
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

An Anti-Pattern-based Runtime Business Process
Compliance Monitoring Framework

Ahmed Barnawi
King Abdulaziz University

Jeddah, Saudi Arabia

Ahmed Awad
Cairo University

Cairo, Egypt

Amal Elgammal
Cairo University

Cairo, Egypt

Radwa Elshawi
Princess Nourah Bint Abdulrahman University

Riyadh, Saudi Arabia

Abduallah Almalaise
King Abdulaziz University

Jeddah, Saudi Arabia

Sherif Sakr
King Saud bin Abdulaziz University for Health Sciences

Riyadh, Saudi Arabia
University of New South Wales, Sydney, Australia

Abstract—Today′s dynamically changing business and com-
pliance environment demand enterprises to continuously ensure
their compliance with various laws, regulations and standards.
Several business studies have concluded that compliance man-
agement is one of the main challenges companies face nowadays.
Runtime compliance monitoring is of utmost importance for
compliance assurance as during the prior design-time compli-
ance checking phase, only a subset of the imposed compliance
requirements can be statically checked due to the absence
of required variable instantiation and contextual information.
Furthermore, the fact that a BP model has been statically checked
for compliance during design-time does not guarantee that the
corresponding running BP instances are usually compliant due to
human and machine errors. In this paper, we present a generic
proactive runtime BP compliance monitoring framework, BP-
MaaS. The framework incorporates a wide range of expressive
high-level graphical compliance patterns for the abstract specifi-
cation of runtime constraints. Compliance monitoring is achieved
using anti-patterns, a novel mechanism which is agnostic towards
any underlying monitoring execution technology. As a proof-of-
concept, complex event processing (CEP) technology is adopted
as one of the possible realizations of the monitoring engine of
the framework. An integrated tool-suite has been developed as
an instantiation artifact of BP-MaaS, and the validation of the
approach is undertaken in several directions, which includes
internal validity and case study conducts considering two real-life
case studies from the banking domain.

Keywords—Business Process Management; Business Process
Monitoring; Business Process Compliance

I. INTRODUCTION

The global regulatory environment has grown in complex-
ity and scope since the financial crisis in 2008. This is causing
significant problems for organizations in almost all industrial
sectors, as the complexities of hard and soft regulations are
little understood or appreciated [6]. For example, banking
regulations such as anti-Money Laundering Directives are
generally complex and far-reaching, with a raft of major banks
found to be not in compliance in 2012. Standard Chartered
Bank, London, for example, was fined a total of $459 million
in 20121. Worse still, HSBC Holdings Plc. had paid a record

1http://www.accuity.com/industry-updates/free-resources/trends-in-aml-
compliance-infographic/

of $1.92 billion. These incidents were preceded by scandals
and business failures such as Enron, and WorldCom back in
2001. Subsequently, much attention has been paid to compli-
ance management from both the academic and the industrial
communities.

Research on compliance management has focused on the
checking and enforcement of compliance in one of the BP
lifecycle phases; i.e. design-time verification (e.g., [4, 22]),
runtime monitoring (e.g., [34, 57]) and offline monitoring
(e.g., [1]). While each of these phases has its strengths and lim-
itations, we consider proactive runtime compliance monitoring
as a vital component. With proactive, we mean violations
are detected as soon as they occur, and appropriate recovery
action(s) are taken to mitigate/minimize their impacts. Only
a subset of compliance rules can be checked during design-
time due to the lack of necessary contextual information;
e.g., time span constraints between tasks can not be checked
at design-time. Besides, due to human and machine errors,
a violation might still occur in a running instance resulting
from a statically compliant BP model. Offline monitoring, on
the other hand, is more beneficial for statistical analysis and
diagnostic purposes, as it is usually performed on a large
number of completed executions, following a retrospective
(after-the-fact) approach.

Driven by this emergent business need, runtime compliance
monitoring has recently been an active research topic (e.g., [38,
40, 64]); however despite the efforts, important aspects of
compliance monitoring have been overlooked. For instance,
the technology used to enable monitoring, the nature of the
process execution environment, the type of events generated
from these environments and their granularity have not been
well discussed in literature. Moreover, such approaches are
introduced as a component of a larger system that is usually
tightly interwoven with pre-existing components.

In this paper, we described the design and the imple-
mentation details of an end-to-end runtime business process
compliance monitoring as a service framework, BP-MaaS,
where we aim at providing an independent and comprehensive
platform as a compliance monitoring service [2]. In particular,
we summarize the main contributions and strengths of our

www.ijacsa.thesai.org 551 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

framework as follows:

• The framework supports a rich and wide set of com-
pliance patterns that represent the abstract specification
of monitoring requirements and cover the four structural
facets of BPs; i.e. control-flow, data, employed resources
and timing constraints.

• The monitoring engine of our framework is based on the
concept of anti-patterns, a novel compliance evaluation
mechanism which is agnostic towards the used technology
for implementing the compliance monitoring engine.

• In order to ease the task of process designers, our
framework is equipped with a user-friendly modeling
environment that relies on using graphical notations for
modeling the compliance rules.

• The framework is equipped with a Compliance Man-
agement Knowledge base (CMKB) that incorporates and
integrates a set of ontologies to capture and homogenize
the different perspectives of the compliance and business
sphere.

• We present the details of a proof-of-concept implementa-
tion as an instantiation artifact for the monitoring engine
of our framework, which adopts complex event processing
(CEP) technology. In addition, our modeling environment
has been equipped with a plugin that automatically maps
the modeled compliance rules into the concrete utilized
queries/scripts for executing the runtime monitoring pro-
cess.

• We demonstrate the applicability and utility of the pro-
posed framework by employing two real-world case stud-
ies that deal with business processes of companies oper-
ating in the banking domain. The findings have shown
that the proposed framework supports a major subset of
real-life compliance requirements addressing the heavily
regulated banking domain.

In the following, Section II provides the necessary back-
ground for the paper. Section III introduces two case studies
which are used for serving the purpose of our examples in
the rest of the paper. In addition, these case studies are used
for evaluating the applicability of the proposed approach that
validates its usefulness and utility, and highlight its limitations.
Section IV gives an overview of the proposed framework. Sec-
tion V details the anti-patterns that back the monitoring engine
of our framework. The details of the PoC implementation
of our framework is presented in Section VI. Case studies-
based evaluation of the proposed framework is presented in
Section . Related work is highlighted in Section VIII, with a
comparative analysis that aligns and appraises our approach
against prominent related work efforts. Finally, conclusions
and future work directions are drawn in Section IX.

II. BACKGROUND

This section introduces the main concepts and techniques
that form the groundwork for our approach. In addition, we
introduce a case study that forms the basis of our discussion
and examples in the rest of the paper.

A. Reference Life Cycle Models

As the objective of this work is to enable runtime moni-
toring of process compliance, we depend on events generated

Allocated

Raw Event

Instance-
based event

Task-based
event

Failed

Started

Started

Failed

Resumed

Suspended

Resumed

Completed

Suspended

Completed

Task-based

lifecycle
Instance-based

lifecycle

Execution
Engine

Monitoring
based on

anti-patterns

C
o

m
p

o
si

te

Ev
en

ts

Compliance
Rules

Raw Events

Fig. 1: Classification of raw events

by the execution environment. Events represent the evolution
of the running process instances. We assume that these events
reflect a change in state of either the whole process instance
or one of its task instances. The set of states and transitions
among them is assumed to be predefined by a process/task
lifecycle. This is important as the events generated by the
execution environment will form the input of raw events to the
monitoring component upon which violation will be detected.
We build on top of the work of Russell et al. [50] and Lerner et
al. [30] where we combine both works and project the relevant
parts for compliance monitoring.

Figure 1 summarizes the different types of events that
are expected to be generated by the execution environment.
Definition 2.1 formalizes what a raw event means in the
context of this paper.

Definition 2.1 (Raw Event): Let PM be the set of all
process models, PI be the set of all process instances and TI
be the set of all task instances, and R be the set of all resources.
A raw event is a tuple (type, task instance, process instance,
timestamp, data, resource), where:

• type ∈ {started, failed, allocated, resumed, suspended,
completed} to indicate the actual type of the event,

• task instance ∈ TI ∪ {⊥} is a reference to the task
instance for which the event occurred. When this property
is not applicable, e.g. this is a process level event, the
property has the value ⊥,
• process instance ∈ PI is a reference to the process

instance within which the event occurred,
• timestamp ∈ N indicates the time stamp where the event

occurred.
• data is the data payload of the event. This basically holds

states of data elements processed within a case but can
be extended by execution environment related data. When
this property is not applicable or irrelevant in context, the
property has the value ⊥.

• resource ∈ R∪{⊥} is a reference to the human resource
performing a task. When this property is not applicable,
e.g., this is an automated step, this property has the value
⊥.

The set RE defines the different raw events that can be
received on the stream. Instead of representing the occurrence
of start event of task A within a certain process instance i as
e = (started,A, i, t, d, r) where t is the event time stamp, d
is the data payload and r is the human resource, we write it

www.ijacsa.thesai.org 552 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

as e = started(A, i, t, d, r). Also, we might have a shorthand
as e = started(A, i) when the other pieces of information are
not relevant.

B. Compliance Patterns

In general, pattern-based modeling of compliance rules
is well accepted in the community and several studies have
provided a comprehensive set of patterns that cover the differ-
ent aspects as control flow, data flow, resource allocation and
timing as summarized by Ly et al. [32]. In this work, we build
on top of those patterns. In particular, Figure 2 summarizes
the set of compliance patterns which are supported by our
framework. We use pattern and rule interchangeably where a
rule is an instantiation of a pattern.

In practice, any pattern can optionally be limited to a scope
in which the rule is required to hold. The scope represents
a time window that is bounded by case or task instance-
related events. In principle, the default scope is the whole
process instance execution. Also, the pattern can be refined
by a condition where the rule is required to hold only when
this condition is true. The condition may refer to process
execution data that are reflected in the event data payload. With
each pattern, two actions are defined. The Violation Action
describes the action taken by the monitoring component when
the violation occurs whereas the Prediction Action describes
the action taken when there is a possibility of violation. The
nature of the action depends on how the monitoring component
is integrated with the execution environment. For instance, the
simplest action that can be taken is to alert administrators.

Definition 2.2 (Atomic Compliance Rule): Let PM be
the set of all process models to be monitored. A compliance
rule is a tuple (pattern,model, antecedent, consequent,
condition, scope start, scope end,multiplicity,WA, timespan,
alerttimespan, isBefore, violationaction, predictiveaction)
where:

• pattern ∈ {Exists,Absence, Sequence,Next, Precedes,
One to one precedes,Response,One to one response,
SoD,BoD,Performed by role, Performed by resource}
defines the pattern from which the rule is instantiated,

• model ∈ PM is a reference to the process model against
which the rule has to be monitored,

• antecedent ∈ {ex, not(ex)|ex ∈ RE} where not(ex)
means that event ex has not been observed,

• consequent ∈ {ex, not(ex)|ex ∈ RE} where not(ex)
means that event ex has not been observed,

• condition is the data condition that is to be examined at
the occurrence of the rule’s antecedent

• scope start ∈ RE defines the delimiting start event of
the rule’s scope,

• scope end ∈ RE defines the delimiting end event of the
rule’s scope,

• multiplicity is a constraint on the number of occurrences
of the rule’s antecedent,

• WA ⊂ RE is the set of events that must not occur
between the antecedent and consequent,
• time span is the time window in/out of which the
consequent event must be observed,

• alert time span is the time window after which there
is a possibility of violation if the consequent was not
observed,

• isBefore ∈ {0, 1} is a Boolean value indicating wether
the consequent event must be observed before or after
the end of the time span

• violation action ∈ {alert, suspend} defines the action
to be taken upon the occurrence of a violation,

• predictive action ∈ {alert, suspend} defines the action
to be taken when there is a possibility of a violation.

When any property does not apply to a rule pattern, it is
represented as ⊥. We define CR as the set of all compliance
rules registered with the monitoring component.

As per Definition 2.2, there might be a time span win-
dow that puts further constraints on the observation of the
consequent event with respect to the antecedent event. This
is also further controlled by the isBfore property. So, if
isBore = 1, the pattern requires that the consequent event
to be observed before time span elapses otherwise there is a
violation. Whereas, if isBefore = 0, then consequent has to
be observed after the time span elapses.

Composite patterns are used to logically connect other
patterns by Boolean operators AND, OR, NOT , etc. This is
used to define complex rules that can not be expressed merely
by atomic patterns, which is especially helpful when sub-ideal
level of compliance is also needed [32].

C. Complex Event Processing (CEP)

In traditional systems, data are static in the system while
the queries used are changing. For example in traditional
database systems, the data are stored in tables and users
can write different queries that access those tables to process
data and get the results. However, when using complex event
processing (CEP) technology, the roles of data and queries
are reversed; where the queries will be static and data or
events will be dynamic based on the input event streams
from different sources. These queries will be checked against
incoming streams of events to verify that queries are answered
correctly.

In the context of business process compliance, monitoring
queries (rules) are commonly represented in the form of
event-condition-action (ECA) rules [23]. Thus, the first trigger
to evaluate a query is to find the matching input event on
the stream. In general, there are two types of events, raw
(low-level) events and business-level (composite) events [31].
Composite events might result from the evaluation of one
or more query whereas raw events are generated from the
different execution environment. In the context of process
compliance monitoring, raw events are generated based on
a change of the state of running process instances (cases)
and their activities. In practice, an event stream contains a set
of associated events, that are chronologically ordered. These
events are generated from different sources. This stream of
events could be homogeneous in which all events must be
from the same type, or heterogeneous in which all events may
be of different types [23].

