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Abstract 

 

Paleovirology is the study of viruses over evolutionary timescales. 

Contemporary paleovirological analyses often rely on sequence data, derived 

from organism genome assemblies. These sequences are the germline 

inherited remnants of past viral infection, in the form of endogenous viral 

elements and the host immune genes that are evolving to combat viruses. 

Their study has found that viruses have exerted profound influences on host 

evolution, and highlighted the conflicts between viruses and host immunity. 

As genome sequencing technology cheapens, the accumulation of genome 

data increases, furthering the potential for paleovirological insights. However, 

data on ERVs, EVEs and antiviral gene evolution, are often not captured by 

automated annotation pipelines. As such, there is scope for investigations 

and tools that investigate the burgeoning bulk of genome data for virus and 

antiviral gene sequence data in the search of paleovirological insight. I used 

DIGS, a similarity-searched based framework, in heuristic investigations of 

host:virus co-evolution in three contexts: ERVs, EVEs and interferon 

stimulated genes (ISGs). These three projects were unified by the approach 

and theme: the heuristic, similarity search based mining of genome 

sequences for insight into host:virus co-evolution. In the first project, I 

identified and characterised five novel murine ERV lineages, and used murine 

ERV sequences to provide insight into the recent acquisition and 

functionalisation of murine ERVs. In the second project, I performed a 

comparative analysis of animal endogenous circoviruses (CVe), increasing the 

known past host range of family Circoviridae and finding that genus 

Cyclovirus is more likely to be a clade of arthropod viruses than vertebrate 

viruses, in conflict with recent metagenomics analyses. In the third project, I 

screened mammalian genomes in an attempt to identify lineage specific 

patterns of ISG expansion and loss, finding three novel instances of ISG loss in 

cetaceans and felid carnivores. Together, these datasets will be of great 

utility in future studies of host:virus co-evolution, and underscore the utility 

of searching WGS data for paleovirological insight.  
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Chapter 1 - Introduction 
 

 Viruses are the most abundant biological entities on earth (Edwards 

and Rohwer, 2005), but despite their ubiquity, it is difficult to study co-

evolution of viruses and their hosts over deep timescales, as they leave 

negligible physical remnants of their existence behind. In addition, viruses 

evolve extremely rapidly, so it is forgivable to propose that they are only a 

few thousand years old using methods that rely on the study of sequence 

evolution. (Holmes, 2011). Until the discovery of the integrated provirus 

(Temin, 1964), and the subsequent identification of endogenous retroviruses 

(Weiss and Payne, 1971), the study of viruses over evolutionary timescales 

was impossible. Endogenisation protects the virus, as the endogenous viral 

element (EVE) will (mostly) evolve at the neutral substitution rate of the host, 

preserving the integrated viral material from mutational and physical 

degradation. This process of endogenisation, although rare, has taken place 

many times over evolutionary timescales, resulting in widespread integration 

of virus sequences in organism germlines (Aiewsakun and Katzourakis, 2015). 

The study of EVEs, and the signatures of host co-evolution, is therefore 

currently the only way to study virus evolution in deep time.  

 

The study of viruses over deep timescales is known as ‘paleovirology’. 

(Patel et al, 2011). The field of paleovirology is split into two basic 

methodologies: direct and indirect (Katzourakis, 2013; Patel et al, 2011). 

Direct paleovirology largely relies on the in silico identification and study of 

integrated virus sequences in host genomes. However, germline incorporation 

of viral sequences is rarely followed by fixation of those sequences. Because 

of this, the study of antiviral gene evolution is extremely informative where 

virus fossils are absent. This is known as ‘indirect paleovirology’. Indirect 

paleovirology entails the study of antiviral gene evolution, and is particularly 

valuable when interaction between a gene product and a virus is known 

(Sawyer et al, 2005; Busnadiego et al, 2014).  

 

Virus endogenisation is rare. Viral genetic material must first integrate 

into the germline, and genomic integration is not an obligate step in the life 

cycle of most viruses. Then, the germ cell containing the EVE must develop 

into a successful organism that is able to breed. Finally, the EVE must the 
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increase in frequency until it has reached ‘fixation’ – where it is present in 

every individual of a species. Given that most EVEs are likely to be purged 

from the germline within a few generations unless they confer a selective 

advantage, or are preserved by linkage or chance, the diversity of integrated 

EVE DNA in the genomic fossil record likely represents a fraction of past viral 

diversity. The study of EVEs is made even more disjointed by the eventual 

fate of almost all organisms: extinction. Because of this, it is difficult to 

make definitive inferences about the past diversity of viruses based on the 

presence or absence of EVEs in contemporary host genomes. (Gifford, 2012). 

Despite the rarity of virus endogenisation, germline invasion by viruses has 

taken place often enough for the virus fossil record to be a valuable resource 

for studying host:virus co-evolution. 

 

As a consequence of their replication strategy, retroviruses are the 

most common form of EVE; integration is an obligate stage in the retroviral 

life cycle, and endogenous retroviruses (ERVs) can undergo amplification in 

their hosts (Mager and Stoye, 2015). Non-retroviral EVEs are therefore rarer. 

