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Abstract: The low-lying excited states in ' 42Nd were investigated by inelastic electron scattering. The
momentum transfer range covered was 0.5-2.8 fm- . Transition charge densities were extracted for
natural-parity states from 0+ up to 9- and up to an excitation energy of3.5 MeV. For several new
excited states spin and parity assignments have been suggested . 'Me experimental transition charge
densities have been interpreted with the aid of the quasiparticle-phonon model (QPM). The QPM
is well-suited to investigate the contribution of collective and single-particle degrees of freedom
to excited states in spherical nuclei . On the basis ofthe QPM calculations it is shown that in ' 42Nd
both degrees of freedom play an important role, as well as the interplay between them. Both the
strength distribution and the structure of the transition charge densities of the low-lying excited
states are well described by the calculations . The origin of the structure in the nuclear interior
usually predicted by microscopic calculations but not observed experimentally is explained. An
argument for the proton number dependence of the excitation energy of the 3 1 state in the N = 82
isotones is given .

NUCLEAR REACTIONS 142Nd(e, e'), E = 112-450 MeV; measured spectra ; deduced longi-
tudinal form factor of low-lying states . 142Nd levels deduced L, J, 7T, transition charge
densities, B(A) values . Fourier-Bessel analysis, microscopic quasiparticle-phonon model.

With the availability of new, high resolution electron scattering facilities, the
region of nuclei around the N= 82 neutron shell closure has regained interest. There
are a few reasons for this : first, for a number of elements in the rare earth region
the different isotopes display a shape transition from semi-magic, via vibrational to
strongly deformed, rotational nuclei . This has been the subject of investigations in
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e past and also recently a number of experiments to this purpose have been
rformed in Saclay 1,2) (Sm isotopes), MIT-Bates ') (Ce isotopes) and NIKHEF-K

(Nd isotopes). Second, it is possible to distinguish between different modes of
excitation by looking at transition charge densities with a sensitive probe such as
electron scattering.

In the present paper we will focus on this last aspect for the nucleus "ZNd. There
is evidence ') that in the N= 50, Z=40 region the low-lying collective states are
not only built of collective vibrations but also have considerable single-particle
nature. As `Nd is a spherical nucleus with an N=82 closed neutron shell,
excitations will involve mostly proton configurations, implying that theexperimental
transition densities will contain practically all nuclear structure information. There-
fore, this nucleus is especially well suited to investigate the interplay between
collective and single-particle degrees of freedom of low-lying excited states. The
nucleus " -Nd has also been the subject of recent studies with other experimental
methods, such as inelastic proton scattering 5) and low-energy photon scattering') .

elastic electron scattering experiments that will be discussed have been
rformed with the medium-energy accelerator MEA at NIKHEF-K. The excellent

energy resolution made it possible to separate most states below an excitation energy
of 3.6 MeV. Form factors, measured for effective momentum transfers from 0.5 up
to 2.8 fm-% andtransition charge densities, extracted from the form factors by means
of Fourier-Bessel analysis, will be presented for natural parity states ranging from
0' up to 9-. The densities have been compared to the results of calculations in the
framework of the quasiparticle-phonon model (QPM), a model that has proven to
be successful in describing a wide range of nuclear phenomena.
A preliminary report of this work on the low-lying quadrup'Ae excitations has

appeared earlier ') . In this paper an extensive discussion of the data, for other
multipolarities ranging from 0' up to 9-and the comparison with the calculations
performed in the framework of the quasiparticle-phonon model (QPM) will be
presented. To this end the paper is organized in the following way: in sect . 2 a
description of the experimental setup and the data analysis is given and in sect . 3
a short outline of the QPM is described. In sect. 4 the experimental results for the
2+, Y, 4+ and other states, respectively, are presented and compared to the results
obtained from the calculations . The conclusions are given in sect. 5 .

2 .1 . EXPERIMENTAL PROCEDURES

2. Experimental procedures and data analysis

The experiment was performed at the electron scattering facility of the NIKHEF-
K. Detailed information about the accelerator, the beam transport, the spectrometer
and the detection system is available in ref. 8) . Only system properties especially
relevant to the present work are to be discussed in this subsection .
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The beam is produced by the medium energy accelerator (MEA). The resolution
in energy is 0.2%. To improve on this resolution for the detected electrons, the beam
is led through the beam handling system (BH%, which is tuned in such a way that
the dispersion of the beam on the target matches that of the spectrometer. The
spectrometer used in the present experiment is the QDD spectrometer, which is
designed to combine a good energy resolution

	

x10-4) with a large solid an
(5.6 msr) . The detection system of the QDD spectrometer') consists of a stack of
four muldwire drift chambers (MWDC), triggered by a set of scintillators and
(;erenkov counters. Two MWDCs measurethe position anddirection ofthe scattered
electron in the dispersive plane and two in the non-dispersive plane, making it
possible to reconstruct the trajectory of each event through the spectrometer "').
This allows, with the knowledge of the magnetic field, the determination of the
scattering vector of the electron at the target . Therefore, by taking data on an
event-by-event basisoneis able to correct for spectrometer aberrations andkinematic
broadening in the off-line analysis. In this data-taking mode one is limited to
approximately 900 counts per second. Therefore, if the count rates were higher, as
was the case for the lowest q-values, the data were acquired on-line in spectral form
(spectrum mode). The loss in resolution for these data was nonetheless small, since
a small spectrometer opening slit was used. The collected charge is measured by
means of a toroid monitor.
The 142Nd target of a thickness of 10.2 Mg/cM2 was obtained by reducing, melting

and rolling enriched Nd203 powder. The target thickness was chosen as a com-
promise between count rate and resolution. A (p, p') experiment was performed to
determine the isotopical purity of the target material, which turned out to be 99%.
The inhomogeneities of the target were estimated to be less than 1%. For optimum
resolution the target was set in transmission mode.
The data were taken over an effective transferred momentum range from 0.5 to

2.8 fm-' in steps of approximately 0.15 fm- . The effective tranferred momentum is
defined as

qr 2, ff= q(1 + !ZalEiR,,q)

e

where a is the fine structure constant, Req is the equivalent radius ofahomogeneously
charge sphere containing the nuclear charge, commonly taken to be 1 .12A '/3 . This
range was large enough to permit a model-independent analysis of the measured
form factors to obtain transition densities. The choice of angles and energies was
governed on the one hand by the necessity of achieving as good a resolution as
possible and, on the other hand, by the desirability of minimizing the contribution
of the transverse form factors, thus limiting the maximum scattering angle. The final
data set was comprised of beam energies between 112 and 450 MeV with an energy
resolution of 12 keV up to 30 keV. Two solid-angle defining slits were used, a small
one with an acceptance of 0.4 msr and a large one with an acceptance of 5.6 msr.
Correction for the dead-time losses was made by multiplying the contents of each
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ctrum with the factor 7 --= NplNc with Np being the number of triggers of the
scintillators and Nc being the number of triggers accepted by the whole detection
system . The relative wire efficiencies were extracted from additional mesurements.

ore information on dead-time losses and relative wire efficiencies can be found
in ref. ") .

Since the energy of the incoming beam is only approximately known, acalibration
rformed for each energy according to the usual method by recoil energy

erences. An additional run on a natural boron-nitride target was performed for
this purpose. These data were then simultaneously used to calibrate the excitation
energy scale along the focal plane 12).