III. CASE STUDIES

In this section, we introduce two case studies addressing
the banking domain. The first case study has been conducted
in the Governance, Risk and Compliance Technology Centre

www.ijacsa.thesai.org 553 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Event

Composite
Patterns

Occurrence
Patterns

Atomic
Patterns

0..1

Antecendent

Consequent
Compliance Patterns

PerformedBy

Segregation
OfDuty

Binding
OfDuty

Resource
Patterns

Sequence

isNex t

Existence

Multiplici ty

Absence

Order Patterns

With Absence
Time Span
Alert Time Span
isBefore

Precedence

isOneToOne

Response

isOneToOne

Fig. 2: Compliance Patterns

(GRCTC)2 focusing on Anti-money Laundering (AML). The
second case has been conducted within the scope of the
EU-funded research project COMPAS3, targeting the loan
processing business scenario. This case study was performed
by Thales Services, France4, as one of COMPAS industrial
partners; a company heavily operating in the banking domain.
Taking into account the demands for strong regulation com-
pliance schemes, such as Sarbanes-Oxley (SOX), BASEL-III,
ISO 27000 and sometimes contradictory needs of the different
stakeholders, such business environments raise several inter-
esting compliance requirements. Anti-money laundering is a
pressing concern to any organization operating in the financial
industry, as it is tightly adjunct to terrorism and proliferation
financing. Despite the fact that it is not possible to precisely
quantify the amount of money laundered every year, in [48],
it has been shown that billions of US dollars certainly are.
On-going work in GRCTC in collaboration with respectable
Irish financial organizations focuses on developing an end-
to-end AML business process encoded in the BPMN v2.0
standard, which is established based on best practices and the
Financial Action Task Force (FATF) 40 recommendations [55].
The U.S. Patriot act of 2001 [44] was considered as the
main source of compliance requirements targeting anti-money
laundering, which constitutes a large number of compliance
requirements structured into twelve sections. The interpreta-
tions of embedded requirements and encoding them in the
Semantics of Business Vocabulary and Business Rule (SBVR)
standard [45] as a structured natural language is ongoing work
in GRCTC [20]. Since the interpretation of compliance sources
mandatory requires legal expertise [58, 60], GRCTC has hired
three legal experts, who work very closely with compliance
experts to interpret the AML directives and encode them in
SBVR. We use the second case study (Loan Approval scenario)
as a running scenario to exemplify the next discussion. The
conducts and the overall findings of both case studies are
discussed later in Section VII.

2GRCTC: http://www.grctc.com/
3COMPAS: http://www.compas-ict.eu
4Thales Group: https://www.thalesgroup.com/

A simplified model of the loan origination and approval
process is depicted in Figure 3 using BPMN (Business Process
Model and Notation). The process flow can be described
as follows: Once a customer loan request is received, the
credit broker checks customer′s banking privileges status. If
privileges are not suspended, the credit broker accesses the
customer information and checks if all loan conditions are sat-
isfied. Next, a loan threshold is calculated, and if the threshold
amount is less than 1M Euros, the post-processing clerk checks
the credit worthiness of the customer by outsourcing to a credit
bureau service. Next, the post-processing clerk initializes the
loan form and approves the loan. If the threshold amount
is greater than 1M Euros, the supervisor is responsible for
performing the same activities instead of the post-processing
clerk. Next, the manager evaluates the loan risk, after which
she normally signs the loan form and sends the form to the
customer to sign. A legal waiting time of 7 days is provided
to the customer to send back the signed contract. If a timeout
occurs, which means that seven days have passed and the
Customer has not sent the signed contract, the relevant loan
approval application is closed by the system and the process
terminates.

Table I shows an excerpt of the compliance requirements
imposed on this loan approval scenario. This table is populated
after applying the refined methodology described in [58, 60].
The first and second columns of the table allocate a unique
reference and an organization-specific interpretation of the
requirement, respectively. The third column represents the
pattern-based representation of interpreted compliance require-
ments.

IV. BP-MAAS: FRAMEWORK OVERVIEW

Figure 4 provides an overview of the generic business
process compliance management BP-MaaS framework. In
principle, the framework has two major components: Com-
pliance management component (right hand side of Figure 4)
and Business process management component (left hand side
of Figure 4). The framework is generic, however, in the

www.ijacsa.thesai.org 554 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Fig. 3: A simplified BPMN model of the loan origination and approval process

next discussion we are considering Business Process Mod-
elling and Notation standard [25] as a possible instantiation
of the proposed framework. As shown in the figure, the
BP-MaaS exhibits two basic abstract roles: business expert
and compliance expert. The business expert is responsible
for the definition, design, development and management of
service-enabled business processes, while taking compliance
requirements into consideration. The compliance expert is
responsible for the refinement, interpretation and specification
of compliance requirements emerging from various internal
and external compliance sources in close collaboration with
the business expert.

On the top of the monitoring components is the Compliance
Management Knowledge base (CMKB) that incorporates and
integrates a set of ontologies to capture the different perspec-
tives of the compliance and business spheres [21]. In prac-
tice, compliance requirements usually originate from various
sources, including laws and regulations, standards, public and
internal policies, partner agreements, etc., and organizations
are continuously required to comply with increasing number
of diverse and evolving laws and regulations. Furthermore,
compliance and business concepts may be treated differently

by different stakeholders with different backgrounds. This
ambiguity results in inconsistency, which makes it infeasible
to share and re-use business and compliance specifics. All
these problems make it infeasible for automated compliance
monitoring and analysis. In principle, the need to manage
regulatory and compliance data, especially in heavily-regulated
domains, exceeds the abilities of current information systems.
The majority of compliance management approaches in the
literature (cf. Section VIII) assumes this ontological align-
ment, due to the complexity of this problem. Therefore, our
framework is equipped with a uniform conceptualization of
the process and compliance space which provides various
advantages including:

• Enabling the sharing and re-use of compliance and busi-
ness knowledge

• Eliminating any ambiguity that may result in unforeseen
inconsistencies

• Significantly facilitating the communication between
stakeholders with different backgrounds, e.g., compliance
and business experts

• Ensuring the ontological alignment between business and
compliance concepts

www.ijacsa.thesai.org 555 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

TABLE I: Compliance Requirements

Compliance Requirements Control Pattern Representation

1) Access to sensitive

Only Credit Broker, Post-processing R1.1: PerformedByRole(Verify Banking Privilege,Role=Credit Broker)
Clerk and Supervisor roles can access R1.2: PerformedByRole(Acquire Bank Information,Role=Credit Broker)
the Credit Bureau service and the R1.3: PerformedByRole(Check Credit Worthiness,Role∈ {Post Processing Clerk ,Supervisor})

data is restricted Customer Information File service. R1.4: PerformedByRole(Prepare Package Price,Role ∈ {Post Processing Clerk , Supervisor})

2) Only credit worthy

The Credit Broker checks the Customer R2.1: PerformedByRole(Verify Banking Privilege,Role = CreditBroker)
Bank Privilege and rejects the loan request if the R2.2: Response(Verify Banking Privilege,
Credit Bureau Service indicates that the Decline By Suspeneded Banking Privilege,

customers receive a loan. customer’s banking privileges have been suspended. condition=(Suspeneded = Yes))

3) Duties in Loan Origination

The Credit Broker checks the banking R3.1: Response(VerifyBankingPrivilege,CheckCreditWorthiness)
privileges and the Post-processing Clerk R3.2: Absence(CheckCreditWorthiness,scop end =
or the Clerk Supervisor checks the credit worthiness. VerifyBankingPrivilege)

are segregated. R3.3:SoD(VerifyBankingPrivilege,CheckCreditWorthiness)

4) High loan request have to be

If the loan requests credit is below 1 million EURO, R4.1: PerformedByRole(Check Credit Worthiness,Role = Post Processing
the Post-processing Clerk of Credit Operations checks Clerk, condition = Threshold < 1M Euro)
the credit worthiness, if it is higher than 1 million R4.2: PerformedByRole(Check Credit Worthiness,Role = Supervisor,

processed by supervisors. EURO the Clerk Supervisor checks the credit condition = Threshold ≥ 1M Euro)
worthiness of the customer.

5) Duties in Loan Origination

As a final control, the branch office Manager has R5.1: PerformedByRole(Evaluate Loan Risk,Role= Manager)
to check high-risk loan requests whether it is profitable R5.2: Exists(Evaluate Loan Risk)
and risks are acceptable and makes the final approval R5.3: PerformedByRole(Sign Loan Contract,Role= Manager)
(or denial) of the request. Only the Office Manager is R5.4: PerformedByRole(Decline By High Risk,Role= Manager)

are adequately segregated. able to perform the final approval. R5.5: Response(Evaluate Load Risk, Decline By High Risk,condition=(LowRisk = No))
R5.6:Response(Evaluate Load Risk, Sign Loan Contract,condition=(LowRisk = Yes)
R5.7: Exists (Sign Loan Contract) XOR Exists(Decline By High Risk)

6) Customers receive a certain The Credit Broker can start a loan approved by the R6.1: Response(Send Loan Contract,Perform Loan Settlement
customer, only if five work days or more have elapsed , time span = after 5 Working days)

period of time for reflection. since the loan approval form was sent. R6.2: PerformedBy(Perform Loan Settlement, Role= Credit Broker)
7) Customers personal data The customer receives an email notification when R7.1:Response(Acquire Bank Information,Send Notification To Customer,WA=All other)
is handled confidentially. his data is collected from the Credit Bureau service. R7.2: Response(Check Credit Worithness,Send Notification To Customer,WA=All other)

• Improving the level of automation provided by the frame-
work

To achieve these goals, three main ontologies are em-
ployed: (i) BP ontology: an ontology that captures the se-
mantics of the adopted BP language, e.g. BPMN, BPEL, (ii)
Domain Ontology: an ontology that represents the concepts
and relationships that exist in the domain of interest, e.g.,
medical, transport, aerospace, etc. and (iii) Regulatory On-
tology: an ontology that formalizes the requirements, controls
and rules of compliance imperatives. Ontologies in the CMKB
may be represented formally in the Ontology Web Language
(OWL2.0) [63]. We build upon the BPMNO ontology [18] as
the Business Process ontology. BPMNO provides a rich onto-
logical representation of the BPMN v2.0 standard, which we
consider as one of the possible instantiation of the framework.
If another business process language is adopted, e.g., Business
Process Execution Language (BPEL) [43], an ontology should
be incorporated to capture its semantics. Moreover, we utilize
the Financial Industry Business Ontology (FIBO) [15, 12]
as the domain ontology since the case study we use in
this paper (and introduced in Section III) concerns with the
financial/banking domain. FIBO is an adopted OMG standard,
a collaborative initiative led by industry members of the Enter-
prise Data Management Council (EDMC) in collaboration with
the Object Management Group (OMG). Similarly, if another
domain is considered, relevant domain ontology should be
incorporated.

Business process management component (left hand side
of Figure 4) starts by the business expert defining new BPMN
model or re-use/update an existing one. In a green scenario,
if the BPMN process is built from scratch, concepts and
relations from FIBO can be directly used to guide its design
and development. However, if BP models already exist (which
is the common case), concepts from FIBO can be used to

provide semantic annotation to existing BPMN models (the
semantic labelling link between ‘Domain Ontology’ and ‘BP
Ontology’ as shown in Figure 4)), and then various reasoning
mechanisms can be applied to ensure the correctness of these
annotations as proposed in [18]. Examples of concepts in FIBO
are: ‘Agent’, ‘Person’, ‘National id’, ‘real estate’, ‘agreement’,
‘contract’, ‘ownership’, ‘Asset’, etc.; examples of relations
are: ‘manages’, ‘provides’, ‘represents’, ‘is issued by’, ‘is
appointed by’, etc. Examples of concepts in BPMNO are:
‘Activity’, ‘Event types’, ‘Task’, ‘Gateway’, etc.

Regulatory ontology is under development that addresses
the regulatory domain by capturing concepts and relationships
necessary to represent compliance patterns and compliance
rules. Key concepts in this ontology are ‘Input Data’, ‘Events’,
‘Condition’, ‘Action’, ‘Boolean Operator’, etc. As discussed in
Section II, the framework makes use of compliance patterns
to represent compliance requirements mainly to provide an
abstraction layer, so that experts do not have to go into the
low-level and intricate details of the underlying formal/logical
language. Therefore, the Regulatory ontology also maintains
concepts such as ‘Compliance Patterns’, ‘Occurrence Patterns’,
‘Timed Patterns’, ‘Operand’, ’Label’, etc. As shown in Fig-
ure 4, Compliance Management Ontology, BP ontology (e.g.,
BPMNO), Domain Ontology (e.g., FIBO) and Regulatory
ontology represent the Terminological part (TBox) of the
CMKB. Instances from these ontologies populate the Compli-
ance Requirements Repository (CRR), and Business Process
Repository (BPR), representing the Assertional part5 (ABox)
of the knowledge base.

The business process and compliance management activ-

5The terms ABox and TBox are used to describe two different types of
statements in ontologies. TBox statements describe a conceptualization, a
set of concepts and properties for these concepts. ABox are TBox-compliant
statements about individuals belonging to those concepts.

www.ijacsa.thesai.org 556 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Fig. 4: Framework Overview

ities start independently of each other, but they should be
aligned with each other. This agrees with the necessity of the
separation of compliance and business process management
practices [51], [22], mainly because:(i) they have different
objectives: ownership and governance perspectives , (ii) differ-
ent lifecycles, (iii) different nature: compliance requirements
are normative/descriptive by nature (describing what should
be done), therefore, declarative languages are more suited to
capture them, while business process specifications are pre-
scriptive (describing how business activities should take place),
therefore, procedural languages are the best to represent them,
and (iv) the two specifications may conflict/contradict with
each other. Therefore, they should be separated, however, their
interrelationships should be carefully studied and maintained.

As mentioned above, Business process management prac-
tices commences with the business expert defining and mod-
elling business process requirements using BPMN. The design
process supports both task-based and instance-based lifecycles
(cf. Section II). However, different execution environments
could have slightly different lifecycle models, where adapters
could be utilized to fill in this gap. In this case, adapters have
to be implemented to correlate or supplement missing events
that are expected by the monitoring component.

