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transcripts. 
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1.1 Trypanosomatids 

Trypanosomatid flagellates are omnipresent and exceptionally successful obligatory 
parasites of various groups of eukaryotes, ranging from plants and invertebrates to 
vertebrates including human. Trypanosomatids also serve as valuable model organisms in 
studies of diversity, host specificity as well as distribution of parasites.  Representative 
species, such as Trypanosoma brucei, Trypanosoma cruzi, Leishmania tarentolae and 
Crithidia fasciculata are used to study adaptations to parasitism as well as highly derived 
eukaryotic features at the cellular and molecular levels. 
 

 

1.1.2 Phylogeny of the group 

Trypanosomatids is a group with obligatory parasitic life style that constitutes a branch 
within the class Kinetoplastea, consisting of free-living, commensalic and parasitic flagellates 
(Lukeš et al., 2014; Moreira et al., 2004; Simpson et al., 2004a). Kinetoplastea obtained their 
name after the kinetoplast, a mass of mitochondrial DNA and proteins located in the 
periflagellar region of the mitochondrion (Lukeš et al., 2014). Along with Diplonemea, 
Euglenida and Symbiontida, Kinetoplastea forms the group Discicristata, whose 
representatives share discoidal mitochondrial cristae as their common character. In the 
evolutionary tree of all extant eukaryotes, these flagellates fall within the excavate kingdom 
Euglenozoa (Adl et al., 2012).  

Not surprisingly, most studied representatives are those with medical, veterinary and 
economic impact. Best known is the genus Trypanosoma, the members of which are 
responsible for human Chagas disease in Americas and sleeping sickness in Africa. They also 
include causative agents of nagana, surra and dourine in cattle, horses, water buffalos, 
camels and other economically important animals. Species from the related genus 
Leishmania are responsible for leishmaniases, a wide array of clinically variable diseases 
affecting millions of people in the subtropical and tropical regions (Bañuls et al., 2007). 
Finally, flagellates ranked into the genus Phytomonas parasitize crops and other plants, such 
as oil and coconut palms (Camargo, 1999). These important pathogens are so-called 
dixenous (= two host) parasites, while the majority of trypanosomatid diversity lies within 
the monoxenous (= single host) parasites (Lukeš et al., 2014; Maslov et al., 2013).  

Until present, hundreds of TUs (Typing units = molecular species) of trypanosomatids 
have been identified (Maslov et al., 2013) which can be divided into several major clades 
(Fig. 1) (Lukeš et al., 2014; Maslov et al., 2013). Dixenous Trypanosoma species appear at the 
base of the Trypanosomatidae clade, while the dixenous Leishmania and Phytomonas 
species branch off from within the monoxenous groups. Recently, one of the most 
evolutionary important trypanosomatids, Paratrypanosoma confusum, was described 
(Flegontov et al., 2013). It is the only flagellate that is basal even to trypanosomes, and is 
therefore positioned between all obligatory parasitic trypanosomatids and the free-living 
Bodo saltans. This isolate might be instrumental in resolving the long-lasting debate about 
whether the ancestors of trypanosomatids were originally parasites of aquatic vertebrates 
and only later acquired insect vectors  (Minchin 1908), or whether they first colonized the 
insect hosts and only later gained the ability to be transmitted to vertebrates (Leger 1904). 
Due to accumulated molecular evidence, the latter view is now favored by most scientists. 
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Recent studies (Teixeira et al., 2011; Týč et al., 2013; Votýpka et al., 2012; Votýpka et 
al., 2010; Votýpka et al., 2013) revealed the existence of many new TUs and corrected 
taxonomy so far mostly based on rather misleading morphological characters. While the 
diversity of trypanosomatids is steadily growing, no new clades lately emerged, the 
Blechomonas group being the only exception (Votýpka et al., 2013). Hence, it seems that 
although most trypanosomatid species of insects remain yet to be identified, the overall 
phylogeny of the group is already well mapped, with no big expansions expected. 

 
 

 
 
Figure 1: Phylogenetical tree of trypanosomatids based on SSU rRNA sequence. Numbers 
represents individual species for which sequence is available. Adopted from Lukeš et al., 
2014. 
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1.2. Why to study trypanosomatids and what can they tell us? 

Genomes of three dixenous trypanosomatids (T. brucei, T.cruzi and L. major) have been 
sequenced already a decade ago (Berriman et al., 2005; El-Sayed et al., 2005; Ivens et al., 
2005), and with other strains and species are available in Tritrypdb.org (Aslett et al., 2010). 
Recently, two nuclear genomes of Phytomonas species were also sequenced (Porcel et al., 
2014), and the number of fully sequenced Leishmania and Trypanosoma species is bound to 
grow. The TriTryp database is a valuable source for the community where researchers can 
look for interesting target genes for subsequent functional analyses. Some targets are 
obvious or already known, however, the function of the majority of protein-coding genes 
remains hypothetical (Aslett et al., 2010). 

One of the essential questions is to identify genes responsible for the highly successful 
parasite’s strategy allowing it to prosper within the vertebrate and especially human hosts. 
For this purpose, a comparative molecular and biochemical analysis between monoxenous 
and dixenous trypanosomatids can bring new important insight. Initial data, so far on a 
biochemical level, are now available (Škodová-Sveráková et al., 2014). Moreover, at least 
two draft genomes are publicly available, namely that of Crithidia fasciculata 
(http://tritrypdb.org) and Leptomonas seymouri 
(https://www.sanger.ac.uk/resources/downloads/protozoa/leptomonas-seymouri.html), 
and several more genomes of (likely) varying quality of assembly and annotation are on the 
way. Indeed, comparing the whole genomes and transcriptomes of monoxenous and 
dixenous trypanosomatids shall reveal differences in gene content and differential 
expression and therefore help to identify genes or gene families responsible for the ability to 
invade the vertebrate host and deceive its immune system. Identified target genes will be 
afterwards amenable to a thorough investigation. 

This all means that with the sequencing costs progressively dropping, insect 
trypanosomatids sampled from around the world will be very useful for comparative studies 
and for understanding the evolution and diversity of these extremely successful and 
abundant parasites. 
 
 

1.3. Trypanosoma brucei  

T. brucei is a deadly human parasite from the phylum Trypanosomatidae. Two different 
strains T. b. gambiense and T. b. rhodensiense cause sleeping sickness or HAT (human African 
trypanosomiasis) in humans, while T. b. brucei is a causative agent of cattle disease nagana 
(Barrett et al., 2003). The two strains of T. brucei causing HAT differ in geographic 
distribution and symptoms but are morphologically indistinguishable (Gibson, 1986).  The 
West African sleeping sickness, caused by T. b. gambiense is responsible for up to 98% of 
infections and it develops for up to 3 years without major symptoms. The East African 
sleeping sickness caused by T. b. rhodesiense develops faster and its symptoms become 
obvious within a few weeks. If untreated, the infections are mostly lethal, especially after 
the parasite crosses the blood brain barrier. T. b. brucei does not affect humans, as it is 
susceptible to trypanosome lytic factor in the human blood. All subspecies are transmitted 
via the bite of a blood-sucking tsetse fly (Glossina spp.) that populates African woodland and 
savannah zones. As a result, human populations in remote rural areas are predominantly 
affected. The effort to control the disease already brought results and in 2012 there were 
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only 10,000 newly reported infections. The total number is probably higher, as many cases 
remain unreported or undiagnosed, however, it is a significant drop in comparison to 
approximately 40,000 annual reports that occurred in sub-Saharan Africa before 1998 (WHO 
report, Geneva 2012). T. brucei is confined to Africa only due to the restricted area of its 
tsetse fly vector. Only flagellates that are able to find other means of their transmission are 
able to escape from Africa and spread worldwide. Such trypanosomes indeed exist and are 
known as T. b. equiperum and T. b. evansi (Lai et al., 2008). Their life strategies are related to 
the changes in kDNA and are described below.  