Nevertheless, the diversity of EVEs in (from divergent genomes) spans the 

known diversity of viruses (Aiewsakun and Katzourakis, 2012). Subsequently 

in this thesis, non-retroviral endogenous viral elements will be referred to as 

EVEs, whereas endogenous retroviruses (or retroviral elements) will be 

referred to as ERVs.  

 

As genome sequencing technologies cheapen, the bulk of published 

genome data increases. ERVs, EVEs, and data on antiviral gene:virus co-

evolution, are often not captured by automated annotation pipelines. This 

thesis conducts paleovirological analyses of host:virus co-evolution– through 

the indirect paleovirological study of antiviral interferon stimulated genes 

(ISGs) and direct paleovirological study of EVEs and ERVs. 

 

1.1 – Direct paleovirology – Endogenous retroviruses 

 

Retroviruses (family Retroviridae) are reverse transcribing RNA viruses 

that often cause immunosuppressive and/or neoplastic diseases. They are 

marked by their ability, as an obligate part of their life cycle, to reverse 
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transcribe their RNA genomes into double stranded DNA (dsDNA), followed by 

stable integration of this intermediate into the host genome.  

 

1.1.1 - Retroviral genome structure 

 

Retroviruses (family Retroviridae) possess ~10kb genomes that encode 

a variety of protein products. (Figure 1.1a). ERV genomes consist of 

integrated retroviral proviruses (or remnants thereof). As this corresponds to 

the reverse transcribed DNA intermediate of the retrovirus genome (as 

opposed to the viral gRNA), the structure and organisation of retroviruses will 

be discussed as such. The genome consists of coding gene sequences flanked 

by identical long terminal repeats (LTRs), and other auxiliary sequences that 

have other roles. The coding gene sequences typically consist of gag, pro, pol 

and env (Coffin, 1997). Although all retroviral genomes follow the canonical 

order of LTR-gag-pol-env-LTR, genomic organisation and 

translation/transcription strategies can vary, and are detailed in Figure 1.1C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 - Retroviral life cycle 

 

To enter the host cell, the retroviral Env proteins interact with their 

cognate receptors on the surface of the cell, resulting in fusion of the cell 

and virion membranes. The contents of the viral particle are released into 

C	

Figure 1.1 a) Canonical retroviral 
genome structure with protein domains, 
motifs and features detailed in b). c) 
Indicates the canonical genome 
structures of type species of genera 
Alpharetrovirus (ALV), 
Gammaretrovirus (MLV), Betaretrovirus 
(MMTV), Deltaretrovirus (HTLV) and 
Lentivirus (HIV). From Johnson, 2015 
(a, b) and Coffin, 1997 (c).  
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the cytoplasm of the host cell. The viral gRNA is reverse transcribed by 

reverse transcriptase (RT) into dsDNA copies, which are trafficked to the 

nucleus with viral integrase (IN). After entering the nucleus, the dsDNA 

intermediate is integrated into the chromosomal DNA of the host cell. It is 

transcribed by cellular DNA dependent RNA polymerase II into messenger 

RNAs (mRNA), which in some cases are spliced, then translated into the 

various viral protein products. Env glycoproteins are embedded into the host 

cell membrane, in preparation for the emerging viral particles, which 

assemble (driven by Gag), and bud off from the host cell (Coffin, 1997).   

 

1.1.3 - Retroviral gene products 

 

The Gag protein comprises the structural components of the retrovirus 

virion. Gag is expressed as a polyprotein that is proteolytically cleaved into 

constituent parts. These parts are the matrix (MA), capsid (CA) and 

nucleocapsid (NC), and are ordered MA-CA-NC in the uncleaved Gag 

polyprotein (Figure 1.1b). Retroviral Gag proteins are typically myristoylated 

at the amino terminus of the MA domain. In instances where this moiety is 

absent, retroviruses are unable to bud, and Gag precursors accumulate in the 

cell. CA acts as a mediator for protein interactions involved in virion 

assembly, and create the capsid shell that surrounds the viral core (Coffin, 

1997). NC binds tightly to genomic RNA, forming ribonucleoprotein 

complexes in the virion core. This interaction is coordinated by one or two 

Cys-His zinc fingers (Chance et al, 1992). The Cys-His zinc finger has the 

consensus structure CX2CX4 HX4C (CCHC), where the residues designated by 

Xs are not conserved either among retroviruses or between the two zinc 

fingers of a single NC. Deletion or mutation of the CCHC results in either 

aberrant composition, or absence, of genomic RNA in virions (Coffin, 1997). 

