the primary predictors of high-mountain, temperate, and 



	 	

doi:10.6342/NTU202000682

3-14 
 

subtropical forests are usually dominated by temperature rather than precipitation, 

respectively. Furthermore, the maximum monthly temperature at the start of the growing 

season (March to June) closely relates to the occurrence of subalpine and coniferous 

forests (Juniperus, and Abies–Tsuga) distributed at elevations higher than 2,500m asl. The 

critical effect shifts to winter temperature (December to February) for cloud forests at 

elevations of 1,500–2,500m asl, which are dominated by Chamaecyparis or Fagus. By 

contrast, precipitation-related factors, especially the relative dryness in spring (March to 

May), display a more evident correlation with the climatic suitability of tropical mountain 

zonal forests in south Taiwan (Pasania–Elaeocarpus cloud forest, Drypetes–Helicia 

forest, and Dysoxylum–Machilus forest). Due to the co-effect of topographical exposure 

and windward chilling of northeast monsoon during winter, two azonal forest types, the 

tropical Illicium–Cyclobalanopsis monsoon forest and the subtropical Pyrenaria–

Machilus monsoon forest, exhibit climatic features of higher precipitation and lower 

temperature than its nearby habitats in winter (Fig. 3.3). 
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Table 3.3. The most parsimonious RF model for each forest type through the variable selection process of 

VSURF package. Predictor variables were sorted by its importance (Gini values) in descending order. 

Forest type Predictor variable / proportion of variable importance 

OOB 

error 

rate 

Juniperus 

woodland and scrub 
Tmax6 (37.6%), Tmax5 (34.2%), Tmax3 (15.3%), Tmax4 (12.9%) 1.2% 

Abies–Tsuga 

forest 

Tmax5 (23.6%), Tmax6 (22.9%), Tmax3 (20.1%), Tave6 (12.0%), 

Tmax4 (10.1%), Tmax2 (7.3%), Tave5 (3.9%) 
6.0% 

Chamaecyparis 

cloud forest 

Tave12 (19.9%), Tmax2 (13.1%), Tave1 (8.2%),Tmax9 (8.1%), 

Tave6 (5.5%),PPT12 (5.4%), Tmax11 (5.2%), PPT1 (5.0%), TD 

(4.7%), Tave2 (3.8%), PPT11 (3.7%), WPR (3.5%), PPT6 (3.0%), 

WI (2.6%), Tave3 (2.5%), Tmax12 (2.3%), PPT10 (1.8%), PPT3 

(1.7%) 

8.7% 

Fagus 

cloud forest 

Tmax12 (21.6%), Tmax2 (19.8%), Tmax1 (18.6%), TD (11.9%), 

PPT1 (8.1%), Tmax11 (8.1%), PPT9 (7.6%), WPR (4.3%) 
3.4% 

Quercus 

cloud forest 

Tave6 (14.1%), Tmin12 (13.4%), Tmax6 (10.2%), Tmin10 (9.6%), 

Tmax7 (8.2%), Tmax2 (6.7%), PPT1 (5.6%), PPT12 (5.2%), PPT3 

(5.0%), PPT9 (4.6%), PPT10 (4.6%), Tave5 (3.3%), Tmin6 (2.8%), 

Tmax8 (2.7%), PPT11 (2.4%), PPT6 (1.8%) 

11.0% 

Machilus–Castanopsis 

forest 

Tmax4 (15.9%), Tmax10 (13.6%), Tmax11 (10.8%), Tmin6 (9.9%), 

Tmax6 (7.9%), Tmax5 (7.2%), Tmax3 (7.1%), PPT10 (6.6%), 

Tmax12 (6.4%), Tmax1 (4.9%), Tmax9 (4.1%), Tmax7 (2.8%), 

PPT8 (2.7%) 

16.7% 

Phoebe–Machilus 

forest 

Tmax9 (18.7%), Tave2 (15.1%), Tmax7 (12.4%), PPT3 (10.8%), 

PPT7 (8.6%), PPT4 (8.3%), Tmax11 (8.0%), Tave9 (7.3%), TD 

(2.9%), PPT9 (2.8%), PPT8 (2.6%), PPT10 (2.5%) 

18.2% 

Ficus–Machilus 

forest 

Tmax11 (26.1%), Tmax10 (25.9%), Tmax9 (13.9%), SHM (12.1%), 

Tmax8 (11.6%), AHM (1.3%), MSP (3.1%), PPT5 (3.0%) 
5.2% 

Pasania–Elaeocarpus 

cloud forest 

PPT4 (34.4%), PPT2 (26.4%), PPT3 (20.5%), WPR (9.1%), Tmax9 

(5.0%), PPT7 (4.5%) 
6.8% 

Drypetes–Helicia 

forest 

PPT3 (42.7%), PPT2 (16.0%), TD (13.6%), Tmax1 (10.8%), PPT1 

(6.6%), Tmax8 (6.5%), PPT8 (3.9%) 
5.7% 

Dysoxylum–Machilus 

forest 
Tave2 (45.7%), Tmax1 (40.4%), PPT5 (13.8%) 7.0% 

Illicium–

Cyclobalanopsis 

winter monsoon forest 

PPT4 (43.2%), Tmin1 (31.6%), TD (25.1%) 5.6% 

Pyrenaria–Machilus 

winter monsoon forest 
TD (48.1%), PPT11 (28.1%), PPT1 (15.1%), PPT12 (8.6%) 6.8% 
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Fig. 3.3. Range of climatic variable estimates on the location of sampling plots of each forest type. 
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Predicted vegetation map 

A predicted vegetation map was obtained based on the ensemble of predictions from 

multiple forests. Climate environment of the entire study area was classified into 

potential habitats of 13 forest types (Fig. 3.4). The predicted map displays an obvious 

altitudinal zonation from high-mountain woodland to montane cloud forests, followed 

by the latitudinal differentiation of sub-montane and foothill forests in the subtropical 

and tropical parts of Taiwan. Two azonal forests, the tropical Illicium–Cyclobalanopsis 

forest and the subtropical Pyrenaria–Machilus forest, are mapped in the southern 

peninsula and the northeast corner. Ficus–Machilus forest is the most widespread 

vegetation, occupying 25.64% of Taiwan’s slope land. The rank of occupying area is 

followed by Quercus cloud forest (13.22%), Machilus–Castanopsis (12.05%), and 

Phoebe–Machilus forest (11.74%). High-mountain habitats with a total area of 390,000 

ha, which are suitable for coniferous woodland and forests such as Juniperus, Abies, 

Tsuga, and Chamaecyparis, account for 14.52% of the study area. The area of habitats 

suitable for tropical mountain zonal forests is close to high-mountain vegetation 

(390,000 ha, accounts for 14.49%) but distribution is relatively sparse among the 

predicted regions (Table 3.4). 

The altitudinal distribution of forests showed that most forest types dominate in a 

distinct altitudinal range (Fig. 3.5); for example, Juniperus woodland and scrub 

occupied a mean elevation of 3,078m asl, Abies–Tsuga forest at 2,743m asl, 

Chamaecyparis cloud forest at 2,274m asl, and Pasania–Elaeocarpus cloud forest at 

1657m asl in southern Taiwan. However, the altitudinal ranges of some forest types are 

overlapped and mixed; for example, Fagus cloud forest co-occurs with Quercus cloud 

forest at an elevation of 1,700m asl, Machilus–Castanopsis and Phoebe–Machilus 

forests are generally co-dominant at elevations of 800–1,000m asl, and two foothill 
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forest types, Ficus–Machilus and Dysoxylum–Machilus forests, are mixed at elevations 

of 200–300m asl in southern Taiwan (Fig. 3.5). 
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Fig. 3.4. Predicted vegetation map of study area based on the ensemble of suitability of each forest type. 

The red rectangles are sample areas for illustrating the map in detail (see Fig. 3.6). 
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Table 3.4. The area statistics of predicted forest types, pure stand and mixed stand are included (Unit: ha). 

Predicted forest 
type 

Total area % 
Pure stand  Mixed stand 

Coexisted forest type(s) within mixed stands and its proportion 
Area %  Area % 

Juniperus 29,134 1.08% 13,590 46.65%  15,544 53.35% Abies–Tsuga (1.00) 

Abies–Tsuga 114,151 4.21% 76,930 67.39%  37,221 32.61% Juniperus (0.42), Chamaecyparis (0.58) 

Chamaecyparis 250,006 9.23% 204,420 81.77%  45,586 18.23% Abies–Tsuga (0.47), Fagus (0.04), Quercus (0.49) 

Fagus 15,433 0.57% 9,993 64.75%  5,440 35.25% Chamaecyparis (0.30), Quercus (0.06), Pyrenaria–Machilus (0.64) 

Quercus 358,009 13.22% 322,318 90.03%  35,691 9.97% 
Chamaecyparis (0.62), Fagus (0.01), Machilus–Castanopsis (0.24), 
Phoebe–Machilus (0.04), Pasania–Elaeocarpus (0.02), Pyrenaria–
Machilus (0.07) 

Machilus–
Castanopsis 

326,277 12.05% 233,338 71.52%  92,939 28.48% 
Quercus (0.09), Phoebe–Machilus (0.65), Ficus–Machilus (0.14), 
Pasania–Elaeocarpus (0.01), Drypetes–Helicia (0.07), Pyrenaria–
Machilus (0.04) 

Phoebe–Machilus 318,017 11.74% 185,980 58.48%  132,037 41.52% 
Quercus (0.02), Machilus–Castanopsis (0.46), Ficus–Machilus (0.28), 
Drypetes–Helicia (0.02), Pyrenaria–Machilus (0.22) 

Ficus–Machilus 694,606 25.64% 531,653 76.54%  162,953 23.46% 
Machilus–Castanopsis (0.08), Phoebe–Machilus (0.23), Drypetes–
Helicia (0.01), Dysoxylum–Machilus (0.66), Illicium–Cyclobalanopsis 
(0.02) 

Pasania–
Elaeocarpus 

8,750 0.32% 5,474 62.57%  3,276 37.43% 
Quercus (0.19), Machilus–Castanopsis (0.01), Ficus–Machilus (0.02), 
Drypetes–Helicia (0.62), Dysoxylum–Machilus (0.11), Illicium–
Cyclobalanopsis (0.05) 

Drypetes–Helicia 143,575 5.30% 111,772 77.85%  31,803 22.15% 
Machilus–Castanopsis (0.20), Phoebe–Machilus (0.08), Ficus–Machilus 
(0.04), Pasania–Elaeocarpus (0.06), Dysoxylum–Machilus (0.20), 
Illicium–Cyclobalanopsis (0.42) 

Dysoxylum–
Machilus 

240,205 8.87% 122,659 51.06%  117,546 48.94% 
Ficus–Machilus (0.91), Drypetes–Helicia (0.06), Illicium–
Cyclobalanopsis (0.03) 

Illicium–
Cyclobalanopsis 

27,314 1.01% 8,096 29.64%  19,218 70.36% 
Ficus–Machilus (0.17), Pasania–Elaeocarpus (0.01), Drypetes–Helicia 
(0.68), Dysoxylum–Machilus (0.14) 

Pyrenaria–
Machilus 

182,806 6.75% 142,180 77.78%  40,626 22.22% 
Fagus (0.09), Quercus (0.06), Machilus–Castanopsis (0.12), Phoebe–
Machilus (0.72), Ficus–Machilus (0.01) 

Uncertain 506 0.02% - -  - -  

Total 2,708,789 100.00% 1,968,403 72.67%  739,880 27.33%  
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Table 3.5. A confusion matrix of actual forest type versus predicted forest type for evaluating the accuracy of ensemble predictions. Seven plots are located outside the study 

area and eliminated from this evaluation. 

 
Predicted forest types Number 

of 

samples 

Mismatch 

(%) J. A.–T. C. F. Q. M.–C. P.–M. F.–M. P.–E. D.–H. D.–M. I.–C. P.–M. 

A
ct

u
al

 f
o

re
st

 t
y

p
es

 

Juniperus 100 1   1         102 1.96% 

Abies–Tsuga  82 7           89 7.87% 

Chamaecyparis  4 511 3 22 1       2 543 5.89% 

Fagus   1 53         1 55 3.64% 

Quercus  3 32 3 992 14 3   10   1 1058 6.24% 

Machilus–

Castanopsis 
  1 1 9 308 11 1  17 1 1 9 359 14.21% 

Phoebe–

Machilus 
    3 14 365 8  2  1 17 410 10.98% 

Ficus–Machilus       1 141  1 1   144 2.08% 

Pasania–

Elaeocarpus 
        55 1  1  57 3.51% 

Drypetes–

Helicia 
    1 5  2 3 410 1 3  425 3.53% 

Dysoxylum–

Machilus 
         2 24   26 7.69% 

Illicium–

Cyclobalanopsis 
        4 3  33  40 17.50% 

Pyrenaria–

Machilus 
  1 1 1 1 14      491 509 3.54% 

Outside              7 - 

Number of 

predictions 
100 90 553 61 1029 343 394 152 62 446 27 39 521 3824 6.59% 
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The workflow of Fig. 3.2 depicts core region of each forest type and indicates habitats 

where adjacent forest types coexisted. The ensemble of multiple forests predicted that 

72.67% of the study area (1,970,000 ha) was climatically suitable for a single-dominant 

forest type, classified as a pure stand. However, climatic environment of 730,000 ha 

(~27.33% of the study area) was predicted to be suitable for two or more coexisting 

forest types, classified as a mixed stand. The remaining areas, 506 ha (0.02%), could 

not be identified by the RF models and are classified as uncertain (Table 3.4). Fig. 3.6 

shows examples illustrating the predicted pure stands and mixed stands in the high-

mountain areas of north Taiwan (Fig. 3.6a) and in the tropical low hills of south Taiwan 

(Fig. 3.6b). Because of topographical influences on mesoclimate in the mountains, 

including lapse rate, orographic precipitation, and windward effects, the occurrence of 

mixed stands usually follow the iso-altitudinal belts on slopes. However, the spatial 

extent of the predicted mixed stands stretches from hundreds to thousands of meters in 

width, depending on mountain steepness, aspect, and climate variation. The Ficus–

Machilus forest is the most widespread forest type but it also shares a broader area of 

mixed stands of 160,000 ha with other forests, 66% of which (~110,000 ha) are habitats 

mixed with Dysoxylum–Machilus forest, mainly distributed in the tropical lowland of 

Taiwan. The Phoebe–Machilus forest (130,000 ha in total), primarily occurring at a 

middle elevation of 800m asl, is another forest type which has 46% (~60,000 ha) of 

mixed stands with its upper neighboring Machilus–Castanopsis forest at the ranges of 

850–1,000m asl. 

Statistical evaluation of the ensemble model 

In addition to the OOB error assessed during the model-building process of each forest 

type, the overall accuracy of the ensemble RF models was evaluated by comparing the 

prediction at locations of the 3817 forest-type-classified plots (Table 3.5). Model errors 
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of fit (mismatch rate) were low for most forest types, ranging from 1.96% to 17.50% 

with an average of 6.59%. The findings revealed that the performance of the RF model 

was lower for distinguishing three vegetation types, namely Illicium–Cyclobalanopsis 

winter monsoon forest (error = 17.50%), Machilus–Castanopsis forest (error = 14.21%), 

and Phoebe–Machilus forest (error = 10.98%). These three forest types mainly occur at 

elevations from 479 to 1,030m asl, the altitudinal range where several vegetation types 

tend to coexist and form mixed stands in Taiwan (Fig. 3.5). 

 

Fig. 3.5. The altitudinal ranges of forests based on the predicted vegetation map. Core habitats of most 

forest types occupied distinct altitudinal regions, however, habitats of some forests (eg. Fagus & Quercus, 

Machilus–Castanopsis & Phoebe–Machilus, Pasania–Elaeocarpus & Drypetes–Helicia, Ficus–

Machilus & Dysoxylum–Machilus) were partially overlapped in elevation. 
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DISCUSSION 

Model accuracy and its ability to predict the potential distribution of forests 

The Random Forests approach is an ensemble classifier that aggregates and averages 

predictions across multiple trees to generate robust outcomes. This method has been 

recommended for modeling the ecological niche of organisms and predicting their 

potential distribution (Wang et al., 2012; Chiu et al., 2013; Zhang et al., 2015), and it 

has been widely applied on both regional and global scales for the use of conservation 

and adaptation to environmental change (Rehfeldt et al., 2006; Attorre et al., 2011; 

Rehfeldt et al., 2012; Wang et al., 2016b). In this study, RF models performed with a 

high degree of accuracy in predicting the potential distribution of forest vegetation in 

Taiwan, with a mismatch rate of 6.59% on average. 

However, the prediction accuracy of several forest types is comparatively lower, such 

as Illicium–Cyclobalanopsis winter monsoon forest (with a mismatch rate of 17.50%), 

Machilus–Castanopsis forest (14.21%), and Phoebe–Machilus forest (10.98%). 

Several possible reasons for this result are as follows: (1) Illicium–Cyclobalanopsis 

forest is tropical vegetation exposed to winter monsoon directly, which is characterized 

by its cold-humid climate during winter, the high stem density, and richness in 

sclerophyllous species. This forest type is narrowly restricted to windward hill ridges, 

but converts to high canopy leeward or to valley forests dramatically as the topography 

changes (Chao et al., 2010; Li et al., 2013). In southern Taiwan, the habitats of Illicium–

Cyclobalanopsis forest are usually fragmented and form a mosaic with sub-montane 

and foothill forests such as Drypetes–Helicia forest, Ficus–Machilus forest, and 

Dysoxylum–Machilus forest. The transition of vegetation can occur in a very short 

distance, even less than 50m (Chao et al., 2007), which is too localized for the climate 

downscaling model to detect, resulting in a high percentage of mixed stand and low 
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accuracy in the RF predictions; (2) the other two forest types with lower prediction 

accuracy, Machilus–Castanopsis forest and Phoebe–Machilus forest, are usually found 

at similar altitudinal ranges of 400–1,800 and 0–1,400m (Li et al., 2013). At elevational 

ranges where Machilus–Castanopsis forest and Phoebe–Machilus forest co-occur, the 

former usually dominates on ridges with drier and well-developed soil, whereas the 

latter has a low abundance and frequency of Fagaceae and tends to occur in relatively 

narrow, shaded valleys, and humid habitats. The similarity in altitudinal ranges in 

combination with differentiation among micro habitats for Machilus–Castanopsis 

forest and Phoebe–Machilus forest may explain the lower prediction accuracy. 

