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Abstract—This paper proposes a U-Net-based deep learning 

architecture for the task of super-resolution of lower resolution 

brain magnetic resonance images (MRI). The proposed system, 

called MRI-Net, is designed to learn the mapping between low-

resolution and high-resolution MRI images. The system is 

trained using 50-800 2D MRI scans, depending on the 

architecture, and is evaluated using peak signal-to-noise ratio 

(PSNR) metrics on 10 randomly selected images. The proposed 

U-Net architecture outperforms current state-of-the-art networks 

in terms of PSNR when evaluated with a 3 x 3 resolution 

downsampling index. The system's ability to super-resolve MRI 

scans has the potential to enable physicians to detect pathologies 

better and perform a wider range of applications. The 

symmetrical downsampling pipeline used in this study allows for 

generically representing low-resolution MRI scans to highlight 

proof of concept for the U-Net-based approach. The system is 

implemented on PyTorch 1.9.0 with NVIDIA GPU processing to 

speed up training time. U-Net is a promising tool for medical 

applications in MRI, which can provide accurate and high-

quality images for better diagnoses and treatment plans. The 

proposed approach has the potential to reduce the costs 

associated with high-resolution MRI scans by providing a 

solution for enhancing the image quality of low-resolution scans. 
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I. INTRODUCTION 

Medical imaging has been an essential tool in the diagnosis 
and treatment of various diseases. Among the different types of 
medical imaging, magnetic resonance imaging (MRI) has been 
widely used because it provides detailed images of the internal 
structures of the body. However, the resolution of MRI images 
is limited by several factors, such as the hardware used and the 
acquisition parameters, which can affect diagnostic accuracy 
and make it challenging to identify subtle anatomical features. 

To address this limitation, researchers have been exploring 
the use of super-resolution techniques to enhance the resolution 
of MRI images [1]. Super-resolution is a computational method 
that enhances the resolution of an image beyond the physical 
limits of the imaging hardware. The primary objective of this 
approach is to generate high-resolution images that can provide 
more detailed information about the anatomy and pathology of 
the imaged area. 

Recent advancements in deep learning-based super-
resolution techniques for MRI have shown promising results in 
generating high-resolution MRI images with improved details 
and contrast [3]. These techniques use advanced machine 
learning algorithms to learn the mapping between low-

resolution and high-resolution images. High-resolution MRI 
images are particularly important in the diagnosis and 
treatment of neurological disorders, where small changes in the 
brain's anatomy can have significant implications for patient 
outcomes. For example, in the diagnosis of brain tumors, high-
resolution MRI images can help to accurately identify the 
location, size, and shape of the tumor, which is critical for 
surgical planning and treatment. 

The use of super-resolution techniques in MRI has the 
potential to revolutionize the field of medical imaging, leading 
to significant improvements in medical diagnosis and 
treatment. With the increasing availability of large datasets and 
the progress of machine learning algorithms, there is enormous 
potential for further advancements in this field. However, the 
effectiveness of super-resolution techniques in enhancing MRI 
images depends on several factors, including the choice of 
algorithms and evaluation metrics. In this context, several deep 
learning-based super-resolution algorithms have been 
developed and tested to improve the resolution of MRI images. 
The choice of the appropriate algorithm depends on several 
factors, including the quality of the input data, the complexity 
of the target structures, and the available computational 
resources. Additionally, it is crucial to use appropriate 
evaluation metrics to assess the effectiveness of these 
algorithms in improving the resolution of MRI images. 