NC also contains the late domain. The late domain is involved in virus 

budding late in the budding process (Göttlinger et al, 1991; Wills et al, 

1994). Late domains can be encoded by one or more of the following motifs: 

PPPY, P(T/S)AP, or YPXnL. Respectively, these motifs interact with the 

following components of the cellular endosomal sorting complexes required 

for transport (ESCRT): Nedd4, TSG101, and ALIX (Demirov and Freed 2004; 

Freed et al, 2002) 
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In most retroviral genera, Gag-Pro-Pol is translated as a single 

polyprotein, which is then processed following attachment to the membrane 

and prior to budding (Oroszlan and Luftig, 1990). In the majority of cases, 

translation of the gag-pro-pol containing mRNA terminates at the end of the 

gag gene. This termination can be overcome by either ribosomal 

frameshifting prior to the pro or pol genes, or readthrough of the end-gag 

stop codon. (Coffin, 1997). This produces Gag-Pro or Gag-Pro-Pol fusion 

proteins respectively (Figure 1.1b). In both cases, autocatalysis of the fusion 

protein by Pro produces the mature, separate proteins encoded by gag, pro 

and pol (Coffin et al, 1997; Dunn et al, 2002). The pro and pol genes 

encode the enzymes responsible for virus replication. pro encodes an aspartyl 

protease that cleaves mature peptides from immature polyprotein precursors. 

pol encodes the reverse transcriptase (RT) and integrase (IN) proteins. 

(Figure 1.1b). Respectively, the RT and IN reverse transcribe the DNA 

provirus from the gRNA, and integrate it into the genome. (Coffin, 1997; 

Jern et al, 2005). RT possesses two catalytic domains: one reverse 

transcribes DNA from RNA, the second possesses RNaseH activity. In this 

process, the gRNA is reverse transcribed into proviral DNA using the host’s 

cellular supply of nucleotides.  

 

The exact locations of reverse transcription is so far not known. For 

Spumaretroviruses, reverse transcription proceeds in virions. (Coffin, 1997). 

The viral gRNA acts as a template for reverse transcription (Coffin, 1997). 

The viral enzymes RNase H and reverse transcriptase (RT) are essential for 

reverse transcription, the steps of which are detailed in Figure 1.2: 

1. Minus DNA strand synthesis starts at the 3'-OH of a cellular tRNA acting 

as a primer that binds the PBS in the virus RNA.  

2. The first strand of DNA is synthesized until the RT enzyme reaches the 

5' end of the gRNA, generating a small ssDNA fragment of around 100-150 

bases (termed ‘strong-stop DNA’). 

3. Viral RNaseH degrades the gRNA template complementary to the 

strong stop DNA. The R region of the ssDNA anneals to the complementary R 

region at the 3’ of the gRNA. In the first of two template exchanges, RT 

switches strand, attaching to the R region in the 3' end of the viral RNA.  

4. Next, this DNA intermediate is extended towards the 5' end of the viral 

RNA genome (terminating at the PBS), and the RNA strand used as template is 
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now degraded by the RNAseH, except for the RNaseH resistant polypurine 

tract (PPT).  

5. The RNA fragment containing the PPT acts as a primer for the 

generation of the +DNA strand synthesis, which is generated until it reaches 

the 3'-end of the -DNA strand.  

6. Now RNAseH degrades all viral RNA remaining, exposing 

complementary sequences near the 3'-end of the +DNA strand 

7. The +DNA strand is transferred to the 5'-end of the -DNA strand, 

annealing to the complementary PBS at the 5' end, facilitating the second 

template exchange reaction. 

8. Finally, the synthesis of both DNA strands is completed, with each 

strand serving as template for the other strand. Once the dsDNA is 

synthesized, the provirus will be transferred into the nucleus to be integrated 

into the host genomic DNA. (Coffin, 1997). 

 

The second protein encoded by pol is IN. IN integrates the reverse-

transcribed DNA intermediate into the genome of the host, where it can be 

transcribed by the host’s cellular machinery. After reverse transcription, IN 

binds both ends of the viral genomic dsDNA, forming a closed, circular 

molecular complex. This interaction is thought to be partially mediated and 

stabilised by the integrase zinc finger motif (Khan et al, 1991; Zheng et al, 

1996). The resulting preintegration complex (PIC) is trafficked to the nucleus, 

where it is integrated into the host cell genome. The integration specificity 

differs amongst retroviruses – Lentiviruses appear to integrate into active 

transcription units, whereas gammaretroviruses integrate preferentially close 

to transcription start sites (Schroder et al, 2002; Wu et al, 2003). 

Additionally integration specificity is directed to some extent by IN (Lewinski 

et al, 2006), possibly through the IN GPY/F motif (Malik and Eickbush, 

1999). The resulting integrated provirus consists of the full retroviral genome, 

flanked by short 4-6bp target site duplications (TSDs), of the structure 5’LTR-

Gag-Pro-Pol-Env-3’LTR. This provirus is now replicated during host cell 

division, and (assuming no selection pressures), evolves at the host 

background rate of neutral substitution.  