Although a machine-learning model is difficult to interpret due to its complex variables, 

it can provide a starting point for identifying key predictor variables and testing theory 

in an experimental framework. For example, our results show that temperature variables 

contribute to distinctly separate potential habitats of Juniperus woodland, Abies–Tsuga, 

Chamaecyparis, and Fagus forests (Table 3.3). Maximum monthly temperature of 

growing season, especially at the thresholds of 15°C (May) and 16.5°C (June), closely 

correspond with the boundaries of Juniperus woodland and Abies–Tsuga forest. For 

Chamaecyparis and Fagus forests, the important variables contribute to the RF model 

shift to winter temperature; for example the thresholds of 7.2°C (Tave of Dec.), 11.9°C 

(Tmax of Feb.), 5.9°C (Tave of Jan.) for Chamaecyparis forest; and monthly maximum 

temperatures of 12.4°C (Dec.), 11.6°C (Feb.), 10.7°C (Jan.) for Fagus forest. The 

results also indicate that annual temperature difference (TD) and winter precipitation 

play important roles in identifying the potential habitat of Fagus from other forest types. 

The range and threshold of predictors from a machine-learning model can provide 

insight into ways of broader exploration in ecosystems and can lead to a better 

understanding of forest habitat differentiation. 
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Detailed inspections of the RF model predictions 

Gradients of the physical environment may result in the presence of varying organisms 

and communities, which can lead to directional changes in the composition, 

physiognomy, and biological interactions of forests (Whittaker, 1975). A prominent 

niche model should elucidate factors that critically relate to biological phenomena, and 

precisely project these factors to their spatial extent. 

In Taiwan, it has been reported that the mountain temperatures for a given elevation are 

higher at the central part of the mountain range, and lower at both the north and the 

south end (Su, 1984a). This phenomenon may be attributed to the heat retention 

mechanism of Massenerhebung (Su, 1984a) or the cooling effect induced by northeast 

monsoon (Chiou et al., 2010), and it is responsible for the altitudinal compression of 

vegetation zones at the northern and southern tips of Taiwan, while a most extensive 

and distinguishable zonation in the middle part can be found. This pattern can be well-

simulated by our approach. Fig. 3.7 illustrates the north-south profiles on model 

predictions of seven selected forest types, which are widespread throughout Taiwan, 

and demonstrates evident downward compression of vegetation zones in the north and 

south ends while a more extensive altitudinal distribution was modeled in central 

Taiwan. 

Except for the large-scale climate patterns, topo-climatic variations such as rain shadow, 

radiative difference, and windward cooling, also influence the local distribution of 

forests. Snow Mountain is a mountain mass located in the middle of the northwest and 

central west climate region of Taiwan with the highest peak at an elevation of 3886m, 

where its northeast-facing slope is cool and humid due to the lack of sunlight and moist 

air brought by the winter monsoon, yet a relatively warm and dry environment is formed 

on its south slope (Su, 1985). Su (1984b) reported that similar vegetation types occurred 
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at lower elevations on the north-facing slope, eg. Abies zone distributed at 2,600–

3,100m (north) versus 2,900–3,400m (south); Tsuga zone at 2,200–2,800m (north) 

versus 2,200–2,900m (south); and Chamaecyparis zone at 1,600–2,300m (north) versus 

1,700–2,400m (south). We applied the RF models to predict and visualize the potential 

distributions of forests on Snow Mountain (Fig. 3.6a and Appendix S1, or by the link 

of https://youtu.be/NaR76WVDp30) and verified it with observations by Su in 1984. 

The predicted forest distributions are in very close agreement with Su’s observation. 

Based on the work diagram of Fig. 3.2, the RF models also indicate the locations of 

mixed stand, which is analog to the characteristic of an ecotone—a community 

comprising part of the ecological features of its neighbors but having a specific site 

characteristic of its own (Holland and Risser, 1991; Barnes et al., 1997). On Snow 

Mountain for example, the models identified mixed stands, 400-m in width, between 

Juniperus woodland and Abies–Tsuga forest, and also mapped the transition between 

Chamaecyparis forest and Quercus forest. 
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Fig. 3.6. The detailed mapping of predicted forest types. A pure stand is represented by a single color, 

whereas a mixed stand is indicated by the coexistence of a dot. (a) The prediction of high-mountain and 

subtropical montane forests with types of Juniperus, Abies–Tsuga, Chamaecyparis, Quercus, and 

Machilus–Castanopsis. The belt-like mixed stands usually occur along an iso-elevation hillside. (b) The 

predicted mapping of tropical forests in southeast Taiwan where tropical montane forests (Pasania–

Elaeocarpus and Drypetes–Helicia) mixed with subtropical foothill forest (Ficus–Machilus) and tropical 

winter monsoon forest (Illicium–Cyclobalanopsis). Broadly mixed stands of Drypetes–Helicia forest and 

Illicium–Cyclobalanopsis forest occurred at the north slope in a valley, where a cooler habitat exposed 

to the northeast monsoon during winter is predicted. 
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Fig. 3.7. Simulated distributions of seven selected zonal forest types on the elevational profile. (a) 

Juniperus woodland and scrub; (b) Abies–Tsuga forest; (c) Chamaecyparis cloud forest; (d) Quercus 

cloud forest; (e) Machilus–Castanopsis forest; (f) Phoebe–Machilus forest; (g) Ficus–Machilus forest. 

 

Applications of the RF model 

In recent decades, climate data have become available from various sources published 

in fine-scale resolutions for ecological studies (Hannaway et al., 2005; Hijmans et al., 

2005; Harris et al., 2014). The results of several studies in Europe (Hengl et al., 2018), 

North America (Rehfeldt et al., 2012; Wang et al., 2012), and mainland China (Zhang 

et al., 2015; Wang et al., 2016b) suggest that RF modeling is one of the optimal 

approaches for niche modeling and species distribution prediction, when sufficient 

presence and absence data exist (Zhang et al., 2015; Hengl et al., 2018). Fine-resolution 

predictions are particularly suitable for local interpretation and decision-making 

applications. Most ecological niche modeling studies have employed published global 

or regional climate databases, which represent the finest spatial resolutions of arc-
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seconds or kilometers, but they are still too coarse to provide detailed information 

regarding mountainous and topographically diverse areas. 

Besides, Species from adjacent zones may occur and coexist along the border of a given 

zone due to their close climatic suitability and ecological requirements. Because of the 

mixed, intermediate, and specific ecological characteristics of ecotones, they have been 

reported as important species-rich areas for influencing local and regional biodiversity 

patterns (Neilson, 1993; Martin et al., 2007). Inhabitants of ecotones are often near their 

physical limits and competitive tolerance, which means they may be sensitive to 

fluctuations and changes of environmental factors, and they are usually regarded as 

early indicators of the effects of climate change (Neilson, 1993; Risser, 1995; Wasson 

et al., 2013). The monitoring of migration patterns and compositional change in 

ecotones is one of the primary approaches for tracing the effects of climate change. For 

example, the range shift and demographical change of mountain forests often 

correspond with directional climatic change (Beniston, 2003; Beckage et al., 2008; 

Evans and Brown, 2017). 

Taiwan is a relatively small continental island, where the interactions of humid 

monsoons, frequent typhoons, and dramatic topographical differences result in its 

diverse habitats and climatic conditions. The rainfall is enough for forest establishment 

over the whole island; however, factors including (1) the significant temperature 

gradient along elevational extent (Su, 1984b), (2) differences in seasonal precipitation 

(Su, 1985), and (3) mixed floras from tropical Asia and temperate Asia due to the 

island’s historical and geographical context (Hsieh et al., 1994), co-contribute to the 

diverse forests harboring plants from tropical, temperate, and even subarctic regions. 

We suggest that potential vegetation maps in high resolution can be powerful aids to 

serve as drafts for stand classification, guides for optimal land use, and fundamental 
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models for projecting vegetation change under global warming scenarios. This study 

provides a statistical procedure integrating locations of field sampling plots and their 

corresponding climate variable estimates to calculate, simulate, and visualize the 

potential distribution of climatic-related forests. These applications especially benefit 

regions with complicated landscape mosaics with highly differentiated vegetation 

communities, such as Taiwan. When detailed and precise training data applied, eg. the 

updated climate historical observations, future climate change scenarios, or 

supplemented information from more field plots, this procedure is reproducible and can 

be used to update the predicted forest map for prompt use in resource management. 

Last, we acknowledge that this study and its findings have several limitations. Azonal 

forests, whose occurrence and mortality are largely affected by non-climatic factors 

such as disturbances, succession, hydrologic regimes, and edaphic conditions, were not 

examined in detail. Although climate plays an important role in the distribution of zonal 

forests, there are still mechanical processes—such as competition, dispersal ability, and 

biotic or abiotic interactions—that are not considered by the statistical model in this 

study. Clearly, correlational modeling approaches can provide effective indications 

regarding ecological niches and potential distributions of organisms for the use in large-

scale resource management, but non-climatic variables and mechanical processes 

should also be considered while conducting planning and management of natural 

resources at local scales. 
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SUPPORTING INFORMATION 

Appendix S1. Visualization of RF predictions at Snow Mountain region. Please find 

the sample movie by this link: 

https://www.youtube.com/watch?v=NaR76WVDp30 
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Chapter 4 

How much does climate change alter the distribution of forests across a 

great altitudinal gradient on a subtropical island? 

Chapter 4 is a manuscript co-authored by Huan-Yu Lin, Jer-Ming Hu, Tze-Ying Chen, 

Chang-Fu Hsieh, Yu-Shiang Tung, Yung-Ming Chen, and Tongli Wang. The authors 

preserve the right to submit the texts, figures, and tables to a scientific journal. 

 

Abstract 

The impact of climate change on mountain forest ecosystems, involving potential 

range shifts, the progressive replacement of vegetation belts, and the local extinction 

of rare species, has particularly been concerned by ecologists. Taiwan is a high-

mountain island with large altitudinal variations and diverse forest types driven by 

climate. In this study, we used the scale-free climate variable estimates and an 

established machine-learning approach to project the distributional changes of 13 

climate-driven mountain forest types under selected global warming scenarios. The 

results demonstrated a consistent trend of the drastic habitat contractions of subalpine 

Juniperus woodland and the deciduous Fagus broadleaved forests (mostly disappear 

under moderate scenarios and disappear under high-emission scenarios). The 

projections also revealed that tropical montane cloud forest and tropical winter 

monsoon forest may be highly vulnerable under the extreme warm-humid or warm-

dry climatic conditions because of the dramatic change in water availability. For the 

purpose of mitigating the risk of climate change to the vulnerable forest types, 

adaptive conservation strategies were suggested independently, in accordance with 

the environmental characteristics specific to each forest type. 
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KEY WORDS: Climate change impact, East Asia, Ecological niche modeling, 

Tropical montane forest, Subtropical montane forest, Random Forest, Taiwan. 

INTRODUCTION 

The mountain forest ecosystem is one of the most important storehouses of biodiversity, 

home to endemic and rare species, and an essential part of the globe (Lomolino, 2001; 

Beniston, 2003). Most mountain areas are experiencing serious ecological and 

environmental degradation, and the impact of climate change is an issue of the greatest 

concern (Beniston 2003). Mountains present the sharpest gradient in continental areas, 

including rapid change in climatic parameters over a very short distance, particularly 

temperature and precipitation. Lapse rate, the gradual decrease in air temperature with 

elevation by a rate of 5–7°C/km in the toposphere (Barry and Chorely, 2009), is the main 

factor that forms the rapid and directional temperature gradient along mountain slopes, 

creating diverse habitats of different vegetation types distributed within relatively small 

areas (Spehn et al., 2011). Thus, mountain ecosystems provide ideal materials to model 

vegetation-climate relationships and to predict response of vegetation to climate change. 

Vegetation types at mountain tops may be particularly vulnerable to climate change, 

imposing a serious challenge to genetic conservation and forest resource management. A 

first approximation of the response of mountain forests to a warming climate is the re-

distribution of organisms in the nearby altitudes to find optimal thermal conditions similar 

to their current habitats (Peters and Darling, 1985; Chen et al., 2011). According to this 

assumption, the expected impacts of climate change in the mountain biota would be the 

contraction of the coolest climatic zone at the top, which accompanies the upward shift 

and progressive replacement of vegetation belts (Pauli et al., 2012; Lenoir and Svenning, 
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2015; Morueta-Holme et al., 2015). In reality, upward shifts of mountain vegetation have 

been widely reported among both historical observations (Lenoir et al., 2008; Feely et al., 

2011; Jump et al., 2012; Pauli et al., 2012; Morueta-Holme et al., 2015) and model 

projections (Costion et al., 2015; Matsui et al., 2018; Lin and Chiu, 2019). 

Research on terrestrial range shifts has been far more frequent in the Northern 

Hemisphere, chiefly within the latitudes 30–60°N, than in the Southern Hemisphere 

(Lenoir and Svenning, 2015). The currently available data for plant range shift studies are 

strongly biased toward boreal, temperate, and Mediterranean latitudes (Jump et al., 2009). 

Tropical and subtropical forests harbor most of the terrestrial biodiversity on the Earth 

(Myers et al., 2000), however, research efforts implemented to assess the potential change 

of forest distributions from tropics to subtropics are limited (Krishnaswamy et al., 2014). 

There are increasing evidences supporting the assumption that tropical forest biota is 

highly vulnerable to climate change (Corlett, 2011; Barlow et al., 2018). For example, 

biotic vulnerability may be enhanced by the low intrinsic climatic variability and the 

increased niche specialization of warm-adapted species (Feely et al., 2011; Perez et al., 

2016), the complex interactions of heat and moisture (Pouteau et al., 2018), and the 

uncertainty in future precipitation or aridity projections (Tain et al., 2019), instead of a 

progressive upward or poleward march of species. 

Taiwan is a subtropical island located on the west edge of the Pacific Ocean with a warm-

humid climate brought by the East Asian monsoon. Steep mountains and huge climate 

variabilities create a pronounced forest zonation with changes in altitude. This forest 

zonation was firstly documented by Sasaki (1924) and Su (1984), and has been further 

classified into six altitudinal vegetation zones (Su, 1984) and 21 forest types in detail (Li 

et al., 2013). The forest zonation includes both the altitudinal zonation from subalpine to 
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montane cloud forests, followed by the latitudinal differentiation of subtropical mountain 

forests in the north and tropical montane forests in the south (Lin et al., 2020a). Li et al. 

(2013) suggested that the main factors responsible for the differentiation of zonal forests 

are temperature and moisture. Subsequently, a climate-based approach of machine 

learning was established to model this geographical distribution of zonal forest vegetation 

in Taiwan (Lin et al., 2020a); it was found that over 90% of the total variation among 

zonal vegetation types could be explained by climate variables and a fine-resolution 

vegetation map was obtained (Appendix S1). Although Taiwan is a small island with a 

minor latitudinal range extent, its diverse and distinct forest zonation along the steep and 

extensive elevational gradients provide ideal materials for exploring the potential impacts 

of climate change on forest distributions and range shifts. 

Continuous instrumental measurement of climate parameters in Taiwan began in 1896. 

Data collected from six meteorological stations (Fig. 4.1) shows a significant warming 

trend. The mean annual temperature increased by 1.4°C in the past century, which is 

higher than the global warming rate of 0.07°C per decade (IPCC, 2013). In 1980–2009, 

the observed warming trend has accelerated at a rate of 0.29°C per decade with a faster 

increase in winter (Hsu et al., 2011). The century-long linear trend of precipitation change 

is not evident, whereas the number of raining days has decreased by 4 days per decade in 

the past 100 years and 6 days per decade in the past 30 years, with the fastest decreasing 

rate in summer (Hsu and Chen, 2002; Hung and Kao, 2010). The observed amplitude of 

warming is severe in Taiwan, however, the impact of climate change on mountain forests 

was only studied in particular communities or species, such as reports for the retreat of 

subalpine and upper-montane coniferous forests based on historical occurrences (Jump et 

al., 2012) and future projections (Lin et al., 2014), and the climatic niche modeling and 

projection for several broad-leaved tree species (Nakao et al., 2014; Lin and Chiu, 2019). 
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An intact assessment on the range shifts and habitat vulnerability is still elusive, 

especially for the widespread tropical and subtropical broad-leaved forests. In this article, 

we used the diverse climatic conditions and complicated topography of Taiwan as an 

example to predict potential impact of climate change on the habitat suitable for different 

forest types under different climate change scenarios. The goals of this study were to: (1) 

reveal the range shifts and the change of habitat suitability for forest types at different 

altitude, (2) identify the uncertainty of climatic niche modeling for each forest type under 

the selected climate change scenarios, and (3) assess the vulnerability of each mountain 

forest type under the influence of climate change. 

 

Fig. 4.1. Location and topography of Taiwan island. The red solid dots indicate the localities of six 

meteorological stations with continuous instrumental measurement of climate parameters longer than 100 

years. 
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MATERIALS AND METHODS 

Study area 

Forests cover 58% of the territorial area of Taiwan, and ca. 73% of the land is occupied 

by hills and mountains with more than 200 peaks over 3,000m asl (Fig. 4.1). Taiwan was 

uplifted as an island during the Miocene epoch, which has connected with the Asia 

mainland via the land bridge at least four times, and was permanently separated at the end 

of the last glacial period approximately 10,000 years ago (Shen, 1994). For geographical 

and historical reasons, Taiwan has mixed floristic components from adjacent areas. 

Among the >4200 known native vascular species, except for the 1052 endemic species 

(accounts for 22.9% of the total flora) (Lin et al., 2020b), Taiwan displayed a high floristic 

affinity with eastern Asia (33.40%, Japan included) and tropical Asia (27.17%) (Hsieh 

2002). 