 
 

1.3.1 Life cycle of T. brucei  

The life cycle of T. brucei is quite complex, consisting of several developmental stages 
(Fig 2). Midgut of the tsetse fly is colonized by proliferating procyclic stage expressing 
procyclin as its protective surface coat. This stage subsequently develops into the 
epimastigote stage, which migrates into the salivary gland. The development in tsetse fly is 
terminated by the metacyclic stage, which does not proliferate and, being covered in 
masking coat of variable surface glycoprotein (VSG), is already pre-adapted for survival in the 
mammalian host. VSG serves to escape the mammalian immune system via a process called 
antigenic variation, via which the surface glycoproteins periodically changes (Pays et al., 
2004). The transmission occurs during the tsetse fly’s feeding.  

In the bloodstream of the mammalian host, long slender dividing population and short-
stumpy non-dividing forms can be distinguished. Short-stumpy form is the transitional stage, 
which does not proliferate and is preadapted to be ingested by tsetse fly where the life cycle 
is completed (Matthews, 1999) (Fig 2). Only the proliferating procyclic stage (PS) and the 
long slender bloodstream stage (BS) can be easily cultivated in the liquid media under 
laboratory conditions. For this reason these two stages are by far predominantly studied. 

 

 
 
Figure 2: Life cycle of Trypanosoma brucei. Adopted from CDC. 

4



1.3.2 Cell organization and peculiarities of T. brucei 

T. brucei is a typical single eukaryotic cell with nucleus and organelles such as the Golgi 
apparatus, endoplasmic reticulum, mitochondrion and flagellum. In addition, together with 
other trypanosomatids, T. brucei features many distinct oddities for which these ancestral 
flagellates are intensely studied (Lukes et al., 2005; Montagnes et al., 2012). These includes 
polycistronic transcription (Muhich and Boothroyd, 1988), subsequent massive trans-splicing 
of mRNAs, variable surface glycoprotein coat (Pays et al., 2004) and specific cytoskeletal 
corset, composed of spiraled interlinked subpelicullar microtubules located just beneath the 
plasma membrane (Hemphill et al., 1991). Other unique feature of kinetoplastid flagellates is 
the paraflagellar rod, a highly organized protein structure running alongside the flagellum 
(Maga and LeBowitz, 1999; Vickerman, 1962). In T. brucei the flagellum is connected with 
the cell via an undulating membrane, which contributes to the characteristic movement of 
the parasite and enhances motility in the viscous medium such as blood (E.A., 2003). T. 

brucei has a number of other oddities, such as a specialized compartment for energy 
metabolism – the glycosome (Michels et al., 2006). This organelle, likely derived from the 
peroxisomes, contains enzymes of glycolysis and purine salvage pathway (Parsons et al., 
2001). Finally, the single mitochondrion of T. brucei, with its extraordinarily complex 
mitochondrial DNA and editing of organelar RNA, deserves to be described in more details 
(see below).  

 
 

1.3.3 T. brucei as a model organism 

Protists can be used as informative model organisms to answer fundamental biological 
questions (Montagnes et al., 2012). From the trypanosomatid group the most prominent 
model organism is T. brucei, both because of its medical and economic importance, but also 
due to its amenability to a number of molecular biology approaches. Other kinetoplastid 
parasites such as Leishmania and Phytomonas, are also very important, yet most molecular 
tools for them are lacking.  

T. brucei as a model benefits from the fact that its life cycle stages are extracellular and 
relatively easy to cultivate. Its whole genome has been sequenced and is available online 
together with T. cruzi, Leishmania major and other trypanosomatids (Aslett et al., 2010). 
Genome availability allows comparative studies as well as larger proteomic and 
transcriptomic studies (Butter et al., 2013; Kolev et al., 2010). Examples of commonly used 
strains in the laboratory for RNAi studies and ectopic copy expression are 29-13 strain of PS 
and the strain Lister 427 (cell line 90-12) of BS. Both were genetically modified to express T7 
polymerase and tetracycline (TET) repressor allowing tight regulation (Wang et al., 2000; 
Wirtz et al., 1999). 

Functional studies in the T. brucei model can also benefit from following 
methodological approaches. Most impact probably has RNA interference (RNAi), via which 
target mRNA is specifically down-regulated upon induced expression of double-stranded 
RNA (Motyka and Englund, 2004; Wang et al., 2000), leading to the ablation of target 
protein. Knock out of the gene by homologous recombination is also feasible in T. brucei 
(Gaud et al., 1997). This approach, however, is not easy and straightforward as RNAi. T. 

brucei is a diploid organism, so multiple rounds of transfection and multiple markers are 
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needed. Moreover, if the target gene is essential for cell survival, regulatable ectopic allele 
has to be introduced before any of the alleles is disrupted.  

Important genetic manipulation include protein tagging techniques, with different tags 
being used for precise localization of the protein of interest, such as YFP, PTP, HA, V5, etc. 
(Huang et al., 2014; Týč et al., 2015; Týč et al., 2010b; Šubrtová et al., 2015). Even dynamic 
localization of the protein during cell cycle can be explored (Concepción-Acevedo et al., 
2012). For cellular localization mostly immunoflorescence microscopy is used, but 
transmission electron microscopy can also be utilized for high resolution (Kovářová et al., 
2014). Tagged proteins also serve for purification and identification of protein binding 
partners (Zíková et al., 2008), with the TAP and PTP tags being designed specifically for this 
purpose (Günzl and Schimanski, 2009). 

T. brucei is particularly useful model for studying the function of proteins that 
significantly differ from its human host or are unique to the parasite. These proteins 
therefore can serve as potential drug targets, because their inhibition will not affect the 
vertebrate host (Ammerman et al., 2012; Týč et al., 2010b; Šubrtová et al., 2015).  

Another group of proteins, for the studies of which T. brucei is well suited are the 
evolutionary conserved ones. As a member of the supergroup Excavata, T. brucei is 
evolutionary very distant from other model eukaryotes such as yeast, mice and human cells 
(members of the supergroup Opisthokonta) or plants (supergroup Archaeplastida). Thus, T. 

brucei gives us an opportunity to study highly conserved and therefore very important genes 
and pathways from unique perspective(s) (Basu et al., 2014; Týč et al., 2010a; Týč et al., 
2015). For example, trypanosomatid oddities such as the single mitochondrion and single 
mitochondrial (mt) DNA that replicates only once per cell cycle can be used to address issues 
such as the involvement of mtHsp70/mtHsp40 chaperones in the replication of mtDNA from 
an angle that is not possible in other eukaryotes (Týč et al., 2015). 

