UNIVERSIDADE FEDERAL DO AMAZONAS

Raimundo Carlos Pereira Junior

CARACTERIZAÇÃO QUÍMICA E AVALIAÇÃO DOS POTENCIAIS
ANTIMICROBIANO, INSETICIDA E CITOTÓXICO DE ÓLEOS ESSENCIAIS
OBTIDOS DE *Myrcia* spp. (MYRTACEAE) OCORRENTES EM
ECOSSISTEMA DE TERRA FIRME (AMAZÔNIA)

Manaus

Raimundo Carlos Pereira Junior

CARACTERIZAÇÃO QUÍMICA E AVALIAÇÃO DOS POTENCIAIS ANTIMICROBIANO, INSETICIDA E CITOTÓXICO DE ÓLEOS ESSENCIAIS OBTIDOS DE *Myrcia* spp. (MYRTACEAE) OCORRENTES EM ECOSSISTEMA DE TERRA FIRME (AMAZÔNIA)

Tese de Doutorado apresentada ao Programa de Pós-graduação em Química, PPGQ, da Universidade Federal do Amazonas, como parte dos requisitos necessários à obtenção do título de Doutor em Química.

Orientador: Prof. Dr. Marcos Batista Machado

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Pereira Junior, Raimundo Carlos

P436c

Caracterização química e avaliação dos potenciais antimicrobiano, inseticida e citotóxico de óleos essenciais obtidos de Myrcia spp. (myrtaceae) ocorrentes em ecossistema de terra firme (Amazônia) / Raimundo Carlos Pereira Junior. 2018 209 f.: il. color; 31 cm.

Orientador: Marcos Batista Machado Tese (Doutorado em Química) - Universidade Federal do Amazonas.

1. Quimiometria. 2. Citotoxicidade. 3. Antibacteriano. 4. Bacteriostático. 5. Antifúngico. I. Machado, Marcos Batista II. Universidade Federal do Amazonas III. Título

Raimundo Carlos Pereira Junior

CARACTERIZAÇÃO QUÍMICA E AVALIAÇÃO DOS POTENCIAIS ANTIMICROBIANO, INSETICIDA E CITOTÓXICO DE ÓLEOS ESSENCIAIS OBTIDOS DE *Myrcia* spp. (MYRTACEAE) OCORRENTES EM ECOSSISTEMA DE TERRA FIRME (AMAZÔNIA)

Tese submetida ao corpo docente do Programa de Pós-Graduação em Química da Uuniversidade Federal do Amazonas como parte dos requisitos necessários para a obtenção do grau de Doutor em Química.

Aprovada em://		
BANCA EXAMINADORA		
Prof. Dr. Marcos Batista Machado – UFAM Presidente		
Prof. Dr. Marco Antônio dos Santos Farias – UFAM		
Prof. Dr. Sergio Duvoisin Júnior – UEA		
Prof. Dr. Sergio Massayoshi Nunomura – INPA		
Prof. Dr. Emmanoel Vilaça Costa – UFAM		

Ao grande Criador de toda vida e a minha família, dedico-lhes essa conquista como gratidão.

AGRADECIMENTOS

Primeiramente a Deus, pelo dom da vida concedido, pelo infinito amor e cuidado sempiterno que Ele cada dia demonstra para comigo;

A Universidade Federal do Amazonas – UFAM, pela oportunidade de cursar em suas dependências um curso de tão elevada importância para o crescimento de nosso Estado;

Ao meu Orientador, Prof. Dr. Marcos Batista Machado, pela orientação, amizade, dedicação e paciência ao longo de toda a realização do trabalho;

Ao Centro de Biotecnologia da Amazônia - CBA, pela experiência profissional adquirida nos 11 anos de trabalho dedicados dentro da Central Analítica;

Ao Instituto Nacional de Pesquisas da Amazônia – INPA, que através da parceria existente com a UFAM, permitiu os ensaios inseticidas no Laboratório de Malária de Dengue, através do Dr. Wanderli PedroTadei e da Rejane de Castro Simões;

A Universidade do Estado do Amazonas, pela autorização de acesso aos equipamentos do Núcleo de Análises Instrumentais da ESA, através da pessoa do Prof. Dr. Hector Koolen e Prof. Dr. Cleiton Fantin;

A todo o corpo docente e administrativo do curso de Pós-Graduação em Química, por compartilharem conosco, todo o conhecimento armazenado por anos de dedicação à pesquisa e ao ensino;

Ao Drs. Emerson Lima (UFAM), Juliana Lucena (IFAM) e Rudi Procópio (UEA) pela realização dos ensaios biológicos em suas respectivas áreas de atuação; Ao Prof. Dr. Afonso Duarte Leão de Souza, coordenador do projeto Estudo e aplicação da biodiversidade vegetal e microbiana da Amazônia – inovação e sustentabilidade" (Chamada: Programa Pró-Amazônia: Biodiversidade e Sustentabilidade - Edital Nº 047 / 2012 – CAPES);

A Profa. Dra. Maria Anália Duarte de Souza e ao Prof. Dr. Marcos Sobral, botânicos expecionais e apaixonados pelo que fazem, que auxiliaram diretamente na identificação do material vegetal coletado;

Ao mateiro Lucas Mergulhão, pelo conhecimento compartilhado ao longo as coletas e por seu empenho sempre constante em auxiliar na busca pelo material vegetal coletado;

Aos professores do colegiado do curso de Química do CEST/UEA: Erasmo Sergio, Marcus Lucio, Viviane Pacheco, Giselle Franco, Léia Claudiano e José Nonato (secretário), pelo apoio e cooperação nos momentos difíceis e críticos da realização desse trabalho;

Ao Dr. Massayoshi Yoshida, pela mão amiga e incentivo a capacitação profissional, saiba professor que sua dedicação à ciência nos traz inspiração a vida:

Aos meus pais, Raimundo Carlos Pereira (*in memoriam*) e Zaíra de Lima Pereira, por dedicarem suas vidas a cuidar de mim, pelo amor, carinho e estímulo que me ofereceram. Aos demais membros de nossa família: Paulo, Jorge, Fernando, Viviane, Graça, Aparecida, Vanderléia, Dorothy e Cássia, pela paciência e cuidado que tiveram por mim, ao longo da realização deste trabalho;

A minha esposa Meyre Socorro, e aos meus verdadeiros produtos naturais, Luis Gabriel Gomes Pereira, Lucas Rafael Gomes Pereira (*in memoriam*) e Anabelle Gomes Pereira pelos momentos de compreensão, amor e apoio durante os momentos difíceis na realização deste trabalho, seus sorrisos iluminam minha vida;

Aos amigos que são mais chegados que irmãos da IASD de Japiim 2 e em especial a equipe J.A (José Ferreira, Silene, Sheila, Clene, Adriana, Alex, Roseli, Carol, Brunna e Letícia);

Aos meus amigos Roque, Felipe, Angerson, Dácio e minhas amigas Ângela, Laura, Karol, Sabrina e Aline, pelos momentos inesquecíveis vividos no CBA, saibam turma que foi uma aventura incrível;

Aos demais amigos do grupo de Pesquisa NEQUIMA – Núcleo de Estudos Químicos de Micromoléculas da Amazônia;

A todos que contribuíram de forma direta ou indireta para a realização deste trabalho.

Que variedade, Senhor, nas tuas obras! Todas com sabedoria foram feitas; cheia está a terra das tuas riquezas.

Resumo

A família Myrtaceae apresenta 132 gêneros distribuídas em 5.760 espécies presentes na Austrália, sudeste da Ásia, América tropical e temperada. No Brasil, apresenta-se com 1018 espécies em 23 gêneros. Myrcia D.C é um dos maiores gêneros com 282 espécies presentes em quase todo território, sendo 220 endêmicas. Suas espécies são empregada na medicina popular brasileira, com destaque para Myrcia spp., as quais são usadas pela população tradicional da Amazônia como adstringentes, diuréticos, hipoglicemicas, anti-hemorrágicas, antioxidantes e no tratamento de hipertensão e úlceras. O presente estudo avalia a composição química dos óleos essenciais de 13 espécies de Myrtaceae (Myrcia spp., Marlierea sp. e Myrciaria sp.) de ecossistema de Terra Firme (Amazônia). Além disso são descritos os potenciais citotóxico, antibacteriano, bacteriostático, antifúngico e larvicida desses óleos. Vinte sete amostras pertencentes a essas treze espécies (18 indivíduos de 11 espécies de Mycia, um indivíduo de Marlierea caudata e outro de Calyptranthes spruceana) foram coletados na Reserva Florestal Adolpho Ducke, na EMBRAPA (Manaus) e no sítio PANC (Manaus). Seus óleos essências foram obtidos por hidrodestilação, secos e armazenado sob refrigeração. A caracterização química ocorreu por meio de análises por CG-DIC e CG-EM, cujos Índices Aritiméticos calculados e de Similaridade Espectral foram comparados com os descritos nas principais bases de dados. A média de caracterização química desses óleos foi de 95%, totalizando 336 substâncias identificadas, das quais 34 são abundantes (50,7 a 96,17%). Os componentes mais frequentes, e em alguns casos majoritários, são: (E)-cariofileno, δ-cadineno, Espatulenol, α-copaeno, β-elemeno, α-humuleno, Óxido de cariofileno, β-selineno. α-muuroleno e α-cadinol, prevalecendo estruturas sesquiterpênicas (42,73% de sesquiterpenos não-oxigenados e 36,98% de sesquiterpenos oxigenados). Essa variabilidade química é comum a espécies de Myrcia de outros ecossistemas/biomas brasileiros. Dos sete pares de indivíduos de Myrcia coletados em períodos distintos (seco e chuvoso), identificou-se 242 substâncias, sendo 125 comuns, com 41 exclusivas do período chuvoso e 76 são exclusivos do períoso seco. Os óleos essenciais do período seco apresentaram uma maior variabilidade química. Além disso, a variabilidade química dos óleos essenciais de Myrcia spp. desse ecossistema pôde ser descrita por 51 vias de ciclização. Dessas vias, treze apresentam elevada frequência (superior a 50%), sendo quatro vias de destaque pela maior ocorrência (Cariofilano, Cadinano, Aromadendrano e Eudesmano). Os resultados guímicos desse estudo revelam uma clara concordância de Marlierea caudata com a química de Myrcia spp., porém o mesmo não se evidencia claramente para C. spruceana. Ressalta-se que a composição química dos óleos essenias de M. magnoliifolia, M. minutiflora, M. fenestrata, M. amapensis e Marlierea caudata são descritos pela primeira vez. Quanto à toxicidade frente a células cancerígenas (Skmel 3 e ACPO2) e normais (MRC5), M. minutiflora apresenta atividade moderada para melanoma humano (Skmel 3) e adenocarcinoma gástrico (ACPO2), bem como citotóxica para fibroblastos nãoneoplásicos (MRC5). M. amazonica e M. fenestrata também apresentam atividade moderada para Skmel 3. Quanto ao potencial antimicrobiano e bacteriostático, M. citrifolia, M. minutiflora, M. paivae e M. magnoliifolia apresentam atividade moderada a elevada frente a Staphylococcus aureus. M. fallax, M. sylvatica, M. paivae e C. spruceana apresentam atividade moderada frente a Staphylococcus aureus. Quanto a ação bacteriostática, todas as espécies ensaiadas apresentam atividade moderada a elevada frente a Pseudomonas aeroginosas. Em relação a atividade inseticida, M. citrifolia, M. bracteata, M. fenestrata, M. amazonica, M. paivae e C. spruceana são ativas, pois após 24 h o percentual de mortalidade das larvas de Aedes aegypti é de 100% em 25 mg.L⁻¹ de óleo essencial. A aplicação de ferramentas quimiométricas nesse estudo possibilitou observar a segregação das amostras por grupos terpênicos majoritários e suas vias de ciclização mais influentes, cujas substâncias de maior relevância nesse modelo são: (E)-cariofileno, δ -cadineno e Espatulenol. Suas atividades farmacológicas descritas na literatura sugerem serem os responsáveis pelos resultados biológicos observados nesse trabalho. Contudo, novos ensaios biológicos com tais constituintes isolados talvez sejam necessários. Portanto, a respeito da química dos constituintes voláteis de *Myrcia* ocorrentes em Terra Firme (Amazônia), o presente estudo evidência quimiotipos amazônicos bem característicos e sem similaridade com outras espécies coletadas fora da região, o que nos leva a concluir o quanto ainda há a ser estudado a partir da preciosa biodiversidade amazônica.

Palavras chaves: CG, Quimiometria, Citotoxicidade, Antibacteriano, Bacteriostático, Antifúngico, Biofármacos, Larvicida, Bioinseticida

Abstract

The Myrtaceae family has 132 genera distributed in 5,760 species present in Australia, Southeast Asia, tropical and temperate America. In Brazil, it presents 1,018 species in 23 genera. Myrcia D.C is one of the largest genera with 282 species present in almost all territory, of which 220 are endemics. Its species are used in Brazilian popular medicine, with emphasis on Myrcia spp., which are used by the traditional population of the Amazon as astringents, diuretics, hypoglycemics, antihemorrhagics, antioxidants and in the treatment of hypertension and ulcers. The present study has evaluated the chemical composition of the essential oils of 13 species of Myrtaceae (Myrcia spp., Marlierea sp. and Calyptranthes sp.) from the Terra Firme ecosystem (Amazon). In addition, the cytotoxic, antibacterial, bacteriostatic, antifungal and larvicidal potentials of these oils have been described. Twenty-seven samples belonging to these thirteen species (18 individuals of 11 species of Myrcia, one of Marlierea caudata and one of Calyptranthes spruceana) were collected from the Adolpho Ducke Forest Reserve, EMBRAPA (Manaus) and the PANC site (Manaus). Its essential oils were obtained by hydrodistillation, dried and stored under refrigeration. The chemical characterization was carried out by means of CG-DIC and CG-EM analysis. The Arithmetic Indexes and the Spectral Similarity Indexes were obtained, whose results were compared with those described in the main databases. The mean chemical characterization of these oils was 95%, totaling 336 compounds identified, of which 34 have been abundant (50.7 to 96.17%). The most frequent and, in some cases, the most frequent components are: (*E*)-caryophyllene, δ-cadinene, Espatulenol, α -Copaene, β -elemene, α -humulene, Caryophyllene oxide, β-selinene, α-muurolene and α-cadinol (42.73% of nonoxygenated sesquiterpenes and 36.98% of oxygenated sesquiterpenes). This chemical variability is common to Myrcia species of other Brazilian ecosystems/biomes. Of the seven pairs of Myrcia individuals collected in distinct periods (dry and rainy), 242 compounds were identified, of which 125 were common, 41 and 76 of which were unique to the rainy and dry periods, respectively. Essential oils of the dry period have exhibit greater chemical variability. In addition, the chemical variability of the essential oils of Myrcia spp. of this ecosystem has been described by 51 cyclization pathways. Of these routes, thirteen have a high frequency (above 50%), four of which are the most prominent ones (Cariofilan, Cadinano, Aromadendrano and Eudesmano). The chemical results of this study have revealed a clear agreement of the chemical composition of Marlierea caudata with the chemistry composition of Myrcia spp.. On the other hand, this observation is not clearly evident for C. spruceana. Moreover, It should be noted that the chemical composition of the essential oils of M. magnoliifolia, M. minutiflora, M. fenestrata, M. amapensis and Marlierea caudata have been described for the first time. As for toxicity to cancer cells (Skmel 3 and ACPO2) and normal cells (MRC5), M. minutiflora presents moderate activity for human melanoma (Skmel 3) and gastric adenocarcinoma (ACPO2) as well as cytotoxic to non-neoplastic fibroblasts (MRC5). M. citrifolia, M. minutiflora, M. paivae and M. magnoliifolia present moderate to high activity against Staphylococcus aureus. M. fallax, M. sylvatica, M. paivae and C. spruceana present moderate activity against Staphylococcus aureus. As for the bacteriostatic action, all species tested have shown moderate to high activity against Pseudomonas aeroginosas. In relation to the insecticidal activity, M. citrifolia, M. bracteata, M. fenestrata, M. amazonica, M. paivae and C. spruceana are active, since after 24 h the mortality percentage of Aedes aegypti larvae was 100% in 25 mg.L-1 of essential oil. Furthermore, the use of chemometric tools in this study has shown it possible to observe the segregation of samples by major terpene groups and their most influential cyclic pathways, whose substances of major relevance in this model have been (E)-Caryophyllene, δ-Cadinene, and Espatulenol. Its pharmacological activities described in the literature should suggest that they are responsible for the biological results observed in this work. However, novel biological assays with such isolated

constituents must be necessary. Therefore, with respect to the chemistry of Myrcia volatile constituents occurring in Terra Firme (Amazonia), the present study has been evidenced very characteristic Amazonian chemotypes and without similarity with other species collected outside the region, which leads us to conclude how much to must be studied from the precious Amazonian biodiversity.

Keywords: CG, Chemometric, Cytotoxicity, Antibacterial, Bacteriostatic, Antifungal, Biopharmaceutical, Larvicide, Bioinsecticide

LISTA DE FIGURAS

Figura 1- Ocorrência da família Myrtaceae por continentes	. 21
Figura 2- Interações mediadas por terpenóides entre as plantas e com o me	oie
ambiente	
Figura 3- Esquema geral de biossíntese de terpenóides a partir da	
condensação de unidades de isopreno	. 31
Figura 4- Hidrocarbonetos lineares primários que dão origem aos terpenóido	es
encontrados nos óleos essenciais	
Figura 5- Representação esquemática da formação de terpenóides	33
Figura 6- Ácido chiquimico e seus derivados	. 33
Figura 7 - Equação para o cálculo do Índice aritmético	54
Figura 8 - Tronco, galho com folhas e frutos, óleo essencial de M. citrifolia	61
Figura 9 - Juniper canfor	65
Figura 10- Tronco, ramo com folhas e inflorescência, óleo essencial de M.	
magnoliifolia	
Figura 11- Tronco, ramo com folhas e frutos, óleo essencial de M. bracteata	
Figura 12- Tronco, ramo com folhas e frutos, óleo essencial de M. minutiflor	
Figura 13- Tronco, folha e óleo essencial de M. paivae	
Figura 14- Tronco, ramo com folhas e frutos imaturos, óleo essencial de M.	
fenestrata	
Figura 15- Tronco, ramo com inflorescência, óleo essencial de M. amapens	
	95
Figura 16- Tronco, ramo com folhas e inflorescência, óleo essencial de M.	00
amazonica	
Figura 17- Tronco, folhas e inflorescência, óleo essencial de M. fallax 1	
Figura 18- Tronco, ramo com folhas e frutos, óleo essencial de M. sylvatica	
Figura 19- árvoreta jovem, ramo com folhas e inflorescência e gotículas de	100
	na
óleo essencial na parede do Clevenger extraídas da espécie M.sphaerocar	
Figura 20 - Arvoreta, tronco e óleo essencial de Marlierea caudata	
Figura 21- Detalhe do galho infértil, arvoreta e óleo essencial de	113
	123
Carypa artarios opracearia	.20

LISTA DE GRÁFICOS

Gráfico 1- Distribuição da familia Myrfaceae no Brasil por dominios	
fitogeográficos	22
Gráfico 2- – Rendimento do óleo essencial de Myrcia spp coletadas em	
estações climátics distintas (Códigos iguais indicam mesma espécie, as l	etras
minúsculas s = período seco; c = período chuvoso)	
Gráfico 3- Rendimento do óleo essencial de todas as espécies de Myrcia	
coletadas do período chuvoso	
Gráfico 4 - Rendimento do óleo essencial de todas as espécies de Myrci	a spn
coletadas do período seco.	4 opp
Gráfico 5- Componentes mais ocorrentes, presentes em 1/3 das 27 amos	o i
analisadas	
Gráfico 6- Percentual de área ocupado pelos 34 componentes mais	102
frequentes encontrados em OE de Myrcia spp	133
Gráfico 7- Grupos terpênicos com valores percentuais normalizados	
Gráfico 8- Gráfico em 3D das amostras de óleo do período seco	
Gráfico 9 – Gráfico de scores de PC1xPC2 das amostras coletadas no	143
	150
Gráfico 10 - Gráfico biplot PC1 x PC2 das amostras coletadas no período	
secoGráfico de scores de PC1xPC3 das amostras coletadas no	131
período secoperíodo seco	150
Gráfico 12 - Gráfico biplot PC1 x PC3 das amostras coletadas no período seco.	
Gráfico 13 - Dendrograma das amostras do período seco	
Gráfico 14 - Gráfico biplot PC1xPC2 das amostras do período chuvoso	
Gráfico 15 - Biplot de PC2xPC3 das amostras do período chuvoso	
Gráfico 16 - Dendrograma das amostras do período chuvoso	
Gráfico 17- Gráfico de PC1 x PC2 das amostras coletadas em pares	
Gráfico 18 - Gráfico biplot de PC1 x PC2 das amostras coletadas em par	
Outtoo 10. Double managed as a managed as a managed	
Gráfico 19 - Dendrograma das amostras aos pares	
Gráfico 20- Percentual de mortalidade das larvas de Aedes aegypti após	
Outto 24 Demonstrat de montelidade des lemas de Andre consunti	105
Gráfico 21- Percentual de mortalidade das larvas de Aedes aegypti	400
empregando uma concentração de 500 ppm para o óleo	100
Gráfico 22- Percentual de mortalidade das larvas de Aedes aegypti	400
empregando uma concentração de 250 ppm para o óleo	100
Gráfico 23- Percentual de mortalidade das larvas de Aedes aegypti	40-
empregando uma concentração de 125 ppm para o óleo	
Gráfico 24 - Percentual de sobrevivência das células avaliadas pelo teste	
Alamar-blue	168

LISTA DE TABELAS

Tabela 1- Dados de coleta e identificação das espécies de Myrcia spp 49
Tabela 2- Propriedades físico-químicas observadas nos óleos essências de
Myrcias spp coletados na RFAD 57
Tabela 3- Estatística descritiva dos dados de rendimentos de Myrcia spp
coletadas em ambas as estações climáticas 58
Tabela 4- Estatística descritiva dos dados de rendimentos de Myrcia spp
coletadas em ambas as estações climáticas 59
Tabela 5- Componentes caracterizados de M. citrifolia com seus repectivos
tempos de retenção, índices aritméticos e percentuais de área 62
Tabela 6- Componentes caracterizados de M. magnoliifolia com seus
repectivos tempos de retenção, índices aritméticos e percentuais de área 67
Tabela 7- Componentes caracterizados de M. bracteata com seus repectivos
tempos de retenção, índices aritméticos e percentuais de área
Tabela 8- Componentes caracterizados de M. minutiflora com seus repectivos
tempos de retenção, índices aritméticos e percentuais de área
Tabela 9- Componentes caracterizados de M. paivae com seus repectivos
tempos de retenção, índices aritméticos e percentuais de área
Tabela 10- Componentes caracterizados de M. fenestrata com seus
repectivos tempos de retenção, índices aritméticos e percentuais de área 92
Tabela 11- Componentes caracterizados de M. amapensis com seus
repectivos tempos de retenção, índices aritméticos e percentuais de área 96
Tabela 12- Componentes caracterizados de M. amazonica com seus
repectivos tempos de retenção, índices aritméticos e percentuais de área . 100
Tabela 13- Componentes caracterizados de M. fallax, com seus respectivos
índices aritméticos e área percentual
Tabela 14- Componentes caracterizados de M. sylvatica, com seus
respectivos índices aritméticos e teores percentuais
respectivos índices aritméticos e percentuais de área
Tabela 16- Componentes caracterizados do óleo essencial de Marlierea
caudata e seus respectivos índices aritméticos e teores percentuais 120
Tabela 17- Compoenntes caracterizados de C. spruceana com seus
respectivos índices aritméticos e percentuais de área
Tabela 18- Variabilidade quanto ao número de substâncias presentes no óleo
essência de Myrcia spp
Tabela 19 - Correlação de Pearson entre os 07 pares coletados em ambos os
períodos climáticos
Tabela 20- Coeficiente de correlação de Pearson das amostras coletadas no
período chuvoso
Tabela 21 - Coeficiente de correlação de Pearson das amostras coletadas no
período seco
Tabela 22- Grupos terpenicos presentes nas 27 amostras de <i>Myrcia</i> spp.
coletadas
Tabela 23 – Percentual de grupos sesquiterpenicos presentes em Myrcia spp.
caracteristicos do período seco
Tabela 24- Percentual de grupos sesquiterpenicos presentes em Myrcia spp
caracteristicos do período chuvoso

Tabela 25 - Percentual de grupos sesquiterpenicos presentes em Myrcia s	рр
caracteristicos do período chuvoso (cont.)	137
Tabela 26 - As 13 rotas de biogênese mais ocorrentes em Myrcia spp. com	า ดร
respectivos percentuais de componentes caracterizados	141
Tabela 27 - As 13 rotas de biogênese mais ocorrentes em Myrcia spp com	os
respectivos percentuais de componentes caracterizados (cont.)	142
Tabela 28- Rotas de biogênese observadas para Myrcia spp coletadas na	
RFAD e na Embrapa	143
Tabela 29- Rotas de biogênese observadas para Myrcia spp coletadas na	
RFAD (cont.)	146
Tabela 30- Atividade antibacteriana por difusão em placa dos OE de Myrcia	а
spp	163
Tabela 31 Percentual de inibição da atividade microbiana e de formação	de
biofilme observados para o óleo essencial de Myrcia spp	
•	

LISTA DE QUADROS

Quadro 1- Lista de sinônimas de Myrcia spp relatadas na RFAD	23
Quadro 2- Substâncias majoritárias encontradas em Myrcia spp	39
Quadro 3- Principais rotas de biogênese para sesquiterpenos ocorrente	s em
óleo essencial de Myrcia spp. coletadas na RFAD	139
Quadro 4 - Principais rotas de biogênese para monoterpenos de Myrcia	spp,
coletadas na RFAD	139

Sumário INTRODUÇÃO	10
1. REVISÃO BIBLIOGRÁFICA	
1.1 Constituintes voláteis	
1.1.1 Óleos voláteis – Classificação, Ocorrência vegetal e Funções ecológica	
1.1.1 Oleos volateis – Classificação, Ocorrencia vegetar e i unições ecológica	
1.1.2 Biossíntese de Monoterpernos, Sesquiterpenos, Fenilpropanídes e sua vias de ciclização	as
1.1.3 Propriedades farmacológicas e uso terapêutico de óleos voláteis de	2.5
Myrcia spp.	
1.2 Análises quimiométricas	
2. OBJETIVOS	
2.1 Objetivo Geral	
2.2 Objetivos Específicos	
3. METODOLOGIA	
3.1 Reagentes, Gases, Padrões e Solventes	
3.2 Coleta e identificação do material vegetal	
3.3 Preparo do material vegetal	
3.4 Obtenção dos óleos essenciais	
3.5 Caracterização física	
3.5.1 Cálculo do Rendimento dos óleos essenciais obtidos	
3.5.2 Determinação da coloração	
3.5.3 Determinação do Índice de refração dos óleos essenciais obtidos	
3.6 Caracterização química	
3.6.1 Análise por CG-EM e CG-DIC	52
3.6.2 Análises estatísticas/quimiométricas empregada na análise dos óleos essenciais	54
3.7 Análises biológicas dos óleos essenciais	54
3.7.1 Determinação do potencial antimicrobiano	54
3.7.2 Determinação do potencial inseticida	55
3.7.3 Determinação do potencial citotóxico	56
3.7.4 Análise estatística empregada nos ensaios biológicos	56
4. RESULTADOS E DISCUSSÃO	57
4.1 Características físico-químicas dos óleos analisados	57
4.2 Identificação dos constituintes químicos presentes nos óleos essenciais de <i>Myrcia</i> spp	61
4.2.1 <i>Myrcia citrifolia</i> (Códigos – C1c e C2c)	
4.2.2 <i>Myrcia magnoliifolia</i> – (Códigos – M1s, M1c, M2s e M4c)	

4.2.3 Myrcia bracteata – (Códigos – B1c e B2c)	
4.2.3 Myrcia bracteata – (Codigos – Bre e B2c)	. 74
4.2.4 Myrcia minutiflora – (Códigos – MIs e MIc)	. 78
4.2.5 Myrcia paivae – (Códigos – PAs e PAc)	. 83
4.2.6 Myrcia fenestrata – (Códigos – F1s, F1c e F2c)	. 90
4.2.7 Myrcia amapensis – (Códigos – APs e APc)	. 95
4.2.8 Myrcia amazonica – (Códigos – AMc e AMs)	. 99
4.2.9 Myrcia fallax – (Códigos – FA1s, FA1c e FA2c)	103
4.2.10 Myrcia sylvatica – (Códigos – S1c e S2c)	108
4.2.11 Myrcia sphaerocarpa (Myrcia minutiflora) – (Código – E1s)	115
4.2.12 Myrcia caudata (Marlierea caudata) – (Código - MCc)	119
4.2.13 Calyptranthes spruceana – (Código – CS1s)	123
4.3 Variabilidade química dos óleos essenciais de <i>Myrcia</i> spp.	
ocorrentes em ecossistema de Terra-Firme (Amazônia)	
4.3.1 Coeficiente de correlação de Pearson	
4.4 Classificação quanto aos quimiotipos de óleos essências de <i>Mycia</i> spp	
4.5 Classificação química do óleos essências de <i>Myrcia</i> spp. quanto a rota biossitética de seus constituíntes	138
4.6 Análises quimiométricas das composições químicas dos óleos	
	149
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco	
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso	149
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os	149 155
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163 163
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares 4.7 Análises biológicas dos óleos essenciais de <i>Myrcia</i> spp 4.7.1 Avaliação do potencial antimicrobiano	149 155 159 163 163
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163 163 164
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163 163 164 164
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163 163 164 164 167
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	1149 1155 1159 1163 1163 1164 1164 1167 1169
essenciais de <i>Myrcia</i> spp. ocorrentes em ecossistema de Terra-firme. 4.6.1 Análise quimiométrica do óleo essencial coletado no período seco 4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso 4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares	149 155 159 163 163 164 164 167 169 172

INTRODUÇÃO

Há séculos os homens fazem uso das plantas para obtenção de remédios empregados no combate dos mais diferentes males. As plantas aromáticas por sua vez, tem seu uso difundido nas mais diferentes culturas ao redor do mundo, auxiliando no tratamento de infecções bacterianas e fúngicas ou atuando como agente inseticida (PANDEY et al., 2017),(DE CERQUEIRA et al., 2009), (FALEIRO et al., 2017).Por sua vez a busca de novos agentes terapêuticos com atividade antimicrobiana tem tomado tempo e aplicado esforços e recursos, pois cada dia microrganismos resistentes às drogas existentes tem surgido e novos antibióticos são necessários.

Nesse contexto, a Amazônia apresenta um grande número de espécies, contudo, tanto os membros quanto sua distribuição ainda são pouco conhecidos (FEARNSIDE, 2006). Esse bioma se apresenta como fonte primordial para obtenção de novos medicamentos/fármacos. Entretanto é necessário enfatizar que o desmatamento de forma não manejada tem exterminado espécies vegetais, potenciais candidatas, que deixaram de existir sem que suas possíveis potencialidades fossem estudadas e posteriormente exploradas. A Amazônia abriga uma das últimas extensões contínuas de florestas tropicais úmidas da Terra, detendo cerca de 1/3 do estoque genético planetário. A biodiversidade amazônica é composta de pelo menos 40 mil espécies de plantas, 427 mamíferos, 1297 aves, 387 répteis, 427 anfíbios e cerca de 3 mil peixes.(DE CASTRO; ANDRADE, 2016).

Dentre as diversas famílias de angiospermas ocorrentes na Amazônia, destaca-se a família Myrtaceae. Essa família pantropical (WILSON et al, 2005), é composta por 132 gêneros e aproximadamente 5.760 espécies (GOVAERTS et al. 2015), com centros de diversidade na Austrália, sudeste da Ásia, América do Sul tropical e temperada (WILSON et al. 2001). No Brasil, a família apresenta 1018 espécies distribuídas em 23 gêneros (FLORA DO BRASIL, 2018). Esses dados nos mostram claramente a importância botânica da família e do gênero a ser estudado, importância ainda mais salientada devido a família já possuir espécies ameaçadas de extinção (MMA, 2008). Cerqueira e colaboradores (2009) relatam que essa família é particularmente rica em espécies produtoras de óleos essenciais, cujo gênero *Myrcia* é um dos maiores da família com 282

espécies distribuídos pelo Brasil, sendo 219 endêmicas (Flora do Brasil, 2018). Os autores ainda relatam que espécies desse gênero têm sido amplamente empregadas pela medicina popular, como: adstringentes, diuréticos, hipoglicemicas, anti-hemorrágicas e antioxidantes, bem como empregadas no tratamento de hipertensão e úlceras. (DE CERQUEIRA et al., 2009).

É importante salientar que como cada vez é mais frequente o uso de espécies vegetais para o tratamento de enfermidades, inclusive o de *Myrcia* spp. (CASCAES et al., 2015), estudos químicos e farmacológicos que garantam qualidade, segurança e a eficácia no uso dessas plantas são fundamentais, pois agregam valor científico, tecnológico, ecológico e ambiental à flora da região (GRESSLER, 2006). O conhecimento gerado pode contribuir com a exploração manejada de tais espécies resultando em benefícios ampliados a todos os envolvidos no processo de conservação e uso. Contudo, ainda há carência de informações da química sobre as espécies amazônicas pertencentes a esse gênero.

Apesar de haver estudos que descrevem uma série de atividades biológicas associadas aos óleos essenciais extraídos de espécies da família Myrtaceae (CASCAES et al., 2015), incluindo *Myrcia* spp., muitas espécies ainda não foram quimicamente descritas. Nesse estudo, 13 das 17 espécies de *Myrcia*, identificadas em ecossistema de Terra-Firme foram estudadas, com 05 delas tendo as substâncias que compõem seu óleo essencial descrito primeira vez, as quais são: *M. magnoliifolia, M. minutiflora, M. fenestrata, M. amapensis e Marlierea caudata*. As demais oito espécies apresentam pouco relatos sobre ensaios biológicos envolvendo seus óleos essenciais. Desta forma, podemos afirmar que os dados científicos gerados são inéditos sobre as espécies de Myrtacea ocorrentes na Amazônia, ecossistema de Terra-Firme.

1. REVISÃO BIBLIOGRÁFICA

A família Myrtaceae possui centros de diversidade nos trópicos úmidos, em especial na América do Sul, Austrália e Ásia Tropical. A família é subdividida em 2 subfamílias, compreendendo 17 tribos, na América do Sul e Central ocorre principalmente a família Myrtoideae que apresenta frutos do tipo baga e folhas opostas, exemplificada pela goiabeira (*Psidium guajava*). Enquanto, a subfamília Leptospermoideae, localizada principalmente na Austrália, apresenta frutos do tipo cápsulas ou núculas e folhas alternas ou opostas arborizadas com óleos essenciais aromáticos em "pontos glandulares" translúcidos, sendo representada pelo eucalipto. A taxonomia classifica a família Myrtaceae como pertencente ao conjunto de plantas cuja divisão é Magnoliophyta, classe Magnoliopsida e ordem Myrtalesa (GOVAERTS et al, 2015; MORAIS et al, 2014).

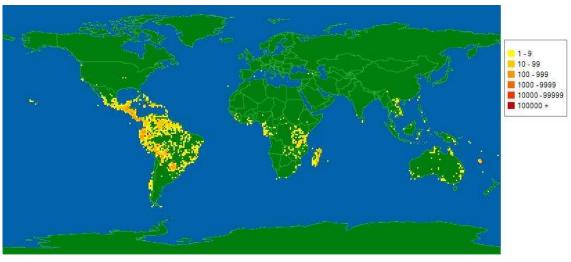


Figura 1- Ocorrência da família Myrtaceae por continentes

Fonte: MOBOT

Myrtaceae apresenta espécies um tanto conhecidas pela medicina popular, há relatos do uso dessas plantas no combate a distúrbios gastrointestinais, doenças hemorrágicas e infecciosas com uma ação que está provavelmente relacionada com as suas propriedades adstringentes (CASCAES et al., 2015). Cascaes e colaboradores (2015) fizeram uma revisão das propriedades farmacológicas observadas para várias espécies do gênero

Myrcia, os quais relatam as seguintes propriedades associadas ao gênero: antiinflamatória, antinociceptiva, antimicrobial, potencial hipoglicêmico,
antiobesidade e hipolipidêmica, hepatoprotetora, larvicida, antiproliferativa de
células cancerígenas, antioxidante e antihemorragica, bem como potencial
fitotóxico e alelopático. Portanto, ratificando a importância botânica e
farmacológica das espécies pertencentes ao gênero *Myrcia*.

A base de dados botânicos Flora do Brasil apresenta o gênero *Myrcia* D.C como sendo representado por espécimes na forma de arbustos, árvores, liana/volúvel/trepadeira e subarbusto, sendo as mesmas não endêmicas do Brasil. Contudo, distribuídas em todas as regiões do país, com espécimes confirmados em 07 estados do Norte, 09 do Nordeste, 04 do Centro-Oeste, 04 do Sudeste e 03 do Sul. Essas espécies podem ser encontradas em todos os principais e distintos domínios fitogeográficos ocorrentes no Brasil, os quais são: Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampa e Pantanal (*Gráfico* 1 pág.22).

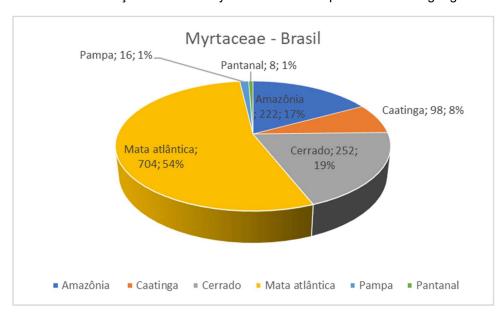


Gráfico 1- Distribuição da família Myrtaceae no Brasil por domínios fitogeográficos

Fonte: Flora do Brasil

A região Norte brasileira apresenta relatos de 66 espécies, sendo 63 ocorrentes na Amazônia. No Estado do Amazonas são relatadas 52 espécies, sendo que a Reserva Florestal Adolpho Ducke (RFAD), uma amostra representativa de ecossistema de Terra Firme, formada por uma área de

floresta primária de 100 km², sob os cuidados do Instituto Nacional de Pesquisas da Amazônia (INPA), que se caracteriza por constituir uma das áreas de floresta amazônica melhor amostrada, pois desde os anos de 1950 são feitas coletas botânicas no local, e, principalmente, pela sua localização na Amazônia Central, na confluência entre diferentes regiões fitogeográficas (RIBEIRO et al, 1999; HOPKINS, 2005) apresenta registro de 67 espécies da família Myrtaceae. Dessas espécies, 62 são autóctones pertencentes a seis gêneros, além de cinco espécies cultivadas, sendo três originárias do Velho Mundo (SOUZA, M. A. D.; KAWASAKI, M. L.; HOLST, 1999). Referente ao gênero *Myrcia*, são listadas 17 espécies (*Quadro 1*, pág.23), as quais são descritas a seguir:

Quadro 1- Lista de sinônimas de Myrcia spp relatadas na RFAD

Espécies * Sinonímias **

<i>Myrcia minutiflora</i> Sagot	Aulomyrcia minutiflora (Sagot) Amshoff
Myrcia subsericea A. Gray	-
Myrcia bracteata (Rich.) DC	Eugenia bracteata Rich
	Myrcia hirtellaefolia Gleason
Myrcia citrifolia (Aubl.) Urb.	Myrtus citrifolia Aubl.
Myrcia amazonica DC.	Aulomyrcia amazonica (DC.) O. Berg
	Aulomyrcia corymbosa O. Berg
	Aulomyrcia hostmanniana O. Berg
	Aulomyrcia hostmanniana var. gracilior O. Berg
	Aulomyrcia hostmanniana var. robustior O. Berg
	Aulomyrcia lauriflora (DC.) O. Berg
	Aulomyrcia leptoclada (DC.) O. Berg
	Aulomyrcia nigrescens (DC.) O. Berg
	Aulomyrcia paraensis O. Berg
	Aulomyrcia pruinosa O. Berg
	Aulomyrcia spruceana O. Berg
	Calyptromyrcia elegans (DC.) O. Berg
	Calyptromyrcia spixiana (DC.) O. Berg
	Myrcia corymbosa DC.
	Myrcia elegans DC.
	Myrcia gentlei Lundell
	Myrcia hostmanniana (O. Berg) Kiaersk.
	Myrcia lauriflora DC.
	Myrcia leptoclada DC.
	Myrcia nigrescens DC.
	Myrcia paraensis (O. Berg) Kiaersk.
	Myrcia spixiana DC.
<i>Myrcia aliena</i> McVaugh	Aulomyrcia chilensis O. Berg
<i>Myrcia servata</i> McVaugh	Myrcia divaricata (Lam.) DC.
	Myrcia schomburgkiana O. Berg
<i>Myrcia aff. Grandis</i> McVaugh	-

Myrcia sylvatica (G. Mey) DC Myrcia ambigua var. dives O. Berg Myrcia ambigua var. multiflora O. Berg Myrcia ambigua var. pauciflora DC. Myrtia siucida L. Myrtia sylvatica G. Mey. Myrcia rufipita McVaugh Myrcia divaricata O. Berg Myrcia divaricata O. Berg Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Myrcia acuminate (Kunth) DC. Myrcia acuminate (Kunth) DC. Myrcia acuminate (Kunth) DC. Myrcia acuminate var. peruviana O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia magnoliibio DC. Myrcia parivae O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia paivae O. Berg Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia quianensis (Aubl.) DC. Myrcia languarisi (Aubl.) AR. Aulomyrcia alagoensis O.Berg		
Myrcia ambigua var. duitlora O. Berg Myrcia ambigua var. multiflora O. Berg Myrcia ambigua var. pauciflora DC. Myrtus slucida L. Myrtus sylvatica G. Mey. Myrcia magnoliifolia DC. Myrcia phaeoclada var. guyanensis O. Berg Myrcia gigas McVaugh Myrcia divaricata (Lam.) DC. Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Myrcia acuminata (Kunth) DC. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia brandini O. Berg Myrcia brandini O. Berg Myrcia brandini O. Berg Myrcia conspicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia costata DC. Myrcia countelotes O. Berg Myrcia dictyoneura Diels Myrcia hyroia magnoliifolia O. Berg Myrcia cicullata O. Berg Myrcia cicullata O. Berg Myrcia cicullata O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia magnoliifolia DC. Myrcia perusasis O. Berg Aguava guianensis (Aubl.) Rat. Alubaya guianensis (Aubl.	Myrcia fenestrata DC.	-
Myrcia ambigua var. mutitifiora O. Berg Myrcia ambigua var. pauciflora DC. Myrtus sulvida L. Myrtus sylvalica G. Mey. Myrcia magnoliifolia var. parvifolia O. Berg Myrcia phaecolada var. guyanensis O. Berg Myrcia gigas McVaugh Myrcia divaricata (Lam.) DC. Myrcia gigas McVaugh Myrcia acuminata (Kunth) DC. Myrcia barrensis O. Berg Myrcia barrensis O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia corunetioles O. Berg Myrcia cucullata O. Berg Myrcia ciatifolia O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia magnolibria DC. Myrcia parvia C. Berg Myrcia parvia C. Berg Myrcia pruceana O. Berg Myrcia spruceana (Saersk. Myrcia spruceana (Saersk. Myrcia spruceana D. Berg Myrcia parvia subassisis Var. ovalis O. Berg Myrcia parvia do Berg Myrcia parvia subassisis Var. ovalis O. Berg Myrcia parv	<i>Myrcia sylvatica</i> (G. Mey) DC	
Myrcia ambigua var. pauciflora DC. Myrtus lucida L. Myrtus sylvatica G. Mey. Myrcia magnoliifolia DC. Myrcia praecolada var. parvifolia O. Berg Myrcia rufipila McVaugh Myrcia divaricata (J. Berg Myrcia divaricata (J. Berg Myrcia fallax (Rich.) DC. Myrcia fallax (Rich.) DC. Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Myrcia acuminata (Kunth) DC. Myrcia acuminata Var. genuina O. Berg Myrcia acuminata Var. penuina O. Berg Myrcia acuminata var. penuina O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia berberis DC. Myrcia berberis DC. Myrcia brandami O. Berg Myrcia chilensis O. Berg Myrcia completas (Poir.) DC. Myrcia completa DC. Myrcia compressa Gleason Myrcia compressa Gleason Myrcia costata DC. Myrcia costata DC. Myrcia coulata D. Berg Myrcia cuculata D. Berg Myrcia cuculata D. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia myrcia latifolia O. Berg Myrcia martinicensis Krug & Urb. Myrcia martinicensis Krug & Urb. Myrcia martinicensis Krug & Urb. Myrcia martinicensis No. Berg Myrcia martinicensis No. Berg Myrcia parvueana O. Berg Aguava guianensis (Aubl.) Rat Aulumyrcia aquayustifolia O Berg Eugenia guia		
Myrus sylvatica G. Mey. Myrcia magnoliifolia DC. Myrcia phaeoclada var. payanensis O. Berg Myrcia phaeoclada var. guyanensis O. Berg Myrcia fulfipila McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia divaricata (Lam.) DC. Myrcia fallax (Rich.) DC. Aulomyrcia divaricata (Lam.) DC. Aulomyrcia acuminata (Lam.) DC. Myrcia fallax (Rich.) DC. Myrcia acuminata (Runth) DC. Myrcia acuminata (Runth) DC. Myrcia acuminata var. peruvina O. Berg Myrcia acuminata var. peruvina O. Berg Myrcia berberis CC. Myrcia berberis CC. Myrcia berberis Var. angustifolia O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia counetoides O. Berg Myrcia counetoides O. Berg Myrcia counetoides O. Berg Myrcia cucullata O. Berg Myrcia kegeliana var. paraensis O. Berg Myrcia kegeliana Var. poraensis O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia marcophylia DC. Myrcia marcophylia DC. Myrcia mercena Var. Sur. Sur. Sur. Sur. Sur. Sur. Sur. Su		
Myrcia magnoliifolia DC. Myrcia magnoliifolia var. parvifolia O. Berg Myrcia rufipila McVaugh Myrcia divaricata O. Berg Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiifora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata Var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata Var. peruviana O. Berg Myrcia acuminata Var. peruviana O. Berg Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia completata DC. Myrcia compressa Gleason Myrcia completata DC. Myrcia completata DC. Myrcia completata DC. Myrcia courulata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia magnoliifolia O. Berg Myrcia magnoliifolia DC. Myrcia pruceana Klaersk. Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia spruceana O. Berg Myrcia fundinata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus onezuelata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aculomyrcia angustifolia O. Berg Eugenia guianensis Aubl.		
Myrcia magnoliifolia DC. Myrcia paleoclade var. guyanensis O. Berg Myrcia gigas McVaugh Myrcia gigas McVaugh Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata Var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia complicata DC. Myrcia hayneana var. paraensis O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia magnoliifolia DC. Myrcia perensis O. Berg Myrcia spruceana Klaersk. Myrcia spruceana Claersk. Myrcia spruceana Claersk. Myrcia spruceana Neerg Myrcia spruceana Neerg Myrcia spruceana Neerg Myrcia spruceana So. Berg Myrcia funtinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Paf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl.)		
Myrcia rufipila McVaugh Aulomyrcia divaricata O. Berg Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegellana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia aguitensis Gleason Myrcia barrensis O. Berg Myrcia barrensis O. Berg Myrcia bratelaris Por. Myrcia bratelaris O. Berg Myrcia bratelaris O. Berg Myrcia bratelaris O. Berg Myrcia completa DC. Myrcia bratelaris O. Berg Myrcia completa DC. Myrcia compressa Gleason Myrcia dictyoneura Diels Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia kegeliana Var. Iongifolia O. Berg Myrcia magnoliifolia DC. Myrcia micrantha O. Berg Myrcia spruceana N. Berg Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia fundinata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus acuminata Kunth Myrtus adulanta O. Berg Myrcia lanceolata var. grandifolia O. Berg Euge		
Myrcia gigas McVaugh Myrcia gigas McVaugh Myrcia divaricata (Lam.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia brandami O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia compressa Gleason Myrcia compressa Gleason Myrcia costata DC. Myrcia kegeliana O. Berg Myrcia kegeliana Var. paraensis O. Berg Myrcia kegeliana Var. paraensis O. Berg Myrcia marcrophylla DC. Myrcia pergensis O. Berg Myrcia reticulata O. Berg Myrcia venezuelansis O. Berg Myrcia venezuelansis O. Berg Myrcia soupelansis O. Berg Myrcia reticulata O. Berg Myrcia polita Kunth Myrtus stoupyi Spreng. Myrcia polita Kunth Myrtus stoupyi Spreng. Myrcia quianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis (Aubl.) DC. Alulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia herringeriana Mattos heterottipos	Myrcia magnoliifolia DC.	
Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata (Aunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia aguitensis Gleason Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis VC. Myrcia chilensis O. Berg Myrcia chilensis O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia countetoides O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia micrantha O. Berg Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia negrensis O. Berg Myrcia paraensis on Berg Myrcia paraensis on Berg Myrcia paraensis O. Berg Myrcia paraena O. Berg Myrcia paraena O. Berg Myrcia paraena O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia subsessilis var. ovalis O. Berg Myrtia scuminata Kunth Myrtus acuminata Kunth Myrtus acuminata Kunth Myrtus facteolaris Poir. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotlipico de Myrcia bracteata (Rich.) DC Myrcia alanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Myrcia gigas McVaugh Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia costata DC. Myrcia coullata O. Berg Myrcia cuullata O. Berg Myrcia cuullata O. Berg Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia macrophylla DC. Myrcia marcrophylla DC. Myrcia marninicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana Nerg Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia policata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus souppi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia quianensis (Aubl.) DC. Agava quianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos	<i>Myrcia rufipila</i> McVaugh	
Myrcia fallax (Rich.) DC. Aulomyrcia wullschlaegeliana O. Berg Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. genuina O. Berg Myrcia aguitensis Gleason Myrcia berberis Var. angustifolia O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia compessa Gleason Myrcia costata DC. Myrcia counetoides O. Berg Myrcia cucullata O. Berg Myrcia kegeliana Var. paraensis O. Berg Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia marcrophylla DC. Myrcia marcrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus toupyl Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos	Manata atau a Mayarah	Myrcia divaricata (Lam.) DC.
Eugenia fallax Rich. Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia barrensis O. Berg Myrcia berberis Var. Myrcia berberis var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia counteoloides O. Berg Myrcia costata DC. Myrcia counteoloides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana Var. Jongifolia O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Niaersk. Myrcia spruceana Niaersk. Myrcia spruceana O. Berg Myrcia spruceana Niaersk. Myrcia spruceana Niaersk. Myrcia spruceana Co. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis No. Berg Myrcia paivae O. Berg Myrcia policata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrcia paivae O. Berg Myrcia paivae O. Berg Myrcia paivae O. Berg Myrcia paivae O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Eugenia paniculiflora Steud. Myrcia acuminata (Kunth) DC. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia aguitensis Gleason Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia countetoides O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia marcophylla DC. Myrcia marcophyla DC. Myrcia perensis O. Berg Myrcia perensis O. Berg Myrcia perensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Naersk. Myrcia spruceana Naersk. Myrcia spruceana C. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia subceolaris Poir. Myrtus complicata Kunth Myrtus rotrolicata var. grandifolia O. Berg Myrcia paivae O. Berg Myrcia paivae O. Berg Myrcia paivae Noull.) DC. Aquava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basionimo Myrcia heringeriana Mattos heterotipos	Myrcia fallax (Rich.) DC.	
Myrcia acuminata (Kunth) D.C. Myrcia acuminata var. genuina O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia acuminata var. peruviana O. Berg Myrcia barrensis Gleason Myrcia berberis D.C. Myrcia berberis D.C. Myrcia brandami O. Berg Myrcia complicata D.C. Myrcia complicata D.C. Myrcia compressa Gleason Myrcia costata D.C. Myrcia counetoides O. Berg Myrcia counetoides O. Berg Myrcia dictyoneura Diels Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia macrophylla D.C. Myrcia polica Myrcia for macrophylla D.C. Myrcia spruceana C. Berg Myrcia complicata Kunth Myrtus socupicata Kunth Myrtus complicata Kunth Myrtia paivae O. Berg Myrcia heringeriana Mattos heterotipos		
Myrcia acuminata var. genuina O. Berg Myrcia aguitensis Gleason Myrcia berberis DC. Myrcia berberis DC. Myrcia berberis Var. Myrcia berderis (Poir.) DC. Myrcia berderis (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia counteoides O. Berg Myrcia counteoides O. Berg Myrcia hayneana var. paraensis O. Berg Myrcia hayneana Var. paraensis O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia marciphylla DC. Myrcia margonlifiolia DC. Myrcia margonlifiolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia micrantha O. Berg Myrcia perensis O. Berg Myrcia spruceana C. Berg Myrcia spruceana Klaersk. Myrcia spruceana Klaersk. Myrcia spruceana C. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus della var. grandifolia O. Berg Eugenia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Myrcia aguitensis Gleason Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia complicata DC. Myrcia coullata O. Berg Myrcia coullata O. Berg Myrcia coullata O. Berg Myrcia coullata O. Berg Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stouppyi Spreng. Myrcia paivae O. Berg Eugenia guianensis (Aubl.) DC.		
Myrcia aguitensis Gleason Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia brandami O. Berg Myrcia chilensis O. Berg Myrcia complicata DC. Myrcia complesat DC. Myrcia compessa Gleason Myrcia costata DC. Myrcia coullate O. Berg Myrcia dictyoneura Diels Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus romplicata Kunth Myrtus romplicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus complicata Kunth Myrtus rota paivae O. Berg Myrcia frontinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia quianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia heringeriana Mattos heterotipos		,
Myrcia barrensis O. Berg Myrcia berberis DC. Myrcia berberis Var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia brandami O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia couretoides O. Berg Myrcia couretoides O. Berg Myrcia cita to C. Myrcia couretoides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia micrantha O. Berg Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotipico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Myrcia berberis DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia bracteolaris (Poir.) DC. Myrcia brandami O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia cucullata O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia magnoliifolia DC. Myrcia matinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia pruceana Kiaersk. Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyl Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterottipico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifiolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl.		
Myrcia berberis var. angustifolia O. Berg Myrcia bracteolaris (Poir.) DC. Myrcia brandami O. Berg Myrcia chilensis O. Berg Myrcia complicata DC. Myrcia complicata DC. Myrcia counteroides O. Berg Myrcia cucullata O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana Vo. Berg Myrcia kegeliana Vo. Berg Myrcia latifolia O. Berg Myrcia hayneana var. longifolia O. Berg Myrcia hayneana var. longifolia O. Berg Myrcia hayneana Var. longifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia micrantha O. Berg Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia reticulata O. Berg Myrcia spruceana C. Berg Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia quianensis (Aubl.) DC. Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Myrcia bracteolaris (Poir.) DC. Myrcia brandami O. Berg Myrcia collensis O. Berg Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia coumetoides O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana var. Jongifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia marinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana (Siersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis Poir. Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC. Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia neringeriana Mattos heterotipos		, ,
Myrcia brandami O. Berg Myrcia chilensis O. Berg Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia coumetoides O. Berg Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reiculata O. Berg Myrcia reiculata O. Berg Myrcia respensis O. Berg Myrcia respensis O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia heringeriana Mattos heterotipos		
Myrcia coinplicata DC. Myrcia complicata DC. Myrcia compressa Gleason Myrcia costata DC. Myrcia coullata O. Berg Myrcia cuullata O. Berg Myrcia dictyoneura Diels Myrcia kegeliana O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia guianensis (Aubl.) DC. Myrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotipos		
Myrcia complicata DC. Myrcia costata DC. Myrcia costata DC. Myrcia courmetoides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana V. Berg Myrcia kegeliana V. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana C. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis Poir. Myrtus complicata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC. Myrcia quianensis (Aubl.) DC. Myrcia heringeriana Mattos heterotipos		
Myrcia compressa Gleason Myrcia costata DC. Myrcia coumetoides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia frontinensis Hieron. Myrcia quianensis (Aubl.) DC. Myrcia heringeriana Mattos heterotipos heterotipos		
Myrcia costata DC. Myrcia coumetoides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia magnoliifolia DC. Myrcia micrantha O. Berg Myrcia horcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia quianensis (Aubl.) DC. Myrcia quianensis (Aubl.) DC. Myrcia haringeriana Mattos heterotipos		
Myrcia coumetoides O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia macrophylla DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia quianensis (Aubl.) DC. Myrcia quianensis (Aubl.) DC. Myrcia heringeriana Mattos heterotipos heterotipos		The state of the s
Myrcia cucullata O. Berg Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia micrantha O. Berg Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus bracteolaris Poir. Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterottipico de Myrcia bracteata (Rich.) DC Myrcia quianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		, ,
Myrcia dictyoneura Diels Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana C. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtia subsessilis var. ovalis O. Berg Myrtia supsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtia supsessilis var. ovalis O. Berg Myrtia paivae O. Berg Myrcia frontinensis Hieron. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia paivae (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Eugenia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia hayneana var. paraensis O. Berg Myrcia kegeliana O. Berg Myrcia kegeliana Var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia vanezuelensis O. Berg Myrcia vanezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia guianensis (Aubl.) DC. Myrcia guianensis (Aubl.) DC. Myrcia heringeriana Mattos heterotipos		
Myrcia kegeliana O. Berg Myrcia kegeliana var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia spruceana O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia guianensis (Aubl.) DC. Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia kegeliana var. longifolia O. Berg Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia margnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Myrcia enguianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia latifolia O. Berg Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana C. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC. Myrcia quianensis (Aubl.) DC. Myrcia huallagae McVaugh Myrcia guianensis (Aubl.) DC. Myrcia guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia macrophylla DC. Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC. Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia magnoliifolia DC. Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia huallagae McVaugh Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia martinicensis Krug & Urb. Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Myrcia quianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O. Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia micrantha O. Berg Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Myrcia lanceolata var. grandifolia O. Berg Myrcia quianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia negrensis O. Berg Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia reticulata O. Berg Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia spruceana Kiaersk. Myrcia spruceana O. Berg Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Myrcia guianensis (Aubl.) DC. Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia subsessilis var. ovalis O. Berg Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		Myrcia spruceana Kiaersk.
Myrcia venezuelensis O. Berg Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		Myrcia spruceana O. Berg
Myrtus acuminata Kunth Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		Myrcia subsessilis var. ovalis O. Berg
Myrtus bracteolaris Poir. Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrtus complicata Kunth Myrtus stoupyi Spreng. Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia paivae O. Berg Myrcia frontinensis Hieron. Myrcia huallagae McVaugh Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia paivae O. Berg Myrcia frontinensis Hieron. Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia huallagae McVaugh Heterotípico de Myrcia bracteata (Rich.) DC Myrcia lanceolata var. grandifolia O. Berg Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia lanceolata var. grandifolia O. Berg Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		•
Myrcia guianensis (Aubl.) DC. Aguava guianensis (Aubl.) Raf. Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos	<i>Myrcia huallagae</i> McVaugh	
Aulomyrcia angustifolia O.Berg Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos		
Eugenia guianensis Aubl. basiônimo Myrcia heringeriana Mattos heterotípos	Myrcia guianensis (Aubl.) DC.	
basiônimo Myrcia heringeriana Mattos heterotípos		
Myrcia heringeriana Mattos heterotípos		Eugenia guianensis Aubl.
Myrcia heringeriana Mattos heterotípos		
heterotípos		
Aulomyrcia alagoensis O.Berg		
		Aulomyrcia alagoensis O.Berg