 

The env gene encodes the Env protein that is displayed on the surface of the 

virus membrane. Its key function is enabling entry of the virion into a host 
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cell by binding to the host cell receptor and mediating fusion of the virus and 

host cell membranes (Coffin, 1997). Env therefore enables virion infectivity 

and determines receptor tropism. The Env polyprotein is cleaved into two 

mature peptides: subunit (SU) and transmembrane (TM), by host cellular 

proteases. The mature Env complex is a multimer consisting of three SU and 

TM subunits, where SU mediates receptor binding and TM triggers virus:host 

cell membrane fusion. Of SU and TM, SU is typically highly divergent, and TM 

is relatively conserved (Benit et al, 2001). In gammaretroviruses, the TM 

subunit possesses a disulphide motif (CXnCC) involved in SU:TM binding, and a 

highly conserved immunosuppressive domain (ISD). (Benit et al, 2001; Coffin, 

1997).  

 

Figure 1.2 – Reverse transcription, according to the steps 1-8 

detailed above. Figure adapted from Flint, 2007.  
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In the integrated provirus, retroviral genes are always flanked by 

identical LTRs. The LTR consists of repeated DNA sequences 150-1500bp in 

length.  They contain regulatory elements for proviral integration and 

transcription as well as retroviral mRNA processing. LTRs are divided into 

three sections: U3, R and U5 (Figure 1.1a). In viral gRNA, the 5’ end is 

structured R-U5 and the 3’ end is structured U3-R, where R is a repeated 

element common to both ends, R-U5 is the 5’ most sequence of the gRNA, 

and U3-R is the 3’-most sequence of the gRNA. The LTRs of the provirus are 

identical, with the structure U3-R-U5. Because the LTRs are synthesised de 

novo with each replication cycle, they are almost always identical. (Coffin, 

1997).  

 

1.1.4 – Accessory genes 

 

 In addition to the gag, pol and env genes common to all retroviruses, 

some retrovirus lineages encode additional accessory proteins that can act as 

adjuncts; increasing infectivity or affecting various aspects of virus 

replication. In this instance, we give three examples of accessory genes 

relevant to this thesis. 

 

Most gammaretroviruses express an accessory protein called glycogag. 

Glycogag is encoded from unspliced RNA through an alternative start codon 

(CUG) that is present upstream of, and in frame with, the normal Gag start 

codon. This leader sequence is an addition to the normal Gag N-terminus. 

The resulting protein is integrated into the cell membrane, glycosylated, and 

cleaved so that only half of the conventional Gag sequence remains 

(Fujisawa et al, 1997). Glycogag (and HIV-1 Nef) was recently shown to 

enhance gammaretroviral infectivity through interaction with SERINC3 and 

SERINC5 (Rosa et al, 2015; Usami et al, 2015). 

 

The superantigen (sag) is an ORF encoded by type-B retroviruses, 

notably the murine mammary tumour virus (MMTV), which encodes sag 

adjacent to the 3’ LTR (Figure 1.1C). Sag is expressed on the cell surface, 

and interacts with specific Vβ chains of the T-cell receptor. This induces an 

activation signal from the T-cell to the infected cell. When Sag is expressed 
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from an endogenous MMTV provirus, it leads to the depletion of certain T-cell 

subgroups. (Coffin, 1997).  

 

The dut gene is present in viruses of genus Betaretotrovirus and some 

Lentiviruses. Where present, it is located either in between Gag and Pol, or 

in between RT and IN (Figure 1.1b). It encodes a dUTPase that catalyses the 

hydrolysis of dUTP into dUMP and pyrophosphate. This effect can benefit viral 

replication through reducing the incorporation of genotoxic uracil into the 

viral cDNA during reverse transcription. This effect is mediated through the 

reduction of cellular dUTP concentrations. (Lerner et al, 1995). 
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1.2 – ERV structure, replication and classification 

 

1.2.1 - ERV structure 

 

Structurally, ERVs take four different forms in the genome. (Figure 

1.2). (Mager and Stoye, 2015). 1: Complete provirus. These consist of paired 

LTRs of ~150-1000bp flanking identifiable gag, pol, and env ORFs. These 

proviruses can range from replication competent, intact integrations, to 

heavily degraded sequences marred by stop codons and frameshifts. 

Examples of these are MLV in mice, and ERV-Fc in mammals, respectively 

(Jern et al, 2007; Diehl et al, 2016). 2: Altered or ‘slimmed down’ ERV. 

Altered ERVs possess the general canonical structure of a complete ERV, but 

are lacking one or more ORFs  (typically the env ORF). Examples of altered 

ERVs include the MusD and MuERV-L retrotransposons found in mice (Mager 

and Freeman, 2000; Benit et al, 1997).  3: Substituted ERVs. In some cases, 

recombination can produce ERV-like elements possessing LTRs and an internal 

region possessing no homology to known retroviruses. (Mager and Stoye, 

2015). These elements can be replicated in a similar manner to retroviral 

vectors: for example, the early transposon (ETn) and virus-like-30 (VL30) 

transposons of mice share LTRs with, and are replicated with the assistance 

of, MusD and MMERV respectively (Baust et al, 2003; Wolgamot et al, 1998). 

4: Solo LTR. Ultimately, the single most abundant ERV element in animal 

genomes is the solo LTR that arises by homologous recombination between 

the paired LTRs of complete proviruses (Belshaw et al, 2007) (Figure 1.3). 