This step is highly iterative, such that the BPMN model
follows multiple iterations of design and refinements to faith-
fully represent business logic and requirements. The outcome
of this step is a BPMN model capturing the control and data
flow of the business logic. The loan approval business scenario
introduced in Section III (Figure 3) is an example of a BPMN

model in the banking domain. The framework currently relies
on the Oryx system [16] as its business process modeling
environment that supports the BPMN 2.0 exchange format.
However, the framework could be easily adapted to support
other formats as well.

The BPMN model is then deployed on a business process
(BP) engine in a possibly distributed environment. During
execution, the BP engine emits different types of defined events
reflecting the evolution of the execution of the BP model.
These raw events are sent synchronously to the compliance
management component (right-hand side of Figure 4), where
business process monitoring comes into play. As shown in
Figure 4, the interconnection between the business process
management component and the compliance management
component is through the emitted raw events.

From the compliance management side (right-hand side of
Figure 4), the compliance expert starts by the specification of
applicable compliance requirements using compliance patterns
(as described in Section II) and using concepts from the
CMKB. Table I in Section III shows an excerpt of some
compliance requirements imposed on the loan approval model
shown in Figure 3. To further ease the job of the compliance
expert, we have developed a graphical compliance rule edi-
tor (on top of Oryx) that enables the compliance expert to
intuitively build pattern-based expressions in a drag-and-drop
fashion (more details about the implementation are presented
in Section VI). Graphical pattern-based expression are then
automatically mapped into the target formal/query language
and then feed the monitoring component. As one possible

www.ijacsa.thesai.org 557 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

realization of the framework, we have defined the mapping
scheme from graphical pattern-based expressions into Event
Processing Language (EPL) queries following a complex event
processing approach (details are given next in Section VI). The
framework currently adopts its customized format for storing
and exchanging the compliance rules. Adopting a standard rule
exchange format, e.g. RuleML [13], is left as a future work.

Raw events as data streams sent from the BP engine
are then interrelated to generate composite events that are
compliant with the lifecycle model on the stream (based on
defined event-patterns of interest). The monitoring component
then evaluates these rules/queries against the composite events
and appropriate actions are taken in case a runtime violation
is detected by the monitoring component. More specifically,
when a new event is received on the stream, it automatically
gets directed to the set of rules that have subscribed for
that event for processing and detecting or predicting any
possible non-compliance instances. As a result, the rule/query
might generate another event on the stream to signal the
compliance status of the instance that has generated the event.
The monitoring is achieved by means of anti-patterns, a novel
compliance monitoring evaluation approach we introduce in
this paper (details are presented next in section V). Finally,
compliance results are presented to the compliance/business
experts on dashboards in detailed and aggregated manner with
the support of various charts/indicators. Business and compli-
ance experts scrutinize the results presented on the dashboards,
which may initiate multiple iterations of the business process
or compliance lifecycles for improvements.

Figure 4 highlights, by dashed lines, the components which
represent the main focus of this paper. More specifically, the
continuous runtime monitoring of compliance requirements on
the basis for anti-patterns, which will be discussed in more
detail next in Section V. The proof-of-concept of the proposed
approach as a runtime monitoring tool-suite is presented in
Section VI. This is followed by a discussion of validation and
evaluation efforts in Section VII

V. MONITORING COMPLIANCE

In this section, we discuss the mechanics of the monitoring
process in our framework. In principle, we follow the notion
of anti-patterns, however, we are mainly focusing on the
implementation of this notion for achieving the compliance
requirements at the runtime phase instead of the design phase
which has been considered by previous related work [4, 5].
In particular, we directly look for sequences of events that
indicate that a violation has occurred or likely to occur.
To achieve this, a set of anti-patterns are inferred for each
compliance pattern. One advantage of looking for anti patterns
is that the root cause of the violation is given without incurring
additional costs [32]. Whenever a query finds a match, it
generates a Rule Violation Event, see Definition 5.1, on the
stream. This event can then be caught by another query to
take an action against the violation.

Definition 5.1 (Rule Violation Event): A rule violation
event is a tuple (rule, case,
isV iolation,RC, timestamp) where:

• rule ∈ CR is a reference to the rule for which a violation
has been detected or predicted,

• case ∈ PI is a reference to the process instance for which
a violation has been detected or predicted,

• isV iolation ∈ {true, false} is a flag to indicate whether
this an actual or a prediction of a violation,

• RC is the sequence of events that is the root cause of the
violation,

• timestamp ∈ N is the time stamp at which the event
occurred.

We define RV E as the set of rule violation events generated.

As per Definition 5.1, a rule violation event can be thrown
even in the case where there is a possible violation. This is dis-
tinguished from the actual violation by the flag isV iolation.
Some of the patterns require that process tasks have to take
place within a specified time span. Therefore, we assume that
when a time span expires, a timer event is thrown to indicate
that the time span has expired.

Definition 5.2 (Timer Event): A timer event is a tuple
(rule, case, time span, time stamp) where:

• rule ∈ CR is a reference to the rule for which a violation
has been detected or predicted,

• case ∈ PI is a reference to the process instance for which
a violation has been detected or predicted,

• time span is the time span defined in rule,
• time stamp ∈ N is the time stamp at which the event

occurred.

We use the notation timer−event(r, c, time span) to refer to
the timer event generated for rule r, case c and for time span.
We define TE as the set of timer events generated.

Definition 5.3 (Event Stream): Event stream σ is a se-
quence of events on the form e1, e2, . . . , ek where ei ∈
RE ∪RV E ∪ TE, 1 ≤ i ≤ k

As per Definition 5.3, the event stream is heterogeneous
as it could hold raw events from the process execution, rule
evaluation events and timer events. Moreover, raw events can
belong to different process instances. We use Definition 5.4 to
retrieve the history of execution of a certain process instance. It
is also possible to retrieve a specific scope of the case history.
Case history is used by the anti pattern queries to look for
violations.

Definition 5.4 (Case History): Case history
σi(start, end), where i ∈ PI , start, end ∈ RE is a
projection on the event stream σ where only events related
to instance i are projected. start and end default to the case
start and end events respectively. They are used to project a
certain scope of the case history rather than the complete one.
When an event e is a member of σi, we denote that as e ∈ σi.

Definition 5.5 (Count of Event Occurrence): Given that
σi is a case history of process instance i ∈ PI and e ∈ RE,
we define a function count(e, σi) that determines the number
of occurrences of e in σi.

As shown in Figure 2, compliance rules can be either
atomic or composite. In the following sections, we describe
the anti-patterns, i.e., the violation scenarios for each atomic
pattern.

www.ijacsa.thesai.org 558 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

A. Exists and Absence Anti Patterns

The Exists pattern requires that the antecedent event to
occur a certain number of times within a certain scope in
the process instance where a specific data condition holds. A
violation to this rule occurs when the multiplicity constraint
is no longer satisfied within the specified scope where the
data condition holds with the antecedent event. Specifically,
a violation takes place when either:

• A sequence of events where the scope start is observed
and then the scope end is observed and in-between the
antecedent occurs less than the minimum of the rules
multiplicity.

• A sequence of events where the scope start is observed
and then the antecedent occurs more than the maximum
of the rules multiplicity.

These two possibilities are captured by Definition 5.6.

Definition 5.6 (Exists Violation): A violation to an Exists
rule, exists(pm, antecedent,
⊥, condition, scope start, scope end,multiplicity, ∅,⊥,⊥,
alert, alert), occurs in a process instance i, i ∈ PI iff:

• ∃r = σi(scope start, scope end) : multiplicity.min >
count(antecedent, r). Or,

• ∃r = σi(scope start, antecedent) :
multiplicity.max < count(antecedent, r).

The Absence pattern requires that the antecedent event is
never observed within a certain scope in the process instance
where a specific data condition holds. Basically, the absence
pattern can be seen as a special case of the Exists pattern where
multiplicity.min = multiplicity.max = 0. Thus, the two
possible violations scenarios in Definition 5.6 can be applied.

B. Response Anti Patterns

The Response pattern can be violated in the following
cases:

• The rule’s antecedent is observed but the consequent
never occurs within the monitoring scope and time span,
if defined, when isBefore = true,
• The rule’s antecedent is observed and then the
consequent is observed within the monitoring scope but
before time span, if defined, where isBefore = false,

• The rule’s antecedent occurs and any of the for-
bidden events with absence occurs before the rule’s
consequent,

• There is a (possible) violation if the (alert) time span
elapses before the occurrence of the consequent event,
when isBefore = true.

Definition 5.7 (Response Violation):
A violation of a Response rule,
response(pm, antecedent, consequent, condition,
scope start, scope end,⊥,WA, time span, alert time span,
isBefore, alert, alert), occurs in a process instance i ∈ PI
iff:

1) ∃r = σi(scope start, scope end) : antecedent ∈
r ∧ consequent /∈ r ∧ consequent.timestamp >
antecedent.timestamp. Or,

2) ∃r = σi(scope start, timer event(response, i, time −
span)) : antecedent ∈ r ∧ consequent /∈
r ∧ consequent.timestamp > antecedent.timestamp,
where isBefore = true. Or,

3) ∃r = σi(scope start, consequent) :
antecedent ∈ r ∧ consequent.timestamp >
antecedent.timestamp ∧ @t =
timer event(response, i, time span) :
t.timestamp < consequent.timestamp, where
isBefore = false. Or,

4) ∃r = σi(scope start, absent event) : absent event ∈
WA ∧ antecedent ∈ r ∧ consequent /∈ r ∧
consequent.timestamp > antecedent.timestamp.

Definition 5.7 formalizes the different violation scenarios
for the Response pattern. The essence is that we can observe
a sequence of events that starts with the scope start event
in which the antecedent is observed but not the consequent
afterwords, the first, third and fourth case. This is where the
time stamp is used for comparison. The difference between
the three cases 1, 2 and 4 is in the closing event of the
event sequence. In the first case, the scope end is observed
before having observed the consequent. In the third case,
the timer event which is generated when the time span
elapses is observed. In the last case, one of the forbidden
events absent event ∈ WA is observed before consequent
and thus a violation has occurred. The second case however,
detects that the consequent has already occurred. However,
there is a violation in this scenario if we fail to observe
the timer event before the consequent. This is required only
when the Response has its property isBefore = false which
means that the time span must elapse before observing the
consequent, cf.Rule R6.1 in Table I.

The One to One Response is a special case of the Response
pattern. In addition to the violation scenarios of the main
pattern, One to One Response is violated if two occurrences
of the antecedent event are observed without observing the
consequent in between.

Definition 5.8 (One to One Response Violation):
A violation of a One to One Response rule,
one to one response(pm,
antecedent, consequent, condition, scope start, scope end,⊥,
WA, time span, alert time span, isBefore, alert, alert),
occurs in a process instance i ∈ PI if a violation to its
underlying Response rule occurs or ∃r = σi(scope start,
antecedent1) : antecedent2 ∈ r ∧ consequent /∈
r ∧ consequent.timestamp >
antecedent1.timestamp.

C. Sequence and Next Anti Patterns

The Sequence pattern requires that antecedent occurs and
is then followed by consequent within a scope where the data
condition holds. We can see that Sequence pattern can be a
conjunction of the Exists and Response patterns. Thus, the
violation of the Sequence pattern occurs if any of the violation
scenarios of the Exists or the Response patterns occurs.

The Next pattern is a special case of the sequence pattern
which in addition to the restrictions imposed by the Sequence
pattern requires that no other events are observed in the process

www.ijacsa.thesai.org 559 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

execution between antecedent and consequent. In this regard,
the anti patterns of the Exists and Response can be used. To
enforce that no other events are allowed in-between, we can
make use of the set WA that indicates the forbidden events.
In this case, the set of forbidden events must refer to events
of all other tasks in the process to ensure that nothing else
happens between the antecedent and the consequent.

D. Precedes Anti Patterns

The Precedes pattern can be violated in the following cases:

• The rule’s antecedent occurs but never the consequent
before it within the monitoring scope and time span, if
defined,

• The rule’s antecedent occurs and the consequent is
observed before it within the monitoring scope but before
the time span elapses, in case the rule isBfore = false,
• The rule’s antecedent occurs and any of the forbid-

den events WA occurred before it and after the rule’s
consequent,

For Precedes rules, it is not possible to predict violations as it
is a history-looking rule by nature.

Definition 5.9 (Precedes Violation):
A violation of a Precedes rule,
precedes(pm, antecedent, consequent, condition, scope start,
scope end,⊥,WA, time span,⊥, isBefore, alert,⊥),
occurs in a process instance i ∈ PI iff ∃r =
σi(scope start, antecedent) :

• scope end /∈ r ∧ consequent /∈ r. Or,
• scope end /∈ r ∧ consequent ∈ r ∧
antecedent.timeStamp− consequent.timeStamp >
time span, if isBefore = true. Or,
• scope end /∈ r ∧ consequent ∈ r ∧
antecedent.timeStamp− consequent.timeStamp <
time span, if isBefore = false. Or,
• ∃absent event ∈ WA : scope end /∈ r ∧ consequent ∈
r ∧ absent event ∈ r ∧
absent event.timeStamp > consequent.timeStamp.

Definition 5.9 formalizes the different violation scenarios
for the Precedes pattern. The violation occurs when a projec-
tion on case history which starts with the scope start event
and ends with the antecedent event and the scope is active,
i.e., the scope end was not observed before the antecedent
event scope end /∈
σi(scope start, antecedent) and:

• In the first case, the consequent event was not observed
as a member of that projection of case history.

• In the second case, the consequent event was observed
in the case history projection but the difference between
the time stamp of the antecedent and consequent events
is more than the prescribed time span in the rule when
the rule’s isBefore property is set to true.
• The third case is similar to the case above with one

difference is that the difference between the antecedent
and the consequent events timestamps is less than the
required time span. This is a violation only in case the
rule has the isBefore property set to false.

• In the last case, in addition to observing the consequent
event one of the forbidden events, absent event ∈ WA
was observed after consequent was observed.

The One to One Precedes is a special case of the Precedes
pattern. In addition to the violation scenarios of the main
pattern, One to One Precedes is violated if two occurrences
of the antecedent event are observed without observing the
consequent in between.