Aulomyrcia alternifolia (Miq.) O.Berg Aulomyrcia amethystina O.Berg Aulomyrcia androsaemoides O.Berg Aulomyrcia botrys O.Berg Aulomyrcia bracteata O.Berg Aulomyrcia buxifolia O.Berg Aulomyrcia buxizans O.Berg Aulomyrcia campestris (DC.) O.Berg Aulomyrcia cassinoides (DC.) O.Berg Aulomyrcia conduplicata O.Berg Aulomyrcia crassicaulis (Cambess.) O.Berg Aulomyrcia crenulata O.Berg Aulomyrcia cuneata O.Berg Aulomyrcia cymosa O.Berg Aulomyrcia daphnoides (DC.) O.Berg Aulomyrcia decrescens O.Berg Aulomyrcia dichroma O.Berg Aulomyrcia elaeodendra (DC.) O.Berg Aulomyrcia exsucca (DC.) O.Berg Aulomyrcia fragilis O.Berg Aulomyrcia gardneriana O.Berg Aulomyrcia glandulosa O.Berg Aulomyrcia hepatica O.Berg Aulomyrcia intermedia O.Berg Aulomyrcia jequitinhonhensis O.Berg Aulomyrcia lauriflora (DC.) O.Berg Aulomyrcia leucadendron (DC.) O.Berg Aulomyrcia lingua O.Berg Aulomyrcia mansoi O.Berg Aulomyrcia maritima O.Berg Aulomyrcia martiana O.Berg Aulomyrcia microcarpa (Cambess.) O.Berg Aulomyrcia myrtillifolia (DC.) O.Berg Aulomyrcia nigropunctata O.Berg Aulomyrcia obscura O.Berg Aulomyrcia obtecta O.Berg Aulomyrcia obtusa (Schauer) O.Berg Aulomyrcia pallens (DC.) O.Berg Aulomyrcia pallida O.Berg Aulomyrcia plumbea O.Berg Aulomyrcia poeppigiana O.Berg Aulomyrcia pruinosa O.Berg Aulomyrcia pusilla O.Berg Aulomyrcia roraimae (Oliv.) Steyerm. Aulomyrcia roraimensis O.Berg Aulomyrcia rorida O.Berg Aulomyrcia schomburgkiana O.Berg Aulomyrcia schrankiana (DC.) O.Berg Aulomyrcia suaveolens (Cambess.) O.Berg Aulomyrcia surinamensis (Miq.) O.Berg Aulomyrcia torta (DC.) O.Berg Aulomyrcia uaupensis O.Berg Aulomyrcia velhensis O.Berg Calyptromyrcia cymosa O.Berg Calyptromyrcia elegans (DC.) O.Berg Calyptromyrcia spixiana (DC.) O.Berg Myrcia adpressepilosa Kiaersk. Myrcia alternifolia Miq. Myrcia amethystina (O.Berg) Kiaersk.

Myrcia andaiaensis Mattos

Myrcia androsaemoides (O.Berg) Krug & Urb.

Myrcia angustifolia (O.Berg) Nied.

Myrcia arimensis Britton

Myrcia botrys (O.Berg) N.Silveira

Myrcia camapuana Mattos

Myrcia campestris DC.

Myrcia cassinoides DC.

Myrcia collina S.Moore

Myrcia corumbensis Glaz.

Myrcia crassicaulis Cambess.

Myrcia crenulata (O.Berg) Mattos

Myrcia cuneata (O.Berg) Nied.

Myrcia cymosa (O.Berg) Nied.

Myrcia cymosopaniculata Kiaersk.

Myrcia daphnoides DC.

Myrcia decrescens (O.Berg) Mattos

Myrcia dermatophylla Kiaersk.

Myrcia desertorum (O.Berg) Mattos

Myrcia diaphanosticta Kiaersk.

Myrcia dictyophylla (O.Berg) Mattos & D.Legrand

Myrcia didrichseniana Kiaersk.

Myrcia elaeodendra DC.

Myrcia elegans DC.

Myrcia exsucca DC.

Myrcia fastigiata Kiaersk.

Myrcia glandulosa (O.Berg) Kiaersk.

Myrcia hepatica (O.Berg) Kiaersk.

Myrcia hiemalis Cambess.

Myrcia incisa D.Legrand

Myrcia intermedia (O.Berg) Kiaersk.

Myrcia lauriflora DC.

Myrcia leucadendron DC.

Myrcia lingua (O.Berg) Mattos

Myrcia mansoi (O.Berg) N.Silveira

Myrcia microcarpa Cambess.

Myrcia myoporina DC.

Myrcia myrtillifolia DC.

Myrcia nigropunctata (O.Berg) N.Silveira

Myrcianthes cymosa (O.Berg) Mattos

Myrcianthes elegans (DC.) Mattos

Myrcianthes spixiana DC.) Mattos

Myrcianthes terminalis Mattos & D.Legrand

Myrcia obscura (O.Berg) N.Silveira

Myrcia obtecta (O.Berg) Kiaersk.

Myrcia obtusa Schauer

Myrcia pallens DC.

Myrcia pallida (O.Berg) N.Silveira

Myrcia parnahibensis (O.Berg) Kiaersk.

Myrcia plumbea (O.Berg) Mattos

Myrcia poeppigiana (O.Berg) Mattos

Myrcia pusilla (O.Berg) Mattos

Myrcia queimadensis Mattos

Myrcia renatoana Mattos

Myrcia rhabdoides Kiaersk.

Myrciaria silveirana D.Legrand

Myrcia roraimae Oliv.

Myrcia rorida (O.Berg) Kiaersk.

Myrcia rubella Cambess.

Myrcia schrankiana DC.

Myrcia scrobiculata (O.Berg) O.Berg

Myrcia spixiana DC.
Myrcia stemmeriana D.Legrand
Myrcia suaveolens Cambess.
Myrcia surinamensis Miq.
Myrcia taubatensis Kiaersk.
Myrcia terebinthacea Poepp. ex O.Berg
Myrcia torta DC.
Myrcia tortuosa (O.Berg) N.Silveira
Myrcia vacciniifolia (O.Berg) Nied.
Myrcia vattimoi Mattos
Myrcia velhensis (O.Berg) N.Silveira
Myrcia velhensis (O.Berg) Mattos
Myrcia yungasensis Rusby
Myrtus exsucca Mart. ex DC.

homotípico Aulomyrcia emarginata O.Berg Myrtus guianensis (Aubl.) Ham.

Myrtus pyrifolia J.St.-Hil.

FONTE: * RIBEIRO et al, 1999; ** MOBOT

Estudos baseados em dados moleculares consideram o gênero *Myrcia sensu lato* ou *Myrcia s.l.* (sensu Lucas et al., 2011) como sendo formado por quatro gêneros tradicionais (*Myrcia* DC., *Marlierea* Camb., *Calyptranthes* Sw. e *Gomidesia* O.Berg), o que elevaria o número de espécies no Brasil para aproximadamente 753. Essas espécies estão agora em processo de sinonimização (LUCAS et al., 2011).

1.1 Constituintes voláteis

Os constituintes químicos conhecidos como óleos voláteis, são assim denominados em decorrência de certas características físico-químicas apresentadas: aparência oleosa à temperatura ambiente, volatilidade, aroma intenso e solúveis em solventes apolares, como o éter. Tais constituintes podem apresentar-se como hidrocarbonetos terpênicos, álcoois simples e terpênicos, aldeídos, cetonas, fenóis, ésteres, éteres, óxidos, peróxidos, furanos, ácidos orgânicos, lactonas e cumarinas (BICAS e FELIPE, 2016).

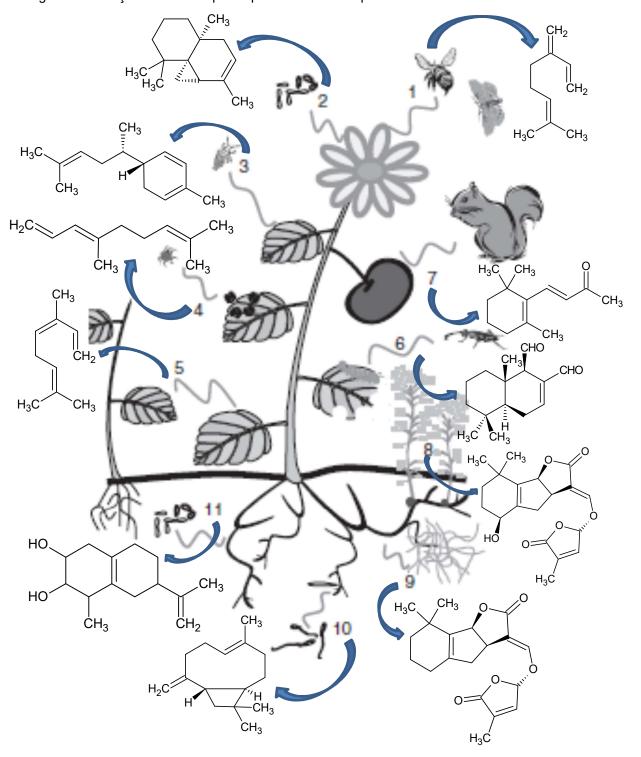
.

1.1.1 Óleos voláteis – Classificação, Ocorrência vegetal e Funções ecológicas

A International Standard Organization (ISO) classifica óleos voláteis ou essenciais como os produtos obtidos de partes de plantas através de destilação por arraste com vapor d'água, bem como os produtos obtidos por expressão dos pericarpos de frutos cítricos (SIMÕES e SPITZER, 2003). Tais óleos consistem em misturas complexas formadas por substâncias líquidas voláteis, lipofílicas e na grande maioria odoríferas. O número de substâncias químicas encontradas em um óleo essencial pode variar de 20 a mais de 200, sendo classificados como componentes-traço (abaixo de 1%), componentes secundários (1-20%) e componentes majoritários (acima de 20%) (SIMÕES e SPITZER, 2017).

As Gimnospermas (com exceção de Coniferae) raramente produzem óleos essenciais, bem como também as Angiospermas monocotiledôneas, cuja exceção é Poaceae (*Cymbopogon* spp. e *Vetiveria* spp.) e Zingiberaceae (*Alpinia* spp. e *Curcuma* spp.). Contudo, várias angiospermas dicotiledôneas são produtoras abundantes de óleos essenciais, podemos destacar quase todas as espécies das famílias Apiaceae, Lamiaceae, Lauraceae, Myrtaceae, Piperaceae, Rutaceae e em algumas espécies das famílias Asteraceae e Myristicaceae (SIMOES e SPITZER, 2017) (PADOVAN et al., 2014)(CHENG et al., 2007)

Substâncias aromáticas, como os óleos voláteis ou essenciais, podem estar presentes em praticamente todos os órgãos das plantas classificadas como aromáticas, os mesmos são produzidos e estocados nos vegetais em estruturas especializados, tanto externamente (tricomas secretores e osmóforos) como internamente (idioblastos, canais e bolsas) (CUNHA et al, 2005). Tais estruturas morfológicas especializadas devido sua construção anátomo-histológica são características para espécies vegetais de um mesmo gênero ou até mesmo família, podendo ser uma característica auxiliar na classificação botânica. No caso de Myrtaceae a presença de compostos volatéis podem ser visualizados sem auxílio de microscópio, em bolsas intracelulares esquizógenas (SIMOES e SPITZER, 2017)

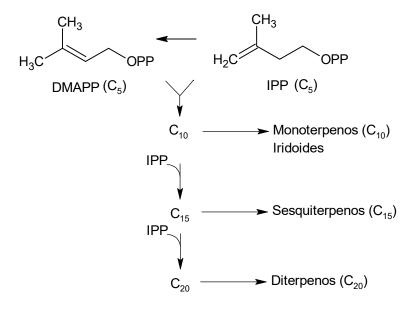

A variabilidade química na composição de tais misturas é determinada geneticamente e ocorre de acordo com a localização de tais estruturas

produtoras e secretoras. Portanto, óleos volatéis obtidos de partes diferentes de uma mesma espécie vegetal tendem a apresentar propriedades químicas e físicas distintas. Ressalta-se ainda, que em um mesmo órgão vegetal, a composição química pode ser variável de acordo com a época de coleta, condições climáticas e de solo, quimiotipos, ciclo vegetativo e processo de obtenção (SIMÕES e SPITZER, 2017; OLDFIELD; LIN, 2012).

A figura 02 ilustra algumas das interações mediadas por terpenoides entre as plantas e com o meio ambiente: arom a das flores para atrair polinizadores (1, por exemplo, β-mirceno); proteção de órgãos reprodutivos de fungos ou infecção bacteriana (2, por exemplo, thujopseno); defesa direta: repelência de insetos herbívoros por terpenóides voláteis (3, por exemplo, zingibereno); atração de predadores de insetos ou ácaros (4, por exemplo, 4,8dimetil-1,3 (E), 7-nonatrieno); defesa contra plantas vizinhas (5, por exemplo, β-ocimeno); substâmcias de defesa em folhas contra herbívoros, fungos e bactérias de insetos (6, por exemplo, poligodial); aroma de frutas para estimular o consumo e desse modo a dispersão de sementes (7, por exemplo, β-ionona); germinação de sementes de plantas parasitas (8, por exemplo, strigol); Estimulação do crescimento e fixação de fungos micorrízicos simbióticos (9, por exemplo. 5-deoxistrigol); atração de nematóides entomopatogênicos após a raiz ser comida por larvas de besouro (10, por exemplo, β-cariofileno); defesa direta para proteger contra insetos herbívoros, infecção fúngica ou infecção bacteriana (11, por exemplo, risitina) (KAPPERS; DICKE; BOUWMEESTER, 2008).

Para a planta tais compostos, denominados de metabólitos especiais (metabólitos secundários), apresentam-se fisiologicamente como inibidores da germinação, protetores contra predadores, agentes de atração de polinizadores, agentes controladores da perda de água e do aumento da temperatura (CUNHA et al, 2005), além de proteção contra o estresse oxidativo, a sinalização entre órgãos vegetais distintos e a comunicação intraespecífica ou homotípicas (entre indivíduos de uma mesma espécie) (CHENG et al., 2007; GERSHENZON; DUDAREVA, 2007; THOLL, 2006; PADOVAN et al., 2014; REHMAN et al., 2016).

Figura 2- Interações mediadas por terpenóides entre as plantas e com o meio ambiente

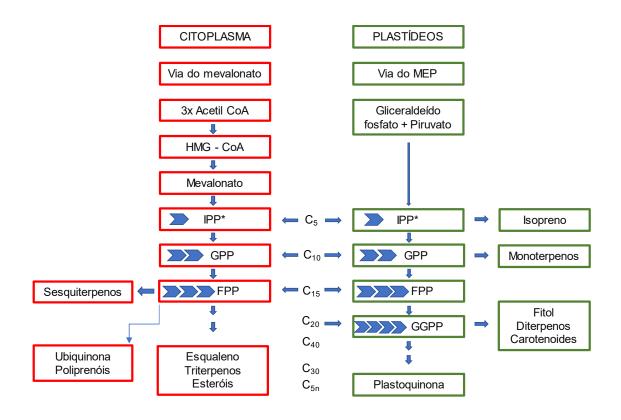

Fonte: Kappers et al, 2008

1.1.2 Biossíntese de Monoterpernos, Sesquiterpenos, Fenilpropanídes e suas vias de ciclização

Com base nas rotas biossinteticas, as substâncias químicas que compõem os óleos volatéis são quimicamente classificadas em dois grandes grupos: derivados de fenilpropanoides e derivados terpenoides (DEWICK, 2002), podendo ainda apresentar alcanos e alcenos lineares e compostos contendo Nitrogênio e Enxofre como heteroátomos, contudo, os derivados de terpenóides são as substâncias que prepominam (SIMÕES e SPITZER, 2017). Atualmente são conhecidos mais de 35.000 diferentes tipos de terpenoides (McMURRY, 2016).

Como regra geral todos os terpenóides são gerados a partir da condensão de unidades de isopreno, o que se observa é a participação do difosfato de isopentenila (IPP), um isopreno na forma ativa que em equilíbrio com o seu isomero (difosfato de dimetilalila - DMAPP) se condensam com a participação ativa do fosfato. Óleos essenciais em sua grande maioria são formados por monoterpenos (C₁₀) e sesquiterpenos (C₁₅).

Figura 3- Esquema geral de biossíntese de terpenóides a partir da condensação de unidades de isopreno



Fonte: Adaptada de DEWICK, 2002

Atualmente considera-se a existência de duas rotas biossintéticas diferenciadas que levam a formação de terpenóides: uma ocorrendo no citoplasma (rota do ácido mevalônico), e a outra nos plastídeos (rota do 2-C-

metileritritol-4-fosfato, denominada MEP). Enquanto nos plástideos, são sintetizados monoterpenos e diterpenos, no citoplasma são sintetizados sesquiterpenóides, ressalta-se que a troca de precursores entre as rotas é observada, devido não haver uma separação compartimental absoluta entre ambas as rotas (DUDAREVA et al., 2013; EISENREICH; ROHDICH; BACHER, 2001)

Figura 4- Hidrocarbonetos lineares primários que dão origem aos terpenóides encontrados nos óleos essenciais

IPP* ou DMAPP

HMG-CoA: 3-hidroxi-3-metilglutaril-CoA

IPP: difosfato de isopentenila DMAPP: difosfato de dimetilalila GPP: difosfato de geranila FPP: difostato de farnesila GGPP: difosfato de geranilgeranila

Fonte: Adaptado de Felipe e Bicas, 2016

A constatação de que há diferenças estruturais entre os terpenóides é fácil de ser notada. Contudo, todas essas estruturas apesar de diferentes, estão relacionadas. Sua formação segue o que se denomina como *regra do isopreno*,

ou seja, são o produto da junção cabeça-cauda de unidades isoprênicas (McMURRY, 2016).

Figura 5- Representação esquemática da formação de terpenóides

Fonte: Adaptado de Felipe e Bicas, 2016

Em relação ao grupo dos fenilpropanoides, seus precursores derivam de aminoácidos aromáticos, dos quais podemos citar: fenilalanica, tirosina e diidroxifenilalanina, os quais dão origem ao ácido chiquímico, que por sua vez, dará origem ao ácido cinâmico e *p*-cumárico, que através de reduções enzimáticas geram propenilbenzenos e/ou alilbenzenos. Os mesmos podem sofrer processos oxidativos, o que leva à perda da cadeia lateral seguida da formação de aldeídos aromáticos (SIMÕES e SPITZER, 2017).

Figura 6- Ácido chiquimico e seus derivados

Fonte: Adaptado de Simões e Spitzer, 2017

A criação de uma imensa variedade de esqueletos de terpenoides nas plantas é de responsabilidade das enzimas conhecidas como terpeno sintases. Estes catalisadores convertem os prenil-difosfatos acíclicos e o esqualeno numa multiplicidade de formas cíclicas e acíclicas. Tudo isso é facilitado devido ao grande número de diferentes terpeno-sintases e a fato de que uma mesma enzima pode produzir diferentes produtos (DEGENHARDT; KÖLLNER; GERSHENZON, 2009).

São conhecidos de 600 monoterpenos. cerca Quanto aos sesquiterpenos esse número pode chegar a milhares, pois há 200 esqueletos carbonicos conhecidos que podem conter insaturações, substituintes funcionais e isomeria óptica, uma característica regular da química dos terpenóides (CUNHA, 2005). Estudos indicam que para Myrcia spp., na América do Sul, as principais vias de ciclização são a do cadinano, germacrano, cariofiliano e bisabolano, o que pode ser confirmado através do trabalho de Limberger e colaboradores (2004) onde relatam que as principais vias de ciclização observadas para M. richardiana (O. Berg) Kiaersk., M. arborescens O. Berg, M. selloi (Spreng.) N. Silveira, M. oligantha O. Berg, M. rostrata DC., M. lajeana D. Legrand, M. obtecta (O. Berg) Kiaersk., M. pubipetala Miq e M. hatschbachii D. Legrand. Essas espécies são ocorrentes no Estado do Rio Grande do Sul, cujas principais vias metabólicas são: cadinano (de 7,2 a 63,1%), germacrano (de 4,6 a 64,3%) e cariofilano (de 3,9 a 39,9%). A rota do bisabolano foi marcante apenas em *M. obtecta* (34,0%), o que foi observado pela presença de ar-curcumeno (19,0%), e a série acíclica, em M. lajeana (32,1%), tendo como majoritário o acetato de (E)-nerolidila (25,3%). Os monoterpenos foram mais abundantes em M. obtecta (16,2%), sendo α - pineno (7,2%) como majoritário.

Em outro estudo envolvendo *Myrcia* spp. da região sudeste (NAKAMURA et al., 2010) há o relato que para *M. splendens* a principal via de ciclização observada é a do bisabolano, farnesilano e germacrano. Enquanto para *M. sylvatica* coletada em Santarém (PA), a principal via de ciclização observada foi a do cariofilano, germacrano, cadinano e bisabolano (SILVA et al., 2016). Como podem ser observados os sesquiterpenos cíclicos são característicos para o gênero *Myrcia* e as principais vias de ciclização são

praticamente constantes nos estudos relatados até o presente momento, para *Myrcia* spp. descritas na América do Sul em diferentes ecossistemas.

1.1.3 Propriedades farmacológicas e uso terapêutico de óleos voláteis de *Myrcia* spp.

Em termos econômicos os chamados óleos voláteis são bastante procurados pela indústria de alimentos, cosméticos e farmacêuticos (ROBBERS,1997; SIMÕES e SPITZER, 2003). Cunha (2005) cita as seguintes empregabilidades para os mesmos:

- Fármacos aromáticos usados no tratamento de problemas digestivos, bronco-respiratórios, efeito sedativo, antisséptico e cicatrizante.
- Indústria de alimentos e cosmética aromatizantes (aditivos) naturais.
- Indústria cosmética agentes antioxidantes e anti-radicalar.
- Agricultura indústria de rações animais (aromatizantes ou modificadores de funções fisiológicas), repelentes de insetos, inseticidas ou moluscicidas.
- Farmácia corretivos de sabor e odor em medicamentos orais, aromatizantes de medicamentos dermatológico ou como matéria prima para semi-sintese de outros compostos.

Suas inúmeras aplicações biológicas podem ser resultantes da ação de um único componente, bem como de sinergismo entre vários deles. Apesar do volume considerável de dados botânicos referentes ao gênero *Myrcia*, dados químicos e de ação farmacologica ainda são um tanto irrisórios. Isso se torna um problema quando constatamos o uso de várias espécies do gênero pela medicina popular, de forma indiscriminada, na resolução de doenças que afligem populações tradicionais, como exemplo, podemos citar o uso no combate a diabetes pelo grupo de plantas popularmente conhecidas como pedra-ume-caá. Citamos como grupo porque são integrados por quatro espécies do gênero *Myrcia* (*M. amazonica, M. citrifolia, M. multiflora e M. sylvatica*), além de espécies de outros gêneros, tal como *Eugenia* (*E. punicifolia*) (SILVA et al., 2015).

Estudos que descrevam os óleos essenciais ou voláteis das espécies de Myrcias spp. ocorrentes da RFAD, indicam que para Myrcia fallax, destaca-se a existência de 03 quimiotipos (entende-se por quimiotipos, plantas botanicamente idênticas, mas diferentes em termos químicos): Tipo A composto dos majoritários Germacreno D (27,7%), δ-Cadineno (12,5%), Biciclogermacreno (14,6%); Tipo B composto de Espatulenol (42,4%) e β-Elemeno (17,4%) e o Tipo C composto por Mirceno (85%) em alto teor (MAIA; ANDRADE, 2009). Em outro estudo sobre o óleo essencial (OE) de folhas de Myrcia fallax registra-se como majoritários, Guaiol 31% e Carotol 9,9% e das flores Guaiol 27,5% e Aristolone 24,5% (ALARCÓN et al., 2009). Os mesmos também comprovam a ação antibacteriana do óleo das flores sobre as espécies Staphylococcus aureus (ATCC25923) e Enterococcus faecalis (ATCC29212), gram-positivas, com um CMI de 50 e 400 µg/mL, respectivamente. Pinto e colaboradores (2010) analisaram o extrato etanólico da referida espécie e comprovaram uma significativa atividade antifúngica. Há ainda uma patente depositada em 1984 que relata a atividade biológica do extrato de Myrcia fallax com ação anticancerígena (HECHT, 1984). Pereira e colaboradores (2010) relatam que o óleo essencial de folhas de M. fallax tem um rendimento de 0,09%, e que os compostos majoritários são: α-Pineno (7,68%), β-Pineno (11,88%), β -Elemeno (11,21%), β -Cariofileno (5,55%), Selin-11-en-4 α -ol (7,56%). Destaca um rendimento de 0,71% para o OE de folhas de M. bracteata e descreve como majoritários os compostos Óxido de α -Bisabolol (10,37%) e α -Bisabolol (8,20%). Zoghbi e colaboradores (2003), em um estudo sobre o óleo essencial de três espécies do gênero Myrcia, descrevem a composição do óleo essencial extraído de folhas e galhos finos de Myrcia bracteata de três indivíduos, em que se pode comprovar a variabilidade na composição química do óleo em uma mesma espécie, a espécie denominada de A apresenta 80,8% de (E)-Nerolidol, a espécie B tem como majoritários os compostos (E)- β -Farneseno (33,9%), β-Curcumeno (9,8%) e Bisabolol (8,2%), enquanto que a espécie C se mostra rica em Germacreno B (8,8%) e Espatulenol (31%) (ZOGHBI et al., 2003a). Stefanello e colaboradores (2011), em um artigo de revisão sobre os óleos essenciais de Myrtaceae Neotropicais, relata o uso na medicina tradicional das folhas de Myrcia bracteata no tratamento de disenteria

e como antisséptico e das folhas de *Myrcia amazônica* no tratamento de leucemia (CRUZ; KAPLAN, 2004)

Em um estudo que avaliou o efeito anestésico e antioxidante dos óleos essenciais (OE) de M. sylvatica no tambaqui (Colossoma macropomum), concluiu-se que os resultados obtidos com o OE de M. sylvatica são extremamente promissores, pois reduziu o estresse animal além de proteger contra efeitos oxidativos provocados pelo manejo na aquacultura (SACCOL et al., 2017). Zoghbi e colaboradores (2003) também relatam a composição do óleo de Myrcia sylvatica, cujos componentes majoritários são: selin-11-en-4-αol (24,7%), cis-Calameneno (30,1%) e Espatulenol (40,2%) (ZOGHBI et al., 2003a). Estudos mais recentes que relatam a toxicidade do óleo de M. sylvatica frente aos insetos Aedes aegypti e Artemisa salina, constatou que óleo é extremamente tóxico para A. salina (CL₅₀=79,44 μg/ml), contudo, não apresentou atividade para A. aegypti. No mesmo estudo o óleo apresentou um rendimento de 0,5% e os compostos majoritários foram: E-Cariofileno (45,88%), 14-hidroxi (Z) Cariofileno (10,15%), β-Selineno (5,97%), e Selina-3,11-dieno (5,43%) (ROSA et al., 2016a). Em um outro estudo com plantas coletadas no período da manhã, no mês de agosto em Santarém (PA), o OE obtido de folhas frescas (FF) e secas (FS) apresentou a seguinte composição quanto aos majoritários, respectivamente: ar-Curcumeno (1,9-7,6%), β-Selineno (7,0-6,0%), cis-Calameneno (4,8-5,2%), 1-epi-Cubenol (9,9-6,9%), Cadaleno (7,2-5,8%) e β-Calacoreno (5,4-5,5%) (SILVA et al., 2016)

Maia e Andrade (2009) estudando *M. citrifolia* citam que foram encontrados na análise do óleo essencial obtido das folhas os seguintes componentes, com seus respectivos teores percentuais: α-Pineno (8,9%), α-Cadinol (9,1%) e β-Pineno (9,5%).

Para *Myrcia amazonica*, a análise de OE de folhas secas, coletadas em área de savana, no mês de outubro, na cidade de Santarém (PA), determinouse como majoritários os compostos Germacreno D (16,56%), 1-*epi*-cubenol (14,72%) e Germacreno B (11,09) (CALAO, 2014).

Em estudo que avaliou as atividades anticolinesterásica, larvicida e fungicida de óleos essenciais de Myrtaceae da Serra de Carajás (PA), constatou-se que o OE obtido de folhas e galhos finos de *M. multiflora* é composto pelos seguintes majoritários: Valerianol (30,6%), β-Selineno (12,5%),

Acetato de hinesol (7,9%) e Acetato de elemol (4,2%). Já para o OE de M. paivae, constatou-se os constituintes majoritários: Viridifloreno (24,4%), 9-epi-E-cariofileno (9,8%), Drima-7,9(11)-dieno (9,1%) e Selin-11-en- 4α -ol (8,0%). Ambas as espécies se mostraram extremamente eficientes em todos os ensaios (LIDIANE et al., 2002). Ainda com relação a M. multiflora (M. sphaerocarpa) observa-se para alguns individuos um rendimento de 1,16% para os OEs de folhas, tendo o α -Gurjuneno (6,40), β -Cariofileno (10,72%), γ -Selineno (5,12%), α -Selineno (8,67%) e Selin-11-en- 4α -ol (10,67%) como os compostos majoritários (PEREIRA et al., 2010).

A análise do óleo essencial *M. splendens* evidenciou como constituintes majoritários: (Z)- α -Bisaboleno (79,65%) e o (E)- β -Farneseno (4,76%) (NAKAMURA et al., 2010).

Para *Myrcia cuprea*, detectou-se os sesquiterpenos: Mirceno, *E*-Cariofileno e os Germacrenos D e B, como componentes majoritários (ZOGHBI et al., 2003a). Gottlieb e colaboradores (1981), estudando os óleos essenciais da Amazônia, relatam na espécie *Myrcia cuprea* a presença de álcool sesquiterpênico (67,8%), Nerolidol (4,8%), monoterpenos (16,6%) e sesquiterpenos (10,7%) encontrados no óleo essencial extraído das folhas por hidrodestilação.

Quanto à espécie *Calyptranthes spruceana*, espécie incorporada ao presente estudo como pertencente ao grande gênero *Myrcia* s.I (LUCAS et al., 2011), estudos indicam que há dois quimiotipos da referida espécie, o tipo A apresenta um OE rico em: Limoneno (34,4%), Perialdeído (19,9%) e Geranial (13,6%) e o tipo B rico em: α -Pineno (15,2%), β -Pineno (34,4%), Geranial (19,3%) e Neral (12,5%) (SILVA et al., 1984).

Quadro 2- Substâncias majoritárias encontradas em *Myrcia* spp

Espécie	Substâncias majoritárias	Referência
	H ₃ C CH ₃ H ₃ C Carotol H ₃ C CH ₃ H ₃ C Carotol H ₃ C H ₃ OH Guaiol	(ALARCÓN et al., 2009)
Myrcia fallax	beta-Pineno H ₂ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ H ₄ C H ₄ C H ₄ C H ₃ C H ₄ C H ₃ C H ₃ C H ₃ C H ₄ C H ₃ C Selin-11-en-4-alfa-ol	(PEREIRA et al., 2010)

	CH ₂ CH ₃ CH ₃	
	Germacreno-D CH ₃ Delta-Cadineno H ₃ C CH ₃ Biciclogermacreno H ₂ C CH ₃ CH ₃ Biciclogermacreno H ₂ C CH ₃ CH ₂ Espatulenol CH ₂ CH ₂ Mirceno	(MAIA; ANDRADE, 2009)
Myrcia bracteata	CH ₃ H ₃ C CH ₃ CH ₃ CH ₃ Alfa-Oxido de Bisabolol B CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂	(PEREIRA et al., 2010) (ZOGHBI et al., 2003a)

Espécie	Substâncias majoritárias	Referência
	CH ₃ H ₃ C CH ₃ Beta-Curcumeno H ₃ C CH ₃ Beta-Bisabolol H ₃ C CH ₃ HO CH ₃ HO H ₂ C Espatulenol	
Myrcia multiflora	H ₃ C H ₂ C H ₃ CH ₃ CH ₃ Gama-Selineno beta-Carofileno CH ₃ Selin-11-en-4-alfa-ol	(PEREIRA et al., 2010)

Espécie	Substâncias majoritárias	Referência
		(LIDIANE et al.,
	CH ₂ H CH ₂	2002)
	H ₃ C CH ₃ CH ₃ CH ₃	
	Valerianol $ar{CH}_3$ Beta-Selineno	
	H_3C O CH_3 O CH_3 O CH_3 O CH_3 O CH_3 O CH_3 O	
	CH ₃ H ₂ C Acetato de Hinesol CH ₃ H ₂ C CH ₃ Acetato de Elemol	
	H ₂ C H ₃ Ç	(ZOGHBI et al.,
	CH ₂ H ₂ C H CH ₃ Mirceno H ₂ C H CH ₃ CH ₃	2003b)
Myrcia cuprea	CH ₂ CH ₃	
	CH ₃ CH ₂ CH ₂	(GOTTLIEB et al., 1981)
	E-Nerolidol H ₃ C CH ₃	

Espécie	Substâncias majoritárias	Referência
Myrcia	CH ₃ H ₃ C CH ₃ HO CH ₃ HO CH ₃ H CH ₃ Cis-Calameneno	(ZOGHBI et al., 2003b)
sylvatica	H ₃ C	
	H ₂ C H ₃ C H ₃ C H ₂ CH ₃ beta-Cariofileno CH ₃ 14-hidroxi-(Z)-Cariofileno CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ Selina-3,7(11)-dieno	(ROSA et al., 2016a)
Myrcia	CH ₂ CH ₃	(MAIA; ANDRADE,
citrifolia	Time.	2009)
	beta-Pineno H ₃ C CH ₃ alfa-Pineno	
	H ₃ C CH ₃ Alfa-Cadinol	

Espécie	Substâncias majoritárias	Referência
Myrcia splendens	Z-Alfa-Bisaboleno CH ₃ E-Beta-Faneseno CH ₃ CH ₂ CH ₂ CH ₃	(NAKAMURA et al., 2010)
Myrcia amazonica	CH ₃ CH ₃ Germacreno-D CH ₃ CH ₃ Germacreno-B H ₃ C CH ₃ H CH ₃ CH ₃ Germacreno-B	(CALAO, 2014)
Myrcia paivae	$\begin{array}{c} H_3C \\ H_3C \\ H_3C \\ H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\$	(LIDIANE et al., 2002)

1.2 Análises quimiométricas

Devido ao grande volume de dados a serem organizados, analisados e correlacionados, a quimiometria se mostra como uma ferramenta prática a ser aplicada no estudo. Uma vez tabelados os dados cromatográficos obtidos, convém fazer o pré-tratamento dos dados que serão empregados nas análises quimiométricas, o objetivo do pré-tratamento é minimizar possíveis erros

gerados por variações indesejáveis decorrentes da aquisição de dados, que podem influenciar o resultado final.

Em relação a esse pré-tratamento, há técnicas aplicadas às amostras (ex: alisamento da linha de base) e técnicas aplicadas as variáveis (ex: autoescalonamento). Os dados obtidos sofreram pré-tratamento da amostra no software do próprio equipamento de análise durante a integração dos picos, e suas variáveis foram tratadas por autoescalonamento. O autoescalonamento consiste em subtrair de cada leitura obtida, o valor da média referente àqueles dados e dividir pelo desvio-padrão do conjunto. Com isso, os dados se tornam adimensionais e os valores iguais a zero são eliminados, dando uniformidade ao conjunto. O autoescalonamento é recomendado devido a alta variabilidade dos dados, com isso o efeito de um composto majoritário sobre o restante da amostra é minimizado, pois todos passam a ter um mesmo impacto. Após o pré-tratamento os dados estão aptos a serem trabalhados através das ferramentas de análise multivariada (FERREIRA et al, 1999).

A análise multivariada de dados consiste de métodos e técnicas que analisam de forma simultânea todas as variáveis na compreensão teórica de um conjunto de dados obtidos. Portanto, dependendo da aplicabilidade da técnica, haverá um conjunto de métodos e fundamentos estatísticos teóricos (NETO, 2004). As ferramentas empregadas na análise multivariada de dados, como PCA (Análise de Componente Principal) e HCA (Análise de Componentes Hierárquicos) são métodos descritos como responsáveis por identificar diferenças e similaridades existentes entre grupos de dados (ELAISSI et al., 2012; FADIL et al., 2016; FATTAHI et al., 2016; IVANE CARNEIRO DA CRUZ; TOPA, 2009).

PCA e HCA são métodos analíticos de reconhecimento de padrões, podendo ser empregados na análise de dados em diferentes vertentes. A PCA e o HCA analisam relações existentes entre os dados analisados, tais métodos permitem converter grandes volumes de dados em representações matemáticas, como gráficos, figuras ou tabelas, onde as similaridades ou dissimilaridades, se existentes, são mais facilmente analisadas e interpretadas.

Tais ferramentas podem ser empregadas na análise de variabilidade química de óleos essenciais, inclusive com dados oriundos de espécies Myrtaceae (SOBEH et al., 2016; MESQUITA et al., 2017; FADIL et al., 2016;

SÁ et al., 2012), viabilizando correlacionar fatores que influenciam essa variabilidade (LORDÊLO, 2010) ou auxiliar também na avaliação de atividades biológicas, correlacionando a atividade biológica observada com a composição química do óleo ou a grupos terpênicos caracterisiticos da espécie estudada (MIRANDA et al., 2014). Desta forma, é possível através da análise multivariada de dados, fazer a diferenciação destas espécies através de sua composição química, bem como entender se dentro de um mesmo gênero, diferentes espécies apresentam relações homotípicas ou heterotípicas. Contudo, não há dados de emprego com as espécies estudadas.

2. OBJETIVOS

2.1 Objetivo Geral

Determinar a composição química e avaliar as potenciais bioatividades dos óleos essenciais obtidos a partir de *Myrcia* spp. (Myrtaceae) ocorrentes em ecossistema de Terra firme (Amazônia)

2.2 Objetivos Específicos

- Analisar a composição química e caracterizar os constituintes voláteis presentes nas amostras com base no cálculo do índice de aritimético e por comparação com os espectros de massas da biblioteca Wiley e NIST.
- ii. Comparar os diferentes perfis cromatográficos dos óleos obtidos empregando-se ferramentas quimiométricas (PCA/HCA);
- iii. Avaliar o potencial antibacteriano, antifúngico, inseticida e citotóxico dos óleos essenciais de *Myrcia* spp..

3. METODOLOGIA

3.1 Reagentes, Gases, Padrões e Solventes

- Doxorrubicina;
- Meio de cultura DEMEN;
- Indicador Alamar blue;
- Meio TSB (Tryptic Soy Broth), marca Merck;
- Caldo BHI (brain heart infusion), marca Merck;
- Meio Agar Muller-Hington, marca Sigma-Aldrich;
- Hélio gasoso 5.0 analítico para CG-DIC e CG-EM;
- Ar sintético 5.0 analítico para CG-DIC;
- H₂ 5.0 analítico para CG-DIC;
- Solução padrão de alcanos C8-C20 da Sigma-Aldrich;
- Solução padrão de alcanos C7-C30 da Sigma-Aldrich;
- Hexano grau HPLC, marca Tedia, com pureza de 95%;
- Acetato de etila grau HPLC, marca Tedia, com pureza acima de 99%;
- Sulfato de sódio anidro (NaSO₄), ACS, ISO, Reag. Ph Eur, marca Merck;
- Dimeltilsulfóxido (DMSO) P.A A.C.S, marca Synth;

3.2 Coleta e identificação do material vegetal

A coleta de partes aéreas das espécies vegetais foi realizada na Reserva Florestal Adolpho Ducke (RFAD), na área de plantas aromáticas da Embrapa Amazônia Ocidental, ambas localizada no km 26 e 29, respectivamente, da estrada AM-010 (Manaus-Itacoatiara) e no sítio PANC (Plantas alimentícias não convencionais), no ramal do Brasileirinho, na zona leste da cidade de Manaus. Na Embrapa foram coletadas as espécies *C. spruceana* e *M. spherocarpa* que estão sendo cultivadas no Setor de Plantas Medicinais e Hortaliças, no sítio PANC a espécie *M. magnoliifolia* e as demais Myrcias spp na RFAD.

Buscou-se coletar ramos de mais de um indivíduo, para que se pudesse comparar o perfil químico dentro do grupo. Os períodos de coleta variaram, para que se pudesse ter um perfil da variação química do óleo ao longo do período seco e chuvoso, típicos da região amazônica. Cada grupo de indivíduos foi coletado em um mesmo dia e em horários similares. Os ramos coletados foram identificados com auxílio da Profa. Dra. Maria Anáilia (UFAM) e do Prof. Dr. Marcos Sobral (UFSJ) e pelo código das chapas de identificação do Projeto Flora da Reserva Ducke (PFRD). e devidamente armazenados para transporte até o laboratório de Química de Produtos Naturais da UFAM.