Climate data 

Gridded climate data at the resolution of 5km×5km were provided by Taiwan Climate 

Change Projection and Information Platform (TCCIP) (Weng and Yang, 2012). This 

dataset covers the main island of Taiwan and spans the historical period from 1960 to 

2012 and projections of three future stages (2016–2035, 2046–2065, 2081–2100) based 

on 47 general circulation models (GCMs), with four sets of primary climate variables: 

monthly precipitation (PPT1 to PPT12), monthly minimum temperature (Tmin1 to 

Tmin12), monthly mean temperature (Tave1 to Tave12), and monthly maximum 

temperature (Tmax1 to Tmax12). Due to the demand for fine-scale climate data to depict 

the ecological and environmental conditions that fit the diverse topography in the 

mountains, a downscaling process namely clim.regression (Lin et al., 2018), was applied 

to generate scale-free climate data based on the source of TCCIP’s 5-km gridded climate 
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surfaces. Clim.regression can generate 73 climate variable estimates specific to the user-

defined points of interest, including primary climatic variables and additional biologically 

relevant derivatives for historical and future periods. The accuracy of clim.regression has 

been evaluated by comparisons with historical observations from the 15 weather stations 

over various altitudinal zones. It displayed prediction errors of 0.56°C, 0.79°C, 0.80°C, 

and 36.26mm in Tave, Tmin, Tmax, and PPT (in mean absolute error, MAE), respectively, 

showing a considerable improvement (54.6%–66.7%) over the original TCCIP data (Lin 

et al., 2018). 

General circulation models (GCMs) are essential for projecting future climate, however, 

it is not realistic to apply all GCM datasets when conducting analysis. Lin and Tung (2017) 

established a procedure for selecting GCM datasets for a region based on the weighted-

average ranking method and demerit point system to rank the GCM performance. They 

suggested that six AR5 GCM datasets are suitable for use in Taiwan (Fig. 4.2). In this 

paper, uncertainty in future climate was incorporated through consensus from 12 climate 

change scenarios–including these six selected GCMs and two representative 

concentration pathways (RCPs), RCP 4.5 and RCP 8.5. 
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Fig. 4.2. Relative changes of projected MAT and MAP among six selected GCMs under (a) RCP 4.5 and 

(b) RCP 8.5 scenarios. The solid dot represents the average changes of MAT and MAP over the whole 

island of Taiwan, the horizontal and vertical bars demonstrate the standard deviation of the MAT and MAP 

values. Abbreviations: CC, CCSM4; CE, CESM1-AM5; CS, CSIRO-Mk3-6-0; GI, GISS-E2-R; Ha, 

HadGEM2-AO; and MI, MIROC5. 

Vegetation data 

Taiwan’s national vegetation survey was accomplished in 2008. The natural forests were 

classified into 21 types according to composition data from 8,804 plots. It was reported 

that 13 of the 21 forest types are driven by climate, including 11 zonal forest types, plus 

two other azonal forest types affected by monsoons (Li et al., 2013). A total of 3824 plots 

belonging to the 13 climate-related forest types were used to model the spatial distribution 

of these climate-dependent forest types, based on 57 climate variable estimates for the 

baseline period (1986–2005) (Lin et al., 2020a). The predicted current distribution of 

forest types (Appendix S1) and the built ecological niche models provide the basis for 

projecting their future changes in this study (Table 4.1). 

Statistical analysis 

The R version (Liaw and Wiener, 2002) of the random forest (RF) algorithm (Breiman, 

2001) was utilized to model the relationship between the occurrence of a forest type and 
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its related climatic variables. RF is considered to be one of the most reliable approaches 

for ecological niche modeling (Rehfeldt et al., 2006; Wang et al., 2012). In this study, 

we adopted the RF ecological niche models developed by Lin et al. (2020a), which have 

been evaluated with an average mismatch rate of 6.59% by comparing the prediction at 

locations of all forest-type-classified plots. Predictions of the 13 RF models were 

assembled for delineating potential forest distributions under climatic conditions of the 

baseline period and of various future scenarios. 

For projections of spatial distributions of suitable climate habitat for each forest type, 

100m×100m gridded climate surfaces, which cover regions above 100m asl in Taiwan 

(2.7 million hectares in total), were generated by clim.regression with the same set of 57 

climate variable estimates. A total of 6 GCMs (Table 4.2), 2 RCPs (RCP 4.5 and RCP 8.5), 

and 3 future stages (2016–2035, 2046–2065, and 2081–2100) were considered. These 

gridded climate surfaces were then fed to RF models for producing climatic suitability of 

each forest type over the study area. 
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Table 4.1. The 13 climate-related forest types and field plots incorporated for establishing climatic niche models. 

Forest type Number of plots 
Mean annual 

temperature (°C)1 

Mean annual 

precipitation (mm)2 

Model error rate 

(%) 

High-mountain coniferous woodlands and forests    

Juniperus woodland and scrub 102 4.54 (1.64) 2,367.38 (412.60) 1.96% 

Abies–Tsuga forest 89 8.64 (1.76) 2,646.43 (430.15) 7.87% 

Subtropical mountain zonal forests    

Chamaecyparis cloud forest 543 11.58 (1.50) 2,699.89 (386.74) 5.89% 

Fagus cloud forest 55 12.54 (1.44) 3,389.41 (682.97) 3.64% 

Quercus cloud forest 1058 13.66 (1.42) 2,681.79 (362.20) 6.24% 

Machilus–Castanopsis forest 359 17.15 (1.66) 2,651.72 (475.05) 14.21% 

Phoebe–Machilus forest 410 18.82 (1.73) 3,104.20 (725.52) 10.98% 

Ficus–Machilus forest 145 21.27 (1.10) 2,390.37 (418.56) 2.08% 

Tropical mountain zonal forests    

Pasania–Elaeocarpus cloud forest 57 16.03 (1.44) 2,523.81 (169.34) 3.51% 

Drypetes–Helicia forest 425 18.41 (1.86) 2,623.93 (468.60) 3.53% 

Dysoxylum–Machilus forest 27 21.89 (1.56) 2,362.70 (406.55) 7.69% 

Tropical mountain azonal forest    

Illicium–Cyclobalanopsis winter monsoon forest 40 19.51 (1.98) 2,630.43 (160.91) 17.50% 

Subtropical mountain azonal forest    

Pyrenaria–Machilus winter monsoon forest 514 18.49 (2.21) 3,695.86 (695.10) 3.54% 

1, 2) Brackets represent the standard deviation (SD) of climatic parameters from localities where this forest type was sampled. 
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RESULTS 

Future climate in Taiwan 

TCCIP’s 5km × 5km climate surfaces demonstrate identical trends of rising 

temperatures among the six selected climate change scenarios in Taiwan. Under a high 

emission scenario of RCP 8.5 among the selected GCMs, the increase in MAT by the 

end of the 21st century can be as high as 2.36–4.09°C, with an average increase of 

3.11°C relative to the reference period. For a medium stabilization scenario such as 

RCP 4.5, an average increase in MAT of 1.74°C was predicted with the range of 0.92–

2.66°C. However, projections of future precipitation conditions arehighly variable. 

Some GCMs predict an evident increase in MAP, for example, the simulation of 

CSIRO-Mk3-6-0 under RCP 8.5 indicates a 24.79% increase in annual rainfall; by 

comparison, simulation of HadGEM2-AO under RCP 8.5 reveals a significant decrease 

in annual rainfall (-15.97%) relative to the baseline period (Fig. 4.2 and Appendix S2). 

Detailed inspection of the projected climate data shows that the temperature increase is 

slightly higher in northern Taiwan and the mountains of the whole island. For central 

and southern Taiwan, the models project a greater contrast in rainfall between the dry 

(October to April) and wet (May to September) seasons, leading to a drier winter and 

spring coupled with more extreme rainfall in the summer and autumn. 

Projected geographic changes in climatic niche for future periods 

The climatic niche projections based on the six selected GCMs, regardless of emission 

scenarios, consistently revealed a decline in area of suitable habitats for high-mountain 

forests (Juniperus woodland and scrub, and Abies-Tsuga forest) and three subtropical 

mountain zonal forests (Chamaecyparis cloud forest, Fagus cloud forest, and Quercus 

cloud forest) (Fig. 4.3 a–e; Fig. 4.4 a–e). Two rare forest types, the Fagus cloud forest 

and the Juniperus woodland and scrub, may suffer the most severe impact with 92.90% 
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and 83.92% habitat loss under a medium stabilization scenario (RCP 4.5) (Table 4.2a), 

or almost lose their habitats (account for 99.23% and 97.42% of current habitat) under 

a high emission scenario (RCP 8.5) (Table 4.2b). For subtropical mountain forests 

located in lower elevations, such as Machilus–Castanopsis forest, Phoebe–Machilus 

forest, and Ficus–Machilus forest, the predicted area of suitable habitats is relatively 

stable under moderate predictive uncertainties (Fig. 4.3 f–h; Fig. 4.4 f–h). 

It is noteworthy that the uncertainty of model predictions becomes larger in tropical 

mountain zonal forests and monsoon forests (Fig. 4.3 i–m; Fig. 4.4 i–m). In most 

warming scenarios, our results revealed a moderate trend of habitat expansion in 

tropical forest types (Table 4.2), eg. the Pasania–Elaeocarpus cloud forest (in RCP 8.5), 

the Dysoxylum–Machilus forest (in RCP 4.5 and RCP 8.5), and the Illicium–

Cyclobalanopsis winter monsoon forest (in RCP 4.5 and RCP 8.5). However, models 

projected a crash of specific tropical mountain forests under some particular scenarios. 

The Pasania–Elaeocarpus cloud forest is a rare community at 1,200–1,600m asl. in the 

south of Central Mountain Range, which is subject to frequent cloud covers, a relative 

dryness in winter and spring, and strong winds due to the lack of topographic shading. 

Climatic conditions from two GCMs, the HadGEM2-AO and CSIRO-Mk3-6-0, may 

not provide a physical environment suitable for this forest type anymore, possibly 

leading to the crash of tropical cloud forest (only 0.20–4.46% suitable habitat left till 

2081–2100) (Table 4.2). The Illicium–Cyclobalanopsis winter monsoon forest may face 

a fate similar to Pasania–Elaeocarpus cloud forest under the climatic condition 

represented by CSIRO-Mk3-6-0 scenario, which results in a dramatic habitat loss (only 

18.73–25.17% suitable habitat left till 2081–2100). 

Projected elevational changes for forest types 

According to the ensemble of climatic niche projections from six selected GCMs and 

two emission scenarios, two forest types, the Juniperus woodland and scrub and the 
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Fagus cloud forest, may suffer a strong limit for upslope shift, resulting in a high risk 

of extinction (Fig. 4.5 a–b; Fig. 4.6 a–b). Juniperus woodland and scrub vegetation type 

in Taiwan occurs at the highest altitudes, inhabiting elevations of 3,200–3,700m. Its 

distribution range is significantly related to the maximum monthly temperature during 

growing season (Lin et al., 2020a). Because of the lack of a higher and cooler habitat 

in which to retreat, a decline of the Juniperus community is unavoidable under the 

predicted climate change. Fagus cloud forest, a forest type dominated by the glacier 

relict species in Taiwan, Fagus hayatae, is a rare community isolated on a few 

mountaintops and ridges (1,400–2,100m) in northern Taiwan. Due to the lack of 

corridor linking higher mountain regions, and also the scarce of its required physical 

environment–low winter temperature with ample rainfall and frequent cloud cover, our 

model consistently predicts an ongoing contraction and local extinction at elevations 

near its present habitat (Fig. 4.5 d; Fig. 4.6 d). The upward range shift and habitat 

contraction of high-mountain forest types are illustrated in 3-D maps (Fig. 4.7). 

Among the four tropical forest types, the Pasania–Elaeocarpus cloud forest may suffer 

the highest stress along its elevational range (Fig. 4.5 i–l; Fig. 4.6 i–l). Pasania–

Elaeocarpus cloud forest is a cool-adapted tropical vegetation type, usually inhabiting 

the windward ridge with a wind-chilling environment, dominated by sclerophyllous 

broadleaved tree species with low canopy height and a very high individual tree density. 

This forest type can be sparsely distributed at elevations as low as 300–500m if the 

habitat is sufficiently exposed to strong winter monsoons to provide a relatively cool 

environment. According to this climatic and geographic requirement, the model 

predicts the Pasania–Elaeocarpus altitudinal center to be at 1,200–1,500m (Table 4.3), 

but the forest type has a long tail extending to the low-elevation end (stage P in Fig. 4.5 

i). The model ensembles demonstrate a possible upward shift for the central community 

of Pasania–Elaeocarpus cloud forest, however, the low-elevation populations may be 
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extremely vulnerable to warming, possibly resulting in extinction in the middle of this 

century (2046–2065). 

Except for the above-mentioned vulnerable forest types, the model ensembles revealed 

that suitable habitat for most middle-elevation forest types may keep shifting upward 

at the pace of 230 to 450m under RCP 4.5 scenario (Fig. 4.5 b, c, e, f, g, j), or at the 

pace of 400 to 745m under RCP 8.5 scenario (Fig. 4.6 b, c, e, f, g, j). For low-elevation 

forest types and monsoon forests, the upslope migration of suitable habitat is relatively 

insignificant, and the distribution of their low-end populations are usually maintained 

(Fig. 4.5 h, k, l, m; Fig. 4.6 h, k, l, m). 
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Table 4.2. The current area of potential habitats of the 13 climate-related forest types, and possible changes under two climate change scenarios. 

a. RCP 4.5 

Forest type 
Baseline 

area (ha) 

 2016–2035  2046–2065  2081–2100 

 Moderate Average Extreme  Moderate Average Extreme  Moderate Average Extreme 

Juniperus 29,134  62.54% 49.41% 36.00%  40.47% 26.53% 8.73%  34.28% 16.08% 2.24% 

Abies–Tsuga 114,151  91.93% 81.75% 69.30%  80.83% 63.74% 40.41%  79.50% 50.42% 25.90% 

Chamaecyparis 250,006  83.37% 79.48% 73.95%  74.49% 59.81% 51.29%  67.80% 53.96% 46.00% 

Fagus 15,433  52.59% 41.93% 31.44%  30.37% 15.08% 5.50%  13.97% 7.10% 2.06% 

Quercus 358,009  105.21% 99.69% 90.97%  104.72% 95.56% 86.97%  110.09% 89.60% 75.41% 

Machilus–Castanopsis 326,277  114.08% 98.45% 89.77%  104.43% 99.39% 94.81%  117.69% 91.41% 78.62% 

Phoebe–Machilus 318,017  127.55% 98.51% 87.17%  101.90% 86.38% 65.22%  120.76% 91.65% 71.71% 

Ficus–Machilus 694,606  116.38% 99.17% 77.02%  118.93% 108.07% 97.87%  137.69% 110.75% 81.06% 

Pasania–Elaeocarpus 8,750  406.33% 197.49% 69.12%  350.51% 166.44% 2.75%  158.63% 69.34% 0.20% 

Drypetes–Helicia 143,575  162.78% 118.29% 62.27%  137.07% 106.68% 69.57%  152.02% 71.16% 23.83% 

Dysoxylum–Machilus 240,205  247.09% 146.75% 80.89%  207.45% 171.43% 114.18%  270.85% 213.81% 120.78% 

Illicium–Cyclobalanopsis 27,314  273.07% 125.27% 30.33%  288.90% 181.28% 17.60%  358.43% 202.79% 18.73% 

Pyrenaria–Machilus 182,806  96.27% 83.07% 79.01%  113.45% 91.03% 74.15%  123.48% 93.65% 72.76% 
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b. RCP 8.5 

Forest type 
Baseline 

area (ha) 

 2016–2035  2046–2065  2081–2100 

 Moderate Average Extreme  Moderate Average Extreme  Moderate Average Extreme 

Juniperus 29,134  68.00% 52.63% 44.01%   28.81% 14.61% 3.16%   8.29% 2.58% 0.25% 

Abies–Tsuga 114,151  94.36% 83.20% 77.02%   71.48% 50.59% 28.36%   41.29% 19.72% 6.28% 

Chamaecyparis 250,006  94.43% 85.41% 78.45%   59.90% 54.10% 43.77%   43.16% 33.57% 22.19% 

Fagus 15,433  49.15% 41.23% 33.85%   9.76% 6.05% 2.48%   2.79% 0.87% 0.06% 

Quercus 358,009  104.54% 95.56% 79.46%   97.84% 86.67% 74.79%   80.13% 64.24% 56.17% 

Machilus–Castanopsis 326,277  102.89% 89.94% 74.48%   95.62% 82.97% 74.31%   96.19% 73.01% 44.82% 

Phoebe–Machilus 318,017  105.57% 96.55% 90.35%   111.58% 99.08% 84.05%   142.64% 104.77% 82.28% 

Ficus–Machilus 694,606  106.43% 95.22% 89.82%   111.69% 96.12% 80.84%   136.79% 111.70% 79.97% 

Pasania–Elaeocarpus 8,750  553.19% 223.15% 93.33%   492.28% 196.28% 0.11%   444.42% 172.89% 4.46% 

Drypetes–Helicia 143,575  166.72% 134.08% 96.82%   128.06% 93.26% 9.31%   153.08% 88.80% 8.62% 

Dysoxylum–Machilus 240,205  194.64% 156.15% 113.16%   328.70% 261.09% 197.42%   401.84% 309.42% 251.54% 

Illicium–Cyclobalanopsis 27,314  301.88% 188.86% 64.34%   379.45% 180.56% 38.17%   483.89% 240.82% 25.17% 

Pyrenaria–Machilus 182,806  94.54% 81.47% 60.79%   123.69% 83.05% 67.95%   88.98% 60.87% 18.38% 
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Table 4.3. Current elevational distribution of the 13 climate-related forest types, and possible changes under two climate change scenarios. 

a. RCP 4.5 

Unit: m asl. 

Forest type 

Baseline elevation (m)  2016-2035  2046-2065  2081-2100 

25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu. 