To extract the cross sections from the measured spectra, the number of counts
in each peak was determined by means of a lineshape-fitting procedure. To this end
the program ALLFIT 1-4) was used, which corrects for straggling, bremsstrahlung

Schwinger effects "). In the fitting procedure no background was used, except
rthe data taken in spectrum mode, where a (small) flat background was assumed.

In this way form factors for 17 states up to an excitation energy of 3.6 MeV were
extracted. Fig. I shows, as an example, a fitted spectrum for 142Nd, taken at
Ej =243.5 MeV and 0=40.25' corresponding to a qeff of 1 . 1 fm- 1.
The efficiency of the detector system was checked before most measurements by

a run on "C. These runs were also used to eliminate some of the systematic errors
in the cross sections. To this end the cross sections for the 0' ground state of 12C

at each energy-angle combination of the experiment were calculated from the

s

0 1

16o

142Nd

31 -
41+

Ebeam ,: 243.47 MeV
0 = 40.25 deg

Fig . 1 . Fitted spectrum for "' Nd at a transferred momentum of

	

= 1 .1 fm-' . The peak due to the
target contaminant "'0 as well as the spin and parities of some of the strongest excitations are marked .
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accurately known charge distribution "). The ratio between the calculated and the
measured cross sections thus wasameasure forthe absolute efficiency ofthe detection
system, under the assumption that the conditions during the carbon run were the
same as for the neodymium runs . It was always found to be better than 98% after
correction for the wire-chamber efficiencies. This procedure could not be appli
in the vicinity of the very steep form factor minimum at q = 1 .7 fm-' of the groun
state of "C. At some other q-values there was either no ca-,bon measurement
performed or the quality of it was such, that it could not be used for normalization
purposes . Miese runs therefore have a larger systematic error.

For each data point statistical errors due to a number of sources were added
quadratically to the statistical error in the cross section. In the case of elastic
scattering the shape of the form factor as a function of the scattering angle and the
beam energy was taken into account in the determination of the errors in the cross
sections . This has not been done for inelastic scattering to excited states. Instead,
an additional statistical error of 2.5% was used. The systematic errors which could
not be eliminated in the normalization procedure were then summed linearly to the
total statistical error.

2.2 . FOURIER-BESSEL ANALYSIS

In order to obtain transition charge d ~-,nsities from the measured form factors a
Fourier-Bessel analysis was performed according to the parametrization of
Heisenberg 16,17) . In this parametrization the transition charge densities areexpanded
in a series of Bessel functions up to a cut-off radius Rc beyond which the charge
density is assumed to be zero .

In principle this procedure is model-independent, since these expansions are
complete . However, as the measured data extend only up to a maximum transferred
momentum q,,,,,, of 2.8 fm-', a certain form factor behaviour beyond this point has
to be assumed . To this end the prescription of Rothhaas etA ") was used, specifying
an "upper limit" beyond qrnax 9 given by an exponentially decreasing function, that
gives a reasonable envelope to the lower-momentum data. The limit was enforced
through the use of pseudo-data. These data were of zero cross section with error
bars given by the upper limit envelope . With this procedure 15 Fourier-Bessel
coefficients have been fitted . The inclusion of the pseudo-data in the fit then yields
the model or incompleteness error.

Furthermore, a cut-off R,, of 11 .5 fin was chosen . This is a normal value for this
mass region and is a compromise between having a reasonable number of parameters
and avoiding unphysical oscillations far outside the nucleus. In view of the latter
problem also a constraint in r-space was used, a so-called tail bias 16) . A tail bias
is a restriction which assumes that beyond a certain R, the transition charge
distribution falls off like some function of r. This function is chosen, in accordance
with the radial dependence of the wave function of the least bound nucleon(s), to
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have the shape of a Whittaker function '9). Hence, the overlap at large radii between
the wave function of the initial state and that of the final state is taken as

variance is then defined as a pseduo-X :! given by

is the weight factor of the tail constraint . It was chosen, tiagether with R1 , for
each transition charge density separately so as to give the most acceptable shape.

e number i was determined by taking an equidistant distribution of pseudo-data
between R, and R, with a spacing of 0.2 fin.

3 .1 . GENERAL FORMALISM
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(2)

) e -is( #~ -R01
2

icle-imhonon model

The QPM uses an effective hamiltonian which consists of four parts:

H = Hsp+Hpair+Hm+Hsm 9

In this section a description of the quasiparticle-phonon model (QPM) is presen-
ted for even-even spherical nuclei . the main idea of the QPM is to construct a
phonon basis, whereby phonons are defined as solutions of the quasiparticle-RPA
equations. The phonon basis is then used to calculate two- and multiple-phonon
states, which are subsequently coupled to the one-phonon states to obtain the
spectrum of excited states . The goal of the model is to be able to describe the
interplay between collective and single-particle degrees of freedom in the excitation
of low-lying excited states in spherical nuclei. Of interest for the present work are
of course the calculated transition charge densities, which can directly be compared
to the experimental transition charge densities .

Detailed information about aspects of the QPM which will not be treated in this
work, such as the description of giant resonances and properties of odd nuclei in
a wide range of excitation energies can be found in refs . 20-22) .

where H p is the sirgle-particle hamiltonian, Hp,,ir represents the monopole pairing
interaction, Hn is the separable multipole interaction in the ph channel, and H,,.,,
is the separable spin-multipole interaction in the ph channel .

First, a spectrum of excited states is calculated. This is done in the BCS approxima-
tion . In this approximation the particle creation and annihilation operators aj',,, andM

aj,,, are transformed into quasiparticle operators. The coefficients uj and vj of the
Bogoliubov transformation are chosen to minimize the expectation value of the
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operator H,,p= H P+ Hp, i ,, for the quasiparticle vacuum 10) . In this way the operator
H,,qp takes the form

Hsqp =

	

+Y, Ejeij.etj.+Y- Ejaj'.jmctjm,
j- im

where the energy of the quasiparticle ljm) is
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Here, A denotes the chemical potential, 7 the isospin of the quasipartiele and C,
the correlation function (energy gap).

Next, a two-quasiparticle creation operator A+ is defined in the following way:

A+ Q'Ajz)= Y_ (jmj'm'lku) j,,,crj~

	

(7)*jM j'..
mm'

and a unitary transformation from the operators A+(.U',ku) and A(.U'A;L) to phonon
creation and annihilation operators Q,,,, i and Q.,,,i is performed:

The phonons defined in this way represent both pure two-quasiparticle excitations
and collective excitations, to the structure of which many two-quasiparticle configur-
ations contribute .
To obtain a basis of phonons, the amplitudes CAil, and

	

are calculated. This is
done by solving the so-called quasiparticle-RPA equations for each J', which follow
from the ansatz that the hamiltonian H = Hq,p+ H,,, is approximately that of a set
of independent harmonic oscillators of which Q+,,,i are the creation operators of an
oscillator quantum phonon with energy&)Ai :

A +
[H, QAuil = 60AiQ+AjAi	(9)

It can be easily shown that this leads to vibrational ph excitations superposed on
a ground state, which is defined as a phonon vacuum, i.e . Q,,IRPA)=O. The
approximation (9), in which more complicated terms on the right-hand side have
been neglected by assuming that they occur with random signs (phases), leads to
coupled equations for the amplitudes 41 and 0, the RPA equations .
One of the main features of defining phonons as in eq. (8) is that by applying

the phonon creation operator to the I RPA) ground-state wave function one can not
only create a quasiparticle pair, but also destroy one, meaning that it is possible to
deal with two-quasiparticle correlations in the ground state . The RPA equations
yield also the excitation energiesWAi ,where A denotes the angular momentum and
i the root number of the solution . The expressions for WAi, and O Aj , in RPA can
be found in ref. 23) .
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ith the obtained phonon basis the hamiltonian (4) can be rewritten in terms of
tors:

I '0XiQ-AjAi
Api

then have the foil

I

	

I . ; .