 

1.2.2 - ERV amplification 

 

ERVs can amplify using three pathways: reinfection, retrotransposition, and 

complementation in trans (Figure 1.4).  Additionally, by ‘hitch-hiking’ on 

another transposable or duplicating genomic element, ERVs and EVEs can 

increase their copy number, like the MURVY ERV amplified on the mouse Y 

chromosome (Hutchison and Eicher, 1989). ERVs are capable of reinfection 

and retrotransposition, dependent on their structure. Reinfecting ERVs 

require an envelope and a functional receptor (or in trans complementation 

from a helper virus) and form infectious particles that infect new cells within 
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the host (Figure 1.4). For example, functional envelopes have been found in 

the GLN and MLV lineages of murine ERV, and infectious particle formation 

has been observed (Ribet et al, 2008; Kozak et al, 1984). A mechanism by 

which the host can restrict this is through evolution of the cognate receptor, 

leading to xenotropism, whereby ERVs are unable to infect the cells of the 

species hosting it. (Kozak, 2013). Altered ERVs have no envelope, and have 

an entirely intracellular replication cycle, whereby the genome of the ERV is 

transcribed and reintegrated into the cell’s genome. (Figure 1.3). Examples 

of these are MuERV-L, IAP and MusD: although intracellular virus-like particles 

have been observed for these lineages, they are not known to replicate 

through reinfection. (Ribet et al, 2008; Ribet et al, 2008; Ristevski et al, 

1999). There is a striking correlation between the loss of the env gene, and 

intragenomic proliferation; not only are env-less ERVs undergoing massive 

amplifications in mammalian genomes but env-loss appears to be a necessary 

factor for such amplification, possibly due to the burden placed on the host 

by a circulating infectious retrovirus, and the immunosuppressive properties 

of env genes.  (Cantrell et al, 2005; Costas et al, 2003; Ribet et al, 2008; 

Magiorkinis et al, 2012).In addition to env loss, the alteration of the Gag MA 

domain appears to be indicative of intracellularisation. In IAP sequences, 

polymorphisms in MA are associated with the targeting of nascent particles to 

intracellular compartments (Dewannieux et al, 2004). Similarly, addition of 

the deleted myristoylation signal in Gag retargets the MusD retrotransposon 

towards the cell membrane, suggesting that Gag may also play a role in the 

intracellularisation of replicating ERVs. (Ribet et al, 2007) 

Figure 1.3: ERV structures. ORFs labelled. Figure adapted from Mager 
and Stoye, 2015. 
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1.2.3 - Retroviral taxonomy 

 

ERVs are members of family Retroviridae. Retroviridae, as a family of 

reverse transcribing viruses, is a member family of order Ortervirales. 

Ortervirales contains all seven families of reverse transcribing viruses; united 

by the monophyly of the RT peptide. (Krupovic et al, 2018). Classification of 

retroviruses often relies on phylogenetic analysis of the pol sequence (Figure 

1.4). This is due to the higher level of sequence conservation of pol relative 

to other retroviral genes. (Xiong and Eickbush, 1990; Llorens et al, 2008). 

The TM domain of the Env peptide is also used due to its relative 

conservation. (Benit et al, 2001). Structural features and sequence motifs of 

retroviral genomes (presence and type of Gag late domains, for example) are 

Figure 1.4: ERV amplification strategies. A) Reinfection by a complete 
retrovirus encoding intact genes and cis acting elements. B) Indicates 
retrotransposition of an intracellularised retrovirus and C) Indicates 
complementation in trans of a replication incompetent transposon. Figure 
from Bannert and Kurth, 2006. 
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also used to assist in classification of retroviruses (Jern et al, 2005). (Figure 

1.5).  

 

Retroviridae is split into two subfamilies: Orthoretrovirinae and 

Spumavirinae, which contain three robustly supported groups, called ‘classes’. 

Class I and II belong to Orthoretrovirinae and Class III groups within 

Spumavirinae. (Figure 1.5). ‘Class’ is a misleading term – implying the 

taxonomic grouping that is several levels above the level of family. 

Nevertheless, the diversity of exogenous and endogenous retroviruses is 

clustered into these three groups in phylogenies. (Herniou et al, 1998; 

Llorens et al, 2008).  

 

 

 

Figure 1.5) Unrooted pol NJ phylogeny of Retroviridae with class 
indicated, genus indicated by grey shaded group, host range indicated by 
coloured symbol. Note that Gammaretrovirus is used to describe all of the 
class I ERVs in the phylogeny. Figure adapted from Jern et al, 2005. 
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1.2.4 - Class I retroviruses 

 

Retroviridae class I contains the Gammaretrovirus and 

Epsilonretrovirus genera. The class I retroviruses possess structural 

characteristics that distinguish them from other retroviruses. Class I 

retroviruses encode Gag-Pol through translation readthrough (as opposed to 

frameshifting of class II retroviruses, and the alternative splicing of class III 

viruses), and encode a GPY/F motif in IN. Also distinguishing class I ERVs is 

the encoding of a single NC zinc finger (with the exception of HERV-H, which 

has two) (Jern et al, 2005). Studies of exogenous gammaretroviruses have 

found that they possess a charged assembly helix that assists in coordinating 

NC:nucleic acid interactions in lieu of a second NC zinc finger (Cheslock et al, 

2003). (Figure 1.4; Figure 1.5) 

 

 The class I retroviruses are found as exogenous and endogenous 

retroviruses in a diverse range of animals. The Epsilonretrovirus genus 

contains retroviruses of fish (Gifford et al, 2003). Viruses of genus 

Gammaretrovirus are simple retroviruses with a type-C particle morphology. 