Juniperus 2,941 3,098  3,250   3,008 3,183 3,347   3,069 3,242 3,406   3,099 3,271 3,426 

Abies–Tsuga 2,586 2,755 2,947   2,680 2,847 3,031   2,761 2,928 3,102   2,814 2,986 3,154 

Chamaecyparis 2,100 2,284 2,474   2,232 2,411 2,601   2,345 2,532 2,714   2,407 2,596 2,782 

Fagus 1,230 1,514 1,690   1,233 1,626 1,815   1,292 1,763 1,915   1,306 1,428 1,936 

Quercus 1,574 1,763 1,952   1,697 1,891 2,086   1,834 2,029 2,238   1,906 2,103 2,319 

Machilus–Castanopsis 799 1,032 1,266   947 1,194 1,428   1,093 1,341 1,580   1,213 1,455 1,696 

Phoebe–Machilus 397 706 1,007   389 686 1,016   572 898 1,239   717 1,079 1,393 

Ficus–Machilus 112 207 355   127 242 425   129 247 454   136 270 517 

Pasania–Elaeocarpus 1,184 1,365 1,526   991 1,582 1,814   962 1,679 1,894   1,350 1,699 1,865 

Drypetes–Helicia 553 776 1,040   702 950 1,227   842 1,071 1,325   981 1,227 1,487 

Dysoxylum–Machilus 91 153 315   94 171 339   106 220 478   115 245 521 

Illicium–Cyclobalanopsis 258 401 542   335 525 778   376 590 852   346 587 893 

Pyrenaria–Machilus 260 486 837   261 487 841   232 450 772   252 465 784 
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b. RCP 8.5 

Unit: m asl. 

Forest type 

Baseline elevation (m)  2016-2035  2046-2065 (m)  2081-2100 (m) 

25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu.  25% Qu. Median 75% Qu. 

Juniperus 2,941 3,098  3,250   3,000 3,181 3,338   3,122 3,292 3,446   3,223 3,366 3,522 

Abies–Tsuga 2,586 2,755 2,947   2,676 2,842 3,026   2,831 2,993 3,158   2,999 3,158 3,313 

Chamaecyparis 2,100 2,284 2,474   2,202 2,393 2,584   2,420 2,603 2,782   2,653 2,826 2,995 

Fagus 1,230 1,514 1,690   1,206 1,546 1,765   1,254 1,337 1,527   1,316 1,379 1,426 

Quercus 1,574 1,763 1,952   1,698 1,885 2,076   1,924 2,110 2,316   2,170 2,360 2,571 

Machilus–Castanopsis 799 1,032 1,266   970 1,212 1,440   1,237 1,478 1,705   1,543 1,777 1,993 

Phoebe–Machilus 397 706 1,007   373 675 1,038   676 1,042 1,383   891 1,297 1,654 

Ficus–Machilus 112 207 355   132 247 431   145 291 552   157 334 676 

Pasania–Elaeocarpus 1,184 1,365 1,526   1,000 1,532 1,748   1,494 1,782 1,993   1,747 2,000 2,221 

Drypetes–Helicia 553 776 1,040   704 943 1,205   967 1,202 1,450   1,288 1,513 1,749 

Dysoxylum–Machilus 91 153 315   94 166 329   110 221 459   127 280 586 

Illicium–Cyclobalanopsis 258 401 542   338 545 805   331 599 907   424 783 1,133 

Pyrenaria–Machilus 260 486 837   252 467 794   245 448 772   246 455 754 
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Fig. 4.3. Change in the area of potential habitat of each forest type under RCP 4.5 emission scenarios 

relative to the baseline. Stage: P, present; S1, 2016–2035; S2, 2046–2065; and S3, 2081–2100. Forest 

types: a, Juniperus woodland and scrub; b, Abies–Tsuga forest; c, Chamaecyparis cloud forest; d, Fagus 

cloud forest; e, Quercus cloud forest; f, Machilus–Castanopsis forest; g, Phoebe–Machilus forest; h, 

Ficus–Machilus forest; i, Pasania–Elaeocarpus cloud forest; j, Drypetes–Helicia forest; k, Dysoxylum–

Machilus forest; l, Illicium–Cyclobalanopsis winter monsoon forest; and m, Pyrenaria–Machilus winter 

monsoon forest. 
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Fig. 4.4. Change in the area of potential habitat of each forest type under RCP 8.5 emission scenarios 

relative to the baseline. Abbreviations of legend are the same as Fig. 4.3. 

  



	 	

doi:10.6342/NTU202000682

4-21 
 

 

Fig. 4.5. Altitudinal change in the potential distribution of each forest type under RCP 4.5 emission 

scenarios. Shaded area under the curve represents the area of potential habitat of each stage relative to 

the baseline. The vertical bar represents the standard deviation of elevational range, whereas the solid 

circle represents its mean. Abbreviations of legend are the same as Fig. 4.3. 
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Fig. 4.6. Altitudinal change in the potential distribution of each forest type under RCP 8.5 emission 

scenarios. Abbreviations and the legends are the same as Fig. 4.5. 
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Fig. 4.7. 3-D illustrations of the predicted upward range shift in vegetation belts in north Taiwan relative 

to the reference period (a), by 2016–2035 (b), 2046–2065 (c), and 2081–2100 (d), based on the climate 

projection of the CSIRO-Mk3-6-0 model with RCP 4.5 scenario. The triangle and dotted lines indicate 

the scene view of 3-D maps. 
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DISCUSSION 

Projected changes in the distribution of forest types 

This study projected geographical and elevational changes in suitable habitats of the 13 

climate-related forest types (including 2 high-mountain types, 7 subtropical types, and 

4 tropical types) under future climates. The projected impact of climate change varied 

substantially among forest types. Specific characteristics of the projections are 

discussed below. 

a. High-mountain forests 

High-mountain forests, communities primarily constrained by direct and indirect effects 

of low temperatures, radiation, wind, or insufficient water availability (Körner and 

Larcher, 1988), and the topographical isolation, are ecotypes known to be vulnerable to 

climate change with evident extent contraction, competitive weakness, and a high risk 

of local extinction (Pauli et al., 2012; Costion et al., 2015; Morueta-Holme et al., 2015; 

Freeman et al., 2018). In this study, a consistent pattern of habitat contraction and 

topographical barrier of upward migration for high-mountain forests were revealed 

among all of the selected climate change scenarios. Taiwan is an island with sufficient 

annual rainfall. Our previous study has revealed that the distribution of high-mountain 

forests on this island is significantly related to the maximum monthly temperature at 

the start of the growing season (March to June), rather than precipitation (Lin et al., 

2020a). The projected habitat contraction of high-mountain forests was positively 

correlated to the increase in temperature. The extreme warming scenarios, eg. CSIRO-

Mk3-6-0 (CS) and CESM1-AM5 (CE), were projected to result in more habitat losses 

than moderate scenarios, such as GISS-E2-R (GI) and CCSM4 (CC). Our results also 

displayed that mountaintop represents a strong limitation on the upward migration of 

high-mountain vegetation. The Juniperus woodland and scrub is the highest vegetation 
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type in Taiwan, thus, its elevational extent will probably retract and crash because of 

the push of its lower-neighboring Abies–Tsuga forest and the migrating obstruction 

from mountaintops and ridgetops. 

b. Subtropical montane forests 

Most subtropical montane forest types we studied consistently followed the march 

conceptual model that Lenoir and Svenning (2015) presented. However, the survival of 

a few cloud forest communities may be severely threatened by a changing climate. 

Fagus hayatae is a tree species distributed in mainland China and migrated to Taiwan 

during the LGM via land bridges (Shu and Wang, 2012). It occurs only limited to a few 

isolated fragments on ridgetops and formed a pure deciduous broad-leaved forest 

(1,340–2,000m altitude) in northern and northeastern Taiwan while the temperature 

increased after the ice age (Huang & Editorial Committee of the Flora of Taiwan, 1996). 

It is a tree species restricted to unique climatic conditions of low temperature and 

plentiful precipitation in winter (Lin et al., 2020a). Our simulations revealed that their 

current communities will drastically decline in the coming decades due to the lack of 

suitable habitats and corridors to migrate (Appendix S3), which may completely follow 

the crash conceptual model that Lenoir and Svenning (2015) suggested. 

The habitat contraction of Fagus cloud forests is not a phenomenon observed solely in 

Taiwan. Téllez-Valdés et al. (2006) have reported the fragmentation and drastic 

distribution contraction of Fagus cloud forests (composed by Fagus grandifolia var. 

mexicana) in Mexico, where it represents the southernmost known boundary of the 

genus of Fagus in the Northern Hemisphere. A similar pattern was also reported in 

Japan where only 11.4% of current beech-dominant forest type (composed by Fagus 

crenata) remains stable till 2081–2100. These forests are mainly distributed at high 

elevations in snowy areas on the side close to Sea of Japan. The northwards or upwards 
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range expansions of Quercus spp., leading to the possible replacement of F. crenata, 

needs to be carefully monitored (Matsui et al., 2018). Cloud forest is a particular 

ecosystem harboring unique and valuable biodiversity worthy of conservation (Hu and 

Riveros-Iregui, 2016; Schulz et al., 2017; Pouteau et al., 2018). Our results demonstrate 

the vulnerability and sensitivity of Fagus cloud forest to the warming climate on the 

subtropical island of Taiwan, and we believe that adapted conservation strategies should 

be undertaken in the coming years. 

c. Tropical montane forests 

Based on the averaged projections from six selected GCMs, our results generally 

indicate a maintained or expanded distribution of tropical montane forests (Fig. 4.5 i–l; 

Fig. 4.6 i–l). However, the predictive uncertainties in tropical montane forest types are 

significantly larger than in high-mountain and subtropical forest types. Furthermore, 

our results indicate the probability of the collapse of specific tropical forest 

communities under particular climate change scenarios. 

We found that climatic conditions of a few scenarios may lead to the drastic contraction 

of specific tropical forest types, such as the predicted collapse of Pasania–Elaeocarpus 

tropical cloud forest under the scenarios of CSIRO-Mk3-6-0 (CS) and HadGEM2-AO 

(Ha). Pasania–Elaeocarpus forest is a rare community occupying the southernmost 

peak above 2,000m asl of the Central Mountain Range, which is adapted to strong wind, 

frequent cloud cover, and a relative dryness during the spring (February–April) (Li et 

al., 2013; Lin et al., 2020a). The two adverse GCMs to the survival of Pasania–

Elaeocarpus forest represent scenarios of extreme precipitation changes. For example, 

CSIRO-Mk3-6-0 is a warm-humid scenario that illustrates a 20–28% increase in annual 

precipitation till 2080–2100 and brings heavier rainfall in summer that leads to a more 

evident difference in water availability between dry and wet season. On the contrary, 

HadGEM2-AO is a warm-dry scenario that may reduce precipitation by 8–18% in 
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2080–2100 and result in a longer dryness in south Taiwan. The modeled habitat 

contraction of tropical forests under an extreme warm-humid scenario was also found 

in Drypetes–Helicia forest and Illicium–Cyclobalanopsis winter monsoon forest. Our 

results indicate that if an extreme change in precipitation occurrs, it may strongly reduce 

the suitability of tropical could forest. Changes in precipitation have more of an effect 

than changes in temperature. 

Range shifts of tropical tree species have been reported in recent decade (Feeley et al., 

2011; Feeley, 2012; Feeley et al., 2013; Morueta-Holme et al., 2015), and there are 

increasing numbers of studies supporting the hypothesis that tropical mountain 

ecosystems are likely to experience considerable change in the near future, such as the 

lifting of cloud base (Still et al., 1999; Hu and Riveros-Iregui, 2016) and temperature-

induced moisture stress (Pounds et al., 1999; Krishnaswamy et al., 2013). Among the 

climatic threats to tropical ecosystems, drought is the condition receiving most attention. 

It not only refers to the shortage or unevenness of precipitation, but also the 

physiological water stress induced by higher temperature and greater transpiration rates. 

Water availability plays a more crucial role than temperature variables in the existence 

of tropical forests, however, the accuracy and precision of precipitation projections  

are limited and these predictions are usually accompanied by a high level of uncertainty. 

Our results suggest large changes in the range extent of tropical cloud and monsoon 

forest types, including the possibility of extinctions. In spite of the limitations in 

accuracy and precision of these predictions, we should not ignore the possibility of 

specific ecosystem collapse. 

Adapted strategy for forest management 

Uncertainty in the projection for future climate is probably the greatest challenge in 

assessing the impact of climate change on the distribution of forests. In this study, 

however, all emission scenarios bring a drastic habitat contraction of high-mountain 
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vegetation and the deciduous Fagus broad-leaved forest. Taiwan is a continental island 

harboring many plant species originating from East Asia and many neo-endemics have 

been evolved due to the topographical isolation of mountains after the ice age. Hsieh 

(2002) has calculated an endemic rate of >50% at high elevations (>2,500m asl) of this 

island. This rate of endemism indicates a high conservation value of the high-mountain 

ecosystem in Taiwan, and further implies that the precious plant biodiversity may be 

threatened by the competition stress from its low-boundary neighbors due to the rising 

temperature. For high-mountain ecosystems, there will be no more cold habitat to 

sustain in the future, and ex-situ conservation for the endemic and small-population 

plant species, such as the collection for germplasm, and assisted regeneration in 

anthropogenic facilities, should be implemented to mitigate the urgent risk from climate 

change (Shoo et al., 2013). Fagus forest would be limited and isolated by topographical 

barriers without corridors for retreat. Mitigation actions for this forest type might 

include assistance in migration and colonization, such as transplanting seedlings and 

saplings to climatically suitable areas near its native habitat. These actions would help 

retain their field populations (Shoo et al., 2013). 

In contrast to the consistent projection on the changes of high-mountain and subtropical 

montane forest types, projected changes of tropical montane forests are highly variable 

and uncertain. This study revealed that under the extreme humid or dry scenarios, the 

current extent of tropical montane cloud forest and tropical winter monsoon forest may 

be dramatically reduced. These results provide a scientific basis for the management 

and preservation for rare and localized forest types such as the tropical montane cloud 

forest in southern Taiwan. We suggest long-term field monitoring to establish trends in 

extreme thermal and rainfall events and to depict the actual vegetation composition and 

changes in areal extent of tropical montane forests in the coming decades. If the change 

of forests follows the worse track that we modeled, adaptive management should be 
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launched as needed, including refuge preservation, movement path security, and 

colonization assistance. 
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SUPPORTING INFORMATION 

Appendix S1. Visualization of the predicted distribution of 13 forest types over Taiwan 

island based on the baseline climate data. Please find the sample movie using this link: 

https://www.youtube.com/watch?v=KBwRSSwmUYg 

Appendix S2. The projected changes in MAP and MAT using selected GCMs and 

emission scenarios for future stages relative to the baseline period. 

Appendix S3. A visualized simulation of Fagus hayatae for the possible local 

extinction near its currently largest habitat, Tung Shan. Please find the sample movie 

using this link: https://www.youtube.com/watch?v=hBSIc8AL4yI 

  

https://www.youtube.com/watch?v=KBwRSSwmUYg
https://www.youtube.com/watch?v=hBSIc8AL4yI
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Appendix S2. The projected changes in MAP and MAT using selected GCMs and emission scenarios for future stages relative to the baseline period. 

  RCP 4.5 RCP 8.5 

   
MAP 

(%) 

min_P 

(%) 

max_P 

(%) 

sd_P 

(%) 

MAT 

(°C) 

min_T 

(°C) 

max_T 

(°C) 

sd_T 

(°C) 

MAP 

(%) 

min_P 

(%) 

max_P 

(%) 

sd_P 

(%) 

MAT 

(°C) 

min_T 

(°C) 

max_T 

(°C) 

sd_T 

(°C) 

2016

-

2035 

CSIRO-Mk3-6-0 12.87  9.37  18.36  1.59  0.71  0.58  0.77  0.04  2.91  -3.49  7.46  2.74  0.88  0.82  0.93  0.01  

HadGEM2-AO -8.42  -14.98  -3.39  3.16  0.76  0.63  0.82  0.03  -16.86  -26.71  -8.84  3.93  0.24  0.08  0.31  0.04  

CESM1-CAM5 -18.25  -25.86  -10.84  3.46  0.42  0.31  0.48  0.03  0.48  -3.64  5.24  2.46  0.73  0.61  0.77  0.02  

MIROC5 -5.65  -8.42  -2.43  1.12  0.48  0.31  0.56  0.04  0.30  -4.17  5.45  2.61  0.43  0.28  0.49  0.03  

CCSM4 -8.41  -13.21  -2.38  2.50  0.32  0.20  0.40  0.03  -3.15  -7.97  2.06  2.19  0.50  0.37  0.56  0.03  

GISS-E2-R -12.10  -17.78  -7.80  2.71  0.40  0.28  0.44  0.02  -1.12  -6.54  9.46  4.02  0.53  0.40  0.58  0.03  

Average -6.66  -11.81  -1.41  2.42  0.51  0.39  0.58  0.03  -2.91  -8.75  3.47  2.99  0.55  0.43  0.61  0.03  

2046

-

2065 

CSIRO-Mk3-6-0 10.50  3.66  15.69  2.69  2.00  1.91  2.05  0.04  23.00  17.65  29.81  2.92  2.49  2.41  2.53  0.02  

HadGEM2-AO -3.43  -6.42  -0.15  1.00  1.53  1.34  1.62  0.06  -10.20  -17.35  -3.34  3.88  1.66  1.40  1.78  0.09  

CESM1-CAM5 -7.35  -16.12  0.95  4.13  1.24  1.13  1.33  0.05  -0.65  -9.62  5.75  4.10  1.79  1.65  1.90  0.06  

MIROC5 2.11  -1.65  4.24  1.00  1.26  1.13  1.33  0.05  6.66  1.57  13.71  2.88  1.97  1.79  2.11  0.09  

CCSM4 3.75  1.70  7.73  1.05  0.95  0.84  1.02  0.04  -12.23  -17.02  -6.48  2.66  1.34  1.20  1.44  0.05  

GISS-E2-R -15.19  -20.45  -9.12  2.27  0.76  0.65  0.81  0.02  -2.81  -4.82  0.46  1.43  1.37  1.26  1.42  0.02  

Average -1.60  -6.55  3.23  2.02  1.29  1.17  1.36  0.04  0.63  -4.93  6.65  2.98  1.77  1.62  1.86  0.05  

2081

-

2100 

CSIRO-Mk3-6-0 22.58  16.61  27.98  3.04  2.66  2.57  2.70  0.02  24.79  17.51  31.19  3.37  4.09  3.96  4.19  0.06  

HadGEM2-AO -9.81  -15.43  -6.95  2.03  1.88  1.57  1.99  0.10  -15.97  -20.78  -12.33  1.95  3.02  2.59  3.23  0.16  

CESM1-CAM5 -0.62  -2.88  1.68  1.18  1.97  1.87  2.07  0.04  -8.84  -17.95  0.47  4.95  3.12  2.88  3.28  0.10  

MIROC5 4.54  1.97  8.04  1.00  1.88  1.71  2.03  0.08  3.21  0.06  7.35  1.34  3.41  3.15  3.61  0.13  

CCSM4 -1.92  -6.48  1.81  1.91  1.15  1.01  1.27  0.05  -1.23  -7.87  5.49  3.39  2.67  2.47  2.81  0.09  

GISS-E2-R -4.54  -7.66  2.32  1.88  0.92  0.78  1.00  0.04  1.55  -1.33  5.23  0.92  2.36  2.25  2.42  0.04  

Average 1.70  -2.31  5.81  1.84  1.74  1.59  1.84  0.05  0.59  -5.06  6.23  2.65  3.11  2.88  3.26  0.10  
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Chapter 5 

Geographical distribution of dioecy and its ecological correlates based 

on fine-scaled species distribution data from a subtropical island 

This chapter is a published paper in Ecological Research 35(1): 170–181, 2020, co-

authored by Huan-Yu Lin, Yu-Hsin Tseng, Chang-Fu Hsieh, and Jer-Ming Hu. This article 

is an application of Taiwanese Vascular Plant Distribution Database and clim.regression 

model in the use of ecological studies. 