+T-al I WAT(AMLAmi
Api A g a

X.I- i

where the square brackets indicate ang

3 .2 . TRANSITION DENSITIES

wing form:

A
.
'.

.
i

.
A

.M .i .

(10)

lar momentum coupling. Thewave functions

p )Q+ + Y PAT

	

+ iQ+,
V

	

JAIi

	

Ail (JO)[QAu

	

A I. -Jimr
A,i.'r

,A'SL'dJkjAVA#Ld00 _t 11-C-1 -t-

e first term of eq. (10) corresponds to the non-ineractive phonon approximation,
whereas the second describes the interaction between the different parts of the wave
function (11) with the exchange of one phonon. Terms involving the excbange of
three, five, . phonons are not shown. The matrix element U' i) ofthe interaction
between one- and two-phonon components of the wave function is a function of
the phonon amplitudes 4ij̀j ! and 0;'. andthe matrix element ofthe residual interaction.
Their precise relation can be found in ref. 24).

The transformation from quasiparticles to phonons leads to a violation of the
Pauli principle. As phonons are integer-spin configurations, they obey Bose statistics
and thus the underlying physical property of nucleons being fermions is ignored.
The consequences are twofold: first, the total many-phonon basis is overdetermined
compared to the correctly antisymmetrized many-quasiparticle basis. Second, the
violation of the Pauli principle necessitates a renormalization of the matrix elements
of the quasiparticle-phonon interaction 41", and (A~" . It has been shown in ref. 22)ii V

that for even-even spherical nuclei the first consequence is the most important,
leading to many spurious states . In the present work the Pauli principle was taken
into account in the diagonalization appro:-imation (for details see refs . 23-25

)), which
has proven to be sufficient for the present type of calculations while rigorously
simplifying the calculations .

In the present calculations the wave functions (11) for excited states with up to
three phonons were included . Diagonalizing the hamiltonian (10) results in the
excitation energies of excited states q.1, (v is the root number) and the structure
coefficients R, P and T With these quantities transition charge densities can be
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If one neglects ground-state correlations, only one-phonon p-'(r) and

i
two-phonon

p-'i,,,i,(r) densities contribute to the transition charge densities pj(r)

:A

	

V
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and
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these formulas
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pj(r)

	

(12)..

Ri(Jv)pj(r)+ 1

: P'

'"

i
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N.Z
p?,(r)=

E «1p~-(r)dt~(#k~Î,+ç0'

.ù

ù

.)
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M
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N.Z
p

i

.-j-(r)

= - 2

: pj~y(r)vj(,_-)^"

A *1'

AA

	

+
b1i"

	

1i

j, j"

and

the two-quasiparticle transition charge densities 4(r) have the form 26)

C.C
jj"

p~,(r)

	

(1+(-I)"1"J)e,(j-2!j'--IIJO)uj*(r)uj.(r),

(16)

Ji

	

4J

e	

2

where

u'

.j~)

= ujvj,+ uj, vj and vjl,-,	

uuj,

- vj,vj are combinations of the Bogoliubov

transformation;

uj(r) is the radial part of the single-particle wave function and e,

is

the effective charge of the nucleon

.

Finally, to compare the calculated transition

charge

densities with those obtained from the experiment, the pj(r) are folded with

V
the

proton form factor, which is parametrized according to ref 27)

.
The

different parameters in the calculations are determined in the following ways

.
For

the single-particle part of the hamiltonian (4) a Saxon-Woods potential has

been

used with the radial parameters for protons taken from ref

.

28) (ro = 1

.30

fm,

ao

= 0

.55

ftn) and for neutrons from ref

.

29) (ro = 1

.27

fm, ao = 0

.62

fm)

.

All bound

and

narrow quasi-bound states so obtained were included in the calculations, making

a

total of 28 neutron levels and 29 proton levels with j -_< '9

.

With this single-particle

2
spectrum

the model-independent energy-weighted sum rule 30) is reproduced for

low

J

.

Therefore, no effective charges are thought to be necessary

:

ez = 1 and

eN

=0- Only for the J' = 1 - states different values are used to remove spurious

motion

of the center of mass

:

ez = NIA and eN= -ZIA

.
Pairing

correlations are treated in the BCS approximation with a constant value

for

the matrix element of the monopole pairing interaction in the particle-particle

channel .

It is chosen to reproduce the odd-even mass difference of neighbouring

isotones.
Fm

the residual interaction a separable multipole interaction in the particle-hole

channel

is used

.

The radial dependence of the forces is taken to be the derivative

of

the central part of the Saxon-Woods potential

.

For each multipolarity the

*W*~
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meters of the effective residual forces are chosen to reproduce the experimental
excitation energy of the lowest state and the obtained values Koj'j for different J'
re close together. In this procedure the strength ratio of the isovector force to

isoscalar force is kept constant at ocjj '/icjo'O = -1.2.
11 one-phonon configurations with energies E,---- 4.5 MeV and two-phonon

urations with E -; 6.5 MeV are included in the calculations . Moreover, all
ant thre~e-phonon configurations involving the 2+,, 3~ and 4+1 one-phonon

termshave also been taken into accountin the wave function . It should be remarked,
that afterthedefinition ofthephonon basis, no further free parameters areintroduced
in the description of the interaction between phonons.

Tiso

From Trache et at 5) .
From Pignanelli el at 32).
From Pitz et at ') .

the exnerimental data and the calculations

TABLE I

this section the comparison between the experimental data and the theoretical
culations will be presented. Table I lists the excitation energies and the multi-
larities, for the levels observed in the present experiment, compared to a compila-

tion of previous experiments 5,31,32).