In this paper, we aim to evaluate the effectiveness of super-
resolution techniques for enhancing MRI images, with a 
specific focus on the U-Net algorithm. One of the strengths of 
our approach is the utilization of the Mean Squared 
Logarithmic Error (MSLE) as the main loss function, which 
enables accurate reconstruction of high-resolution MRI images. 
We compare the performance of the U-Net algorithm against 
four other commonly used networks in terms of generating 
high-quality images. To assess the quality of the enhanced 
images, we employ the widely accepted metric, Peak Signal-to-
Noise Ratio (PSNR). Notably, our results demonstrate that the 
U-Net algorithm surpasses the other networks, yielding higher 
average PSNR values. These findings have significant 
implications for the diagnosis and treatment of neurological 
disorders, as enhanced MRI images obtained through the U-
Net algorithm can provide improved insights and precision in 
medical imaging. The advancements showcased in this 
research have the potential to make a substantial impact on the 
field of medical imaging as a whole. 

II. LITERATURE REVIEW 

Super-resolution of MRI is a critical task in the medical 
field that involves increasing the resolution of magnetic 
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resonance images to improve their quality and accuracy. Many 
researchers have proposed various techniques to achieve super-
resolution of MRI, including deep learning, image registration, 
and image fusion. In this literature review, we will summarize 
some of the recent research works on super-resolution of MRI. 

Li et al. [1] proposed a critic-guided framework for super-
resolution of low-resolution MRI scans. In clinical practice, 
vast quantities of MRI scans are routinely acquired but are of 
sub-optimal quality for precision medicine, computational 
diagnostics, and neuroimaging research. To address this 
limitation, the authors utilized feature-importance and self-
attention methods in their model to improve interpretability. 
Their framework was evaluated on paired low- and high-
resolution MRI scans from various manufacturers and was 
shown to produce qualitatively faithful results to ground-truth 
scans with high accuracy (PSNR = 35.39; MAE = 3.78E−3; 
NMSE = 4.32E−10; SSIM = 0.9852). 

Ottesen et al. [2] proposed a densely connected cascading 
deep learning reconstruction framework to improve accelerated 
MRI reconstruction. The authors modified a cascading deep 
learning reconstruction framework by incorporating three 
architectural modifications, namely input-level dense 
connections, an improved deep learning sub-network, and 
long-range skip-connections. The proposed framework, called 
the Densely Interconnected Residual Cascading Network 
(DIRCN), was evaluated on the NYU fastMRI neuro dataset 
with an end-to-end scheme at four- and eightfold acceleration. 
The authors performed an ablation study where they trained 
five model configurations and evaluated them based on the 
structural similarity index measure (SSIM), normalized mean 
square error (NMSE), and peak signal to noise ratio (PSNR). 
The results showed that the proposed DIRCN with all three 
modifications achieved an SSIM improvement of 8% and 11%, 
a NMSE improvement of 14% and 23%, and a PSNR 
improvement of 2% and 3% for four- and eightfold 
acceleration, respectively. 

Similarly, Qiu, Wang, and Guo [3] proposed a novel deep 
learning-based approach for super-resolution of MRI, which 
utilizes a generative adversarial network (GAN) to generate 
high-resolution MRI images from low-resolution images. Due 
to limitations in hardware, scan time, and throughput, obtaining 
high-quality MR images can be a challenging task in clinical 
settings. Therefore, the authors aimed to use a super-resolution 
approach to enhance the image quality without requiring any 
hardware upgrades. In that paper, they proposed an ensemble 
learning and deep learning framework for MR image super-
resolution. To create their framework, the authors first enlarged 
low resolution images using five commonly used super-
resolution algorithms, resulting in differentially enlarged image 
datasets with complementary priors. Then, they trained a 
generative adversarial network (GAN) with each dataset to 
generate super-resolution MR images. Finally, they used a 
convolutional neural network for ensemble learning, which 
synergized the outputs of the GANs to produce the final MR 
super-resolution images. 