They are found in mammals and birds, and are particularly well-represented 

in rodents, with the murine leukemia virus being a well-studied rodent 

exogenous gammaretrovirus (Hayward et al, 2013; Kozak, 2015). 

Figure 1.6: Distinguishing structural features of retrovirus groups 
(stated on the top of the table as RV-genus). Structural feature listed on 
the left side with LTR length and translation strategy detailed below. From 
Jern et al, 2005.  



	 29	

Gammaretroviruses are common as mammalian ERVs – well known 

gammaretroviruses include the murine leukemia virus (MLV), RD114 and 

porcine endogenous gammaretrovirus (PERV).  (Mager and Stoye, 2015). 

Notably, the mouse possesses numerous endogenous gammaretroviruses: 

MdEV, McERV, MuRRS, MMERV, GLN, MURVY and MuERV-C (discussed in 

further detail later in this introduction) (Johnson, 2015; Mager and Stoye, 

2015; Stocking and Kozak, 2008). By contrast, the diversity of endogenous 

gammaretroviruses in the human genome is comparatively sparse, consisting 

solely of HERV-T.  

 

Gammaretroviruses tend to occur in derived positions in phylogenies 

based on ERV polymerase sequences. They grade into groups of ERVs with a 

widespread distribution amongst vertebrates (Herniou et al, 1999; Martin et 

al, 1999). These include viruses related to ERV-Fc, HERV-H, HERV-W, ERV-9, 

ERV-Rb, ERV-I and ERV-Lb (Tristem, 2000; Herniou et al, 1999). Although 

these viruses are often termed Gammaretroviruses (Hayward et al, 2015; 

Jern et al, 2005), in phylogenies, they group outwith the established 

exogenous diversity of genus Gammaretrovirus (Figure 1.4). (Tristem et al, 

2000; Benit et al, 2001; Herniou et al, 1999). They appear to largely have 

degraded ORFs, precluding them from activation as retrotransposons or 

exogenous retroviruses (Widegren et al, 1996; Diehl et al, 2016; Tristem, 

2000). Based on their more basal position within the class I ERV phylogeny, 

their demonstrable age, their widespread nature within animals, and the lack 

of evidence for exogenous viruses within these lineages, it is possible that 

these viruses represent a more ancient complement of retrovirus genera, of 

which the genus Gammaretrovirus comprises a more modern relative. (Figure 

1.4; Figure 1.5). 

 

1.2.5 - Class II retroviruses 

 

Retroviridae class II contains the Beta-, Alpha-, Delta- and Lentivirus 

genera. (Figure 1.4). In addition to displaying a B-type (round eccentric core) 

or d-type (rough cylindrical core) particle morphologies, they display multiple 

peptide characteristics that differentiate them from other retrovirus groups. 

All class II retroviruses possess two NC zinc fingers, and produce a Gag-Pol 

polyprotein through one or two ribosomal frameshifting sites, as opposed to 



	 30	

the readthrough mechanism. (Coffin, 1997) (Figure 1.5). In addition, non-

primate lentiviruses and betaratroviruses encode a dUTPase within pol. 

Finally, Betaretroviruses can be distinguished from other retroviruses based 

on the presence of a glycine rich ‘G-patch’ in the C-terminus of Pro. (Jern et 

al, 2005). (Figure 1.4; Figure 1.5) 

 

With the exception of pyERV, identified in boid snakes (Huder et al, 

2002), class II retroviruses are exclusively found in mammals and birds. The 

alpharetrovirus genus consists of exogenous and endogenous retroviruses of 

birds, including avian leucosis virus: the first ERV to be characterised (Weiss 

and  Payne, 1971; Gifford et al, 2005). By contrast, genera Betaretrovirus, 

Deltaretrovirus and Lentivirus are found exclusively as exogenous and 

endogenous viruses of mammals (Gifford et al 2005; Katzourakis et al, 2007; 

Hron et al, 2018). (Figure 1.4; Figure 1.5) 

 

Genus Betaretrovirus consists of the type-B and type-D retroviruses, of 

which the mouse mammary tumour virus (MMTV) and Mason-Pfizer monkey 

virus (MPMV) are type species respectively. The type-B and type-D 

retroviruses are differentiated by their particle morphology and envelope 

taxonomy. Betaretroviruses are found as exogenous and endogenous viruses 

in mammals. (Gifford et al, 2003). Notably, this genus contains MMTV – a 

well-studied murine exogenous and endogenous retrovirus. In addition, 

several intracellularised retrotransposons of murid rodents: MusD, IAP and 

mysTR (Mager and Freeman, 2000; Ribet et al, 2008; Cantrell et al, 2005), 

display close phylogenetic relationships to the Betaretrovirus genus. (Figure 

1.4). 