List ofmeasured excitation energies with statistical errors in comparison to a compilation of the Nuclear
Data Sheets -"), the work of Trache et A ') and the preliminary results of Pignanelli et al. 32 ). Energies

of states which could not be measured accurately enough are given without errors

Literature

E,
(MeV)

Present

E,,
(MeV)

work Literature

E., pr

(MeV)

Present

E.
(MeV)

work

i ~r

1 .5768 2+ 1.575(4) 2+ 3.0457 2+ a) 3.045
2.0844 3 - 2.083(6) 3- 3.080 W) a 3.080(7) 4+
2.0989 4+ 2.098 4+ 3.1281 (1,2+) 3.135
2.2073 (6)+ 2.21(4) 6+ 3.151
2.2172 0+ 3.2429 (7)- 3.246(6) 7-
2.340 3.244 (4)-
2.3843 2+ 2.385(8) 2+ 3.295 (4)-
2.438 a) W b 2.438(20) 4+ 3.300 (2,3)+
2.550 (3, 2)' 3.311 (4+) a 3.319(8) 4'
2.5833 1(+),2+ 2.58408) (4+ ) 3.358 (2,1)+
2.739 ') 2.73902) 5- 3.366 (3)-
2.8459 2+ 2.845(6) 2+ 3.413 (5)- 3.413(12) (6+ )

2.893 (6+ ) 3.425 1- C)

2.956 3.453 (8)
2.978 0+ 2.976(6) 0 ~- 3.456 +x (9)- 3.494(9) (9- )
3 .008 3 .008 3.563 3 a) 3.580(16) 3 -
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A preliminary analysis of the quadrupole states has been given in an earlier
paper 7) . Since then the data have been reanalyzed and the parameters of the
Saxon-Woods potential used in the QPM have been adjusted to the values obtained
from an exclusive (e, e'p) experiment on '42Nd performed at NIKHEF-K by Lanen
et al 28)

Calculation

TABLE 2

The quasiparticle-RPA predicts six quadrupole one-phonon states below 4 MeV.
Their excitation energies and B(E2) values are lised in table 2 and the calculated
transition charge densities of the lowest four states are shown in fig. 2. As '42Nd
has a closed neutron shell, the pairing correlations in the neutron system vanish.
This leads to the first neutron particle-hole 2' configuration having an energy hi
than 5 MeV. Consequently, proton components dominate the states of table 2. The
2' one-phonon state is the most collective. The 2' and 2' states have, as to be1

	

2

	

3
expected, much smaller B(E2) values. However, the 2' state is again very collective,4
its B(E2) value being only three times smallerthan that ofthe 2', state. This behaviour
of collective versus non-collective is reflected in the transition charge densities. Both
the transition charge densities of the 2_1' and 24' states peak mainly at the nuclear
surface, whereas those of the 2' And 2' states have very pronounced volume peaks.2 3
A possible explanation lies in the single-particle subshell-structure, shown in fig. 3a.
The two proton subsbells 1 97/2and 2d,5/2are close together and close to the Fermi
level, whereas other proton subshells, notably the IhII/2, 2d3/2and 3sl/2have about
2 MeV higher single-particle energies . This results in about I MeV higher quasi-
particle energies for these levels than for the 197/2 and 2d:5/2 subshells, as can

Excitation energies and B(E2) values of the quadrupole states observed in this experiment compared
to those from the QPM calculations . The results of the RPA calculations and those of the full calculations

after coupling the two- and three-phonon states are listed

Experiment
RPA QPM

2+

er

") The B(E2) value has been taken from ref. ") and used in the Fourier-Bessel analysis as a data point.

E,,
(MeV)

B(E2)
(e 2 fM 4)

E,,
(MeV)

B(E2)
(e

3 fM4)

E,,
(MeV)

B(E2)
(e

2 fM4)

1 1 .900 3816 1.630 4060 1.575 2810 (10) a)

2 2.480 124 2.420 247 2.385 309(17)
3 2.600 269 2.530 173
4 3.300 1327 3.050 705 2.845 498(20)
5 3.830 3.3 3.320 99 3.045
6 3.940 0.5 3.920 40
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Fig. 2 . Transition charge densities resulting from the RPA calculations for the first four 2' one-phonon
states in 142Nd.

also be seen in fig. 3. This is also observed in the adjacent odd nuclei . The 2' state4

is mainly built from many different configurations involving the orbits higher in
energy and due to the gap is much more collective than the almost pure two-
quasiparticle 2' and 2' states .2

	

3

After coupling the one-, two- and three-phonon configurations, one obtains again
six 2' states below 4 MeV, listed in table 2. The coupling between the one-phonon
configurations and the two-phonon configurations is not very strong and the traces
of three-phonon terms are not seen up to 3 .0 MeV. This is usual for semi-magic
nuclei 33). The first quadrupole [2 ', x 2,] two-phonon state is located rather high
(E, = 3 .8 MeV), and other two-phonon states lie even higher still (E,, > 4 MeV).
Therefore, the (collective and non-collective) one-phonon components dominate in
the wave functions of the 2' states below 3 MeV. Indeed, the admixtures of the
two-phonon components do not exceed a few percent for the lowest four 2+ states .
Because the densities of the two-phonon transitions as a rule 34

) are faded over the
nuclear interior and their strengths are small (see also fig. 4), the contribution of
Jhetmjo-phonen admixtures to the transition charge densities is hardly visible. More
important is the mixing of the different one-phonon components and their renor-
malization due to the two-phonon part of the wave function as a whole. In fig. 5
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Fig. 3 . (a) Single-particle spectrum of 142Nd in the vicinity of the Fermi level, (b) quasiparticle spectrum

of 142Nd up to an excitation energy of 7 MeV.

the calculated transition charge densities for the lowest three observed quadrupole
states are compared with the experimental data. The theoretical excitation energies
and transition probabilities are summarized in table 2.
The systematics of the excitation energies of the quadrupole states are well

reproduced. However, the spacing between the states is slightly overestimated by
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Fig. 5 . The experimental transition charge densities (curves with error bands) compared with the QPM
calculations (dashed lines) for the quadrupole states at respectively 1 .575, 2.385 and 2.845 MeV in 142Nd.
Also shown (dotted lines) are the results from the QPM calculations with the old Saxon-Woods

parameters, published earlier') .

the calculations . It is worth noting that the agreement in case of the 2" state is due
to the adjustment of the strength of the multipole term to reproduce its excitation
energy . The transition charge densities for the 2'1 and 24 states are clearly dominated
by the respective one-phonon components . Indeed, other components contribute
separately only below the 1% level, adding up to a total of 10%. This is not the case
for the 2' and the 2' states . Here the coupling to the two-phonon states leads to a2

	

3
considerable mixing of the second and the third one-phonon states on the 10% level .
As a result the B(E2) value of the 2+ state increases, whereas that of the 2+ state2

	

3

decreases due to destructive interference . This probably explains why this state is
not detected in the present experiment . Indeed, if the calculated transition charge
density of the 2' state is used to calculate a form factor, the cross sections are well3
within the error bars of the radiative tails of the stronger peaks with lower excitation
energies . However, a state at 2.550 MeV has been reported "), which is believed to
be a possible 2+ state .
Quite remarkable is the measured and predicted high collectivity of the 2" state .4

This is evidence of the already mentioned gap in the proton single-particle spectrum
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OF57/2, 2d5/2 4**lh11/2, 3sl/2, 2d3/2)- Generally, all three measured transition charge
densities are reasonably reproduced by the calculations . As a consequence of the
adjusted parameters of the Saxon-Woods potential the positions of the. calculated
surface maxima are now in agreement with the data in contrast to our preliminary
publication 7), in which a Saxon-Woods potential with ro= 1.24 fin and a =0.65 fin
was used.
A striking feature is, that the calculations overestimate the observed structure in

the nuclear interior. This interior structure is also seen in the RPA one-phonon
transition charge densities and can be traced back to a too large contribution of the
(2d5/2)2 iwo-quasiparticle component. This has an even larger influence on the
calculated transitions charge densities of the hexadecapole states. Therefore, the
discussion of this effect will be left to the section dealing with the 4+ states.