 

Abstract 

Dioecy is a rather rare sexual expression system guarantees outcrossing to avoid the 

deleterious effects of inbreeding. The incidence of dioecy varied among local floras 

and suggested inclining to tropical and oceanic environments, but its eco-correlates 

received little research attention. In this paper, we explore geographical patterns and 

variations in sexual expression systems of angiosperms in mountainous 

environments of Taiwan, a subtropical island in East Asia. A comprehensive geo-

database of vegetation inventories and herbarium specimens were used to identify 

eco-correlates causing variations in the horizontal geographical extent and along a 

large elevational gradient of more than 3,500m. We found the average incidence of 

dioecy in the flora of Taiwan to be 8.2%, but it exhibits geographical variations from 

islets in the Taiwan Strait to the Pacific Ocean. Detailed studies on the main island 

of Taiwan revealed that the incidence of dioecy varied among land cover types and 

elevational zones. An apparent two-step decreasing pattern of dioecy percentages 

with elevation was found, with the highest proportion in the lowlands (0–600m; 

23.96%), followed by middle elevations (600–2,700m; 20.87%) and subalpine 
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regions (2,700–3,900m; with a range of 11.38% to 0%). We found that spatial 

variations of dioecy were associated with eco-correlates of land cover, elevation, 

woodiness, species richness, and mean annual temperature. Results of this study 

partially support Bawa’s hypothesis of a higher incidence of dioecy on oceanic 

islands, and is consistent with Baker and Cox’s observations of richer dioecious 

species on high-mountain islands in the tropics and subtropics. 

 

KEY WORDS: Elevational gradient, Dioecy, Sexual expression system, Subtropics, 

Taiwan. 

INTRODUCTION 

Dioecy is a rather rare breeding system in plants that guarantees outcrossing to avoid the 

deleterious effects of inbreeding. The global incidence of dioecy among angiosperms is 

estimated to be 6% (Renner and Ricklefs, 1995), and its presence can vary among local 

floras. Some researchers found higher proportions of dioecious species in tropical floras 

(22.0–40.0% by Bawa and Opler, 1975; 30.6% in Venezuela by Sobrevila and Arroyo, 

1982) than in temperate floras such as the British Isles, North Carolina, southern 

California and South Australia (less than 4.0% by Bawa, 1980). In addition, oceanic 

islands were suggested as being hotspots of dioecy (Bawa, 1982; Baker and Cox, 1984). 

For example, Hawaii (27.7% by Bawa, 1982; 14.7% by Sakai et al., 1995), New Zealand 

(12.0–13.0% by Godley, 1979), Tonga (16.0% by Yuncker, 1959, in Baker and Cox, 1984), 

and Samoa (17.0% by Setchell, 1924, in Baker and Cox, 1984) are the most dioecy-rich 

islands in the world. Baker and Cox (1984) reported that the maximum elevation plays 

an important role in the percentage of dioecy on islands. However, variations in the 

incidences of dioecy among elevation, vegetation types, and possible ecological 
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correlates have received little research attention. During the past few decades, several 

studies focused on the relationship between dioecy and elevation. There is evidence that 

the percentage of dioecious species increases with increasing elevation (Arroyo and 

Squeo, 1990), or dioecy and elevation exhibit a unimodal relationship that peaks in middle 

elevations (Vamosi and Queenborough, 2010). It is known that dioecy is also correlated 

with several life-form attributes such as woodiness (Bawa, 1980; Bullock, 1985; Sakai et 

al., 1995; Webb et al., 1999); small, inconspicuous, or greenish flowers (Bawa, 1980; Fox, 

1985); fleshy fruits (Bawa, 1980; Givnish, 1980; Webb et al., 1999); unspecialized 

pollinators (Bawa and Opler, 1975; Baker and Cox, 1984); and a young successional stage 

(Réjou-Méchain and Cheptou, 2015). 

Taiwan is a continental island on the western edge of the Pacific Ocean; it is located 

approximately 200km east of the Asian mainlandand and 360km north of Luzon Island, 

the Philippines (Hsieh and Shen, 1994). More than 73% of the land is occupied by hills 

and mountains, and the Central Mountain Range reaches nearly 4,000m above sea level. 

The main landmass of Taiwan was formed as an island during the Miocene epoch, but is 

generally believed to have been connected to the Asian mainland during the four glacial 

periods of the late Quaternary, with the final connection occurring at the end of the last 

glacial period approximately 10,000 years ago (Shen, 1994). The dynamic environment 

of the island creates diverse topography and habitats harboring more than 4,200 vascular 

plant species (with approximately 3,500 species being angiosperms), of which 1,052 

(22.9%) are endemic to Taiwan. A total of 60.7% of the island is covered by forests, in 

which 79% is natural (https://www.forest.gov.tw/EN/0002664) and shows a clear vertical 

zonation caused by elevational variations in climate conditions (Su, 1984). Hills below 

500m are considered subtropical to tropical environments and are occupied by Ficus–

Machilus forests. Areas at 500–1,500m, corresponding to the subtropical climate zone, 
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are occupied by broadleaf evergreen forests and are mainly dominated by species of the 

Lauraceae and Fagaceae. Mountains at 1,500–2,500m are considered the cool temperate 

vegetation zone, usually dominated by Quercus species. Forests ranging 2,500–3,500m 

are comparable to the cold temperate zone and are dominated by coniferous species such 

as Tsuga, Picea, and Abies. Areas above 3,500m are considered subarctic environments 

that approach the timber line of Taiwan (Hsieh et al., 1994). 

A tropical climate (Baker, 1959; Bawa and Opler, 1975; Baker and Cox, 1984) and island 

habitats (Baker and Cox, 1984; Sakai et al., 1995) have long been speculated to be 

correlated with the presence of dioecy. Taiwan contains plant species that migrated from 

temperate Asia via a land bridge during the Last Glacial Maximum (LGM); however, this 

island also harbors abundant tropical species conveyed by ocean currents and animals. 

Because of the transition between temperate- and tropical-originating floras and the 

obvious elevational climatic variations that exist in Taiwan, we can reasonably assume 

that sexual expression systems should gradually vary along geographical and elevational 

gradients. In our previous study, we documented the incidence of dioecy in Taiwan using 

species lists and taxonomic revisions from the second edition of the Flora of Taiwan 

(Huang and Editorial Committee of the Flora of Taiwan, 1993, 1996, 1998, 2000, 2003). 

We found that the overall percentage of dioecious species was approximately 8%, but the 

percentage varied among different forests and climatic zones in selected plots. We also 

found that dioecy probably tended to decrease with elevation (Tseng et al., 2008) based 

on data from seven selected forest plots at different elevations. However, descriptive data 

of the flora were only preliminary in that research on breeding systems; further detailed 

and advanced studies are required to elucidate correlations between dioecy and ecological 

factors. In this study, we applied a geographic information system (GIS) to accurately 

integrate geo-referenced data from extensive plot-based vegetation surveys and 



	 	

doi:10.6342/NTU202000682

5-5 
 

herbarium specimen collections with ecological factors for each species occurrence. Our 

main objectives were to: (1) determine the incidences of dioecy and other sexual system 

for more than 3500 angiosperms based on data of newly updated vegetation surveys and 

herbarium specimens; and (2) explore changes in dioecy percentages along geographical 

and elevational gradients and their possible ecological correlates. 

MATERIALS AND METHODS 

Data source 

We collected distribution data of angiosperms, including 379,962 specimen records from 

four main herbaria (TAI, TAIF, HAST, and TNM) and 991,455 occurrences from two 

national biological resource inventory projects in Taiwan (Fig. 5.1). Specimen metadata 

from the herbaria included the following content: scientific name, collection date, locality, 

collectors, collector number, and identifiers. Specimens with collection locality 

descriptions but without geographical coordinates were assigned coordinates by 

consulting place name databases and archival and online maps. The two national 

biological resource inventory projects were the National Vegetation Mapping 

implemented in 2003–2008 and the Survey of Invasive Alien Plants implemented in 

2009–2012. In the National Vegetation Mapping project, 3,564 plots (400m2 in size) were 

established and surveyed in national forest districts throughout Taiwan. In the Survey of 

Invasive Alien Plants project, another 3,566 plots (125 m2) were established at low 

elevations and on the plains. In accordance with criteria set forth by the vegetation survey 

team, each plot was categorized into one of eight land cover types: bamboo forest (BAM), 

cropland (CL), grassland (GL), natural forest (NF), plantation (PL), roadside (RS), shrub 

land (SL), and Yushania grassland (YUS). For each plot, the following parameters were 

measured: geographical coordinates, abiotic environmental factors (elevation, slope, and 
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aspect), and biotic factors (species, diameter at breast height for woody plants, and 

coverage of herbaceous plants and seedlings). Ultimately, 1,364,490 occurrence records 

were compiled into our GIS database, including 187 families, 1,216 genera, and 3,537 

angiosperm taxa. 

 

 

Fig. 5.1. (a) Distribution of specimen data from four main herbaria of Taiwan. (b) Plots of the National 

Vegetation Mapping Project (solid circles) and Survey of Invasive Alien Plants (open squares). 

 

Estimates of climatic variables for field survey plots 

Because of difficulties in measuring climatic variables in each plot, we utilized 

clim.regression, a climate downscaling program based on algorithms of bilinear 

interpolation and dynamic elevation adjustment (Wang et al., 2016; Wang et al., 2017; 

Lin et al., 2018), to downscale the 5-km-gridded climate data produced by the Taiwan 
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Climate Change Projection and Information Platform into a scale-free surface, rendering 

it more suitable and accurate for ecological research. Based on the coordinates and 

elevation of each plot, five climatic variable estimates, namely the mean annual 

temperature (MAT), mean warmest month temperature (MWMT), mean coldest month 

temperature (MCMT), temperature difference between the MWMT and MCMT (TD), 

and mean annual precipitation (MAP), were obtained. 

Identification of sexual systems 

Tseng et al. (2008) documented sexual expression systems of the flora of Taiwan, 

including 181 families, 1,120 genera, and 3,052 native species. Following Tseng et al.’s 

report, plant sexual systems were divided into four categories in this study: monoecious, 

dioecious, hermaphroditic, and “polygamous and others”. Species described as 

“monoecious or dioecious” in the Flora of Taiwan were considered monoecious because 

dioecious records sometimes reflect the dichogamous expression of unisexual flowers. 

Species listed as “dioecious or rarely monoecious” or “functionally dioecious” were 

considered to be dioecious. Species were recorded as hermaphroditic if they had bisexual 

flowers. Species recognized as “polygamous and others“ included andromonoecious, 

gynomonoecious, androdioecious, polygamodioecious, polygamousmonoecious, 

dioecious or hermaphroditic, dioecious or polygamous, monoecious or polygamous, 

dioecious or hermaphroditic or polygamous, dioecious or monoecious or polygamous, 

and species without detailed sexual system information. In Tseng et al.’s study, species 

with more than one variety, subspecies, or forma were considered one record to reduce 

double counts at the infraspecific level. However, ecological niches and geographical 

distributions may differ among varieties and subspecies; to reveal spatial and ecological 

identities of sexual expression systems, we narrowed our data down to the infraspecific 
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level based on definitions provided in previous research and descriptions provided in the 

Flora of Taiwan. Finally, sexual expression systems of 3,537 taxa of angiosperms 

belonging to 187 families and 1,216 genera were documented in this study. 

Data analysis 

Taiwan is located on the southeastern edge of Eurasia Plate and is surrounded by islets 

that originated from different geological events. The Taiwanese flora also displays a 

transition from the Eastern Asiatic Region to the Malesian Region due to its geographical 

and historical context (Takhtajan, 1978). To express geographical patterns of sexual 

systems, geo-referenced specimens and inventory data were used to calculate the relative 

representation of sexual expression systems (dioecious, monoecious, hermaphroditic, and 

“polygamous and others”) among Taiwan and its associated islets (Fig. 5.2). 

In order to exclude imprecise ecological factors from ambiguous localities of specimen 

metadata, we extracted data from two national biological resource inventory projects 

which contained accurate GPS coordinates and plot parameters to conduct further 

analyses (Fig. 5.1b). An analysis of variance (ANOVA) and Tukey’s honest significant 

difference (HSD) post-hoc test were used to examine differences in the percentage of 

dioecy among land cover types and elevational zones. A linear regression was conducted 

to explore relationships between dioecy and elevation. However, in order to verify the 

difference among land cover types, the regression analysis was carried out for each land 

cover type separately. To assess the detailed elevational patterns of dioecy of natural 

vegetation, plots of the four natural land cover types (NF, SL, GL, and YUS) were 

extracted and categorized into 13 elevational groups of 300-m contour intervals for local 

polynomial regression function (LOESS) analysis to reveal the overall variation in dioecy 

with the change in elevation. 
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Dioecy is unevenly distributed among regions, life forms, and families of angiosperms 

(Bawa, 1980). Many biotic and abiotic correlates of dioecy have been recognized, such 

as woody communities (Bawa, 1980), tropical floras on islands (Bawa, 1980; Bawa, 1982; 

Baker and Cox, 1984), species richness, phylogenic diversity (Vamosi and Queenborough, 

2010), and mesic habitats in lowlands and lowland-montane regions (Sakai et al., 1995). 

Most of the factors are highly entangled, and correlations cannot be easily separated, 

especially when using vegetation data from field surveys. For this reason, a principal 

component analysis (PCA) was conducted to explore possible variables related to sexual 

expression systems. Proportion of sexual expression systems of each surveyed plot was 

used as input data and first analyzed by the PCA, and then groups of biotic variables 

(number of species; the rate of endemic species; proportion of tree, shrub, herbaceous, 

and climber species; proportion of native, naturalized, and cultivated species of each plot) 

and abiotic variables (elevation, slope, and aspect from field measurement and MAT, 

MAP, and TD from the output of clim.regression) were added separately as passive 

variables and projected on the ordination plot. All data processing and analyses were 

performed with ESRI ArcGIS 10.5 and R 3.3.1 software (R Core Team, 2016). 
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RESULTS 

Distribution patterns of sexual systems in Taiwan and its associated islands 

According to our compiled database based on specimens and inventory surveys, 290 

(8.20%), 379 (10.72%), 2582 (73.00%), and 246 (6.96%) of 3,537 taxa were dioecious, 

monoecious, hermaphroditic and “polygamous and others”, respectively. The remnant 40 

taxa (1.12%) are lack of sexual expression information. 

The percentage of dioecy considerably varied among Taiwan proper and its associated 

islets. The dioecy percentage of the main island of Taiwan was 8.07%. Richer 

assemblages of dioecious species were discovered on three volcanic islands of Kueishan 

Island (KI), Orchid Island (OI), and Green Island (GI), representing 13.4%, 11.3%, and 

10.6% of the overall proportions, respectively. All three of these islets which were richer 

in dioecious species are located off the east coast of Taiwan and are isolated by ocean 

Fig. 5.2. Location of Taiwan 

and its associated islets. For 

abbreviations of localities and 

proportions of plant sexual 

expression systems of each islet 

see Table 5.1. 
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waters deeper than 200m. Other islets located to the west in the Taiwan Strait, with sea 

depths shallower than 200m, exhibited lower proportions of dioecy, ranging 3.8–6.7%, 

(Fig. 5.2, Table 5.1). 

 

Table 5.1. Number of taxa and proportions of sexual expression systems of angiosperms in the flora of 

Taiwan and associated islands. 

Region 
Area 

 (km2) 

Number  

of 

angiosperms 

Sexual system 

Dioecy Monoecy Hermaphrodite 
Polygamy & 

Others 

Kueishan 

Island (KI) 
2.84 372 

50 37 247 38 

13.44% 9.95% 66.40% 10.22% 

Orchid Island 

(OI) 
48.39 957 

108 115 649 85 

11.29% 12.02% 67.82% 8.88% 

Green Island 

(GI) 
15.09 529 

56 61 359 53 

10.59% 11.53% 67.86% 10.02% 

Taiwan (TW) 35,582.62 3,484 
281 371 2,548 284 

8.07% 10.65% 73.13% 8.15% 

Hsiao Lyukyu 

(HL) 
6.80 360 

24 41 257 38 

6.67% 11.39% 71.39% 10.56% 

Penghu (PH) 126.86 303 
13 33 226 31 

4.29% 10.89% 74.59% 10.23% 

Cotton Islet 

(CI) 
0.12 158 

6 8 119 25 

3.80% 5.06% 75.32% 15.82% 

Total 35,782.72 3,537 
290 379 2,582 286 

8.20% 10.72% 73.00% 8.09% 
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Table 5.2. ANOVA (a) and Tukey's HSD test (b) for dioecy percentage among different land cover types. 