 
 

1.4. Mitochondrion of T. brucei 

Mitochondrion is a double membrane organelle derived from a symbiotic α-
proteobacterium, which hosts several key metabolic processes (Gray, 2012). The best known 
role of mitochondria is the production of ATP through the Krebs cycle and electron transport 
chain in the inner membrane. Other indispensable functions are synthesis of heme and 
steroids and the assembly of Fe-S clusters, just to mention a few (Nunnari and Suomalainen, 
2012).  

T. brucei contains a single large tubular mitochondrion, the activity of which depends 
on the life cycle stage. In the procyclic stage (PS), the mitochondrion is fully morphologically 
developed and metabolically active. Its numerous functions (oxidative phosphorylation, RNA 
editing, ATP production and others) are essential for the parasite’s survival. Even though 
glucose is utilized if present, amino acids, especially L-proline, are the major energy source 
of this stage (Bringaud et al., 2006). Bloodstream stage (BS) of T. brucei swims in glucose-rich 
blood and for ATP production relies mostly on glycolysis. Its mitochondrion is reduced in size 
and the energy production function is silenced. Moreover, standard respiratory chain is 
absent and the respiration is carried out solely via trypanosome alternative oxidase (TAO) 
(Chaudhuri et al., 2006). The organelle is however still essential for parasite’s survival, due to 
functions related to its Fe-S cluster assembly, kDNA replication and maintenance, 
transcription, RNA editing and translation (Cristodero et al., 2010). Even in absence of a 
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functional respiratory chain, the BS still needs complex V, functioning as an ATPase. This 
complex contains a single subunit that is encoded in the kDNA. Because of this single protein 
all the above-listed machineries have to be functional (Hashimi et al., 2010). ATP synthase 
actually reverses its function and hydrolyzes ATP, in the process pumping protons into the 
inter membrane space in order to maintain the membrane potential on the mitochondrial 
double membrane (Brown et al., 2006; Schnaufer et al., 2005). Loss of membrane potential 
is lethal as it is needed for proper functioning of numerous mitochondrial processes, such as 
protein import across the double membrane (Schleyer et al., 1982).  
 

 

1.4.1 Kinetoplast DNA – structure and replication 

One of the most remarkable features of the kinetoplastid mitochondrion is its 
extraordinary mitochondrial nucleoid, which even gave name to the whole group. T. brucei 
not only has one mitochondrion per cell, but also its mtDNA termed the kinetoplast (or 
kDNA) is located at a distinct periflagellar region of the organelle. Due its size, it is well 
visible even under the light microscope. As a matter of fact, it was the first extra-nuclear 
DNA ever observed (Steinert et al., 1958). 

Kinetoplast DNA (kDNA) consist of two DNA entities - minicircles and maxicircles, which 
are catenated into a single complex network (Liu et al., 2005) (Fig. 3). Maxicircles are 
homologous to the mtDNA in other eukaryotes and carry protein-coding genes (Lukes et al., 
2005). In T. brucei there are several dozens of identical copies per organelle, with their size 
being around 23 kb. Minicircles are smaller, approximately 1 kb in length, and each kDNA 
contains heterogeneous and highly diverse population of several thousands of them (Ntambi 
and Englund, 1985). Maxicircles encode two rRNAs and protein-coding genes, the products 
of which are mainly incorporated into the respiratory chain, while minicircles carry guide 
RNAs (gRNAs) essential for RNA editing (Clement et al., 2004). Transfer RNA genes are 
missing, and all tRNAs have to be imported from the cytosol (Alfonzo and Söll, 2009). 
Mitochondrial genes are transcribed polycistronically (Read et al., 1992) and extensive 
processing and editing is required during their maturation, which includes polyadenylation 
of mRNAs (Bhat et al., 1992) and polyuridylation of rRNAs and gRNAs (Adler et al., 1991; 
Stuart et al., 2005). 

Kinetoplast DNA replicates once per cell cycle, predating nuclear DNA replication and 
cell division, which is quite unusual among eukaryotes (Englund, 1978; Woodward and Gull, 
1990). Cell division starts by the division of the basal body (Robinson and Gull, 1991), which 
is an organizing center of cell duplication, and is physically connected to the kDNA via the 
tripartite attachment complex (TAC) (Gluenz et al., 2011). TAC controls and ensures the 
kDNA replication, separation and proper positioning within the mitochondrion (Gluenz et al., 
2011). Replication of kDNA itself, during which the network doubles in size and then splits, is 
a highly complicated process which has to ensure that each minicircle and maxicircle is 
replicated and subsequently delivered into each daughter cell (Liu et al., 2005).  

Replication of maxicircles occurs within the kDNA network via a theta structure 
intermediate (Carpenter and Englund, 1995). This replication occurs inside the kDNA disc, 
and given the fact that maxicircles are much less numerous than the minicircles, we know 
little about their replication. So far, only helicase Pif2, primase Pri1, and polymerases Pol1C 
and Pol1D were shown to play a role in the maxicircle replication (Hines and Ray, 2011; 
Jensen and Englund, 2012; Liu et al., 2009), with Pif2 helicase being the only known enzyme 
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that affects exclusively maxicircles. Maxicircles are probably the major component of the 
nabelschnur structure that connects the two daughter kDNA networks right until their final 
separation (Gluenz et al., 2011).  

Minicircles are on the other hand easier to study and therefore their replication is 
much better understood. Each minicircle has to be released into kinetoflagellar zone (KFZ) 
before its replication (Drew and Englund, 2001). Pif1 helicase, Pri2 primase and Pol1B 
polymerase, along with other proteins, are then involved in their replication, which also 
occurs via the theta structure (Bruhn et al., 2010; Hines and Ray, 2010; Liu et al., 2010; Ryan 
and Englund, 1989). The sister minicircles that have been replicated then migrate to 
antipodal sites at the opposite sides of the kinetoplast, where they are being reattached to 
the growing disc (Melendy et al., 1988).  Although most of the gaps and nicks are sealed 
during the process, some of them are kept in order to distinguish newly replicated and 
reattached minicircles from those that did not yet underwent the process (Englund, 1979). 
Only after the whole replication is finished, all the nicks and gaps are sealed and sister kDNA 
networks segregates. 

This highly complex process obviously requires a sophisticated replication machinery. It 
has been estimated that total number of proteins involved in kDNA maintenance, replication 
and its regulation can easily reach 150 with just about 30 of them described so far (Jensen 
and Englund, 2012). The simplest explanation is that more complicated structure would 
require more proteins. Moreover, the kDNA replication must be highly reliable and faithful, 
as there is only one kDNA per cell. The increase in number of proteins involved in the 
replication and maintenance machinery is due to the involvement of several kinetoplastid-
specific proteins and also by multiplication of the universal ones.  

 

 
Figure 3: Electron micrograph of T. brucei kinetoplast DNA. Arrow points at kDNA, asterisk 
marks basal body and arrowhead points at cristae in the mitochondrion. Scale bar represents 
500 nm. 