De Leeuw den Bouter et al. [4] highlighted the potential of 
low-field MRI scanners to make MRI technology more 
accessible globally due to their significantly lower cost 

compared to high-field counterparts. However, images 
acquired using low-field MRI scanners tend to be of relatively 
low resolution, which limits their clinical utility. To address 
this limitation, the authors presented a deep learning-based 
approach to transform low-resolution low-field MR images 
into high-resolution ones. They trained a convolutional neural 
network to carry out single image super-resolution 
reconstruction using pairs of noisy low-resolution images and 
their noise-free high-resolution counterparts obtained from the 
NYU fastMRI database. The trained network was subsequently 
applied to noisy images acquired using a low-field MRI 
scanner, producing sharp super-resolution images with most of 
the high-frequency components recovered. The authors 
demonstrated the potential of a deep learning-based approach 
to increase the resolution of low-field MR images. 

Wang et al. [5] proposed a CNN-based multi-scale 
attention network (MAN) to improve the performance of 
convolutional super-resolution (SR) networks. While 
convolutional neural networks can compete with transformer-
based methods in many high-level computer vision tasks, 
transformers with self-attention still dominate the low-level 
vision, including the super-resolution task. The authors exploit 
large kernel decomposition and attention mechanisms in their 
design. The proposed MAN consists of multi-scale large kernel 
attention (MLKA) and a gated spatial attention unit (GSAU). 
Within the MLKA, the authors rectify LKA with multi-scale 
and gate schemes to obtain the abundant attention map at 
various granularity levels. This approach jointly aggregates 
global and local information and avoids potential blocking 
artifacts. In GSAU, a gate mechanism and spatial attention are 
integrated to remove the unnecessary linear layer and 
aggregate informative spatial context. The authors evaluate 
MAN with multiple complexities by simply stacking different 
numbers of MLKA and GSAU. Experimental results illustrate 
that their MAN can achieve varied trade-offs between state-of-
the-art performance and computations. 

Bahrami et al. [6] proposed a novel method for predicting 
high-resolution 7T-like MR images from low-resolution 3T 
MR images. The predicted 7T-like MR images demonstrate 
higher spatial resolution compared to 3T MR images, as well 
as prediction results obtained using other comparison methods. 
The authors suggest that such high-quality 7T-like MR images 
could better facilitate disease diagnosis and intervention. This 
paper demonstrates proof of concept for reconstruction in even 
high-resolution MRI dynamics. 

Koonjoo et al’s paper introduces AUTOMAP, a deep 
learning method for improving image quality in low-field MRI 
systems [10]. AUTOMAP outperforms traditional Fourier 
reconstruction and two contemporary denoising algorithms, 
reducing noise and artifacts in the reconstructed images. It 
achieves substantial signal-to-noise ratio gains for both human 
brain and plant root data, demonstrating the potential of deep 
learning in enhancing image quality in low-field MRI. This 
approach contributes to advancing resolution and image quality 
in low-field MRI applications. 

The U-Net architecture outperforms other techniques [9] in 
medical image super-resolution of brain MRI due to its 
dedicated design for image segmentation tasks and effective 
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feature extraction. Its skip connections enable the preservation 
and utilization of both high-level and low-level features, 
resulting in enhanced resolution. Unlike other architectures, 
such as the SRCNN, GAN-based approaches, or multi-scale 
attention networks, the U-Net consistently achieves superior 
resolution improvement. Its ability to capture fine details and 
preserve structural information makes it the preferred choice 
for medical image super-resolution tasks. 

III. METHODOLOGY 

A. Downsampling Pipeline 

In order to accurately simulate the low-resolution scans 
typically obtained from lower field strength MRI scanners, we 
employed a symmetrical down sampling pipeline, as depicted 
in Fig. 1. This pipeline involved reducing each dimension of 
the scanner by a factor of three, replicating the effects of 
decreased resolution. By implementing this downsampling 
technique, we were able to mimic the conditions of low field 
strength and lower-quality scanners commonly associated with 
compromised image resolution and reduced overall image 
quality. To further ensure the authenticity of the simulated low-
resolution scans, we applied bilinear interpolation, a widely 
adopted interpolation method, to generate the corrupted scans. 
This approach effectively captures the characteristic 
imperfections and limitations of lower field strength MRI 
scanners, providing a reliable basis for evaluating the 
performance and effectiveness of our super-resolution 
techniques in enhancing the quality and resolution of these 
low-resolution MRI images. 