Tabela 1- Dados de coleta e identificação das espécies de Myrcia spp

N.	CÓDIGO	NOME	LOCAL	MARCO	N.	OBSERVAÇÃO	DATA	PERÍODO	IDENTIFICADOR
-04	61	AA aitaifalia (A. Ibl \ I lub	RFAD	LOCALIZADOR MARCO 212	EXSICATA	ESTÉRIL	10/02/12	CHUVOSO	Cours MAD do
01	C1 C2	M. citrifolia (Aubl.) Urb. M. citrifolia (Aubl.) Urb.	RFAD	MARCO 517	3012-30 3880-30	ESTÉRIL	19/02/13 19/02/13	CHUVOSO	Souza, M.A.D. de Souza, M.A.D. de
02	M1s	` '							
03		M. magnoliifolia DC.	RFAD	MARCO 050	273014	ESTÉRIL	14/0813	SECO	Souza, M.A.D. de
	M1c	M. magnoliifolia DC.	RFAD	MARCO 050	273014	ESTÉRIL	03/04/14	CHUVOSO	Souza, M.A.D. de
05 06	M2s	M. magnoliifolia DC.	RFAD	MARCO 035	273015	FÉDTU COM	00/04/40	011111/000	Souza, M.A.D. de
	M4c	M. magnoliifolia DC.	PANC	Próximo ao viveiro de peixes		FÉRTIL COM FRUTOS MADUROS	30/01/16	CHUVOSO	Souza, M.A.D. de
07	B1c	M. bracteata (Rich.) DC.	RFAD	MARCO 016	273003	ESTÉRIL	31/10/13	CHUVOSO	Souza, M.A.D. de
80	B2c	M. bracteata (Rich.) DC.	RFAD	Na estrada do alojamento	273008	ESTÉRIL	31/10/13	CHUVOSO	Souza, M.A.D. de
09	MIs	M. minutiflora Sagot	RFAD	MARCO 511	4774-30	FÉRTIL COM FRUTOS VERDES	14/08/13	SECO	Souza, M.A.D. de
10	MIc	M. minutiflora Sagot	RFAD	MARCO 511	4774-30	FÉRTIL COM FRUTOS MADUROS	02/04/15	CHUVOSO	Souza, M.A.D. de
11	PAs	M. paivae O. Berg	RFAD	MARCO 035	185604	ESTÉRIL	14/08/13	SECO	Souza, M.A.D. de
12	PAc	M. paivae O. Berg	RFAD	MARCO 035	185604	ESTÉRIL	03/04/14	CHUVOSO	Souza, M.A.D. de
13	F1c	M. fenestrata DC.	RFAD	MARCO 016	273002	FÉRTIL COM FLOR	31/10/13	CHUVOSO	Souza, M.A.D. de
14	F2c	M. fenestrata DC.	RFAD	Ao lado do campo		FÉRTIL COM FLOR	31/10/13	CHUVOSO	Souza, M.A.D. de
				de futebol					
15	F1s	M. fenestrata DC.	RFAD	MARCO 016	273002	ESTÉRIL	13/10/15	SECO	Souza, M.A.D. de
16	APc	<i>M. amapensis</i> McVaugh	RFAD	MARCO 138	191250	ESTÉRIL	19/11/13	CHUVOSO	Souza, M.A.D. de, Sobral M.E.G
17	APs	<i>M. amapensis</i> McVaugh	RFAD	MARCO 138	191250	ESTÉRIL	13/10/15	SECO	Souza, M.A.D. de, Sobral M.E.G
18	AMc	M. amazonica DC.	RFAD	MARCO 126	4724-30	ESTÉRIL	19/11/13	CHUVOSO	Souza, M.A.D. de, Sobral M.E.G
19	AMs	M. amazonica DC.	RFAD	MARCO 126	4724-30	ESTÉRIL	13/10/15	SECO	Souza, M.A.D. de, Sobral M.E.G
20	FA1s	M. fallax (Rich.) DC.	RFAD	MARCO 474	191255	FÉRTIL COM FLOR	28/10/14	SECO	Souza, M.A.D. de
21	FA1c	M. fallax (Rich.) DC.	RFAD	MARCO 474	191255	ESTÉRIL	03/04/14	CHUVOSO	Souza, M.A.D. de
22	FA2c	M. fallax (Rich.) DC.	RFAD	MARCO 141	4719-30	ESTÉRIL	03/04/14	CHUVOSO	Souza, M.A.D. de
23	S1c	M. sylvatica (G. Mey) DC.	RFAD	MARCO 264		FÉRTIL COM FLOR	04/11/14	CHUVOSO	Souza, M.A.D. de
24	S2c	M. sylvatica (G. Mey) DC.	RFAD	Ao lado da guarita de entrada	273007	FÉRTIL COM FLOR	04/11/14	CHUVOSO	Souza, M.A.D. de

N.	CÓDIGO	NOME	LOCAL	MARCO LOCALIZADOR	N. EXSICATA	OBSERVAÇÃO	DATA	PERÍODO	IDENTIFICADOR
25	E1s	M. multiflora (Lam.) DC. (M. sphaerocarpa)	EMBRA PA	Setor de plantas medicinais		ESTÉRIL	07/07/16	SECO	Souza, M.A.D. de, Sobral M.E.G
		(IVI. Spriaerocarpa)	. , ,	IIIeulciliais					Sobial W.E.G
26	MCc	Myrcia caudata (McVaugh) E. Lucas & C.E. Wilson (Marlierea caudata)	RFAD	MARCO 490	2953-30	ESTÉRIL	04/11/14	CHUVOSO	Sobral M.E.G
27	CS1s	Calyptranthes spruceana O. Berg	EMBRA PA	Setor de plantas medicinais		ESTÉRIL	07/07/16	SECO	Souza, M.A.D. de, Sobral M.E.G

3.3 Preparo do material vegetal

O material foi seco por um período de 14 dias em sala com desumidificador até peso constante, em seguida o material foi moído em moinho de facas.

3.4 Obtenção dos óleos essenciais

Empregou para extração o processo de destilação por arraste a vapor (hidrodestilação) usando aparelho extrator tipo Clevenger modificado, o óleo essencial foi extraído em duplicata de cada indivíduo e a massa de material vegetal empregada foi de 100 g de folhas secas, o tempo de extração foi de 4 h. O óleo/hidrolato obtido foi recolhido em frasco apropriado do tipo âmbar, o que proporciona abrigo da luz. A porção aquosa foi separada e armazenada e a orgânica foi seca adicionando Sulfato de sódio anidro com um tempo de contato com a mistura de 10 minutos, o óleo obtido foi transferido para um vidro âmbar previamente pesado. O material obtido foi conservado em refrigerador a –20°C até sua análise por cromatografia gasosa (ANVISA, 2010; ANDREI et al, 2012). O valor de rendimento do óleo foi calculado em função da massa de óleo obtida em relação à massa inicial de amostra empregada para a extração.

3.5 Caracterização física

3.5.1 Cálculo do Rendimento dos óleos essenciais obtidos

Para o cálculo do rendimento percentual (%R) de óleo obtido foi empregado a seguinte equação:

$$\%R = \frac{M_2}{M_1} x 100$$

Onde:

M₁ = massa de folhas secas utilizadas na hidrodestilação em gramas (g).

M₂ = massa de óleo obtido após a hidrodestilação em gramas (g).

3.5.2 Determinação da coloração

Óleos essenciais geralmente quando recém extraídos podem se apresentar incolores ou com colorações amareladas, contudo, se observa que óleos essenciais que apresentam em sua composição azulenos, possuem uma coloração azulada. A determinação da coloração foi feita visualmente sem auxilio instrumental.

3.5.3 Determinação do Índice de refração dos óleos essenciais obtidos

Para a determinação do índice de refração foi empregado um aparelho refratômetro tipo ABBE, da marca Quimis, modelo Q767BD. Inicialmente o aparelho foi ajustado para a leitura de *n* em 1,3330 com água a 20 °C, de acordo com as instruções do fabricante. Em seguida, foi colocado 2 gotas da amostra entre os prismas, o prisma foi fechado e o feixe de luz focalizado, o índice de refração obtido pela leitura da escala, foi corrigido conforme o cálculo a seguir (IAL, 2008):

$$N_D^{20^{\circ}} = N_D^t + 0.0004(t'-t)$$

Onde:

 N_D^t = índice de refração à temperatura de trabalho

t' = temperatura de trabalho (°C)

t = 20 °C

3.6 Caracterização química

3.6.1 Análise por CG-EM e CG-DIC

O espectro de massas foi obtido em um Espectrometro de massas Shimadzu, modelo QP2010 MS, acoplado diretamente a um Cromatografo gasoso Shimadzu, modelo CG2010, equipado com uma coluna capilar de sílica fundida da J&W DB-5MS (25m x 0,25mm; 0,25μm filme) 95% dimetil e 5% difenil polisiloxano, fase apolar. O CG-EM foi operado nas seguintes condições: temperatura do Injetor igual a 250 °C, com uma programação da temperatura de 60 °C a 240 °C (3 °C/min), a temperatura da interface igual a 300 °C, o modo de controle de fluxo foi por velocidade linear, com um fluxo de gás na coluna igual a 1 mL/min e uma velocidade linear de 36,5 cm/s, o gás de arraste foi Hélio (He), por apresentar segurança em seu uso, inércia química e menor tempo de análise, devido permitir uma maior vazão (MOTA e ROSA, 1996), o modo de injeção foi Split com uma razão de 1/20 e o volume injetado foi de 1μL. O Espectrometro de massas foi ajustado para uma voltagem no detector de 1,08 kV, com uma voltagem de ionização de 70 V e uma corrente de emissão de 60 μA. A temperatura da câmara de ionização foi de 200 °C, o modo de

aquisição do espectrômetro foi Scan na faixa de 40-600 m/z, com uma velocidade de 1250 e um tempo de delay do solvente de 2,5 min.

A análise quantitativa por percentual de área foi realizada em um Detector de ionização por chama – DIC, acoplado a um Cromatografo gasoso Shimadzu, modelo CG2010, equipado com uma coluna capilar de sílica fundida da J&W DB-5 (30m x 0,25mm; 0,25µm filme) 95% dimetil e 5% difenil polisiloxano, fase apolar. O CG-DIC foi operado nas seguintes condições: temperatura do Injetor igual a 250 °C, com uma programação da temperatura de 60 °C a 240 °C (3 °C/min), a temperatura do DIC foi igual a 310 °C, o modo de controle de fluxo foi por velocidade linear, com um fluxo de gás na coluna igual a 1 mL/min e uma velocidade linear de 25,9 cm/s, o gás de arraste foi Hélio (He), por apresentar segurança em seu uso, inércia química e menor tempo de análise, devido permitir uma maior vazão (MOTA e ROSA, 1996), o modo de injeção foi Split com uma razão de 1/20 e o volume injetado foi de 1µL, com um tempo de delay para o solvente de 4 min.

A análise qualitativa das substâncias inicialmente foi feita por comparação dos seus espectros de massas com os espectros das bases de dados Wiley 7, NIST 147 (National Institute of Standards and Technology e FFNSC 1.2 (Flavour and Fragrance Natural and Synthetic Compounds Library). Em seguida, para aumentar o grau de confiabilidade da comparação dos dados e permitir a identificação dos analitos, foram calculados através da equação de de H. van den Dool e D.J Kratz, o índice de retenção linear ou aritmético (IAC), o método é baseado nos trabalhos de E. Kovats (STASHENKO, E. MARTINEZ, 2010), que introduziu o chamado Índice de retenção de Kovats, que consiste no cálculo do tempo de retenção relativo, utilizando como padrões uma série homóloga de hidrocarbonetos lineanes (ex.: C₈ – C₂₀) analisados nas mesmas condições cromatográficas das amostras, os métodos se diferem por que, enquanto Kovats emprega método isotérmico (temperatura constante), o de Dool e Krats emprega temperatura programada (temperatura variável), que uma vez calculado é comparado ao registrado na literatura (IA) (ADAMS, 2017).

$$IA = 100 \ x \ n \left(\frac{TR_{subst.} - TR_{h \ anterior}}{TR_{h \ posterior} - TR_{h \ anterior}} \right) + 100 \ x \ n^{\circ} \ C_{h \ anterior}$$

Figura 7 - Equação para o cálculo do Índice aritmético

Onde:

IA = Índice aritmético

n = Diferença entre o número de Carbonos imediatamente anterior e posterior a substância que se quer determinar

TR_{subst} = Tempo de retenção da substância

TR_{h anterior} = Tempo de retenção do hidrocarboneto anterior

TR_{h posterior} = Tempo de retenção do hidrocarboneto posterior

n° C_h anterior = número de carbonos contidos no hidrocarboneto anterior

3.6.2 Análises estatísticas/quimiométricas empregada na análise dos óleos essenciais

Para as análise estatísticas e quimiométricas (PCA e HCA) dos dados químicos do óleos essenciais empregou-se os softwares ActionStatTM (versão 3.1.43) e The UnscrablerTM (versão 10.3). Os dados cromatográficos obtidos foram pré-processados por autoescalonamento no software ExcelTM 2016 e levados para análise de similaridade química na ferramenta quimiométrica The UnscramblerTM 10.3, na ferramenta os dados foram transpostos. Após a transposição, analisou-se a PCA (algoritmo de NIPALS para pequenos fatores de dados SVD para grandes fatores de dados, e com validação do tipo "cross validation") e HCA (método: Wards empregando distância Euclidiana.

3.7 Análises biológicas dos óleos essenciais

3.7.1 Determinação do potencial antimicrobiano

A atividade antibacteriana foi avaliada preliminarmente pelo método de difusão em ágar-discos, os ensaios foram realizados no Laboratório de Microbiologia do Centro de Biotecnologia da Amazônia, coordenado pelo Dr. Rudi Procópio. Os seguintes microrganismos indicadores foram utilizandos: bactérias *Escherichia coli* ATCC 25922, *Klebsiella pneumoniae* ATTCC 700603, *Burkholderia cepacia*, *Streptococcus pneumoniae* ATCC 49619, *Enterococcus faecalis* ATCC 29212 e *Staphylococcus aureus* resistente a meticilina (MRSA). A técnica é destinada a determinação da sensibilidade bacteriana *in vitro* frente a agentes antimicrobiano, também conhecido por Teste de Sensibilidade a Antimicrobianos (TSA). Para o método de difusão em

disco, os microrganismos padronizados foram semeados em placas contendo meio Agar Muller-Hington onde discos de papel de 6 mm de diâmetro foram previamente colocados no meio de cultura, e 30 µL de cada fração do óleo a ser testado foram inoculados em cada disco, os microrganismos indicadores padronizados foram inoculadas com swab esteril em toda a placa de Petri contendo o meio agar Mueller-Hinton. As placas foram armazenadas em geladeira (-14 °C) por aproximadamente 4 h para maior difusão do composto antimicrobiano no agar. Após esse período as placas foram incubadas a 35 °C, de 16 a 48 horas, dependendo do microrganismo indicador. Após o período de 53 h de incubação foi realizada a leitura das placas medindo o diâmetro dos halos de inibição. Posteriormente, ensaios de atividade antifúngica e antibacteriana patogênicas em placas de ELISA e Screening em Triplicata para inibição de biofilmes, foram realizadas no Instituto Federal do Amazonas -IFAM, Campus Centro, no laboratório de microbiologia coordenado pela Profa. Dra. Juliana Lucena, utilizando os seguintes microrganismos indicadores: bactérias (gram negativas) - Escherichia coli (EC) e Pseudomonas aeroginosas (PA); bactérias (gram positivas) - Enterococcus faecalis (EF), e Staphylococcus aureus (SA), e o fungo Candida albicans (CA). Foi utilizado Amoxilina (10 mg/ml) como controle positivo para as espécies EC e AS e Tetraciclina (3mg/ml) para as espécies EF e PA. Para a espécie CA foi empregado como controle positivo o antifúngico Fluconazol (0,5 M). Os ensaios seguem metodologia descrita por Kwasny e Opperman (2010), onde a amostra a ser testada é diluída em uma concentração de 10 mg/mL em meio TSB (Caldo de soja tríptica) e os microrganismos são ativados em caldo BHI (Infusão de cérebro e coração).

3.7.2 Determinação do potencial inseticida

A atividade larvicida foi realizada no Instituto Nacional de Pesquisas da Amazônia – INPA, no laboratório de Malária e Dengue, coordenado pelo Dr. Tadei, em sala com temperatura controlada em 26° ± 2°C, umidade relativa de aproximadamente 80% e fotoperíodo de 12 h. O ensaio preliminar foi realizado para verificar a toxicidade dos óleos frente às larvas de *Aedes aegypti* através de metodologia definida pela OMS (WHO, 1975). O ensaio preliminar, adotado

pelo laboratório, determina uma concentração inicial de 50 mg/L, 25 mg/L e 12,5 mg/L (500, 250, 125 ppm).

3.7.3 Determinação do potencial citotóxico

Os ensaios de citotoxicidade foram realizados em parceria com a Faculdade de Ciências Farmaceuticas (UFAM), no Laboratório de Atividade Biológica (BIOPHAR) sob responsabilidade do Prof. Dr. Emerson Silva Lima, o ensaio foi realizado pelos técnicos do laboratório. A Citotoxicidade foi avaliada pelo método de Alamar blue, conforme metodologia descrita por Ahmed e colaboradores (1994), no tempo de exposição de 72 h de tratamento das células das linhagens humanas de melanoma (Skmel 3), adenocarcinoma gástrico (ACPO2) e fibroblastos não-neoplásico (MRC5) na concentração de 50 µg/mL. A doxorrubicina foi utilizada como controle positivo na concentração de 5 µg/mL.

3.7.4 Análise estatística empregada nos ensaios biológicos

As amostras foram analisadas em triplicatas e os valores citados correspondem a média das leituras obtidas com seu respectivo desvio padrão.

4. RESULTADOS E DISCUSSÃO

4.1 Características físico-químicas dos óleos analisados

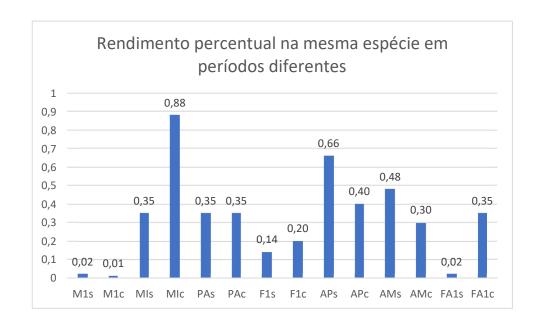
O percentual de rendimento, coloração e índice de refração de cada óleo são apresentados na tabela abaixo.

Tabela 2- Propriedades físico-químicas observadas nos óleos essências de *Myrcias* spp coletados na RFAD

Nº	Código das amostras	Nome das espécies	Rendimento (%)	Coloração	Índice de refração (20° C)
01	C1c	M. citrifolia (Aubl) Urb.	0,80	Azul safira	1,462
02	C2c	M. citrifolia (Aubl) Urb.	0,75	Azul safira	-
03	M1s	M. magnoliifolia DC.	0,02	Verde	-
				amarelado	
04	M1c	M. magnoliifolia DC.	0,01	Verde	-
				amarelado	
05	M2s	<i>M. magnoliifolia</i> DC.	0,20	Verde	1,493
				amarelado	
06	M4c	M. magnoliifolia DC.	0,09	Verde	-
			0.05	amarelado	4 407
_07	MIs	M. minutiflora Sagot	0,35	Amarelo claro	1,467
80	MIc	M. minutiflora Sagot	0,88	Amarelo	-
	DA-	Masing O Dani	0.05	esverdeado	4.400
09	PAs	M.paivae O. Berg	0,35	Amarelo ouro	1,466
10	PAc	M.paivae O. Berg	0,35	Amarelo ouro	-
11	B1c	M. bracteata (Rich.) DC.	0,40	Verde folha	1,461
12	B2c	M. bracteata (Rich.) DC.	0,30	Verde folha	1,466
13	F1s	M. fenestrata DC.	0,14	Amarelo claro	-
14	F1c	M. fenestrata DC.	0,20	Verde claro	-
15	F2c	M. fenestrata DC.	0,24	Amarelo escuro	-
_16	APs	M. amapensis McVaugh	0,66	Amarelo claro	-
17	APc	<i>M. amapensi</i> s McVaugh	0,40	Verde claro	1,502
18	AMs	M. amazonica DC.	0,48	Verde escuro	-
19	AMc	M. amazonica DC.	0,30	Verde folha	1,471
_20	FA1s	M. fallax (Rich.) DC.	0,02	Verde escuro	-
21	FA1c	M. fallax (Rich.) DC.	0,35	Amarelo claro	-
22	FA2c	M. fallax (Rich.) DC.	0,10	Verde claro	-
23	S1c	M. sylvatica (G. Mey) DC.	0,25	Bronze	1,502
24	S2c	M. sylvatica (G. Mey) DC.	0,20	Bronze	-
25	E1s	M. sphaerocarpa DC.	0,08	Verde	-
26	МСс	Marlierea caudata (Mc Vaugh) E. Lucas & C.E.Wilson	0,08	Verde amarelado	1,507
27	CSs	Calyptranthes spruceana O. Berg	1,30	Amarelo claro	1,488

Quanto aos rendimentos de óleo volátil de todas as *Myrcia* spp. coletas, houve uma variação de 0,01 a 1,30%, com uma média geral de 0,34%. Para as

amostras coletadas no período chuvoso a média de rendimento foi de 0,36% e para o período seco 0,29%. Portanto, não se observa uma diferença significativa de variância entre os 07 pares de amostras coletadas em ambas os períodos climáticos (seco e chuvoso).


Tabela 3- Estatística descritiva dos dados de rendimentos de Myrcia spp coletadas em ambas as estações climáticas

	Seco	Chuvoso
Média	0,29	0,36
Erro padrão	0,09	0,10
Mediana	0,35	0,35
Moda	0,02	0,35
Desvio padrão	0,24	0,27
Variância da amostra	0,06	0,07
Curtose	-1,07	3,07
Assimetria	0,28	1,24
Intervalo	0,64	0,87
Mínimo	0,02	0,01
Máximo	0,66	0,88

Quanto aos dados de índice de refração, esses se mostram importantes, pois servem como parâmetro auxiliar no controle da qualidade de óleos essenciais (SIMÕES E SPITZER, 2003), os valores de índices de refração de OE sem adulteração devem variar entre 1,450 e 1,590. Portanto, todos os OE descritos na tabela estão dentro da referida faixa de qualidade citada, não apresentando qualquer adulteração. Os valores omitidos indicam volume insuficiente de material a ser amostrado devido à perda durante transporte e armazenamento. Não há dados na literatura quanto ao índice de refração para as respectivas espécies.

Quando analisamos a variação do rendimento em uma mesma espécie, em diferentes estações climáticas, observamos que há certa variação, contudo, com exceção de MI (M. minutiflora), AP (M. amapensis) e FA (M. fallax), as demais não apresentam variações consideradas elevadas.

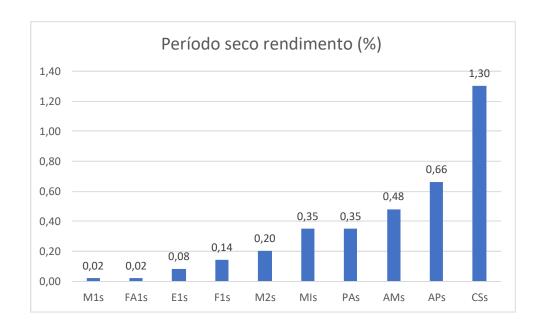
Gráfico 2- – Rendimento do óleo essencial de Myrcia spp coletadas em estações climátics distintas (Códigos iguais indicam mesma espécie, as letras minúsculas s = período seco; c = período chuvoso)

Observa-se que as maiores variações de percentual de rendimento, durante o período chuvoso, ocorreram nas amostras MIc (*M. minutiflora*) e FA1 (*M. fallax*), o que se confirma ao analisar o desvio padrão amostral e o coeficiente de variação descritos na tabela abaixo:

Tabela 4- Estatística descritiva dos dados de rendimentos de Myrcia spp coletadas em ambas as estações climáticas

Código das amostras	M1	MI	PA	F1	AP	AM	FA1
Período Seco	0,02	0,35	0,35	0,14	0,66	0,48	0,02
Período Chuvoso	0,01	0,88	0,35	0,20	0,40	0,30	0,35
Desv. Padrão	0,01	0,37	0,00	0,04	0,18	0,13	0,23
Média	0,016	0,615	0,350	0,170	0,530	0,390	0,185
Coef. Variação (%)	35,36	<mark>60,94</mark>	0,00	24,96	34,69	32,64	<mark>126,13</mark>

Dos 07 pares observados nos dois períodos climáticos, 03 deles (42,85%) apresentam um melhor rendimento no período chuvoso, e 03 deles (42,85%) no período seco, 01 pares não apresentou variação de rendimento. Tal resultado não permite uma análise conclusiva da influência do índice pluviométrico e da incidência solar no rendimento de óleos de *Myrcia* spp. coletadas aos pares (REHMAN et al., 2016)(DE CERQUEIRA et al., 2007).


Quando consideramos todas as espécies coletadas no período chuvoso, observamos que as espécies MIc (*M. minutiflora*), C1c e C2c (*M. citrifolia*) foram as que apresentaram um melhor resultado, dentre as que foram coletadas, seguido pelas amostras APc (*M. amapensis*) e B1c (*M.bracteata*) com resultados medianos. A variação de teor foi de 0,01 a 0,88%, o que se monstrou um fator limitante aos ensaios biológicos.

Período chuvoso rendimento (%) 1,00 0,88 0,90 0,80 0,75 0,80 0,70 0,60 0,35 0,35 0,35 0,40 0,40 0,50 0,40 0,30 0,20 0,08 0,09 0,10 0,10 0,01 0,00 M1c MCc M4c FA2c F1c S2c F2c S1c B2c AMc PAc FA1c B1c APc C2c C1c MIc

Gráfico 3- Rendimento do óleo essencial de todas as espécies de Myrcia spp coletadas do período chuvoso

Por sua vez os dados de rendimento de todas as espécies de *Myrcia* spp. coletadas no período seco, indicam que somente a amostra CSs apresentar um excelente rendimento, contudo, ela pertence ao gênero *Calyptranthes* que está sendo incluído no grande gênero *Myrcia* s.l e não foi coletada na RFAD, mas na Embrapa. Portanto, optou-se por tê-la como parâmetro externo de comparação. As demais espécies APs, AMs, PAs e Mis apresentaram um rendimento mediano, e as demais extremamente baixo, inferior ou igual a 0,2% o que tem dificultado a realização dos ensaios biológicos com todas as espécies.

, Gráfico 4 - Rendimento do óleo essencial de todas as espécies de Myrcia spp coletadas do período seco.

4.2 Identificação dos constituintes químicos presentes nos óleos essenciais de *Myrcia* spp.

4.2.1 *Myrcia citrifolia* (Códigos – C1c e C2c)

Em ambas as espécies estudadas, 03 substâncias se mostraram majoritárias, sendo elas: α-Pineno (9,26-17,10%), (*E*)-Cariofileno (10,21-14,09%) e Óxido de Cariofileno (16,85-22,58%). A espécie também é conhecida como fazendo parte do grupo das classificadas popularmente como "pedra-ume-caá", cuja atividade farmacológica está associada ao tratamento da diabetes (SILVA et al., 2015). É observado uma forte relação intraespecífica entre as espécies coletadas, o que é realçado pelo intenso valor de coeficiente de correlação (0,7682).

Figura 8 - Tronco, galho com folhas e frutos, óleo essencial de M. citrifolia

Fonte: Tronco e óleo = o autor; Folhas e frutos https://plants.usda.gov

Tabela 5- Componentes caracterizados de M. citrifolia com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	C1c	C2c
1	5	MH	Bicíclico	Pinanos	932	932	α-Pineno	17,10	9,26
2	13	MH	Bicíclico	Pinanos	974	976	β-Pineno	0,67	0,37
3	16	MH	Acíclico	Mircanos	988	989	Mirceno	3,50	0
4	21	MH	Monociclico	Mentanos	1020	1023	p-Cimeno	0,25	0,15
5	23	MH	Monociclico	Mentanos	1024	1028	Limoneno	0,63	0,43
6	35	МО	Bicíclico	Pinanos	1099	1102	α-Óxido de Pineno	0	0,31
7	43	МО	Bicíclico	Pinanos	1135	1138	trans-Pinocarveol	0,43	0,65
8	47	МО	Bicíclico	Pinanos	1140	1144	trans-Verbenol	0	0,28
9	67	МО	Monociclico	Mentanos	1186	1188	α-Terpineol	0,90	0,70
10	93	dMO	Bicíclico	Fenchanos	1298	1298	trans-acetato de Pinocarvila	0	0,29
11	97	SH	Monociclico	Bisabolanos	1335	1337	δ-Elemeno	0,26	4,20
12	98	SH	Triciclico	Cadinanos	1345	1348	α-Cubebeno	0,27	0
13	104	SH	Triciclico	Copaenos	1373	1373	α-Ylangeno	0,46	0
14	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	4,53	0,42
15	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	0,37	0,67
16	115	SH	Bicíclico	Cariofilanos	1417	1418	(E)-Cariofileno	14,09	10,21
17	123	SH	Triciclico	Aromadendranos	1439	1441	Aromadendreno	2,74	0
18	125	SH	Bicíclico	Guaianos	1442	1444	6,9-Guaiadieno	1,69	0
19	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	1,83	1,09
20	145	SH	Bicíclico	Cadinanos	1478	1478	γ-Muuroleno	1,68	1,89
21	148	SH	Monociclico	Germacranos	1484	1481	Germacreno D	0	1,05
22	151	SH	Bicíclico	Cadinanos	1483	1482	α-Amorfeno	0,92	0,67
23	157	SH	Bicíclico	Cadinanos	1493	1487	trans-Muurola-4(14),5-dieno	1,07	0
24	161	SH	Triciclico	Aromadendranos	1496	1493	Viridifloreno	0	0,65
							X		

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	C1c	C2c
25	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	1,14	0,31
26	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	1,77	1,03
27	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	1,11	1,18
28	186	SH	Bicíclico	Cadinanos	1528	1526	cis-Calameneno	0,65	0
29	197	SH	Bicíclico	Cadinanos	1544	1542	α-Calacoreno	0,47	0
30	200	SO	Monociclico	Germacranos	1546	1547	Hedicariol	0	0,75
31	205	SO	Acíclico	Farnesilanos	1561	1561	(E)-Nerolidol	1,60	0,26
32	209	SH	Bicíclico	Cadinanos	1564	1563	β-Calacoreno	0,40	0
33	217	SO	Triciclico	Aromadendranos	1577	1574	Espatulenol	3,26	1,14
34	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	16,85	22,58
35	220	SO	Bicíclico	Spirosesquiterpenoides	1586	1588	Gleenol	0,72	0
36	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	1,34	0,25
37	225	SO	Bicíclico	Daucano	1594	1604	Salvial-4(14)-en-1-ona	0	0,75
38	230	SO	Bicíclico	Guaianos	1600	1604	Guaiol	0	2,00
39	238	SO	Bicíclico	Humulanos	1608	1606	Epóxido Humuleno II	1,01	0,76
40	243	SO	Bicíclico	Eudesmano	1618	1614	Junenol	1,06	1,33
41	249	SO	Bicíclico	Cadinanos	1627	1627	1-epi-Cubenol	0	4,26
42	251	SO	Bicíclico	Cadinanos	1630	1624	Muurola-4-10(14)-dien-1-β-ol	0	8,49
43	252	SO	Bicíclico	Eudesmano	1630	1627	γ-Eudesmol	0	2,32
44	254	SO	Bicíclico	Cadinanos	1635	1636	<i>cis</i> -Cadin-4-en-7-ol	1,35	0
45	255	SO	Bicíclico	Cariofilanos	1639	1639	Cariofila-4(12),8(13)-dien-5α-ol	0	1,39
46	256	SO	Bicíclico	Cadinanos	1638	1635	epi-α-Cadinol	0	0,81
47	258	SO	Bicíclico	Acoranos	1640	1643	Hinesol	0,74	0
48	259	SO	Bicíclico	Cadinanos	1640	1640	epi-α-Muurolol	0	1,89
49	264	SO	Bicíclico	Cadinanos	1645	1649	Cubenol	0,93	0

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	C1c	C2c
50	265	SO	Bicíclico	Cadinanos	1644	1644	α-Muurolol	0	1,16
51	271	SO	Bicíclico	Eudesmano	1652	1651	α-Eudesmol	0	9,16
52	273	SO	Bicíclico	Cadinanos	1652	1652	α-Cadinol	1,37	0
53	274	SO	Bicíclico	Eremofilanos	1656	1658	Valerianol	1,05	0
54	284	SO	Bicíclico	Guaianos	1670	1668	Bulnesol	4,92	0
55	289	dSO	Monociclico	Elemanos	1680	1675	Acetato de Elemol	0,49	0,48
56	296	SO	Bicíclico	Farnesilanos	1690	1687	Z-α-trans-Bergamotol	0	0,94
57	300	SO	Bicíclico	Cadinanos	1700	1702	Amorfa-4,9-dien-2-ol	0,42	0,36
	Total de Picos Identificados (%) Índice aritmético							96,04	96,89
			7	otal de Picos Não Identificad	los (%) **			3,96	3,11
				derivado de monoterpe	eno oxigena	ado	dMO	0	0,29
				derivado de sesquiterpenos oxigenado			dSO	0,49	0,48
				monoterpeno não oxigenado			MH	22,15	10,21
7	otal de gru	ıpos terpênicos poi	amostra	monoterpeno oxigenado			MO	1,33	1,94
				sesquiterpeno não	oxigenado		SH	35,45	23,37
				sesquiterpeno ox	igenado		SO	36,62	60,6
							Acíclico	5,1	0,26
							Monociclico	4,73	9,52
		Total do os	truturas tornôni	cas/Vias de ciclização					
		i otai de es	u uturas terpem	cas/ vias ue ciclização			Bicíclico	73,61	84,65
							Triciclico	12,6	2,46

Analisando os grupos terpênicos característicos da espécie observa-se que os sesquiterpenos não oxigenados (SH) e sesquiterpenos oxigenados (SO) são predominantes, em C1c esse total chega a corresponder a 72,07% da amostra caracterizada e em C2c tem-se um valor de 83,97%. O terceiro maior grupo e o dos monoterpenos não oxigenados (MH), que tem como representante majoritário o composto α-pineno. Os dados indicam uma predominância de estruturas biciclicas, com as vias do cadinano, cariofilano e pinano sendo as mais empregadas na biossíntese de terpenóides para a referida espécie, o que confirma os dados da literatura (MAIA; ANDRADE, 2009)

4.2.2 *Myrcia magnoliifolia* – (Códigos – M1s, M1c, M2s e M4c)

Durante a primeira extração da amostra M2s, ocorreu processo de cristalização de um componente dentro do sistema de hidrodestilação, a substância em forma de cristal agulha, o qual foi recolhida e análisada por CG-EM. Através das análises pode-se caracterizar a substância Eudesm-7(11)-en-4-ol, também denominada de Juniper canfor (\cong 5 mg), um álcool sesquiterpênico. A substância está sendo relatada pela primeira vez para a espécie.

Figura 9 - Juniper canfor

Figura 10- Tronco, ramo com folhas e inflorescência, óleo essencial de M. magnoliifolia

Fonte: o autor

As 04 espécies mencionadas, independente da estação climática e da área de coleta, apresentam em comum o (*E*)-Cariofileno como um dos componentes majoritários. Contudo, as espécies se diferenciam quanto as demais componentes, as espécies coletadas no período seco (verão amazônico) e dentro da área da RFAD como a Amostra M1s apresentou como componentes principais: α -Terpineol (5,95%), Germacreno B (7,34%) e Eudesm-7(11)-en-4-ol (5,05%), a mesma espécie contudo agora observada no período chuvoso e, por isso, denominada de M1c, apresenta como majoritários o α -Pineno (2,04%), α - Terpineol (2,48%), α -Copaeno (3,58%), α -Gurgujeno (3,94%) esse excluso dela, e Germacreno B (9,90%), por sua vez na amostra M2s se faz presente como majoritários: α -Pineno (28,64%) em alto teor, β -Pineno (8,57%) e α -Terpineol (12,03%).

Tabela 6- Componentes caracterizados de *M. magnoliifolia* com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	M4c
1	5	MH	Bicíclico	Pinanos	939	932	α-Pineno	0,46	2,04	28,64	1,64
2	8	MH	Bicíclico	Fenchanos	952	946	α-Fencheno	0	0	0,16	0
3	9	MH	Bicíclico	Fenchanos	954	947	Canfeno	0	0	0,46	2,04
4	13	MH	Bicíclico	Pinanos	979	976	β-Pineno	0	0,18	8,57	0
5	16	MH	Acíclico	Mircanos	990	989	Mirceno	0	0	1,05	0
6	20	MH	Monociclico	Mentanos	1017	1016	α-Terpineno	0	0	0,24	0
7	23	MH	Monociclico	Mentanos	1029	1028	Limoneno	0,28	0,68	4,58	0
8	24	MH	Monociclico	Mentanos	1029	1032	β-Felandreno	0	0	0,21	0
9	27	MH	Monociclico	Mentanos	1059	1059	γ-Terpineno	0	0	0,38	0
10	31	MH	Monociclico	Mentanos	1088	1088	Terpinoleno	0	0	2,97	0
11	32	MH	Monociclico	Mentanos	1088	1089	ρ-Menta-2,4(8)-dieno	0,65	0,66	0	0
12	34	MO	Acíclico	Mircanos	1096	1095	Linalol	0,38	0,57	0	0
13	36	Outros	Acíclico	Acilpolimalonato	1100	1103	n-Nonanal	1,08	1,45	0,23	0,35
14	39	MO	Bicíclico	Fenchanos	1116	1113	endo-Fenchol	0,27	0	0,63	0
15	51	Outros	Acíclico	Acilpolimalonato	1149	1156	2Z-Nonenal	0	0,12	0	0
16	59	MO	Monociclico	Mentanos	1166	1155	δ-Terpineol	0	0	0	0,12
17	60	MO	Bicíclico	Pinanos	1169	1164	Borneol	0	0	0,35	0
18	63	MO	Monociclico	Mentanos	1177	1177	Terpinen-4-ol	0	0	0,29	0
19	66	Outros	Acíclico	Acilpolimalonato	1186	1184	3Z-butanoato de hexenila	0,78	0,33	0,32	0
20	67	MO	Monociclico	Mentanos	1188	1188	α-Terpineol	5,95	2,84	12,03	0
21	68	Outros	Monociclico	Ácido benzoico	1191	1189	Salicilato de metila	1,55	0,48	0,55	0
22	85	Outros	Acíclico	Acilpolimalonato	1263	1258	2E-Decenal	0	0,17	0	0
23	87	Outros	Acíclico	Acilpolimalonato	1269	1268	n-Decanol	0,17	0	0	0

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	М4с
24	99	MO	Acíclico	Geranilanos	1352	1350	Acetato de citronelila	0,14	0	0	0
25	101	FP	Monociclico	Ácido cinâmico	1359	1353	Eugenol	0,45	0	0	0
26	105	SH	Triciclico	Copaenos	1376	1374	α-Copaeno	1,76	3,58	2,67	6,12
27	107	Outros	Acíclico	Acilpolimalonato	1380	1378	Hexanoato de hexenila-3Z	3,25	1,79	0	0,13
28	108	Outros	Acíclico	Acilpolimalonato	1384	1382	3Z-Hexanoato de 3Z- hexenila	0,62	0	0,39	0
29	112	SH	Triciclico	Longifolanos	1407	1407	Longifoleno	2,28	0	1,89	0
30	114	SH	Triciclico	Africananos	1409	1408	α-Gurjuneno	0	4	0	0
31	115	SH	Bicíclico	Cariofilanos	1419	1418	E-Cariofileno	9,22	15,24	11,39	33,59
32	117	dSO	Monociclico	Ciclofarneseno	1430	1424	E-α-lonona	0,63	0,37	0	0
33	120	SH	Bicíclico	Ciclofarneseno	1434	1433	α-trans-Bergamoteno	0	0	0	0,79
34	121	SH	Monociclico	Elemanos	1436	1436	γ-Elemeno	2,05	2,53	0,76	5,58
35	122	SH	Bicíclico	Guaianos	1439	1437	α-Guaieno	0	0	0	0,36
36	123	SH	Triciclico	Aromadendranos	1441	1441	Aromadendreno	0,25	0,47	0	0
37	125	SH	Bicíclico	Guaianos	1444	1444	6,9-Guaiadieno	0	0,18	0	0,18
38	128	SH	Bicíclico	Cadinanos	1450	1448	cis-Muurola-3,5-dieno	0	0	0	0,27
39	130	SH	Monociclico	Humulanos	1454	1452	α-Humuleno	0	1,3	0,97	2,35
40	131	dSO	Acíclico	Bisabolanos	1455	1453	Geranil acetona	0,88	1,03	0	0
41	132	SH	Acíclico	Farnesilanos	1456	1454	E-β-Farneseno	0	0	0	1,16
42	133	SH	Bicíclico	β-Santalanos	1459	1458	β-Santaleno	0	0	0	0,31
43	134	SH	Triciclico	Aromadendranos	1460	1461	allo-Aromadendreno	0	0,52	0	0
44	139	SH	Acíclico	Nerolidanos	1468	1460	Linalol isovalerato	0,86	0	0	0
45	141	SH	Bicíclico	Cadinanos	1476	1472	trans-Cadina-1(6),4-dieno	0	0	0	0,72
46	142	SH	Bicíclico	Guaianos	1477	1473	γ-Gurjuneno	0	2	0	0
47	143	SH	Bicíclico	Chamigranos	1477	1477	β-Chamigreno	0,24	0,16	0	0

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	M4c
48	145	SH	Bicíclico	Cadinanos	1479	1478	γ-Muuroleno	1,45	2,05	0,19	0
49	147	SH	Bicíclico	Cadinanos	1481	1491	Amorfa-4,7(11)-dieno	0	0	1,21	0
50	148	SH	Monociclico	Germacranos	1481	1481	Germacreno D	0	0	0	0,94
51	152	dSO	Monociclico	Ciclofarneseno	1488	1486	E-β-lonona	0,59	0,59	0	0
52	153	SH	Bicíclico	Eremofilanos	1488	1483	Aristoloqueno	0	0,51	0	0
53	155	SH	Bicíclico	Eudesmano	1490	1486	β-Selineno	2,97	3,56	0,58	0
54	158	SH	Bicíclico	Guaianos	1493	1492	cis-β-Guaieno	1,32	0	0	0
55	159	SH	Bicíclico	Cadinanos	1495	1492	γ-Amorfeno	0	1,98	0	0
56	160	SH	Bicíclico	Eremofilanos	1496	1495	Valenceno	0	5,03	0	0
57	161	SH	Triciclico	Aromadendranos	1496	1493	Viridifloreno	1,51	0	0,50	1,41
58	163	SH	Bicíclico	Eudesmano	1498	1493	α-Selineno	0,38	0	0,74	0
59	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0	0	0,18	0,39
60	167	SH	Triciclico	Patchoulano	1502	1503	γ-Patchouleno	4,33	0	0	0
61	168	SH	Bicíclico	Guaianos	1502	1507	trans-β-Guaieno	0	0,83	0	0
62	169	SH	Acíclico	Farnesilanos	1505	1504	E,E-α-Farneseno	0	1,99	0	0
63	170	SH	Monociclico	Bisabolanos	1505	1506	β-Bisaboleno	0	0	0	18,26
64	172	SH	Bicíclico	Spirovetivanos	1506	1513	Premnaspirodieno	0	0	0,27	0
65	176	SH	Bicíclico	Cadinanos	1512	1512	δ-Amorfeno	1,74	2,92	0	0,79
66	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	0,33	0,51	0,41	0
67	181	SH	Bicíclico	Eudesmano	1522	1520	7-epi-α-Selineno	0	3,42	0,39	0
68	184	SH	Bicíclico	Cadinanos	1523	1522	δ-Cadineno	2,70	0,18	1,21	2,69
69	185	SH	Bicíclico	Cadinanos	1529	1527	Zonareno	2,93	0	1,33	0
70	190	SH	Bicíclico	Cuparanos	1533	1534	γ-Cupreneno	0	0	0	2,47
71	191	SH	Bicíclico	Cadinanos	1534	1532	trans-Cadina-1,4-dieno	0	2,36	0	0
72	194	SH	Bicíclico	Cadinanos	1537	1536	α-Cadineno	0	3,49	0	1,22

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	M4c
73	195	SO	Monociclico	Ciclofarneseno	1538	1537	β-(E)-Acetato de Ionol	2,27	0	1,22	0
74	198	SH	Bicíclico	Eudesmano	1546	1540	Selina-3,7(11)-dieno	2,46	3,19	1,15	2,26
75	203	SH	Monociclico	Germacranos	1561	1557	Germacreno B	7,34	9,90	2,95	8,78
76	210	SO	Bicíclico	Aristolanos	1567	1561	Maaliol	0,53	0,36	0	0
77	214	SO	Triciclico	Protolludano	1572	1575	Cariolan-8-ol	0	0	0,17	0
78	216	SO	Bicíclico	Cariofilanos	1572	1576	Alcool cariofilenilico	0,56	0	0	0
79	218	SO	Bicíclico	Cariofilanos	1583	1580	Óxido de cariofileno	0,47	1,54	0	0
80	219	SO	Triciclico	Thujopsanos	1587	1580	Tujopsan-2-α-ol	0	0	0	0,38
81	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	0	0,67	0	0
82	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	2,93	0	0,88	0
83	224	SO	Bicíclico	Daucano	1594	1591	Carotol	0	1,49	0	0
84	230	SO	Bicíclico	Guaianos	1600	1604	Guaiol	2,76	0	1,66	0
85	231	SO	Bicíclico	Eudesmano	1600	1605	Rosifoliol	0,61	0,24	0	0
86	233	SO	Monociclico	Elemanos	1602	1594	trans-β-elemenona	0,20	0	0	0
87	234	SO	Triciclico	Aromadendranos	1602	1598	Ledol	0,94	0	0	0
88	242	SO	Monociclico	Bisabolanos	1619	1623	2,(7Z)-Bisaboladien-4-ol	1,30	0	0	0
89	246	SO	Bicíclico	Eudesmano	1623	1620	10-epi-γ-Eudesmol	0	0,29	0	0
90	249	SO	Bicíclico	Cadinanos	1628	1627	1-epi-Cubenol	0,94	0	0	0
91	250	SO	Bicíclico	Eremofilanos	1631	1632	Eremoligenol	0	0,21	0	0
92	252	SO	Bicíclico	Eudesmano	1632	1627	γ-Eudesmol	0,83	0	0,26	0
93	254	SO	Bicíclico	Cadinanos	1636	1636	cis-Cadin-4-en-7-ol	0	0,66	0	0
94	256	SO	Bicíclico	Cadinanos	1640	1635	epi-α-Cadinol	0,97	0	0,33	0
95	259	SO	Bicíclico	Cadinanos	1642	1640	epi-α-Muurolol	1,79	0,94	0	0
96	264	SO	Bicíclico	Cadinanos	1646	1649	Cubenol	4,39	2,39	0	0
97	265	SO	Bicíclico	Cadinanos	1646	1644	α-Muurolol	0,74	0,37	0	0

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	M4c
98	271	SO	Bicíclico	Eudesmano	1653	1651	α-Eudesmol	0	0,90	0	0
99	272	SO	Bicíclico	Guaianos	1653	1658	Pogostol	0	0,48	0	0
100	273	SO	Bicíclico	Cadinanos	1654	1652	α-Cadinol	0	0	0,42	0,23
101	275	SO	Bicíclico	Eudesmano	1659	1655	Selin-11-en-4-α-ol	0,74	0	1,45	0,42
102	278	SO	Bicíclico	Eudesmano	1663	1656	7-epi-α-Eudesmol	1,47	1,16	0	0
103	279	SO	Bicíclico	Eudesmano	1666	1664	Intermedeol	2,22	0	0	0
104	284	SO	Bicíclico	Guaianos	1671	1668	Bulnesol	0	0	0,34	0
105	291	SO	Triciclico	Cedrano	1685	1681	5-neo-Cedranol	0	0	0,76	0
106	301	SO	Bicíclico	Eudesmano	1700	1693	Eudesm-7(11)-en-4-ol	5,05	2,12	1,67	0,83
107	336	DO	Acíclico	Fitanos		2107	Z-Fitol	0	0	0	1,54
			Total	de picos identificad	los (%)			95,96	98,80	100,00	98,32
			Total de l	Picos Não Identifica	dos (%) *	**		4,04	1,20	0,00	1,68
										1	
				Diterpe	enos		DO	0	0	0	1,54
			derivado de sesquiterpenos oxigenado					0			
						nos	dSO	2,1	1,99	0	0
					ıado	nos	dSO FP				0
To	tal de grupo	os terpênicos r	oor amostra	oxiger	ado anóides			2,1	1,99	0	
То	tal de grupo	os terpênicos p	oor amostra	oxiger fenilpropa	nado anóides ão oxigen	ado	FP	2,1	1,99	0	0
То	tal de grupo	os terpênicos μ	oor amostra	oxiger fenilpropa monoterpeno na	nado anóides ão oxigen oxigenad	ado	FP MH	2,1 0,45 1,39	1,99 0 3,56	0 0 47,26	0 3,68
То	tal de grupo	os terpênicos p	oor amostra	oxiger fenilpropa monoterpeno na monoterpeno	nado anóides ão oxigen oxigenados	ado	FP MH MO	2,1 0,45 1,39 6,74	1,99 0 3,56 3,41	0 0 47,26 13,3	0 3,68 0,12
То	tal de grupo	os terpênicos μ	oor amostra	oxiger fenilpropa monoterpeno na monoterpeno Outr	nado anóides ão oxigen oxigenac os ão oxiger	ado lo nado	FP MH MO Outros	2,1 0,45 1,39 6,74 7,45	1,99 0 3,56 3,41 4,34	0 0 47,26 13,3 1,49	0 3,68 0,12 0,48
То	tal de grupo	os terpênicos p	oor amostra	oxiger fenilpropa monoterpeno n monoterpeno Outr sesquiterpeno n	nado anóides ão oxigen oxigenac os ão oxiger	ado lo nado	FP MH MO Outros SH	2,1 0,45 1,39 6,74 7,45 46,12	1,99 0 3,56 3,41 4,34 71,68	0 47,26 13,3 1,49 28,79	0 3,68 0,12 0,48 90,64
То	tal de grupo	os terpênicos p	oor amostra	oxiger fenilpropa monoterpeno n monoterpeno Outr sesquiterpeno n	nado anóides ão oxigen oxigenac os ão oxiger	ado lo nado	FP MH MO Outros SH	2,1 0,45 1,39 6,74 7,45 46,12	1,99 0 3,56 3,41 4,34 71,68	0 47,26 13,3 1,49 28,79	0 3,68 0,12 0,48 90,64

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	M1s	M1c	M2s	М4с
	Tota	al de estruti	uras terpênica	ıs/Vias de cicliza	ção		Bicíclico	50,54	62,82	63,99	51,2
							Triciclico	14,00	9,18	6,87	7,91

análise mais abrangente mostra um conteúdo sesquiterpenos oxigenados e não-oxigenados para todos os índividuos, a espécie M2c se destaca entre as demais por apresentar um conteúdo rico em monoterpenos não-oxigenados. Fato justificado pelo majoritário ser o α-Pineno e β-Pineno, fato justificado mais por fatores genéticos, tendo em vista que todas, com exceção da M4c, estavam sujeitas aos mesmos fatores edafoclimáticos. A espécie coletada fora da RFAD (M4c), não obedeceu o mesmo critério de sazonalidade, pois foi coletada no período chuvoso (inverno amazônico) e teve como majoritários: α-Copaeno (6,12%), β-Bisaboleno (18,26%) e elevado teor e Germacreno B (8,78%), o que a caracterizada como rica em sesquiterpenos e com uma certa similaridade intraespecífica com a espécie M1s. Entre M1s e M2s não há correlação intraespecífica o que é ressaltado quando observamos um coeficiente de correlação de Pearson de 0,3578 para as espécies mencionadas. Um outro dado interessante é a presença do componente Salicilato de metila (0,55-1,55%) em M1c e M2c. Esse componente é produzido pelo vegetal por uma via Biosintética diferente dos terpenos (Dewick, 2001). Cascaes e colaboradores (2015) relatam a presença desse composto nas flores de *M. obtecta* (88,1%), plantas ricas desse composto foram durante muitos anos usadas como anestésicas (Dewicl. 2001).

A espécie *M. magnoliifolia* se mostrou rica em estruturas biciclicas, com via de ciclização do Cadiano, Cariofilano, Eudesmano e Pinano, típicas das Myrtaceae. Contudo, destaca-se também estruturas monocíclicas, pela via do Elemano, Germacreano e Mentano e tricíclicas, pela via do Copaeno. Não há estudos sobre os óleos essenciais de *M. magnoliifolia*. Esses são os primerios dados relativos a composição química do óleo essencial dessa espécia.