 
Indeed, so far several topoisomerases (Bakshi and Shapiro, 2004; Lindsay et al., 2008; 

Melendy et al., 1988; Scocca and Shapiro, 2008; Wang et al., 2000), ligases (Sinha et al., 
2004; Sinha et al., 2006), primases (Hines and Ray, 2010, 2011); six helicases (Liu et al., 2009) 
and seven DNA polymerases have been identified (Klingbeil et al., 2002; Rajão et al., 2009; 
Saxowsky et al., 2003). These numbers are highly unusual for a mitochondrion, where 
usually an opposite situation can be documented, with reduced complexity of the replication 
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process taking place (Kasiviswanathan et al., 2012). UMSBP (Universal minicircle sequence 
binding protein) (Tzfati et al., 1992), p38 (Liu et al., 2006), p93 (Li et al., 2007), and 
hypothetical protein (Tb927.2.6100) (Beck et al., 2013) are examples of the kinetoplastid-
specific proteins. UMSBP and p38 are involved in binding to minicircle origin of replication, 
while the exact function of the latter two proteins is still uncertain.  
 
 

1.4.2 Life without the kinetoplast 

The kDNA and the editing of its transcripts are essential for the viability of all cell cycle 
stages of T. brucei (Ammerman et al., 2013; Jensen and Englund, 2012) and therefore are 
extensively studied as promising drug target against this deadly parasite. Surprisingly there 
are some flagellates that manage to live with damaged and nonfunctional kDNA, or even in 
total absence of it (Schnaufer et al., 2002).  They have been compared, for good reasons, to 
the petite mutants of S. cerevisiae (Lai et al., 2008). 

As described above, the PS mitochondrion is fully developed and metabolically active, 
while in the BS the energy is mostly obtained via glycolysis, with the mitochondrion being 
highly reduced. Still, kDNA and RNA editing remain essential, as the ATP synthase is still 
needed (Brown et al., 2006; Schnaufer et al., 2005). The BS also needs to keep its kDNA 
intact in order to complete the life cycle and return back to tsetse fly. However, it is easy to 
imagine that some part of the kDNA that are not necessary for the BS can be damaged. 
Flagellates carrying such kDNA are termed diskinetoplastic (Dk) if they lost part of the kDNA, 
or akinetoplastic (Ak) if the loss of kDNA is complete (Lai et al., 2008). Such a trypanosome 
will never be able to complete the standard life cycle and proceed with its development in 
the insect vector.  

However, as one door closes, another opens – such a trypanosome no longer depends 
on its insect vector and therefore is no longer bound to Africa. This is the case of T. b. 

equiperdum and T. b. evansi, causative agents of dourine and surra, widespread diseases of 
horses, camels and buffalos (Desquesnes et al., 2013). For over 100 years, they were 
considered separate species, but these trypanosomes are genetically virtually identical to T. 

brucei and the difference lays mostly in the kDNA content (Carnes et al., 2015). T. b. 

equiperdum still retains part of the maxicircle kDNA, while T. b. evansi is completely devoid 
of maxicircles. Regarding kDNA minicircles – in both T. brucei subspecies, a gradual loss of 
minicircle classes and their homogenization have been documented (Lai et al., 2008). 
Interestingly, despite severely damaged or even completely missing kDNA, the cells retain 
import of all replication and editing proteins from the nucleus that are completely useless in 
the absence of organellar nucleic acids (Lai et al., 2008). The Dk and Ak cells also have to 
maintain their membrane potential. Recent data show that this is achieved by single point 
mutation of F1F0-ATPase subunit γ that is able to compensate for the loss of the single kDNA-
encoded subunit (Dean et al., 2013). This event does not seem to be rare and it was 
suggested that there is a continuous flow of new individuals out of Africa (Lai et al., 2008; 
Lun et al., 2010; Schnaufer et al., 2002). On the other hand, this process does not seem to 
happen that easy, as so far there is only one successful attempt to create the Ak cells in the 
laboratory (Stuart, 1971). 
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1.5. Protein synthesis in the mitochondrion 

Even though most of the genes of the endosymbiont have been relocated into the 
nucleus, in most aerobes there are still genes present in the organellar genome. Although 
the exact number of genes present in the mitochondrial genome varies depending on the 
organism, usually it encodes genes for rRNAs, tRNAs and several very hydrophobic proteins  
involved in the electron transport chain such as NADH dehydrogenase, cytochrome bc1, 
cytochrome c oxidase and F1F0 ATPase (Chacińska and Boguta, 2000). Because of these 
protein-coding genes, the mitochondrion has retained complex replication, transcription and 
translation machineries. If these processes are compromised, the whole function of 
mitochondrion collapses. Mutations in the mitochondrial genome and the proteins involved 
in its maintenance have been connected to several human diseases (Calvo and Mootha, 
2010; Copeland, 2008; El-Hattab and Scaglia, 2013; Goffart et al., 2009; Scharfe et al., 2009; 
Tyynismaa et al., 2005). 

In case of T. brucei, mitochondrial ribosomes translate 18 mRNAs (Verner et al., 2015). 
Protein synthesis in its single mitochondrion has several unique features: i/ most mRNAs 
undergo extensive editing before translation (Stuart et al., 2005); ii/ all tRNAs have to be 
imported from the cytosol (Alfonzo and Söll, 2009); iii/ its 9S and 12S rRNAs are the smallest 
known (de la Cruz et al., 1985); iv/ mitochondrial protein synthesis is resistant to 
chloramphenicol (Horváth et al., 2002); v/ finally, an additional 45S particle (45S SSU*) 
resembling ribosome, that contains only the 9S rRNA, is part of the translation machinery 
(Maslov et al., 2007; Ridlon et al., 2013). After a lot of effort it was demonstrated that the 
edited mRNAs are indeed translatable, and the de novo synthesized proteins can be 
followed in two dimensional gels, departing from the main diagonal (Horváth et al., 2002; 
Ridlon et al., 2013; Týč et al., 2010a). 
 
 

1.5.1 RNA editing  

As already mentioned, many mitochondrial-encoded mRNAs undergo RNA editing 
during their maturation, to be rendered translatable. This phenomenon, now known to be 
widespread among eukaryotes, was actually discovered in T. brucei (Benne et al., 1986).  

RNA editing is an extensive remodeling of the RNA sequence, in trypanosomes 
occurring in the form of multiple uridine insertions and deletions (Stuart et al., 2005). The 
process starts at the 3’ end of a given pre-mRNA and continues to its 5’ end (Maslov and 
Simpson, 1992), and uses gRNAs that serve as templates for specifying the exact positions of 
uridine insertions and deletions (Lukes et al., 2005). During this process frame shift changes 
occurs, start and stop codons are introduced in some cases and alternative editing was 
shown as a way to produce multiple proteins from a single transcript (Ochsenreiter et al., 
2008). Dozens but perhaps hundreds of dedicated enzymes are required for the process, 
such as uridine-specific exonuclease, terminal uridylyltransferase, RNA ligase, RNA-binding 
proteins etc. The whole pathway has been extensively studied, but we still do not know 
some of its critical components (Ammerman et al., 2013; Aphasizhev et al., 2004; Benne, 
1994; Hashimi et al., 2008; Kafková et al., 2012; Simpson et al., 2004b; Stuart et al., 2005). 
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1.5.2 Mitochondrial ribosomes 

Ribosomes are high molecular weight complexes that carry out protein synthesis 
following the mRNA template. They always consist of two subunits – large subunit (LSU) and 
small subunit (SSU) both made up from rRNAs and proteins. In fact, enzymatically they are 
ribozymes. Proteins play still essential but likely only structural and supporting functions for 
the ribosomal stability, as they are mainly located on the surface of both subunits (Mears et 
al., 2006).  