In order to enhance the computational efficiency of the U-
Net architecture, we employed a technique known as residual 
learning. Instead of directly generating the complete high-
resolution scan, our U-Net model was trained to focus on 
learning the difference between the high-resolution scan and 
the bilinear interpolated output. By utilizing this residual 
learning approach, the model became more adept at capturing 
the fine details and nuances present in the high-resolution 
image that may be lost during the bilinear interpolation 
process. 

During the inference stage, the U-Net model would 
generate the residual, which represented the additional 
information needed to transform the interpolated scan into a 
super-resolved MRI scan. This residual was then added to the 
bilinear interpolated scan, resulting in the creation of a high-
resolution image with enhanced details and improved quality. 
This approach not only improved the computational efficiency 
of the U-Net architecture but also ensured that the generated 
super-resolved MRI scan closely resembled the original high-
resolution scan by effectively compensating for the limitations 
of the bilinear interpolation. 

 
Fig. 1. Downsampling flow chart to create corrupted MRI scans. 

B. U-Net Architecture  

We used a U-Net architecture as denoted by Fig. 2, as the 
main super-resolution algorithm to improve the resolution of 
brain MRI. The U-Net architecture is a type of deep learning 
neural network that is particularly well-suited for image 
segmentation tasks, which involve dividing an image into 
multiple segments to identify specific structures or features 
within the image. 

 
Fig. 2. U-Net architecture for super-resolution task [7]. 

The U-Net architecture is specifically designed for 
biomedical image analysis, making it an effective choice for 
super-resolution of brain MRI. The architecture consists of an 
encoder, which gradually reduces the resolution of the input 
image, and a decoder, which gradually increases the resolution 
of the image to produce the final high-resolution output. The 
encoder and decoder are connected by a bottleneck layer that 
contains information about the original image, allowing for 
precise reconstruction of the high-resolution output. 

Compared to other deep learning architectures, such as 
fully convolutional networks (FCNs) or residual networks 
(ResNets), U-Net has several advantages for super-resolution 
of brain MRI. First, the U-Net architecture allows for the 
preservation of fine details, which is important for identifying 
subtle anatomical features in MRI images. Second, U-Net is 
less prone to overfitting, a common problem in deep learning 
models, as it contains skip connections that enable the model to 
learn from features at multiple scales. Finally, U-Net is 
computationally efficient, allowing for faster training and 
inference times compared to other architectures. 
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C. Evaluation Metrics 

When evaluating the performance of image super-
resolution techniques for MRI, several metrics are commonly 
used, including Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM). While both metrics are 
useful for evaluating image quality, PSNR is generally 
considered to be more important than SSIM in the context of 
super-resolution for MRI. PSNR is a widely used metric that 
measures the quality of an image by calculating the ratio of the 
peak signal power to the mean squared error of the image. 
Higher PSNR values indicate better image quality, with a 
perfect image having a PSNR of infinity. In the context of MRI 
super-resolution, PSNR is important because it reflects the 
ability of the super-resolution technique to accurately 
reconstruct high-frequency details in the image. This is 
particularly important in MRI, where small details can have 
significant clinical implications. 

SSIM, on the other hand, is a metric that measures the 
structural similarity between two images. Specifically, SSIM 
calculates the similarity of the luminance, contrast, and 
structure of the images being compared. While SSIM is useful 
for evaluating overall image similarity, it is less sensitive to 
high-frequency details, which are important in the context of 
super-resolution for MRI. Therefore, while SSIM can provide 
useful information about the overall similarity of two images, it 
may not be as effective at evaluating the ability of a super-
resolution technique to accurately reconstruct high-frequency 
details. 