4.2.3 *Myrcia bracteata* – (Códigos – B1c e B2c)

Os dados obtidos das espécimes analisadas (B1c e B2c) mostram 04 componentes majoritários comuns, são eles, respectivamente: Hedicariol (23,51-20,77%), Espatulenol (6,32-13,93%), γ -Eudesmol (15,49- 9,74%) e Muurola-4-10(14)-dien-1- β -ol (12,28-7,59%), além desses, B1c apresenta o β -Eudesmol (18,60%). Enquanto que B2c apresenta Óxido de cariofileno (6,18%) e α -Eudesmol (11,73%). Os dois espécimes também apresentam uma alta correlação com um coeficiente de Pearson igual a 0,7344. Portanto, há uma elevada similaridade química intraespecífica.

Figura 11- Tronco, ramo com folhas e frutos, óleo essencial de M. bracteata

Tabela 7- Componentes caracterizados de M. bracteata com seus repectivos tempos de retenção, índices aritméticos e percentuais de área.

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	B1c	B2c
1	2	Outros	Acíclico	Acilpolimalonato	859	865	2Z-Hexenol	0,17	0
2	6	Outros	Acíclico	Acilpolimalonato	936	939	5-metil-Heptanona-3	0,33	0,54
3	7	Outros	Acíclico	Acilpolimalonato	941	948	2-Acetoxihexano	0,36	0,57
4	25	MO	Monociclico	Mentanos	1026	1030	1,8-Cineole	0,13	0
5	50	MO	Monociclico	Mentanos	1143	1145	trans-dihidro-α-Terpineol	0,29	0,41
6	55	MO	Monociclico	Mentanos	1160	1159	cis-dihidro-α-Terpineol	0	0,19
7	67	MO	Monociclico	Mentanos	1186	1188	α-Terpineol	0,21	0,20
8	97	SH	Monociclico	Bisabolanos	1335	1337	δ-Elemeno	0,38	0
9	98	SH	Triciclico	Cadinanos	1345	1348	α-Cubebeno	0,32	0
10	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	0,96	0,30
11	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	4,19	1,87
12	115	SH	Bicíclico	Cariofilanos	1417	1418	(E)-Cariofileno	1,84	1,89
13	129	SH	Bicíclico	Cadinanos	1451	1449	trans-Muurola-3,5-diene	0,07	0
14	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	0,56	0,68
15	136	SH	Bicíclico	Cadinanos	1461	1460	cis-Cadina-1(6),4-dieno	0,47	0
16	155	SH	Bicíclico	Eudesmano	1489	1486	β-Selineno	0,63	0,42
17	157	SH	Bicíclico	Cadinanos	1493	1487	trans-Muurola-4(14),5-dieno	0,36	0
18	165	SH	Bicíclico	Biciclogermacranos	1500	1497	Biciclogermacreno	1,07	0
19	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0,11	0
20	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	1,67	0,42
21	185	SH	Bicíclico	Cadinanos	1528	1527	Zonareno	0,61	0
22	194	SH	Bicíclico	Cadinanos	1537	1536	α-Cadineno	0	0,65
23	197	SH	Bicíclico	Cadinanos	1544	1542	α-Calacoreno	0	0,61

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	B1c	B2c
24	200	SO	Monociclico	Germacranos	1546	1547	Hedicariol	23,51	20,77
25	203	SH	Monociclico	Germacranos	1559	1557	Germacreno B	0,36	0,61
26	217	SO	Triciclico	Aromadendranos	1577	1574	Espatulenol	6,32	13,93
27	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	1,39	6,18
28	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	0,44	1,59
29	228	SO	Acíclico	Farnesilanos	1596	1600	Fokienol	1,43	0
30	234	SO	Triciclico	Aromadendranos	1602	1598	Ledol	0,26	0
31	237	SO	Bicíclico	Eudesmano	1607	1604	5-epi-7-epi-α-Eudesmol	0,36	0,21
32	238	SO	Bicíclico	Humulanos	1608	1606	Epóxido Humuleno II	0	1,47
33	241	SO	Triciclico	Longifolanos	1618	1615	Isolongifolan-7-a-ol	0,83	0
34	246	SO	Bicíclico	Eudesmano	1622	1620	10-epi-γ-Eudesmol	0	0,23
35	251	SO	Bicíclico	Cadinanos	1630	1624	Muurola-4-10(14)-dien-1-β-ol	12,28	7,59
36	252	SO	Bicíclico	Eudesmano	1630	1627	γ-Eudesmol	15,49	9,74
37	256	SO	Bicíclico	Cadinanos	1638	1635	epi-α-Cadinol	0,70	0
38	265	SO	Bicíclico	Cadinanos	1644	1644	α-Muurolol	0,24	0
39	266	SO	Bicíclico	Daucano	1646	1644	Agarospirol	0,59	0
40	267	SO	Bicíclico	Guaianos	1648	1649	cis-Guaia-3,9-dien-11-ol	0	0,89
41	268	SO	Bicíclico	Eudesmano	1649	1649	β-Eudesmol	18,60	1,10
42	271	SO	Bicíclico	Eudesmano	1652	1651	α-Eudesmol	0	11,73
43	275	SO	Bicíclico	Eudesmano	1658	1655	Selin-11-en-4-α-ol	1,38	1,46
44	281	SO	Bicíclico	Cariofilanos	1668	1667	14-hidroxi-9-epi-(E)-Cariofileno	0,70	2,14
45	289	dSO	Monociclico	Elemanos	1680	1675	Acetato de Elemol	0	0,58
46	301	SO	Bicíclico	Eudesmano	1700	1693	Eudesm-7(11)-en-4-ol	0	4,48
47	327	SO	Bicíclico	Cadinanos	1775	1765	2-α-hidroxi-Amorfa-4,7(11)-dieno	0	0,67
				Total de picos i	dentificados	(%)		99,61	94,12

N. Código Grupo Estrutura terpênico	Biogênese	IA	IAC	COMPONENTES	B1c	B2c
	Total de Picos Na	ão Identificad	os (%)		0,39	5,88
	derivado de se	esquiterpenos o	oxigenado	dSO	0	0,58
	monote	erpeno oxigena	do	MO	0,63	0,8
Total de grupos terpênicos por amostra		Outros		Outros	0,86	1,11
	sesquiterp	peno não oxige	nado	SH	13,6	7,45
	sesquite	erpeno oxigena	ado	SO	84,52	84,18
						1
				Acíclico	2,29	1.11
				Monociclico	29,63	25,31
Total de estruturas te	rpenicas/Vias de cicliza	ação		Bicíclico	58,56	51,88
				Triciclico	9,13	15,82
				1		

Em estudo anterior do OE das folhas coletadas de um espécime localizado na praia de Marieta no Pará, destaca-se a presença de Óxido de α-bisabolol B (10,37%) e α-Bisabolol (45,86%) como majoritários (PEREIRA et al., 2010). Zoghbi e colaboradores analisando o OE de folhas e galhos finos, coletados no período chuvoso de 03 espécimes, sendo 02 provenientes do estado do Pará (B-1 e B-2) e 01 do estado de Tocantins (B-3), relata que os óleos apresentam uma composição química distinta, monoterpenos que constituem 13% da amostra B-3 não foram encontrados nas amostras B-1 e B-2. Além do que, em termos de composição sesquiterpenica as 03 amostras também eram bastante diferentes . B-1 apresentou E-Nerolidol (80,8%) em alto teor, em B-2 foram detectados (E)-β-Farneseno (33,9%), β-Curcumeno (9,8%) e Bisabolol (8,2%) como majoritários e em B-3, Germacreno B (8,8%) e Espatulenol (31,0%). Tais dados mostram a influência das condições ambientais locais de solo e clima, provocando uma variabilidade natural da população de *M. bracteata* existente na Amazônia (ZOGHBI et al., 2003b).

Ao analisarmos os grupos terpenicos presentes em *M. bracteata* constatamos que grupos sesquiterpenicos oxigenados se mostram majoritários, seguidos dos sesquiterpenos não oxigenados, a espécie não apresenta monoterpenos não oxigenados e o teor de monoterpenos oxigenados é relativamente muito baixo. Observa-se que *M. bracteata* apresenta uma predominância de estruturas monocíclicas e biciclicas e as vias de ciclização características para o gênero como a do Cariofilano, Germacrano e Cadinano, mas há a ocorrência de vias um tanto distintas de outros grupos, pois há destaque para a via do Eudesmano e Aromadendrano.

4.2.4 *Myrcia minutiflora* – (Códigos – MIs e MIc)

Os óleos essenciais de *M. minutiflora* MIs e MIc não apresentam diferenças significativas, fato esse ressaltado pelo coeficiente de correlação de 0,9132, os mesmos apresentam como majoritários β-Elemeno (11,63-12,27%), E-Cariofileno (15,03-15,60%), Germacreno D (7,04-7,21%) e Viridiflorol (10,49-12,04%). A espécie se mostrou rica em sesquiterpenos (97,9-98,07%), tanto entre as espécies coletadas no período seco quanto no chuvoso, desse total tem-se uma faixa de 65,72-67,21% de sesquiterpenos não oxigenados e 30,86-32,18% de sesquiterpenos oxigenados. Não há trabalhos anteriores com a

espécie mencionada, analisando os dados de correlação observamos que a espécie apresenta uma certa similaridade química com *M. magnoliifolia* (M1s) e *M. fenestrata* (F1s), possivelmente explicada pelo teor de sesquiterpenos presentes no grupo, o que seria uma relação interespecífica.

Figura 12- Tronco, ramo com folhas e frutos, óleo essencial de M. minutiflora

Tabela 8- Componentes caracterizados de M. minutiflora com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	MIs	MIc
1	98	SH	Triciclico	Cadinanos	1345	1348	α-Cubebeno	0,12	0,15
2	104	SH	Triciclico	Copaenos	1373	1373	α-Ylangeno	0	0,04
3	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	1,37	1,26
4	109	SH	Triciclico	Bourbonanos	1387	1383	β-Bourboneno	1,41	3,46
5	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	11,63	12,27
6	114	SH	Triciclico	Africananos	1409	1408	α-Gurjuneno	0,65	0,81
7	115	SH	Bicíclico	Cariofilanos	1417	1418	(E)-Cariofileno	15,60	15,03
8	118	SH	Triciclico	Copaenos	1430	1430	β-Copaeno	0,45	0,75
9	123	SH	Triciclico	Aromadendranos	1439	1441	Aromadendreno	0	0,30
10	124	SH	Acíclico	Farnesilanos	1440	1440	Z-β-Farneseno	0,21	0
11	125	SH	Bicíclico	Guaianos	1442	1444	6,9-Guaiadieno	0,17	0
12	128	SH	Bicíclico	Cadinanos	1448	1448	cis-Muurola-3,5-dieno	0	0,41
13	129	SH	Bicíclico	Cadinanos	1451	1449	trans-Muurola-3,5-diene	0	0,23
14	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	1,54	1,34
15	134	SH	Triciclico	Aromadendranos	1458	1461	allo-Aromadendreno	1,18	1,23
16	137	SH	Bicíclico	Cadinanos	1465	1465	cis-Muurola-4(14),5-dieno	0,14	0,29
17	143	SH	Bicíclico	Chamigranos	1476	1477	β-Chamigreno	3,32	0,41
18	145	SH	Bicíclico	Cadinanos	1478	1478	γ-Muuroleno	0	2,31
19	148	SH	Monociclico	Germacranos	1484	1481	Germacreno D	7,21	7,04
20	150	SH	Bicíclico	Himachalanos	1481	1484	γ-Himachaleno	0,18	0
21	153	SH	Bicíclico	Eremofilanos	1487	1483	Aristoloqueno	0	2,09
22	155	SH	Bicíclico	Eudesmano	1489	1486	β-Selineno	2,83	0,30
23	158	SH	Bicíclico	Guaianos	1492	1492	cis-β-Guaieno	6,51	0,00
24	161	SH	Triciclico	Aromadendranos	1496	1493	Viridifloreno	0	0,28

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	MIs	MIC
25	163	SH	Bicíclico	Eudesmano	1498	1493	α-Selineno	3,92	7,36
26	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	1,13	1,12
27	168	SH	Bicíclico	Guaianos	1502	1507	trans-β-Guaieno	0	0,50
28	174	SH	Bicíclico	Guaianos	1509	1509	α-Bulneseno	0,57	0,47
29	176	SH	Bicíclico	Cadinanos	1511	1512	δ-Amorfeno	0,39	0
30	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	0,64	0,61
31	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	5,20	4,77
32	185	SH	Bicíclico	Cadinanos	1528	1527	Zonareno	0,49	0,44
33	191	SH	Bicíclico	Cadinanos	1533	1532	trans-Cadina-1,4-dieno	0,23	0,28
34	194	SH	Bicíclico	Cadinanos	1537	1536	α-Cadineno	0,12	0,17
35	205	SO	Acíclico	Farnesilanos	1561	1561	(E)-Nerolidol	0	0,09
37	211	SO	Triciclico	Aromadendranos	1567	1566	Palustrol	0,59	0,12
38	217	SO	Triciclico	Aromadendranos	1577	1574	Espatulenol	0	0,60
39	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	1,08	1,01
40	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	10,49	12,04
41	227	SO	Triciclico	Cadinanos	1595	1594	Cubeban-11-ol	3,29	1,72
42	229	SO	Triciclico	Longibornanos	1699	1600	Longiborneol	1,64	0
43	234	SO	Triciclico	Aromadendranos	1602	1598	Ledol	0	0,93
44	237	SO	Bicíclico	Eudesmano	1607	1604	5-epi-7-epi-α-Eudesmol	0	0,68
45	243	SO	Bicíclico	Eudesmano	1618	1614	Junenol	0,81	0,43
46	249	SO	Bicíclico	Cadinanos	1627	1627	1-epi-Cubenol	0,75	0
47	250	SO	Bicíclico	Eremofilanos	1629	1632	Eremoligenol	0	0,15
48	253	SO	Bicíclico	Acoranos	1632	1633	α-Acorenol	0	0,55
49	256	SO	Bicíclico	Cadinanos	1638	1635	epi-α-Cadinol	1,16	0,14
50	259	SO	Bicíclico	Cadinanos	1640	1640	epi-α-Muurolol	2,00	1,51

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	MIs	MIC
51	265	SO	Bicíclico	Cadinanos	1644	1644	α-Muurolol	0,64	1,13
52	272	SO	Bicíclico	Guaianos	1651	1658	Pogostol	3,60	6,56
53	273	SO	Bicíclico	Cadinanos	1652	1652	α-Cadinol	3,41	0,47
54	275	SO	Bicíclico	Eudesmano	1658	1655	Selin-11-en-4-α-ol	0	0,30
55	279	SO	Bicíclico	Eudesmano	1665	1664	Intermedeol	0,15	0
56	315	FP	Monociclico	Ácido cinâmico	1733	1733	E-Alcool coniferilico	0,24	0
57	320	SO	Monociclico	Bisabolanos	1740	1750	6S,7R-Bisabolona	0	0,90
58	323	SO	Bicíclico	Drimano	1766	1759	Drimenol	1,25	2,85
				Total de Pico	s Identifica	dos		98,31	97,90
				Total de Picos Não	o Identifica	dos (%) *	*	1,69	2,10
	Total de gru	upos terpênicos p	or amostra	fenilprop	oanóides		FP	0,24	0
				sesquiterpeno	não oxigena	ido	SH	67,21	65,72
				sesquiterper	no oxigenado)	SO	30,86	32,18
								'	
		Total de esti	ruturas terpenicas/\	/ias de ciclização			Acíclico	0,21	0,09
							Monociclico	20,62	21,55
							Bicíclico	55,21	51,56
							Triciclico	22,27	24,7

Portanto, *M. minutiflora* apresenta uma composição química de seu óleo essencial rica em estruturas sesquiterpenicas biciclicas como majoritárias. Contudo, as estruturas monociclicas representada pela via do Elemano tem um certo destaque. Entre os biciclos, destaca a via do Cadino, Cariofilano, Drimano e Guaiano ocorrentes em ambas as estações climáticas e dentre as estruturas triciclicas destaca-se a do Aromadendrano.

4.2.5 *Myrcia paivae* – (Códigos – PAs e PAc)

A análise do óleo essêncial de *M. paivae* indica uma composição extremamente diversificada de compostos, é difícil caracterizar componentes majoritários, mais os que apresentam um maior percentual para PAs são os seguintes componentes: ρ-Cimeno (5,49%), Óxido de cariofileno (4,58%), β-epóxido cedreno (4,24%), 1-epi-Cubenol (5,34%), Pogostol (6,73%) e Mustakona (5,15%). Para PAc os componentes mais abundantes são: p-Cimeno (8,92%), Pogostol (7,64%), Limoneno (4,70%) e Carvona (4,60%).

Figura 13- Tronco, folha e óleo essencial de M. paivae

Tabela 9- Componentes caracterizados de M. paivae com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
1	5	MH	Bicíclico	Pinanos	932	933	α-Pineno	0,87	2,29
2	10	MH	Bicíclico	Tujanos	953	952	Thuja-2,4(10)-dieno	0,11	0,37
3	12	MH	Bicíclico	Tujanos	969	975	Sabineno	0	0,22
4	13	MH	Bicíclico	Pinanos	974	976	β-Pineno	0,07	0
5	15	MH	Monociclico	Mentanos	984	983	3-ρ-Menteno	0,06	0
6	19	MH	Monociclico	Mentanos	1003	1005	ρ-Menta-1(7)-8-dieno	0,22	0,62
7	21	MH	Monociclico	Mentanos	1020	1023	p-Cimeno	5,49	8,92
8	23	MH	Monociclico	Mentanos	1024	1028	Limoneno	2,68	4,70
9	26	Outros	Acíclico	Acilpolimalonato	1038	1041	(2E)-Hexenoato de etila	0	0,22
10	30	MH	Monociclico	Mentanos	1082	1088	m-Cimeneno	0,37	0,63
11	34	MO	Acíclico	Mircanos	1095	1098	Linalol	0,25	0,23
12	37	MH	Monociclico	Mentanos	1118	1110	1,3,8-ρ-Mentatrieno	0	0,10
13	38	MO	Bicíclico	Tujanos	1112	1115	trans-Tujona	0,25	0,40
14	40	MO	Monociclico	Mentanos	1119	1119	trans-ρ-Menta-2,8-dien-1-ol	0,09	0,0
15	41	MO	Monociclico	Mentanos	1122	1124	α-Canfolenal	0,11	0,14
16	42	MO	Acíclico	Geranilanos	1128	1134	Z-Epoxi-ocimeno	0,06	0
17	43	MO	Bicíclico	Pinanos	1135	1137	trans-Pinocarveol	0,58	1,40
18	46	MO	Acíclico	Geranilanos	1140	1143	exo-Isocitral	0,03	0
19	48	MO	Monociclico	Mentanos	1140	1147	cis-β-Terpineol	0,16	0,50
20	49	MO	Acíclico	Geranilanos	1140	1154	E-Miroxido	0,24	0,39
21	52	dMO	Bicíclico	Tujanos	1154	1160	Sabina cetona	0,44	0,64
22	54	MO	Monociclico	Mentanos	1159	1170	trans-β-Terpineol	0,1	0
23	57	MO	Bicíclico	Pinanos	1160	1164	Pinocarvona	0,17	0,22

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
24	58	MO	Monociclico	Mentanos	1161	1164	neo-Mentol	0	0,89
25	61	MO	Monociclico	Mentanos	1166	1182	ρ-Menta-1,5-dien-8-ol	0,62	1,84
26	62	MO	Bicíclico	Tujanos	1167	1176	Umbelulona	0,12	0
27	63	MO	Monociclico	Mentanos	1174	1189	Terpinen-4-ol	1,17	1,56
28	65	MO	Monociclico	Mentanos	1179	1194	ρ-Cimen-8-ol	1,15	0,70
29	67	MO	Monociclico	Mentanos	1186	1199	α-Terpineol	0,29	0,22
30	70	MO	Bicíclico	Pinanos	1195	1200	Mirtenal	0,49	0,87
31	72	MO	Monociclico	Mentanos	1200	1202	trans-Dihidro carvona	0,05	0
32	73	MO	Bicíclico	Pinanos	1204	1207	Verbenona	0,56	1,11
33	75	MO	Monociclico	Mentanos	1215	1217	trans-Carveol	1,76	3,04
34	76	dMO	Monociclico	Mentanos	1224	1225	m-Cumenol	0,11	0,63
35	78	MO	Acíclico	Mircanos	1226	1228	Z-Ocimenona	0,20	0
36	79	MO	Monociclico	Mentanos	1226	1237	cis-Carveol	0,26	0
37	80	MO	Monociclico	Mentanos	1227	1228	cis-ρ-Menta-1(7)-8-dien-2-ol	0	0,81
38	81	MO	Acíclico	Geranilanos	1235	1236	Neral	0	1,25
39	82	MO	Monociclico	Mentanos	1239	1241	Carvona	3,74	4,60
40	88	MO	Monociclico	Mentanos	1269	1274	Perila aldeido	0	0,19
41	89	Outros	Acíclico	Acilpolimalonato	1282	1281	2-octinoato de etila	0,15	0
42	90	MO	Monociclico	Mentanos	1283	1290	α-Terpinen-7-ol	0,21	0,38
43	91	MO	Monociclico	Mentanos	1289	1296	ρ-Cimen-7-ol	0,53	0,81
44	92	Outros	Monociclico	Ácido benzóico	1290	1299	o-Acetanisole	0,39	0
45	94	MO	Monociclico	Mentanos	1298	1299	Carvacrol	0	0,66
46	100	Outros	Acíclico	Acilpolimalonato	1353	1349	Butiril lactato de butila	0,09	0
47	102	SH	Policiclico	Sativanos	1369	1367	Ciclosativeno	2,79	2,63

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
48	103	SH	Policiclico	Longifolanos	1374	1370	Longicicleno	0,09	0
49	105	SH	Triciclico	Copaenos	1371	1375	α-Copaeno	0,18	0
50	111	SH	Triciclico	Sativanos	1390	1391	Sativeno	1,04	1,25
51	118	SH	Triciclico	Copaenos	1430	1434	β-Copaeno	0,14	0
52	138	SH	Triciclico	Thujopsanos	1465	1469	cis-Thujopsadieno	0,2	0
53	141	SH	Bicíclico	Cadinanos	1475	1473	trans-Cadina-1(6),4-dieno	0,11	0
54	144	SH	Triciclico	Cadinanos	1478	1474	trans-4,10-epoxi-Amorfano	0,14	0
55	155	SH	Bicíclico	Eudesmano	1489	1491	β-Selineno	0,93	2,04
56	159	SH	Bicíclico	Cadinanos	1495	1494	γ-Amorfeno	0,21	0
57	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	3,51	3,11
58	174	SH	Bicíclico	Guaianos	1509	1509	α-Bulneseno	1,21	0,73
59	176	SH	Bicíclico	Cadinanos	1511	1509	δ-Amorfeno	0	0,25
60	181	SH	Bicíclico	Eudesmano	1520	1513	7-epi-α-Selineno	0,03	0
61	182	SH	Bicíclico	Cadinanos	1521	1522	trans-Calameneno	0	2,10
62	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	0,98	0
63	186	SH	Bicíclico	Cadinanos	1528	1525	cis-Calameneno	1,42	0
64	189	SH	Bicíclico	Himachalanos	1530	1533	γ-deidro-ar Himachaleno	0	0,82
65	193	SO	Triciclico	Acoranos	1536	1526	Italiceno éter	0,12	0
66	194	SH	Bicíclico	Cadinanos	1537	1533	α-Cadineno	0,16	0
67	196	SO	Monociclico	Ciclofarneseno	1542	1541	cis-hidrato de sesquisabineno (IPP vs OH)	0	0,59
68	197	SH	Bicíclico	Cadinanos	1544	1541	α-Calacoreno	1,78	0
69	199	SO	Triciclico	Silfinano	1546	1550	Silfiperfolan-6-β-ol	0,68	0
70	201	dSO	Monociclico	Ciclofarneseno	1553	1556	E-Veltonal	0,89	0
71	203	SH	Monociclico	Germacranos	1559	1550	Germacreno B	0	1,56

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
72	204	SO	Triciclico	Bourbonanos	1561	1559	1-nor-Bourbonanona	0,2	0
73	206	SO	Bicíclico	Longipinanos	1562	1565	Longicanfenilona	0,3	0
74	208	FP	Monociclico	Ácido cinâmico	1562	1566	E-ρ-metoxi-Cinamaldeído	0,37	0
75	210	SO	Bicíclico	Aristolanos	1566	1561	Maaliol	1,27	0
76	217	SO	Triciclico	Aromadendranos	1577	1572	Espatulenol	0,93	0,64
77	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	4,58	3,78
78	220	SO	Bicíclico	Spirosesquiterpenoides	1586	1592	Gleenol	1,74	0,28
79	221	SO	Triciclico	Copaenos	1590	1598	β-copaen-4-α-ol	1,08	0
80	227	SO	Triciclico	Cadinanos	1595	1600	Cubeban-11-ol	0,56	0
81	230	SO	Bicíclico	Guaianos	1600	1598	Guaiol	0	1,49
82	234	SO	Triciclico	Aromadendranos	1602	1600	Ledol	0	0,56
83	235	dSO	Triciclico	Zizaano	1605	1605	Khusimona	0	3,49
84	240	SO	Triciclico	Longifolanos	1612	1609	cis-Isolongifolanona	0,52	0
85	243	SO	Bicíclico	Eudesmano	1618	1612	Junenol	0,80	0
86	245	SO	Policiclico	Cedrano	1621	1615	β-Epoxido Cedrano	4,24	0,70
87	246	SO	Bicíclico	Eudesmano	1622	1622	10-epi-γ-Eudesmol	0,56	0
88	247	SO	Triciclico	Longifolanos	1625	1625	trans-Isolongifolanona	1,10	0
89	248	dSO	Monociclico	Bisabolanos	1627	1634	2-(3-oxobutil)-Isomentona	0	0,5
90	249	SO	Bicíclico	Cadinanos	1627	1629	1-epi-Cubenol	5,34	3,89
91	255	SO	Bicíclico	Cariofilanos	1639	1637	Cariofila-4(12),8(13)-dien-5α-ol	0,82	0,56
92	256	SO	Bicíclico	Cadinanos	1638	1633	epi-α-Cadinol	0,62	1,49
93	258	SO	Bicíclico	Acoranos	1640	1644	Hinesol	0	0,64
94	264	SO	Bicíclico	Cadinanos	1645	1647	Cubenol	1,03	0
95	265	SO	Bicíclico	Cadinanos	1644	1643	α-Muurolol	1,33	0

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
96	269	SO	Policiclico	Ciclofarneseno	1649	1655	Vulgarona B	0	1,20
97	270	SO	Triciclico	Cedrano	1650	1652	Cedr-8(15)-en-10-ol	0,27	0
98	272	SO	Bicíclico	Guaianos	1651	1665	Pogostol	6,73	7,64
99	276	SO	Bicíclico	Eudesmano	1658	1660	neo-Intermedeol	0	0,68
100	282	SO	Triciclico	Zizaano	1668	1669	epi-Zizanona	1,12	0,81
101	285	SO	Triciclico	Cedrano	1672	1672	5-iso-Cedranol	0,51	0
102	288	SO	Triciclico	Eudesmano	1675	1675	Mustakona	5,15	2,61
103	295	SO	Monociclico	Farnesilanos	1689	1689	Z-Apritona	0	0,17
104	299	SO	Acíclico	Farnesilanos	1698	1697	2Z,6Z-Farnesol	0,23	0
105	300	SO	Bicíclico	Cadinanos	1700	1703	Amorfa-4,9-dien-2-ol	0,96	0,82
106	304	SO	Triciclico	Thujopsanos	1708	1706	cis-Thujopsenal	0	1,58
107	308	dSO	Monociclico	Bisabolanos	1717	1713	Curcufenol	2,54	0
108	309	SO	Monociclico	Bisabolanos	1717	1715	Z-α-Atlantona	0,33	0
109	310	SO	Monociclico	Farnesilanos	1724	1721	Criptomeriona	0,75	0
110	311	dSO	Bicíclico	Guaianos	1725	1721	Acetato de Guaiol	0	2,68
111	312	SO	Triciclico	Longifolanos	1728	1725	iso-Longifolol	0	0,44
112	313	SO	Bicíclico	Eudesmano	1730	1725	Vetiselinenol	0,44	0
113	314	SO	Monociclico	Humulanos	1732	1728	Zerumbona	2,34	0,24
114	316	SO	Triciclico	Guaianos	1733	1735	Curcumenol	0,19	0
115	318	SO	Bicíclico	Eremofilanos	1734	1733	Eremofilona	0,71	0
116	319	dSO	Acíclico	Cadinanos	1739	1747	E-Acetato de sesquilavandulila	0,36	0
117	326	SO	Bicíclico	Eudesmano	1773	1773	α-Costol	0,20	0
118	331	SO	Bicíclico	Cadinanos	1803	1797	14-hidroxi-δ-Cadineno	0,23	0
			Tot	al de Picos Identifica	dos (%)			91,30	93,52

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	PAs	PAc
			Total	de Picos Não Ident	ficados (%	<i>)</i>		8,70	6,48
			derivados	de monoterpenos nã	o oxigenad	os	dMO	0,55	1,27
			derivado	o de sesquiterpenos	oxigenado		dSO	3,79	6,67
				fenilpropanóides			FP	0,37	0
Total de	e arunos te	rpênicos por amostra	mo	noterpeno não oxige	nado		MH	9,87	17,85
rotarac	, grapos ic	rperileos por arriostra	r	monoterpeno oxigena	ado		MO	13,19	22,21
				Outros			Outros	0,63	0,22
			ses	squiterpeno não oxig	enado		SH	14,92	14,49
			sesquiterpeno oxigenado				SO	47,98	30,81
							Acíclico	1,61	2,09
							Monociclico	26,78	35,00
		Total de estrutura	as terpenicas/Via	s de ciclização			Bicíclico	41,66	40,52
							Triciclico	14,13	11,38
							Policiclico	7,12	4,53

As duas amostras devido a alta variabilidade de componentes possuem um coeficiente de correlação de 0,7742. Diferente dos demais óleos de *Myrcia* spp até então analisadas na pesquisa, não há a ocorrência de E-Cariofileno nas amostras, o que encontramos é a forma oxidada da referida substância. Estudo anterior do OE de folhas e ramos finos de *M. paivae* coletada na Serra de Carajás no Pará, relata a presença de Viridifloreno (24,4%), 9-epi-E-cariofileno (9,8%), Drima-7,9(11)-dieno (9,1%) e Selin-11-en-4-α-ol (8,0%) (LIDIANE et al., 2002). Compando as duas analises constata-se quimiotipos distintos.

Os dados indicam uma ampla variedade de grupos terpênicos encontrados nas duas amostras, com destaque em percentual de área para os sesquiterpenos (oxigenados e não oxigenados) seguido pelo grupo dos monoterpenos (oxigenados e não oxigenados). Em termos de estruturas e vias de ciclização, observa-se todas as estruturas observadas em óleos essenciais, com destaque para os acíclicos pela via dos geranilanos, monociclicos pelas vias dos mentanos, humulanos e bisabolanos, biciclicos pela via do cadinano, guaiano, eudesmano e pinano, tricíclicos pela via do eudesmano e policíclicos pela via dos sativanos.

4.2.6 *Myrcia fenestrata* – (Códigos – F1s, F1c e F2c)

No OE de F1c foram detectadas as seguintes substâncias majoritárias: (*E*)-Cariofileno (20,57%), Espatulenol (19,70%), Óxido de cariofileno (9,36%) e α-Cadinol (5,35%). Para F1s observa-se como majoritários E-Cariofileno (44,98%), Viridifloreno (11,25%), Germacreno D (8,91%) e Óxido de cariofileno (6,03%). F2c apresenta ccomo majoritários Espatulenol (28,76%), α-Cadinol (5,58%), β-Copaen-4-α-ol (6,40%). *M. fenestrata* é uma espécie um tanto singular, pois praticamente metade de sua composição é de sesquiterpenos não-oxigenados e a outra metade de sesquiterpenos oxigenados, isso possivelmente seja a causa da relativa correlação que ela apresenta com praticamente todo o grupo de plantas coletadas no período chuvoso. Quando observamos as principais estrutras e vias de ciclização, é notoraria a predominância de estruturas biciclicas e tricíclicas compondo mais de 70% das amostras, com representantes principais na via do cariofilano e cadinano e

aromadendrano. O óleo essencial da espécie está sendo descrito pela primeira vez na literatura.

Figura 14- Tronco, ramo com folhas e frutos imaturos, óleo essencial de M. fenestrata

Tabela 10- Componentes caracterizados de *M. fenestrata* com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	F1s	F1c	F2c
	5	MH	Bicíclico	Pinanos	932	932	α-Pineno	0	0,63	1,20
2	67	MO	Monociclico	Mentanos	1186	1188	α-Terpineol	0	0,63	0
3	104	SH	Triciclico	Copaenos	1373	1373	α-Ylangeno	0	0,18	0
4	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	1,58	2,04	3,53
5	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	0,46	0,80	0,33
6	115	SH	Bicíclico	Cariofilanos	1417	1418	E-Cariofileno	44,98	20,57	1,13
7	120	SH	Bicíclico	Ciclofarneseno	1432	1433	α-trans-Bergamoteno	0,34	0	0
8	123	SH	Triciclico	Aromadendranos	1439	1441	Aromadendreno	0	0,46	0,39
9	128	SH	Bicíclico	Cadinanos	1448	1448	cis-Muurola-3,5-dieno	0	0	0,38
10	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	1,69	1,24	0
11	134	SH	Triciclico	Aromadendranos	1458	1461	allo-Aromadendreno	0	0,53	1,15
12	136	SH	Bicíclico	Cadinanos	1461	1460	cis-Cadina-1(6),4-dieno	0	0	0,88
13	141	SH	Bicíclico	Cadinanos	1475	1472	trans-Cadina-1(6),4-dieno	0	0,66	0,59
14	148	SH	Monociclico	Germacranos	1481	1481	Germacreno D	8,91	0,74	1,92
15	151	SH	Bicíclico	Cadinanos	1483	1482	α-Amorfeno	1,29	0,36	1,25
16	159	SH	Bicíclico	Cadinanos	1495	1492	γ-Amorfeno	0	0,78	0
17	160	SH	Bicíclico	Eremofilanos	1496	1495	Valenceno	0	0	1,98
18	161	SH	Triciclico	Aromadendranos	1496	1493	Viridifloreno	12,25	1,39	0,29
19	162	dSO	Monociclico	Isoprenoide	1497	1487	Tiglato de benzila	0	0,00	1,19
20	165	SH	Bicíclico	Biciclogermacranos	1500	1497	Biciclogermacreno	0	1,46	1,13
21	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	2,37	1,48	0,24
22	176	SH	Bicíclico	Cadinanos	1511	1512	δ-Amorfeno	1,23	0	0
23	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	0	1,06	1,02

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	F1s	F1c	F2c
24	182	SH	Bicíclico	Cadinanos	1521	1522	trans-Calameneno	0	0	0,53
25	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	5,16	2,13	4,60
26	191	SH	Bicíclico	Cadinanos	1533	1532	trans-Cadina-1,4-dieno	0	0	0,15
27	194	SH	Bicíclico	Cadinanos	1537	1536	α-Cadineno	0	0	0,14
28	197	SH	Bicíclico	Cadinanos	1544	1542	α-Calacoreno	0	1,20	1,82
29	209	SH	Bicíclico	Cadinanos	1564	1563	β-Calacoreno	0	0,37	0,28
30	211	SO	Triciclico	Aromadendranos	1567	1566	Palustrol	0	0	0,25
31	217	SO	Triciclico	Aromadendranos	1577	1574	Espatulenol	4,53	19,70	28,76
32	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	6,03	9,36	0
33	221	SO	Triciclico	Copaenos	1590	1598	β-copaen-4-α-ol	0	0	6,40
34	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	1,84	2,99	0,07
35	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	0	1,54	1,43
36	227	SO	Triciclico	Cadinanos	1595	1594	Cubeban-11-ol	0,68	3,01	0
37	231	SO	Bicíclico	Eudesmano	1600	1605	Rosifoliol	0,56	0,53	1,15
38	232	SO	Monociclico	Bisabolanos	1601	1591	1,3,5-Bisabolatrien-7-ol	0	0	0,74
39	237	SO	Bicíclico	Eudesmano	1607	1604	5-epi-7-epi-α-Eudesmol	1,23	0	0
40	239	SO	Monociclico	Bisabolanos	1608	1611	β-Atlantol	0	0	0,97
41	243	SO	Bicíclico	Eudesmano	1618	1614	Junenol	0	0	0,63
42	249	SO	Bicíclico	Cadinanos	1627	1627	1-epi-Cubenol	0	0	2,43
43	251	SO	Bicíclico	Cadinanos	1630	1624	Muurola-4-10(14)-dien-1-β-ol	0	2,63	0,41
44	253	SO	Bicíclico	Acoranos	1632	1633	α-Acorenol	0,48	0	0
45	256	SO	Bicíclico	Cadinanos	1638	1635	epi-α-Cadinol	0	1,05	2,00
46	259	SO	Bicíclico	Cadinanos	1640	1640	epi-α-Muurolol	1,38	1,65	5,55
47	265	SO	Bicíclico	Cadinanos	1644	1644	α-Muurolol	0	1,20	1,97
48	267	SO	Bicíclico	Guaianos	1648	1649	cis-Guaia-3,9-dien-11-ol	0	0,70	1,12

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	F1s	F1c	F2c
49	272	SO	Bicíclico	Guaianos	1651	1658	Pogostol	0	0	0,64
50	273	SO	Bicíclico	Cadinanos	1652	1652	α-Cadinol	2,52	5,35	5,58
51	275	SO	Bicíclico	Eudesmano	1658	1655	Selin-11-en-4-α-ol	0	0,97	0
52	277	SO	Bicíclico	Himachalanos	1661	1665	Allohimachalol	0	0,72	0
53	278	SO	Bicíclico	Eudesmano	1662	1656	7-epi-α-Eudesmol	0	0	0,96
54	280	SO	Bicíclico	Cariofilanos	1666	1654	14-hidroxi-(Z)-cariofileno	0	0	0,51
55	281	SO	Bicíclico	Cariofilanos	1668	1667	14-hidroxi-9-epi-(E)-Cariofileno	0	1,76	0
56	286	SO	Triciclico	α-Santalano	1674	1672	Z-α-Santalol	0	0,70	0
57	287	SO	Bicíclico	Guaianos	1676	1674	Guaia-3,10(14)-dien-11-ol	0	0	1,08
58	288	SO	Triciclico	Eudesmano	1676	1676	Mustakona	0	0	2,82
59	294	SO	Bicíclico	Eudesmano	1688	1689	Eudesma-4(15),7-dien-1β-ol	0	0	0,31
			T	otal de Picos Identificado	os (%)	I		99,51	92,57	91,90
			Tota	al de Picos Não Identifica	ados (%)			0,49	7,43	8,10
				derivado de sesquite	rpeno oxige	nado	dSO	0	0	1,19
	Total de	grupos terpênicos por	amostra	monoterpeno nã	o oxigenado)	MH	0	0,63	1,2
				monoterpeno	oxigenado		МО	0	0,63	0
				sesquiterpeno na	ão oxigenado)	SH	80,26	37,45	23,73
				sesquiterpeno	oxigenado		SO	19,25	53,86	65,78
		Total do cat	truturas ternênica	s//ias de ciclização			Monociclico	11,06	3,41	5,15
		i otal de est	лиштаѕ тегрепіса	s/Vias de ciclização			Bicíclico	67,57	56,62	41,66
						ĺ	Triciclico	20,88	32,54	45,09

4.2.7 Myrcia amapensis – (Códigos – APs e APc)

Dentre os 41 compostos identificados no OE da espécie *M. amapensis*, destacam-se como majoritários os componentes: (E)-Cariofileno (71,39-73,12%), α -Humuleno (5,70-6,94%), Germacreno D (2,15-4,75%) e E- β -Farneseno (3,85-3,95%). Apesar de E-Cariofileno está presente em praticamente todas as espécies coletas, somente em M. amapensis alcança esse teor, sendo um fator a se considerar para futuros processos de purificação do composto. Ressalta-se que a composição química do óleo essencial da espécie está sendo descrita pela primeira vez e que foi a análise do perfil cromatográfico obtido do OE que trouxe dúvidas quanto a classificação botânica da espécie, pois o indivíduo era registrado na RFAD como *M. rufipila*, porém apresentava um perfil cromatográfico e características físico-químicas muitos distintas, após a análise detalhada de ramos férteis pode-se concluir que o individuo estava erroneamente classificado e catalogado no herbário do INPA. A espécie é composta exclusivamente por sesquiterpenos, com um conteúdo pouco diversificado e amplo de estruturas, sendo a via do cariofilano a majoritária.

Figura 15- Tronco, ramo com inflorescência, óleo essencial de M. amapensis

Tabela 11- Componentes caracterizados de M. amapensis com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	APs	APc
1	97	SH	Monociclico	Bisabolanos	1335	1337	δ-Elemeno	1,55	0,20
2	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	0,23	0
3	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	0,34	0,31
4	115	SH	Bicíclico	Cariofilanos	1417	1418	(E)-Cariofileno	73,12	71,39
5	120	SH	Bicíclico	Ciclofarneseno	1432	1433	α-trans-Bergamoteno	0,19	0
6	124	SH	Acíclico	Farnesilanos	1440	1440	(Z)-β-Farneseno	0,38	0
7	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	5,70	6,94
8	132	SH	Acíclico	Farnesilanos	1454	1454	<i>(E)</i> -β-Farneseno	3,95	3,85
9	135	SH	Triciclico	Aromadendranos	1460	1462	deidro-Aromadendreno	0,07	0
10	141	SH	Bicíclico	Cadinanos	1475	1472	trans-Cadina-1(6),4-dieno	0	0,29
11	142	SH	Bicíclico	Guaianos	1475	1473	γ-Gurjuneno	0,12	0
12	148	SH	Monociclico	Germacranos	1481	1481	Germacreno D	4,75	2,15
13	161	SH	Triciclico	Aromadendranos	1496	1493	Viridifloreno	0	0,90
14	165	SH	Bicíclico	Biciclogermacranos	1500	1497	Biciclogermacreno	2,18	1,37
15	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0,16	0,50
16	170	SH	Monociclico	Bisabolanos	1505	1506	β-Bisaboleno	1,31	1,22
17	173	SH	Monociclico	Bisabolanos	1506	1503	(Z)-α-Bisaboleno	0,10	0
18	178	SH	Monociclico	Bisabolanos	1514	1512	(Z)-γ-Bisaboleno	0,26	0,46
19	179	SH	Monociclico	Bisabolanos	1514	1512	β-Curcumeno	0,13	0
20	183	SH	Monociclico	Bisabolanos	1521	1524	β-Sesquifelandreno	1,80	0
21	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	0	1,10
22	187	SH	Monociclico	Bisabolanos	1529	1529	(E)-γ-Bisaboleno	0,29	0
23	188	SO	Acíclico	Farnesilanos	1531	1532	(Z)-Nerolidol	0	1,22

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	APs	APc
24	190	SH	Bicíclico	Cuparanos	1532	1534	γ-Cupreneno	0,52	0,48
25	207	SO	Bicíclico	Longipinanos	1562	1565	epi-Longipinanol	0	0,04
26	212	SO	Triciclico	Longipinanos	1567	1578	Longipinanol	0,12	0
27	214	SO	Triciclico	Protolludano	1571	1575	Cariolan-8-ol	0	0,24
28	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	0,92	0,35
29	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	0,28	1,25
30	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	0,00	0,60
31	227	SO	Triciclico	Cadinanos	1595	1594	Cubeban-11-ol	0,14	0,55
32	237	SO	Bicíclico	Eudesmano	1607	1604	5-epi-7-epi-α-Eudesmol	0,15	0
33	241	SO	Triciclico	Longifolanos	1619	1615	Isolongifolan-7-a-ol	0	0,32
34	256	SO	Bicíclico	Cadinanos	1638	1635	epi-α-Cadinol	0	0,35
35	259	SO	Bicíclico	Cadinanos	1640	1640	epi-α-Muurolol	0,27	0,49
36	264	SO	Bicíclico	Cadinanos	1645	1649	Cubenol	0,07	1,14
37	265	SO	Bicíclico	Cadinanos	1644	1644	α-Muurolol	0	0,21
38	273	SO	Bicíclico	Cadinanos	1652	1652	α-Cadinol	0,27	0
39	281	SO	Bicíclico	Cariofilanos	1666	1667	14-hidroxi-9-epi-(E)-Cariofileno	0,13	0
40	290	SO	Monociclico	Bisabolanos	1683	1681	epi-α-Bisabolol	0,22	0,57
41	292	SO	Monociclico	Bisabolanos	1685	1683	α-Bisabolol	0,26	0,67
			7	otal de Picos Identificado	s (%)	ı		99,98	99,16
			Tot	al de Picos Não Identifica	dos (%)			0,02	0,84
			,	sesquiterpeno n	ão oxigenad	0	SH	97,15	91,16
	Γotal de gru	pos terpênicos po	or amostra	sesquiterpeno	oxigenado		SO	2,83	8

				Acíclico	4,33	5,07
Total de e	estruturas terpênicas/\	√ias de ciclização		Monociclico	16,71	12,52
70.07.00	on ataras torpormous.	rae de oronzagae		Bicíclico	78,1	78,61
				Triciclico	0,84	2,96

4.2.8 Myrcia amazonica – (Códigos – AMc e AMs)

A análise do OE de *M. amazonica* detectou a presença de compostos majoritários distintos para cada período, é importante destacar que AMc foi coletada no início do período de chuva e AMs já no final da estação seca. AMc tem como majoritários: Germacreno D (13,82%), Germacreno B (7,08%), α-Cadinol (6,33%), δ-Cadineno (4,94%) e 1-epi-Cubenol (4,56%). Já a amostra AMs apresentou como componentes principais o Espatulenol (15,84%), Muurola-4-10(14)-dien-1-β-ol (14,65%), α-trans-Bergamoteno (12,54%), δ-Elemeno (10,56%) e Viridiflorol (7,90%). Calao (2014) analisando o OE de folhas secas, coletadas em área de savana, no mês de outubro, na cidade de Santarém (PA), determinou como majoritários os compostos Germacreno D (16,56%), 1-epi-cubenol (14,72%) e Germacreno B (11,09), o que se assemelha a composição do óleo coletado na RFAD no período chuvoso.