Mitochondrial ribosomes are derived from prokaryotic ribosomes of the bacterial 
ancestor of the organelle, and they indeed share more features with the bacterial ribosomes 
than with the cytosolic eukaryotic ones (O'Brien, 2002). Sedimentation coefficient of a 
typical prokaryotic ribosome is 70S with separate subunits 50S (LSU) and 30S (SSU). The 
small subunit contains 16S rRNA, and the large subunits contain 23S and 5S rRNAs (Schmeing 
and Ramakrishnan, 2009). 

The sedimentation coefficient of mitochondrial ribosomes varies from the smallest one 
of 50S in Leishmania (Maslov et al., 2006) up to 78S in plants (Leaver and Harmey, 1972). In 
many organisms, the reduction of mitochondrial ribosomes took place, as f.e. mammalian 
mitochondria contain ribosomes sedimenting at 55S, with the rRNAs also reduced. 
Mitoribosomes are actually physically larger than the bacterial ones due to higher protein 
content, which is thought to compensate for the loss of rRNA (O'Brien, 2002). 

Trypanosomatid mitochondrial ribosomes are the smallest known among the 
eukaryotes (50S total with LSU sedimenting at 40S and SSU at 30S) and with the shortest 
rRNAs ever described (12S and 9S, respectively) (Maslov et al., 2006). During the rRNA 
shrinkage, even the active site responsible for chloramphenicol sensitivity was lost in 
trypanosomatids resulting in their resistance to this drug (Eperon et al., 1983). Although 
rRNAs are not very well conserved in the primary sequence, it seems that secondary 
structures are more important and therefore kept (de la Cruz et al., 1985). Despite extremely 
reduced rRNAs, the total size of mitochondrial ribosomes of trypanosomatids is not as 
affected as in other mitochondrial ribosomes. It was found that they are also protein rich, 
look porous and many unique proteins have been recruited to the trypanosomatid 
mitochondrial ribosome, which is in correlation with possible need to compensate for very 
small rRNA (Aphasizheva et al., 2011; Maslov et al., 2007; Zíková et al., 2008).  

Mitochondrial translation machinery of trypanosomatids features an additional unique 
complex named 45S SSU-related complex (45S SSU*). It can be detected by electron 
microscopy (Maslov et al., 2007; Sharma et al., 2009) and was shown to be essential for 
mitochondrial translation and survival of the cell (Ridlon et al., 2013). The whole complex is 
putatively composed of two subunits. One of the subunits corresponds to the SSU, while the 
second one is novel (Maslov et al., 2007) and contains a variety of proteins so far not 
associated with the ribosome function (Aphasizheva et al., 2011; Zíková et al., 2008). 
Interesting is the involvement of proteins containing the pentatricopeptide or 
tetratricopeptide repeat domains. These domains are able to bind specifically various RNAs 
and they are frequently found in proteins involved in RNA binding, splicing and editing 
(Aphasizheva et al., 2011). Indeed, proteins carrying these domains were found in 
trypanosomatid mitochondrial ribosome, RNA editing complexes and polyadenylation 
machinery (Aphasizheva et al., 2011). Function of 45S SSU* complex is still unknown but it 
may play a role in the mitoribosome by discriminating mature mRNAs from the pre-edited 
ones. 

11



1.6. Chaperones  

Chaperones or heat-shock proteins (HSPs) is a group of proteins that help the cell to 
maintain its inner environment and general homeostasis by facilitating folding and stabilizing 
other proteins. They were described as up-regulated after a heat shock (Schlesinger, 1990), 
but any other cellular stress such as oxidative stress condition would induce their expression 
too, because stress conditions inevitably lead to conformational damage of cellular proteins 
(Feder and Hofmann, 1999). Under normal conditions, chaperones are essential for folding, 
assembly, secretion, intracellular localization, and degradation of proteins (Young et al., 
2004). All these functions of HSPs are so fundamental for the survival of the cell that 
chaperones belong to the most conserved genes among all domains of life and can be easily 
found in all available genomes (Boorstein et al., 1994). 

Traditionally, HSPs are classified into families based on their sequence and molecular 
weight (Lindquist and Craig, 1988). During diversification of organisms, there were many 
multiplication events of these genes and specialization of some of them regarding the 
function as well as localization (Boorstein et al., 1994). They were all found in the genomes 
of trypanosomatids, some of them are even present in unexpectedly high numbers 
(Folgueira and Requena, 2007; Louw et al., 2010). This might be due to the complex life 
cycle, as there are big temperature differences and other (host immunity, etc.) stresses 
induced by switches between different stages, which have to be reflected in parasite’s 
biology and its adaptations (Maresca and Carratù, 1992).  
 
 

1.6.1 Hsp70 

Is one of the most widely known chaperones present in all domains of life and belongs 
to the most conserved proteins (Boorstein et al., 1994). In principle it performs all the 
chaperone functions described above from protein folding, preventing aggregation, 
translocations across the membranes to protein degradation. In short, it does the quality 
control of proteins in the cell (Mayer and Bukau, 2005). We can distinguish two types of 
Hsp70 genes: first ones have inducible expression as an answer to the stress conditions, 
while the second ones are constitutively expressed. There are also specialized paralogs 
localizing to cytoplasm, mitochondrion and endoplasmic reticulum (Gupta et al., 1994). 

Hsp70 consist of three domains, namely the N-terminal ATPase domain, the linker and 
the C-terminal substrate-binding domain (Louw et al., 2010). This chaperone is an ATPase 
and oscillates in cycle between the ATP-bound state with low affinity for hydrophobic 
peptide segments, and the ADP-bound state with high affinity for substrates (Szabo et al., 
1994). Hsp70 associates with the hydrophobic parts of the misfolded proteins, thus 
preventing their aggregation or unwanted interactions with other proteins.  

Hsp70 protein does not act alone. It needs co-chaperons and other partners to 
function properly. The shift between ATP and ADP bound state is facilitated by nucleotide 
exchange factors inevitable for all the processes where Hsp70 is involved. Its primary 
function is to release the ADP from mtHsp70 and therefore support its continuous cycling 
(Hartl and Hayer-Hartl, 2002). Interestingly, convergent evolution led to the emergence of 
two unrelated proteins (Mayer and Bukau, 2005). GrpE can be found in prokaryotes, and its 
relative Mge1 (mitochondrial GrpE) is present in the mitochondrion (Miao et al., 1997). 
While the same role is in the cytosol of the eukaryotic cell fulfilled by the Bag proteins 
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(Young et al., 2004). Contrary to the ubiquitous nucleotide exchange factors, there are the J 
proteins, which contain the so-called J and Zn-finger domains. They belong to a group of 
interacting partners with mtHsp70 that stimulate the ATPase activity (McCarty et al., 1995). 
They are more diverse and provide the specificity of the given reaction (Fan et al., 2003). In 
eukaryotes they are called mtHsp40 chaperones while in E. coli they are known as the DnaJ 
proteins (Fan et al., 2003; Gur et al., 2005).  
 