 (a) 

  df SS MS F p 

Land cover types 7 38.56 5.508 1097 < 0.001 

Residuals 5,849 29.37 0.005     

df, degrees of freedom; SS, sum-of-squares; MS, mean squares. 

(b) 

Land cover type 

No. of 

plots 

Average dioecy 

(%) 

SD (%) 

Tukey’s HSD test (conf. 

level = 0.95) 

Natural forests (NF) 3,240 20.81% 7.81% d 

Plantations (PL) 323 17.28% 9.30% c 

Bamboo forests (BAM) 150 17.01% 8.82% c 

Shrub lands (SL) 53 15.41% 15.51% c 

Roadsides (RS) 1,131 4.26% 4.56% b 

Grasslands (GL) 75 4.30% 7.26% ab 

Yushania grasslands (YUS) 79 2.16% 5.72% ab 

Croplands (CL) 806 2.56% 4.21% a 

(1) SD, standard deviation. 

(2) a, b, c, or d is group divided by Tukey’s HSD test. The means in the same group are not different 

significantly by the test. 
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Fig. 5.3. Distribution map of sexual expression systems of Taiwan and its associated islands. (a) Dioecy; 

(b) monoecy; (c) hermaphrodite; (d) polygamy and others. We divided the main island of Taiwan and its 

neighboring islets into 1,629 continuous 5km × 5km grids, which were overlaid with angiosperm 

occurrence data to calculate the proportions of breeding systems for each grid. To avoid dramatic changes 

in the proportion caused by a lack of data, grids that contained fewer than 50 species occurrence records 

were excluded. We also excluded grids that covered a terrestrial area of less than 1.25km2 (5% of the grid 

area) to prevent the distribution pattern from being abbreviated. Finally, 1,395 grids, accounting for 85.63% 

of Taiwan's total land area, were included in the maps. 
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In addition to the increasing incidence of dioecy through a west-to-east gradient from the 

Taiwan Strait to the Pacific Ocean, distributions of sexual expression systems were also 

highly variable among local habitats of Taiwan. Field data from 5,857 plots belonging to 

eight land cover types were used to evaluate the incidences of dioecy within different 

environmental surroundings. The average incidence of dioecy in Taiwan was 8.20%, 

however, results of the ANOVA indicated that it was significantly inconsistent among 

land cover types (Table 5.2a, F = 1,097, p < 0.001). The result of Tukey's HSD test further 

grouped land cover types into three categories based on their dioecy proportion. Natural 

forests (NF) were the most dioecy-rich community with an average incidence of 20.81%. 

Dioecious species were also common in woody-dominant communities, including 

plantations (PL), bamboo forests (BAM), and shrub lands (SL), with proportions ranging 

15.41–17.28%, which were relatively lower compared to natural forests. The lowest 

incidences of dioecy were found in disturbed, early successional, and non-woody 

vegetation, such as roadsides (RS), grasslands (GL), Yushania grasslands (YUS), and 

croplands (CL), with proportions ranging 2.56–4.26% (Table 5.2b). The mapped 

distribution of sexual expression systems also exhibited high spatial heterogeneity. 

Hotspots of dioecy usually occurred in mountainous areas, whereas the western plains 

and islets in the Taiwan Strait were mostly dioecious-poor and dominated by polygamous 

and hermaphroditic species (Fig. 5.3). 

Elevational patterns of dioecy and their ecological correlates 

Results of the linear regression analysis revealed that the dioecy percentage significantly 

decreased with increasing elevation (m < 0, p < 0.001) for each of the four natural land 

cover types of natural forests (NF), shrub lands (SL), grasslands (GL), and Yushania 

grasslands (YUS). Contrary results were obtained for anthropogenic vegetation and 
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human-exploited areas. The incidence of dioecy for both bamboo forests (mostly planted 

on the main island of Taiwan) and croplands (CL) exhibited an increasing trend with 

elevation (m > 0, p < 0.001), but no consistent trend was observed for the dioecy 

proportion of plantation forests (PL) or roadside (RS) habitats with elevation (Fig. 5.4). 

Several authors mentioned that the percentage of out-breeding or dioecious species in 

natural forests displayed a decreasing (Jacquemyn et al., 2005; Tseng et al, 2008) or 

unimodal relationship (Vamosi and Queenborough, 2010) with elevation. Our data 

supported the declining incidence of dioecy with elevation; however, this pattern was only 

found for natural vegetation types and not for anthropogenic or disturbed habitats. 
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Fig. 5.4. Results of a linear regression analysis between elevation and the proportion of dioecy for each of 

eight land cover types. Natural land cover types are in the left column (NF, natural forests; SL, shrub lands; 

GL, grassland; and YUS, Yushania grasslands), and anthropogenic land cover types are in the right column 

(PL, plantations; BAM, bamboo forests; RS, roadsides; and CL, croplands). The slope of the regression 

line is represented by m. 
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Fig. 5.5. Relationship between the percentage of dioecy and elevation for natural vegetation (NF, natural 

forests; YUS, Yushania grasslands; GL, grassland; and SL, shrub lands). The fitted curve is a local 

polynomial regression. 
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Table 5.3. Tukey's HSD test for dioecy of natural vegetation among different elevational groups. 

Elevation (m) 0–300 300–600 600–900 900–1,200 
1,200–

1,500 

1,500–

1,800 

1,800–

2,100 

2,100–

2,400 

2,400–

2,700 

2,700–

3,000 

3,000–

3,300 

3,300–

3,600 

3,600–

3,900 

No. of plots 429 421 336 275 336 370 407 326 157 126 132 116 16 

Average dioecy (%) 23.87% 24.10% 21.88% 21.15% 20.55% 21.26% 21.31% 20.67% 19.29% 11.38% 4.74% 1.25% 0.00% 

Standard deviation 7.92% 6.11% 5.52% 5.67% 5.27% 5.03% 5.35% 7.49% 10.21% 12.05% 9.31% 4.07% 0.00% 

Tukey’s HSD test 

(conf. level = 0.95) 
f f e de de de de de d c a b ab 

a, b, c, d, e or f is group divided by Tukey’s HSD test. The means in the same group are not different significantly by the test. 

 

  

Fig. 5.6. Biplots of the principal component analysis (PCA) 

showing relationships between sexual expression systems and 

(a) biotic and (b) abiotic correlates. The variables are indicated 

by vectors pointing in the direction of maximum variation. 

Long vectors indicate strong trends, and the angle between 

pairs of vectors approximates the correlation between the 

respective variables. Each vector points in the direction of 

increase for a given variable, and its length indicates the 

relative importance of that variable in the dataset. 
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Results of Tukey’s HSD test (Table 5.3) indicated that plots sampled from natural 

vegetation below 600m had a significantly higher dioecy percentage, with a mean value 

of 23.96%. No statistically significant difference was detected among the groups in 

middle elevations (at 600–2,400m, with a mean value of 21.14%), which represented a 

slightly decreased incidence of dioecy than that at low elevations. The dioecy 

percentage significantly declined in elevational groups above 2,400m, and no dioecious 

species were found in any subalpine plots (at ≥ 3,600m). The LOESS regression 

demonstrated that the relationship between dioecy and elevation in natural habitats 

could be split into two segments with a breakpoint at approximately 2,200m (Fig. 5.5). 

The segment below 2,200m showed a moderate decreasing trend for the dioecy 

proportion; whereas it became distinctly steeper above the breakpoint. In high-elevation 

plots above 2,500m, zero values of dioecy were common, especially for Yushania 

grasslands (YUS) and grasslands (GL). 

Results of the PCA showed that the first two principal components (axes) together 

accounted for 80.65% of the total variance in the sexual expression dataset. The first 

component was primarily related in one extreme (negative values) with high 

proportions of dioecious and monoecious species, and at the opposite extreme (positive 

values) with high proportions of hermaphroditic species (Fig. 5.6). The second 

component represented a sharp contrast between polygamous species and those with 

other sexual expressions. Plots near the top tended to have a high proportion of 

polygamy, and this was strongly independent of the occurrence of dioecious and 

hermaphroditic species along the first component. Biotic variables of each plot, 

including the proportions of life forms (trees, climbers, shrubs, and herbs), proportions 

of origins (native, naturalized, and cultivated), species richness, and the rate of endemic 

species were orthogonally projected onto the first two principal components (Fig. 5.6a). 
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This illustrated that dioecy was significantly related to tree- and climber-dominant, and 

species-rich communities; in contrast, hermaphrodites were more common in 

herbaceous-dominant communities, and they also demonstrated a positive relationship 

with the rate of endemism. Polygamous species were usually found in habitats rich in 

naturalized and cultivated species. Fig. 5.6b displays the orthogonal projection of 

abiotic factors. Only two variables, MAT and elevation, were correlated with the 

composition of sexual expression systems, especially for the presence of dioecious and 

hermaphroditic species. This result revealed that dioecious species may prefer low-

elevation regions with a warm climate, while hermaphroditic species exhibited higher 

dominance in subalpine areas with lower annual temperatures. The remaining abiotic 

factors (TD, MAP, slope, and aspect) seemed to have little effect on the distributions of 

sexual expression systems. 

DISCUSSION 

The horizontal distribution of dioecy — from continental to oceanic 

The continental and oceanic distributions of dioecism and its latitudinal pattern have 

long been the subject of biogeographical research. Most studies relied on regional 

floristic checklists (e.g., Baker and Cox, 1984; Sakai et al., 1995; Tseng et al., 2008), 

but analyses examining dioecy and its geographical patterns based on complete and 

detailed inventory data are lacking. A review (Sakai and Weller, 1999) of geographic 

patterns of dioecism noted that dioecy is mainly related to island habitats (Baker, 1967; 

Bawa, 1980; Baker and Cox, 1984; Sakai et al., 1995) and tropical climates (Bawa, 

1980; Givnish, 1980). Baker and Cox (1984) reported a strong correlation between the 

level of dioecy on islands and proximity to the equator as well as the maximum 

elevation of the island. Based on these perspectives, the level of dioecism in Taiwan 

should be higher than those of continents and should display a transitional characteristic 
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between continental and oceanic floras due to its historical and geographical contexts. 

Our study documented that the average incidence of dioecy is 8.07% for the main island 

of Taiwan, and also discovered high dioecy percentages for three volcanic islets off 

eastern Taiwan (KI, OI, and GI, ranging 10.6–13.4%), which were isolated by deep 

ocean waters since their formation. Dioecy-poor floras were observed in islets west of 

Taiwan in the Taiwan Strait (CI, PH, and HL, ranging 3.80–6.67%), which were 

connected to the Asian mainland and Taiwan by the continental shelf during the LGM. 

The increasing trend of dioecy along islets from the Taiwan Strait toward the Pacific 

Ocean, which corresponds to the transition between continental and oceanic 

geographical contexts, might be a phenomenon supporting Bawa’s hypothesis (Bawa 

1980, 1982), which refers to a higher proportion of dioecy for tropical and oceanic 

insular floras. 

In addition to the geographical reasons we stated, habitat type could be another factor 

affecting the composition of sexual systems of local floras. Sakai et al. (1995) explored 

the biogeographical and ecological correlates of dioecy in Hawaii. They found that 

dioecious species were rich in lowland and lowland-montane habitats but poor in 

coastal, coastal-lowland, and montane-subalpine habitats. In addition, tropical and 

subtropical forests are often reported to have higher incidences of dioecy than the 

regional average, such as subtropical evergreen broadleaf forests of Yunnan, China 

(24%, woody angiosperms only) (Chen and Li, 2008a), azonal tropical forests in 

Yunnan (25.1%) (Chen and Li, 2008b), tropical montane forests of Costa Rica (30.5%) 

(Vamosi and Queenborough, 2010), and Neotropical forests in the Volta Velha Reserve, 

Brazil (28%) (Vamosi, 2006). In Taiwan, Tseng et al. (2008) first reported the average 

proportion of dioecy to be 7.9%; however, they also identified higher dioecy 

percentages (11.9–23.9%) for seven selected forest sites. In this study, data from 
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numerous field plots were utilized to confirm the high proportions of dioecy in woody 

communities, and a range of 15.41–20.81% was found (SL, BAM, PL, and NF in Table 

5.2b). In contrast, we also proved that non-woody communities (CL, YUS, GL, and RS) 

are poorer in dioecy than the average of the total flora. This result implies that regional 

incidences of sexual expression systems might not serve as the only indicator in 

breeding system studies, and varieties among habitats and local floras (e.g., montane 

broadleaf forests and subalpine coniferous forests) also need to be considered. 

The elevational distribution of dioecy — from lowlands to the subalpine zone 

Variations in dioecy with changes in elevation are the other issue with which researchers 

are concerned but which have received comparatively little attention. Vamosi and 

Queenborough (2010) used inventory data from 15 permanent 1-ha plots, that ranged 

from 30 to 2,600m, to explore relationships between the proportion of dioecy and 

elevation in tropical montane forests of Costa Rica. That study reported a unimodal 

relationship with a peak at 750m, and a positive association with species richness. They 

suggested that the coincident decline in pollinator abundances with elevation may be 

one of the reasons, but could not provide further evidence in support of the underlying 

hypothesis. Another relevant study was an investigation of the change in orchid 

breeding systems with elevation on Réunion Island by Jacquemyn et al. (2005). 

Relatively high proportions of animal-pollinated orchids were found in low- to mid-

elevation zones (below the sector of 1601–2,000m), whereas a reverse trend was 

observed at higher elevations (> 2,000m) with almost no outcrossing orchid species 

observed. They proffered two explanations for the observed patterns of elevational 

variation in the orchid breeding systems: a decline of pollinators, mainly predominated 

by long-tongued moths and flies, with elevation; and harsher more-disturbed habitats 

above 2,000m where pollinator activities may have been more unpredictable than those 
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in stable forest environments at low- to mid-elevation regions. 

Our study discovered high dioecy proportions in low- and mid-elevation areas in 

Taiwan, which exhibited a declining and two-step linear pattern toward the subalpine 

zone with a distinct transition at elevations of 2,200–2,400m. Results of the PCA also 

demonstrated clear associations of dioecy with elevation, warm temperatures, and 

woodiness. However, the two variables, MAT and elevation, are highly negative 

correlated because of the effect of lapse rate. Due to the multicollinearity problem 

between temperature and elevation, even though the patterns we revealed are closer to 

Jacquemyn’s observations on Réunion, however, the causal effects of decreasing dioecy 

or out-crossings along elevational and temperature gradients are still obscure and could 

not precisely be explained by the present approach. The estimation of causal 

relationships by detailed field sampling and statistical modeling would be an issue 

worthy for further studies. 

This paper demonstrated that tropical and subtropical zones of Taiwan were the most 

dioecy-rich regions, with proportions of 20–24%, values which are concordant with 

those found in azonal tropical forests (25.1%) (Chen and Li, 2008a) and subtropical 

evergreen broadleaf forests (24%, woody angiosperms only) (Chen and Li, 2008b) of 

southwestern China at a similar latitude. Lowland forests in Taiwan are mainly 

dominated by Ficus (37 species in total, 27 of 37 of which are dioecious), and 

commonly contain dioecious-rich genera such as Smilax (19/19 of which are dioecious), 

Diospyros (10/10 of which are dioecious), and Mallotus (5/6 of which are dioecious). 

This may be the main reason supporting the highest incidences of dioecy in tropical and 

subtropical zones of Taiwan. However, the temperate vegetation of Taiwan displays 

dioecy proportions of 19.29–21.26%, which are completely incongruent with those in 

other temperate continental areas such as Ohio (11.0%) (Braun, 1950 in Bawa and Opler, 



	 	

doi:10.6342/NTU202000682

5-24 
 

1975), California (3.5%) (Freeman et al., 1980), and the British Isles (4.3%) (Kay and 

Stevens, 1986). We speculated that floras composed of plants with high phylogenetic 

affinities might, at least, partially explained the high levels of dioecy in subtropical and 

warm-temperate montane forests. For example, subtropical and warm-temperate 

montane forests in Taiwan commonly contain widespread genera such as Ilex (all 24 

species of which are dioecious), Dioscorea (14/16 of which are dioecious), Litsea 

(14/14 of which are dioecious), Eurya (12/12 of which are dioecious), Neolitsea (12/12 

of which are dioecious), Lindera (7/7 of which are dioecious), and Elatostema (6/15 of 

which are dioecious), which contribute to and support the high incidences of dioecy. 

In this study, the average incidence of dioecy in coniferous and subalpine zones in 

Taiwan was 4.34%, which approximates those in subarctic and arctic territories such as 

Alaska (5.8% and 3.9%) (Fox, 1985) and Iceland (3.0%) (Baker and Cox, 1984). The 

dramatic decrease in dioecy at elevations above 2,400m coincided with the lower bound 

of coniferous forests in Taiwan. We speculated that the decrease in dioecious species 

could be associated with the transition from broadleaf forests to coniferous forests as 

well as the simplified floristic compositions found at higher elevations. 

Pollination by small generalist insects is one of the most important characteristics of 

dioecy (Bawa and Opler, 1975; Bawa, 1980; Sobrevilla and Arroyo, 1982). Some 

studies reviewed the richness of terrestrial insect species along elevational gradients 

(Hodkinson, 2005). Most such studies, which were conducted at 0–2,000m, revealed a 

decreasing pattern of insect richness with elevation (Hanski, 1983, in Indonesia; Wolda, 

1987, in Panama; McCoy, 1990, in the southeastern United States; Perillo et al., 2017, 

in tropical Brazil), or discovered a pattern that peaks at mid-elevations (Gagne, 1979, 

in Hawaii; McCoy, 1990, in the southeastern United States; Lefebvre et al., 2018, in the 

southern Alps, France). Insects are the main pollinators of flowering plants in general, 
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regardless of whether they are generalists or specialists (Jacquemyn et al., 2005), thus 

it is reasonable to suspect that our finding on the decline in dioecy may be partially 

correlated with the change of insect pollinators along the elevational gradient. 