Definition 5.10 (One to One Precedes Violation):
A violation of a One to One Precedes rule,
one toone precedes(pm,
antecedent, consequent, condition, scope start, scope end,⊥,
WA, time span,⊥, isBefore, alert,⊥), occurs in a process
instance i ∈ PI if a violation to its underlying Precedes rule
occurs or
∃r = σi(scope start, antecedent1)∃antecedent2 ∈ r
@consequent ∈ r : consequent.timestamp >
antecedent2.timestamp.

E. Separation/Bind of Duty Anti Patterns

The separation of duty pattern is violated whenever the
consequent event has the same resource identifier as the
antecedent. Note that the pattern does not care about the
execution order of the tasks.

Definition 5.11 (Separation of Duty Violation): A viola-
tion of a Separation of Duty rule Separation of Duty(pm,
antecedent, consequent,⊥, scope start,
scope end,⊥,WA, time span,⊥, alert,⊥ occurs in a
process instance i ∈ PI iff:

• ∃r = σi(scope start, antecedent) : consequent ∈ r ∧
consequent.resource = antecedent.resource, or

• ∃r = σi(scope start, consequent) : antecedent ∈ r ∧
consequent.resource = antecedent.resource

As per Definition 5.11, there is a violation if the two
events, antecedent and consequent related to the completion
of the two separate tasks are observed in any order. In the first
case, consequent is observed and then antecedent, because
we projected the case history until the occurrence of the
antecedent where consequent was part of it. Whereas in
the second case it was the other way around. In both cases
violation occurs if they have the same resource performing the
tasks. If antecedent = completed(A, i) and consequent =
completed(B, i) then detecting the occurrences of the two
events according to Definition 5.11 would signal a violation
of a separation of duty rule between tasks A and B. However,
there is also a possibility to predict a possible violation if two
more separation of duty rules are used where in one of them
antecedent = started(A, i) and the consequent remains the
same. Whereas in the other rule the antecedent remains the
same and consequent = started(B, i). With these rules if
a sequence of events completed(A, i), . . . , started(B, i) is
observed as defined by the second case in Definition 5.11, the
violation is reported as a warning and there will be a chance
to avoid the actual violation by reassigning task B to another
resource. So, changing the type of events to detect in case of
separation of duty rules helps to predict and avoid violations
rather than just reporting its occurrence.

www.ijacsa.thesai.org 560 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

The Bind of Duty pattern is actually the negation of
separation of duty. So, we can reuse the cases to detect the
separation of duty with one change. That is to check that
antecedent.resource <> consequent.resource.

VI. IMPLEMENTATION

Figure 5 presents the architecture of a proof-of-concept6
implementation of the BP-MaaS framework for compliance
monitoring of business processes7. In principle, the imple-
mentation of our framework consists of three main com-
ponents: Compliance rule modeler, compliance monitoring
engine, monitoring dashboard. Each of these components is
described in the following subsections, respectively.

A. Compliance Rules Editor

The compliance rules editor provides the end users with a
user-friendly modeling environment where the users can graph-
ically model their compliance rules, in drag and drop style,
using custom-built visual notations for the compliance patterns
presented in Figure 2. In addition, the modeling environment
is equipped with a plugin that exports the rules in XML format
to be deployed to the monitoring engine. The compliance rules
editoris built on top of the Oryx editor8 [16], a popular open
source environment for process modeling. Figure 6 shows a
snapshot of the rule’s editor capturing compliance requirement
3 from Table I, which visualizes compliance rules R3.1, R3.2
and R3.3 .

B. Compliance Monitoring Engine

The compliance monitoring engine is responsible for con-
tinuously evaluating the compliance status of the running
process instances against defined compliance rules. The mon-
itoring engine receives the compliance rules in XML format
from the rules editor and translates them into a set of queries
that are continuously evaluated against the stream of events
received from the process execution engine. The engine trig-
gers the execution of the compliance actions for any detected
violations of the compliance rules in addition to reporting the
information of the violated rule and the violating business
process instance to the end user by means of updating the
monitoring dashboard.

The compliance monitoring engine was built as a service
using C# .NET and has used an open source engine for
complex event processing (CEP) [23] and event series anal-
ysis, Esper9. In principle, Esper was chosen because of its
scalability, ease of modeling as reported in [37]. It provides an
environment for developing applications that can process large
volumes of incoming messages or events, regardless of whether
incoming messages are historical or real-time in nature. It
supports filtering and analyzing events in various ways, and re-
sponding to conditions of interest. In particular, Esper provides
an SQL-like language, Event Processing Language (EPL)10,

6A video demonstration of our framework implementation is available on
https://www.youtube.com/watch?v=wRdZKsOi5x4

7The source code of BP-MaaS is available on https://github.com/BP-MaaS/
BP-MaaS.

8https://code.google.com/p/oryx-editor/
9http://esper.codehaus.org/
10http://esper.codehaus.org/esper-4.2.0/doc/reference/en/html/epl clauses.

html

that provides the standard SELECT, FROM, WHERE, GROUP
BY, HAVING and ORDER BY clauses. In this context, streams
replace tables as the source of data with events replacing rows
as the basic unit of data.

A process execution engine provides the raw events the
monitoring component needs to keep evaluating the com-
pliance status. To provide these events, we have extended
the Activiti 11 business process management platform with
event emitters that propagate events reflecting the evolution of
process instances and their tasks to the monitoring component.
For this, every new instance created or a change of state in
an existing process/task instance will be communicated to the
monitoring component as a new entry on the respective event
stream. From there, ESPER can evaluate the different anti
pattern queries against these streams to detect violations. The
built-in process model within the Activiti platform has been
used to define process models to be executed.

In the rest of this section, we discuss the mapping of anti
patterns described in Section V into EPL queries. These are
shown as parameterized queries where parameters are enclosed
in curly brackets{}. These parameters are actualized at rule
registration time at the monitoring component.
i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Event {A n t e c e d e n t }({ t a s k }) o c c u r r e d l e s s
t h a n {MinOccurs} w i t h i n {S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k })
and {ScopeEven tEven t }({ ScopeEventTask }) i n p r o c e s s ’ ,

’{RuleID} ’ , ’{RuleType} ’
FROM PATTERN [
e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)=
’{S c o p e S t a r t T a s k} ’)−>(e={ScopeEndEvent }(c a s t (e . Task , s t r i n g)
= ’{ScopeEndTask} ’ , P r o c e s s I D =s . P r o c e s s I D)))] as scope
WHERE {MinOccurs} > (s e l e c t count (*) from {A n t e c e d e n t } . win :
k e e p a l l () as T

WHERE c a s t (T . Task , s t r i n g)= ’{A n t e c e d e n t T a s k} ’
and (T . TimeStamp between scope . s . TimeStamp and
scope . e . TimeStamp))

Listing 1: Query to detect below-min-occurrences of a rule
antecedent

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message ,
RuleID , RuleType)
s e l e c t s . P rocess ID , ’ Event {A n t e c e d e n t }({ t a s k }) o c c u r r e d more
t h a n {MinOccurs} w i t h i n {S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k })
and {ScopeEven tEven t }({ ScopeEventTask }) i n p r o c e s s ’ ,
’{RuleID} ’ , ’{RuleType} ’

FROM PATTERN [
e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)=
’{S c o p e S t a r t T a s k} ’)−>(e={ScopeEndEvent }(c a s t (e . Task , s t r i n g)
= ’{ScopeEndTask} ’ , P r o c e s s I D =s . P r o c e s s I D)))] as scope
WHERE {MaxOccurs} < (s e l e c t count (*) from {A n t e c e d e n t } . win :
k e e p a l l () as T

WHERE c a s t (T . Task , s t r i n g)= ’{A n t e c e d e n t T a s k} ’
and (T . TimeStamp between scope . s . TimeStamp and
scope . e . TimeStamp))

Listing 2: Query to detect above-max-occurrences of a rule
antecedent

Listings 1 and 2 define the anti patterns in Definition 5.6
as EPL queries that detect Exists, Absence, Sequence and
Next anti patterns by specifying the values for MinOccurs
and MaxOccurs. For the Absence anti pattern, we can use
the query in Lisitng 1 where MinOccurs = 0. To detect
the first anti pattern for the Sequence rule, we can set the
MinOccurs = 1.

11http://www.activiti.org/

www.ijacsa.thesai.org 561 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Fig. 5: BP-MaaS architecture represented as a UML component diagram

In Listing 1, EPL PATTERN clause is used to look for a
sequence of events where the rule’s scope start is observed
and then followed by − > scope end, this sequence is being
matched continuously to the event stream, by means of the
every keyword. Whenever there is a match, we get the event
instance s matching the start of the scope and the event
instance e matching the end of the scope. Then, all event
instances of a type matching rule’s antecedent whose data
payload satisfies the rule’s condition and whose timeStamp
lies between s and e are counted and compared to the rule’s
MinOccurs. Listing 2 does a similar thing but comparing
the occurrences of the antecedent event to the MaxOccurs
parameter.

Listing 3, defines an EPL statement for anti patterns
of Sequence and Response rules, cf. 5.7, where the pattern
scope start followed by antecedent then followed by any of
scope end, one of the forbidden events, or time span of the
rule is observed but never the consequent. This query detects
the violation for isBefore = true response rules.
i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Event {A n t e c e d e n t E v e n t }({A n t e c e d e n t T a s k })
was n o t f o l l o w e d by {Consequen tEven t }({Consequen tTask }) w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and
{ScopeEndEvent}({ScopeEndTask }) i n p r o c e s s ’ , ’{RuleID} ’ ,
’{RuleType} ’

FROM PATTERN [
e v e r y (s= {S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)=
{S c o p e S t a r t T a s k})−>(e v e r y (A n t e c e d e n t ={A n t e c e d e n t E v e n t}
(c a s t (Task , s t r i n g)={A n t e c e d e n t T a s k } ,
p r o c e s s I D =s . p roces s ID , I m p l i e s (Data , { c o n d i t i o n }))
−>((e={ScopeEndEvent }(c a s t (Task , s t r i n g)={ ScopeEndTask } ,
p r o c e s s I D =s . p r o c e s s I D) or a b s e n t ={Absent }(c a s t (Task , s t r i n g)
in {WA} , p r o c e s s I D =s . p r o c e s s I D) or t i m e r : i n t e r v a l ({TimeSpan})
and not Consequen t = {Consequen tEven t }(c a s t (Task , s t r i n g)=
{Consequen tTask } , p r o c e s s I D =s . p r o c e s s I D))))]

Listing 3: Query to detect Sequence and Response violations

The query in Listing 4 detects the violation when a
Response rule requires that the time span elapses before the

consequent can take place, i.e., isBefore = false.
i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Event {A n t e c e d e n t E v e n t }({A n t e c e d e n t T a s k })
was f o l l o w e d by{Consequen tEven t }({Consequen tTask }) w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and {ScopeEndEvent}
({ ScopeEndTask }) i n p r o c e s s b u t b e f o r e {TimeSpan} e l a p s e s ’ ,
’{RuleID} ’ , ’{RuleType} ’
from p a t t e r n
[e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (Task , s t r i n g)=
{S c o p e S t a r t T a s k})−>(e v e r y A n t e c e d e n t ={A n t e c e d e n t E v e n t}
(c a s t (Task , s t r i n g)={A n t e c e d e n t T a s k } , p r o c e s s I D =s . p roces s ID ,
I m p l i e s (Data , { c o n d i t i o n }))−>((e={Consequen tEven t}
(c a s t (Task , s t r i n g)={Consequen tTask } , p r o c e s s I D =s . p r o c e s s I D)
and not t i m e r : i n t e r v a l ({TimeSpan })))))]

Listing 4: Query to detect Response violations for isBefore =
false

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’One t o one r e s p o n s e v i o l a t i o n , s u c c e s s i v e
o c c u r r e n c e s o f Event {A n t e c e d e n t E v n t }({A n t e c e d e n t T a s k })
were d e t e c t e d w i t h o u t d e t e c t i n g Event
{Consequen tEven t }({Consequen tTask }) i n between w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and {ScopeEndEvent}
({ ScopeEndTask }) i n p r o c e s s ’ , ’{RuleID} ’ , ’{RuleType} ’
from p a t t e r n
[e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (Task , s t r i n g)={ S c o p e S t a r t T a s k })
−>(e v e r y A n t e c e d e n t ={A n t e c e d e n t E v e n t }(c a s t (Task , s t r i n g)=
{A n t e c e d e n t T a s k } , p r o c e s s I D =s . p r o c e s s I D)
−>(A n t e c e d e n t 2 ={A n t e c e d e n t E v e n t }(c a s t (Task , s t r i n g)=
{A n t e c e d e n t T a s k } , p r o c e s s I D =s . p r o c e s s I D)
and not Consequen t ={Consequen tEven t }(c a s t (Task , s t r i n g)=
{Consequen tTask } , p r o c e s s I D =s . p r o c e s s I D))))]

Listing 5: Query to detect one to one response anti pattern

Listing 5, is dedicated to the detection of One to One
Response anti pattern, cf. Definition 5.8. The query looks for
two occurrences of the antecedent event, after the scope start
without having any occurrences of consequent event in be-
tween.

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,

www.ijacsa.thesai.org 562 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Fig. 6: Visual representation of compliance req. 3 (R3.1, R3.2, R3.3) from Table I

RuleType)
s e l e c t s . P rocess ID , ’ P r e c e d e s Rule v i o l a t i o n :
Event {Consequen tEven t }({Consequen tTask }) n e v e r o c c u r r e d
b e f o r e {A n t e c e d e n t E v e n t }({A n t e c e d e n t T a s k }) w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and
{ScopeEndEvent}({ScopeEndTask }) i n p r o c e s s ’ , ’{RuleID} ’ ,
’{RuleType} ’

FROM PATTERN [
e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (Task , s t r i n g)=
’{S c o p e S t a r t T a s k} ’)−>((not Consequen t ={Consequen tEven t}
(c a s t (Task , s t r i n g)= ’{Consequen tTask} ’ , P r o c e s s I D =s . P r o c e s s I D)
and not e={ScopeEndEvent }(c a s t (Task , s t r i n g)= ’{ScopeEndTask} ’ ,
P r o c e s s I D =s . P r o c e s s I D))

u n t i l A n t e c e d e n t ={A n t e c e d e n t E v e n t }(c a s t (Task , s t r i n g)=
’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)))]

Listing 6: Query to detect Precedence anti pattern where
consequent never occurred

Listing 6, realizes the Precedes anti pattern, cf. Defini-
tion 5.9, where the scope start is observed and later on
followed by antecedent where there is neither scope end
nor consequent events observed in-between. Listing 7, on
the other hand detects the other possibility of violation where
after scope start consequent is observed but no scope end
followed by either a timer indicating that the rule’s timeSpan
has elapsed or one of the forbidden events and then observing
the rule’s antecedent event occurrence.