It is interesting to note that the B(E2) value for the 2 1' state from the RPA
calculations is about 309/6 larger than the experimental value. This is in contrast to
the usually too small B(E2) value resulting from microscopic calculations with a
truncated basis. Coupling to one- and multiple-phonon states even leads to an
increase of the strength of the 21' state. This may be attributed to a depletion of
strength from the giant quadrupole resonance (GQR). Although the states that build
the resonance are included in the single-particle basis, the one-phonon states from
the resonance region are not included in the wave functions of excited states, since
the one-phonon basis is cut at an excitation energy of E,, =4.5 MeV, well below the
resonance. Therefore, the coupling of the 24 state with the GQR is not fully taken
into account.

At higher excitation energies no 2' states were identified in the present experiment,
although the calculations predict another state at approximately 3.32 MeV. Indeed,
in a (p, p') experiment on "Nd [reC")] a quadrupole state at 3.040 MeV has been
identified with an isoscalar transition strength of about a factor five smaller than
that of the 2+ state. This strength is in agreement with the calculation and also4

explains why this state is hardly seen in the present experiment except for the
q-region between 1 .0 and 2.0 fm- , where a peak at 3 .045 MeV was observed. A
transition density for this state could therefore not be extracted.

4.2 . OCTUPOLE STATES

Two 3- one-phonon states are calculated below 4 MeV by the quasiparticle RPA.
The excitation energies and B(E3) values are listed in table 3. Again, as for the
quadrupole excitations, only proton configurations contribute . The first 3- one-
phonon state is very collective in contrast to the second one, which has a more or
less pure two-quasiparticle configuration and consequently has apredicted transition
strength of about two orders of magnitude smaller.
An interesting feature of the first octupole state in the even N= 82 isotones from

'"Ba to 144SM is the strong dependence of the excitation energy on the proton
number, whereas the excitation energies of the 2 1' and 4+1 states remain practically
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Excitation energies and B(E3) values of the ectupole states observed in this experiment compared to

those from
theQPM calculations . The results of the RPA calculations and those of the full calculations

after coupling the two- and three-phonon states are listed
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TABLE 3

density with a maximum at r=5.5 fin.

constant. This feature is illustrated in fig. 6a. An indication of the origin of this
feature can be obtained by looking at the main two-quasiparticle configurations
contributing to the respective excitations in 14:'Nd. Whereas the 2 1' and 41' one-
phonon states are built mainly of excitations within a subshell, in case of the 3 -1
state two quasiparticle levels are involved . Consequently one may expect that the
excitation energy of the 3 1 state will vary more strongly as a result of the difference
between the energies of the contributing quasiparticles levels than that of the, 2 +1
and 41' states. In order to study this proton number dependence, quasiparticle BCS
calculations were performed for the even N= 82 isotones, in which all parameters
were kept fixed to the values used in the calculations for 142Nd and just the proton
number was varied . The resulting energies of the quasiparticle levels are depicted
in fig. 6b. It is clear that the difference in energy of the 2d5/2and 1h, 1/2 quasiparticle
levels, which form the main quasiparticle configuration contributing to the first
octupole one-phonon state, decreases by a factor of two in going from '38Ba to
'44Sm, thus indicating the sensitivity of the excitation energy of the 3~ state to shell
effects . Although the presented argument about one-phonon states of course cannot
be applied to the description of real excitations, a full QPM calculation, performed
without adjusting the multipole strength parameters of the residual interaction,
reproduces the systematics of the excitation energy of the 3~ state 36) .

After coupling the one- and two-phonon states one obtains the octupole states
listed in table 3. As can be seen, only three states have an excitation energy lower
than 4.1 MeV. The 3~ state is quite collective with an 84% contribution of the first
3 - one-phonon configuration and a two-phonon contribution of around 10%. The
3~ state remains a practically pure two-quasiparticle state. The third 3 - state is again
more collective, but the main contribution is from the [2 ', x 3J two-phonon state .
As mentioned earlier, the transition charge densities oftwo-phonon states are usually
small. Therefore, the calculated transition charge density of the 3 1 state, which is
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Fig. 6 . (a) Experimental excitation energies of the 2, state (solid line), the 3~ state (dashed line) and
the 4, state (dotted line) in the N = 82 even-A isotones from 138Ba to ' 44Sm . (b) Calculated energies of
the 2d5/2 (solid line), 197/2 (dashed line ) and Ih, /2 (dotted line) quasiparticle levels in the N = 82

even-A isotones from 138Ba to '44Sm.

shown in fig. 7 (together with the calculated and experimental ones of the 3 1 state)
is small .
Two octupole states have been observed in the present experiment, the first one

at 2 .083 MeV and the second one at 3.580 MeV. A transition charge density for the
first state could not be extracted in a model-independent way because of the small
difference in excitation energy of 15 keV between this state and the 4' state at
2.098 MeV. The experimental resolution was only good enough to resolve the peaks
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Fi& 7 . The experimental transition charge density of the 3-1 state at 2.083 MeV (curve with error band)
compared to the results of the QPM calculations (dashed line) and the calculated transition charge
densityof the 33 state at 3.580 MeV together with the standard density (dotted line) obtained from a fit

to the data.

for momentum transfers up to 1 .3 fm- '. Therefore, a functional form assumed for
the transition charge density of the weaker 4' state was substracted beyond 1 .3 fm-'
from the form factor of the transition due to the excitation of both states .
The functional form chosen was the derivative of the ground-state charge density:

P,. (r) = dpo(r)ldr

	

(17)
with po(r) being given by athree-parameter Fermi distribution . The parameters were
taken from ref. ") and are used throughout this work, unless theoretical or other
experimental evidence favours adifferent value for the average nuclear radius, which
is in those cases clearly stated. This transition density is usually known as a
one-phonon density. To avoid confusion, the name standard density will be used
henceforward .
The validity of using a standard density for the 4+1 state will be discussed in the

next section. The resulting - more or less - pure form factor for the 3 -, state and
the extracted transition charge density are shown in figs . 8and 7, respectively . For
the state at 3.580 MeV the diffraction pattern of the form factor at q-values beyond
the first maximum is washed out because of contributions from other levels in this
high level-density region. This made it impossible to obtain a transition charge
density for this state. However, the position of the maximum of the form factor
indicates that one is indeed dealing with an octupole state (see fig. 8) . This confirmed
by the already mentioned (p, p') experiment). A B(E3) value for this state was
extracted by assuming a transition charge density with a standard shape. This
assumption is supported by the QPM calculations (see fig. 8), although for an
optimal description of the experimental form factor the radius of the standard
transition charge density had to be shifted to r,, = 5.5 fm. The B(E3) values are listed
in table 3.
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Fig. 8. Form factor data of the 3- state at 2.083 MeVand the 33 state at 3.580 MeV. 'Me curves represent
the fit obtained in a Fourier-Bessel analysis (solid line), the QPM calculation (dashed lines) and the fit

using a standard density (dotted line).