Nevertheless, pollinators in Taiwan have been insufficiently surveyed to support our 

assumptions, more investigations on the relationship between plant sexual expressions 

and pollinators would be a future subject. 

Overall, natural vegetation in the low- to mid-elevation regions of Taiwan showed 

higher proportions of dioecious species than the average global proportion, and 

demonstrated a decreasing trend toward the subalpine zone. This might be associated 

with the island context, and responses to a warm climate, woody floras, and the richness 

of insect pollinators on an elevational gradient. Although the intact species distribution 

database that we used in this paper was helpful in studying geo-patterns of breeding 

systems, better knowledge and investigations of patterns of pollinator richness, 

phylogenetic affinities of components of the local floras, and further ecological studies 

are required to verify the causalities. 
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Appendix S1. List of dioecious angiosperm species in Taiwan and its associated islets. 

Family Scientific name Chinese name 

Anacardiaceae Pistacia chinensis Bunge 黃連木 

Anacardiaceae Rhus javanica L. var. roxburghiana (DC.) Rehd. & Wilson 羅氏鹽膚木 

Anacardiaceae Rhus succedanea L. 山漆 

Anacardiaceae Rhus sylvestris Sieb. & Zucc. 野漆樹 

Aquifoliaceae Ilex arisanensis Yamamoto 阿里山冬青 

Aquifoliaceae Ilex asprella (Hook. & Arn.) Champ. 燈稱花 

Aquifoliaceae Ilex bioritsensis Hayata 苗栗冬青 

Aquifoliaceae Ilex cochinchinensis (Lour.) Loes. 革葉冬青 

Aquifoliaceae Ilex crenata Thunb. 假黃楊 

Aquifoliaceae Ilex ficoidea Hemsl. 臺灣糊樗 

Aquifoliaceae Ilex formosana Maxim. 糊樗 

Aquifoliaceae Ilex goshiensis Hayata 圓葉冬青 

Aquifoliaceae Ilex hayataiana Loes. 早田氏冬青 

Aquifoliaceae Ilex integra Thunb. 全緣葉冬青 

Aquifoliaceae Ilex kusanoi Hayata 草野氏冬青 

Aquifoliaceae Ilex lonicerifolia Hayata var. lonicerifolia 忍冬葉冬青 

Aquifoliaceae Ilex lonicerifolia Hayata var. matsudai Yamamoto 松田氏冬青 

Aquifoliaceae Ilex maximowicziana Loes. 倒卵葉冬青 

Aquifoliaceae Ilex micrococca Maxim. 朱紅水木 

Aquifoliaceae Ilex pedunculosa Miq. 刻脈冬青 

Aquifoliaceae Ilex pubescens Hook. & Arn. 密毛假黃楊 

Aquifoliaceae Ilex rarasanensis Sasaki 拉拉山冬青 

Aquifoliaceae Ilex rotunda Thunb. 鐵冬青 

Aquifoliaceae Ilex sugeroki Maxim. var. brevipedunculata (Maxim.) S. Y. Hu 太平山冬青 

Aquifoliaceae Ilex suzukii S. Y. Hu 鈴木冬青 

Aquifoliaceae Ilex tugitakayamensis Sasaki 雪山冬青 

Aquifoliaceae Ilex uraiensis Mori & Yamamoto 烏來冬青 

Aquifoliaceae Ilex yunnanensis Fr. var. parvifolia (Hayata) S. Y. Hu 雲南冬青 

Balanophoraceae Balanophora harlandi Hook. f. 筆頭蛇菰 

Balanophoraceae Balanophora laxiflora Hemsl. ex Forbes & Hemsl. 穗花蛇菰 

Cecropiaceae Poikilospermum acuminatum (Trecul) Merr. 錐頭麻 

Celastraceae Celastrus punctatus Thunb. 光果南蛇藤 

Chenopodiaceae Atriplex nummularia Lindl. 臺灣濱藜 

Cornaceae Aucuba chinensis Benth. 桃葉珊瑚 

Cornaceae Aucuba chinensis Benth. var. fongfangshanensis Liao et al. 鳳凰山珊瑚 
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Family Scientific name Chinese name 

Cornaceae Aucuba japonica Thunb. 東瀛珊瑚 

Cornaceae 
Helwingia japonica (Thunb.) Dietr. subsp. formosana (Kanehira & Sasaki) Hara & 

Kurosawa 

臺灣青莢葉 

Cucurbitaceae Gynostemma pentaphyllum (Thunb.) Makino 絞股藍 

Cucurbitaceae Momordica cochinchinensis (Lour.) Spreng. 木鱉子 

Cucurbitaceae Neoalsomitra integrifoliola (Cogn.) Hutch. 穿山龍 

Cucurbitaceae Siraitia taiwaniana (Hayata) C. Jeffrey ex Lu & Zhang 臺灣羅漢果 

Cucurbitaceae Solena amplexicaulis (Lam.) Gandhi 茅瓜 

Cucurbitaceae Thladiantha nudiflora Hemsl. ex Forbes. & Hemsl. 青牛膽 

Cucurbitaceae Thladiantha punctata Hayata 斑花青牛膽 

Cucurbitaceae Trichosanthes quinquangulata A. Gray. 蘭嶼括樓 

Cucurbitaceae Zehneria mucronata (Blume) Miq. 黑果馬皎兒 

Cyperaceae Carex kobomugi Ohwi 海米 

Daphniphyllaceae 
Daphniphyllum glaucescens Blume subsp. oldhamii (Hemsl.) Huang var. kengii 

(Hurusawa) Huang 

耿氏虎皮喃 

Daphniphyllaceae 
Daphniphyllum glaucescens Blume subsp. oldhamii (Hemsl.) Huang var. lanyuese 

Huang 

蘭嶼虎皮楠 

Daphniphyllaceae 
Daphniphyllum glaucescens Blume subsp. oldhamii (Hemsl.) Huang var. oldhamii 

(Hemsl.) Huang 

奧氏虎皮楠 

Daphniphyllaceae Daphniphyllum himalaense (Benth.) Muell.-Arg. subsp. macropodum (Miq.) Huang 薄葉虎皮楠 

Dioscoreaceae Dioscorea benthamii Prain & Burkill 田菁、大青薯 

Dioscoreaceae Dioscorea bulbifera L. 山芋 

Dioscoreaceae Dioscorea codonopsifolia Kamikoti 掌葉薯 

Dioscoreaceae Dioscorea collettii Hook. f. 華南薯蕷 

Dioscoreaceae Dioscorea cumingii Prain & Burkill 蘭嶼田薯 

Dioscoreaceae Dioscorea doryphora Hance 戟葉田薯 

Dioscoreaceae Dioscorea esculenta (Lour.) Burk. var. spinuosa R. Knuth 刺薯蕷 

Dioscoreaceae Dioscorea hispida Dennst. 大苦薯 

Dioscoreaceae Dioscorea japonica Thunb. var. japonica 薄葉野山藥 

Dioscoreaceae Dioscorea japonica Thunb. var. oldhamii R. Knuth 細葉野山藥 

Dioscoreaceae Dioscorea japonica Thunb. var. pseudojaponica (Hayata) Yamamoto 基隆野山藥 

Dioscoreaceae Dioscorea kaoi T. S. Liu & T. C. Huang 圓錐花薯蕷 

Dioscoreaceae Dioscorea matsudai Hayata 裏白葉薯榔 

Dioscoreaceae Dioscorea persimilis Prain & Burkill 假山藥薯 

Ebenaceae Diospyros eriantha Champ. ex Benth. 軟毛柿 

Ebenaceae Diospyros ferrea (Willd.) Bakhuizen 象牙樹 

Ebenaceae Diospyros japonica Sieb. & Zucc. 山柿 



	 	

doi:10.6342/NTU202000682

5-33 
 

Family Scientific name Chinese name 

Ebenaceae Diospyros kotoensis Yamazaki 蘭嶼柿 

Ebenaceae Diospyros maritima Blume 黃心柿 

Ebenaceae Diospyros morrisiana Hance 山紅柿 

Ebenaceae Diospyros oldhamii Maxim. 俄氏柿 

Ebenaceae Diospyros philippensis (Desr.) Gurke 毛柿 

Ebenaceae Diospyros rhombifolia Hemsl. 菱葉柿 

Ebenaceae Diospyros vaccinioides Lindl. 楓港柿 

Euphorbiaceae Acalypha suirenbiensis Yamamoto 花蓮鐵莧 

Euphorbiaceae Antidesma hiiranense Hayata 南仁五月茶 

Euphorbiaceae Antidesma japonicum Sieb. & Zucc. var. acutisepalum (Hayata) Hurukawa 南投五月茶 

Euphorbiaceae Antidesma japonicum Sieb. & Zucc. var. densiflorum Hurusawa 密花五月茶 

Euphorbiaceae Antidesma pentandrum Merr. var. barbatum (Presl) Merr. 枯里珍 

Euphorbiaceae Bischofia javanica Blume 茄苳 

Euphorbiaceae Claoxylon brachyandrum Pax & Hoffm. 假鐵莧 

Euphorbiaceae Drypetes karapinensis (Hayata) Pax 交力坪鐵色 

Euphorbiaceae Drypetes littoralis (C. B. Rob.) Merr. 鐵色 

Euphorbiaceae Excoecaria agallocha L. 土沉香 

Euphorbiaceae Flueggea suffruticosa (Pellas) Baillon 白飯樹 

Euphorbiaceae Flueggea virosa (Roxb. ex Willd.) Voigt 密花白飯樹 

Euphorbiaceae Gelonium aequoreum Hance 白樹仔 

Euphorbiaceae Liodendron formosanum (Kanehira & Sasaki) Keng 臺灣假黃楊 

Euphorbiaceae Macaranga sinensis (Baill.) Muell.-Arg. 紅肉橙蘭 

Euphorbiaceae Macaranga tanarius (L.) Muell.-Arg. 血桐 

Euphorbiaceae Mallotus japonicus (Thunb.) Muell. -Arg. 野桐 

Euphorbiaceae Mallotus paniculatus (Lam.) Muell. -Arg. var. formosanus (Hayata) Hurusawa 臺灣白匏子 

Euphorbiaceae Mallotus paniculatus (Lam.) Muell. -Arg. var. paniculatus 白匏子 

Euphorbiaceae Mallotus philippensis (Lam.) Muell. -Arg. 粗糠柴 

Euphorbiaceae Mallotus repandus (Willd.) Muell. -Arg. 扛香藤 

Euphorbiaceae Margaritaria indica (Dalz.) Airy Shaw 紫黃 

Euphorbiaceae Mercurialis leiocarpa Sieb. & Zucc. 山靛 

Flacourtiaceae Flacourtia rukam Zoll & Merr. 羅庚果 

Flacourtiaceae Idesia polycarpa Maxim. 山桐子 

Flacourtiaceae Xylosma congesta (Lour.) Merr. 柞木 

Gramineae Spinifex littoreus (Burm. f.) Merr. 濱刺麥 

Guttiferae Garcinia linii C. E. Chang 蘭嶼福木 

Guttiferae Garcinia multiflora Champ. 福木 

Guttiferae Garcinia subelliptica Merrll 菲島福木 
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Family Scientific name Chinese name 

Haloragaceae Myriophyllum propinquum Cum 烏蘇里聚藻 

Hydrocharitaceae Halophila ovalis (R. Br.) Hook. f. 卵葉鹽藻 

Hydrocharitaceae Hydrilla verticillata (L. f.) Royle 水王孫 

Hydrocharitaceae Thalassia hemprichii (Ehrenb.) Aschers. 泰來藻 

Hydrocharitaceae Vallisneria gigantea Graebner 大苦草 

Icacinaceae Gonocaryum calleryanum (Baill.) Becc. 柿葉茶茱萸 

Lauraceae Lindera aggregata (Sims) Kosterm. f. aggregata 天臺烏藥 

Lauraceae Lindera aggregata (Sims) Kosterm. f. playfairii (Hemsl.) Liao 小葉烏藥 

Lauraceae Lindera akoensis Hayata 內苳子 

Lauraceae Lindera communis Hemsl. 香葉樹 

Lauraceae Lindera erythrocarpa Makino 鐵釘樹 

Lauraceae Lindera glauca (Sieb. & Zucc.) Bl. 白葉釣樟 

Lauraceae Lindera megaphylla Hemsl. 大香葉樹 

Lauraceae Litsea acuminata (Bl.) Kurata 長葉木薑子 

Lauraceae Litsea acutivena Hayata 銳脈木薑子 

Lauraceae Litsea akoensis Hayata var. akoensis 屏東木薑子 

Lauraceae Litsea akoensis Hayata var. chitouchiaoensis Liao 竹頭角木薑子 

Lauraceae Litsea akoensis Hayata var. sasakii (Kamikoti) Liao 狹葉木薑子 

Lauraceae Litsea coreana Levl. 鹿皮斑木薑子 

Lauraceae Litsea cubeba (Lour.) Persoon 山胡椒 

Lauraceae Litsea elongata (Wall. ex Nees) Benth. & Hook. f. var. mushaensis (Hayata) J. C. Liao 霧社木薑子 

Lauraceae Litsea garciae Vidal 蘭嶼木薑子 

Lauraceae Litsea hypophaea Hayata 黃肉樹 

Lauraceae Litsea lii Chang var. lii 李氏木薑子 

Lauraceae Litsea lii Chang var. nunkao-tahangensis (Liao) Liao 能漢木薑子 

Lauraceae Litsea morrisonensis Hayata 玉山木薑子 

Lauraceae Litsea rotundifolia Hemsl. var. oblongifolia (Nees) Allen 橢圓葉木薑子 

Lauraceae Neolitsea aciculata (Blume) Koidz. var. aciculata 銳葉新木薑子 

Lauraceae Neolitsea aciculata (Blume) Koidz. var. variabillima (Hayata) J. C. Liao 變葉新木薑子 

Lauraceae Neolitsea acuminatissima (Hayata) Kanehira & Sasaki 高山新木薑子 

Lauraceae Neolitsea buisanensis Yamamoto & Kamikoti f. buisanensis 武威山新木薑子 

Lauraceae Neolitsea buisanensis Yamamoto & Kamikoti f. sutsuoensis J. C. Liao 石厝新木薑子 

Lauraceae Neolitsea daibuensis Kamikoti 大武新木薑子 

Lauraceae Neolitsea hiiranensis Liu & Liao 南仁山新木薑子 

Lauraceae Neolitsea konishii (Hayata) Kanehira & Sasaki 五掌楠 

Lauraceae Neolitsea parvigemma (Hayata) Kanehira & Sasaki 小芽新木薑子 

Lauraceae Neolitsea sericea (Blume) Koidz. var. aurata (Hayata) Hatusima 金新木薑子 
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Lauraceae Neolitsea sericea (Blume) Koidz. var. serica 白新木薑子 

Lauraceae Neolitsea villosa (Blume) Merr. 蘭嶼新木薑子 

Loranthaceae Loranthus delavayi Van Tieghem 椆樹桑寄生 

Loranthaceae Viscum alniformosanae Hayata 臺灣槲寄生 

Menispermaceae Cocculus laurifolius DC. 樟葉木防己 

Menispermaceae Cocculus orbiculatus (L.) DC. 木防己 

Menispermaceae Cyclea gracillima Diels 土防己 

Menispermaceae Cyclea insularis (Makino) Hatusima 蘭嶼土防己 

Menispermaceae Cyclea ochiaiana (Yamamoto) S. F. Huang & T. C. Huang 臺灣土防己 

Menispermaceae Pericampylus formosanus Diels 蓬萊藤 

Menispermaceae Sinomenium acutum (Thunb.) Rehd. & Wils. 漢防己 

Menispermaceae Stephania cephalantha Hayata 大還魂 

Menispermaceae Stephania japonica (Thunb. ex Murray) Miers var. hispidula Yamamoto 毛千金藤 

Menispermaceae Stephania japonica (Thunb. ex Murray) Miers var. japonica 千金藤 

Menispermaceae Stephania merrillii Diels 蘭嶼千金藤 

Menispermaceae Stephania tetrandra S. Moore 石蟾蜍 

Menispermaceae Tinospora dentata Diels 恆春青牛膽 

Moraceae Broussonetia kaempferi Sieb. 楮樹 

Moraceae Broussonetia papyrifera (L.) L'Hérit. ex Vent. 構樹 

Moraceae Ficus ampelas Burm. f. 菲律賓榕 

Moraceae Ficus aurantiaca Griff. var. parvifolia (Corner) Corner 大果藤榕 

Moraceae Ficus cumingii Miq. 對葉榕 

Moraceae Ficus erecta Thunb. var. beecheyana (Hook. & Arn.) King 牛奶榕 

Moraceae Ficus erecta Thunb. var. erecta 假枇杷 

Moraceae Ficus esquiroliana Lévl. 黃毛榕 

Moraceae Ficus fistulosa Reinw. ex Bl. f. benguetensis (Merr.) Liu & Liao 黃果豬母乳 

Moraceae Ficus fistulosa Reinw. ex Bl. f. fistulosa 豬母乳 

Moraceae Ficus formosana Maxim. f. formosana 天仙果 

Moraceae Ficus formosana Maxim. f. shimadai Hayata 細葉天仙果 

Moraceae Ficus heteropleura Bl. 尖尾長葉榕 

Moraceae Ficus irisana Elm. 澀葉榕 

Moraceae Ficus pedunculosa Miq. var. mearnsii (Merr.) Corner 鵝鑾鼻蔓榕 

Moraceae Ficus pedunculosa Miq. var. pedunculosa 蔓榕 

Moraceae Ficus pumila L. var. awkeotsang (Makino) Corner 愛玉子 

Moraceae Ficus pumila L. var. pumila 薜荔 

Moraceae Ficus ruficaulis Merr. var. antaoensis (Hayata) Hatusima & Liao 蘭嶼落葉榕 

Moraceae Ficus sarmentosa Buch.-Ham. ex J. E. Sm. var. henryi (King ex D. Oliver) Corner 阿里山珍珠蓮 
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Moraceae Ficus sarmentosa Buch.-Ham. ex J. E. Sm. var. nipponica (Fr. & Sav.) Corner 珍珠蓮 