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Event {Consequen tEven t}
({ Consequen tTask }) i s o b s e r v e d and e i t h e r {TimeSpan} or
one of t h e t a s k s i n {WA} were o b s e r v e d and b e f o r e t h a t
{A n t e c e d e n t E v e n t }({A n t e c e d e n t T a s k }) was o b s e r v e d w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and
{ScopeEndEvent}({ScopeEndTask }) i n p r o c e s s ’ ,

’{RuleID} ’ , ’{RuleType} ’
FROM PATTERN [
e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)=
’{S c o p e S t a r t T a s k} ’)−>(e v e r y (Consequen t ={Consequen tEven t}
(c a s t (Consequen t . Task , s t r i n g)= ’{Consequen tTask} ’ , P r o c e s s I D =
s . P r o c e s s I D)−>(e={ScopeEndEvent }(c a s t (e . Task , s t r i n g)=
’{ScopeEndTask} ’ , P r o c e s s I D =s . P r o c e s s I D)
or a b s e n t ={Absent }(c a s t (a b s e n t . Task , s t r i n g) in ({WA}) ,
P r o c e s s I D =s . P r o c e s s I D)
or t i m e r : i n t e r v a l ({TimeSpan }))
−>(A n t e c e d e n t ={A n t e c e d e n t E v e n t }(c a s t (A n t e c e d e n t . Task , s t r i n g)=
’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)))))]

Listing 7: Query to detect Precedes anti pattern where forbid-
den or timer events occur

Listing 8 is an EPL query to detect a violation to a Precedes
rule where not enough time has elapsed between the occur-
rence of antecedent and consequent, isBefore = false.
i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Event {Consequen tEven t }({Conseque tTask })
o c c u r r e d b e f o r e {A n t e c e d e n t E v e n t }({Antec d eden tT ask }) w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k })
and {ScopeEndEvent}({ScopeEndTask }) b u t s o o n e r t h a n t h e t ime
span {TimeSpan} i n p r o c e s s ’ , ’{RuleID} ’ , ’{RuleType} ’
FROM PATTERN [
e v e r y (
s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)= ’{S c o p e S t a r t T a s k} ’)
−>(e v e r y (Consequen t ={Consequen tEven t }(c a s t (Consequen t . Task ,
s t r i n g)= ’{Consequen tTask} ’ , P r o c e s s I D =s . P r o c e s s I D)
and not e={ScopeEndEvent }(c a s t (e . Task , s t r i n g)=
’{ScopeEndTask} ’ , P r o c e s s I D =s . P r o c e s s I D)
−>(A n t e c e d e n t ={A n t e c e d e n t E v e n t }(c a s t (A n t e c e d e n t . Task , s t r i n g)=
’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)
and not t i m e r : i n t e r v a l ({TimeSpan }))))]

Listing 8: Query to detect Precedes anti pattern where time
span has not elapsed between antecedent and consequent

www.ijacsa.thesai.org 563 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Listing 9, is dedicated to the detection of One to One
Precedes anti pattern, cf. Definition 5.10.

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’Two or more o c c u r r e n c e s o f Event
{A n t e c e d e n t E v e n t }({A n t e c e d e n t T a s k }) were d e t e c t e d w i t h o u t
d e t e c t i n g Event {Consequen tEven t }({Consequen tTask })
i n between w i t h i n {S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and
{ScopeEndEvent}({ScopeEndTask }) i n p r o c e s s ’ ,
’{RuleID} ’ , ’{RuleType} ’

FROM PATTERN [
e v e r y (s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)=
’{S c o p e S t a r t T a s k} ’)−>(e v e r y
(A n t e c e d e n t ={A n t e c e d e n t E v e n t }(c a s t (A n t e c e d e n t . Task , s t r i n g)=
’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)−>(
(not Consequen t ={Consequen tEven t }(c a s t (Consequen t . Task ,
s t r i n g)= ’{Consequen tTask} ’ , P r o c e s s I D =s . P r o c e s s I D))
u n t i l A n t e c e d e n t 2 ={A n t e c e d e n t E v e n t }(c a s t (A n t e c e d e n t 2 . Task ,
s t r i n g)= ’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)))))]

Listing 9: One to one Precedes anti pattern in EPL

i n s e r t i n t o R u l e V i o l a t i o n E v e n t (p roces s ID , Message , RuleID ,
RuleType)
s e l e c t s . P rocess ID , ’ Ev e n t s {A n t e c e d e n t E v e n t}
({ A n t e c e d e n t T a s k }) and {Consequen tEven t }({Consequen tTask })
were pe r fo rmed by Resource ’ + s . A n t e c e d e n t . r e s o u r c e + ’ w i t h i n
{S c o p e S t a r t E v e n t }({ S c o p e S t a r t T a s k }) and
{ScopeEndEvent}({ScopeEndTask }) i n p r o c e s s ’ ,
’{RuleID} ’ , ’{RuleType} ’

FROM PATTERN [
e v e r y (
s={S c o p e S t a r t E v e n t }(c a s t (s . Task , s t r i n g)= ’{S c o p e S t a r t T a s k} ’)
−>(e v e r y (A n t e c e d e n t ={A n t e c e d e n t E v n t }(c a s t (A n t e c e d e n t . Task ,
s t r i n g)= ’{A n t e c e d e n t T a s k} ’ , P r o c e s s I D =s . P r o c e s s I D)
−> e v e r y (Consequen t ={Consequen tEven t }(c a s t (Consequen t . Task ,
s t r i n g)= ’{Consequen tTask} ’ , P r o c e s s I D =s . P r o c e s s I D)))))]

WHERE Consequen t . Resource = A n t e c e d e n t . Resource

Listing 10: Separtion of Duty anti pattern

10 is the EPL statement to detect Separation of Duty anti
patterns. Actually, there has to be another query where the
match of antecedent and consequent are swapped to address
the fact that the two events can occur in an arbitrary order.
Requirement 2 ” If a manager needs to travel, the request has
to be approved by another manager.” can be represented as a
separation of duty rule.

1) Detecting Violation of Composite Patterns: In principle,
we define an event stream for rule violation events as there are
event streams for the different process and activity lifecycle
events. In particular, activity event streams are supplied by
events from the execution environment, cf. 4, whereas the
rule violation stream is supplied by events based on the
matching of the different anti pattern queries. This is shown
as starting with Insert into RuleViolationEvent
in all previous EPL statements. So, whenever a match to
the anti pattern occurs, a new instance of the complex event
RuleViolationEvent, cf. 5.1, is created and sent over that
stream.

In case that the initial rule was a composite rule, another
query can pick the violation event and act upon it based on the
rule’s logic. For instance if the rule is of the form r : r1∧ r2,
the query in Listing 11 is defined to detect if there is any
occurrence of a rule violation event for either r1 or r2 and
generates another rule violation event for r.
i n s e r t i n t o R u l e V i o l a t i o n E v e n t
s e l e c t proces s ID , Message ,{ r . RuleID} from R u l e V i o l a t i o n E v e n t
where RuleID = { r1} or RuleID = { r2}

Listing 11: Monitoring violation of AND composite rule

For complex rules on the form r = r1 ∨ r2, a query as in
Listing 12 is defined to detect the occurrences of violation
events of both r1 and r2 to generate a violation event of
the composite rule r. We actually define another query where
the sequence of violation events of r1 and r2 is swapped as
the violations might occur in any order. If the composite rule
would have more operands, we depend on the associativity of
the OR operator to break it into a sequence of binary operators,
i.e., r1 ∨ r2 ∨ r3 ≡ ((r1 ∨ r2) ∨ r3).
i n s e r t i n t o R u l e V i o l a t i o n E v e n t
s e l e c t proces s ID , Message , { r . RuleID} from p a t t e r n
[e v e r y (
r1 = R u l e V i o l a t i o n E v e n t (RuleID={ r1 })
−>(
r2 = R u l e V i o l a t i o n E v e n t (RuleID={ r2 } , p r o c e s s I D ={ r1 } . p r o c e s s I D)))]

Listing 12: Monitoring violation of OR composite rule

C. Monitoring Dashboard

The monitoring dashboard is a user-friendly interface for
the end-user to monitor the stream of events and manipulate
(e.g., adding, removing, activating, deactivating) the set of
registered compliance rules in addition to being able to re-
ceive the notifications and statistics about the running process
instances and detected non-compliance instances (Figure 7).
The monitoring dashboard component has been implemented
as a .NET program which is responsible for communicating the
information between the compliance monitoring engine and the
end user. All the three component are loosely coupled as there
are no direct dependencies among them. They communicate
via messages so that each of them can be replaced as long as
the message contract is kept the same.

It also should be noted that our framework remains agnostic
towards the different systems which can be used for imple-
menting the different components. For example, any process
execution environment can be the source of raw events as
long as the events are generated according to the reference
lifecycle models of processes and tasks. The Esper engine
can be replaced with any other stream processing engine (e,g.
StreamBase12, Apache Storm13).

VII. EVALUATION

The utility of a design artifact must be rigorously demon-
strated via well-executed evaluation methods [28]. Observa-
tional methods, such as case studies and field studies, allow
an in-depth analysis of the artifact and the monitoring of its
use in multiple projects within the technical infrastructure of
the business environment.

In Section III, we have introduced two case studies that
involved processes operating in the banking domain, ad-
dressing different business concerns and entailing a faithful
set of rich and diverse compliance requirements that any
financial institution is required to comply with. The case
studies involved representing relevant compliance requirements
in compliance patterns (introduced in Section II-B) with the
main objective of investigating the applicability and utility
of the overall monitoring approach proposed in this paper,
to represent and continuously monitor applicable compliance
requirements against running BPMN instances, by means of

12http://www.streambase.com/
13http://storm.incubator.apache.org/

www.ijacsa.thesai.org 564 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

Fig. 7: BP-MaaS Monitoring Dashboard Screenshot.

anti-patterns. This validation and evaluation step also enabled
us to identify the limitations of the approach and the potential
enhancement points.

The loan approval case study used as the running scenario
throughout this paper compromised 7 high-level compliance
requirements (compliance constraints as they originate from
various compliance sources). By applying the compliance
refinement methodology in [60, 59], this has resulted in 15
organization-specific compliance requirements based on the
BPMN model shown in Figure 3. Examples of these refined/in-
ternalized compliance requirements are given in Table I.

The compliance patterns used to realize the 15 require-
ments are the Response pattern, which constitutes 7 com-
pliance rules (note that a compliance requirement can be
represented by one or more compliance rules) as shown in
Table I). Exists pattern is used in one rule, Precedes pattern
in 3 compliance rules, Next and segregationOfDuty patterns
are used in one compliance rule, respectively. PerformedBy
resource pattern is utilized in 5 rules, Mutual Exclusive Choice
composite pattern is used to represent one compliance rule.
And Time span and isBefore = false real time pattern is used
in one rule in conjunction with the Response pattern.

The second case study targets the anti-money laundering
banking scenario. The U.S. Patriot act of 2001 [44] was
considered as the main source of compliance requirements of
this case study, which constitutes a large number of compliance

requirements structured into twelve sections. As discussed
previously in Section III, the interpretations of embedded
requirements and encoding them in the Semantics of Business
Vocabulary and Business Rule (SBVR) standard [45] as a
structured natural language is ongoing work in GRCTC [20].
For this case study, we have only considered the suspicious ac-
tivity detection and reporting part of the AML practices.. From
the U.S. Patriot act, we found 27 compliance requirements
relevant to the suspicious activity detection and reporting
business process.

The compliance patterns used to realize the 27 require-
ments are the Response pattern 11 requirements, the Exists
pattern 1 requirement, the Performed By Role pattern 4 require-
ments, the Precedence pattern 3 requirements, the Absence pat-
tern 1 requirement, and the Next pattern 1 requirement. Among
the 11 Response rules, one rule used the time span property
whereas one other rule used the with absence property. Out of
the three Precedence rules, two rules used the with absence
property. Table II shows a excerpt of these requirements, by
referring to its clause number inside the U.S. Patriot act.

Table III gives the type and number of compliance require-
ments covered within the case studies, and whether the case
study participants were able to express these requirement ef-
fectively using compliance patterns and continuously monitor
them against running business process instances by means of
anti-patterns, using the prototypical implementation discussed

www.ijacsa.thesai.org 565 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

TA
B

L
E

II
:

A
n

ex
ce

rp
t

of
th

e
C

om
pl

ia
nc

e
R

eq
ui

re
m

en
ts

re
le

va
nt

to
th

e
A

M
L

ca
se

st
ud

y

C
om

pl
ia

nc
e

R
eq

ui
re

m
en

ts
So

ur
ce

C
on

tr
ol

Pa
tt

er
n

R
ep

re
se

nt
at

io
n

R
1:

R
eq

ui
re

d
St

an
da

rd
s

Se
ct

io
n

$1
02

2.
21

0
A

nt
i-

m
on

ey
la

un
de

ri
ng

pr
og

ra
m

s
R

1.
1:

R
es

po
ns

e(
Se

nd
Pa

ym
en

t
O

rd
er

,V
er

if
y

C
us

to
m

er
Id

en
tifi

ca
tio

n)
(d

)(
1)

(i
)(

A
)(

B
)(

C
)(

D
)

fo
r

m
on

ey
se

rv
ic

es
bu

si
ne

ss
:

po
lic

ie
s,

R
1.