Five hexadecapole one-phonon states are predicted by the RPA caiculations,below
4 MeV. Again, all one-phonon states are practically pure proton states . Table 4 lists
the respective energies and B(E4) values. The 41' one-phonon state is much less
collective than the 2 ', and the 3 -1 states, as the underlying configuration is for almost
90% of the two quasiparticle (2dS/2,2d5/2) state. This confirms the findings of the
(p, p) experiment by Trache et aL '), where the untypical angular distribution of
the 4, state at 2.098 MeV is attributed to a large two-quasiparticle component . The
4' and 4-'- one-phonon states are also more or less pure two-quasiparticle states .2

	

3

However, the 4+ one-phonon states, like the 2+ state, is again quite collective with4

	

4

many two quasiparticle configurations contributing in a coherent way, which leads
to a B(E4) value even larger than that of the 41' one-phonon state. Although many
two-quasiparticle configurations contribute to the 4' state, some of them have a5

destructive interference, leading to a lower B(E4) value.
Coupling the one- and two-phonon states does not alter the first three

hexadecapole states noticeably . Both the B(E4) values, shown in table 4, and the
transition charge densities hardly change . However, the strength of the 4' one-4

phonon state at 3 .628 MeV gets fragmented into two states, one at an excitation
energy of 3 .160 MeV, the other at 3.460 MeV. This is due to the coupling of the
one-phonon state to the [2 ', x 2+1 ] two-phonon state at 3.8 MeV. Both states have a
similar structure of approximately 40% of the 4+ one phonon state, 40% of the4

mentioned two-phonon state and some 8% three-phonon contribution . The resulting
states have therefore both a similar structure and strength .

In the present experiment five transitions were observed with a possible
hexadecapole character ; the form factors and the deduced transition charge densities
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are depicted in fig. 9 . The first state at 2.098 MeV has an excitation energy close to
that of the 3 -1 state, as mentioned in the previous section . Therefore, only at the
lowest incident energies was it possible to separate the peaks corresponding to the
excitation of these levels and thus only the first maximum of the form factor of the
4+, state up to 1 .3 fm-' is well determined. Clearly this range of momentum transfer
is not large enough to extract a transition charge density .
The character of the level at 2.438 MeV is not known. The shape of the form

factor permits two possible multipolarities, 0 or 4. However, we believe we are
dealing with a 4+ state for the following reasons :

(i) The level has not been observed in a (p, t) experiment by Ball et A 3"), which
was particularly sensitive for monopole excitations .

(ii) The level has been observed in the (p, p') experiment of Trache et aL -') and
although no assignment was published, generally proton scattering is more sensitive
to A = 4 transitions than to A = 0 transitions for angles larger than 30' .

(iii) The angular distribution of a state at 2.436 MeV, resulting from a preliminary
analysis of the (p, p') experiment of Pignanelli el A32), seems to indicate a 4+
excitation .
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4'

Calculation

TABLE 4

Excitation energies and B(E4) values of the hexadecapole states observed in this experiment compared
to those from the QPM calculations. The results of the RPA calculations and those ofthe full calculations

after coupling the two- and three-phonon states are listed

Experiment
RPA QPM

') B(E4) using a standard density.
b) B(E4) using the QPM density.
') B(E4) using a standard density shifted to r = 4.8 fm .

(iv) Both the systematics ofthe excitation energy and the structure ofthe transition
charge density of the 4~ state as predicted by the QPM agree very well with the
experimental data for this transition as will be discussed below.
The level of 2.584 MeV has been given a J' = 1 (' ) assignment in the literature 39)

However, both in the experiment of Trache et A and in the present experiment a
too large strength for this state is observed for it to have an unnatural parity .
Therefore, it is assumed that another 1'evel with approximately the same energy is
excited. The preliminary results of Pignanelli et aL give J' = 2' for this state.
However, based on the shape of the form factor as predicted by the QPM it is more
likely to be the third hexadecapole state. Both possibilities will be discussed below.
The strong states at 3 .080 MeV and 3 .319 MeV are identified by Trache et A as

4+ states which is confirmed by the present work, since the shapes of both form
factors are those of surface-peaked hexadecapole transitions and the magnitudes
are consistent with the (p, p') experiment.

For the 4+ , 4' and 4+ states, the agreement between the calculated and measured2 4 5

transition charge densities is rather good, both in structure and in strength, as is
visible in fig. 9. However, the calculations predict too much strength in the nuclear
interior for the latter two states . For the 4+, state and the 43+ state only a comparison
on the level of form factors is possible, as shown in fig. 9 . Concerning the 4' state3

it is clear that the position of the first maximum of the form factor is much better
described by the transition charge density of the 4+ state calculated in the QPM3

than by either that of the 2 + state or that of a standard density peaking at the nuclear3

V

13~
(MeV)

B(E4)

WW)
E,

(MeV)
B(E4)
(e2W)

E,,
(MeV)

B(E4)
(e2W)

1 2.280 17 .3 X105 I 19.5 X los 2.098 41 X 105 ')
45 X105 b)

2 2.480 6.5 X los 2.4-10 7.8 X 105 2.438 2.1 (8)Xlos
2.670 4.1 X 105 1-1 .630 3.4x 105 2.584 0.7 X105 ')

4 3,630 34.7 X 105 3.160 14 .8 X 105 3.080 6.2 (19) X 105
5 3.930 3.6 X 105 3.460 14 .5 X105 3.319 11 .4 (17) X 105
6 4.030 os X los 3.700 2.2 X105
7 4.080 0.2 X los 3.991) 0.5 X105
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surface. Since in general the overall structure of the transition charge densities is
rather well predicted by the QPM, it strongly supports the conjecture, that the state
at 2.584 MeV is a hexadecapole state. It must be mentioned though, that the
experimental B(E4) value, listed in table 4, which was derived by making use of a
standard transition density with its maximum shifted to 4.8 fm, is about a factor of
three smaller than the one predicted by the QPM. 'Me lack in strength and the
position of the maximum of the transition charge density, located inside the nuclear
interior, seems to explainwhy this state hasnotbeen identified before as the43' state.

For the 4', state both the transition charge density of the QPM and the one wi
a standard density give a good fit to the first maximum of the form factor. The
difference in the two calculated form factors is only visible beyond 1.4 fm- , where
no data are available. Therefore, in table 4 two B(E4) values are listed . However,
we believe that the description of the standard density is more realistic than that
of the QPM. A clue to this can be obtained from the experimental transition charge
densities of the 4 1' states in 14'Ce [ref. 3)] and '44Nd [ref. 40)] . In either nucleus the
extraction of the transition charge density is not hampered by other strongly excited
states and form factors were obtained up to 2.15 fm- . Theobtained transition charge
densities for the 4, states showed very little structure in the nuclear interior. ne
calculations for these nuclei in the framework of the QPM [refs. 40-4 )], however,
predict a similar structure for these states as in '42Nd. They are more or less pure
(2d5/2, 2d5/2) two-quasiparticle states and their structure in the nuclear interior is
also overestimated. This was also the case for the 2 1' state in 142Nd (see sect. 4.1).