In our paper, we include only PSNR as a metric for 
evaluating the performance of our super-resolution technique 
for brain MRI. However, we primarily focused on the PSNR 
results as this metric provides a more accurate reflection of the 
ability of the technique to accurately reconstruct high-
frequency details. Our results showed that the use of our super-
resolution technique significantly improved the PSNR values 
compared to the baseline low-resolution images, indicating that 
our technique was effective at accurately reconstructing high-
frequency details. 

           
    

   
 

D. Loss Function Determination 

In our paper, we sought to explore the use of different loss 
functions to optimize the performance of our super-resolution 
technique for MRI. While Mean Squared Error (MSE) is a 
commonly used loss function for image super-resolution, we 
found that it underperformed during the training process for 
our specific application. As a result, we decided to experiment 
with different loss functions to identify the most effective 
option. 

After extensive experimentation, we found that Mean 
Squared Logarithmic Error (MSLE) performed significantly 
better than MSE in terms of producing higher resolution 
metrics. MSLE is particularly useful for image super-resolution 
applications as it is less sensitive to outliers, which can be a 
common issue in medical imaging data. MSLE also places a 
higher weight on errors for lower pixel values, which is 

important in the context of MRI super-resolution as lower pixel 
values typically correspond to high-frequency details. 

As a result of our experimentation, we established MSLE 
as the baseline loss function for our super-resolution technique 
and used it to test all of the networks. This allowed us to 
accurately compare the performance of different network 
architectures and identify the most effective approach for our 
specific application. By using MSLE as our main loss function, 
we were able to achieve significant improvements in image 
resolution and quality, ultimately leading to a more effective 
super-resolution technique for MRI [8]. 

     
 

 
            

  

E. Technology and Datasets 

In order to ensure that our network is well-equipped to 
handle a wide range of imaging scenarios, we utilized a large 
dataset of 50-800 3D MRI scans (depending on the 
architecture). All of these images came from the ABIDE 
dataset. These scans were carefully selected to include a variety 
of imaging parameters, such as field strength, contrast, and 
resolution, in order to ensure that our network is trained to 
handle the full range of imaging scenarios that it may 
encounter in clinical practice. 

Each of the 3D scans in our dataset contained 256 slices, 
from which we selected the 128th slice to train our model. This 
approach was chosen to ensure that we have a sufficient 
number of training examples while also avoiding any potential 
bias that might arise from using only a subset of the available 
slices. By selecting the middle slice of each 3D scan, we can be 
confident that our training data is representative of the full 
range of imaging parameters present in each scan. 

To evaluate the performance of our network, we tested it on 
a set of 10 randomly selected images. We used the peak signal-
to-noise ratio (PSNR) as our metric for evaluation. These 
metrics are widely used in the image processing community 
and are commonly used to assess the quality of reconstructed 
images. 

All of the experimentation for this study was completed on 
PyTorch 1.9.0 with NVIDIA GPU processing to speed up 
training time. The use of GPU processing allowed us to train 
our network more efficiently, enabling us to complete the 
necessary experimentation in a timely manner. Additionally, 
the use of PyTorch provided a powerful and flexible 
framework for implementing and testing our network, allowing 
us to easily modify and iterate on our approach as needed. 

IV. RESULTS 

In our study, we utilized Fig. 3 to present the qualitative 
observations of our super-resolution technique based on the U-
Net architecture. The U-Net algorithm is a sophisticated deep 
learning model that has gained widespread popularity for its 
high efficacy in image super-resolution tasks, particularly in 
the medical imaging domain. One of the key strengths of the 
U-Net algorithm is its ability to reconstruct fine details from 
low-resolution inputs, particularly in the deeper regions such as 
the hippocampal areas. These regions are particularly critical in 
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detecting neurological conditions such as Alzheimer's and 
Parkinson's disease. 