Figura 16- Tronco, ramo com folhas e inflorescência, óleo essencial de M. amazonica

Tabela 12- Componentes caracterizados de M. amazonica com seus repectivos tempos de retenção, índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	AMs	АМс
1	97	SH	Monociclico	Bisabolanos	1335	1337	δ-Elemeno	10,56	4,94
2	104	SH	Triciclico	Copaenos	1373	1373	α-Ylangeno	0	0,47
3	106	SH	Triciclico	Aromadendranos	1374	1377	Isoledeno	0	0,77
4	109	SH	Triciclico	Bourbonanos	1387	1383	β-Bourboneno	1,01	0,19
5	110	SH	Monociclico	Elemanos	1389	1390	β-Elemeno	6,22	2,78
6	115	SH	Bicíclico	Cariofilanos	1417	1418	(E)-Cariofileno	6,60	3,77
7	120	SH	Bicíclico	Ciclofarneseno	1432	1433	α-trans-Bergamoteno	12,54	0
8	121	SH	Monociclico	Elemanos	1434	1436	γ-Elemeno	0	2,55
9	125	SH	Bicíclico	Guaianos	1442	1444	6,9-Guaiadieno	0	0,35
10	128	SH	Bicíclico	Cadinanos	1448	1448	cis-Muurola-3,5-dieno	0	0,27
11	130	SH	Monociclico	Humulanos	1451	1452	α-Humuleno	1,54	0,84
12	134	SH	Triciclico	Aromadendranos	1458	1461	allo-Aromadendreno	0,90	0,48
13	140	SH	Bicíclico	Eremofilanos	1471	1476	4,5-di-epi-Aristoloqueno	0	2,40
14	141	SH	Bicíclico	Cadinanos	1475	1472	trans-Cadina-1(6),4-dieno	0	1,69
15	148	SH	Monociclico	Germacranos	1484	1481	Germacreno D	1,34	13,82
16	156	SH	Bicíclico	Eudesmano	1492	1487	δ-Selineno	0	1,48
17	158	SH	Bicíclico	Guaianos	1492	1492	cis-β-Guaieno	0	3,63
18	165	SH	Bicíclico	Biciclogermacranos	1500	1497	Biciclogermacreno	6,66	2,99
19	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0	3,38
20	168	SH	Bicíclico	Guaianos	1502	1507	trans-β-Guaieno	1,00	0
21	176	SH	Bicíclico	Cadinanos	1511	1512	δ-Amorfeno	0	0,18
22	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	0	1,18
23	183	SH	Monociclico	Bisabolanos	1521	1524	β-Sesquifelandreno	0,49	0

24 184 SH Bicíclico Cadinanos 1522 1522 δ-Cadineno 25 186 SH Bicíclico Cadinanos 1528 1526 cis-Calameneno 26 191 SH Bicíclico Cadinanos 1533 1532 trans-Cadina-1,4-dieno 27 194 SH Bicíclico Cadinanos 1537 1536 α-Cadineno 28 197 SH Bicíclico Cadinanos 1544 1542 α-Calacoreno 29 203 SH Monociclico Germacranos 1559 1557 Germacreno B 30 205 SO Acíclico Farnesilanos 1561 1561 (E)-Nerolidol 31 206 SO Bicíclico Longipinanos 1562 1565 Longicanfenilona 32 209 SH Bicíclico Cadinanos 1564 1563 β-Calacoreno 33 211 SO Triciclico Aromadendranos 1567 <th>AMs</th> <th>AMc</th>	AMs	AMc
26 191 SH Bicíclico Cadinanos 1533 1532 trans-Cadina-1,4-dieno 27 194 SH Bicíclico Cadinanos 1537 1536 α-Cadineno 28 197 SH Bicíclico Cadinanos 1544 1542 α-Calacoreno 29 203 SH Monociclico Germacranos 1559 1557 Germacreno B 30 205 SO Acíclico Farnesilanos 1561 1561 (E)-Nerolidol 31 206 SO Bicíclico Longipinanos 1562 1565 Longicanfenilona 32 209 SH Bicíclico Cadinanos 1564 1563 β-Calacoreno 33 211 SO Triciclico Aromadendranos 1567 1566 Palustrol 34 217 SO Triciclico Aromadendranos 1577 1574 Espatulenol	0	6,23
27 194 SH Bicíclico Cadinanos 1537 1536 α-Cadineno 28 197 SH Bicíclico Cadinanos 1544 1542 α-Calacoreno 29 203 SH Monociclico Germacranos 1559 1557 Germacreno B 30 205 SO Acíclico Farnesilanos 1561 1561 (E)-Nerolidol 31 206 SO Bicíclico Longipinanos 1562 1565 Longicanfenilona 32 209 SH Bicíclico Cadinanos 1564 1563 β-Calacoreno 33 211 SO Triciclico Aromadendranos 1567 1566 Palustrol 34 217 SO Triciclico Aromadendranos 1577 1574 Espatulenol	0	1,64
28 197 SH Bicíclico Cadinanos 1544 1542 α-Calacoreno 29 203 SH Monociclico Germacranos 1559 1557 Germacreno B 30 205 SO Acíclico Farnesilanos 1561 1561 (E)-Nerolidol 31 206 SO Bicíclico Longipinanos 1562 1565 Longicanfenilona 32 209 SH Bicíclico Cadinanos 1564 1563 β-Calacoreno 33 211 SO Triciclico Aromadendranos 1567 1566 Palustrol 34 217 SO Triciclico Aromadendranos 1577 1574 Espatulenol	0	0,27
29203SHMonociclicoGermacranos15591557Germacreno B30205SOAcíclicoFarnesilanos15611561(E)-Nerolidol31206SOBicíclicoLongipinanos15621565Longicanfenilona32209SHBicíclicoCadinanos15641563β-Calacoreno33211SOTriciclicoAromadendranos15671566Palustrol34217SOTriciclicoAromadendranos15771574Espatulenol	0	1,03
30205SOAcíclicoFarnesilanos15611561(E)-Nerolidol31206SOBicíclicoLongipinanos15621565Longicanfenilona32209SHBicíclicoCadinanos15641563β-Calacoreno33211SOTriciclicoAromadendranos15671566Palustrol34217SOTriciclicoAromadendranos15771574Espatulenol	0	0,79
31206SOBicíclicoLongipinanos15621565Longicanfenilona32209SHBicíclicoCadinanos15641563β-Calacoreno33211SOTriciclicoAromadendranos15671566Palustrol34217SOTriciclicoAromadendranos15771574Espatulenol	0	7,08
32209SHBicíclicoCadinanos15641563β-Calacoreno33211SOTriciclicoAromadendranos15671566Palustrol34217SOTriciclicoAromadendranos15771574Espatulenol	1,30	0
33 211 SO Triciclico Aromadendranos 1567 1566 Palustrol 34 217 SO Triciclico Aromadendranos 1577 1574 Espatulenol	1,30	0
34 217 SO Triciclico Aromadendranos 1577 1574 Espatulenol	0	0,26
· ·	0	0,53
35 218 SO Bicíclico Cariofilanos 1582 1580 Óxido de cariofileno	15,84	1,24
	5,02	0
36 222 SO Triciclico Aromadendranos 1590 1586 Globulol	0	2,80
37 223 SO Triciclico Aromadendranos 1592 1595 Viridiflorol	7,90	2,11
38 227 SO Triciclico Cadinanos 1595 1594 Cubeban-11-ol	0	2,25
39 231 SO Bicíclico Eudesmano 1600 1605 Rosifliol	0	0,52
40 243 SO Bicíclico Eudesmano 1618 1614 Junenol	0	1,91
41 249 SO Bicíclico Cadinanos 1627 1627 1-epi-Cubenol	0	4,56
42 251 SO Bicíclico Cadinanos 1630 1624 Muurola-4-10(14)-dien-1-β-	-ol 14,65	2,65
43 256 SO Bicíclico Cadinanos 1638 1635 epi-α-Cadinol	0	1,79
44 257 SO Policiclico Aromadendranos 1639 1632 allo-epóxido de Aromadendr	reno 1,45	0
45 259 SO Bicíclico Cadinanos 1640 1640 epi-α-Muurolol	0	3,67
46 265 SO Bicíclico Cadinanos 1644 1644 α-Muurolol	0	1,68
47 267 SO Bicíclico Guaianos 1648 1649 cis-Guaia-3,9-dien-11-ol	0	0,29
48 273 SO Bicíclico Cadinanos 1652 1652 α-Cadinol	0,62	6,33

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	AMs	AMc
49	275	SO	Bicíclico	Eudesmano	1658	1655	Selin-11-en-4-α-ol	0	0,55
50	301	SO	Bicíclico	Eudesmano	1700	1693	Eudesm-7(11)-en-4-ol	0	0,59
			T	otal de Picos Identifica	dos (%)			96,94	98,93
			Tota	al de Picos Não Identifi	cados (%))		3,06	1,07
	Total de grupos terpênicos por amostra sesquiterpeno não oxigenado SH								65,46
				sesquiterpeno	oxigenado)	SO	48,08	33,47
									'
		Total de	estruturas terpênic	as/Vias de ciclização			Acíclico	1,3	0
							Monociclico	20,15	32,01
							Bicíclico	48,39	56,08
							Triciclico	25,65	10,84
							Policiclico	1,45	0

A espécie é composta exclusivamente por grupos sesquiterpenicos, contudo a análise do coeficiente de correlação (0,2804), indica uma baixa correção entre os dois períodos de coleta, o que é ressaltado quando observamos que entre as duas AMs é o único que possui estruturas acíclicas e policlicas, porém, AMc possui uma variedade maior de vias de ciclização que dão origem as suas estruturas, pode ser observado inclusive vias exclusivas para cada época de coleta. A analise do óleo essencial da espécie está sendo relatado pela primeira vez. Antes do estudo a espécie era classificada como *M. rufipila*, a análise do perfil cromatográfico gerou dúvida quanto a essa classificação, o que foi solucionado após a análise de um ramo fértil coletado durante o estudo, após isso a espécie pôde ser reclassificada em *M. amazonica*.

4.2.9 *Myrcia fallax* – (Códigos – FA1s, FA1c e FA2c)

Foram detectados como componentes majoritários de *M. fallax* os seguintes componentes: β-Elemeno (2,52-14,79%), Espatulenol (33,05-56,62%), Muurola-4-10(14)-dieno-1-β-ol (9,65-10,30%). Maia e Andrade (2009), destaca a existência de 03 quimiotipos: Tipo A composto dos majoritários Germacreno D (27,7%), δ-Cadineno (12,5%), Biciclogermacreno (14,6%); Tipo B composto de Espatulenol (42,4%) e β-Elemeno (17,4%) e o Tipo C composto por Mirceno (85%) em alto teor (MAIA; ANDRADE, 2009). Os dois indivíduos da espécie analisada seriam representantes do quimiotipo B, os indivíduos também apresentam um alto coeficiente de correlação entre si (0,9254) e entre os pares (0,9741). A espécie não apresenta variabilidade quanto aos grupos terpenicos, mais de 80% das amostras é composto basicamente por sesquiterpenos.

Figura 17- Tronco, folhas e inflorescência, óleo essencial de M. fallax

Tabela 13- Componentes caracterizados de *M. fallax*, com seus respectivos índices aritméticos e área percentual

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	FA1s	FA1c	FA2c
1	23	MH	Monociclico	Mentanos	1029	1024	Limoneno	0	0	0,17
2	34	MO	Acíclico	Mircanos	1096	1095	Linalol	0,07	0,68	0
3	68	Outros	Monociclico	Ácido benzóico	1191	1190	Salicilato de metila	0,12	0	0,22
4	95	MO	Monociclico	Mentanos	1334	1332	cis-Acetato de Piperitol	0,09	0	0
5	97	SH	Monociclico	Bisabolanos	1338	1335	δ-Elemeno	1,42	1,74	2,15
6	98	SH	Triciclico	Cadinanos	1351	1348	α-Cubebeno	0,61	0,63	0,35
7	104	SH	Triciclico	Copaenos	1375	1373	α-Ylangeno	0,21	0	0,88
8	105	SH	Triciclico	Copaenos	1376	1374	α-Copaeno	1,17	1,18	0
9	109	SH	Triciclico	Bourbonanos	1388	1387	β-Bourboneno	0,25	0	0,35
10	110	SH	Monociclico	Elemanos	1390	1389	β-Elemeno	2,52	2,98	14,79
11	115	SH	Bicíclico	Cariofilanos	1419	1417	E-Cariofileno	0,92	0,88	0,50
12	121	SH	Monociclico	Elemanos	1436	1434	γ-Elemeno	1,05	0	0,73
13	123	SH	Triciclico	Aromadendranos	1441	1439	Aromadendreno	0,18	0	0
14	127	MO	Bicíclico	Iridoide	1446	1443	trans-cis-Iridolactona	0,25	0	0
15	128	SH	Bicíclico	Cadinanos	1450	1448	cis-Muurola-3,5-dieno	0,17	0	0
16	130	SH	Monociclico	Humulanos	1454	1452	α-Humuleno	0,51	0	0,55
17	134	SH	Triciclico	Aromadendranos	1460	1458	allo-Aromadendreno	1,16	1,41	1,08
18	145	SH	Bicíclico	Cadinanos	1479	1478	γ-Muuroleno	0,33	0	0
19	148	SH	Monociclico	Germacranos	1481	1480	Germacreno D	1,24	0	0
20	149	SH	Monociclico	Bisabolanos	1482	1481	γ-Curcumeno	0	0,30	0
21	152	dSO	Monociclico	Ciclofarneseno	1488	1487	E-β-lonona	0,18	0	0
22	154	SH	Bicíclico	Spirovetivanos	1490	1489	α-Vetispireno	0	1,42	0
23	155	SH	Bicíclico	Eudesmano	1490	1489	β-Selineno	0,88	0	2,03

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	FA1s	FA1c	FA2c
24	161	SH	Triciclico	Aromadendranos	1496	1496	Viridifloreno	0,89	0	0
25	165	SH	Bicíclico	Biciclogermacranos	1500	1500	Biciclogermacreno	3,45	1,32	0,89
26	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0,33	0	0
27	169	SH	Acíclico	Farnesilanos	1505	1505	E,E-α-Farneseno	0	1,45	0,53
28	170	SH	Monociclico	Bisabolanos	1505	1505	β-Bisaboleno	0,89	0	0
29	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	0,26	0	0
30	178	SH	Monociclico	Bisabolanos	1515	1514	Z-γ-Bisaboleno	0	0	1,12
31	184	SH	Bicíclico	Cadinanos	1523	1522	δ-Cadineno	0,95	1,19	0,71
32	188	SO	Acíclico	Farnesilanos	1532	1531	Z-Nerolidol	0	0	0,65
33	192	SO	Triciclico	Cadinanos	1535	1533	10-epi-Cubebol	0,20	0	0
34	194	SH	Bicíclico	Cadinanos	1537	1537	α-Cadineno	0,22	0	0
35	197	SH	Bicíclico	Cadinanos	1545	1544	α-Calacoreno	0,48	0	0,54
36	203	SH	Monociclico	Germacranos	1561	1559	Germacreno B	3,75	2,20	2,29
37	209	SH	Bicíclico	Cadinanos	1565	1564	β-Calacoreno	0,27	0	0
38	213	SO	Monociclico	Farnesilanos	1571	1570	Dendrolasina	1,16	0,33	0
39	217	SO	Triciclico	Aromadendranos	1578	1577	Espatulenol	33,05	56,62	33,53
40	218	SO	Bicíclico	Cariofilanos	1583	1582	Óxido de cariofileno	2,21	4,05	2,87
41	222	SO	Triciclico	Aromadendranos	1590	1590	Globulol	2,36	2,96	0
42	223	SO	Triciclico	Aromadendranos	1592	1592	Viridiflorol	2,32	0	0
43	228	SO	Acíclico	Farnesilanos	1596	1596	Fokienol	1,95	0	0
44	231	SO	Bicíclico	Eudesmano	1600	1600	Rosifoliol	0,77	0	0
45	234	SO	Triciclico	Aromadendranos	1602	1602	Ledol	0,26	0	0
46	236	SO	Bicíclico	Oplopanos	1607	1607	β-Oplopenona	0	0	0,60
47	238	SO	Bicíclico	Humulanos	1608	1608	Epóxido Humuleno II	0,35	0	0
48	244	FP	Bicíclico	Ácido cinâmico	1620	1620	Dilapiol	0,24	0	0
							<u>'</u>			

N.	Código	Grupo terpênico	Estrutura	Biogênese	IAC	IA	COMPONENTES	FA1s	FA1c	FA2c
49	251	SO	Bicíclico	Cadinanos	1631	1630	Muurola-4-10(14)-dien-1-β-ol	9,78	10,30	9,65
50	254	SO	Bicíclico	Cadinanos	1636	1635	cis-Cadin-4-en-7-ol	2,93	0	0
51	257	SO	Policiclico	Aromadendranos	1641	1639	allo-epóxido de Aromadendreno	0	0	2,18
52	259	SO	Bicíclico	Cadinanos	1642	1640	epi-α-Muurolol	0,62	0	0
53	262	SO	Bicíclico	Eudesmano	1644	1642	Selina-3,11-dien-6-α-ol	0,41	0	0
54	264	SO	Bicíclico	Cadinanos	1646	1645	Cubenol	0,45	0	0
55	267	SO	Bicíclico	Guaianos	1649	1648	cis-Guaia-3,9-dien-11-ol	0,52	0	0,78
56	273	SO	Bicíclico	Cadinanos	1654	1652	α-Cadinol	1,34	0	0,37
57	275	SO	Bicíclico	Eudesmano	1659	1658	Selin-11-en-4-α-ol	0	0	1,83
58	276	SO	Bicíclico	Eudesmano	1660	1658	neo-Intermedeol	0,69	0	0
59	284	SO	Bicíclico	Guaianos	1671	1670	Bulnesol	0	2,00	0
60	286	SO	Triciclico	α-Santalano	1675	1674	Z-α-Santalol	1,79	0	0
61	287	SO	Bicíclico	Guaianos	1677	1676	Guaia-3,10(14)-dien-11-ol	0,90	0	0
62	300	SO	Bicíclico	Cadinanos	1700	1700	Amorfa-4,9-dien-2-ol	0,04	0	0
63	302	dSO	Triciclico	Cariofilanos	1701	1701	Acetato de cariofileno	0,34	0	0
64	305	SO	Monociclico	Humulanos	1714	1713	14-hidroxi-α-Humuleno	0	1,23	1,29
65	306	SO	Bicíclico	Eremofilanos	1715	1714	Nootkatol	0	0	1,80
66	317	SO	Triciclico	Germacranos	1734	1733	Isobiciclogermacrenal	0,15	0	0
67	321	SO	Triciclico	Aromadendranos	1760	1759	Ciclocolorenona	0,80	0	1,16
68	322	SO	Bicíclico	Acoranos	1763	1762	β-Acoradienol	0	0	0,90
69	324	SO	Bicíclico	Eudesmano	1767	1765	β-Costol	0,76	0	0
70	328	SO	Bicíclico	Eudesmano	1780	1779	14-hidroxi-α-Muuroleno	1,03	0	0
71	331	SO	Bicíclico	Cadinanos	1803	1803	14-hidroxi-δ-Cadineno	0,31	0	0
72	334	DO	Acíclico	Fitanos	2027	2026	E-E-Linalol geranila	0,11	0	0

N. Código Grupo Estrutura terpênico	Biogênese IAC IA	COMPONENTES	FA1s	FA1c	FA2c
	92,66	94,87	87,49		
7	7,34	5,13	12,51		
	Diterpenos oxigenados	DO	0,11	0	0
	derivado de sesquiterpeno oxigenado	dSO	0,52	0	0
	fenilpropanóide	FP	0,24	0	0
Total de grupos terpênicos por amostra	monoterpeno não oxigenado	MH	0	0	0,17
	monoterpeno oxigenado	MO	0,41	0,68	0
	outros	Outros	0,12	0	0,22
	sesquiterpeno não oxigenado	SH	24,11	16,7	29,49
	sesquiterpeno oxigenado	SO	67,15	77,49	57,61
		Acíclico	2,13	2,13	1,18
	Monociclico	12,93	8,78	23,31	
Total de estruturas terr	pênicas/Vias de ciclização	Bicíclico	31,86	21,16	23,47
. 300. 00 00. 00.00		Triciclico	45,74	62,8	37,35
		Policiclico	0	0	2,18

A espécie *M. fallax* possui um elevado teor de espatulenol (33,05-56,62%), o que reflete no maior percentual para estruturas tricíclicas pela via do aromadendrano (35,77-60,99%). Quanto as estruturas biciclicas, o segundo maior grupo é melhor representado pela via do cadinano (11,27-18,48%) e pela do cariofilano (3,13-4,93%). Já terceiro maior grupo é representado pela via do elemano (2,98-15,52%) o qual é responsável pelas estruturas monocíclicas.

4.2.10 Myrcia sylvatica – (Códigos – S1c e S2c)

Na análise do OE de *M. sylvatica* foram detectados como majoritários para S1c: 10-epi-γ-eudesmol (14,20%), β-Eudesmol (7,45%), Mustakona (5,57%), Acetato de cedrila (14,94%), β-Selineno (6,66%) e β-Acetato de eudesmol (6,05%). O individuo S2c se distingue por uma composição de substâncias muito distinta e muito diversificada em relação a S1c, a composição é tão diversificada que não é possível observar substâncias com teor acima de 5%. S2c, portanto, tem como compostos principais: *trans*-Pinocarveol (4,25%), Verbenona (3,09%), *p*-menta-1,5-dien-8-ol (3,54%), 14-hidroxi-α-humuleno (4,45%%) e allo-epóxido de arodendreno (3,57%). Essa diferença de composição observada nos dois indivíduos da mesma espécie é refletida no coeficiente de correlação observado que é de 0,0019, que indica indivíduos de uma mesma espécie com características químicas distintas.

Figura 18- Tronco, ramo com folhas e frutos, óleo essencial de M. sylvatica

Fontes: https://www.flickr.com/photos/tarcisoleao/9585090701/ (tronco), o autor (ramo e óleo)

A análise dos tipos de grupos terpênicos observadas para cada individuo indica que S1c é rica em derivados de sesquiterpenos oxigenados (22,97%), sesquiterpenos não oxigenados (17,37%) e sesquiterpenos oxigenados (44,32%), enquanto que para S2c as estruturas terpênicas encontradas predominates são monoterpeno oxigenados (24,16%) e sesquiterpenos oxigenados (29.21%). Em relação as estruturas terpênicas e vias de ciclização, S1c apresenta um maior percentual de estruturas bicíclicas (80,83%), com destaque para a vida do cadinano (14,48%), cedrano (14,94%) e eudesmano (43,7%), S2c, por sua vez, apresenta estruturas monocíclicas (27,7%), com destaque para a vida do mentano (15,6%) e humulano (4,95%) e bicíclicas com destaque para a via do pinano (13,4%) e eudesmano (4,07%). Tais dados confirmam a ocorrência de quimiotipos já relatadas para a espécie, o que mostra quimiotipos distintos espalhados pela Amazônia. (ROSA et al., 2016b).

Tabela 14- Componentes caracterizados de *M. sylvatica*, com seus respectivos índices aritméticos e teores percentuais.

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	S1c	S2c
1	1	Outros	Acíclico	Acilpolimalonato	846	854	2E-Hexenal	0	0,61
2	3	Outros	Bicíclico	Acilpolimalonato	884	885	Santeno	0	0,09
3	4	Outros	Acíclico	Acilpolimalonato	901	900	Heptanal	0	0,10
4	5	MH	Bicíclico	Pinanos	932	932	α-Pineno	1,48	1,36
5	10	MH	Bicíclico	Tujanos	953	952	Thuja-2,4(10)-dieno	0	1,00
6	11	MH	Bicíclico	Fenchanos	961	964	Verbeneno	0,26	0
7	13	MH	Bicíclico	Pinanos	974	976	β-Pineno	0,22	0,39
8	14	Outros	Acíclico	Acilpolimalonato	981	980	6-metil-5-hepten-2-ona	0	0,05
9	21	MH	Monociclico	Mentanos	1020	1023	p-Cimeno	0,19	1,88
10	22	MH	Monociclico	Mentanos	1021	1026	1-ρ-Menteno	0	0,07
11	29	MO	Monociclico	Mentanos	1068	1071	ρ-Menta-3,8-dieno	0	0,87
12	33	MH	Monociclico	Mentanos	1089	1089	ρ-Cimeneno	0	2,02
13	36	Outros	Acíclico	Acilpolimalonato	1100	1103	n-Nonanal	0	0,73
14	38	MO	Bicíclico	Tujanos	1112	1115	trans-Tujona	0	0,17
15	39	MO	Bicíclico	Fenchanos	1114	1113	endo-Fenchol	0	0,08
16	41	MO	Monociclico	Mentanos	1122	1120	α-Canfolenal	0,36	1,27
17	43	MO	Bicíclico	Pinanos	1135	1138	trans-Pinocarveol	1,13	4,25
18	44	MO	Bicíclico	Tujanos	1137	1135	trans-Sabinol (trans para OH vs, IPP)	0	0,63
19	45	dSH	Monociclico	Elemanos	1138	1138	Geijereno	0	1,55
20	47	MO	Bicíclico	Pinanos	1140	1144	trans-Verbenol	0,18	0,53
21	50	MO	Monociclico	Mentanos	1143	1145	trans-dihidro-α-Terpineol	0,52	0
22	52	dMO	Bicíclico	Tujanos	1154	1160	Sabina cetona	0	0,14
23	53	MO	Bicíclico	Pinanos	1158	1159	trans-Pinocanfona	0	0,26
24	57	MO	Bicíclico	Pinanos	1160	1162	Pinocarvona	0,46	2,01
25	61	MO	Monociclico	Mentanos	1166	1167	ρ-Menta-1,5-dien-8-ol	1,55	3,54

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	S1c	S2c
26	63	MO	Monociclico	Mentanos	1174	1177	Terpinen-4-ol	0	1,10
27	66	Outros	Acíclico	Acilpolimalonato	1184	1184	3Z-butanoato de hexenila	0	0,81
28	70	MO	Bicíclico	Pinanos	1195	1197	Mirtenal	0,87	1,51
29	73	MO	Bicíclico	Pinanos	1204	1208	Verbenona	0,55	3,09
30	74	MO	Monociclico	Mentanos	1204	1195	ρ-Cimen-9-ol	0	2,87
31	75	MO	Monociclico	Mentanos	1215	1210	trans-Carveol	0	0,79
32	82	MO	Monociclico	Mentanos	1239	1241	Carvona	0	0,56
33	83	MO	Monociclico	Mentanos	1238	1238	Cuminal	0	0,40
34	94	MO	Monociclico	Mentanos	1298	1299	Carvacrol	0	0,23
35	102	SH	Policiclico	Sativanos	1369	1368	Ciclosativeno	0,74	0
36	105	SH	Triciclico	Copaenos	1374	1374	α-Copaeno	0,50	0
37	113	Outros	Acíclico	Acilpolimalonato	1408	1408	Dodecanal	0	0,36
38	115	SH	Bicíclico	Cariofilanos	1417	1418	E-Cariofileno	0	0,47
39	116	dSO	Bicíclico	Ciclofarneseno	1424	1431	Acetato de Nopila	0	0,44
40	117	dSO	Monociclico	Ciclofarneseno	1428	1424	E-α-lonona	0	0,97
41	126	SH	Monociclico	Ciclofarneseno	1443	1438	cis-Limoneno prenila	0	0,27
42	131	dSO	Acíclico	Bisabolanos	1453	1453	Geranil acetona	0	0,39
43	141	SH	Bicíclico	Cadinanos	1475	1472	trans-Cadina-1(6),4-dieno	0,38	0
44	146	SH	Monociclico	Bisabolanos	1479	1473	α-Curcumeno	0	0,32
45	155	SH	Bicíclico	Eudesmano	1489	1486	β-Selineno	6,66	0,19
46	164	SH	Bicíclico	Daucano	1500	1499	Isodauceno	0	0,31
47	175	Outros	Monociclico	Ácido benzóico	1510	1505	Propanoato de anisila	0	0,38
48	176	SH	Bicíclico	Cadinanos	1511	1512	δ-Amorfeno	0	0,63
49	180	SH	Bicíclico	Eremofilanos	1517	1520	Nootkateno	0	1,13
50	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	2,75	0
			1	I .	1	1	1		

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	S1c	S2c
51	186	SH	Bicíclico	Cadinanos	1528	1526	cis-Calameneno	1,15	0
52	197	SH	Bicíclico	Cadinanos	1544	1542	α-Calacoreno	4,84	0
53	209	SH	Bicíclico	Cadinanos	1564	1563	β-Calacoreno	0,35	0
54	217	SO	Triciclico	Aromadendranos	1577	1574	Espatulenol	0,57	1,34
55	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	0,60	0
56	220	SO	Bicíclico	Spirosesquiterpenoides	1586	1588	Gleenol	0,52	0
57	221	SO	Triciclico	Copaenos	1590	1598	β-copaen-4-α-ol	0	0,94
58	226	SO	Triciclico	Thujopsanos	1595	1588	cis-dihidro-Mayurona	0	1,58
59	230	SO	Bicíclico	Guaianos	1600	1604	Guaiol	0,84	0,66
60	231	SO	Bicíclico	Eudesmano	1600	1605	Rosifoliol	3,77	0
61	232	SO	Monociclico	Bisabolanos	1601	1591	1,3,5-Bisabolatrien-7-ol	0	0,88
62	246	SO	Bicíclico	Eudesmano	1622	1620	10-epi-γ-Eudesmol	14,20	0
63	249	SO	Bicíclico	Cadinanos	1627	1627	1-epi-Cubenol	4,24	0
64	250	SO	Bicíclico	Eremofilanos	1629	1632	Eremoligenol	2,66	0
65	251	SO	Bicíclico	Cadinanos	1630	1624	Muurola-4-10(14)-dien-1-β-ol	0	0,70
66	257	SO	Policiclico	Aromadendranos	1639	1632	allo-epóxido de Aromadendreno	0	3,57
67	258	SO	Bicíclico	Acoranos	1640	1643	Hinesol	1,85	0
68	260	SO	Triciclico	Thujopsanos	1641	1634	3-iso-Tujopsanona	0	0,44
69	261	SO	Triciclico	Daucano	1641	1641	Daucol	0	2,64
70	263	SO	Triciclico	Cedrano	1643	1648	2-epi-β-Cedren-3-ona	0	0,16
71	268	SO	Bicíclico	Eudesmano	1649	1649	β-Eudesmol	7,45	0
72	272	SO	Bicíclico	Guaianos	1651	1658	Pogostol	0	0,94
73	276	SO	Bicíclico	Eudesmano	1658	1660	neo-Intermedeol	0	0,30
74	279	SO	Bicíclico	Eudesmano	1665	1664	Intermedeol	0	0,65
75	282	SO	Triciclico	Zizaano	1668	1669	epi-Zizanona	0	0,88

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	S1c	S2c
76	284	SO	Bicíclico	Guaianos	1670	1668	Bulnesol	1,66	0
77	286	SO	Triciclico	α-Santalano	1674	1672	Z-α-Santalol	0	0,52
78	288	SO	Triciclico	Eudesmano	1676	1676	Mustakona	5,57	0
79	293	SO	Monociclico	Germacranos	1685	1685	Germacra-4(15),5,10(14)-trien-1-α-ol	0	2,78
80	294	SO	Bicíclico	Eudesmano	1687	1689	Eudesma-4(15),7-dien-1β-ol	0	1,95
81	297	SO	Acíclico	Farnesilanos	1696	1703	Tiglato de geranila	0	0,46
82	298	SO	Triciclico	Zizaano	1697	1691	Zizanal	0	0,22
83	301	SO	Bicíclico	Eudesmano	1700	1693	Eudesm-7(11)-en-4-ol	0	0,79
84	303	dSO	Bicíclico	Cadinanos	1702	1709	10-nor-Calamenen-10-ona	0,77	0
85	305	SO	Monociclico	Humulanos	1713	1711	14-hidroxi-α-Humuleno	0	4,45
86	314	SO	Monociclico	Humulanos	1732	1730	Zerumbona	0	0,50
87	318	SO	Bicíclico	Eremofilanos	1734	1733	Eremofilona	0	1,67
88	320	SO	Monociclico	Bisabolanos	1748	1750	6S,7R-Bisabolona	0,39	0
89	324	SO	Bicíclico	Eudesmano	1765	1768	β-Costol	0	0,19
90	325	dSO	Bicíclico	Cedrano	1767	1764	Acetato de cedrila	14,94	0
91	329	dSO	Bicíclico	Eudesmano	1792	1788	β-Acetato de eudesmol	6,05	0
92	330	dSO	Monociclico	Bisabolanos	1798	1799	α-Acetato de bisabolol	1,21	0
		I		Total de Picos Identi	ificados (%	5)		92,43	70,03
				Total de Picos Não Ide	ntificados	(%)		7,57	29,97
				derivado de monote	rpeno oxige	nado	dMO	0	0,14
Tota	al de grupos	terpênicos p	or amostra	derivado de sesquiterp	eno não ox	igenado	dSH	0	1,55
				derivado de sesquiterpeno oxigenado			dSO	22,97	1,8
				monoterpeno não oxigenado			MH	2,15	6,72
				monoterpeno	oxigenado		MO	5,62	24,16
							I .	1	

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	S1c	S2c
				outi	ros		Outros	0	3,13
				sesquiterpeno não oxigenado			SH	17,37	3,32
				sesquiterpen	o oxigenado)	SO	44,32	29,21
							Acíclico	0	3,51
							Monociclico	4,22	27,7
		Total de e	estruturas terpêni	icas/Vias de ciclização			Bicíclico	80,83	26,53
			,	•			Triciclico	6,64	8,72
							Policiclico	0,74	3,57
								,	

4.2.11 Myrcia sphaerocarpa (Myrcia minutiflora) – (Código – E1s)

Na análise do OE de *M. sphaerocarpa* também denominada de *M. multiflora* constatou-se a presença dos seguintes majoritários: Neral (8,13%), Geranial (11,78%), E-Cariofileno (20,39%), α-*trans*-Bergamoteno (6,14%), α-Humuleno (8,16%) e E-β-Farneseno (10,55%). Apesar de classificadas em gêneros, aparentemente distintos, a espécie mantém uma correlação com *Calyptranthes spruceana*, as duas são as únicas que apresentam em suas composições os monoterpenos Neral e Geranial, o que poderia ser justificado pelo ambiente em que estão inseridas, tendo em vista que ambas foram coletadas na Embrapa. A espécie apresenta como grupos terpênicos característicos, compostos acíclicos (37,48%), monocíclicos (14,55%) e bicíclicos (41,97%). As principais vias de ciclização inclui a dos farnesilanos (11,98%), geranilanos (20,61%), humulanos (8,16%) e cariofilanos (21,36%).

Figura 19- árvoreta jovem, ramo com folhas e inflorescência e gotículas de óleo essencial na parede do Clevenger extraídas da espécie M.sphaerocarpa

Fonte: o autor

Tabela 15- Componentes caracterizados de *M. sphaerocarpa*, com seus respectivos índices aritméticos e percentuais de área.

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	E1s
1	5	MH	Bicíclico	Pinanos	932	932	α-Pineno	0,94
2	12	MH	Bicíclico	Tujanos	969	971	Sabineno	1,35
3	13	MH	Bicíclico	Pinanos	974	976	β-Pineno	0,11
4	21	MH	Monociclico	Mentanos	1020	1023	p-Cimeno	0,16
5	23	MH	Monociclico	Mentanos	1024	1028	Limoneno	0,93
6	27	MH	Monociclico	Mentanos	1054	1059	γ-Terpineno	0,17
7	34	MO	Acíclico	Mircanos	1095	1095	Linalol	0,56
8	56	MO	Acíclico	Geranilanos	1160	1161	Z-Isocitral	0,16
9	61	MO	Monociclico	Mentanos	1166	1167	ρ-Menta-1,5-dien-8-ol	0,16
10	63	MO	Monociclico	Mentanos	1174	1177	Terpinen-4-ol	0,32
11	64	MO	Acíclico	Geranilanos	1177	1178	E-Isocitral	0,54
12	67	MO	Monociclico	Mentanos	1186	1188	α-Terpineol	0,61
13	81	МО	Acíclico	Geranilanos	1235	1236	Neral	8,13
14	86	MO	Acíclico	Geranilanos	1264	1265	Geranial	11,78
15	104	SH	Triciclico	Copaenos	1373	1373	α-Ylangeno	0,26
16	115	SH	Bicíclico	Cariofilanos	1417	1418	E-Cariofileno	20,39
17	120	SH	Bicíclico	Ciclofarneseno	1432	1433	α-trans-Bergamoteno	6,14
18	122	SH	Bicíclico	Guaianos	1437	1437	α-Guaieno	0,23
19	130	SH	Monociclico	Humulanos	1452	1452	α-Humuleno	8,16
20	132	SH	Acíclico	Farnesilanos	1454	1454	E-β-Farneseno	10,55
21	133	SH	Bicíclico	β-Santalanos	1457	1458	β-Santaleno	1,85
22	142	SH	Bicíclico	Guaianos	1475	1473	γ-Gurjuneno	0,37
23	145	SH	Bicíclico	Cadinanos	1478	1478	γ-Muuroleno	0,92

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	E1s
24	150	SH	Bicíclico	Himachalanos	1481	1484	γ-Himachaleno	1,08
25	155	SH	Bicíclico	Eudesmano	1489	1486	β-Selineno	0,43
26	163	SH	Bicíclico	Eudesmano	1498	1493	α-Selineno	1,91
27	164	SH	Bicíclico	Daucano	1500	1499	Isodauceno	1,24
28	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	0,33
29	170	SH	Monociclico	Bisabolanos	1505	1506	β-Bisaboleno	2,11
30	171	SH	Bicíclico	Cuparanos	1505	1508	α-Cupreneno	0,30
31	178	SH	Monociclico	Bisabolanos	1514	1512	Z-γ-Bisaboleno	0,69
32	184	SH	Bicíclico	Cadinanos	1522	1522	δ-Cadineno	1,31
33	187	SH	Monociclico	Bisabolanos	1529	1529	E-γ-Bisaboleno	0,25
34	205	SO	Acíclico	Farnesilanos	1561	1561	E-Nerolidol	0,33
35	215	dSO	Acíclico	Farnesilanos	1571	1575	Z-dihidro-Apofarnesol	0,44
36	216	SO	Bicíclico	Cariofilanos	1570	1576	Alcool cariofilenilico	0,35
37	218	SO	Bicíclico	Cariofilanos	1582	1580	Óxido de cariofileno	0,45
38	238	SO	Bicíclico	Humulanos	1608	1606	Epóxido Humuleno II	0,57
39	243	SO	Bicíclico	Eudesmano	1618	1614	Junenol	1,11
40	273	SO	Bicíclico	Cadinanos	1652	1652	α-Cadinol	0,42
41	280	SO	Bicíclico	Cariofilanos	1666	1654	14-hidroxi-(Z)-cariofileno	0,17
42	283	SO	Monociclico	Bisabolanos	1670	1667	epi-β-Bisabolol	0,21
43	290	SO	Monociclico	Bisabolanos	1683	1681	epi-α-Bisabolol	0,37
44	292	SO	Monociclico	Bisabolanos	1685	1683	α-Bisabolol	0,41
45	307	SO	Acíclico	Farnesilanos	1714	1717	2E,6Z-Farnesol	0,66
46	332	Outros	Acíclico	Acilpolimalonato	1874	1874	n-Hexadecanol	2,06
47	333	DO	Acíclico	Fitanos	1942	1943	Fitol	0,18

	335 336	DO	A . / . P					
49	336		Acíclico	Fitanos	2058	2066	6E-10E-Pseudo fitol	0,11
		DO	Acíclico	Fitanos	2114	2107	Z-Fitol	1,98
			Tota	l de Picos Identificados	(%)			94,26
			Total	le Picos Não Identificado	os (%)			5,74
				diterpeno	oxigenado		DO	2,27
				derivado de sesqui	iterpeno oxige	nado	dSO	0,44
				monoterpeno i	não oxigenado		MH	3,66
	Total de	grupos terpênicos por a	mostra	monoterpen	o oxigenado		MO	22,26
				out	ros		Outros	2,06
				sesquiterpeno	não oxigenado)	SH	58,52
				sesquiterper	no oxigenado		SO	5,05
							Acíclico	37,48
		Total do os	truturas ternênica	s/Vias de ciclização			Monociclico	14,55
		i Otal de es	Bicíclico	41,97				
							Triciclico	0,26

4.2.12 Myrcia caudata (Marlierea caudata) – (Código - MCc)

Não há estudos anteriores sobre o OE de Marlierea caudata, os dados aqui descritos estão sendo feitos pela primeira vez. A análise do OE detectou a presença dos sequintes majoritários: E-Cariofileno (14,83%), Germacreno D (21,13%), Biciclogermacreno (6,23%) e δ-Cadineno (5,71%). A espécie apresenta 78,16% % de sesquiterpenos não oxigenados, esse total quando somado aos sesquiterpenos oxigenados chega a 99,70%, tais substâncias são divididas principalmente em estruturas monocíclicas (28,95%) e bicíclicas (58.3%), essas estruturas são representadas majoritariamente por compostos formados pela via de ciclização dos cadinanos (25,02%), germacranos (21,31%) e cariofilanos (16,63%). Analisando os dados de correlação observamos que a espécie apresenta coeficientes de correlação com 03 espécies de Myrcia spp coletadas no mesmo período. São elas: APc (0,5405), AMc (0,7570) e MIc (0,5513). Salienta-se que a referida espécie foi reclassificada como pertencente ao grande gênero Myrcia s.l, sendo já denominada de Myrcia caudata e a análise dos dados químicos indicam uma certa semelhança química com o gênero Myrcia D.C.

Figura 20 - Arvoreta, tronco e óleo essencial de Marlierea caudata

Fonte: o autor

Tabela 16- Componentes caracterizados do óleo essencial de Marlierea caudata e seus respectivos índices aritméticos e teores percentuais

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	МСс
1	96	MO	Acíclico	Mircanos	1337	1335	Propanoato de linalol	0,30
2	97	SH	Monociclico	Bisabolanos	1338	1337	δ-Elemeno	3,84
3	98	SH	Triciclico	Cadinanos	1351	1348	α-Cubebeno	0,29
4	104	SH	Triciclico	Copaenos	1375	1373	α-Ylangeno	0,33
5	105	SH	Triciclico	Copaenos	1376	1374	α-Copaeno	1,59
6	109	SH	Triciclico	Bourbonanos	1388	1383	β-Bourboneno	0,18
7	110	SH	Monociclico	Elemanos	1390	1390	β-Elemeno	2,18
8	114	SH	Triciclico	Africananos	1409	1408	α-Gurjuneno	0,20
9	115	SH	Bicíclico	Cariofilanos	1419	1418	E-Cariofileno	14,83
10	118	SH	Triciclico	Copaenos	1432	1430	β-Copaeno	2,09
11	119	SH	Triciclico	Aristolanos	1433	1432	β-Gurjuneno	0,72
12	123	SH	Triciclico	Aromadendranos	1441	1441	Aromadendreno	0,20
13	125	SH	Bicíclico	Guaianos	1444	1444	6,9-Guaiadieno	0,14
14	130	SH	Monociclico	Humulanos	1454	1452	α-Humuleno	1,62
15	134	SH	Triciclico	Aromadendranos	1460	1461	allo-Aromadendreno	0,47
16	137	SH	Bicíclico	Cadinanos	1466	1465	cis-Muurola-4(14),5-dieno	0,17
17	141	SH	Bicíclico	Cadinanos	1476	1472	trans-Cadina-1(6),4-dieno	0,42
18	142	SH	Bicíclico	Guaianos	1477	1473	γ-Gurjuneno	2,48
19	148	SH	Monociclico	Germacranos	1481	1481	Germacreno D	21,13
20	151	SH	Bicíclico	Cadinanos	1484	1482	α-Amorfeno	0,30
21	155	SH	Bicíclico	Eudesmano	1490	1486	β-Selineno	1,57
22	156	SH	Bicíclico	Eudesmano	1492	1487	δ-Selineno	0,62
23	159	SH	Bicíclico	Cadinanos	1495	1492	γ-Amorfeno	2,19

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	МСс
24	165	SH	Bicíclico	Biciclogermacranos	1500	1497	Biciclogermacreno	6,23
25	166	SH	Bicíclico	Cadinanos	1500	1500	α-Muuroleno	1,86
26	176	SH	Bicíclico	Cadinanos	1512	1512	δ-Amorfeno	0,95
27	177	SH	Bicíclico	Cadinanos	1513	1513	γ-Cadineno	1,45
28	184	SH	Bicíclico	Cadinanos	1523	1522	δ-Cadineno	5,71
29	185	SH	Bicíclico	Cadinanos	1529	1527	Zonareno	0,34
30	191	SH	Bicíclico	Cadinanos	1534	1532	trans-Cadina-1,4-dieno	0,43
31	194	SH	Bicíclico	Cadinanos	1537	1536	α-Cadineno	0,52
32	202	SH	Bicíclico	Daucano	1557	1556	trans-Dauca-4(11),7-dieno	2,93
33	203	SH	Monociclico	Germacranos	1561	1557	Germacreno B	0,18
34	211	SO	Triciclico	Aromadendranos	1568	1566	Palustrol	0,23
35	217	SO	Triciclico	Aromadendranos	1578	1574	Espatulenol	2,26
36	218	SO	Bicíclico	Cariofilanos	1583	1580	Óxido de cariofileno	1,80
37	219	SO	Triciclico	Thujopsanos	1587	1580	Tujopsan-2-α-ol	1,89
38	222	SO	Triciclico	Aromadendranos	1590	1586	Globulol	1,43
39	223	SO	Triciclico	Aromadendranos	1592	1595	Viridiflorol	0,16
40	227	SO	Triciclico	Cadinanos	1595	1594	Cubeban-11-ol	0,41
41	231	SO	Bicíclico	Eudesmano	1600	1605	Rosifoliol	0,27
42	243	SO	Bicíclico	Eudesmano	1619	1614	Junenol	0,85
43	246	SO	Bicíclico	Eudesmano	1623	1620	10-epi-γ-Eudesmol	0,72
44	251	SO	Bicíclico	Cadinanos	1631	1624	Muurola-4-10(14)-dien-1-β-ol	1,67
45	252	SO	Bicíclico	Eudesmano	1632	1627	γ-Eudesmol	0,52
46	256	SO	Bicíclico	Cadinanos	1640	1635	epi-α-Cadinol	1,14
47	259	SO	Bicíclico	Cadinanos	1642	1640	epi-α-Muurolol	2,32

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	МСс
48	265	SO	Bicíclico	Cadinanos	1646	1644	α-Muurolol	0,89
49	267	SO	Bicíclico	Guaianos	1649	1649	cis-Guaia-3,9-dien-11-ol	0,15
50	273	SO	Bicíclico	Cadinanos	1654	1652	α-Cadinol	4,66
51	275	SO	Bicíclico	Eudesmano	1659	1655	Selin-11-en-4-α-ol	0,17
				Total de Picos Identifica	dos (%)			100,00
				Total de Picos Não Identifi	icados (%)			0,00
				monoterpend	o oxigenado		MO	0,3
	Total de g	rupos terpênicos μ	por amostra	monoterpeno sesquiterpeno			MO SH	0,3 78,16
	Total de g	rupos terpênicos p	oor amostra	•	não oxigenado			
	Total de g	rupos terpênicos p	oor amostra	sesquiterpeno i	não oxigenado		SH	78,16
	Total de g	rupos terpênicos p	oor amostra	sesquiterpeno i	não oxigenado		SH	78,16
	Total de g			sesquiterpeno sesquiterpen	não oxigenado		SH SO	78,16 21,54
	Total de g			sesquiterpeno i	não oxigenado		SH SO Acíclico	78,16 21,54 0,3

4.2.13 Calyptranthes spruceana – (Código – CS1s)

O óleo essencial de *C. spruceana* se mostrou rico em: α-Pineno (2,24%), β-Pineno (3,58%), Neral (32,88%) e Geranial (41.78^a%). Estudos indicam que há dois quimiotipos da referida espécie, o tipo A apresentará um OE rico em: Limoneno (34,4%), Perialdeído (19,9%) e Geranial (13,6%) e o tipo B rico em: α-Pineno (15,2%), β-Pineno (34,4%), Geranial (19,3%) e Neral (12,5%) (SILVA et al., 1984). Portanto, nosso espécime pode ser classificado como pertencente ao grupo B. Correa et all (1972), analisando o óleo essencial de um indíviduo coletado no Jardim Botânico do Rio de Janeiro também o classifica como pertencente ao grupo B. As estruturas terpênicas predominantes são monoterpenos oxigenados (89,47%), cujo grupo de moléculas se apresentam na forma acíclica (85.65%) através da via dos geranilanos (84,66%). A espécie também esta sendo botanicamente inserida no grande gênero *Myrcia* s.l, contudo, dados do coeficiente de correlação indicam somente com o indíviduo E1s (0,5048), a espécie é muito distinta das demais coletadas no estudo.

Figura 21- Detalhe do galho infértil, arvoreta e óleo essencial de Calyptranthes spruceana

Fonte: o autor

Tabela 17- Compoenntes caracterizados de C. spruceana com seus respectivos índices aritméticos e percentuais de área

N.	Código	Grupo terpênico	Estrutura	Biogênese	IA	IAC	COMPONENTES	CSs
1	5	MH	Bicíclico	Pinanos	932	932	α-Pineno	2,24
2	13	MH	Bicíclico	Pinanos	974	976	β-Pineno	3,58
3	14	Outros	Acíclico	Acilpolimalonato	981	980	6-metil-5-hepten-2-ona	0,45
4	17	MO	Monociclico	Mentanos	988	988	Dehidro-1,8-Cineole	0,52
5	18	MH	Monociclico	Mentanos	1002	1002	α-Felandreno	0,21
6	19	MH	Monociclico	Mentanos	1003	1003	ρ-Menta-1(7)-8-dieno	0,52
7	28	FP	Monociclico	Ácido cinâmico	1059	1060	Acetofenona	0,17
8	34	MO	Acíclico	Mircanos	1095	1095	Linalol	0,54
9	41	MO	Monociclico	Mentanos	1122	1120	α-Canfolenal	0,17
10	46	MO	Acíclico	Geranilanos	1140	1143	exo-Isocitral	0,57
11	56	MO	Acíclico	Geranilanos	1160	1161	Z-Isocitral	1,95
12	61	MO	Monociclico	Mentanos	1166	1167	ρ-Menta-1,5-dien-8-ol	0,62
13	63	MO	Monociclico	Mentanos	1174	1177	Terpinen-4-ol	0,91
14	64	MO	Acíclico	Geranilanos	1177	1178	<i>E</i> -Isocitral	3,06
15	67	MO	Monociclico	Mentanos	1186	1188	α-Terpineol	1,17
16	69	MO	Bicíclico	Pinanos	1194	1190	Mirtenol	0,49
17	71	MO	Monociclico	Mentanos	1195	1196	cis-Piperitol	0,12
18	75	MO	Monociclico	Mentanos	1215	1210	trans-Carveol	0,27
19	77	MO	Acíclico	Geranilanos	1227	1224	Nerol	2,13
20	81	MO	Acíclico	Geranilanos	1235	1236	Neral	32,88
21	84	MO	Acíclico	Geranilanos	1249	1250	Geraniol	2,29
22	86	MO	Acíclico	Geranilanos	1264	1265	Geranial	41,78
23	115	SH	Bicíclico	Cariofilanos	1417	1418	<i>E</i> -Cariofileno	2,06

Bicíclico Monociclico Bicíclico Bicíclico	Ciclofarneseno Humulanos Eudesmano	1432 1452 1489	1433 1452	α-trans-Bergamoteno α-Humuleno	0,26						
Bicíclico Bicíclico	Eudesmano		1452	α-Humuleno	0.40						
Bicíclico		1489			0,16						
	Cariofilanos	1486	β-Selineno	0,12							
7											
	otal de Picos Identificado	s (%)	l		99,63						
Tot	al de Picos Não Identifica	dos (%)			0,37						
fenilpropanóides FP											
	monoterpenos i	não oxigena	ados	MH	6,55						
os por amostra	monoterpeno	s oxigenado	os	MO	89,47						
	out	ros		Outros	0,45						
	sesquiterpenos	não oxigena	ados	SH	2,6						
	sesquiterpend	s oxigenad	os	SO	0,39						
				Acíclico	85,65						
l de estruturas terpênicas∕\	'ias de ciclização			Monociclico	4,84						
				Bicíclico	9,14						
ιa	tai de estruturas terpenicas/v	tal de estruturas terpênicas/Vias de ciclização	tai de estruturas terpenicas/vias de ciciização	tal de estruturas terpenicas/vias de ciclização	Monocicico						

4.3 Variabilidade química dos óleos essenciais de *Myrcia* spp. ocorrentes em ecossistema de Terra-Firme (Amazônia)

Realizou-se as coletas de *Myrcia* spp. em dois períodos distintos do ano (inverno e verão amazônicos) visando avaliar a variabilidade química e as relações homotípicas e heterotípicas dessas espécies. Sabe-se que as variáveis mais influentes na qualidade de OE incluem temperatura, número de horas de luz do sol, freqüência e magnitude das precipitações (DE CERQUEIRA et al., 2007). A temperatura tem um efeito significativo sobre o rendimento e a qualidade dos óleos essenciais. A relação entre temperatura e umidade tem uma importância adicional nesses parâmetros. A elevada umidade, associada a temperaturas elevadas, produz condições favoráveis à proliferação de parasitas e insetos, isso leva as plantas a aumentar a produção de óleo essencial para sua própria proteção (KIAERSK et al., 2010) (BASER; BUCHBAUER, 2010).

Das 13 espécies estudadas, foi possivel avaliar sete pares em épocas distintas do ano, constatou-se que os sete pares apresentam 242 componentes, 125 componentes desses, são comuns em ambos os períodos, contudo, 76 componentes, são exclusivos do período seco e 41 são exclusivos do período chuvoso, o que nos sugere uma maior variabilidade química para o período seco.

Ao analisarmos os dados da tabela 18, constata-se que as médias observadas apresentam diferença significativa, embora a variância seja maior para o período seco. Isso indica uma maior dispersão dos dados em relação a média, quando comparado ao período chuvoso. O que pode indicar uma maior uniformidade no número de componentes para o período chuvoso.

Tabela 18- Variabilidade quanto ao número de substâncias presentes no óleo essência de Myrcia spp

Total de componentes											
Código	Seco	Chuvoso									
M1	56	55									
FA1	59	20									
F1	20	36									
MI	41	48									
AM	19	43									

AP	31	43
PA	94	66
Média	45.7	44.4
Desv. Pad.	26.54	14.50
Coef. Var.	58.06%	32.64%

4.3.1 Coeficiente de correlação de Pearson

O coeficiente de correlação é um parâmetro estatístico que representa o grau de associação entre duas variáveis, o coeficiente de correlação varia entre -1 e 1, e um alto coeficiente (valores mais próximos do extremos -1 e 1) indicam que há colineariedade entre os indivíduos, ou seja, apresentam informações redundantes ou que se sobrepõem. Por sua vez, baixos coeficientes de correção indicam que os indivíduos apresentam dados distintos entre si.

Os dados obtidos (Tabelas 19) para as amostras estudadas indicam uma elevada correlação inicialmente entre os pares FA1s – FA1c (0,9445), MIc – MIS (0,9118) e APc – APs (0,9979), uma correlação significativa para F1c – F1s (0,7395), M1c – M1s (0,7000) e PAc – Pas (0,7654). Somente o par AMc – AMs não apresentou correlação entre si, mas veio a apresentar com outras espécies, isso indica que há uma significativa homogeneidade quanto aos componentes químicos presentes no óleo essencial dessas espécies estudadas na RFAD, independente da estação climática.