2:
R

es
po

ns
e(

Se
nd

Pa
ym

en
t

O
rd

er
,R

et
ai

n
Su

pp
or

tin
g

D
oc

um
en

ts
)

fo
r

A
M

L
M

SB
pr

og
ra

m
s

pr
oc

ed
ur

es
,a

nd
in

te
rn

al
co

nt
ro

ls

R
2:

Id
en

tit
y

an
d

R
ep

or
tin

g
Se

ct
io

n
$1

02
2.

21
0

It
is

ne
ce

ss
ar

y
th

at
cu

st
om

er
id

en
tifi

ca
tio

n
R

2.
1:

E
xi

st
s(

V
er

if
y

C
us

to
m

er
Id

en
tifi

ca
tio

n,
C

he
ck
{

C
us

to
m

er
Id

en
tifi

ca
tio

n.
na

m
e

is
(d

)(
1)

(iv
)

an
d

ve
ri

fic
at

io
n

in
cl

ud
es

na
m

e,
da

te
of

bi
rt

h,
no

t
nu

ll,
C

us
to

m
er

Id
en

tifi
ca

tio
n.

D
oB

is
no

t
nu

ll,
C

us
to

m
er

Id
en

tifi
ca

tio
n.

ad
dr

es
s

re
la

te
d

pr
ov

is
io

ns
ad

dr
es

s
an

d
id

en
tifi

ca
tio

n
nu

m
be

r
of

a
pe

rs
on

.
is

no
t

nu
ll,

C
us

to
m

er
Id

en
tifi

ca
tio

n.
ID

is
no

t
nu

ll
})

R
3:

Id
en

tit
y

an
d

R
ep

or
tin

g
se

ct
io

n
$1

02
2.

21
0

It
is

ob
lig

at
or

y
th

at
cu

st
om

er
id

en
tifi

ca
tio

n
R

3.
1:

R
es

po
ns

e(
In

iti
at

e
M

on
ey

Tr
an

sf
er

,V
er

if
y

C
us

to
m

er
Id

en
tifi

ca
tio

n,
(d

)(
1)

(iv
)

fo
r

am
ou

nt
s

ab
ov

e
$
1
0
,0
0
0

to
ta

ke
pl

ac
e

re
la

te
d

pr
ov

is
io

ns
w

ith
in

on
e

ca
le

nd
ar

da
y

tim
e

sp
an

=
be

fo
re

1
da

y)

R
4:

R
et

en
tio

n
of

R
ec

or
d

se
ct

io
n

$1
02

2.
32

0(
c)

It
is

ob
lig

at
or

y
th

at
ea

ch
m

on
ey

R
4.

1:
A

bs
en

ce
(D

el
et

e
Su

sp
ic

io
us

Tr
an

sa
ct

io
n

R
ec

or
ds

)
se

rv
ic

e
bu

si
ne

ss
m

ai
nt

ai
ns

co
py

R
4.

1:
N

ex
t(

R
ec

ei
ve

A
dd

D
oc

R
eq

ue
st

,S
en

d
A

dd
D

oc
)

of
ea

ch
Su

sp
ic

io
us

A
ct

iv
ity

R
ep

or
t-

M
SB

of
re

la
te

d
pr

ov
is

io
ns

fil
ed

an
d

bu
si

ne
ss

re
co

rd
of

an
y

su
pp

or
tin

g
do

cu
m

en
ta

tio
n

fo
r

5
ca

le
nd

er
ye

ar
s.

R
5:

C
on

fid
en

tia
lit

y

Se
ct

io
n$

10
22

.3
20

It
is

pe
rm

itt
ed

th
at

ea
ch

m
on

ey
se

rv
ic

e
R

5.
1:

Pr
ec

ed
en

ce
(D

is
cl

os
e

Su
sp

ic
io

us
A

ct
iv

ity
R

ep
or

t,
Pr

oc
es

s.
St

ar
t,

(d
)(

ii)
(A

)1
bu

si
ne

ss
to

di
sc

lo
se

a
su

sp
ic

io
us

ac
tiv

ity
re

po
rt

to
Fi

nC
E

N
or

an
ap

pr
op

ri
at

e
la

w
W

A
={

R
ec

ei
ve

D
ef

er
m

en
t

N
ot

ifi
ca

tio
n}

)
en

fo
rc

em
en

t
ag

en
cy

if
th

e
pe

rs
on

in
vo

lv
ed

in
a

su
sp

ic
io

us
tr

an
sa

ct
io

n
is

no
t

no
tifi

ed
th

at
a

su
sp

ic
io

us
ac

tiv
ity

re
po

rt
ha

s
be

en
fil

ed
.

TABLE III: Categories and Numbers of Compliance Req.
Covered in the Case Studies

Number of

Comp. Requirements

Supported by our

approach?

Type of Controls

Case St.1:

Loan

Processing

Case St.2:

Anti-money

Laundering

TOTAL Yes No

PROCESS

- Control flow 1 2 3 3 -

- Data Requirements - 3 3 3 -

- Resources 2 - 2 2 -

- Control flow- Data 1 7 8 8 -

- Control flow- Resources 3 1 4 4 -

- Control flow- Real time 1 1 2 2 -

- Resource-data 1 - 1 1 -

- Control flow-Resources-Real time 1 - 1 1 -

- Control flow-Resources-Data 1 2 3 3 -

- Control flow-Data-Real time - 1 1 1 -

 TOTAL 11 17 28 28 -

TECHNICAL/

MANUAL

- Data Requirements

- Others

3

-

3

7

 8

 7

-

-

8

7

PHYSICAL 1 -
 1

- 1

 TOTAL 15 27 42 28 16

in Section VI. As shown in Table III, compliance requirements
are classified into three distinct classes:

• Process: compliance requirements that are relevant to the
policies and practices concerning the design and execution
of business process models. Authorizations, approvals,
inspections, segregation of duties applied through busi-
ness tasks and other elements are examples of such
requirements.

• Technical/Manual: are requirements that involve the use
of devices or systems mainly for authentication, encryp-
tion or security purposes. Examples include firewalls and
intrusion prevention/detection systems.

• Physical: are requirements that involve largely the institu-
tion of physical means, such as locks, fences and alarms,
to guard critical assets.

As shown in Table III, the requirements that are classified
as process constituted the majority. These requirements were of
particular interest to us, as this type of constraints is the main
target for the runtime monitoring approach introduced in this
paper. They involved rules concerning mainly segregation of
duties, access-rights, condition-based sequencing of activities,
data processing requirements and real time constraints. For this
category, we further classified it into classes corresponding to
the four structural facets of business processes; i.e., control
flow, data requirements, employed resources, and real-time,
and their combination, as a single compliance requirements
might be, for example, addressing the control flow and data
aspects of BPs. Real-time constraints usually do not exist by
their own, that is why it was not included as one of the sub-
classes of the process category. As show in Table III, 28
compliance requirements in total from the two case studies
belong to this category, and they all could be effectively
modelled, executed and monitored by applying our approach.

Technical requirements mainly involve constraints regard-
ing data processing, e.g., rules that are related to the structure

www.ijacsa.thesai.org 566 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

and integrity of the data manipulated within the processes.
They typically demanded for sequential numbering of certain
business objects, such as orders or invoices, or the retention
of data for a specific period of time. Also, it involved the
requirements of manual management reviews and reconcilia-
tions, which are inherently manual by nature. Other constraints
in this category mandate the existence of authentication,
encryption or security devices and/or software components,
which could be checked on other enterprise systems level,
but not on this business process level. Requirements from
the technical and physical categories are subsequently can
not be supported by our approach. In total, 28 compliance
requirements out of 42 are fully supported by our approach,
which represents a ratio of around 70%. Despite the limitations
discussed above, we can conclude that within the process
category of compliance requirements, the proposed runtime
compliance monitoring approach is an effective means for
expressing runtime compliance requirements in a user-friendly
and abstract form, and supports the continuous monitoring of
these constraints by applying a novel evaluation mechanism
based on anti-patterns. We can also conclude that compliance
requirements fall in the process category represent a major
subset of the compliance requirements imposed on real-world
scenarios. Future work involves intensifying this validation and
evaluation step by applying our approach on a larger scale case
studies in different domains.

VIII. RELATED WORK

Compliance management has been an active research area
recently from both the academic and industrial communities,
given the high-cost associated with non-compliance, includ-
ing business failures, bankruptcy, significant fines and even
criminal penalties. In the following, prominent related-work
efforts in runtime compliance monitoring is summarized and
appraised against the work proposed in this paper. For a
detailed comparison framework, we refer the reader to [32].

Runtime monitoring requires business process models to
be reduced to some abstract representation, which are built up
by collecting runtime information (e.g. exchanged messages
sequences, performed activities). On the other hand, runtime
monitoring also requires compliance requirements to be struc-
turally/formally represented using a formal/structural language,
e.g. LTL, CTL, ECA rules. In addition, various querying
languages could also be utilized, such as BP-Mon [11] and
XPath [62]. The actual compliance checking between abstract
traces and formal rules/queries is performed by a runtime com-
pliance checker (engine), which is usually an external compo-
nent that is incorporated into the execution environment, but
could also be an internal component. The checker can check
the adherence to the requirements either after the execution
is completed, or synchronous with the execution, following a
more proactive approach. In the following, we classify related
work into four categories; graph-based approaches, formal-
based approaches, XML querying approaches and complex-
event processing, which will be discussed in the next sub-
sections and appraised against the work presented in this paper.

A. Graph-based Monitoring Approaches

Graph-based approaches mainly target the design-time
phase of the business process lifecycle for (sub-)process mod-

els querying, substitution,and compliance checking; examples
are: [29], [52], [3], [53], [17]. On the other hand,few studies
have addressed runtime compliance monitoring, which include
[11, 33]. Business Process Monitoring (BP-Mon) is a graph-
ical query language proposed in [11] to visually represent
monitoring requirements against BPEL models, abstracted
into event traces. Graph matching techniques (homomorphism)
are then exploited to evaluate the compliance of completed
running BPEL instances, focusing on control-flow and timing
constraints. Similarly, the study in [33] adopts a graph-based
compliance rule language to capture compliance requirements,
supporting sequence, data and real-time constraints, where
runtime compliance checking is done synchronously with the
execution.

B. Formal Monitoring Approaches

Influential formal monitoring approaches are reported
in [27] , [36], [38], [9], [10], [24], [35] by founding compliance
requirements on a formal/mathematical language. The study
in [36] uses Event Calculus (EC) as the formal basis of
monitored constraints against BPEL models. EC is an expres-
sive language; however it is excessively difficult to be used.
Monitoring is implemented as integrity-checking technique on
completed executions. EC is also used in [38], however to cope
with the complexity of EC, Declare language [47] is utilized
as a graphical intermediate representation. Logic programming
reasoning is then used to dynamically reason about partial,
evolving execution traces. These approaches [7, 38] focus on
control-flow and timing constraints.

Model-checking formal approaches is adopted in [7, 27,
34]. LTL-FO+ is proposed in [27] as an extension to LTL
that includes full first order quantification over data, focusing
on control-flow and data requirements. In [34], Declare [47]
is used, which is mapped into LTL, only supporting control-
flow constraints, where monitoring is done synchronously with
the execution. The same approach is applied in [35] using
Declare and LTL to capture compliance requirements, while
declarative process models are considered instead, mainly to
detect conflicting compliance requirements.

Metric first-order temporal logic is used in [10], supporting
past and bounded future operators. This approach [10] provides
an optimized monitoring technique addressing control-flow and
timing constraints, however the complexity of the adopted
logic is not tackled. An extension is made in [9] to support
data-constraints. The REALM model is proposed in [24] which
constitutes (among others) a conceptual model and metadata.
The conceptual model captures the concepts and relationships
related to a certain domain (domain ontology), which are used
to build compliance rules. To ensure the rigor of the frame-
work, compliance rules are first represented formally using
Past LTL, then mapped to proprietary notations. Compliance
checking is also performed by a proprietary component (Active
Correlation Technology (ACT)) that correlate events to detect
runtime violations. The approach supports control-flow and
real-time constraints.

C. Query-based and Rule-based Approaches

Prominent XML querying approaches are [26], [61], [54].
In [26] and [61], requirements in LTL are translated into

www.ijacsa.thesai.org 567 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

equivalent XQuery expressions, and an XQuery engine is used
to evaluate the compliance, focusing on sequence and data
constraints. BPath [54] is proposed as an XPath extension
with LTL modalities. BPath expressions are then mapped into
XPath, and a native XML query engine is utilized, supporting
sequence and timing constraints.

Influential Rule-based proposals in-
clude [41], [8], [14], [42], [7]. In [8], desired properties and
constraints on BPEL systems are specified in WS-CoL (Web
Service Constraint Language), a special-purpose assertion
specification language that borrows its roots from JML (Java
Modeling Language) and extends it with constructs to gather
data from external sources. WSCoL are interweaved into
BPEL specification, and a dedicated monitoring manager
evaluates the compliance by focusing on data constraints. In
[14], compliance requirements are represented in Prolog and
verified against a workflow language, supporting sequence
and timing constraints using a rule engine.

In [41] a generic runtime compliance management frame-
work is proposed, which is based on a set of Dwyer′s property
specification patterns [19], and provides a high-level con-
ceptual model for compliance requirements refinements and
the definition of recovery actions, as response to detected
violations. The framework is realized by implementing it using
BPMN models and Event-Condition-Action (ECA) rules. This
approach is closely related to the work presented in this paper,
however, our work relies on a wider set of novel compliance
patterns; moreover, our approach addresses the four structural
facets of the BP lifecycle; and we define a novel evaluation
approach based on anti-patterns.

D. Complex Event Processing Monitoring Approaches

Complex Event Processing (CEP) technology is utilized
in [40], [57], [64], [56]. Prominent efforts in this direction use
Event Pattern Languages (EPLs) to capture relevant require-
ments and constraints. In [40], a model-driven engineering
approach is adopted, such that a high-level DSL language
is introduced for the abstract specification of compliance
constraints, with support for sequence and resource constraints.