 

1.6.2 Mitochondrial chaperones: mtHsp70, mtHsp40, Mge1 and 
Hep1 

Mitochondrial Hsp70 (mtHsp70) is the organellar version of the cytosolic Hsp70. 
Mitochondrion usually contains a single type of a constitutively expressed mtHsp70 protein 
(Folgueira and Requena, 2007), which takes part in many essential processes in the 
organelle, such as the folding of newly synthesized proteins, as well as the folding of 
damaged and aggregated ones (Folgueira and Requena, 2007). It is also implicated in the 
degradation of denatured and unstable proteins (Voos and Röttgers, 2002). Moreover, the 
mitochondrial version of Hsp70 gained new functions such as the one in Fe-S cluster 
biogenesis (Dutkiewicz et al., 2003; Lill and Mühlenhoff, 2008), mtDNA replication and 
maintenance (Týč et al., 2015) and protein import across the organellar double membrane  
(Liu et al., 2003; Voos and Röttgers, 2002). Interestingly mtHsp70 is more closely related to 
its bacterial homolog DnaK than to its cytosolic counterparts (Gupta et al., 1994). 

Among the organellar co-chaperones of mtHsp70 belongs the nucleotide exchange 
Mge1 needed for all functions of the chaperone (Miao et al., 1997; Schmidt et al., 2001; 
Slutsky-Leiderman et al., 2007) and the J domain-containing proteins (mtHsp40s) specific for 
the given functions. Examples of mtHsp40 proteins are Mdj1 protein necessary for protein 
folding  (Voos and Röttgers, 2002), Jac1 in Fe-S cluster biogenesis(Lill and Mühlenhoff, 2008) 
and Pam16 and Pam18 involved in protein transport (Dudek et al., 2013).  

Few years ago new protein was identified and connected to the mtHsp70 and named 
Hep1. This abbreviation stands for Hsp70 escort protein, which was later found to affect 
protein transport and is known to contain the Zn-finger domain. The most important finding 
was that mtHsp70, which is helping others proteins to fold properly, is prone to aggregation 
itself (Sichting et al., 2005) and Hep1 is the co-chaperone that serves in order to prevent 
such mtHsp70 self-aggregation. The structure of Hep1 is already known (Momose et al., 
2007), and the binding to mtHsp70 has been described in details. Hep1 interacts with the 
linker part of the mtHsp70 connecting the ATPase and protein binding domains (Blamowska 
et al., 2010).   
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Chapter 2. Objective of the research 

• Investigation into the diversity, host specificity and biogeography of trypanosomatids 
parasitizing Dipteran hosts. 

• Investigation into the functions of conserved genes within the mitochondrion of T. 

brucei 

• Investigation and description of mitochondrial chaperones mtHsp70/mtHsp40  and 
their putative association with mitochondrial DNA 

• Analysis of the mtHsp70 tendency to aggregate 

• Functional analysis of selected mito-ribosomal proteins 
 
 

Chapter 3. Summary of results and discussion 

Highlights of the core findings of the presented thesis: 
 
(i) Dipteran hosts host their own specific clades of trypanosomatid parasites. 24 new TUs 
(typing units or molecular species) were discovered in brachyceran flies. Many TUs are truly 
cosmopolitan including the Angomonas and Strigomonas clades previously known only from 
South America. Our results also show that multiple infections of trypanosomatid parasites 
are in dipteran hosts more common than in hemipteran bugs. 
 
(ii) The mtHsp70/mtHsp40 machinery is indispensable for proper replication of 
mitochondrial (= kinetoplast; k) DNA of T. brucei, which is lost in the absence of these 
enzymes. The observed phenotype corresponds to those triggered by depletion of proteins 
involved in early stages of kDNA replication. 
 
(iii) MtHsp70 aggregates under various conditions with temperature being the most 
important factor. MtHsp70 also forms aggregations even in the absence of its co-chaperones 
Hep1, Mge1 and mtHsp40.  
 
(iv) Three proteins (PNKD-like, mtYsxC and RSM22) containing conserved domains and were 
associated with mitochondrial ribosome are needed for the de novo protein synthesis in the 
mitochondrion of T. brucei. RSM22 was shown also to be important for the structural 
integrity of T. brucei mt ribosome. 
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3.1 Monoxenous trypanosomatids parasitizing flies  

First project of this thesis intended to extend our knowledge about the monoxenous 
trypanosomatids, with the focus on brachyceran flies, which were collected on several 
continents (Týč et al., 2013). Although shown to be highly prevalent in dipterans (Podlipaev 
1990), trypanosomatids were studied only occasionally in these hosts, as compared to 
extensive studies of these flagellates in the hemipteran bugs. Until this study, only few notes 
on trypanosomatids were available from dipterans, almost invariably focusing on 
morphological features only (Borghesan et al., 2013; Teixeira et al., 2011; Wilfert et al., 
2011).  

We chose the Brachyceran group of flies for our study, as due to their feeding strategy 
that does not include predatory behavior, they should contain only their own specific 
parasites. It was shown previously that insect predators such as the reduviid bugs have the 
highest diversity of parasites, which is likely caused by unspecific trypanosomatid infections 
obtained from their prey (Votýpka et al., 2012; Westenberger et al., 2004).  

Samples were obtained from the following countries of four different continents: 
Bulgaria, Czech Republic, Ecuador, Ghana, Kenya, Madagascar, Mongolia, Papua New Guinea 
and Turkey. Such extensive sampling allowed us to address phylogenetic relationships, host 
specificity and geographic distribution of isolated flagellates from an almost global 
perspective. Spliced leader (SL) RNA gene repeats and small subunit (SSU) rRNA genes were 
used for the analyses.  

In total, 40 positive fly specimens were included in the study, from which 36 different 
TUs of trypanosomatid parasites were derived, with 24 being novel. Multiple infections were 
found in more than 30% hosts, which is an unprecedently high occurrence, especially as 
compared with similar studies of the heteropteran insects (Votýpka et al., 2012; Votýpka et 
al., 2010).  

Importantly brachyceran parasites are also more host-specific on the genus level. 
Indeed, strains isolated from dipteran insects from different locations around the world are 
more closely related to each other than to trypanosomatids from heteropteran insects 
caught at the same locations (Maslov et al., 2013; Votýpka et al., 2012; Votýpka et al., 2010). 
This study shows that members of the genera Herpetomonas and Angomonas are primarily 
associated with dipteran hosts, while Blastocrithidia and the ‘‘jaculum’’ clade are primarily 
found in heteropteran hosts. The subfamily Leishmaniinae and the genus Strigomonas along 
with the ‘‘collosoma’’ clade accommodate parasites from both host groups. Our results are 
in favour of the scenario that postulates most parasites being rather specific for a group of 
phylogenetically related hosts than being generalists (Poulin and Keeney, 2008). 

From the geographical point of view, it is relevant to point out that many TUs are 
widely distributed around the world, and several can be considered as true cosmopolitans, 
including members of the endosymbiont-carrying genera Angomonas and Stringomonas.  
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3.2 Conserved proteins in the mitochondrion of T. brucei 

Second part of the thesis focuses on molecular biology of T. brucei, which is the 
causative agent of deadly human and animal sleeping sickness (Barrett et al., 2003). I 
decided to dissect the function of mitochondrial proteins that are highly conserved among 
eukaryotes, yet their function is unknown or only poorly known. T. brucei is a model 
organism which has a single mitochondrion, and thanks to its amenability to various 
methods of forward and reverse genetics, is particularly suitable for the studies of 
mitochondrial processes and proteins, as discussed below. 