Outro dado observado é que ocorre correlação entre espécies diferentes em estações climáticas diferentes, podendo ser alta como para APc – F1s (0,9338) ou medianas como para F1s – M1c (0,6404), F1c – FA1s (0,6611), MIC – F1s (0,5868), AMs – FA1c (0,6173), AMs – F1c (0,5648), AMc – MIs (0,5171), APs – M1c (0,6811), APs – F1c (0,6584), APs – Mic (0,5685), APc – M1s (0,5003) e APc – MIs (0,6068). Como tais correlações são medianas, pode-se justificar tal ocorrência pelo pequeno número de vias de biogênese comuns a todas as espécies de *Myrcia* spp estudadas dentro da RFAD e que são responsáveis em algumas situações por mais de 50% da composição dos óleos (Tabela 23 e 24).

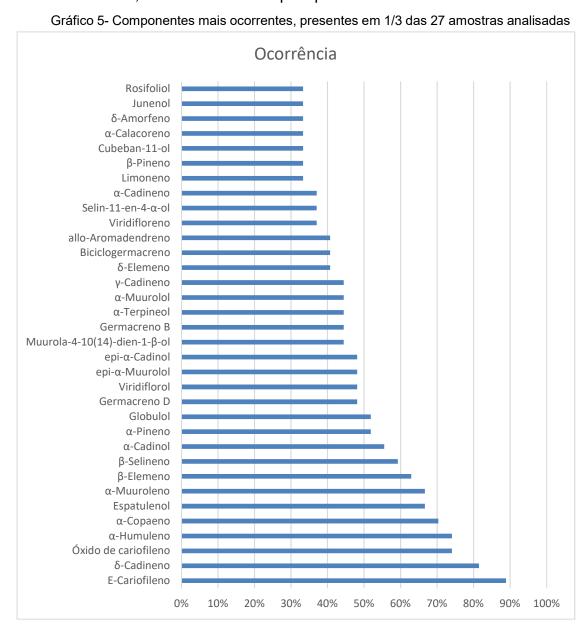
Analisando os dados das estações climáticas de forma distinta, observase para o período chuvoso, um maior número de correlações, inclusive intraespecíficas (indivíduos diferentes de uma mesma espécie), sendo classificadas como correlações medianas entre F2c – F1c (0,6510), correlações significativas entre C1c – C2c (0,7682), B1c – B2c (0,7344), M1c – M4c (0,7105) e correlação alta entre FA1c – FA2c (0,9253). Em termos de relações interespecíficas (indivíduos de diferentes espécies) observa-se correlações medianas como as observadas para MCc – MIc (0,5449), MCc – APc (0,5394), F1c – C1c (0,5749), F1c – M4c (0,5498), F1c – FA1c (0,6625), F1c – FA2c (0,6046), APc – M1c (0,6831), APc – F1c (0,6591), APc – Mic (0,5678), e correlações significativas entre MCc – AMc (0,7531), F2c – FA1c (0,8903), F2c – FA2c (0,7960) e APc – M4c (0,8376). Não foi observada correlação interespecífica para PAc ou intraespecífica para as espécies S1c e S2c. É interessante notar que AMc e M4c são indivíduos de espécies diferentes, sujeitas a clima e solo completamente diferente, tendo em vista que M4c está localizada fora da RFAD.

No período seco, não se observa correlação intraespecífica entre o par existente, mas há correlações interespecíficas medianas entre MIs – F1s (0,6289), AMs – FA1s (0,6766), E1s – F1s (0,6505), Cs – E1s (0,5018), APs – MIs (0,6079), correlação signifivativa ente E1s – Aps (0,7289) e correlação alta entre APs – F1s (0,9347).

O grande número de correlações dentro do período chuvoso pode ser justificado pela homogeneidade dos componentes dos óleos nesse período, observa-se para o período seco, uma maior diversidade quanto ao número de componentes, fato esse já discutido, mas o que se percebe é que apesar de ser comum em myrcias Neotropicais uma ampla variedade de grupos terpênicos com uma composição bem heterogênea (STEFANELLO; PASCOAL; SALVADOR, 2011), essa heterogeinedade pode ser aplicada quando consideramos um individuo, mas precisa ser avaliada quando consideramos o grupo.

Tabela 19 - Correlação de Pearson entre os 07 pares coletados em ambos os períodos climáticos

	M1s	М1с	FA1s	FA1c	F1s	F1c	MIs	MIc	AMs	АМс	APs	APc	PAs	PAc
M1s	1													
M1c	0,700041	1												
FA1s	0,036411	0,046357	1											
FA1c	-0,00581	0,010485	0,974547	1										
F1s	0,492657	0,64041	0,121937	0,106441	1									
F1c	0,337848	0,461975	0,661122	0,662434	0,739545	1								
MIs	0,394699	0,404235	0,066996	0,015183	0,629058	0,466106	1							
MIc	0,351701	0,374162	0,084773	0,037512	0,586895	0,428046	0,911883	1						
AMs	0,089571	0,109401	0,676770	0,617305	0,261039	0,564882	0,300842	0,320627	1					
AMc	0,262669	0,235135	0,179964	0,093132	0,319389	0,264277	0,517143	0,406067	0,268474	1				
APs	0,492008	0,681158	0,020558	0,008625	0,934715	0,658453	0,607964	0,568568	0,223627	0,207142	1			
APc	0,500354	0,683204	0,019327	0,008084	0,933387	0,659155	0,606891	0,567803	0,213443	0,188163	0,997927	1		
PAs	-0,05117	-0,04182	0,019839	0,04256	0,011488	0,088189	0,020434	0,051424	0,003371	0,050973	-0,02966	-0,02873	1	
PAc	-0,01319	0,009356	0,005191	0,019265	-0,00635	0,038941	0,009257	0,040564	-0,01655	0,01289	-0,02843	-0,02934	0,765419	1


Tabela 20- Coeficiente de correlação de Pearson das amostras coletadas no período chuvoso

	C1c	C2c	М1с	M4c	B1c	B2c	FA1c	FA2c	F1c	F2c	S1c	S2c	МІс	АМс	APc	PAc	МСс
C1c	1																
C2c	0,768267	1															
M1c	0,424688	0,295005	1														
M4c	0,427517	0,275752	0,710590	1													
B1c	0,038458	0,169967	0,001809	0,025641	1												
B2c	0,161198	0,380706	0,050699	0,032868	0,734461	1											
FA1c	0,146696	0,131483	0,010979	0,009225	0,225032	0,485556	1										
FA2c	0,126159	0,155136	0,013711	0,006584	0,266765	0,473904	0,925318	1									
F1c	0,574947	0,489458	0,462431	0,549821	0,165872	0,387238	0,662505	0,604613	1								
F2c	0,143689	0,064182	0,023553	0,032953	0,146896	0,387297	0,890343	0,796020	0,651069	1							
S1c	0,027366	0,020553	-0,00283	-0,02328	0,124087	-0,00632	0,004245	0,006238	-0,00247	0,047025	1						
S2c	0,029318	0,005859	-0,04731	-0,01922	-0,02551	0,004917	0,096658	0,096807	0,037266	0,065229	-0,02298	1					
MIc	0,28289	0,192812	0,374861	0,467845	0,057542	0,034035	0,037900	0,180744	0,428465	0,095881	-0,02958	-0,04685	1				
AMc	0,08226	0,163231	0,236218	0,234962	0,053256	0,04327	0,093568	0,142820	0,264939	0,220994	0,015455	-0,09401	0,406738	1			
APc	0,474698	0,333499	0,683108	0,837634	0,038869	0,048087	0,008236	0,004973	0,659192	0,026610	-0,01859	0,006693	0,567849	0,188446	1		
PAc	0,163364	0,197194	0,011061	-0,02776	-0,04155	-0,00321	0,019863	0,011942	0,040021	0,024483	0,065407	0,157535	0,041899	0,014617	-0,02879	1	
MCc	0,290109	0,271306	0,365531	0,45041	0,062743	0,070565	0,099168	0,117180	0,480530	0,194385	0,004362	-0,05209	0,544980	0,753197	0,539411	-0,03936	1

Tabela 21 - Coeficiente de correlação de Pearson das amostras coletadas no período seco

	M1s	M2s	FA1s	F1s	MIs	<i>AM</i> s	APs	PAs	E1s	CSs
M1s	1									
M2s	0,357874	1								
FA1s	0,0357	-0,00641	1							
F1s	0,492508	0,29389	0,12169	1						
MIs	0,394073	0,184753	0,066512	0,628956	1					
AMs	0,088761	0,041204	0,676635	0,260795	0,300403	1				
APs	0,492026	0,313713	0,020376	0,934717	0,607953	0,223471	1			
PAs	-0,05298	0,012443	0,019032	0,010849	0,019258	0,002369	-0,03012	1		
E1s	0,318867	0,244183	-0,00774	0,650535	0,417459	0,21544	0,728946	-0,05818	1	
CSs	-0,0131	0,049467	-0,01903	0,020998	-0,00602	-0,0132	0,028211	-0,03927	0,501812	1

Analisando todo o conjunto de dados químicos, ou seja, 27 amostras, de 20 individuos e de 13 espécies, caracterizou-se 336 componentes, cujos cromatogramas são descritos no anexo (Anexo A01 a A54). A partir desses dados pode-se constatar que os componentes mais frequentes, correspondem a 34, que perfazem um total de 1/3 desse conjunto, esses 34 componentes (Gráfico 5) chegam a representar acima de 60% do percentual de área de todo o conjunto de dados de determinadas amostras, os mesmos (Gráfico 6), quase na sua totalidade, são estruturas sesquiterpenicas.

Quando se observa o percentual desses 34 componentes nos óleos essenciais analisados, constata-se que em aproximadamente 67% das amostras, esses componentes podem corresponder de 50,7 a 96,17% do percentual de substâncias caracterizadas.

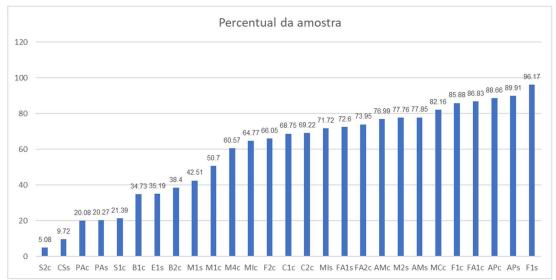


Gráfico 6- Percentual de área ocupado pelos 34 componentes mais frequentes encontrados em OE de Myrcia spp

Quanto ao período chuvoso, destaca-se a ocorrência dos seguintes componentes: (E) – Cariofileno (88%), δ – Cadineno (88%), Espatulenol (82%), α – Copaeno (71%), β – Elemeno (71%), α – Humuleno (71%), e Óxido de cariofileno (71%), sendo o Espatulenol e o β – Elemeno exclusivos desse período. Por sua vez, para o período seco destaca-se: (E) – Cariofileno (90%), α – Humuleno (80%), Óxido de cariofileno (80%), α – Copaeno (70%), β – Selineno (70%), α – Muuroleno (70%), δ – Cadineno (70%), α – Cadinol (70%), sendo que β – Selineno, α – Muuroleno e α – Cadinol exclusivos para esse período.

Como se nota o (*E*) – Cariofileno se mantém como o majoritário de ambos os períodos e como característico do gênero *Myrcia*. Em termos de ecologia química, o *E* – Cariofileno pode ter diferentes funções na planta, desde sinalizador de defesa contra o ataque de determinadas larvas, atração de polinizadores e protetor dos órgãos do sistema reprodutivo contra danos oxidativos(KAPPERS; DICKE; BOUWMEESTER, 2008).

Os demais componentes como δ – Cadineno e seus derivados se apresentam como protetores constitutivos e indutivos contra pragas e doenças

(YANG et al., 2012) ou na atração de polinizadores como no caso de α-copaeno (VICTÓRIO et al., 2018)

Croteau (1986) apud Lopez et al (2008) relatam que o rendimento e a composição do óleo essencial devem ser observados dentro em um contexto regulatório que envolve um equilíbrio dinâmico entre processos biossintéticos e catabólicos (LÓPEZ; BONZANI; ZYGADLO, 2008). Victorio et al (2018), estudando Neomitranthes obscura (DC.) N. Silveira (Myrtaceae), relatam que diferentes perfis químicos qualitativos e quantitativos dos óleos essenciais variam de acordo com a área onde as plantas foram coletadas na mesma estação, e que a diferença entre clima úmido e seco deve ser considerado. Além disso, a diferença entre clima úmido e seco afeta a via terpenóide, seus resultados mostram a influência das condições ambientais, tanto climáticas quanto topográficas na variabilidade da composição do óleo essencial . Segundo o referido autor, o aumento da pluviosidade eleva o teor da composição do óleo mais do que a temperatura, o que também pode ser evidenciado nas espécies de Myrcia spp. ocorrentes na RFAD. Embora, os óleos do período chuvoso apresentem um teor maior de determinados constituintes, os óleos do período seco possuem aparentemente uma maior variabilidade quanto a sua composição, o que poderia ser justificado pelo maior número de interações planta-planta e planta-ambiente durante esse período.

4.4 Classificação quanto aos quimiotipos de óleos essências de *Mycia* spp.

Os dados abaixo descrevem o percentual das substâncias de acordo com a classificação dos diferentes tipos de classes químicas presentes nos 27 óleos essências analisados. As 336 substâncias foram classificadas em: monoterpeno não oxigenados (MH), derivados de monoterpeno não oxigenados (MO), derivados de monoterpenos oxigenados (MO), derivados de monoterpenos oxigenados (dMO), sesquiterpenos não oxigenados (SH), derivados de sesquiterpenos não oxigenados (dSH), sesquiterpenos oxigenados (SO), derivados de sesquiterpenos oxigenados (dSO), diterpenos oxigenados (DO), fenilpropanoides (FP) e outros (hidrocarbonetos de cadeia aberta).

Tabela 22- Grupos terpenicos presentes nas 27 amostras de Myrcia spp. coletadas

Grupos	Mínimo	Máximo	Média
МН	0,00	47,26	5,08
МО	0,00	89,47	7,67
dMO	0,00	1,27	0,08
SH	2,60	97,15	42,73
dSH	0,00	1,55	0,06
so	0,39	84,52	36,98
dSO	0,00	22,97	1,59
DO	0,00	2,27	0,15
FP	0,00	0,45	0,05
Outros	0,00	7,45	0,84

Quando analisamos todos os dados coletados, verifica-se que há prevalência de sesquiterpenoides, o que é comum para *Myrcia* spp, contudo, na tabela 22, há um dado incomum para MO (89,47%) o que se justifica quando consideramos que esse grupo é presente, em alta concentração, somente em *Calyptranthes spruceana*, os valores das médias indicam que os grupos característicos para as Myrcias coletadas são SH (47,73%) e SO (36,98%).

A tabela 23 indica os dados percentuais de grupos terpênicos presentes nas espécies coletadas no período seco do ano. A análise desses valores torna visível a predominância de estruturas sesquiterpenicas não oxigenadas e oxigenadas, com percentuais variando entre 2,6 – 97,15% para SH e 0,39 – 67,15% para SO. É possível notar também que os dados dos indivíduos M1s e M2s são um tanto contrastantes, pois M1s e M2s apesar de terem sido coletados em uma mesma época e em um mesmo ambiente, mostram-se como quimiotipos facilmente distinguíveis. Outro dado a ser observado é o teor de MO para E1s e CSs, o que pode ser explicado por questões ambientais, essas são amostras coletadas na EMBRAPA, ressalta-se também que CS é pertencente ao gênero *Calyptranthes* e que está sendo incluída dentro do grande gênero *Myrcia* s.l, mas a sua química é bem distinta em relação a química do gênero *Myrcia* D.C.

Tabela 23 – Percentual de grupos sesquiterpenicos presentes em Myrcia spp. característicos do período seco

Grupos	M2s	M1s	FA1s	F1s	MIs	AMs	APs	Pas	E1s	CSs
MH	<mark>47,26</mark>	1,39	0	0	0	0	0	9,87	3,66	6,55
MO	13,3	6,74	0,41	0	0	0	0	13,19	<mark>22,26</mark>	<mark>89,47</mark>
dMO	0	0	0	0	0	0	0	0,55	0	0
SH	<mark>28,79</mark>	<mark>46,12</mark>	<mark>24,11</mark>	<mark>80,26</mark>	67,21	<mark>48,86</mark>	<mark>97,15</mark>	14,92	<mark>58,52</mark>	2,6
SO	9,16	31,71	<mark>67,15</mark>	<mark>19,25</mark>	30,86	<mark>48,08</mark>	2,83	<mark>47,98</mark>	5,05	0,39
dSO	0	2,1	0,52	0	0	0	0	3,79	0,44	0
DO	0	0	0,11	0	0	0	0	0	2,27	0
FP	0	0,45	0,24	0	0,24	0	0	0,37	0	0,17
Outros	1,49	7,45	0,12	0	0	0	0	0,63	2,06	0,45
Total Geral	100	95,96	92,66	99,51	98,31	96,94	99,98	91,3	94,26	99,63

O período chuvoso indica uma predominância de sesquiterpenos, dados entre indivíduos da mesma espécie, como observado para C1c, C2c e B1c, B2c. Essa observação reflete uma elevada relação intraespecífica, pois ambos os pares são ricos em sesquiterpenos não oxigenados e oxigenados. Observase também para o período chuvoso uma variação no teor, aparentemente o volume pluviométrico contribui para isso (VICTÓRIO et al., 2018). Diferenças na composição, ressaltadas pela localização geográfica da espécie, também são observadas, pois a espécie *M. magnoliifolia* (M4c) foi coletada em um sítio fora da RFAD e possui um teor diferente de terpenoides em relação a M1c.

Tabela 24- Percentual de grupos sesquiterpenicos presentes em Myrcia spp característicos do período chuvoso

Grupo	C1c	C2c	M1c	M4c	B1c	B2c	FA1c	FA2c
МН	22,15	10,21	3,56	3,68	0	0	0	0,17
МО	1,33	1,94	3,41	0,12	0,63	0,8	0,68	0
dMO	0	0,29	0	0	0	0	0	0
SH	<mark>35,45</mark>	23,37	<mark>71,68</mark>	90,64	13,6	7,45	16,7	<mark>29,49</mark>
SO	<mark>36,62</mark>	<mark>60,6</mark>	13,82	1,86	<mark>84,52</mark>	<mark>84,18</mark>	<mark>77,49</mark>	<mark>57,61</mark>
dSO	0,49	0,48	1,99	0	0	0,58	0	0
DO	0	0	0	1,54	0	0	0	0
Outros	0	0	4,34	0,48	0,86	1,11	0	0,22
Total Geral	96,04	96,89	98,8	98,32	99,61	94,12	94,87	87,49

É possível distinguir a ocorrência de quimiotipos dentro do grupo, como por exemplo S1c e S2c, amostras coletadas no mesmo dia, em uma mesma área e em uma mesma estação climática, mais com uma química distinta. Observa-se também as amostras AMc e APc, anteriormente classificadas como

iguais, são visivelmente diferentes. APc é quase na sua totalidade formada por SH, enquanto AMc tem uma relação aproximada de 2:1 entre SH e SO. Por sua vez, os dados da amostra MCc também se mostram interessantes, pois apesar de pertencer ao gênero *Marlierea*, que atualmente está sendo incluso no grande gênero *Myrcia* s.l, essa apresenta uma química muito similar as espécies do gênero *Myrcia* D.C..

Os demais indivíduos confirmam os vários estudos que afirmam que o OE de Myrtaceae são ricos em sesquiterpenos (ZOGHBI et al., 2003b), (STEFANELLO et al., 2010).

Tabela 25 - Percentual de grupos sesquiterpenicos presentes em Myrcia spp característicos do período chuvoso (cont.)

Grupo	F1c	F2c	S1c	S2c	MIC	AMc	APc	PAc	MCc
МН	0,63	1,2	2,15	6,72	0	0	0	17,85	0
МО	0,63	0	5,62	<mark>24,16</mark>	0	0	0	<mark>22,21</mark>	0,3
dMO	0	0	0	0,14	0	0	0	1,27	0
SH	37,45	<mark>23,73</mark>	17,37	3,32	<mark>65,72</mark>	<mark>65,46</mark>	<mark>91,16</mark>	14,49	<mark>78,16</mark>
dSH	0	0	0	1,55	0	0	0	0	0
so	<mark>53,86</mark>	<mark>65,78</mark>	44,32	29,21	32,18	33,47	8	30,81	<mark>21,54</mark>
dSO	0	1,19	22,97	1,8	0	0	0	6,67	0
Outros	0	0	0	3,13	0	0	0	0,22	0
Total Geral	92,57	91,9	92,43	70,03	97,9	98,93	99,16	93,52	100

Analisando o gráfico 7 pode-se constatar uma relação inversamente proporcional entre os sesquiterpenos não oxigenados e os oxigenados, ou seja, espécies que apresentam elevados índices de sesquiterpenos hidrocarbonetos apresentam baixos índices de oxigenados e vice-versa, corroborando a rotabissintética. Outro dado interessante é que novos estudos filogenéticos (LUCAS et al., 2011) incluíram os gêneros *Calyptranthes, Marlierea, Gomidesia e Myrcia* em um único grande gênero, denominado *Myrcia*. Contudo, observando a amostra CSs (*Calyptranthes spruceana*) e MCc, nota-se que a composição química do OE de MCc possui uma certa similaridade química com o gênero *Myrcia*, fato não observado para CSs, cuja composição química mostra-se distinta das outras espécies de *Myrcia*.

■dMO ■DO ■dSH ■dSO ■FP ■MH ■MO ■Outros ■SH ■SO 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% FA1s FA2c M1s AMs M2s C1cAmc MIC S1c C2c F2c F1c E1s MIS

Gráfico 7- Grupos terpênicos com valores percentuais normalizados

4.5 Classificação química do óleos essências de *Myrcia* spp. quanto a rota biossitética de seus constituíntes

Os 336 componentes identificados nas 27 amostras analisadas totalizam 51 vias de ciclização em sua biogênese, sendo 10 dessas vias se destacam por serem as com número de formação de componentes (comp.) igual ou superior a 10. São elas: Mentanos (43 comp.), Cadinanos (38 comp.), Eudesmanos (25 comp.), Bisabolanos (21 comp.), Acilpolimalonato (19 comp.), Farnesanos (14 comp.), Guaianos (13 comp.), Aromadendranos (12 comp.), Pinanos (11 comp.) e Geranilanos (10 comp.). Além disso, é interessante perceber que a via dos cariofilanos tão marcante para o gênero *Myrcia* é representada por somente 07 componentes.

Quadro 3- Principais rotas de biogênese para sesquiterpenos ocorrentes em óleo essencial de Myrcia spp. coletadas na RFAD

Quadro 4 - Principais rotas de biogênese para monoterpenos de Myrcia spp, coletadas na RFAD

Contudo, quando observamos a ocorrência dessas 51 vias nas 27 amostras, esses dados são alterados, pois aparecem em destaque 18 vias que se fazem presentes em 2/3 dessas amostras. Dessas 18 vias, 13 estão presentes em mais de 50% das amostras, são elas: Cariofilanos – 100% (ex.: E – Cariofileno), Cadinanos – 96% (ex.: δ – Cadineno), Aromadendranos – 93%

(ex.: Espatulenol), Eudesmanos – 89% (ex.: β – Selineno), Humulanos – 89% (ex.: α – Humuleno), Copaenos – 85% (ex.: α – Copaeno), Guaianos – 85% (ex.: Pogostol), Elemanos – 81% (ex.: β – Elemeno), Germacranos – 81% (ex.: Germacreno D), Farnesilanos – 63% (E – Nerolidol), Mentanos – 63% (ex.: α – Terpineol), Bisabolanos – 59% (ex.: β – Bisaboleno) e Pinanos – 52% (ex.: α – Pineno). As duas amostras coletadas na Embrapa apresentam uma via em comum que é a do Geranilano. E1s apresenta as vias principais do Cariofilano (21,36%), do Geranilano (20,61%) e do Farnesano (11,98). Enquanto, CSs apresenta 80,66% de seu óleo essencial representado pela via do Geranilano. Relatos anteriores só destacam 04 vias características para o gênero Myrcia, são elas: Cariofilanos, Cadinanos, Germacranos e Bisabolanos (SILVA et al., 2016); (LIMBERGER et al., 2004); (NAKAMURA et al., 2010). Portanto, os dados mostram que há outras vias de ciclização importantes para Myrcia spp. ocorrentes em ecossistema de Terra firme (Amazônia).

Tabela 26 - As 13 rotas de biogênese mais ocorrentes em Myrcia spp. com os respectivos percentuais de componentes caracterizados

Biogênese	N.°COMP.	C1c	C2c	M1s	M1c	M2s	M4c	B1c	B2c	FA1s	FA1c	FA2c	F1s	F1c	F2c
Cariofilanos	7	<mark>30,94</mark>	<mark>34,18</mark>	<mark>10,25</mark>	<mark>16,78</mark>	<mark>11,39</mark>	<mark>33,59</mark>	3,93	<mark>10,21</mark>	3,47	4,93	3,37	<mark>51,01</mark>	<mark>31,69</mark>	1,64
Cadinanos	38	<mark>13,55</mark>	<mark>22,05</mark>	<mark>17,98</mark>	<mark>17,85</mark>	5,28	6,31	<mark>16,83</mark>	9,94	<mark>19,29</mark>	<mark>12,12</mark>	<mark>11,62</mark>	<mark>14,63</mark>	<mark>22,93</mark>	<mark>29,82</mark>
Aromadendranos	12	7,34	2,04	5,63	1,66	1,38	1,41	7,02	<mark>15,52</mark>	<mark>41,02</mark>	<mark>60,99</mark>	<mark>37,95</mark>	<mark>18,62</mark>	<mark>26,61</mark>	<mark>32,34</mark>
Eudesmano	25	1,06	<mark>12,81</mark>	<mark>16,73</mark>	<mark>14,88</mark>	6,24	3,51	<mark>36,46</mark>	<mark>29,37</mark>	4,54	0	3,86	1,79	1,5	5,87
Humulanos	4	2,84	1,85	0	1,3	0,97	2,35	0,56	2,15	0,86	1,23	1,84	1,69	1,24	0
Copaenos	4	4,99	0,42	1,76	3,58	2,67	6,12	0,96	0,3	1,38	1,18	0,88	1,58	2,22	9,93
Guaianos	13	6,61	2	4,08	3,33	2	0,54	0	0,89	1,42	2	0,78	0	0,7	2,84
Elemanos	6	1,12	5,35	2,25	2,53	0,76	5,58	4,57	2,45	4,99	4,72	<mark>17,67</mark>	0,46	0,8	0,33
Germacranos	5	0	1,8	7,34	9,9	2,95	9,72	<mark>23,87</mark>	<mark>21,38</mark>	5,14	2,2	2,29	8,91	0,74	1,92
Farnesanos	14	1,6	1,2	0	1,99	0	1,16	1,43	0	3,11	1,78	1,18	0	0	0
Mentanos	43	1,78	1,28	6,88	4,18	<mark>20,7</mark>	0,12	0,63	0,8	0,09	0	0,17	0	0,63	0
Bisabolanos	20	0	0	2,18	1,03	0	<mark>18,26</mark>	0	0	0,89	0,3	1,12	0	0	1,71
Pinanos	11	<mark>18,2</mark>	<mark>10,87</mark>	0,46	2,22	<mark>37,56</mark>	1,64	0	0	0	0	0	0	0,63	1,2
Total	202	90,03	95,85	75,54	81,23	91,9	90,31	96,26	93,01	86,2	91,45	82,73	98,69	89,69	87,6

Tabela 27 - As 13 rotas de biogênese mais ocorrentes em Myrcia spp com os respectivos percentuais de componentes caracterizados (cont.)

Biogênese	N.°COMP.	S1c	S2c	MIs	MIc	AMs	AMc	APs	APc	PAs	PAc	МСс
Cariofilanos	7	0,6	0,47	<mark>15,6</mark>	<mark>15,03</mark>	<mark>11,62</mark>	3,77	<mark>74,17</mark>	<mark>71,74</mark>	5,4	4,34	<mark>16,63</mark>
Cadinanos	38	<mark>14,48</mark>	1,33	<mark>23,03</mark>	<mark>15,75</mark>	<mark>15,27</mark>	<mark>39,85</mark>	0,91	4,63	<mark>18,74</mark>	<mark>11,66</mark>	<mark>25,72</mark>
Aromadendranos	12	0,57	4,91	<mark>13,34</mark>	<mark>16,51</mark>	<mark>26,09</mark>	7,93	0,35	2,75	0,93	1,2	4,75
Eudesmano	25	<mark>43,7</mark>	4,07	7,71	9,07	0	5,05	0,15	0	<mark>8,11</mark>	5,33	4,72
Humulanos	4	0	4,95	1,54	1,34	1,54	0,84	5,7	6,94	2,34	0,24	1,62
Copaenos	4	0,5	0,94	1,82	2,05	0	0,47	0,23	0	1,4	0	4,01
Guaianos	13	2,5	1,6	<mark>10,85</mark>	7,53	1	4,27	0,12	0	8,13	<mark>12,54</mark>	2,77
Elemanos	6	0	1,55	<mark>11,63</mark>	<mark>12,27</mark>	<mark>16,78</mark>	<mark>10,27</mark>	1,89	0,51	0	0	6,02
Germacranos	5	0	2,78	7,21	7,04	1,34	<mark>20,9</mark>	4,75	2,15	0	1,56	<mark>21,31</mark>
Farnesanos	14	0	0,46	0,21	0,09	1,3	0	4,33	5,07	0,98	0,17	0
Mentanos	43	2,62	<mark>15,6</mark>	0	0	0	0	0	0	<mark>19,17</mark>	<mark>31,94</mark>	0
Bisabolanos	20	1,6	1,59	0	0,9	0,49	0	4,37	2,92	2,87	0,5	0
Pinanos	11	4,89	<mark>13,4</mark>	0	0	0	0	0	0	2,74	5,89	0
Total	202	71,46	53,65	92,94	87,58	75,43	93,35	96,97	96,71	70,81	75,37	87,55

Tabela 28- Rotas de biogênese observadas para Myrcia spp coletadas na RFAD e na Embrapa

BIOGÊNESE	N.° COMP.	C1C	C2C	M1S	M1C	M2S	M4C	B1C	B2C	FA1S	FA1C	FA2C	F1S	F1C	F2C
ÁCIDO BENZÓICO	3	0	0	1,55	0,48	0,55	0	0	0	0,12	0	0,22	0	0	0
ÁCIDO CINÂMICO	5	0	0	0,45	0	0	0	0	0	0,24	0	0	0	0	0
ACILPOLIMALONATO	19	0	0	5,9	3,86	0,94	0,48	0,86	1,11	0	0	0	0	0	0
ACORANOS	4	0,74	0	0	0	0	0	0	0	0	0	0,9	0,48	0	0
AFRICANANOS	1	0	0	0	3,94	0	0	0	0	0	0	0	0	0	0
ARISTOLANOS	2	0	0	0,53	0,36	0	0	0	0	0	0	0	0	0	0
AROMADENDRANOS	12	7,34	2,04	5,63	1,66	1,38	1,41	7,02	15,52	41,02	61	37,95	18,62	26,61	32,34
BICICLOGERMACRANOS	1	0	0	0	0	0	0	1,07	0	3,45	1,32	0,89	0	1,46	1,13
BISABOLANOS	20	0	0	2,18	1,03	0	18,26	0	0	0,89	0,3	1,12	0	0	1,71
BOURBONANOS	2	0	0	0	0	0	0	0	0	0,25	0	0,35	0	0	0
CADINANOS	38	13,55	22,05	17,98	17,85	5,28	6,31	16,83	9,94	19,29	12,1	11,62	14,63	22,93	29,82
CARIOFILANOS	7	30,94	34,18	10,25	16,78	11,39	33,59	3,93	10,21	3,47	4,93	3,37	51,01	31,69	1,64
CEDRANO	6	0	0	0	0	0,76	0	0	0	0	0	0	0	0	0
CHAMIGRANOS	1	0	0	0,24	0,16	0	0	0	0	0	0	0	0	0	0
CICLOFARNESENO	9	0	0	3,49	0,96	1,22	0,79	0	0	0,18	0	0	0,34	0	0
COPAENOS	4	4,99	0,42	1,76	3,58	2,67	6,12	0,96	0,3	1,38	1,18	0,88	1,58	2,22	9,93
CUPARANOS	2	0	0	0	0	0	2,47	0	0	0	0	0	0	0	0
DAUCANO	6	0	0,75	0	1,49	0	0	0,59	0	0	0	0	0	0	0
DRIMANO	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELEMANOS	6	1,12	5,35	2,25	2,53	0,76	5,58	4,57	2,45	4,99	4,72	17,67	0,46	0,8	0,33
EREMOFILANOS	8	1,05	0	0	5,75	0	0	0	0	0	0	1,8	0	0	1,98
EUDESMANO	25	1,06	12,81	16,73	14,88	6,24	3,51	36,46	29,37	4,54	0	3,86	1,79	1,5	5,87
FENCHANOS	5	0	0,29	0,27	0	1,25	2,04	0	0	0	0	0	0	0	0
FITANOS	4	0	0	0	0	0	1,54	0	0	0,11	0	0	0	0	0

BIOGÊNESE	N.° COMP.	C1C	C2C	M1S	M1C	M2S	M4C	B1C	B2C	FA1S	FA1C	FA2C	F1S	F1C	F2C
GERANILANOS	10	0	0	0,14	0	0	0	0	0	0	0	0	0	0	0
GERMACRANOS	5	0	1,8	7,34	9,9	2,95	9,72	23,87	21,38	5,14	2,2	2,29	8,91	0,74	1,92
GUAIANOS	13	6,61	2	4,08	3,33	2	0,54	0	0,89	1,42	2	0,78	0	0,7	2,84
HIMACHALANOS	3	0	0	0	0	0	0	0	0	0	0	0	0	0,72	0
HUMULANOS	4	2,84	1,85	0	1,3	0,97	2,35	0,56	2,15	0,86	1,23	1,84	1,69	1,24	0
IRIDOIDE	1	0	0	0	0	0	0	0	0	0,25	0	0	0	0	0
ISOPRENOIDE	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1,19
LONGIBORNANOS	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LONGIFOLANOS	6	0	0	2,28	0	1,89	0	0,83	0	0	0	0	0	0	0
LONGIPINANOS	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MENTANOS	43	1,78	1,28	6,88	4,18	20,7	0,12	0,63	0,8	0,09	0	0,17	0	0,63	0
MIRCANOS	4	3,5	0	0,38	0,57	1,05	0	0	0	0,07	0,68	0	0	0	0
NEROLIDANOS	1	0	0	0,86	0	0	0	0	0	0	0	0	0	0	0
OPLOPANOS	1	0	0	0	0	0	0	0	0	0	0	0,6	0	0	0
PATCHOULANO	1	0	0	4,33	0	0	0	0	0	0	0	0	0	0	0
PINANOS	11	18,2	10,87	0,46	2,22	37,56	1,64	0	0	0	0	0	0	0,63	1,2
PROTOLLUDANO	1	0	0	0	0	0,17	0	0	0	0	0	0	0	0	0
SATIVANOS	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SILFINANO	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPIROSESQUITERPENOIDES	1	0,72	0	0	0	0	0	0	0	0	0	0	0	0	0
SPIROVETIVANOS	2	0	0	0	0	0,27	0	0	0	0	1,42	0	0	0	0
THUJOPSANOS	5	0	0	0	0	0	0,38	0	0	0	0	0	0	0	0
TUJANOS	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZIZAANO	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A-SANTALANO	1	0	0	0	0	0	0	0	0	1,79	0	0	0	0,7	0

BIOGÊNESE	N.° COMP.	C1C	C2C	M1S	M1C	M2S	M4C	B1C	B2C	FA1S	FA1C	FA2C	F1S	F1C	F2C
B-SANTALANOS	1	0	0	0	0	0	0,31	0	0	0	0	0	0	0	0
FARNESANOSS	14	1,6	1,2	0	1,99	0	1,16	1,43	0	3,11	1,78	1,18	0	0	0
TOTAL GERAL	336	96,04	96,89	95,96	98,8	100	98,32	99,61	94,12	92,66	94,9	87,49	99,51	92,57	91,9
	1														

Tabela 29- Rotas de biogênese observadas para Myrcia spp coletadas na RFAD (cont.)

BIOGÊNESE	S1C	S2C	MIS	MIC	AMS	AMC	APS	APC	PAS	PAC	MCC	E1S	css
ÁCIDO BENZÓICO	0	0,38	0	0	0	0	0	0	0,39	0	0	0	0
ÁCIDO CINÂMICO	0	0	0,24	0	0	0	0	0	0,37	0	0	0	0,17
ACILPOLIMALONATO	0	2,75	0	0	0	0	0	0	0,24	0,22	0	2,06	0,45
ACORANOS	1,85	0	0	0,55	0	0	0	0	0,12	0,64	0	0	0
AFRICANANOS	0	0	0,65	0,81	0	0	0	0	0	0	0,2	0	0
ARISTOLANOS	0	0	0	0	0	0	0	0	1,27	0	0,72	0	0
AROMADENDRANOS	0,57	4,91	13,34	16,51	26,09	7,93	0,35	2,75	0,93	1,2	4,75	0	0
BICICLOGERMACRANOS	0	0	0	0	6,66	2,99	2,18	1,37	0	0	6,23	0	0
BISABOLANOS	1,6	1,59	0	0,9	0,49	0	4,37	2,92	2,87	0,5	0	4,04	0
BOURBONANOS	0	0	1,41	3,46	1,01	0,19	0	0	0,2	0	0,18	0	0
CADINANOS	14,48	1,33	23,03	15,75	15,27	39,85	0,91	4,63	18,74	11,7	25,72	2,98	0
CARIOFILANOS	0,6	0,47	15,6	15,03	11,62	3,77	74,17	71,7	5,4	4,34	16,63	21,36	2,45
CEDRANO	14,94	0,16	0	0	0	0	0	0	5,02	0,7	0	0	0
CHAMIGRANOS	0	0	0	0,41	0	0	0	0	0	0	0	0	0
CICLOFARNESENO	0	1,68	0	0	12,54	0	0,19	0	0,89	1,79	0	6,14	0,26
COPAENOS	0,5	0,94	1,82	2,05	0	0,47	0,23	0	1,4	0	4,01	0,26	0
CUPARANOS	0	0	0	0	0	0	0,52	0,48	0	0	0	0,3	0
DAUCANO	0	2,95	0	0	0	0	0	0	0	0	2,93	1,24	0
DRIMANO	0	0	1,25	2,85	0	0	0	0	0	0	0	0	0
ELEMANOS	0	1,55	11,63	12,27	16,78	10,27	1,89	0,51	0	0	6,02	0	0
EREMOFILANOS	2,66	2,8	0	2,24	0	2,4	0	0	0,71	0	0	0	0
EUDESMANO	43,7	4,07	7,71	9,07	0	5,05	0,15	0	8,11	5,33	4,72	3,45	0,12
FENCHANOS	0,26	0,08	0	0	0	0	0	0	0	0	0	0	0
FITANOS	0	0	0	0	0	0	0	0	0	0	0	2,27	0

BIOGÊNESE	S1C	S2C	MIS	MIC	AMS	AMC	APS	APC	PAS	PAC	МСС	E1S	CSS
GERANILANOS	0	0	0	0	0	0	0	0	0,33	1,64	0	20,61	84,66
GERMACRANOS	0	2,78	7,21	7,04	1,34	20,9	4.75	2,15	0	1,56	21,31	0	0
GUAIANOS	2,5	1,6	10,85	7,53	1	4,27	0,12	0	8,13	12,5	2,77	0,6	0
HIMACHALANOS	0	0	0,18	0	0	0	0	0	0	0,82	0	1,08	0
HUMULANOS	0	4,95	1,54	1,34	1,54	0,84	5,7	6,94	2,34	0,24	1,62	8,73	0,16
IRIDOIDE	0	0	0	0	0	0	0	0	0	0	0	0	0
ISOPRENOIDE	0	0	0	0	0	0	0	0	0	0	0	0	0
LONGIBORNANOS	0	0	1,64	0	0	0	0	0	0	0	0	0	0
LONGIFOLANOS	0	0	0	0	0	0	0	0,32	1,71	0,44	0	0	0
LONGIPINANOS	0	0	0	0	1,3	0	0,12	0,04	0,3	0	0	0	0
MENTANOS	2,62	15,6	0	0	0	0	0	0	19,17	31,9	0	2,35	4,51
MIRCANOS	0	0	0	0	0	0	0	0	0,45	0,23	0,3	0,56	0,54
NEROLIDANOS	0	0	0	0	0	0	0	0	0	0	0	0	0
OPLOPANOS	0	0	0	0	0	0	0	0	0	0	0	0	0
PATCHOULANO	0	0	0	0	0	0	0	0	0	0	0	0	0
PINANOS	4,89	13,4	0	0	0	0	0	0	2,74	5,89	0	1,05	6,31
PROTOLLUDANO	0	0	0	0	0	0	0	0,24	0	0	0	0	0
SATIVANOS	0,74	0	0	0	0	0	0	0	3,83	3,88	0	0	0
SILFINANO	0	0	0	0	0	0	0	0	0,68	0	0	0	0
SPIROSESQUITERPENOIDES	0,52	0	0	0	0	0	0	0	1,74	0,28	0	0	0
SPIROVETIVANOS	0	0	0	0	0	0	0	0	0	0	0	0	0
THUJOPSANOS	0	2,02	0	0	0	0	0	0	0,2	1,58	1,89	0	0
TUJANOS	0	1,94	0	0	0	0	0	0	0,92	1,63	0	1,35	0
ZIZAANO	0	1,1	0	0	0	0	0	0	1,12	4,3	0	0	0
A-SANTALANO	0	0,52	0	0	0	0	0	0	0	0	0	0	0

BIOGÊNESE	S1C	S2C	MIS	MIC	AMS	AMC	APS	APC	PAS	PAC	MCC	E1S	CSS
B-SANTALANOS	0	0	0	0	0	0	0	0	0	0	0	1,85	0
FARNESANOSS	0	0,46	0,21	0,09	1,3	0	4,33	5,07	0,98	0,17	0	11,98	0
TOTAL GERAL	92,43	70,03	98,31	97,9	96,94	98,93	99,98	99,2	91,3	93,5	100	94,26	99,63

4.6 Análises quimiométricas das composições químicas dos óleos essenciais de *Myrcia* spp. ocorrentes em ecossistema de Terra-firme

4.6.1 Análise quimiométrica do óleo essencial coletado no período seco

A análise por PCA das amostras coletadas no período seco é baseada na tabela de componentes químicos caracterizados para cada espécie, os dados segregam as amostras por grupos terpênicos majoritários: monoterpenos hidrocarbonetos (MH), monoterpenos oxigenados (MO), sesquiterpenos hidrocarbonetos (SH) e sesquiterpenos oxigenados (SO). Observa-se que PC1 (47%), PC2 (24%) e PC3 (12%), explicam 83% da variância observada.

Gráfico 8- Gráfico em 3D das amostras de óleo do período seco

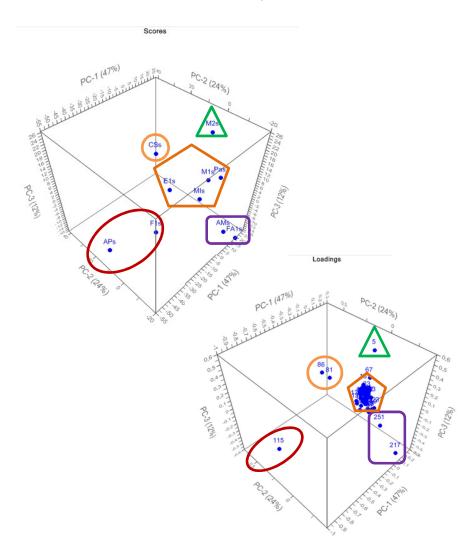
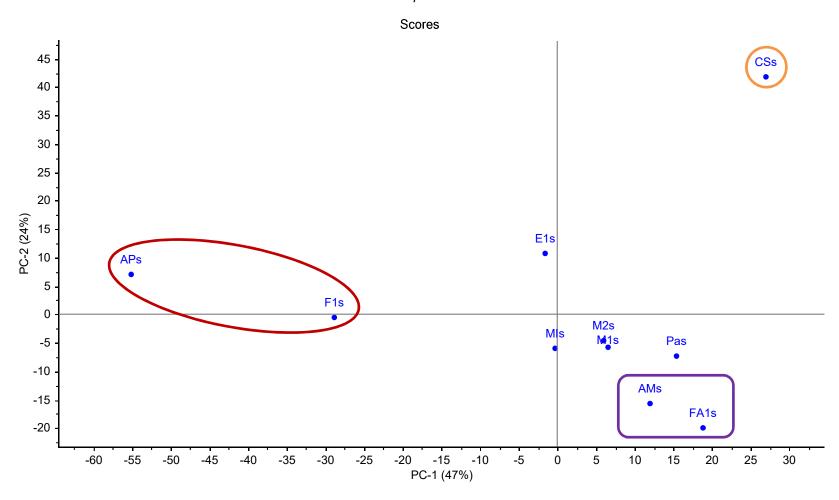



Gráfico 9 – Gráfico de scores de PC1xPC2 das amostras coletadas no período seco

A analise dos dados da PCA das amostras coletadas no período seco, indica que as amostras são segregadas de acordo com seus grupos terpênicos majoritários. PC1 (47%) descreve a maior parte da variância observada. Contudo, há a necessidade de analisar os dados por outros eixos para que seja melhor compreendido a separação dos grupos.

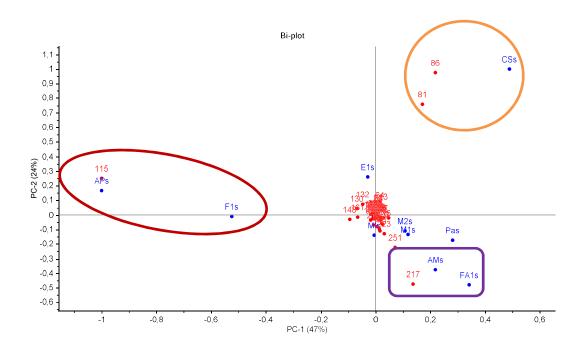


Gráfico 10 - Gráfico biplot PC1 x PC2 das amostras coletadas no período seco

Os grupos formados foram assinados por figuras geométricas, observase que o gráfico biplot (gráfico 10) acima ilustrado mostra que PC1 é responsável pela formação inicial de 3 grupos segregados: O primeiro é formado pela amostra CSs (círculo) que é composta por 89,47% de MO (monoterpeno oxigenados), representados quase na sua totalidade pelas substâncias Neral (32,88%), variável 81 e Geranial (41,78%), variável 86, que nesse caso são as de maior peso no modelo proposto. O segundo grupo formado pelas amostras APs e F1s (elipse), corresponde aos SH (sesquiterpenos hidrogenados), ambas possuem mais de 50% de sua composição formada por tais estruturas, como por exemplo, Germacreno D, variável 148 e *E*-Cariofileno, variável 115, que é a de maior influência no modelo. Ressalta-se que as amostras apresentam um valor de correlação de Pearson de 0,9347 para espécies distintas. O terceiro grupo é formado pelas

amostras AMs e FA1s (retângulo), correspondente ao grupo dos SO (sesquiterpenos oxigenados). Ambas espécies são ricas em tais substâncias, sendo as substâncias Espatulenol, variável 217 e Muurola-4,10(14)-dien-1-β-ol, variável 251 são as de maior peso no modelo.

Gráfico 11- Gráfico de scores de PC1xPC3 das amostras coletadas no período seco

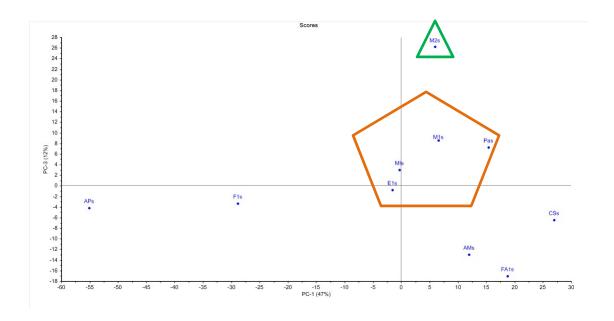
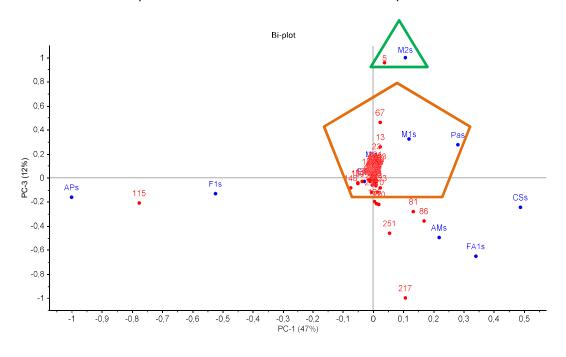
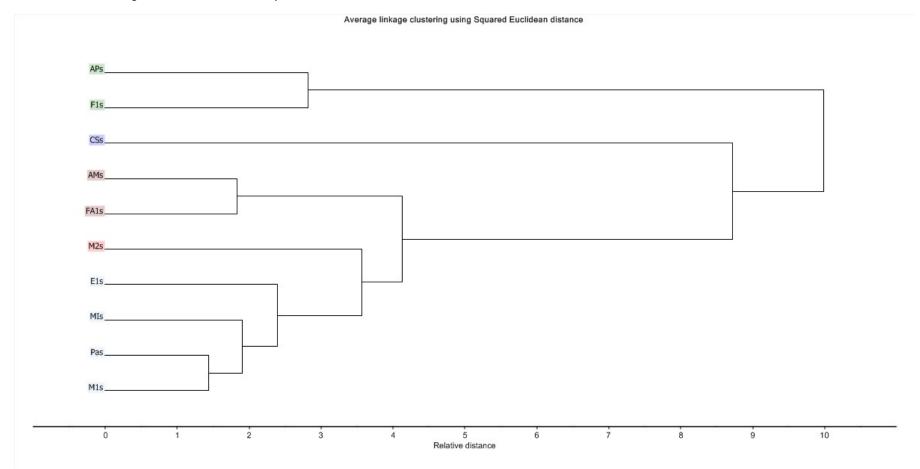



Gráfico 12 - Gráfico biplot PC1 x PC3 das amostras coletadas no período seco



O quarto grupo composto pela amostra M2s (triângulo) é composta por 47,26% de MH (monoterpeno hidrogenados), sendo a variável 5, que corresponde a substância α -Pineno (28,64%) é a de maior peso no modelo proposto.O quinto grupo se assemelha pelo teor de SO e SH (pentágono). Contudo, não se observa uma elevada correlação entre as amostras E1s, MIs, PAs e M1s, fato esse explicado pela elevada variabilidade química desses óleos. Não são observadas substâncias majoritárias com teor acima de 10% para essas amostras. A amostra E1s possui (E) – β – Farneseno, variável 132, como uma das substâncias principais. MIs apresenta β - Elemeno, variável 110. Enquanto PAs e M1s apresentam Pogostol (272) e Viridiflorol (223), respectivamente.