Moraceae Ficus septica Burm. f. 大冇榕 

Moraceae Ficus tannoensis Hayata f. rhombifolia Hayata 菱葉濱榕 

Moraceae Ficus tannoensis Hayata f. tannoensis 濱榕 

Moraceae Ficus tinctoria Forst. f. 山豬枷 

Moraceae Ficus trichocarpa Bl. var. obtusa (Hassk.) Corner 鈍葉毛果榕 

Moraceae Ficus vaccinioides Hemsl. ex King 越橘葉蔓榕 

Moraceae Ficus variegata Bl. var. garciae (Elm.) Corner 幹花榕 

Moraceae Ficus virgata Reinw. ex Blume 白肉榕 

Moraceae Humulus scandens (Lour.) Merr. 葎草 

Moraceae Maclura cochinchinensis (Lour.) Corner 柘樹 

Moraceae Malaisia scandens (Lour.) Planch. 盤龍木 

Moraceae Morus australis Poir. 小葉桑 

Myricaceae Myrica rubra (Lour.) Sieb. & Zucc. 楊梅 

Myristicaceae Myristica ceylanica A. DC. var. cagayanensis (Merr.) J. Sinclair 蘭嶼肉豆蔻 

Myristicaceae Myristica elliptica Wall. ex Hook. f. & Thomson. var. simiarum (A. DC.) J. Sinclair 紅頭肉豆蔻 

Nyctaginaceae Pisonia aculeata L. 腺果藤 

Palmae Phoenix hanceana Naudin var. formosana Beccari 臺灣海棗 

Pandanaceae Freycinetia formosana Hemsl. 山露兜 

Pandanaceae Pandanus odoratissimus L. f. 露兜樹 

Piperaceae Piper arborescens Roxb. 蘭嶼風藤 

Piperaceae Piper betle L. 荖藤 

Piperaceae Piper interruptum Opiz var. multinervum C. DC. 多脈風藤 

Piperaceae Piper kadsura (Choisy) Ohwi 風藤 

Piperaceae Piper kawakamii Hayata 恆春風藤 

Piperaceae Piper philippinum Miq. 菲律賓胡椒 

Piperaceae Piper sintenense Hatusima 薄葉風藤 

Piperaceae Piper taiwanense Lin & Lu 臺灣荖藤 

Polygonaceae Rumex acetosa L. 酸模 

Polygonaceae Rumex acetosella L. 小酸模 

Rhamnaceae Rhamnus chingshuiensis Shimizu var. chingshuiensis 清水鼠李 

Rhamnaceae Rhamnus chingshuiensis Shimizu var. tashanensis Liu & Wang 塔山鼠李 

Rhamnaceae Rhamnus formosana Matsum. 桶鉤藤 

Rhamnaceae Rhamnus kanagusuki Makino 變葉鼠李 

Rhamnaceae Rhamnus nakaharai (Hayata) Hayata 中原氏鼠李 

Rhamnaceae Rhamnus parvifolia Bunge 小葉鼠李 

Rhamnaceae Rhamnus pilushanensis Liu & Wang 畢祿山鼠李 
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Rosaceae Filipendula kiraishiensis Hayata 臺灣蚊子草 

Rubiaceae Mussaenda macrophylla Wall. 大葉玉葉金花 

Rubiaceae Mussaenda pubescens Ait. f. 毛玉葉金花 

Rubiaceae Psychotria rubra (Lour.) Poir. 九節木 

Rubiaceae Timonius arboreus Elmer 貝木 

Rutaceae Melicope semecarpifolia (Merr.) T. Hartley 山刈葉 

Rutaceae Zanthoxylum ailanthoides Sieb. & Zucc. 食茱萸 

Rutaceae Zanthoxylum armatum DC. 秦椒 

Rutaceae Zanthoxylum integrifoliolum (Merr.) Merr. 蘭嶼花椒 

Rutaceae Zanthoxylum nitidum (Roxb.) DC. 雙面刺 

Rutaceae Zanthoxylum pistaciiflorum Hayata 三葉花椒 

Rutaceae Zanthoxylum scandens Blume 藤花椒 

Rutaceae Zanthoxylum schinifolium Sieb. & Zucc. 翼柄花椒 

Rutaceae Zanthoxylum simulans Hance 刺花椒 

Rutaceae Zanthoxylum wutaiense Chen 屏東花椒 

Salicaceae Salix fulvopubescens Hayata var. doii (Hayata) Yang & Huang 薄葉柳 

Salicaceae Salix fulvopubescens Hayata var. fulvopubescens 褐毛柳 

Salicaceae Salix fulvopubescens Hayata var. tagawana (Koidz.) Yang & Huang 白毛柳 

Salicaceae Salix kusanoi (Hayata) Schneider 水社柳 

Salicaceae Salix okamotoana Koidz. 關山嶺柳 

Salicaceae Salix taiwanalpina Kimura var. morrisonicola (Kimura) Yang & Huang 玉山柳 

Salicaceae Salix taiwanalpina Kimura var. taiwanalpina 臺灣山柳 

Salicaceae Salix taiwanalpina Kimura var. takasagoalpina (Koidz.) Ying 高山柳 

Salicaceae Salix warburgii O. Seemen 水柳 

Schisandraceae Schisandra arisanensis Hayata 阿里山五味子 

Simarubaceae Picrasma quassioides Benn. 苦樹 

Smilacaceae Heterosmilax indica A. DC. 土伏苓 

Smilacaceae Heterosmilax japonica Kunth 平柄菝契 

Smilacaceae Heterosmilax seisuiensis (Hayata) F. T. Wang & T. Tang 臺中假土伏苓 

Smilacaceae Smilax arisanensis Hayata 阿里山菝契 

Smilacaceae Smilax bracteata Presl var. bracteata 假菝契 

Smilacaceae Smilax bracteata Presl var. verruculosa (Merr.) T. Koyama 糙莖菝契 

Smilacaceae Smilax china L. 菝契 

Smilacaceae Smilax corbularia Kunth 裏白菝契 

Smilacaceae Smilax discotis Warburg 宜蘭菝契 

Smilacaceae Smilax elongato-umbellata Hayata 細葉菝契 

Smilacaceae Smilax glabra Roxb. 光滑菝契 
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Smilacaceae Smilax hayatae T. Koyama 早田氏菝契 

Smilacaceae Smilax horridiramula Hayata 密刺菝契 

Smilacaceae Smilax lanceifolia Roxburgh 臺灣菝契 

Smilacaceae Smilax luei T. Koyama 呂氏菝契 

Smilacaceae Smilax menispermoidea A. DC. 巒大菝契 

Smilacaceae Smilax nantoensis T. Koyama 南投菝契 

Smilacaceae Smilax nipponica Miquel 日本菝契 

Smilacaceae Smilax ocreata A. DC 耳葉菝契 

Smilacaceae Smilax riparia A. DC. 烏蘇里山馬薯 

Smilacaceae Smilax sieboldii Miq. 臺灣山馬薯 

Smilacaceae Smilax vaginata Decaisne 玉山菝契 

Theaceae Eurya acuminata DC. 銳葉柃木 

Theaceae Eurya chinensis Brown 米碎柃木 

Theaceae Eurya crenatifolia (Yamamoto) Kobuski 假柃木 

Theaceae Eurya emarginata (Thunb.) Makino 凹葉柃木 

Theaceae Eurya glaberrima Hayata 厚葉柃木 

Theaceae Eurya gnaphalocarpa Hayata 毛果柃木 

Theaceae Eurya leptophylla Hayata 薄葉柃木 

Theaceae Eurya loquaiana Dunn 細枝柃木 

Theaceae Eurya nitida Korthals var. nanjenshanensis Hsieh, Ling & Yang 南仁山柃木 

Theaceae Eurya nitida Korthals var. nitida 光葉柃木 

Theaceae Eurya rengechiensis Yamamoto 蓮花池柃木 

Theaceae Eurya strigillosa Hayata 粗毛柃木 

Theaceae Eurya taitungensis Chang 清水山柃木 

Urticaceae Boehmeria clidemioides Miq. 序葉苧麻 

Urticaceae Boehmeria longispica Steud. 長穗苧麻 

Urticaceae Debregeasia orientalis C. J. Chen 水麻 

Urticaceae Dendrocnide kotoensis (Hayata ex Yamamota) Shih & Yang 紅頭咬人狗 

Urticaceae Dendrocnide meyeniana (Walp.) Chew 咬人狗 

Urticaceae Elatostema herbaceifolium Hayata 臺灣樓梯草 

Urticaceae Elatostema multicanaliculatum Shih & Yang 多溝樓梯草 

Urticaceae Elatostema rivulare Shih & Yang 溪澗樓梯草 

Urticaceae Elatostema strigillosum Shih & Yang 微粗毛樓梯草 

Urticaceae Elatostema trilobulatum (Hayata) Yamazaki 裂葉樓梯草 

Urticaceae Elatostema villosa Shih & Yang 柔毛樓梯草 

Urticaceae Leucosyke quadrinervia Rob. 四脈麻 

Urticaceae Pipturus arborescens (Link) C. Robinson 落尾麻 
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Vitaceae Tetrastigma alatum Li 翼柄崖爬藤 

Vitaceae Tetrastigma dentatum (Hayata) Li 三腳鱉草 

Vitaceae Tetrastigma formosanum (Hemsl.) Gagnep. 三葉崖爬藤 

Vitaceae Tetrastigma umbellatum (Hemsl.) Nakai 臺灣崖爬藤 

Zannichelliaceae Halodule pinifolia (Miki) Hartog 線葉二藥藻 

Zannichelliaceae Halodule uninervis (Forsk.) Aschers. 單脈二藥藻 
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現行與未來氣候下的台灣森林植物分布預測研究 

博士論文口試紀錄 

應修正事項及回應說明 

記錄：吳俊和 

口試委員 應修正事項 回應說明 

曾彥學教

授 

1. 第五章以係以被子植物

（angiosperms）雌雄異株

為分析對象，但論文中文

摘要第五章標題為「維管

束植物（vascular 

plants）」。應修正一致。 

已修正。 

鍾國芳副

研究員 

1. 論文各章節均已發表或發

表中，文章內容包含共同

作者的努力與付出，建議

增列各作者的貢獻度說

明。 

2. 論文包含許多術語縮寫

（例如 OOB），對非統計

模型領域人員閱讀困難，

請增加縮寫名詞對照表，

提升閱讀方便性。 

3. Dash 及 Hyphen 的使用混

亂，請釐清不同符號的用

1. 已在各章末段增加 Author 

contributions，述明每一位

共同作者對該章研究成果的

貢獻。目錄（Contents）亦

增加標示 Author 

contributions 所在頁碼。 

2. 已製作縮寫名詞對照表

（Comparison table of 

abbreviations），列於摘要之

後。 

3. 已重新檢視並修正論文內

容，修正原則如下： 

Supplementary 
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口試委員 應修正事項 回應說明 

途，檢視更正論文內容。 

4. 海拔遞減率採用了「百公

尺」或「公里」等不同單

位，請修正一致。 

5. 第四章的海拔遞減率引用

了 2018 年 Taiwania 的文

章，但原發表內未見所引

用之數據，請檢視修正，

或引用更原始的海拔遞減

率文獻。 

A. 單純的英文單字連結

處，使用 hyphen (-)。 

B. 用以取代 to，或代表

數值範圍者，使用 en 

dash (–)。 

C. 有關森林類型名稱部

分，維持與原始文獻

（Li et al., 2013）相同

的用法，採用 en 

dash。例如 Abies–

Tsuga forest type。 

D. 表示語意轉折或中斷

處，採用 em dash 

(—)。 

4. 依據 Barry and Chorley 所著

Atmosphere, Weather and 

Climate (8th edition)，採用

°C/km 為本論文之海拔遞減

率單位。 

5. 已修正。改用 Barry and 

Chorley (2009) 作為引用海

拔遞減率的文獻。 

王震哲教

授 

1. 本論文使用了大量的植群

調查與標本文獻資料，務

1. 前人資料對於本論文研究具

有極重要的貢獻。已於論文
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口試委員 應修正事項 回應說明 

請對前人的辛苦成果表達

致謝之意。 

2. 第四章內容仍有格式不一

致之處，例如圖號、表號

未列出章節代碼。 

3. 參考文獻對於中文人名的

連接，部分帶有 hyphen、

部分則無，請修正一致。 

4. 建議第五章增加附錄，將

雌雄異株物種（dioecious 

species）逐一表列，以利

未來的研究人員可參照與

檢驗。 

 

誌謝章節，述明各項資料來

源並表達感謝。 

2. 已統一修正。例如修正為

Table 4.1; Fig. 4.1 等。 

3. 已將中文人名統一修正為帶

有 hyphen 的連接形式。例

如：H.-Y. Lin。 

4. 第五章增加 Appendix S1. 

List of dioecious angiosperms 

in Taiwan and its associated 

islets (p.5-31–p.5-39)。 
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現行與未來氣候下的台灣森林植物分布預測研究 

博士論文口試紀錄 

後續研究建議 

記錄：吳俊和 

口試委員 後續研究建議 

曾彥學教

授 

1. 第五章對臺灣被子植物的雌雄異株地理分布趨勢進行了分

析，未來可針對楊柳科、柿樹科、山茶科（柃木屬）、樟科

（木薑子屬、新木薑子屬）等以雌雄異株為主的類群進行研

究。另外，裸子植物亦是可以單獨探討的對象。 

2. 本論文提出高海拔森林、水青岡森林、熱帶雲霧林、熱帶季

風林可能因氣候變遷而快速消失，可更深入探討與此現象有

關的氣候因子，並提出適宜的保育策略。尤其是臺灣南部的

熱帶霧林與季風林，兩者的季節性降雨特徵是不同的，值得

進一步研究降雨與植群變遷的因果關係。 

3. 本研究將鐵冷杉林（Abies-Tsuga forest type）合併為同

一林帶，與我們熟悉的冷杉林、鐵杉林的植群分類不太一

致。建議未來可發展更細緻的林型分類與預測技術，將鐵杉

林與冷杉林區分開來。 

4. 針對已知的易受氣候變遷衝擊森林類型，例如水青岡，應加

強與林務單位的合作，對易危生態系推動具體的保護工作。 

5. 臺灣杜鵑是臺灣中海拔很特殊的一種林型，但在本論文未針

對該林型有任何探討，建議可增納臺灣杜鵑林型的分析。 

陳子英教 1. 植群預測模型在特定森林類型的錯誤率較高，例如熱帶季風



	 	

doi:10.6342/NTU202000682

S-5 
 

口試委員 後續研究建議 

授 林，由於該林型與地形及風衝等因素相關性高、或是某些森

林僅特定生長在臨海的第一道稜線上，但現有氣候模型不易

反映這種細微尺度的棲地特色，導致預測結果較差。宜思考

如何找到更適合代表生物分布的氣候因子，並提高環境因子

的空間解析度，進一步改良現有的預測模型。 

2. 本研究發現龜山島、綠島及蘭嶼的雌雄異株物種比例較高，

除了與這些小島與臺灣本島的隔離程度外，是否與小島形成

的時間有關？也許可進一步探討。 

3. 雌雄異株物種的比例，在陸生與水生植物間是否不同？以水

鳥傳播為主的水生物種，是否有特殊的植物性別比例？濕地

植物相有沒有特殊的植物性別特色？均為值得研究的議題。 

鍾國芳副

研究員 

1. Clim.regression氣候模型值得推廣給有興趣的生態研究者

使用。 

2. 如同曾彥學教授建議，未來可進一步將冷杉及鐵杉林帶區別

開來，以符臺灣多數森林生態研究者的植群分類概念。 

3. 本論文探討了現行（1960-2009）與未來（2016-2100）氣

候，若技術與資料許可，建議可再發展古氣候（paleo 

climate）的研究。 

 

謝長富教

授 

1. 目前的植群預測模型對於熱帶季風林的預測準確率較低，可

能受到小尺度地形與季風交互作用的影響。建議未來的氣候

模型可朝風衝現象做更細緻的模擬，並可作為後續研究與發

表的主軸。 

2. 楠櫧林帶的預測準確率也偏低，可能與該植群帶由多個群叢
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混雜組成所致。未來可利用更細緻的植群分類單元，分別建

構各群叢的棲位模型，也許可改善現有的預測準確度。 

 

王震哲教

授 

1. 第四章提出高海拔森林及水青岡森林面積很可能因氣候變遷

而縮減，熱帶霧林及熱帶季風林也可能受到嚴重威脅。前者

是大部分研究報告已提出的結論，後者則是較值得注意的研

究結果。建議針對後者，更詳細地討論可能導致此一現象的

暖化情境、環境改變量及氣候條件組合。 

2. 第五章提出雌雄異株物種比例與海拔的趨勢關係，授粉者可

能是主要的因素，但因資料不足，未能有完整的分析比較。

未來可加強這部分的研究。 

3. 西部離島雖然雌雄異株物種比例較低，但這些離島的海拔落

差也相對較小。建議進一步比較這些離島與臺灣低海拔地區

的雌雄異株比例與物種組成的差異。 

 

胡哲明教

授 

本論文發掘許多值得進一步發展的研究議題，例如： 

1. 未來可從植物生理面建立物種的氣候適存曲線，並與分布模

型曲線進行交互驗證。 

2. 本研究已從較高的地理尺度及植物性別的形態面向，整理出

雌雄異株物種的分布趨勢。未來可從自交與異交的功能面

向、譜系關係、授粉者組成、或針對特定植物類群等，進行

更多的植物性別研究議題探討。 
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