By effectively improving the resolution of MRI images in 
these regions, the U-Net algorithm can enhance the accuracy 
and reliability of disease detection, ultimately leading to 
improved patient outcomes. Furthermore, our study also 
compared the U-Net algorithm against four other commonly 
used networks in terms of average Peak Signal-to-Noise Ratio 
(PSNR) as denoted by Table I. The results of our study 
demonstrate that the U-Net algorithm outperformed the other 
networks in terms of average PSNR. This highlights the 
superiority of the U-Net algorithm in producing high-quality, 
super-resolved MRI images, which is of paramount importance 
in medical diagnosis and treatment. 

 
Fig. 3. Qualitative observations from low-resolution (left) to u-net output 

(right). 

TABLE I.  PSNR COMPARISON 

Dataset I PSNR 

SR DenseNet 29.62458398 

VDSR 29.9758636 

U-Net 30.40278329 

U-Net++ 30.18895619 

SR CNN 30.13047352 

V. DISCUSSION AND CONCLUSION 

Our study has delved into the potential of deep learning-
based super-resolution techniques to improve the resolution of 
MRI images in the medical imaging domain. The results of our 
research are highly promising, demonstrating the effectiveness 
of the U-Net architecture in reconstructing fine details from 
low-resolution inputs, specifically in the hippocampal regions 
that play a crucial role in detecting neurological conditions 
such as Alzheimer's and Parkinson's disease. Our comparison 
with four other commonly used networks has highlighted the 
superiority of the U-Net algorithm in producing high-quality, 

super-resolved MRI images. The U-Net performed with an 
average PSNR of 30.40, outperforming all other algorithms in 
terms of PSNR. 

By improving the accuracy and reliability of medical 
diagnosis and treatment in the field of neurological disorders, 
our research could have a significant impact on the lives of 
patients and their families. However, our study is just the 
beginning, and there are numerous potential avenues for future 
research. 

For example, we could explore the integration of multiple 
deep learning models for improved accuracy and efficiency. 
This could potentially lead to even more precise and 
comprehensive diagnosis and treatment for neurological 
disorders. 

Another possible direction for future research is to expand 
the dataset used for training to encompass a broader range of 
neurological conditions and patient populations. This could 
help to improve the generalizability of our results and make 
our super-resolution techniques even more widely applicable in 
the medical imaging field. 

While the U-Net architecture has demonstrated remarkable 
effectiveness in MRI super-resolution tasks, it is not without 
limitations. One notable limitation is the potential for 
overfitting, especially when dealing with limited or imbalanced 
training datasets. Due to the large number of parameters in the 
U-Net model, there is a risk of the model memorizing specific 
features from the training data rather than learning 
generalizable patterns. This can result in reduced performance 
when faced with unseen or diverse data during the testing 
phase. Another limitation is that our U-Net struggled to 
perform well with regards to the SSIM metric, 
underperforming current state of the art. Modifying loss 
function optimized to SSIM could potentially fix this issue. 

Additionally, the U-Net architecture may struggle to 
capture long-range dependencies and complex spatial 
relationships within the MRI images, which could impact the 
accurate reconstruction of fine details. Moreover, the U-Net's 
performance may vary depending on the specific MRI imaging 
modality or imaging protocols, making it less universally 
applicable across different types of MRI scans. Addressing 
these limitations through appropriate regularization techniques, 
larger and more diverse training datasets, and exploration of 
alternative architectures could further enhance the performance 
and generalizability of the U-Net in MRI super-resolution 
tasks. 

Moreover, we could investigate the potential of combining 
super-resolution techniques with other image processing 
techniques such as image segmentation and registration. By 
integrating these techniques, we could potentially achieve even 
more precise and comprehensive diagnosis and treatment for 
neurological disorders. 

In summary, our study highlights the significant potential 
of deep learning-based super-resolution techniques for medical 
imaging, particularly in the detection and treatment of 
neurological disorders. By enhancing the resolution of MRI 
images, our research can contribute towards improving patient 
outcomes and ultimately lead to a better quality of life for 
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individuals suffering from these conditions. The outcomes of 
our research could pave the way for further advancements in 
the field, leading to even more accurate and efficient diagnosis 
and treatment in the future. 
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