A PCA das amostras contribui de forma significativa na análise dos dados obtidos através dos ensaios biológicos. Óleos essenciais que apresentam a presença do Pogostol, como o caso da PAs apresentam atividades antimicrobianas e inseticidas associadas (SWAMY; SINNIAH, 2015). Da mesma forma substâncias como β-Elemeno e (*E*)-Cariofileno veem apresentando resultados promissores no tratamento de câncer, tanto na forma pura quanto associadas com outras substâncias (LESGARDS et al., 2014).

A HCA tem a função de agrupar os dados de acordo com a semelhança ou maior proximidade existente entre os grupos. A ideia segundo Ferreira (2015) é maximizar a homegeneidade interna, dentro dos grupos, e maximizar a heterogeneidade entre os grupos. Os dados abaixo refletem bem o agrupamento dos grupos separados pela PCA. O método empregado no HCA foi *Hierarchical Average-linkage*, e o parâmetro de distância foi *Squared Euclidean distance*, parâmetros encontrados no software Unscrambler X.

Gráfico 13 - Dendrograma das amostras do período seco

4.6.2 Análise quimiométrica do óleo essencial coletado no período chuvoso

Ao analisarmos os dados da PCA das amostras coletadas no período chuvoso, as amostras são segregadas de acordo com seus compostos majoritários e vias de ciclização em comum. PC1 (41%) descreve a maior parte da variância observada, nota-se a separação das amostras em 06 grupos. Contudo, há a necessidade de analisar os dados por outros eixos para que seja melhor compreendido a separação dos grupos.

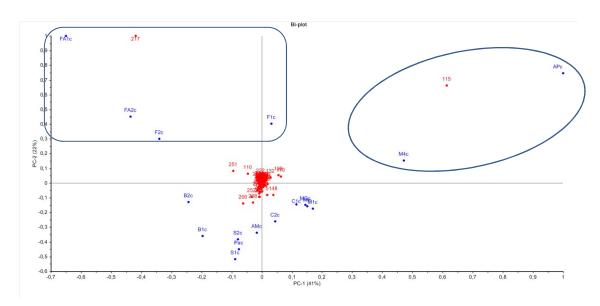


Gráfico 14 - Gráfico biplot PC1xPC2 das amostras do período chuvoso

O gráfico biplot (scores x loading) das amostras coletadas no período chuvoso, observada pela PC1 x PC2 (63%) mostra de forma mais clara a formação de 02 grupos, caraterizados por seus componentes majoritário e comuns entre si e por suas vias de ciclização características.

O primeiro grupo formado por APc e M4c é melhor visualizado pela PC1, pois ela se mostra como a responsável por sua separação, o grupo apresenta um coeficiente de correlação entre APc – M4c de 0,8349, a variável de maior peso no modelo é a 115, representada pelo (*E*)-Cariofileno cujo teor em AMc é de 71,39% e em M4c é de 33,59%, o grupo é caracterizado pela via dos Cariofilanos.

O segundo grupo é formado por FA1c, FA2c, F1c e F2c, com um coeficiente de correlação entre FA1c – FA2c de 0,9253, entre F1c – F2c de 0,6510 e entre FA1c – F2c de 0,8903, cuja variável 217 (Espatulenol) apresenta

um teor variando na faixa de 19,70 a 56,62% (maior peso no modelo proposto). A via de ciclização característica desse grupo é dos Aromadendranos.

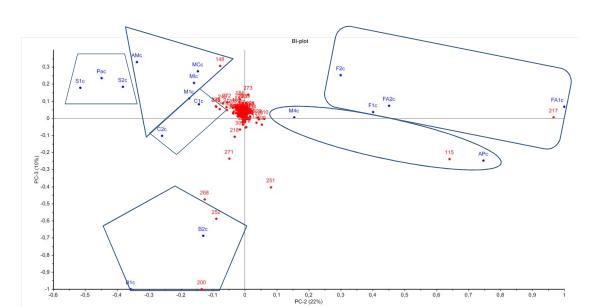
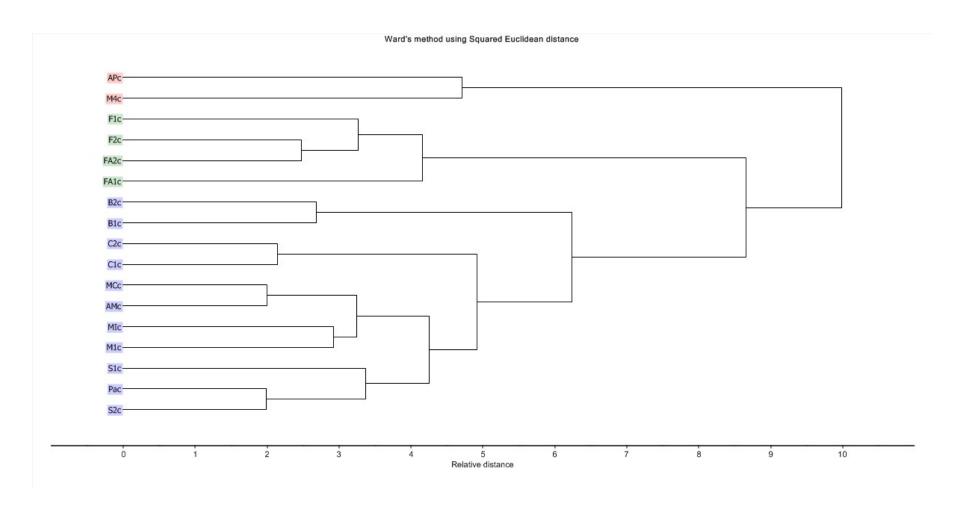


Gráfico 15 - Biplot de PC2xPC3 das amostras do período chuvoso

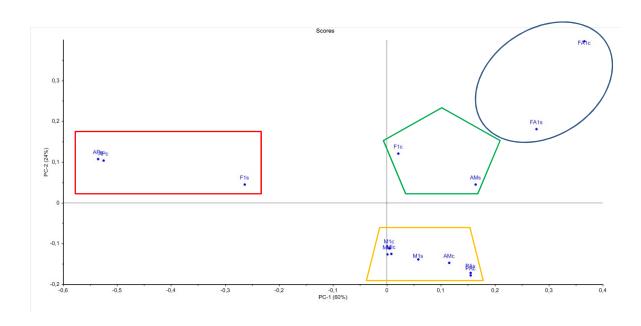

O terceiro grupo é formado por B1c e B2c, que possui um coeficiente de correlação de 0,7344, cujas variáveis de maior peso são a variável 200, que representa o composto Hedicariol, cujo teor em B1 é de 23,51% e de B2 igual a 20,77%, e a variável 252, que representa o γ – Eudesmol, a via de ciclização característica do grupo é dos Eudesmanos. O quarto grupo, melhor visualizado no gráfico 15, é formado por C1c e C2c, cuja variável diferenciadora é o α -Pineno (5), com um teor variando entre 9,26 e 17,10%. A correlação entre C1c C2c é de 0,7682 e a via de ciclização característica é a dos Pinanos. O quinto grupo é formado por AMc, M1c, MIc e MCc, que apresenta os seguintes coeficientes de correlação: MCc - AMc de 0,7531 e MCc - MIc de 0,5449, cuja variável de maior peso no modelo é a substância Germacreno D, variável 148, (teor 7,04 a 21,13%). Apesar de M1c não apresentar correlação com os demais membros do grupo, essa se aproxima por causa da via de ciclização característica de todos, que é a dos Cadinanos. Esse grupo tem como característica em comum o fato de que os que foram testados biologicamente apresentarem resultados contra Pseudomonas aeroginosas, há estudos que associam ao Cadineno e seus derivados propriedades antimicrobianas (PUBCHEM, [s.d.]).

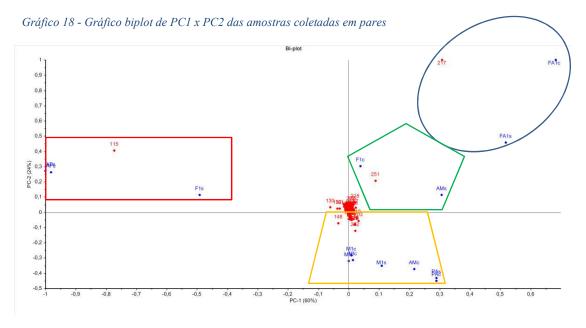
O sexto e último grupo é formado pela amostra S1c, S2c e PAc que NÃO APRESENTAM coeficientes de correlação com nenhuma outra amostra do grupo e nem entre elas e cuja variável de maior influência é a de número 21, que corresponde a substância ρ – Cimeno, comum ao grupo, e a de número 325 que é o Acetato de cedrila, exclusiva de S1c. Esse o grupo também NÃO APRESENTA uma via característica de ciclização, entre PAc e S2c prevalece a dos Mentanos e entre PAc e S1c a dos Eudesmanos.

A composição química das amostras coletadas no período chuvoso por terem uma variabilidade menor, aparentemente contribuem para a formação de interações interespecíficas (heterotípicas), como as observadas para APc-MCc, M4c-AMc, Fic-FA2c e intraespecíficas (homotípicas) observadas para B1c-B2c e C1c-C2c.

Os dados do HCA corroboram a discussão da Análise de Componentes Principais e refletem de forma significativa as informações que de outra forma não poderiam ser observadas e interpretadas com um número tal elevado de substâncias. O método usado é o *Ward* e a distância empregada é a Euclidiana.

Gráfico 16 - Dendrograma das amostras do período chuvoso




4.6.3 Análise quimiométrica dos óleos essenciais coletados em ambos os períodos climáticos em pares

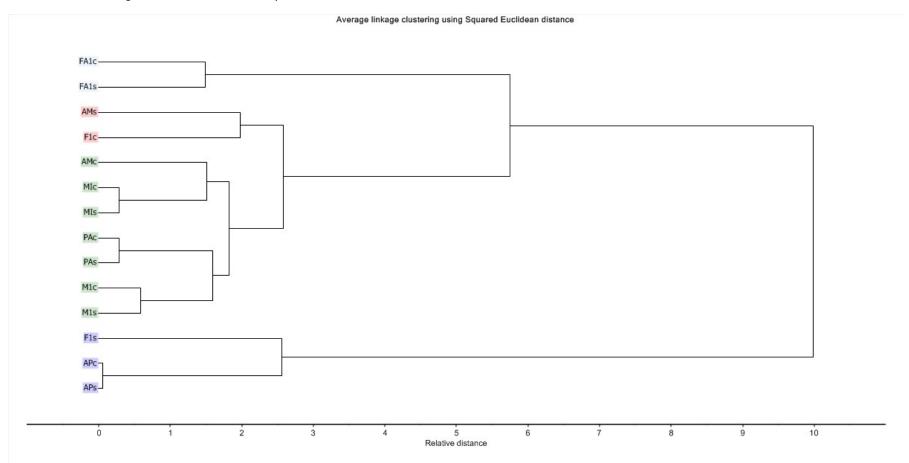
A PCA dos 07 pares de amostras evidencia a formação de quatro grupos químicos de acordo com seus compostos majoritários e suas vias de ciclização características.

Observa-se que PC1 (60%), PC2 (24%) e PC3 (5%) descrevem 89% da variância observada.

Gráfico 17- Gráfico de PC1 x PC2 das amostras coletadas em pares.

O primeiro grupo (elipse) formado por FA1c e FA1s apresenta correlação entre FA1s – FA1c no valor de 0,9445, sendo a substância Espatulenol, variável 217 a que apresenta maior peso no modelo proposto, o teor de Espatulenol dentro do grupo varia de 33,05 a 56,62% e a via de ciclização característica é a da rota dos Aromadendranos.

O segundo grupo (retângulo), formado por APs, APc e F1c, cujos valores de correlação são: 0,9979 entre APs – APc e 0,9338 entre APc – F1s, correlações essas caracterizadas como intraespecíficas e interespecíficas, respectivamente, o grupo apresenta a substância *E*-Cariofileno (44,98 – 73,12%), variável 115, como a de maior peso para o modelo proposto, e a via de ciclização característica é a da rota dos Cariofilanos.


O terceiro grupo (pentagóno), formado por F1c e AMs, apresenta um valor moderado de correlação (0,5648), o que indica uma relativa correlação interespecífica. A variável de maior peso no modelo é a de número 251, que representa a substância Muurola 4,10(14)-dien-1-β-ol. A via de ciclização característica é a da rota dos cadinanos.

O quarto grupo (trapézio) é formado por MIc, MIs (sobrepostas), AMc, M1s, M1c, PAs e PAc. Esse grupo apresenta correlação entre MIc – MIs de 0,9118, PAc – Pas de 0,7654, M1s – M1c de 0,7000 e entre AMc – MIs de 0,5171 o grupo é caracterizado pelas variaves 110 (β – Elemeno), 223 (Viridiflorol), 148 (Germacreno D) são as de maior peso para o modelo proposto, o grupo será formado por amostras com um teor bem elevado de sesquiterpenos oxigenados e não oxigenados, o que produz um grupo que NÃO POSSUIRÁ uma via de ciclização característica, mais sim um conjunto delas, sendo as de destaque a dos Germacranos, Elemanos, Guaianos e Cadinanos. Amostras desse grupos apresentaram atividade biológica frente a bactérias e fungos, o que é interessante e poderia estar associado a presença do Cadineno e derivados que apresentam atividade semelhante no vegetal (YANG et al., 2012) e em outros estudos (PUBCHEM, [s.d.]).

Na análise das vias de ciclização dos pares pode-se encontrar as principais vias de ciclização observadas para as espécies de *Myrcia* spp. coletadas durante o estudo da RFAD.

Os dados do HCA confirmam a discussão supracitada e refletem de forma significativa as informações das substâncias encontradas nas amostras estudadas. O método usado é o *Ward* e a distância empregada é a Euclidiana.

Gráfico 19 - Dendrograma das amostras aos pares

4.7 Análises biológicas dos óleos essenciais de Myrcia spp

4.7.1 Avaliação do potencial antimicrobiano

4.7.1.1 Atividade antibacteriana por difusão em placa

A tabela 30 mostra os resultados obtidos no ensaio com as seguintes bactéria: *Escherichia coli ATCC* 25922, *Klebsiella pneumoniae* ATTCC 700603, *Burkholderia cepacia*, *Streptococcus pneumoniae* ATCC 49619, *Enterococcus faecalis* ATCC 29212 e *Staphylococcus aureus* resistente a meticilina (MRSA).

Tabela 30- Atividade antibacteriana por difusão em placa dos OE de Myrcia spp

Identificação	Staphylococcus	Streptococcus	Enterococcus	Burk	Klebs	E.coli
C1c	++	+	-	-	-	-
C2c	++	-	-	-	-	-
Mis	+++	-	-	-	-	-
PAs	+++	-	-	-	-	-
M2s	+++	-	-	-	-	-
M1s	+	_	-	_	_	_

- Baixa (+): diâmetro do halo de inibição entre 0,7 a 1,2 cm;
- Moderada (++): diâmetro do halo de inibição entre 1,3 a 1,6 cm;
- Alta (+++): diâmetro do halo de inibição superior a 1,7 cm.
- Negativo (-): ausência de halo de inibição;

Como pode ser observado, as espécies *M. minutiflora* (MIs), *M. paivae* (PAs) e *M. magnoliifolia* (M2s) apresentam uma elevada atividade para *Staphylococcus aureus*. Ressalta-se que não há estudos ainda relatados para as referidas espécies quanto as atividades observadas. Os dois espécimes da espécie *M. citrifolia* (C1c e C2c) apresentam a mesma atividade moderada para o mesmo microorganismo, fato que não pôde ser obervado para os dois espécimes de *M. magnoliifolia*, o que poderia ser justificado pela variabilidade química dos óleos ensaiados. Ensaios por difusão em placa apesar do caráter puramente qualitativos, são fundamentais como ensaios preliminares e norteadores de futuros ensaios biológicos.

4.7.1.2 Atividade antifúngica e antibacteriana pelo Método de microdiluição

A tabela 31 mostra os resultados obtidos no ensaio com as seguintes bactéria: *Escherichia coli* (EC) e *Pseudomonas aeroginosas* (PA); bactérias (gram positivas) - *Enterococcus faecalis* (EF), e *Staphylococcus aureus* (SA), e o fungo *Candida albicans* (CA).

Tabela 31- . Percentual de inibição da atividade microbiana e de formação de biofilme observados para o óleo essencial de Myrcia spp

AMOSTRAS	C	Α		C AM -)		A M -)		F (M +)		AM +)
	TC%	TB%	TC%	TB%	TC%	TB%	TC%	TB%	TC%	TB%
C1C	<mark>28,8</mark>	-111,2	153,7	182,0	98,8	<mark>4,5</mark>	187,7	80,2	132,2	73,4
M3S	<mark>3,0</mark>	426,5	190,9	226,3	101,1	<mark>0,7</mark>	275,4	79,7	132,6	84,5
B3S	<mark>25,0</mark>	299,0	156,8	209,0	95,9	<mark>20,7</mark>	200,0	76,4	108,3	94,2
MIC	<mark>18,2</mark>	292,9	156,0	221,2	94,7	<mark>3,2</mark>	249,1	77,7	99,6	78,7
MCC	<mark>36,4</mark>	260,2	147,7	210,1	93,4	<mark>9,3</mark>	229,8	69,4	117,4	79,9
F3S	<mark>43,6</mark>	195,9	157,9	186,3	96,9	<mark>17,7</mark>	293,0	101,0	102,2	82,7
FA2C	55,5	186,7	126,2	191,1	90,9	<mark>24,1</mark>	145,6	77,5	88,7	82,6
CSS	60,6	163,3	78,8	163,6	102,3	<mark>34,5</mark>	154,4	75,5	83,9	59,1
AMS	<mark>31,4</mark>	99,0	162,9	199,0	96,4	<mark>48,9</mark>	147,4	74,2	100,0	113,7
APS	<mark>14,4</mark>	317,3	187,7	239,7	98,0	<mark>11,3</mark>	324,6	86,0	84,8	106,4
S2S	<mark>26,7</mark>	331,6	97,8	175,2	91,0	<mark>18,7</mark>	208,8	85,4	71,3	96,9
PAS	<mark>45,8</mark>	299,0	84,4	206,9	67,6	<mark>41,6</mark>	133,3	88,3	70,9	83,0
FA1S	63,6	250,0	110,5	191,4	72,4	57,2	107,0	87,6	78,3	87,2
DMSO	97,5	-77,6	133,8	170,3	96,1	82,1	191,2	74,2	103,0	90,4
C+	75,0	-145,9	1,8	62,6	6,7	0,9	121,1	66,1	89,6	65,4
C - *	0,236	-0,033	0,285	0,383	1,038	1,170	0,057	0,894	0,230	1,849

^{*}Controle negativo em valores absolutos de densidade ótica utilizados como referência para cálculo percentual (100%).

Valores abaixo de 100 indicam inibição de crescimento (TC%) ou de formação de biofilme (TB%).

4.7.2 Atividade larvicida

Das espécies estudadas somente há relato na literatura para *M. sylvatica,* coletada no Parque Nacional da Chapada das Mesas, no município de Carolina (MA) no mês de fevereiro de 2012, o OE das folhas apresentou como majoritários, (*E*)-cariofileno (45,88%), 14-hidróxi- (*Z*)-cariofileno

(10,15%), β -Selineno (5,97%) e Selina-3,11-diene (5,43%). Contudo, o OE não apresentou atividade larvicida.

Com relação as espécies ensaiadas, observa-se que mais de 80% delas, na concentração de 500 ppm, são ativas com 100% de mortalidade em apenas 12h, sendo que a norma da OMS determina um tempo mínimo de 24h de observação. Dias (2014) relata que não há consenso quanto a essas concentrações mas que há autores que consideram que um OE considerado com propriedades larvicidas deve proporcionar 100% de mortalidade das larvas. sendo dessa forma classificado de acordo com os seguintes critérios: Ativo se a $CL_{50} < 50$ mg/L, Moderadamente ativo se 50 mg/ml $< CL_{50} < 100$ mg/ml, Efetivo se 100 mg/L $< CL_{50} < 750$ mg/L e Inativo se $CL_{50} > 750$ mg/L.

Abaixo observamos os dados finais obtidos após as 72h de experimento, e os gráficos de percentual de mortalidade em relação ao tempo e concentração.

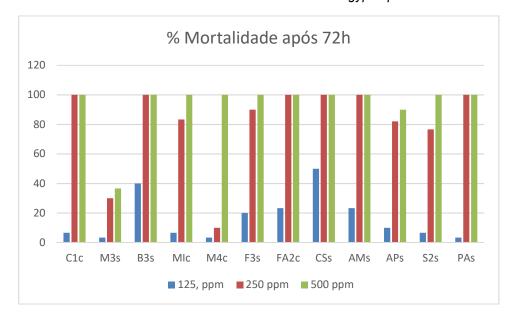


Gráfico 20- Percentual de mortalidade das larvas de Aedes aegypti após 72h

Ao observar os dados da menor concentração (Gráfico 14) nota-se que as amostras B3s e CSs ainda apresentam certa atividade após as 72h. CSs elimina 50% das larvas e B3s elimica 40% no mesmo intervalo de tempo. A amostra CSs apresenta um alto teor de monoterpenos oxigenados, por sua vez, a amostra B3s, seguindo o padrão das demais *M. bracteata* é ser rica em sesquiterpenos oxigenados, o que justificaria tal atividade.

Gráfico 21- Percentual de mortalidade das larvas de Aedes aegypti empregando uma concentração de 500 ppm para o óleo

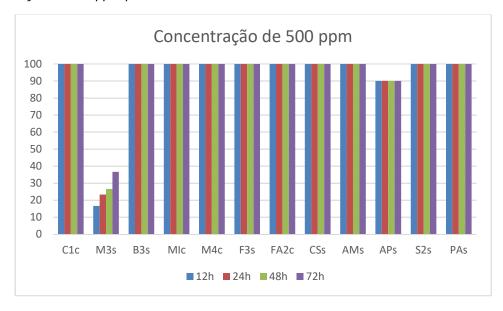


Gráfico 22- Percentual de mortalidade das larvas de Aedes aegypti empregando uma concentração de 250 ppm para o óleo

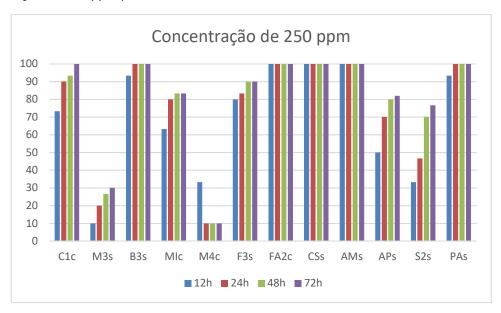
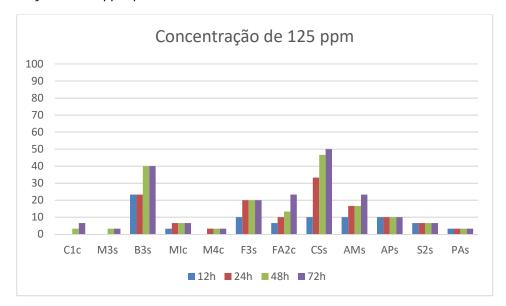



Gráfico 23- Percentual de mortalidade das larvas de Aedes aegypti empregando uma concentração de 125 ppm para o óleo

Os melhores resultados são observados na concentração de 250 ppm, as amostras FA2s, CSs e AMs, foram as mais ativas, atingindo 100% de mortalidade com apenas 12h de experimento. Destaca-se também as amostras B3s e PAs que atingem 100% de mortalidade com 24H e a amostra C1c com 100% de mortalidade em 72h.

Em um estudo que envolveu 361 óleos essenciais de 269 plantas, onde mais de 60% se mostraram ativos para atividade larvicida, a maioria desses OE são devirados de Myrtaceae, Lamiaceae e Rutaceae, sendo que 50% dos óleos extraídos de folhas tem alta atividade (DIAS; MORAES, 2014). O mesmo autor cita que para as espécies pertencentes a família Myrtaceae que apresentaram atividade os componentes majoritários são: 1,8 Cineol, ρ-Cimeno, β-Felandreno, α-Felandeno, α-Pineno, ρ-Mentano-3,8-diol, γ-Terpineno, Linalol, Limoneno, Eugenol, β-Cariofileno, Neral e Geranial. Isso confirma a ideia de que OE ricos em fenilpropanóides, sesquiterpenos oxigenados e hidrocarbonetos monoterpênicos são as classes mais ativas.

5.7.3 Avaliação da citotoxicidade in vitro

Os óleos essenciais foram avaliadas com respeito a toxicidade frente a células cancerígenas (Skmel 3 e ACPO2) e normais (MRC5), a espécie *Myrcia minutiflora* (MI) apresentou uma atividade moderada para as linhagens

humanas de melanoma (Skmel 3) e adenocarcinoma gástrico (ACPO2), contudo, foi altamente citotóxica em fibroblastos não-neoplásicos (MRC5), as espécies *Myrcia amazonica* (AM) e *Myrcia fenestrata* (F) também apresentaram atividade moderada para a linhagens humanas de melanoma (Skmel 3), embora, *Myrcia amazonica* tenha sido ainda mais citotóxico para células não-neoplasicas. Não há relatos na literatura para as espécies estudadas.Os dados do gráfico 19, estão expressos em percentagem de viabilidade celular.

Gráfico 24 - Percentual de sobrevivência das células avaliadas pelo teste de Alamar-blue

AMOSTRA	SKMELL	ACP02	MRC5
MIs	<mark>37,97</mark>	<mark>41,29</mark>	<mark>10,74</mark>
PAs	100,00	100,00	89,17
M2s	99,46	100,00	94,64
AMc	<mark>29,55</mark>	72,50	<mark>5,14</mark>
APc	87,39	100,00	86,91
B1c	100,00	100,00	59,95
B2c	98,96	100,00	60,09
F1c	<mark>44,02</mark>	70,83	94,88
F2c	48,05	69,12	68,04
Doxorrubicina	23,25	29,50	19,22

CONCLUSÃO

O presente estudo descreveu o potencial químico e biológico de dez espécies do gênero *Myrcia*, pertencentes a família Myrtaceae. Das 17 espécies desse gênero ocorrentes na Reserva Florestal Adopho Ducke (RFAD), uma amostra representativa de ecossistema de Terra Firme, coletou-se dez espécies, ou seja, 58,82% da população existente, o que traz relevância e confiabilidade aos resultados apresentados. Dentre essas espécies, duas haviam sido identificadas como sendo M. rufipila, porém após a análise de seus perfis cromatográficos distintos, as mesmas foram resubmetidas à identificação botânica, o que resultou na identificação de uma dessas amostras como sendo M. amapensis, espécie ainda não relatada dentro da RFAD. Além disso, acrescentou-se ao estudo as espécies M. multiflora e Calyptranthes spruceana, ambas coletadas na EMBRAPA Amazônia Ocidental, bem como Marlierea caudata coletada na própria RFAD, pois em estudos filogenéticos recentes, os gêneros Calyptranthes e Marliera foram classificados como sendo Myrcia s.l. Com isso, totalizamos 13 amostras de *Myrcia spp* coletadas, o que resulta em um modelo com 76,47% de representatividade de espécies encontradas em um mesmo ecossistema. Os resultados químicos do presente estudo revelam uma clara concordância de *Marlierea caudata* com a química de *Myrcia* spp., porém o mesmo não se apresenta tão claramente para Calyptranthes spruceana. Algumas espécies de Mycia spp. foram estudadas a partir de mais de um indivíduo e em períodos climáticos distintos, totalizamos 13 espécies, 20 individuos, 27 amostras. Ressalta-se ainda que os óleos essenias de M. magnoliifolia, M. minutiflora, M. fenestrata, M. amapensis e Marlierea caudata estão tendo caracterizados pela primeira vez.

Os resultados dos ensaios biológicos, evidencia atividades antibacterianas, bacteriostáticas, antifúngicas e larvicida para os óleos essências de *Myrcia* ocorrentes em ecossistema de Terra Firme (Amazônia). Esses resultados, embora ainda preliminares, corroboram o desenvolvimento de novos produtos biotecnológicos que poderiam ser desenvolvidos a partir do aprofundamento dessas pesquisas. Contudo, é importante ressaltar a elevada toxicidade observada frente a células não-neoplásicas desses óleos essencias,

o que é um fator extremamente preocupante se levarmos em conta que muitas dessas *Myrcias* são empregadas pela medicina popular.

A partir dos 27 óleos essencias, identificou-se 336 componentes, sendo 34 substâncias abundantes (50,7 a 96,17%). Os componentes mais frequentes, e em alguns casos majoritários, praticamente são os mesmos em ambas as estações climáticas, são eles: (E) – Cariofileno, δ – Cadineno, Espatulenol, α – Copaeno, β – Elemeno, α – Humuleno, Óxido de cariofileno, β – Selineno, α – Muuroleno e α – Cadinol, onde prevalecem as estruturas sesquiterpenicas, com uma média de 42,73% de sesquiterpenos não oxigenados e 36,98% de sesquiterpenos oxigenados, variabilidade química comum a espécies de Myrcia de outros ecossistemas/biomas. Os óleos essenciais coletados no período seco apresentam uma maior variabilidade química, quando se compara os dados das amostras em pares seco-chuvoso (242 componentes). A partir desses dados, observa-se que 76 componentes são descritos de forma exclusiva no período seco e somente 41 para o período chuvoso. Além disso, a variabilidade química dos óleos essenciais de Myrcia spp. de ecossistema de Terra Firme (Amazônia) pode ser descrita por 51 vias de ciclização. Dessas vias, treze apresentam elevada frequência, sendo presentes em mais de 50% das amostras analisadas. Dessas vias, quatro se destacam devido a sua maior ocorrência, as quais são: Cariofilano, Cadinano, Aromadendrano e Eudesmano.

A aplicação de ferramentas quimiométricas no tratamento dos dados químicos descritos nesse estudo possibilitou observar a segregação das amostras por grupos terpênicos majoritários e vias de ciclização mais influentes. Do mesmo modo, essas análises evidenciaram que os compostos com maior peso nesse modelo são: (*E*)-Cariofileno, δ–Cadineno e Espatulenol, cujas atividades farmacológicas descritas na literatura sugerem ser os responsáveis pelos resultados biológicos observados nesse trabalho. Contudo, novos ensaios biológicos com tais constituintes isolados talvez sejam necessários.

Portanto, a respeito da química dos constituintes volátieis de *Myrcia* ocorrentes em Terra Firme (Amazônia), o presente estudo evidência quimiotipos amazônicos bem característicos e sem similaridade com outras

espécies coletadas fora da região, o que nos leva a concluir o quanto ainda há a ser estudado a partir da preciosa biodiversidade amazônica.

REFERÊNCIAS

ADAMS, R. P. Identification of Essencial oil Components by Gás Chromatography/Mass Spectrometry. Allured Publ Corp., Carol Stream, II, 469 p. 2001.

ALARCÓN, L. D. et al. Composition and antibacterial activity of the essential oil of *Myrcia fallax* (Rich.) dc. from Venezuela. Rev. Soc. Quím. Perú. v. 75, n. 2, p. 221–227, 2009.

ALBAGLI, Sarita. Amazônia: fronteira geopolítica da biodiversidade, PARCERIAS ESTRATÉGICAS, n. 12, setembro, 2001. Disponível em: http://seer.cgee.org.br/index.php/parcerias_estrategicas/article/view/175/169, Acesso em: 05/02/2013.

ANDREI, C.C., et al. (org.). Da Química Medicinal à Química Combinatória e Modelagem Molecular: um curso prático. 2 ed. Barueri, SP. Manole, 2012.

ANVISA, Agência Nacional de Vigilância Sanitária. Farmacopéia brasileira, volume 2, 5ª edição, Brasília, 2010.

ANVISA, Normas de Desempenho para Testes de Sensibilidade Antimicrobiana: 15° Suplemento Informativo, v. 25 n.1. Disponível em: http://www.anvisa.gov.br/reblas/reblas_public_teste_sensibilidade.pdf Acesso em: 08/02/2013.

BASER, K. H. C.; BUCHBAUER, G. Handbook of Essential Oils Science, Technology, and Applications. CRC press, 2010.

CALAO, V. Y. P. Caracterização físico-química, composição e capacidade antioxidante do óleo essencial de Myrcia amazonica DC. (Myrtaceae). Master's Thesis, Universidade Federal do Oeste do Pará, Santarém, Brazil, April, 2014.

CARDOSO, A. et al. Atividade antibacteriana de Óleos Essenciais sobre Streptococcus mutans e Staphylococcus aureus. Revista Brasileira de Plantas Medicinais. V.16, 2 suppl. 1. August, p. 372-377, 2014.

CARVALHO A. C., CARVALHO, D.F. Biodiversidade, biotecnologia e indústria de fitoterápicos na Amazônia: uma alternativa para o desenvolvimento sustentável. IX ENCONTRO NACIONAL DA SOCIEDADE BRASILEIRA DE ECONOMIA ECOLÓGICA, Brasília – DF, outubro de 2011.

CASCAES, M. M. et al. Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants. International Journal of Molecular Sciences, v. 16, n. 10, p. 23881–23904, 2015.

CERQUEIRA, M. D., et al, Variação sazonal da composição do óleo essencial de Myrcia salzmannii Berg. (Myrtaceae), Quimica Nova, Vol. 32, No. 6, 1544-1548, 2009.

CHENG, A.-X. et al. Plant Terpenoids:Biosynthesis and ecological functions. Journal of Integrative Plant Biology, v. 49, n. 2, p. 179–186, 2007.

CRUZ, A. V. DE M.; KAPLAN, M. A. C. Uso medicinal de espécies das famílias Myrtaceae e Melastomataceae no Brasil. Floresta e Ambiente, v. 11, n. 1, p. 47–52, 2004.

CUNHA, A. P., CAVALEIRO, C., SALGUEIRO, L. Fármacos aromático (Plantas aromáticas e óleos essenciais). In: CUNHA, A. P. (Coordenador), Farmacognosia e Fitoquímica. ed. Fundação Calouste Gulbenkian, Lisboa, 2005.

DE CASTRO, A. S.; ANDRADE, D. C. O custo econômico do desmatamento da Floresta Amazônica brasileira (1988-2014). Perspectiva Econômica, v. 12, n. 1, p. 1–15, 2016.

DE CERQUEIRA, M. D. et al. Quim. Nova, Química Nova, v. 32, n. 6, p. 588–594, 2009.

DE CERQUEIRA, M. D. et al. Seasonal variation and antimicrobial activity of Myrcia myrtifolia essential oils. Journal of the Brazilian Chemical Society, v. 18, n. 5, p. 998–1003, 2007.

DEGENHARDT, J.; KÖLLNER, T. G.; GERSHENZON, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, v. 70, n. 15–16, p. 1621–1637, 2009.

DIAS, C. N.; MORAES, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitology Research, v. 113, n. 2, p. 565–592, 2014.

DUDAREVA, N. et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, v. 198, n. 1, p. 16–32, 2013.

EISENREICH, W.; ROHDICH, F.; BACHER, A. Deoxyxylulose phosphate pathway to terpenoids. Trends in Plant Science, v. 6, n. 2, p. 78–84, 2001.

ELAISSI, A. et al. Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (North East Tunisia). Molecules, v. 17, n. 3, p. 3044–3057, 2012.

- FADIL, M. et al. Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L. SpringerPlus, v. 5, n. 1, p. 1062, 2016.
- FALEIRO, D. et al. GC/MS analysis and potential cytotoxic activity of Calyptranthes grandifolia (O. Berg), Calyptranthes tricona (D. Legrand) and Myrciaria plinioides (D. Legrand) essential oil in RAW264.7 and CHO-K1 cells. Biomedicine and Pharmacotherapy, v. 89, p. 1431–1441, 2017.
- FATTAHI, B. et al. Essential oil variation in wild-growing populations of Salvia reuterana Boiss. collected from Iran: Using GC-MS and multivariate analysis. Industrial Crops and Products, v. 81, p. 180–190, 2016.
- FEARNSIDE, P. M. Desmatamento na Amazônia: dinâmica, impactos e controle. Acta Amazonica, v. 36, n. 3, p. 395–400, 2006.
- FELIPE, L. O., BICAS, J. L. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, v. 39, n. 2, p. 120-130, maio 2017.
- FERRÃO, T. S. Compostos voláteis e parâmetros de qualidade de diferentes genótipos de fruto de *Butia odorata*, 90 f., Dissertação (Mestrado) Universidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, RS, 2012.
- FERREIRA, Marcia M. C.; ANTUNES, Alexandre M.; MELGO, Marisa S. and VOLPE, Pedro L. O., Quimiometria I: calibração multivariada, um tutorial. Quim. Nova (online). 1999, vol. 22, n.5, pp.724-731. ISSN 0100-4042. http://dx.doi.org/10.1590/S0100-40421999000500016.
- GENTRY, A. H. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climate fluctuations, or na accident of the Andean orogeny? Ann. Missouri Botanic Garden. 1982.
- GERSHENZON, J.; DUDAREVA, N. The function of terpene natural products in the natural world. Nature Chemical Biology, v. 3, n. 7, p. 408–414, 2007.
- GONÇALVES, A.H.; PEREIRA, A.S.; SANTOS, G.R.S; GUIMARÃES, L. G. . Atividade fungitóxica in vitro dos óleos essenciais de *Lippia sidoides* Cham ., *Cymbopogon citratus* (D . C .) Stapf . e de seus ... n. April 2016, 2015.
- GOTTLIEB, O. R. et al. Óleos essenciais da Amazônia VII. (1). v. 11, n. 1, p. 143–148, 1981.
- GRESSLER, E., PIZO M. A., MORELLATO, L. P. C. Polinização e dispersão de sementes em Myrtaceae do Brasil, Revista Brasil. Bot., V.29, n.4, p.509-530, out.-dez. 2006.

- HOPKINS, M. J. G., Flora da Reserva Ducke, Amazonas, Brasil, Rodriguésia 56 (86); 9-25. 2005.
- HOSTETTMANN, K.; QUEIROZ, E.F.; VIEIRA, P.C. Princípios ativos de plantas superiores. São Carlos: EdUFSCar, 2003. 152p.
- IAL Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz v.1: Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP. 4 ed. Impressa, 1 ed. Digital, 2008, p. 183.
- IVANE CARNEIRO DA CRUZ; TOPA, M. A. Análise Multivariada como Ferramenta de Gerenciamento de Fornecedores Visando um Relacionamento com Vantagem Competitiva. p. 82, 2009.
- KAPPERS, I. F.; DICKE, M.; BOUWMEESTER, H. J. Terpenoids in Plant Signaling: Chemical Ecology. In: Wiley Encyclopedia of Chemical Biology. [s.l: s.n.].
- KIAERSK, O. B. et al. Composição e variação sazonal do óleo essencial de. v. 20, n. March 2009, p. 82–86, 2010.
- LESGARDS, J. et al. Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review. PHYTOTHERAPY RESEARCH, p. 1423–1446, 2014.
- LIDIANE, D. et al. Composição química e atividades anticolinesterásica, larvicida e fungicida de óleos essenciais de Mirtáceas da Serra de Carajás, PA. n. lc, p. 2002, 2002.
- LIMBERGER, R. P. et al. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul. Quimica Nova, v. 27, n. 6, p. 916–919, 2004.
- LOPEZ, M. L.; BONZANI, N. E.; ZYGADLO, J. A. Allelopathic potential of Tagetes minuta terpenes by a chemical, anatomical and phytotoxic approach. Biochemical Systematics and Ecology, v. 36, n. 12, p. 882–890, 2008.
- LORDÊLO, T. S. C. M. S. MÉTODOS MULTIVARIADOS NA ANÁLISE DE ÓLEOS ESSENCIAIS DE Lippia origanoides Kunth CULTIVADA. p. http://periodicos.uefs.br/index.php/semic/article/, 2010.
- LUCAS, E. J. et al. Phylogenetics, morphology, and evolution of the large genus Myrcia s.l. (Myrtaceae). International Journal of Plant Sciences, v. 172, n. 7, p. 915–934, 2011.

- MAIA, J. G. S.; ANDRADE, E. H. A. DATABASE OF THE AMAZON AROMATIC PLANTS AND THEIR ESSENTIAL OILS. Química Nova, v. 32, n. 3, p. 595–622, 2009.
- MARQUES, J.D.O.; LIBARDI, P. L.; TEIXEIRA, W. G.; REIS, A.M. Estudo de parâmetros físicos, químicos e hídricos de um Latossolo Amarelo, na região Amazônica. Acta Amazônica, v. 34, n. 2, p. 145-154, 2004.
- MESQUITA, P. R. et al. Discrimination of Eugenia uni fl ora L . biotypes based on volatile compounds in leaves using HS-SPME / GC MS and chemometric analysis. Microchemical Journal, v. 130, p. 79–87, 2017.
- MINISTÉRIO DO MEIO AMBIENTE MMA, Instrução Normativa (s.n) Disponível em: http://www.mma.gov.br/estruturas/ascom_boletins/_arquivos/83_1909200803 4949.pdf Acesso em 08/02/2013.
- MIRANDA, C. A. S. F. DE et al. Correlação Entre Composição Química E Eficácia Antioxidante De Óleos Essenciais De Plantas Condimentares Por Análise De Agrupamentos Hierárquicos (Hca). E-Xacta, v. 7, n. 1, 2014.
- MOTA, M. F. P. S, ROSA, R., Cromatografia em fase gasosa, Instituto de Pesquisas Tecnológicas, São Paulo, 1996.
- NAKAMURA, M. J. et al. Essential oils of four Myrtaceae species from the Brazilian southeast. Biochemical Systematics and Ecology, v. 38, n. 6, p. 1170–1175, 2010.
- NEISSE, A. C.; HONGYU, K. Aplicação de Componentes Principais e Análise Fatorial a Dados Criminais de 26 Estados dos Eua Application of Principal Components and Factor Analysis to Crime Data From 26 Us States. v. 2, 2016.
- NEIVA KNAAK, L. M. F.; FIGURA. Potencial dos óleos essenciais de plantas no controlede insetos e microrganismos Potencial dos óleos essenciais de plantas no controle de insetos e microrganismos Potential of essential plant oils to control insects and microorganisms. n. September 2010, 2017.
- NETO, J. M. M. Estatística multivariada Uma visão didática-metodológica. Filosofia da ciência, p. 1–13, 2004.
- OLDFIELD, E.; LIN, F. Y. Terpene biosynthesis: Modularity rules. Angewandte Chemie International Edition, v. 51, n. 5, p. 1124–1137, 2012.
- PADOVAN, A. et al. The evolution of foliar terpene diversity in Myrtaceae. Phytochemistry Reviews, v. 13, n. 3, p. 695–716, 2014.

PANDEY, A. K. et al. Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, v. 7, n. JAN, p. 1–14, 2017.

PARREIRA, Thais Fernanda, UTILIZAÇÃO DE MÉTODOS QUIMIOMÉTRICOS EM DADOS DE NATUREZA MULTIVARIADA, Dissertação (Mestrado), Universidade Estadual de Campinas, Instituto de Química. 2003.

PASCOAL, A. C. R. F.; SALVADOR, M. J. Essential Oils from Neotropical Myrtaceae: Chemical Diversity and Biological Properties. CHEMISTRY & BIODIVERSITY, v. 8, p. 73–94, 2011.

PEREIRA, R. A. et al. Essential Oils of Twelve Species of Myrtaceae Growing Wild in the Sandbank of the Resex Maracanã, State of Pará, Brazil. v. 13, n. 4, p. 440–450, 2010.

PINTO, J. M. A., SOUZA, E. A., OLIVEIRA, D. F. Use of plant extracts in the control of common bean anthracnose. Crop Protection, 29, 2010, 838-842.

PUBCHEM. Disponível em: https://pubchem.ncbi.nlm.nih.gov//compound/___-delta-Cadinene#section=BioAssay-Results>. Acesso em: 14/04/2018.

REHMAN, R. et al. Biosynthesis of essential oils in aromatic plants: A review. Food Reviews International, v. 32, n. 2, p. 117–160, 2016.

RIBEIRO, J.E.L. da S.; HOPKINS, M.J.G.; VICENTINI, A. et al. Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. Manaus: INPA, 1999.

RIBEIRO, M.N.G. Aspectos climáticos de Manaus. Acta Amazônica, Manaus, v. 6, p. 229-33, 1976.

ROSA P. O., ROMERO, R., O gênero Myrcia (Myrtaceae) nos campos rupestres de Minas Gerais, Brasil. Rodriguésia 63(3): 613-633. 2012.

ROSA, C. S. et al. Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey.) DC. Revista Brasileira de Plantas Medicinais, v. 18, n. 1, p. 19–26, 2016a.

ROSA, C. S. et al. Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey.) DC. Revista Brasileira de Plantas Medicinais, v. 18, n. 1, p. 19–26, 2016b.

SÁ, F. A. S. et al. Essential oils in aerial parts of Myrcia tomentosa: Composition and variability. Brazilian Journal of Pharmacognosy, v. 22, n. 6, p. 1233–1240, 2012.

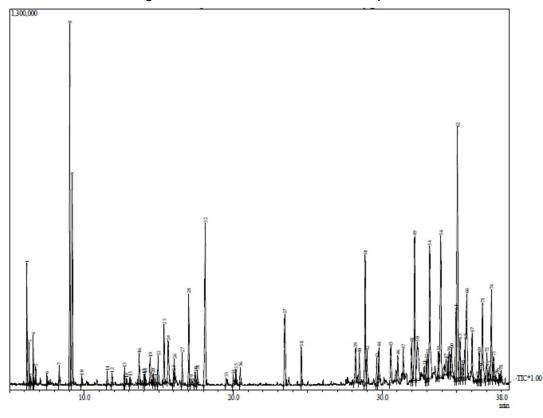
- SACCOL, E. M. H. et al. Anaesthetic and antioxidant effects of Myrcia sylvatica (G. Mey.) DC. and Curcuma longa L. essential oils on tambaqui (Colossoma macropomum). Aquaculture Research, v. 48, n. 5, p. 2012–2031, 2017.
- SILVA, F. K. S. et al. Levantamento das espécies conhecidas como pedra-umecaá (Myrtaceae), com ênfase nas comercializadas na cidade de Belém, Pará, Brasil. Biota Amazônia, v. 5, n. 1, p. 7–15, 2015.
- SILVA, L. A. et al. Composition and Antimicrobial Activity of Leaf Essential Oils of Myrcia sylvatica (G. Mey.) DC. Composition and Antimicrobial Activity of Leaf. European Journal of Medicinal Plants, v. 13, n. 3, p. 1–9, 2016.
- SILVA, M. L. D. A. et al. ESSENTIAL OIL VARIATION IN CALYPTRANTHES SPRUCEANA. v. 23, n. 11, p. 2515–2516, 1984.
- SIQUEIRA, T. V. Desenvolvimento sustentável: Antecedentes históricos e propostas para a Agenda 21. Revista do BNDES. Rio de Janeiro, v.8, n.15, p. 247-288, jun. 2001.
- SOBEH, M. et al. Chemical Profiling of the Essential Oils of Syzygium aqueum , Syzygium samarangense and Eugenia uniflora and Their Discrimination Using Chemometric Analysis. Chemistry & Biodiversity, v. 13, n. 11, p. 1537–1550, 2016.
- SOUZA DE OLIVEIRA, L. G. et al. Chemical variability of essential oils of Copaifera langsdorffii Desf. in different phenological phases on a savannah in the Northeast, Ceará, Brazil. Industrial Crops and Products, v. 97, p. 455–464, 2017.
- SOUZA, M. A. D.; KAWASAKI, M. L.; HOLST, B. K. myrtaceae.pdf. In: Flora da Reserva Ducke Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. [s.l: s.n.]. p. 417–436.
- STASHENKO, E. MARTINEZ, J. R. Algunos aspectos prácticos para la identificación de analitos por cromatografia de gases acoplada a espectrometria de masas. Scientia Chromatographica, v. 2, n. 1, p. 29–47, 2010.
- STEFANELLO, M. É. A. et al. Composição e variação sazonal do óleo essencial de Myrcia obtecta (O. Berg) Kiaersk. var. obtecta, Myrtaceae. Brazilian Journal of Pharmacognosy, v. 20, n. 1, p. 82–86, 2010.
- STEFANELLO, M. É. A.; PASCOAL, A. C. R. F.; SALVADOR, M. J. Essential oils from neotropical Myrtaceae: Chemical diversity and biological properties. Chemistry and Biodiversity, v. 8, n. 1, p. 73–94, 2011.

SWAMY, M. K.; SINNIAH, U. R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules, v. 20, n. 5, p. 8521–8547, 2015.

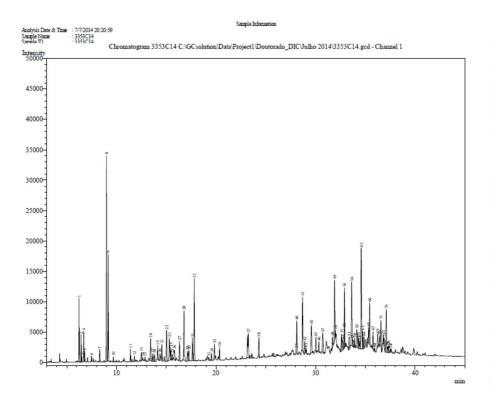
THOLL, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, v. 9, n. 3, p. 297–304, 2006.

VICTÓRIO, C. P. et al. Leaf essential oils and volatiles, histochemistry and micromorphology of Neomitranthes obscura (DC.) N. Silveira (Myrtaceae) growing in sandy coastal plains of Rio de Janeiro. Biochemical Systematics and Ecology, v. 78, n. March, p. 66–76, 2018.

WHO. Manual on practical entomology in malaria. Part II. Methods and techniques. [s.l: s.n.].

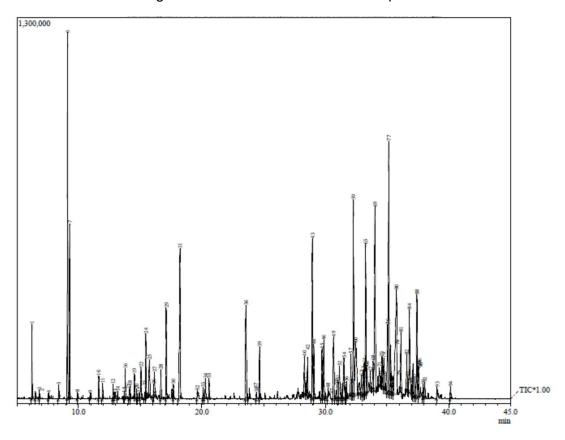

YANG, W. L. et al. Omethoate-Induced Changes of (+)- δ -Cadinene Synthase Activity and Gossypol Content in Cotton Seedlings. Journal of Integrative Agriculture, v. 11, n. 10, p. 1682–1690, 2012.

ZOGHBI, G. B. et al. Essential oils from three Myrcia species. p. 421–424, 2003a.