Most research on mitochondria was so far performed on relatively closely related 
eukaryotes, mostly belonging to the supergroup Ophistokonta, which include yeast and 
human. T. brucei is a member of the arguably ancestral supergroup Excavata (Cavalier-Smith, 
2010), and its studies have a potential to provide new insight from the evolutionary point of 
view.  

Using all publicly available information in the online databases (Aslett et al., 2010), we 
were able to identify several interesting genes of high conservation and widespread 
presence in the mitochondrion across eukaryotic supergroups. Next, we proceeded to use 
available molecular tools in order to knock respective gene down, and/or to introduce its 
modified (usually tagged) version back into the parasite.  Convenience and efficiency of RNA 
interference allowed detailed investigations of phenotypes that occur after the ablation of 
targeted transcript. 
 
 

3.2.1 Mitochondrial chaperones and mitochondrial DNA 

In frame of the second project presented in this thesis we examined mitochondrial 
Hsp70 and its partners in T. brucei. Mitochondrial chaperones are multifunctional enzymes, 
essential for the organellar homeostasis. The multifunctional mtHsp70 plays a role in folding 
and quality control of proteins (Dutkiewicz et al., 2003; Voos and Röttgers, 2002), Fe-S 
cluster biogenesis (Dutkiewicz et al., 2003; Lill and Mühlenhoff, 2008) and also in protein 
import across the organellar double membrane (Liu et al., 2003; Voos and Röttgers, 2002). In 
T. brucei we focused at the so far overlooked function of the highly conserved 
mtHsp70/mtHsp40 machinery in the replication and maintenance of mitochondrial DNA. In 
humans, mutations in or loss of mtDNA are associated with mitochondrial dysfunction and a 
variety of neural and muscular diseases (Calvo and Mootha, 2010; El-Hattab and Scaglia, 
2013). Therefore understanding the maintenance and replication of mtDNA is a very 
important question, which is still far from being answered. 

The mitochondrial DNA of T. brucei known as kinetoplast DNA (kDNA) is an excellent 
model that can be used to address role of protein involved in mitochondrial replication as it 
replicates only once per cell cycle, kDNA has clearly defined structure and is easily 
observable via DAPI staining and fluorescence microscopy, as well as electron microscopy. 
The whole process of replication and segregation of kDNA is extensively studied and several 
specific methods had been developed to explore kDNA replication in detail (Jensen and 
Englund, 2012). 

We were able to show that the chaperones mtHsp70, mtHsp40 and their co-factor 
Mge1 are all essential for survival of the flagellate upon RNAi induction and the proteins 
(PTP-tagged or in case of mtHsp70 visualized by specific monoclonal antibody) are equally 
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distributed throughout the whole mitochondrion (Týč et al., 2015). Mitochondrial 
localization is actually not surprising when other functions of the chaperones that are 
needed in the lumen of the organelle are considered. It was shown previously that mtDNA 
polymerase 1D changes its localization during the cell cycle (Concepción-Acevedo et al., 
2012) and we wandered if proteins studied by us are subject to similar redistribution. It is 
easy to imagine that enzymes important for kDNA replication would be needed only during 
the S phase and therefore acquire a different localization during the cell cycle, yet the 
localization of the studied chaperones did not exhibit any detectable changes. 

 After the RNAi-mediated ablation of the target chaperones we observed gradual loss 
of kDNA, monitored both by DAPi staining and transmission electron microscopy. Southern 
blot analysis of total DNA was employed in order to show that the kDNA loss is indeed 
caused by the decrease in overall kDNA minicircle and maxicircle content, and not just by 
their redistribution or disintegration of the kDNA network. In fact, maxicircles were affected 
predominantly and almost completely lost. Moreover, Southern blot analysis proved that it 
is the kDNA replication, which is affected in the absence of these chaperones.  

The obvious question that has to be answered before claiming that these 
multifunctional enzymes are really indispensable for kDNA maintenance and replication was 
whether their other functions are not causing the observed phenotype. Therefore, cells 
ablated for proteins involved selectively in Fe-S biogenesis or protein import were checked 
and we were able to provide evidence that their disruption does not lead to kDNA loss and 
hence, the phenotype obtained following the down-regulation of mtHsp70, mtHsp40 and 
Mge1 was specific and primary. 

Our finding confirms hints in the literature suggesting that these chaperones play a role 
in the replication of mt DNA, as they were found in the mt nucleoids (Bogenhagen et al., 
2008; Ciesielski et al., 2013; Effron et al., 1993; Engman et al., 1989; Nosek et al., 2006; 
Sakasegawa et al., 2003; Wang and Bogenhagen, 2006), and in some cases even affected the 
levels and functionality of the mt DNA (Duchniewicz et al., 1999; Hayashi et al., 2006). The 
fact that bacterial homologues of mt chaperones were indeed shown to play a role in the 
replication of chromosomal (Sakakibara, 1988), plasmid (Sozhamannan and Chattoraj, 1993) 
as well as the bacteriophages DNA in Escherichia coli (Hoffmann et al., 1992) further  
confirms conservancy and importance of this so far overlooked function of the 
mtHsp70/mtHso40 machinery. 

In this study we provide unambiguous evidence that mtHsp70/mtHsp40 play an 
important role in the mt DNA replication and maintenance. Importantly, the observed 
phenotype is comparable to phenotypes of other enzymes that play a role in the initial 
stages of replication of the T. brucei kDNA, including primase Pri1 (Hines and Ray, 2010), 
DNA polymerases Pol1D and Pol1C (Chandler et al., 2008; Klingbeil et al., 2002) and the 
origin of replication binding protein p38 (Liu et al., 2006). 

 
 

3.2.2 MtHsp70 tendency to aggregate 

The mtHsp70 chaperone, which is known to help other proteins to fold properly, is 
itself prone to aggregation. About a decade ago, a protein that can prevent this aggregation 
Hep1 (Hsp70 escort protein) was identified (Sichting et al., 2005). It was found in parallel by 
several teams, which resulted in the existence of two additional alternative names: Zim15 
(Burri et al., 2004) and Tim17 (Yamamoto et al., 2005). Hep1 proteins are found only in the 
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mitochondria and chloroplasts and so far were not identified in prokaryotes, suggesting that 
they evolved as an adaptation after the symbiosis (Kluth et al., 2012; Willmund et al., 2008). 
Aggregation of mtHsp70 has been hypothesized to be caused by new functions gained 
throughout its evolution within these organelles. It is believed that Hep1 is important for the 
de novo folding of mtHsp70 after its import into the organelle (Blamowska et al., 2012; 
Willmund et al., 2008). 