The work in [64] only considers sequential requirements,
where an approach is also introduced to filter and aggregate
query results to provide compact feedback on deviations.
Business processes are modelled in [57] as event flows where
compliance requirements are structurally represented in a con-
ceptual graphical rule model the authors also proposed; and
then a CEP engine (SARI) [39] is utilized to check the compli-
ance, with support for sequence and timing constraints. Major
approaches in this category check compliance synchronously
with the execution.

E. Discussion

Guided by [28] to help validating the utility, novelty and
applicability of the approach proposed in this paper, we have
investigated, categorized and analyzed related work efforts
in the area of Business process and Web services runtime
monitoring, and aligned them against the work proposed in
this paper. Table IV presents a summary and evaluation of

prominent related work proposals discussed in the above
sub-sections. The criteria used in the comparative analysis
presented in Table IV are as follows:

• Category: refers to the five categories discussed above;
i.e.,Graph-based, Formally-based, Query-based, rule-
based and CEP.

• Generic: takes the value ”Yes” or ”No”, which signifies
whether the approach provides a generic compliance
monitoring framework.

• BP Language: the Business Process Language considered
by the approach.

• Observer: indicates whether the observer that listens
to event-patterns of interest is an internal or external
component.

• Runtime info: the collected runtime information as events,
against which compliance rules are evaluated.

• Rule Support: indicates whether the approach propose a
solution to tackle with the complexity of the underlying
formal/query/rule specification language. ’N/A’ means
that no support is provided.

• Rule language: the formal/query/rule language as the for-
mal foundation for compliance requirements specification.

• Evaluation approach: the runtime verification approach
used.

• Synchronous: takes the value ”Synchronous” or ”Asyn-
chronous”, and indicates whether the monitoring is done
step-by-step synchronous with the execution, or after the
execution is completed, respectively.

• BP facets: lists the support of the approach to the four
structural facets of the BP lifecycle; i.e., control-flow,
data, employed resources and real time.

• Recovery Actions: takes the value ”Yes”, ”No” or ”Par-
tial”, and indicates whether the approach provides a mech-
anism to reason about detected violations and/or invoke
(semi-) automated recovery actions. Partial means that the
framework partially support this criterion; e.g., halting the
execution and informing appropriate personnel, however,
automated recovery actions are not supported to resolve
the non-compliance anomalies, etc.

We can conclude from Table IV that the approach proposed
in this paper is a generic compliance monitoring approach that
could be concretized to any of the approaches in the above
sub-sections. As a proof-of-concept, we have implemented it
in CEP (Section VI), which is one of the possible realizations.
Table IV distinguishes our work by:

1) We adopt a graphical high-level pattern-based specifi-
cation compliance language, incorporating a wide range
of rich compliance patterns accepted by the community.
Compliance patterns are mostly used in the literature in
design-time compliance checking, whilst in this paper we
applied them to runtime monitoring.

2) We have implemented the adopted patterns in an intuitive
graphical manner, which further ease the work of the
business and compliance experts.

3) Our approach supports the four structural facets of BPs;
control-flow, data, employed resources and timing. The
highlighted related-work approaches only support a subset
of these classes.

4) Compliance monitoring is performed step-by-step and
synchronously with the executions, which is crucial for

www.ijacsa.thesai.org 568 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

TA
B

L
E

IV
:

Su
m

m
ay

an
d

E
va

lu
at

io
n

of
R

el
at

ed
W

or
k

C
at

eg
or

y
A

pp
ro

ac
h

G
en

er
ic

B
P

L
an

gu
ag

e
O

bs
er

ve
r

ru
nt

im
e

in
fo

R
ul

e
su

pp
or

t
R

ul
e

la
ng

ua
ge

E
v a

lu
at

io
n

A
pp

ro
ac

h
Sy

nc
hr

on
ou

s
B

P
fa

ce
ts

R
ec

o v
er

y
A

ct
io

ns
G

ra
ph

-
ba

se
d

[1
1]

N
o

B
PE

L
In

te
rn

al
E

v e
nt

tr
ac

es
(a

ct
iv

iti
es

st
ar

t
/c

om
pl

et
io

n)

G
ra

ph
ic

al
B

P-
M

on
G

ra
ph

re
pr

es
en

ta
tio

n
G

ra
ph

ho
m

om
or

ph
is

m
Sy

nc
hr

on
ou

s
co

nt
ro

l-
flo

w
re

al
tim

e
N

o

[3
3]

N
o

A
D

E
PT

[4
9]

E
xt

er
na

l
E

ve
nt

tr
ac

es
(a

ct
iv

iti
es

st
ar

t
/c

om
pl

et
io

n)
gr

ap
hi

ca
l

C
om

pl
ia

nc
e

R
ul

e
G

ra
ph

s
G

ra
ph

Pa
tte

rn
m

at
ch

in
g

Sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

D
at

a
re

al
tim

e
Y

es

Fo
rm

al
ly

-b
as

ed
[2

7]
N

o
W

or
kfl

ow
la

ng
ua

ge
E

xt
er

na
l

E
ve

nt
tr

ac
es

(a
ct

iv
iti

es
st

ar
t

/c
om

pl
et

io
n)

N
/A

LT
L

-F
O

+
M

od
el

C
he

ck
in

g
A

sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

D
at

a
N

o

[3
6]

N
o

B
PE

L
E

xt
er

na
l

E
ve

nt
tr

ac
es

(a
ct

iv
iti

es
st

ar
t

/c
om

pl
et

io
n)

N
/A

E
ve

nt
C

al
cu

lu
s

in
te

gr
ity

-c
he

ck
in

g
A

sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

re
al

tim
e

N
o

[3
8]

N
o

di
st

ri
bu

te
d

co
nt

ro
l

sy
st

em
s

E
xt

er
na

l
E

ve
nt

tr
ac

es
(d

efi
ne

d
ev

en
ts

)
D

ec
la

re
[4

7]
E

ve
nt

C
al

cu
lu

s
L

og
ic

pr
og

ra
m

m
in

g
Sy

nc
hr

on
ou

s
co

nt
ro

l-
flo

w
re

al
tim

e
N

o

[3
4]

N
o

W
or

kfl
ow

la
ng

ua
ge

E
xt

er
na

l
de

fin
ed

ev
en

t
tr

ac
es

D
ec

la
re

[4
7]

LT
L

M
od

el
C

he
ck

in
g

Sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

Y
es

[1
0]

,
[9

]
N

o
di

st
ri

bu
te

d
sy

st
em

s
E

xt
er

na
l

E
ve

nt
tr

ac
es

(a
ct

iv
iti

es
st

ar
t

/c
om

pl
et

io
n)

N
/A

M
FO

T
L

M
od

el
C

he
ck

in
g

co
nt

ro
l-

flo
w

D
at

a
re

al
tim

e
D

at
a

A
sy

nc
hr

on
ou

s
N

o

[2
4]

N
o

pr
op

ri
et

ar
y

sy
st

em
s

In
te

rn
al

de
fin

ed
E

ve
nt

tr
ac

es
Te

xt
ua

l
pa

tte
rn

s
PL

T
L

m
ap

pe
d

in
to

pr
op

ri
et

ar
y

IB
M

no
ta

tio
ns

pr
op

ri
et

ar
y

co
rr

el
at

io
n

en
gi

ne
(A

C
T

)

co
nt

ro
l-

flo
w

D
at

a
re

al
tim

e
Sy

nc
hr

on
ou

s
N

o

Q
ue

ry
-

ba
se

d
[2

6]
,

[6
1]

N
o

W
eb

se
rv

ic
e

ch
or

eo
gr

ap
h

E
xt

er
na

l
ev

en
t

tr
ac

es
(e

xc
ha

ng
ed

m
es

sa
ge

s)
N

/A
X

Q
ue

ry
X

Q
ue

ry
ev

al
ua

tio
n

A
sy

nc
hr

on
ou

s
co

nt
ro

l-
flo

w
D

at
a

N
o

[5
4]

N
o

B
PE

L
E

xt
er

na
l

e v
en

t
tr

ac
es

(e
xc

ha
ng

ed
m

es
sa

ge
s)

N
/A

B
Pa

th
X

Pa
th

ev
al

ua
tio

n
Sy

nc
hr

on
ou

s
co

nt
ro

l-
flo

w
re

al
tim

e
N

o

R
ul

e
-b

as
ed

[8
]

N
o

B
PE

L
E

xt
er

na
l

ev
en

t
tr

ac
es

(e
xc

ha
ng

ed
m

es
sa

ge
s)

N
/A

W
S-

C
oL

R
ul

e-
ba

se
d

re
as

on
in

g
A

sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

D
at

a
N

o

[4
1]

Y
es

B
PM

N
E

xt
er

na
l

E
v e

nt
tr

ac
es

(d
efi

ne
d

ev
en

ts
)

D
w

ye
r’

s
Pa

tte
rn

s
[1

9]
E

C
A

R
ul

e-
ba

se
d

re
as

on
in

g
Sy

nc
hr

on
ou

s

co
nt

ro
l-

flo
w

D
at

a
em

pl
oy

ed
re

so
ur

ce
s

Y
es

(N
o

im
pl

.)

[1
4]

N
o

W
or

kfl
ow

la
ng

ua
ge

E
xt

er
na

l
E

v e
nt

tr
ac

es
(a

ct
iv

iti
es

st
ar

t
/c

om
pl

et
io

n)
R

ul
e

te
m

pl
at

e
Pr

ol
og

R
ul

e-
ba

se
d

re
as

on
in

g
A

sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

re
al

tim
e

N
o

[7
]

N
o

B
PE

L
E

xt
er

na
l

E
ve

nt
tr

ac
es

(a
ct

iv
iti

es
st

ar
t

/c
om

pl
et

io
n)

R
T

M
L

Ja
va

C
od

e
C

od
e-

ba
se

d
m

at
ch

in
g

A
sy

nc
hr

on
ou

s
co

nt
ro

l-
flo

w
re

al
tim

e
N

o

C
E

P
[4

0]
N

o
B

PM
N

In
te

rn
al

E
ve

nt
tr

ac
es

(a
ct

iv
iti

es
st

ar
t

/c
om

pl
et

io
n)

te
xt

ua
l

D
SL

E
PL

E
sp

er
en

gi
ne

Sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

em
pl

oy
ed

re
so

ur
ce

s
re

al
tim

e

N
o

[5
6]

[6
4]

N
o

B
PM

N
In

te
rn

al
E

v e
nt

tr
ac

es
(a

ct
iv

iti
es

st
ar

t
/c

om
pl

et
io

n)
N

/A
E

PL
E

sp
er

en
gi

ne
Sy

nc
hr

on
ou

s
co

nt
ro

l
flo

w
Y

es

[5
7]

N
o

ev
en

t-
dr

iv
en

pr
oc

es
s

ch
ai

ns
m

od
el

In
te

rn
al

E
ve

nt
flo

w
s

N
/A

C
om

pl
ia

nc
e

ru
le

m
od

el

C
E

P
en

gi
ne

(S
A

R
I)

[3
9]

Sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

re
al

tim
e

Y
es

O
ur

A
pp

ro
ac

h
Y

es
B

PM
N

In
te

rn
al

ev
en

t
tr

ac
es

(t
as

k-
ba

se
d

an
d

in
st

an
ce

-b
as

ed
lif

ec
yc

le
)

vi
su

al
co

m
pl

ia
nc

e
pa

tte
rn

s
E

PL
(P

oC
)

A
nt

i-
Pa

tte
rn

s
ev

al
ua

tio
n

ap
pr

oa
ch

Sy
nc

hr
on

ou
s

co
nt

ro
l-

flo
w

D
at

a
em

pl
oy

ed
re

so
ur

ce
s

re
al

tim
e

Pa
rt

ia
l

www.ijacsa.thesai.org 569 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

a proactive compliance support. The majority of the
approaches discussed check compliance on completed
executions.

5) The approach presented in this paper supports event traces
complying with both the task-based, and instance-based
lifecycles [50] (presented in Section II-A), as opposed to
other proposals, which mainly consider the start/comple-
tion of activities, or the sending/receiving of exchanged
messages.

6) The evaluation technique based on the concept of anti-
patterns is novel and technology independent as it doesn’t
assume specific technologies in place, and can be imple-
mented in various platforms. In addition, the concept of
anti-patterns could also be applied to verify compliance
in other BP life cycle phases.

7) As discussed in Section VII,the utility and applicability
of the approach has been validated on two real-life case
studies addressing the banking domain, and the findings
indicate that our approach supports a major subset of real-
life compliance requirements imposed on the considered
scenarios.

As discussed in Section VI, compliance violations rea-
soning and analysis is supported partially by the proposed
framework, such that, when a runtime violation is detected,
a dedicated actor is notified to take appropriate action and the
violated execution is halted. Extending the proposed frame-
work with an efficient root-cause analysis approach that reason
about compliance violations, and enables the (semi-) automatic
invocation of defined recovery actions is considered as an
ongoing work direction.

IX. CONCLUSIONS AND FUTURE WORK

Business processes form the foundation for all organi-
zations, and as such, are impacted by industry regulations.
Business process compliance management is an emergent
business need, as it has been witnessed that without explicit BP
definitions, effective and expressive compliance frameworks,
organizations may face litigation risks and even criminal
penalties. Therefore, Compliance management should be one
of the integral parts of business process management. This
paper contributes by presenting a generic proactive compliance
monitoring framework;i.e. BP-MaaS, addressing the runtime
phase of the BP lifecycle. The framework adopts a wide
range of expressive high-level compliance patterns for the
abstract specification of monitoring requirements. From high-
level pattern expressions, corresponding runtime queries can be
automatically generated for the actual monitoring. As a PoC,
we have adopted the CEP technology as the structural basis
of runtime queries. Compliance monitoring is then performed
based on the notion of anti-patterns, a novel runtime evaluation
approach that is technology-independent. As an instantiation
artifact, anti-patterns are implemented that evaluates CEP
queries against running BP instances to detect runtime com-
pliance anomalies.