For all of the mentioned states this discrepancy can be traced back to a too large
contribution of the (2d5/2,2d5/2) configuration in the calculations, of which the
transition charge density, shown in fig. 10, has amaximum at 2.8 fm-' . This contribu-
tion can be reduced by adjusting the spin-orbit part ofthe potential used to calculate
the single-particle spectrum which thus brings the 197/2 and 2d5/2 levels closer
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Fig. 10 . Calculated hexadecapole transition charge density of the (2d5/2
configuration.
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together. This would lead to an enhancement of the (2d5/2,197/2) COMPonentinthe
4+1 one-phonon state and a better agreement with the experimental transition charge
densities . NoweNer, this would mean an ad hoc adjustment of parameters, as neither
accurate experimental data on the spin-orbit term are available to justify this
adjustment, nor is the QPM, or any other model for that matter, sufficiently accurate
to determine single-particle energies in neighbouring odd nuclei . Thus, the origin
of the large structure in the interior of the nucleus for the 2" state and the 4+1 state
is understood, but on theoretical grounds there is as yet no reason to adjust
parameters to obtain better agreement with the experiment .

4A THER MULTIPOLARITIES

0

le states - Only two excited 0+ states in 142Nd below an excitation energy
are reported in the literature ; the rather weakly excited 0' state at2

eV and the strongly excited 0+ state at 2.978 MeV [ref. 38)] . For the 0+ state3

	

3

Mon
of 3
2.217
a transition charge density, depicted in fig. 11, was obtained with the typical shape
of a density vibration. The B(EO) value is listed in table 5, As in the QPM
particle-particle correlations were not taken into account in the residual interaction,
the description of the monopole states is expected to be incomplete. Hence, no
comparison with a calculated transition charge density has been performed.
The excitation energy of the 02' state is only 10 keV apart from the 6+1 state at

2.206 MeV, making it impossible to resolve these states . As the form factor of the
doublet has a first maximum at 1. 15 fm- , a value considerably larger than the
1.0 fm- ' of the state at 2.976 MeV, it seems unlikely that the observed transition, if
it were due to a monopole state, constitutes a typical density vibration. Therefore,
it has been treated as as a pure 6+ transition .
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Fig . 11 . Experimental form-factor data with the Fourier-Bessel fit and deduced transition charge density
of the 0' state at 2.976 MeV .
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!hose from the QPM calculations . The results of the RPA calculations and those of the full calculations

after coupling the two- and three-phonon states are listed

Experiment
RPA QPM
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Calculation

TABLE 5

693

') In units of e2 fM4.
b) This state has not been observed in the present experiment . T'he B(EI) value is from Pitz et aL
') B(EA) obtained using a standard density with a maximum at r = 4.7 fm .
d) B(EA) obtained using a standard density .

Dipole states - The QPM predicts the first one-phonon F state at an excitation
energy above 7 MeV. There is, however, a dipole two-phonon state with the [2 ', x 3j
structure at approximately 3.7 MeV. Although this state has been observed as quite
a strong excitation in a photon scattering experiment 6) at 3.425 MeV with a B(EI)
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2 ,value of 18.3 A: 3.9 x

	

e
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it has not been observed in the present experiment .
Photon scattering probes the isovector dipole character of the state at the q = W
photon point, whereas in the measured q-range electron scattering is sensitive to
the isoscalar charge density which is probably small due to the two-phonon character
of this state (see also fig . 4) .

High multipolarity states - Forthe 5 - and higher multipolarity states the description
within the QPM has its shortcomings. This has several reasons . First, in the calcula-
tion of the single-particle spectrum only bound and narrow quasi-bound states are
included . This approximation of not including the continuum is too crude for high
multipolarity states . An indication of this is obtained if one looks at the exhaustion
of the energy-weighted sum rule (EWSR) 30) for the different multipolarities.
Whereas for the multipolarities up to 3- the EWSR is exhausted for more than 80%,
this number gradually decreases for the states of high multipolarity . The calculated
numbers are listed in table 6. Second, it is difficult to investigate the validity of

E,,
(MeV)

B(EA)
(e2 fM2A)

E.
(MeV)

B(EA)
(e2 fm2.%)

E.
(MeV) (e'? fm2â)

0+ 2.976 88 (41) ')
F 1 7.140 1 .38 X 10-5 3.790 2.15 X 10-4 3.425 b) 1 .83 (39)X 10-2 h)
5- 1 3.000 1 .74 X IC 2.670 1.58 X 1& 2.739 1 .21 (12)x 1

2 3.340 0.10X 168 3.250 0.19X I&
3 4.580 0.75 x 108 3.840 0.95 X I&

6+ 1 2.300 8.63 X 109 2.210 8.61 X109 2.206 9A (20) Xle
2 2.690 0.15 X 109 2.650 0.85 X 109 2.893 8xleci
3 3.990 2.35 X Il? 3.730 2.26XIGM 3.413 2X 169 d)

7- 1 3.160 1.48 X 10" 2.920 1.35 X 10" 3.246 2.5 (4) X 1011
2 3.340 0.65 X 10" 3.250 0.75 x 10"

8-f . 1 4.0140 2.00 X 1012 3.870 1.72 X 1012
9- 2 3.310 5.42 X 1014 3.210 5.13 X 1014 3.494 2x iol .5 d)
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The exhaustion ofthe respective energy-weighted sum rules (EWSR) by the states predicted by the QPM
for the different multipolarities, for the model basis discussed in the text

Pr 1- 2' 3- 4+ 5- 6' 7- 8+ 9-
EWSR (%)	94.6

	

95.0

	

79.7

	

65.6

	

61 .5

	

50.4

	

44.1

	

47.6

	

39.1

keeping the strength ratio for the isovector to isoscalar forces constant, as for many
nuclei the isovector counterparts of the isoscalar states have not been identified yet .
Third, the parameters #cJ ' are ad usted to reproduce the excitation energy and0

	

j
collectivity of the low-lying states, which are mainly built from a single one-phonon
state. Howevzr, the high-multipolarity states are not collective and contain significant
admixtures of two- and three-phonon components, thus making their excitation
energy more sensitive to the single quasi-particle level scheme than to the parameters
#cj' . Indeed, if the isoscalar force #cJ' is adjusted for the excitation energy of the0

	

0
first state of each multipolarity to coincide with that of the experiment, unrealistic
values are obtained for this parameter. Therefore, another procedure was chosen
for A _i:- 5 . The multipole strength term for the negative-parity states was set at that
of the octupole states, whereas that of the positive-parity states was set at that of
the quadrupole states. Hence, a priori one should expect only a schematic agreement
with the experiment.

In the present experiment six states of high multipolarity were identified with
reasonable certainty. First, the level at 2.206 MeV, which is a superposition of the
0-', state and the 61' state, has been treated as a pure 6_'_ transition (see also the
section on the monopole states) . The transition charge density extracted as such is
shown in fig . 12 . Furthermore, two other possible 6' states were found at excitation
energies of 2.893 and 3 .413 MeV. However, because of the weakness of the states
and the filling of the form factor minima, possibly due to admixtures of other states,
only the form factors are shown in fig . 12 . A B(E6) value for these states was
determined usini; a standard shape, according to the prescription discussed earlier.
The same procedure was followed for the state at 3.494 MeV, which is assumed to
be a 9- state (see also fig . 13) .
The remaining states of high multipolarity for which it was possible to obtain

transition charge densities are the 5 - state at 2 .739 MeV and the 7 - state at 3.246 MeV,
shown in fig . 14. The multipolarities for all of the mentioned states were determined
on the basis of the position of the first maximum of the form factor, assuming a
surface-peaked transition charge density . All the obtained B(Ek) values are listed
in table 5 .