The question whether the main function of Hep1 is to prevent the aggregation of 
mtHsp70 is still open, as it is possible that any protein able to bind to mtHsp70 can protect it 
from aggregation (Momose et al., 2007). Indeed, Mge1 was also shown to prevent mtHsp70 
aggregation in the mitochondrion (Momose et al., 2007), but the situation seems to be 
different in the chloroplast, where Mge1 has no such effect (Willmund et al., 2008). Our 
study confirms the hypothesis by Momose et al. (2007) that any protein that binds to 
mtHsp70 can have stabilizing effect, as our preliminary data indicates that in the T. brucei 
mitochondrion mtHsp70 not only aggregates when Hep1 is missing, but does so also in the 
absence of its other mtHsp70 co-chaperones, Mge1 and mtHsp40. In fact we observed also 
some limited aggregation after the depletion of Tim17, which is, in collaboration with 
mtHsp70, involved in protein import. On the other hand, almost no aggregation was 
observed in enzymes involved in the Fe-S cluster assembly, namely Isd11 and IscU. 
Unexpectedly, some aggregation was detected in these knock-down cell lines under elevated 
temperatures indicating that the whole process is more complicated than originally thought. 

Our preliminary results show that in T. brucei, mtHsp70 aggregates under various 
conditions with temperature being the most important factor, a situation highly reminiscent 
of that in yeast (Sanjuan Szklarz et al., 2005). In addition we observed that the Hep1 co-
chaperone is able to provide protection of the T. brucei cells during a heat-shock, again 
replicating similar observation made in the case of Hep1 in yeasts (Sichting et al., 2005). 

 
 

3.2.3 Putative mito-ribosomal proteins 

As discussed previously, the loss or damage of the mt DNA is usually lethal for the cell, 
as its mitochondrion fails to express essential organellar proteins. The same outcome occurs 
if other processes such as transcription and translation of those proteins are compromised.  

Mitochondrial ribosomes were subject to considerable changes during evolution, the 
most significant being the reduction of their rRNA component and the acquisition of 
additional proteins that are thought to compensate for the diminution of rRNA (Smits et al., 
2007). Their sedimentation coefficient (S) varies between the lowest value of 50S in 
Leishmania (Maslov et al., 2006) and 78S in plants (Leaver and Harmey, 1972). Mammalian 
ribosomes have a mass similar to the bacterial ribosomes, yet they contain only about half of 
the rRNA and incorporate about twice as many proteins. Purification of all proteins from 
such a big complex as is the ribosome is not straightforward, and hence the exact 
composition of this structure is still not completely known. It has to be taken into 
consideration that the problems with purification of total ribosomal proteome may to some 
extent explain differences in ribosomal composition among the organisms examined 
(Desmond et al., 2011; O'Brien, 2003; Zíková et al., 2008). 

Protein synthesis in the single mitochondrion of T. brucei has been extensively studied 
and assays addressing mt translation and ribosome stability are already available (Horváth et 
al., 2000; Maslov et al., 2007; Ridlon et al., 2013; Týč et al., 2010a; Zíková et al., 2008), 
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making this flagellate a suitable model for dissecting the function of three putative mito-
ribosomal components. 

In our survey, in frame of which we were looking for mt proteins with unknown 
function highly conserved between human and T. brucei, we came across three proteins that 
according to the high throughput TAP-tag (tandem affinity purification) analysis 
(unpublished data) have a connection to the mito-ribosomes. In accordance with the 
literature, we termed these proteins as RSM22, mtYsxC (mitochondrial YsxC) protein and 
PNKD-like protein. First two were also identified as possible parts of the T. brucei mito-
ribosome by Zíková et al. (2008). Moreover, Aphasizheva et al. (2011) performed another set 
of experiment confirming this assignment for the first two proteins and added also a third 
one (PNKD-like) as another possible component of the mito-ribosome. According to these 
studies, mtYsxC is associated with the large ribosomal subunit (LSU), while the other two 
proteins are connected to small subunit (SSU) (Aphasizheva et al., 2011; Zíková et al., 2008).  

The goal of this project is to investigate the association of these proteins with mt 
translation, and to confirm or disprove their putative ribosomal appurtenance. All three cell 
lines exhibit growth phenotype upon depletion of the respective protein by RNAi. However, 
the growth arrest is observable only in glucose-free media when the parasite is not able to 
use glycolysis and has to rely on ATP production in its mitochondrion. The cells, in which 
mtYsxC mRNA is targeted showed only a modest growth phenotype, which is likely due to 
poor RNAi knockdown. 

Quantitative PCR approach allowed us to check the levels of mito-rRNAs in the three 
knock-downs mentioned above. We were able to show that, as would be expected for 
ribosomal proteins, mito-rRNA of the ribosomal subunit with which the target protein is 
associated, was down-regulated following RNAi induction. These results indicate that the 
stability and/or assembly of a given ribosomal subunit were compromised. 

Perfromed experiments revealed that the de novo mt translation is severely affected 
long time before a growth phenotype is observable, indicating important function of the 
candidate proteins in this process. To proof that it is organellar translation that is primarily 
affected, we investigated activities predating translation, namely transcription and RNA 
editing. Using mt RNA polymerase as a positive control, we showed by qPCR that both 
transcription and editing remain unaffected in all three knock-down cell lines. 

From the studied proteins, only the yeast homologue of RSM22 was previously shown 
to be part of the mito-ribosomal SSU and was shown to be essential for yeast survival 
(Saveanu et al., 2001). This protein is not present in prokaryotes and is thus considered novel 
subunit of eukaryotic ribosome. Our results in an unrelated eukaryote confirmed its 
connection to the ribosome, moreover we proved the RSM to be essential for the mt 
translation and ribosome integrity.  

MtYsxC shares domain with YsxC protein of Bacillus subtilis and Staphylococcus aureus 
in which it was shown to be important for ribosome assembly (Cooper et al., 2009; Schaefer 
et al., 2006; Wicker-Planquart and Jault, 2015). It was only suggested that eukaryotes bears 
organellar targeted homologues of this protein (Leipe et al., 2002), therefore, to the best of 
our knowledge, results presented herein are the first to prove this hypothesis correct. The 
fact that all YsxC domain-containing GTPases are likely LSU associated further demonstrates 
functional conservation of these proteins. Importantly our finding of mtYsxC in the ribosome 
of eukaryotes, might be important to note as it was considered as potential drug target 
against bacterial pathogens such as Staphylococcus aureus (Cooper et al., 2009). 
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The last protein on our list is PNKD-like, which contains the lactamase B superfamily 
domain. As it was identified only in one study to be putative component of the ribosome 
(Aphasizheva et al., 2011) and it does not play structural role in the ribosome (our study). 
The protein can be either Trypanosomatid specific or peripherally localized. Among the 
closest human homologs with highest similarity score is PNKD protein and some of its 
isoforms. Interestingly, mutations in this gene have been associated with the movement 
disorder paroxysmal non-kinesigenic dyskinesia (PNKD) (Charlesworth et al., 2013). The 
mutations identified are located in N-terminal targeting sequence and have been connected 
to destabilization of the whole protein which is still without the assigned function (Ghezzi et 
al., 2009; Shen et al., 2011). The possible ribosomal function of PNKD protein might 
therefore explain the disease symptoms. 

We provide evidence that all three candidate proteins are essential for protein 
translation in the mitochondrion of T. brucei and that the SSU is destabilized in the absence 
of RSM22. Yet direct evidence that the proteins in question are really part of the mt 
ribosome is still missing. To show this, we will use already prepared TAP- or PTP-tagged cell 
lines to purify their partner proteins. Mass spectrometry analysis will be used to identify 
whether the target proteins really interact with other components of the mt ribosome of T. 

brucei. 
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