Some of the lessons learned are that managing compliance
of business processes is a complex and multi-disciplinary task.
It requires a multi-faceted approach to the problem involves
not only technical aspects rooted in various fields that have to
be bridged (such as computer science, business process man-
agement, formal methods, and legal studies) but also, social

and organizational aspects as it highly involves knowledge
work. No matter how sophisticated the offered solutions and
the underlying technologies are, BP compliance management
cannot be fully automated. Having efficient techniques and
solutions in place can only facilitate and improve the quality
of the work involved. As also shown by the case studies
we conducted, the automated verification and monitoring of
compliance are possible only for a certain segment of require-
ments. Technical and physical related requirements necessitate
checks and controls that have to be performed manually by
compliance experts.

Future research and development are on-going in sev-
eral directions to enhance and fully-support the compliance
monitoring framework proposed in this paper. First, defining
automated recovery actions that could take place whenever
a violation is detected, which would necessarily involve the
notion of business transactions [46]. Second, providing an effi-
cient technique that enables the prediction of potential runtime
violations that support not only that of timing constraints,
but also other compliance classes as well. This will require
the application of some statistical and analytical models,
such as Bayesian networks. Third, self-adapting the running
BP instance once a compliance violation has occurred or is
predicted to occur, to recover the impacts of the violation, and
continue its execution normally after the adaptation.

Future work also includes basing the compliance monitor-
ing framework on semantic repositories. This involves building
a set of interrelated semantic ontologies (e.g. business process
ontology, compliance ontology, organizational ontology, etc.)
using the Ontology Web Language (OWL2.0) standard as part
of a central compliance management knowledge base. This will
allow us to: (i) conduct a set of preliminary structural analysis
using the reasoning tools associated with these technologies,
(ii) ensure the ontological alignment between compliance
and business specifications, (iii)facilitate the communication
between different stakeholders with diverse backgrounds and
removes any ambiguity, and (iv)assists in the integration be-
tween heterogeneous systems. Last but not least, The validation
of the proposed approach will be further intensified by its
application on larger scale real-life case studies in different
domains, such as healthcare and manufacturing, which is
expected to raise some interesting challenges. For example,
in the healthcare domain, physicians should be provided with
higher levels of flexibility to override some compliance rules
(weak constraints), as the patient treatment process is tightly
related to the physicianś knowledge and judgment.

ACKNOWLEDGMENT

This project was funded by the National Plan for Science,
Technology and Innovation (MAARIFAH) – King Abdulaziz
City for Science and Technology - the Kingdom of Saudi
Arabia – award number (11-INF1991-03). The authors also,
acknowledge with thanks Science and Technology Unit, King
Abdulaziz University for technical support

REFERENCES

[1] W M P Van Der Aalst and A K A De Medeiros. Process Mining and
Security : Detecting Anomalous Process Executions. In (WISP), 2004.

[2] Ahmed Awad, Ahmed Barnawi, Amal Elgammal, Radwa Elshawi,
Abduallah Almalaise, and Sherif Sakr. Runtime detection of business
process compliance violations: An approach based on anti patterns. In
ACM SAC, 2015.

www.ijacsa.thesai.org 570 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

[4] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Specification,
Verification and Explanation of Violation for Data Aware Compliance
Rules. In ICSOC/ServiceWave, 2009.

[5] Ahmed Awad and Mathias Weske. Visualization of compliance violation
in business process models. In BPM Workshops, 2009.

[6] R. Baldwin, M. Cave, and M. Lodge. Understanding regulation: theory,
strategy, and practice. Oxford University Press, 2011.

[7] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti.
Run-time monitoring of instances and classes of web service composi-
tions. In ICWS, 2006.

[8] Luciano Baresi and Sam Guinea. Towards dynamic monitoring of
ws-bpel processes. In Boualem Benatallah, Fabio Casati, and Paolo
Traverso, editors, Service-Oriented Computing - ICSOC 2005, volume
3826 of Lecture Notes in Computer Science, pages 269–282. Springer
Berlin Heidelberg, 2005.

[9] David Basin, Matus Harvan, Felix Klaedtke, and Eugen Zalinescu.
Monpoly: Monitoring usage control policies. In Proceedings of the
2nd International Conference on Runtime Verification (RV 2011), pages
360–364, 2012.

[10] David Basin, Felix Klaedtke, Samuel Müller, and Birgit Pfitzmann.
Runtime Monitoring of Metric First-order Temporal Properties. In
Ramesh Hariharan, Madhavan Mukund, and V Vinay, editors, IARCS
Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science, volume 2 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 49–60, Dagstuhl, Germany, 2008.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[11] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring
business processes with queries. In VLDB, 2007.

[12] M. Bennett. Fibo: Best practice in big data. J Bank Regul, 14(3-4):255–
268, Jul 2013.

[13] Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale for
RuleML: A Markup Language for Semantic Web Rules. In SWWS,
2001.

[14] Federico Chesani, Paola Mello, Marco Montali, Fabrizio Riguzzi, Mau-
rizio Sebastianis, and Sergio Storari. Checking compliance of execution
traces to business rules. In Danilo Ardagna, Massimo Mecella, and Jian
Yang, editors, Business Process Management Workshops, volume 17
of Lecture Notes in Business Information Processing, pages 134–145.
Springer Berlin Heidelberg, 2009.

[15] EDM Council and OMG-FDTF. Financial industry business ontology
(fibo). Technical report, 2013.

[16] Gero Decker, Hagen Overdick, and Mathias Weske. Oryx - an open
modeling platform for the BPM community. In Business Process
Management, 6th International Conference, BPM 2008, Milan, Italy,
September 2-4, 2008. Proceedings, volume 5240 of Lecture Notes in
Computer Science, pages 382–385. Springer, 2008.

[17] Patrick Delfmann, Sebastian Herwig, Lukasz Lis, Armin Stein, Katrin
Tent, and Jrg Becker. Pattern specification and matching in conceptual
models - a generic approach based on set operations. Enterprise
Modelling and Information Systems Architectures, 5(3):24–43, 2010.

[18] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciano
Serafini, and Paolo Tonella. Reasoning on semantically annotated pro-
cesses. In Athman Bouguettaya, Ingolf Krueger, and Tiziana Margaria,
editors, Service-Oriented Computing ? ICSOC 2008, volume 5364 of
Lecture Notes in Computer Science, pages 132–146. Springer Berlin
Heidelberg, 2008.

[19] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In ICSE, 1999.

[20] A. Elgammal and T. Butler. Towards a framework for semantically-
enabled compliance management in financial services. In Interna-
tional workshop on Knowledge-Aware Service-Oriented Applications,
ICSOC2014 workshops, 2014.

[21] Amal Elgammal and Tom Butler. Towards a framework for
semantically-enabled compliance management in financial services. In
1st International Workshop on Knowledge Aware Service Oriented
Applications (KASA?15), co-located with ICSOC 2015, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2014.

business process compliance. Software and Systems Modeling, pages
1–28, 2014.

[23] Opher Etzion and Peter Niblett. Event processing in action. Manning,
2010.

[24] Christopher Giblin, Samuel Mueller, and Birgit Pfitzmann. From
regulatory policies to event monitoring rules: Towards model-driven
compliance automation, 2006.

[25] Object Management Group. Business process model and notation
specification 2.0.2. Technical report, 2013.

[26] Sylvain Hall and Roger Villemaire. XML Methods for Validation of
Temporal Properties on Message Traces with Data. In OTM, 2008.

[27] Sylvain Hallé and Roger Villemaire. Runtime monitoring of message-
based workflows with data. In EDOC, 2008.

[28] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Q., 28(1):75–105,
March 2004.

[29] Stefan Kühne, Heiko Kern, Volker Gruhn, and Ralf Laue. Business
process modeling with continuous validation. Journal of Software
Evolution and Process, 22(7):547–566, 2010.

[30] Barbara Staudt Lerner, Stefan Christov, Leon J. Osterweil, Reda Ben-
draou, Udo Kannengiesser, and Alexander Wise. Exception Handling
Patterns in Process-Aware Information Systems. IEEE TSE, 36(2), 2010.

[31] David Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,
2002.

[32] Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-
Ma, and W M P Van Der Aalst. A Framework for the Systematic
Comparison and Evaluation of Compliance Monitoring Approaches. In
EDOC, 2013.

[33] Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and Peter
Dadam. Monitoring Business Process Compliance Using Compliance
Rule Graphs. In OTM, 2011.

[34] Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and W M
P Van Der Aalst. Monitoring Business Constraints with Linear Temporal
Logic: An Approach Based on Colored Automata. In BPM, 2011.

[35] FabrizioMaria Maggi, Michael Westergaard, Marco Montali, and
WilM.P. van der Aalst. Runtime verification of ltl-based declarative
process models. In Sarfraz Khurshid and Koushik Sen, editors, Runtime
Verification, volume 7186 of Lecture Notes in Computer Science, pages
131–146. Springer Berlin Heidelberg, 2012.

[36] Khaled Mahbub and George Spanoudakis. A framework for require-
ments monitoring of service based systems. In ICSOC, 2004.

[37] Vuk Mijovic and Sanja Vranes. A survey and Evaluation of CEP Tools.
In YUINFO, 2011.

[38] Marco Montali, Fabrizio Maria Maggi, Federico Chesani, Paola Mello,
and Wil M. P. van der Aalst. Monitoring business constraints with the
event calculus. 2013.

[39] Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar. Monitoring web
service event trails for business compliance. In SOCA, pages 1–8. IEEE,
2009.

[40] Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar. Domain-specific
language for event-based compliance monitoring in process-driven
SOAs. Service Oriented Computing and Applications, 7(1), 2013.

[41] Kioumars Namiri and Nenad Stojanovic. Pattern-based design and
validation of business process compliance. In Proceedings of the
2007 OTM Confederated International Conference on On the Move
to Meaningful Internet Systems: CoopIS, DOA, ODBASE, GADA, and
IS - Volume Part I, OTM’07, pages 59–76, Berlin, Heidelberg, 2007.
Springer-Verlag.

[42] N.C. Narendra, V.K. Varshney, S. Nagar, M. Vasa, and A. Bhamidipaty.
Optimal control point selection for continuous business process compli-
ance monitoring. In Service Operations and Logistics, and Informatics,
2008. IEEE/SOLI 2008. IEEE International Conference on, volume 2,
pages 2536–2541, Oct 2008.

www.ijacsa.thesai.org 571 | P a g e

[22] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and
Mike Papazoglou. Formalizing and applying compliance patterns for

[3] Ahmed Awad and Sherif Sakr. On efficient processing of BPMN-Q
queries. Computers in Industry, 63(9):867–881, 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

[45] OMG. Semantics of business vocabulary and business rules (sbvr),
version 1.0, 2008.

[46] M Papazoglou. Web services and business transactions. World Wide
Web, 6(1):49–91, 2003.

[47] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. Declare:
Full support for loosely-structured processes. In EDOC, 2007.

[48] P. Reuter and E.M. Truman. Chasing Dirty Money: The Fight Against
Money Laundering. 2004.

[49] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Flexible support
of team processes by adaptive workflow systems. In Distributed and
Parallel Databases, pages 91–116, 2004.

[50] Nick Russell, W M P Van Der Aalst, Arthur H. M. ter Hofstede, and
David Edmond. Workflow Resource Patterns: Identification, Represen-
tation and Tool Support. In CAiSE, 2005.

[51] Shazia Sadiq, Guido Governatori, and Kioumars Namiri. Modeling
control objectives for business process compliance. In Gustavo Alonso,
Peter Dadam, and Michael Rosemann, editors, Business Process Man-
agement, volume 4714 of Lecture Notes in Computer Science, pages
149–164. Springer Berlin Heidelberg, 2007.

[52] Sherif Sakr and Ahmed Awad. A framework for querying graph-based
business process models. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 1297–1300, New
York, NY, USA, 2010. ACM.

[53] Sherif Sakr, Ahmed Awad, and Matthias Kunze. Querying Process
Models Repositories by Aggregated Graph Search. In Business Process
Management Workshops, 2012.

[54] Samir Sebahi and Mohand-Said Hacid. Business process monitoring
with bpath - (short paper). In OTM Conferences (1), 2010.

[55] Financial Action Task. The fatf recommendations, 2012.
[56] R. Thullner, S. Rozsnyai, J. Schiefer, H. Obweger, and M. Suntinger.

Proactive business process compliance monitoring with event-based
systems. In Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2011 15th IEEE International, pages 429–437,
Aug 2011.

[57] Robert Thullner, Szabolcs Rozsnyai, Josef Schiefer, Hannes Obweger,
and Martin Suntinger. Proactive business process compliance monitor-
ing with event-based systems. In EDOC Workshops, 2011.

[58] O. Turetken, A. Elgammal, W. van den Heuvel, and M. Papazoglou.
Capturing compliance requirements: A pattern-based approach. IEEE
Software, special issue on Software Engineering for Compliance,
29(3):28–36, 2012.

[59] Oktay Türetken, Amal Elgammal, Willem-Jan van den Heuvel, and
Michael P. Papazoglou. Capturing compliance requirements: A pattern-
based approach. IEEE Software, 29(3), 2012.

[60] Oktay Turetken, Amal Elgammal, Willem-Jan van den Heuvel, and
Mike Papazoglou. ENFORCING COMPLIANCE ON BUSINESS
PROCESSES. In ECIS 2011 PROCEEDINGS, 2011.

[61] Marcus Venzke. Specifications using xquery expressions on traces.
Electron. Notes Theor. Comput. Sci., 105:109–118, December 2004.

[62] W3C. Xml path language (xpath) 2.0 (second edition), 2011.
[63] W3C. Owl 2 web ontology language structural specification and

functional-style syntax (second edition). Technical report, December
2012.

[64] M Weidlich, H Ziekow, and J Mendling. Event-based Monitoring of
Process Execution Violations. In BPM, 2011.

www.ijacsa.thesai.org 572 | P a g e

[43] OASIS. Web services business process execution language version 2.0.
Technical report, 2007.

[44] FinCEN-United States Department of the Treasury. Usa patriot act,
2001.