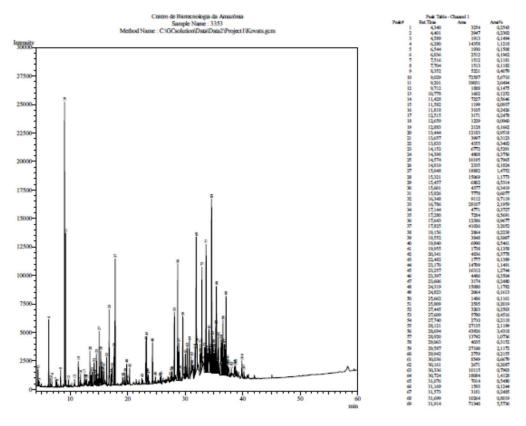

ZOGHBI, M. G. B. et al. Essential oils from three Myrcia species. Flavour and Fragrance Journal, v. 18, n. 5, p. 421–424, 2003b.

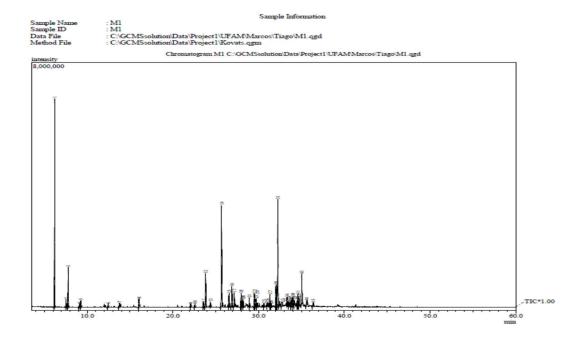
ANEXOS

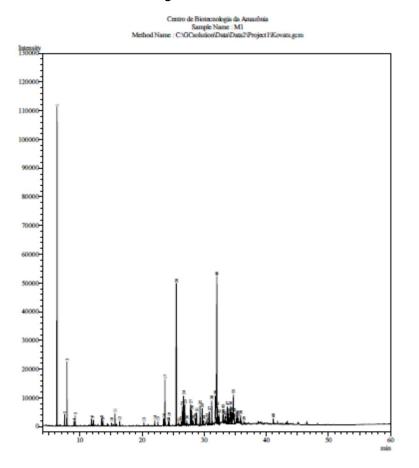
ANEXO A01 – Cromatograma CG-EM – Amostra PAc – M. paivae

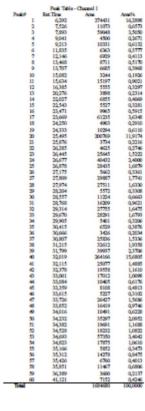


ANEXO A02 – Cromatograma CG-DIC – Amostra PAc – M. paivae

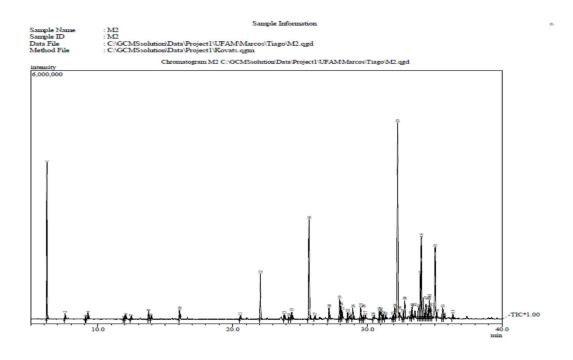



ANEXO A03 – Cromatograma CG-EM – Amostra PAs – M. paivae

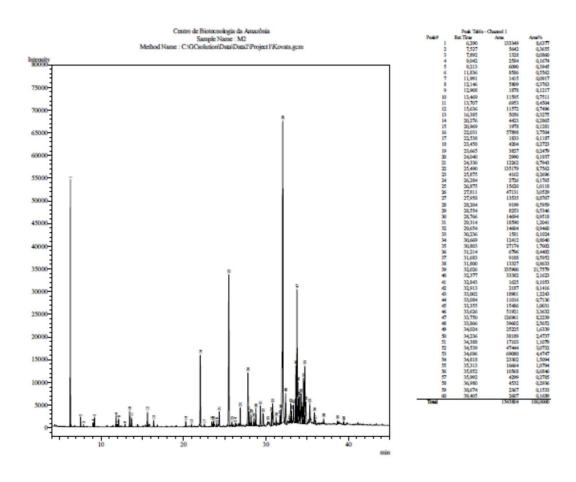

ANEXO A04 – Cromatograma CG-DIC – Amostra PAs – M. paivae

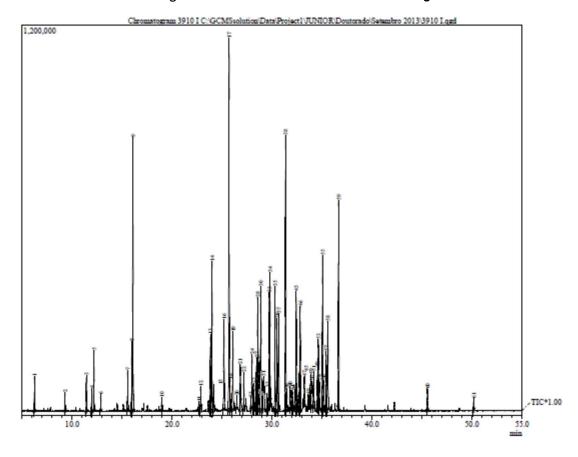


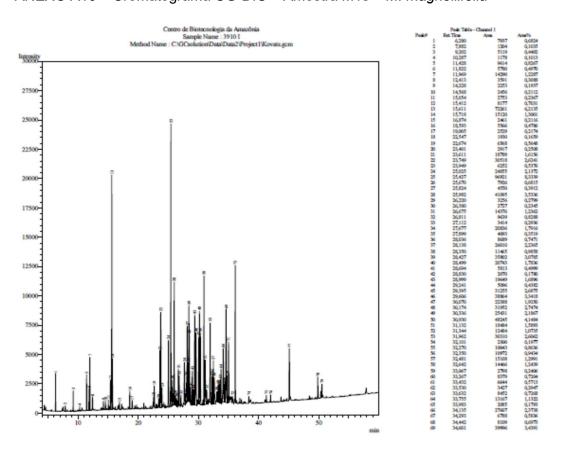
ANEXO A05 – Cromatograma CG-EM – Amostra C1c – M. citrifolia

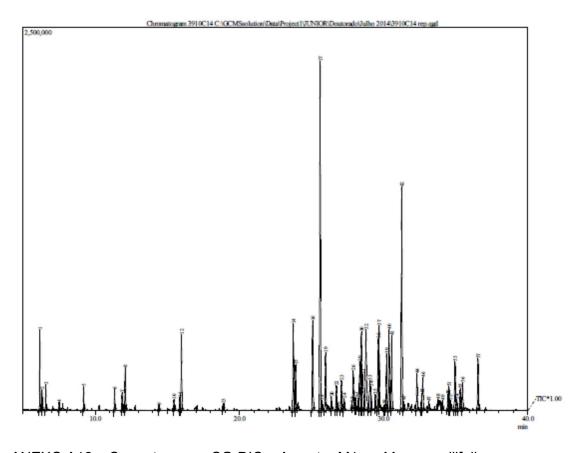


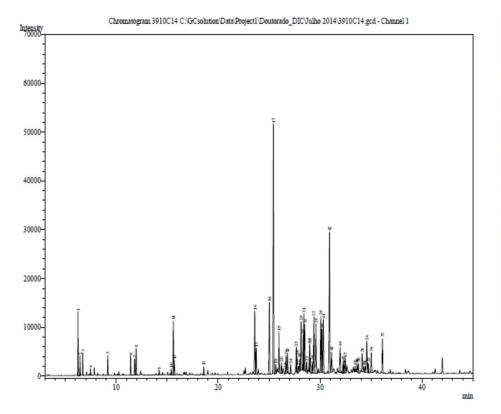
ANEXO A06 - Cromatograma CG - DIC - Amostra C1c - M. citrifolia



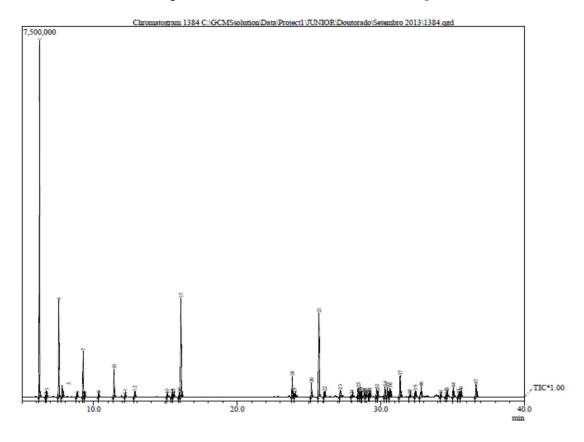

ANEXO A07 - Cromatograma CG-EM - Amostra C2c - M. citrifolia


ANEXO A08 - Cromatograma CG-DIC - Amostra C2c - M. citrifolia

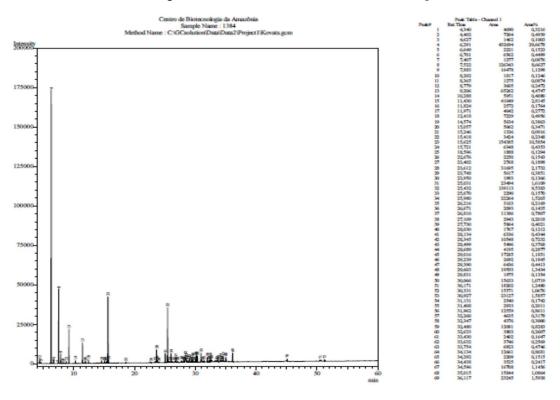

ANEXO A09 – Cromatograma CG-EM – Amostra M1s – M. magnoliifolia

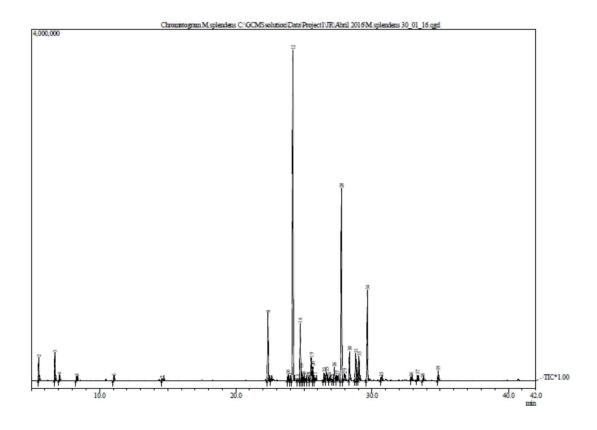

ANEXO A10 - Cromatograma CG-DIC - Amostra M1s - M. magnoliifolia

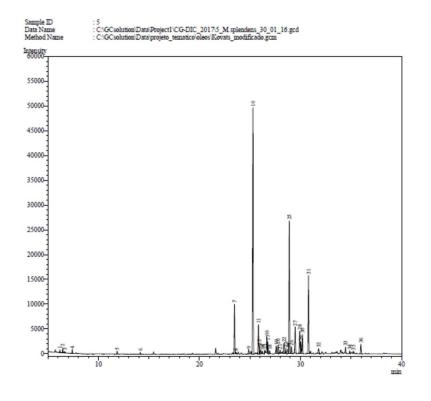
ANEXO A11 - Cromatograma CG-EM - Amostra M1c - M. magnoliifolia



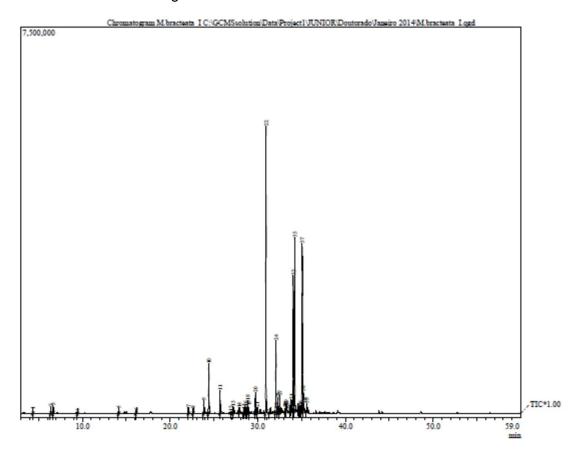
ANEXO A12 - Cromatograma CG-DIC - Amostra M1c - M. magnoliifolia



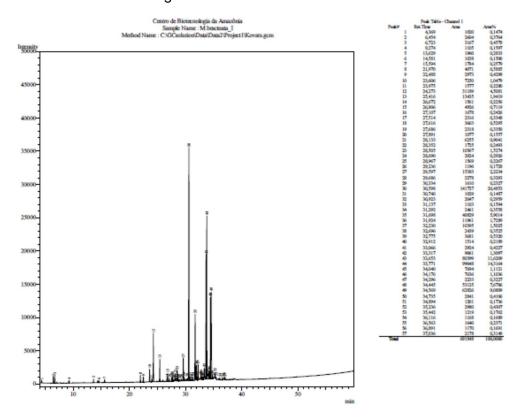

ANEXO A13 – Cromatograma CG-EM – Amostra M2s – M. magnoliifolia


ANEXO A14 - Cromatograma CG-DIC - Amostra M2s - M. magnoliifolia

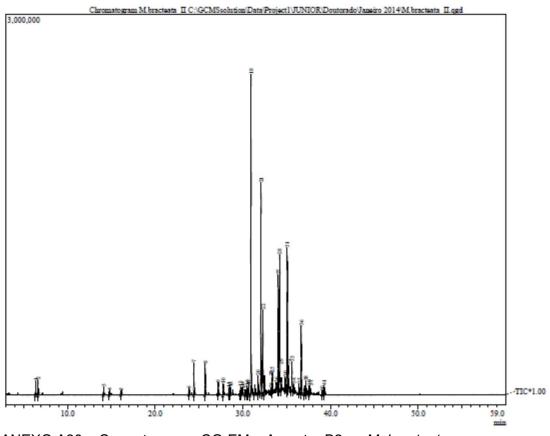
ANEXO A15 - Cromatograma CG-EM - Amostra M4c - M. magnoliifolia

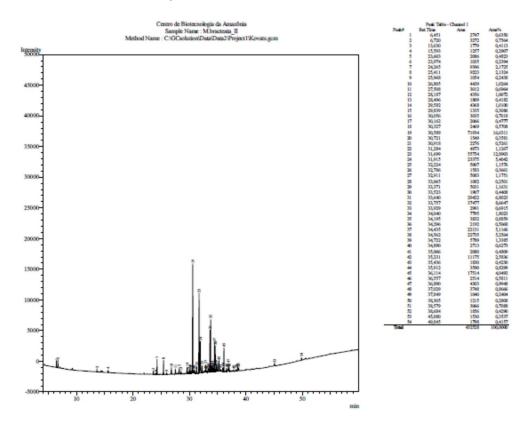


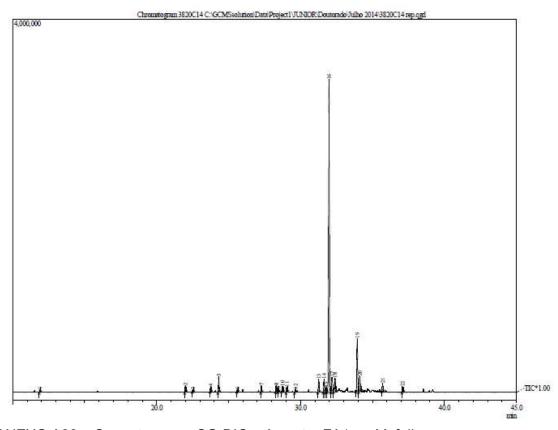
ANEXO A16 – Cromatograma CG-DIC – Amostra M4c – M. magnoliifolia

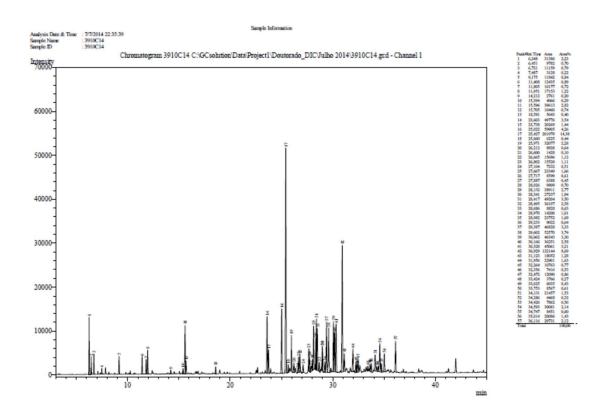


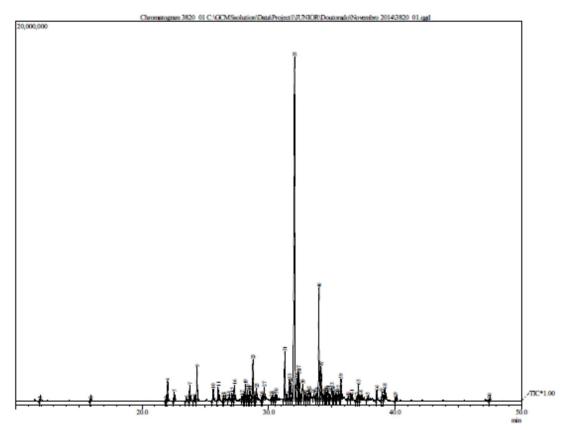
	Ret.Time	Area	Area%
1	6,170	1487	0,2332
2	6,442	2442	0,3832
3	6,655	869	0,1364
5	7,396	1969	0,3090
6	11,833	1235	0,2841
7	23.463	37833	5.9361
8	23,613	599	0.0940
9	24.867	3405	0.5342
10	25.288	201119	31,5562
11	25,835	23769	3,7295
12	25,932	5920	0.9289
13	26,071	2962	0,9289
14	26,071	1959	0.3074
15	26,466	1866	0,2928
16	26,662	12828	2.0128
17	26,768	8935	1,4020
18	26,706	2434	0.3819
19	27.594	6181	0.9698
20	27,773	7618	1,1953
21	27,984	2156	0.3383
22	28.354	10072	1.5803
23	28,554	4467	0.7008
24	28.748	3142	0.4930
25	28.887	107617	16.8855
26	29,105	6103	0.9576
27	29,468	21821	3.4237
28	29,926	17852	2.8010
29	30.030	9450	1.4827
30	30.189	16008	2.5117
31	30.787	64311	10.0906
32	31,790	5137	0.8060
33	34,457	4631	0.7267
34	34.873	2096	0.3289
35	35,246	1477	0,2317
36	35,978	7930	1,2442
37	49,731	25824	4,0518
Total		637335	100,0000


ANEXO A17 – Cromatograma CG-EM – Amostra B1c – M. bracteata

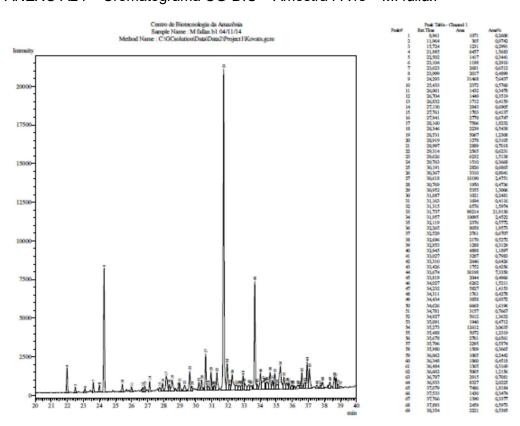

ANEXO A18 - Cromatograma CG-DIC - Amostra B1c - M. bracteata


ANEXO A19 – Cromatograma CG-EM – Amostra B2c – M. bracteata

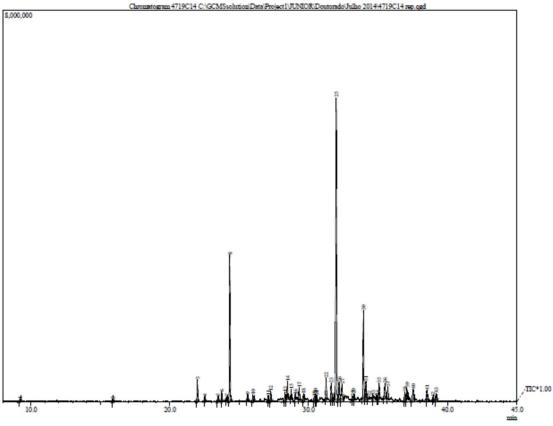

ANEXO A20 - Cromatograma CG-EM - Amostra B2c - M. bracteata

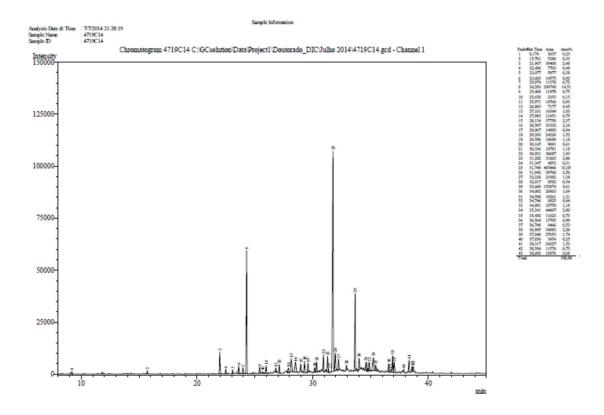


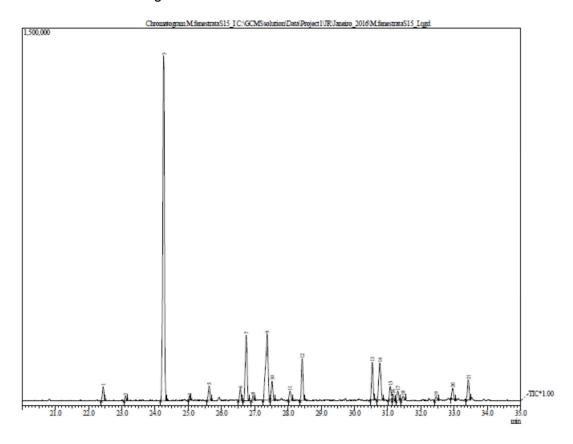
ANEXO A21 – Cromatograma CG-EM – Amostra FA1c – M. fallax

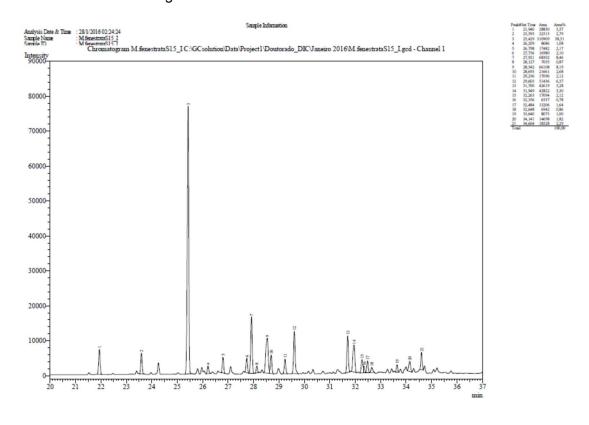


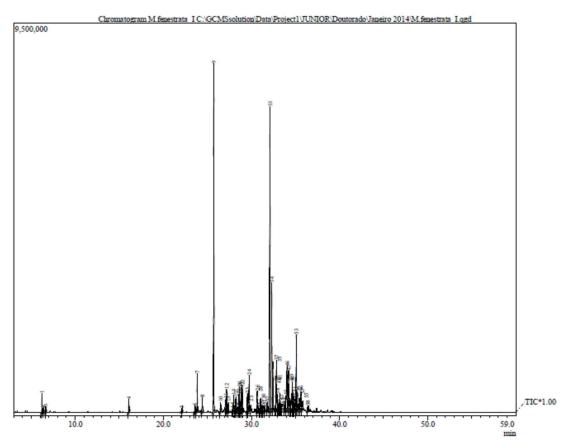
ANEXO A22 - Cromatograma CG-DIC - Amostra FA1c - M. fallax

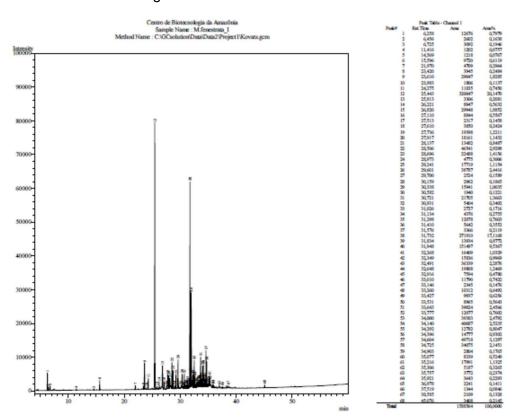


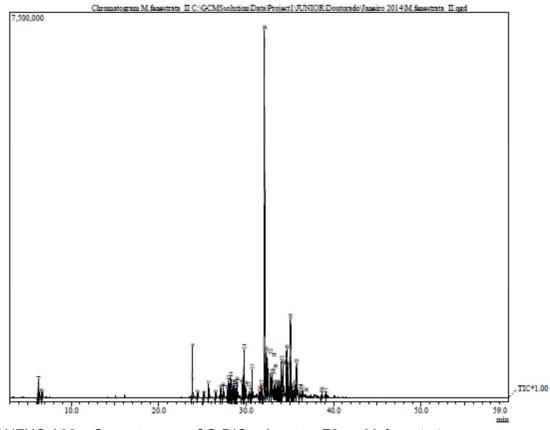

ANEXO A24 – Cromatograma CG-DIC – Amostra FA1s – M. fallax

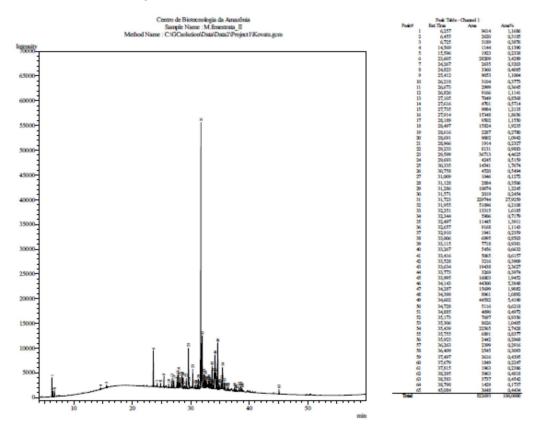

ANEXO A25 - Cromatograma CG-EM - Amostra FA2c - M. fallax

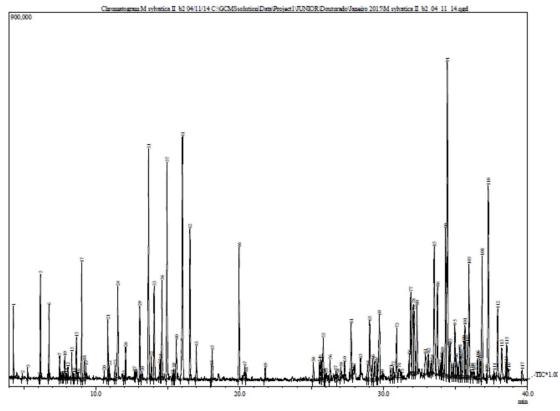

ANEXO A26 - Cromatograma CG-DIC - Amostra FA2c - M. fallax

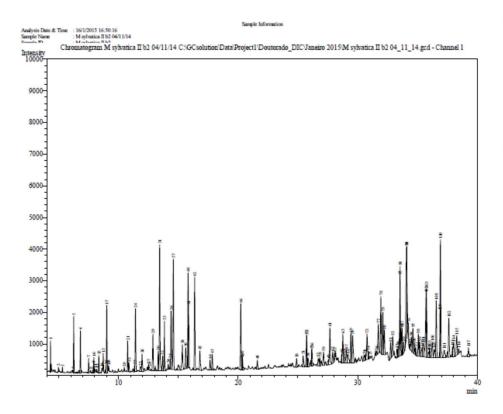

ANEXO A27 – Cromatograma CG-EM – Amostra F1s – M. fenestrata

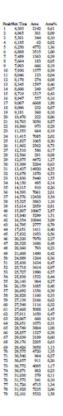

ANEXO A28 – Cromatograma CG-DIC – Amostra F1s – M. fenestrata

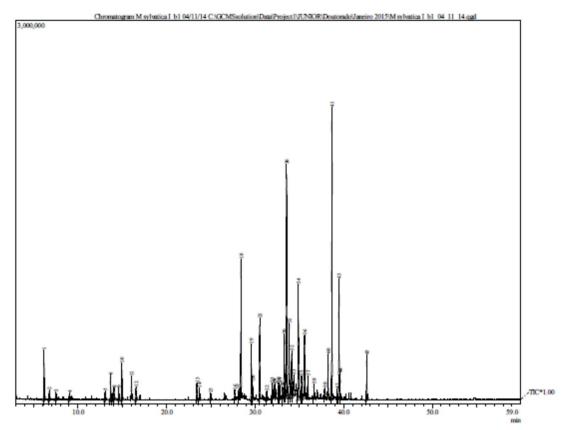

ANEXO A29 – Cromatograma CG-EM – Amostra F1c – *M. fenestrata*

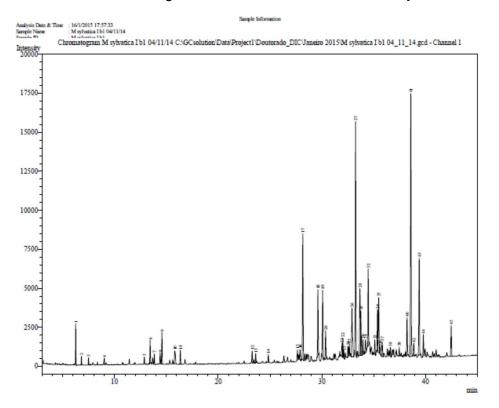

ANEXO A30 - Cromatograma CG-DIC - Amostra F1c - M. fenestrata

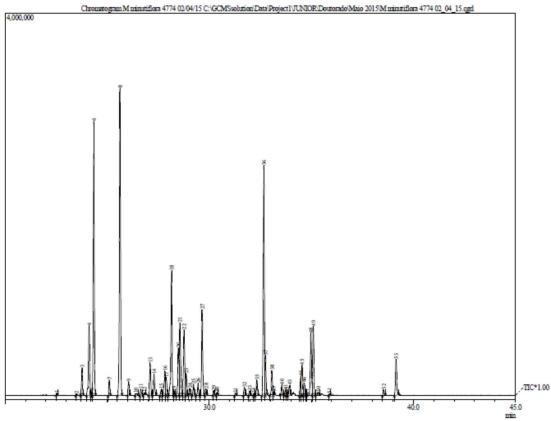

ANEXO A31 – Cromatograma CG-EM – Amostra F2c – *M. fenestrata*

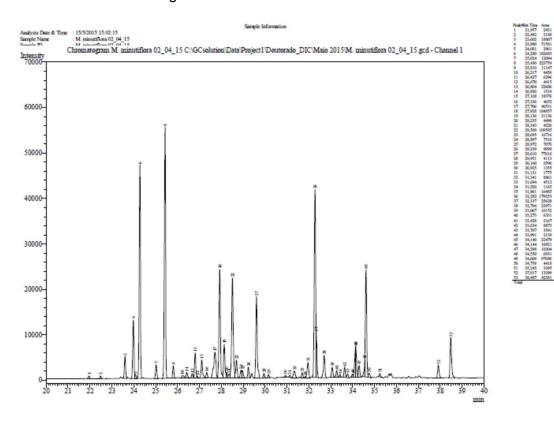

ANEXO A32 - Cromatograma CG-DIC - Amostra F2c - M. fenestrata

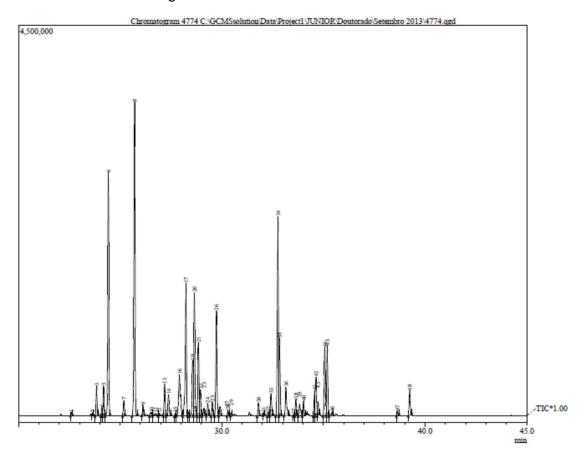


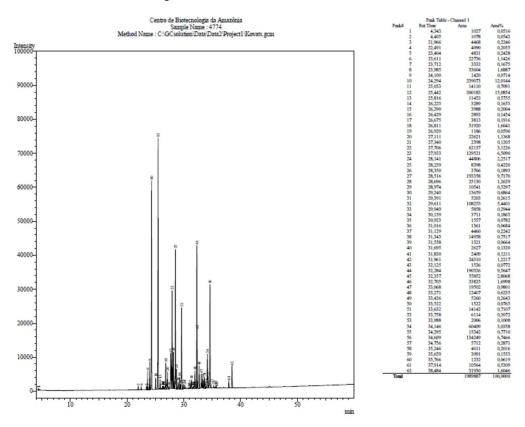

ANEXO A33 – Cromatograma CG-EM – Amostra S2c – M. sylvatica

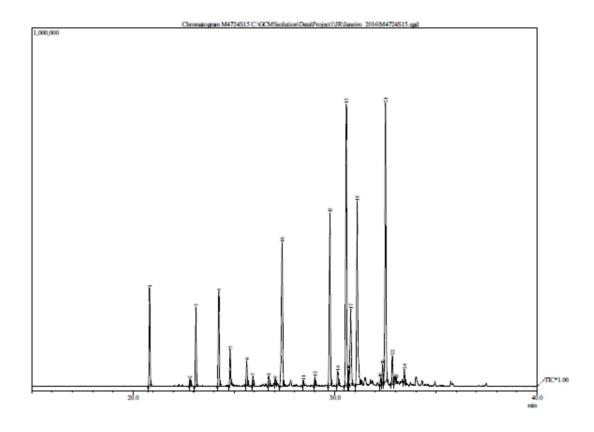

ANEXO A34 - Cromatograma CG-DIC - Amostra S2c - M. sylvatica

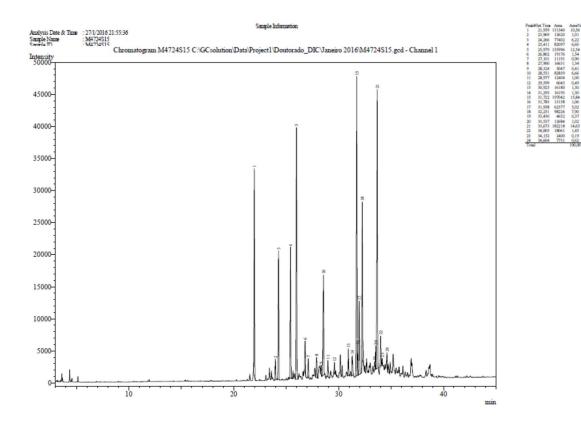


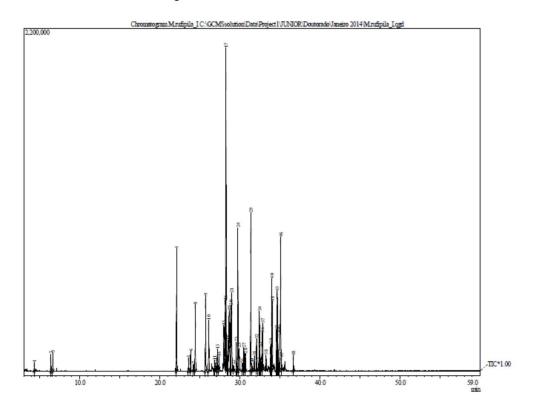

ANEXO A36 - Cromatograma CG-DIC - Amostra S1c - M. sylvatica

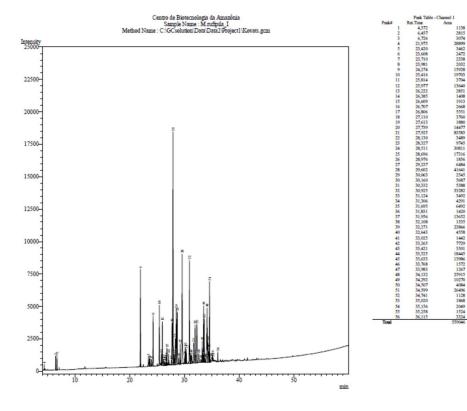

ANEXO A37 - Cromatograma CG-EM - Amostra MIc - M. minutiflora

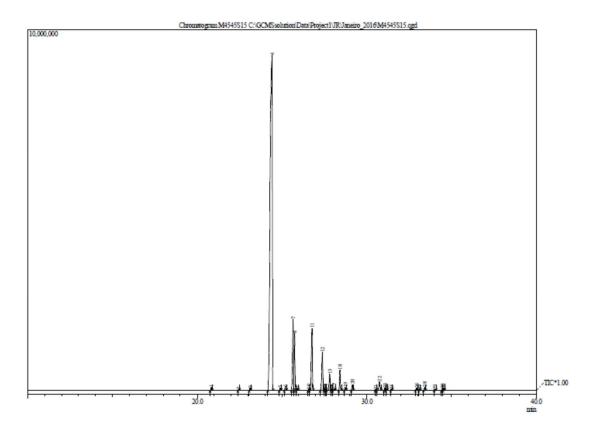

ANEXO A38 – Cromatograma CG-DIC – Amostra MIc – M. minutiflora

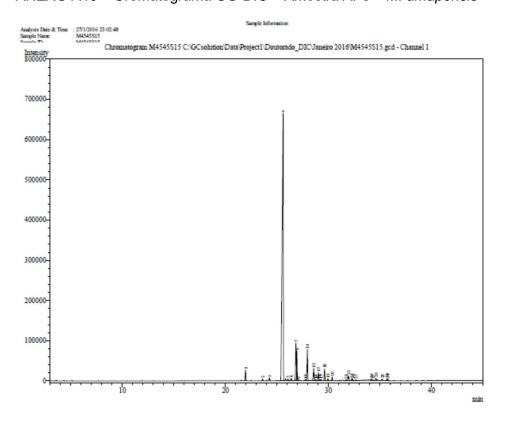

ANEXO A39 - Cromatograma CG-EM - Amostra MIs - M. minutiflora


ANEXO A40 – Cromatograma CG-DIC – Amostra MIs – M. minutiflora

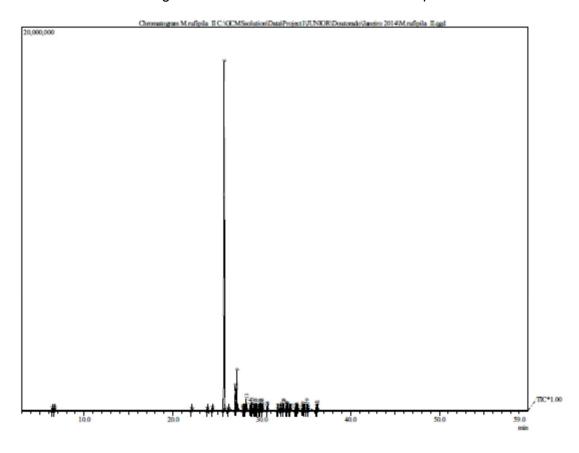

ANEXO A41 – Cromatograma CG-EM – Amostra AMs – M. amazonica


ANEXO A42 - Cromatograma CG-DIC - Amostra AMs - M. amazonica

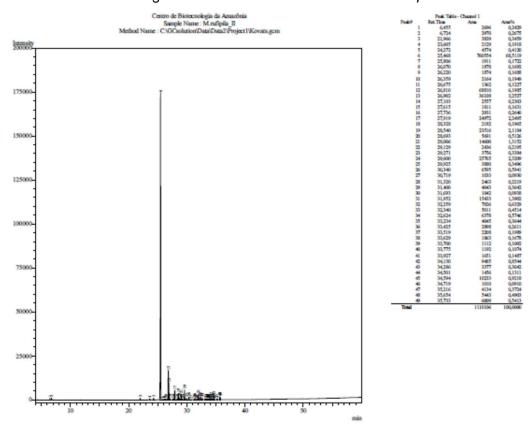

ANEXO A43 – Cromatograma CG-EM – Amostra AMc – M. amazonica

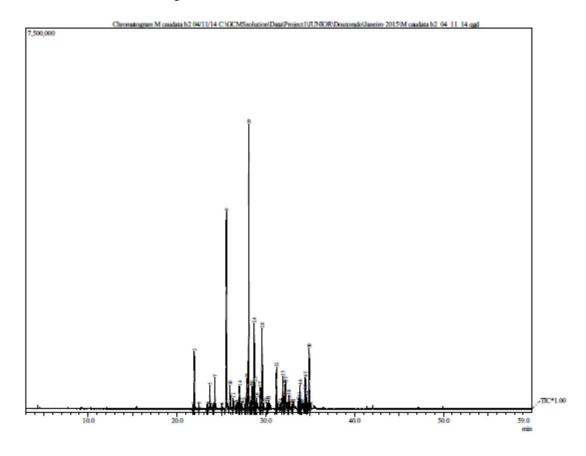

ANEXO A44 - Cromatograma CG-DIC - Amostra AMc - M. amazonica

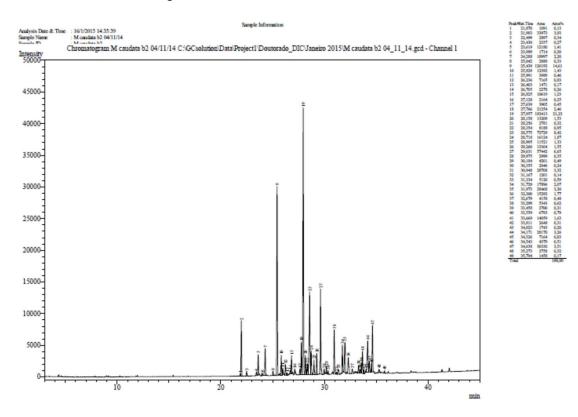
ANEXO A45 - Cromatograma CG-EM - Amostra APs - M. amapensis

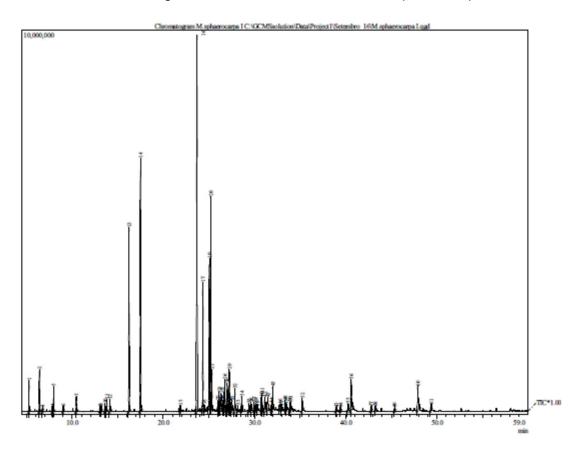


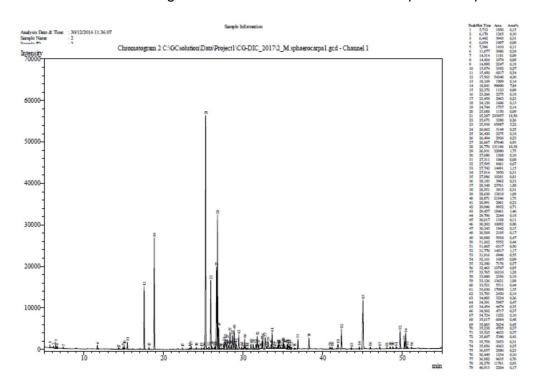
ANEXO A46 - Cromatograma CG-DIC - Amostra APs - M. amapensis

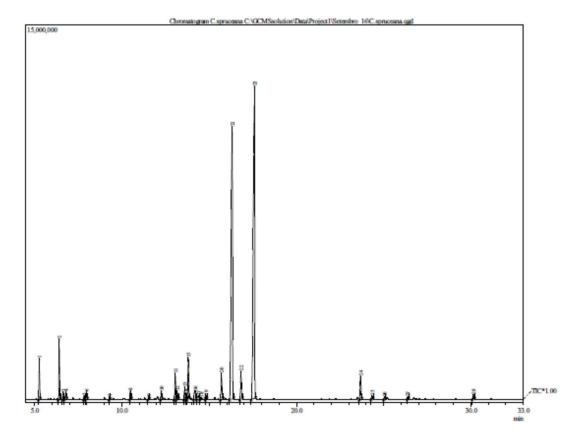


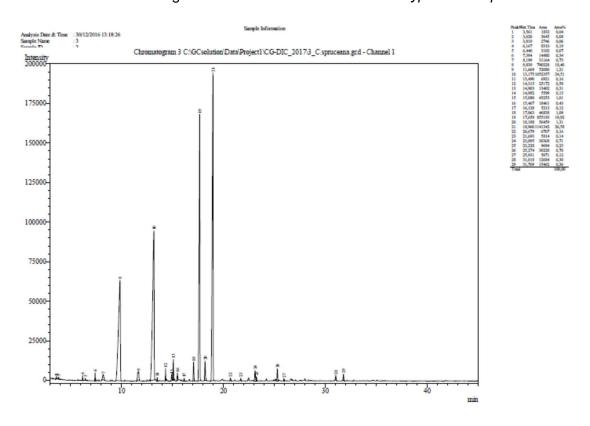

ANEXO A47- Cromatograma CG-EM - Amostra APc - M. amapensis

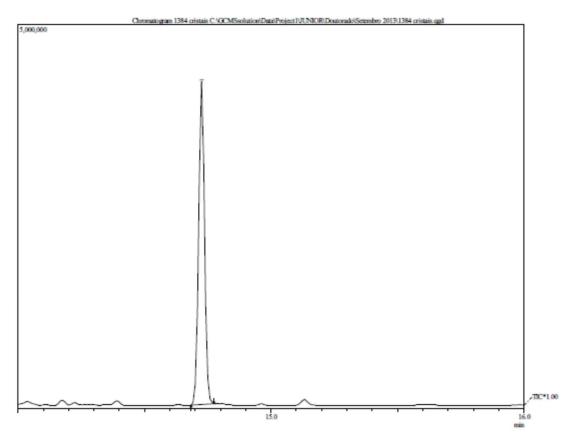

ANEXO A48 - Cromatograma CG-DIC - Amostra APc - M. amapensis

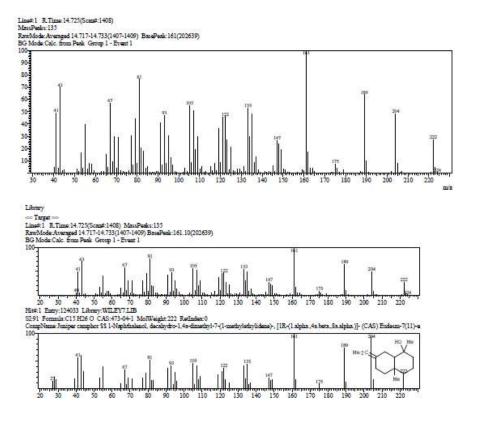

ANEXO A49 - Cromatograma CG-EM - Amostra MCc - Marlierea caudata

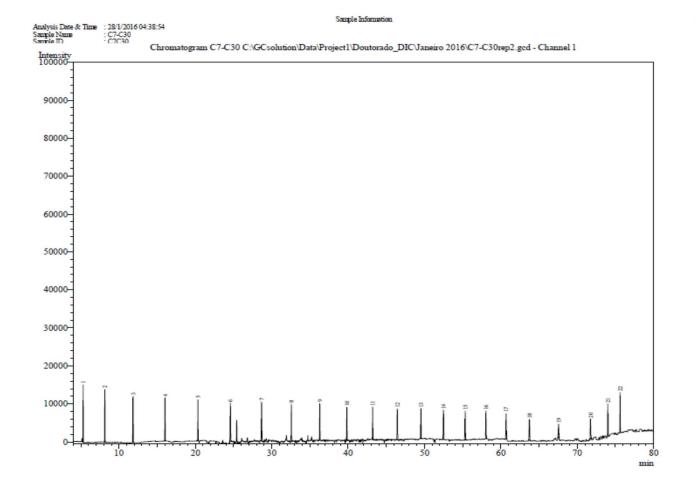

ANEXO A50 - Cromatograma CG-DIC - Amostra MCc - Marlierea caudata


ANEXO A51 – Cromatograma CG-EM – Amostra E1s – M. sphaerocarpa

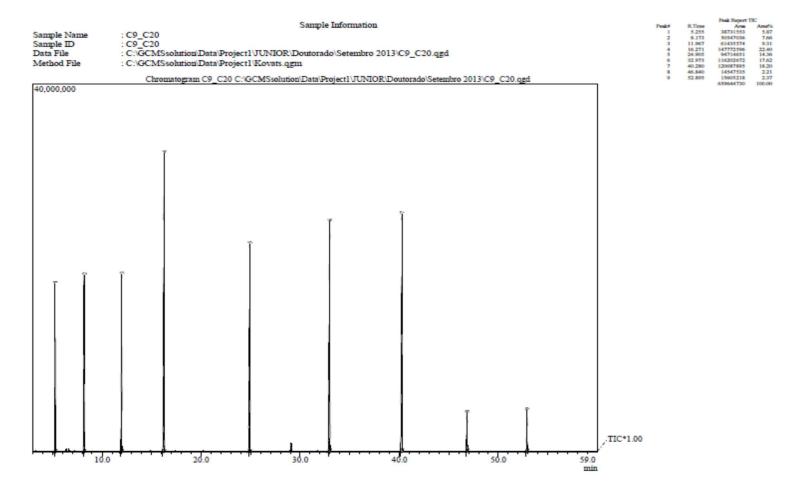

ANEXO A52 - Cromatograma CG-DIC - Amostra E1s - M. sphaerocarpa


ANEXO A53 – Cromatograma CG-EM – Amostra CSs – Calyptranthes spruceana


ANEXO A54 – Cromatograma CG-DIC – Amostra CSs – Calyptranthes spruceana


ANEXO A55 – Cromatograma CG-EM – Cristais de Juniper camphor

ANEXO A56 - Espectro de massas - Cristais de Juniper camphor



ANEXO A57 – Cromatograma CG-DIC – Padrão de n-alcanos C9 – C30

Peak	det.Time	Acres	Arrashi
1	5,295	36785	5,07
2	8,133	38231	5,27
3	11,834	38406	5,29
3 4 5 6 7	16,018	38604	5,32
5	20,330	38376	5,29
6	24,575	37809	5,21
7	28,662	38994	5,37
8	32,568	37135	5,12
9	36,287	36111	4,98
30	39,832	34088	4,70
11	43,212	32835	4,52
12	46,440	32625	4,49
13	49,526	30727	4,23
14	52,482	30363	4,18
15	55,319	30210	4,16
16	58,041	29906	4,12
17	60,687	29442	4,06
18	63,737	26587	3,66
19	67,557	23892	3,29
20	71,735	24598	3,39
21	74,007	28439	3,92
22	75,603	31670	4,36
Total			100,00

ANEXO A58 – Cromatograma CG-EM – Padrão de n-alcanos C9, C10, C11, C12, C14, C16, C18, C20 e C22