TABLE 6

5. Summary and conclusions

An (e, e') experiment has been performed on the semi-magic (N = 82) nucleus142Nd for momentum transfers up to 2 .8 fm' . 'rhe excellent energy resolution made
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Fig . 12 . Experimental form-factor data of the 6', state at 2.206 MeV, the 6' state at 2.893 MeV and the2

6+ state at 3.413 MeV. The solid line represents the Fourier-Bessel fit, the dashed lines the QPM3

calculations, and the dotted lines the form factors obtained from the standard transition density. Also
drawn are the experimental (curve with error band), the QPM (dashed lines) and the standard (dotted
lines) transition charge densities of the respective states . For the 6+ state and the standard transition2

density has been shifted inward to fit the form-factor data .
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Fi& 13. Experimental form-factor data of the 9- state at 3.494 MeV in comparison with the QPWI
calculations (dashed line) and the fit obtained with a standard transition density (dotted line) . Also

shown are the QPNI and standard transition charge densities .
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Fig . 14 . Experimental form-factor data of the 5 - state at 2.739 MeV and the 7 -, state at 3.246 MeV with
the respective transition charge densities (curves with error band) . The solid lines represent the Fourier-

Bessel fits and the dashed lines the results from the QPM calculations.
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it possible to identify many transitions of different multipolarities up to an excitation
energy of 3.7 MeV. Some new levels have been observed, like the 4' state at
2.438 MeV, the 5- state at 2.739 MeV and the 6+ state at 2.893 MeV. Also several
levels found in other experiments have been confirmed and for some of these levels
a multipolarity has been suggested. For many of these states accurate transition
charge densities were obtained by means of a Fourier-Bessel analysis of measur
form factors. In cases where this was not possible due to a limited q-range in which
form factors were measured, B(EA) values were determined by assuming a surface-
peaked transition charge density. The diversity of the data - multipolarities from 0
up to 9, identification of three quadrupole and four hexadecapole states - allows a
systematic investigation of the modes of excitation of these low-lying states. Special
attention has been given in this respect to the interplay between single-particle and
collective degrees of freedom. To this end, the experimental results were compared
with calculations in the framework of the quasiparticle-phonon model (QPM).
The QPM is a microscopic model in which the calculations are performed in two

steps. First, basis states called ""phonons" are generated, whereby phonons are
defined as both collective and non-collective solutions of the BCS quasiparticle
RPA equations. Second, two- and three-phonon states are constructed and simul-
taneously the coupling between these states is included . In this way one accounts
for pairing interactions as well as multipole correlations . The proton part of the
radial parameters of the Saxon-Woods potential used in the calculations have
been taken from the results of an (e, e'p) experiment on 142Nd, performed at the
NIKHEF 213)

. These new parameters lead to a much better description of the radial
dependence of the transition charge densities than the parameters used before 7)

.

In general, the agreement between the experimental data and the calculations is
quite reasonable. The systematics of the excitation energies and B(EA) values as
well as the structure of the transition charge densities are well described by the
calculations . The predictions for the quadrupole states and the hexadecapole states
are especially interesting in view ofthe many experimental transition charge densities
obtained for such states . Indeed, all characteristic features of the mentioned states
are at least qualitatively described, such as for example the degree of collectivity
of the quadrupole states : the 2 ', and 24+ states being collective, in contrast to the
2+ and 2+ states . A possible explanation is found in the underlying subshell structure2 3
ofthe nucleus, especially thegap of approximately 2 MeVbetween the single-particle
energies of the 2d5/1 and 197/2 subshells on the one hand and the lh,1/2, 2d3/2and
3s,/2 subshells on the other hand. A similarly contrasting behaviour is seen in the
transition charge densities, that of the 2+ state showing a pronounced volume peak2

whereas those of the 2 +1 and 24+ states are mainly surface peaked . This has been
explained to arise from both the coupling of the one-phonon states to the multiple-
phonon states and the structure of the one-phonon states . Also the reason why the
2 + state is not observed in the present experiment could be understood.3

The situation for the hexadecapole states is quite different. The 4+1 state is
calculated to be an almost pure two-quasiparticle state. Although experimentally
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this state could not be separated from the much stronger 3 -, state for momentum
transfers higher than 1 .3 fm- , thus making it impossible to extract a transition
charge density, the experimental B(E4) values assuming a standard shape (i.e . the
derivative of the ground-state charge density) are found to be in reasonable agree-
ment with the calculations. The two-quasiparticle character of this transition has
also been suggested by ref.") on the basis of an anomalous angular distribution in
a (p, p') experiment. The state at 2.438 MeV has been observed before -), but no

e assigned . We propose it as a candidate for the 4+ state.2

ncharge density, assuming a 4+ transition . is in good agreement
spi
Ind
with t

r parity cou
the transiti

e calculations. The4' state, calculated to be by far the weakest hexadecapole3

state up to 4 MeV, might be the state seen at 2.584 MeV. The 4' and 4' states have4 5

been observed by Trache etA ") and are confirmed by the present experiment. Both
the B(E4) values andthe structures are in reasonable agreement with the calculations .
It is worth noting that the two-phonon admixture is large and up to 50% for these
states.

e description oftheunderlying configurations which contribute in the excitation
the 3 1 state, the only octupole state for which a transition charge density could

be extracted, has led to an intuitive explanation for the strong proton number
dependence of the excitation energy of this state within the even N= 82 isotones.
In contrast to the 2, and 4-1 states, which are mainly built from excitations within
a subshell, the configurations that contribute to the 3-, state are by necessity
excitations from one subshell to another, thus making this level more sensitive to
the relative excitation energies of the different subshells. It is shown that the
single-particle energy spacing between the 2d'%/2 ,, 197/2and the 1h, 1/2indeed depends
rather strongly on the proton number in going from 13813a to 144Sm.
For the states of higher multipolarity only a qualitative agreement between the

experimental data and the calculations is obtained . This has two reasons : first, the
quality of the data for these states is generally not good enough to extract transition
charge densities. Therefore only B(EA) values are obtained, again assuming a
standard shape. Second, the theory does not pretend to describe noncollective
high-multipolarity states as well as collective ones . Moreover, the isoscalar strength
term of the residual interaction was taken for the positive-parity states to be the
same as for the quadrupole states, whereas the value for the negative-parity states
was the same as for the octupole states . For three states, i.e . the 6+ at 2.206 MeV,
the 5 - at 2.739 MeV and the 7- at 3.246 MeV, experimental transition charge densities
were obtained and compared with the calculations yielding qualitative agreement.
For other states, notably the 6' states at 2.893 MeV and 3.413 MeV and the 9- state
at 3 .494 MeV the comparison between the calculation and the experiment was only
possible at the level of form factors.
As monopole states cannot be described in a consistent way without the inclusion

of the particle-particle channel in the residual interaction, only the experimental
data are shown for the state at 2.976 MeV. Concerning the dipole states, the first
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I - state is known to have an excitation energy of 3.425 MeV. This state is the
[2 +1 x 3j two-phonon state, and in general two-phonon states have small transition
charge densities . Indeed, this excited state has not been observed in the present
experiment.
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