 

1.2.6 - Class III retroviruses 

 

Class III retroviruses bear close phylogenetic relationship to genus 

Spumaretrovirus (foamy viruses) (Figure 1.4). In addition to the foamy 

viruses, class III contains the HERV-U, HERV-S and HERV-L lineages of ERV 

(Cordonnier et al, 1995; Tristem, 2000). ERVs of these lineages are 

common to many mammalian groups (Herniou et al, 1999) and are likely 

extremely ancient: in the case of ERV-L, predating the divergence of 

placental mammals (Lee et al, 2014). Despite the advanced age of ERV-L, it 
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has undergone the transition to a retrotransposon in many mammalian 

lineages (Magiorkinis et al, 2012). The ERV-L lineage occurs most notably in 

the mouse as MuERV-L, where its evolution and impact upon the murine host 

has been studied extensively (Costas et al, 2003; Benit et al, 1997). (Figure 

1.4; Figure 1.5) 

 

1.3 – ERVs and the host 

 

1.3.1 – Retroviruses and disease 

 

Retroviruses have been extensively studied as the causes of 

immunosuppressive disease. The best characterised of this is human 

immunodeficiency virus 1 (HIV-1), a lentivirus that has led to pandemic 

acquired immunodeficiency syndrome (AIDS). Other lentiviruses; feline 

immunodeficiency virus (FIV), equine infectious anemia virus (EIAV) and 

simian immunodeficiency virus (SIV) are studied as causes of 

immunodeficiency in their hosts.  

 

Retroviruses can also be carcinogenic. Indeed, MMTV, MLV, rous 

sarcoma virus (RSV) and avian leucosis virus (ALV) were all known as the 

etiologic agents behind neoplastic disease before the elucidation of the 

integrated provirus (Green, 1946; Gross, 1953; Rous, 1911; Temin, 1976). 

Retroviruses mediate their oncogenic effects through multiple main methods. 

The first is ectopic activation of a host proto-oncogene through nearby 

integration, such as MMTV-based activation of wnt or fgf (Ross, 2010), or 

through IAP/MLV recombination and insertional mutagenesis in AKR mice 

(Stoye et al, 1991). The second is through the introduction of a viral 

oncogene, such as RSV induction of fibrosarcoma in chickens through 

transduction of the viral sarcoma (v-src) gene. (Vogt, 2012). Thirdly, 

retroviruses can mediate mutagenic effects through interruption of normal 

genomic activity through loss of gene function (integration in or near a gene). 

(Coffin, 1997).  

 

ERVs have also been studied as etiologic agents of disease. In addition 

to the well-studied effects of MLV, MMTV and RSV, amongst others, as 
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inherited (ERV) causes of cancer in mice and chickens, ERVs are responsible 

for a high degree of genomic mutagenesis. In mice, it is estimated that 10% 

of genomic mutations with an observable phenotype are as a result of ERV 

activity (Maksakova et al, 2006; Waterston et al, 2002). Furthermore ERVs 

have been implicated in a diverse range of human disease processes, 

including motor neurone disease (Li et al, 2015) and Hodgkins lymphoma 

(Lamprecht et al, 2010). ERV pathogenicity has also been studied outwith 

humans, mice and birds, with the endogenising koala retrovirus (KoRV) being 

associated with lymphoma (Tarlinton et al, 2006).  

 

1.3.2 – Restriction factors 

 

A number of restriction factors antagonising ERV replication have been 

identified, primarily through their anti-HIV activity. (Malim and Bieniasz, 

2012). An example of an anti-ERV restriction factor is APOBEC3G. APOBEC3G 

is known to inhibit retrovirus replication through cytidine deaminase activity 

(causing mutational catastrophe), and inhibition of reverse transcription 

(Malim and Bieniasz, 2012). APOBEC has also been shown to inhibit 

endogenous retroviruses prior to integration: HERV-K, MLV and MuERV-L have 

shown evidence of APOBEC3G mediated hypermutation (Lee and Bieniasz, 

2007; Perez-Caballero et al, 2006; Jern et al, 2007; Blanco-Melo et al, 

2018). Additionally, the murine restriction factors Fv1 and MOV10 have been 

identified as factors restricting ERV replication (Nair and Rein, 2014; Frost 

et al, 2010). Remarkably, these genes show homology to MuERV-L and MLV 

peptides respectively, indicating a retroviral origin (Benit et al, 1997; Wang 

et al, 2010). 

 

1.3.3 - Exapted sequences 

 

ERVs have been adopted to serve beneficial purposes. The host can 

adopt ERV coding sequences, or utilise the regulatory features of ERV 

sequences, such as the enhancer activity of LTRs. Virus proteins have been 

exapted to serve as restriction factors: In mice, Fv1 and Mov10 have been 

exapted from MuERV-L Gag and MLV (Benit et al, 1997; Arjan-Ojedra et al, 

2012). The syncytin gene is another example of viral coding sequence 

exaptation. Syncytin is a captive retroviral envelope gene that is critical in 
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placental syncytium formation (Mi et al, 2000). The utility of syncytin is such 

that retroviral env adoption in the form of syncytins has taken place 

independently, multiple times over the course of mammalian evolution, 

leading to the hypothesis that this is an example of convergent evolution – 

the syncytin gene is required to form the mammalian placenta. (Lavialle et 

al, 2013). Additionally, diversity in captured syncytin genes is also associated 

with diversity of placenta structures (Vernochet et al, 2014) 

 

1.3.4 - Epigenetics 

 

In the mouse, it has been demonstrated that ERV transcription is 

suppressed via the remodelling of chromatin structure, presumably as a 

mechanism to repress ERV activation in unwanted contexts. These epigenetic 

mechanisms include histone methylation – as demonstrated for IAP, MusD and 

MLV (Walsh et al, 1998; Rowe et al, 2013; Wolf and Goff, 2009). This state 

can be established by histone and DNA methyltransferases which are 

recruited to ERV sequences in response to krüeppel-activated-box zinc finger 

protein (KRAB-ZFP) binding and subsequent TRIM28 recruitment. (Tripartite-

motif-containing protein 28, also known as KAP1). (Wolf and MacFarlan, 

2015; Rowe et al, 2010; Rowe et al, 2013). An extensive body of literature 

has grown around the ZFP mediated recruitment of TRIM28, and its utility in 

repressing ERVs, particularly during embryonic development. (Rowe and 

Trono, 2011) (Figure 1.6). In addition to driving retroviral repression, the 

KRAB-ZFP/TRIM28 pathway has been adapted to provide an ERV-based gene 

regulation network. (Rowe et al, 2013).  

 

In murine embryonic stem cells (ESCs), deletion of TRIM28 resulted in 

de-repression of MuERV-L transcripts and associated genes, and also in an 

increase in two-cell-embryo like cells, indicating that murine ERVs play a role 

in regulating gene transcription and embryonic stem cell fate (MacFarlan et 

al, 2012). Rowe et al, 2013 used ChIP-seq studies to highlight the use of 

ERVs in preventing untimely activation of genes involved in embryonic 

development, and highlight ERV loci that may be actively involved in these 

processes. The species-specificity of ERV regulation of gene repression is 

highlighted by these studies, and by Brattås et al, 2016, who found that 
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TRIM28 binds to primate-specific ERVs in human ESCs, resulting in 

transcriptional control during human neural development.  

1.3.5 - LTR based gene regulation 

 

 ERVs can also drive gene expression through their LTRs. Retroviral LTRs 

possess promoter and enhancer sequences, and are present in abundance as 

solo LTR elements throughout mammalian genomes (Belshaw et al, 2007). 

Therefore, LTRs have abundant potential to regulate host gene expression. 

This is supported by evidence of non-coding transposon sequences evolving 

under purifying selection close to human genes (Lowe et al, 2007).  

 

Studies of ERVs and gene regulation have implicated ERVs in gene 

regulation in many processes, including embryonic development, immunity, 

and placental physiology.  ERVs were found to have contributed up to 25% of 

OCT4, NANOG and CTCF binding sites in human and murine embryos (Kunarso 

et al, 2010). Schmid and Bucher (2010) used chromatin 

immunoprecipitation with sequencing (ChIP-seq) to find inducible STAT1 

binding sites in human and mouse ERV LTR sequences. This work was built 

upon by Chuong et al, (2016), who showed that a STAT1-bound MER41 LTR 

(the same type described by Schmid and Bucher) regulates the expression of 

aim2, apol1, ifi6 and sectm1, as well as describing widespread STAT1 bound 

LTRs in mammalian genomes. In another ChIP-seq based study of species-

specific ERV gene regulation, Chuong et al, (2013) studied the effect of rat 

and mouse ERVs on gene regulation in the placenta and found that species 

specific ERV families drive gene expression in placental cells. Finally, in a 

wide-ranging study, Sundaram et al, (2014), assayed 26 transcription factor 

(TF) networks in four human and mouse leukemia and lymphoblast cell lines. 

This ChIP-seq based study found cell-type and species specific contributions 

by ERVs to transcription factor binding networks. These studies highlight both 

the widespread nature and species specificity of ERV contribution of 

regulatory sequences.  

 

 Along with discoveries of co-opted ERV promoter and gene sequences, 

studies of ERVs in health and disease highlight the utility of studying ERVs in 

fully understanding host:virus co-evolution, and shows ERVs as dualistic 

entities: a) as parasites that must be kept in check to avoid disease and 
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harmful mutation to the host; and b) as symbionts that can be used by the 

host to their advantage. 
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Figure 1.7: KAP1 (TRIM28) repression of ERV expression. A) KRAB-ZFP 
binds to an ERV PBS. TRIM28 is recruited causing the suppression of 
expression. B) Individual KRAB–ZFPs recognize different ERVs and recruit 
distinct KAP1 complexes (shown by different ZFP and sequence colours). 
SETDB1-containing complexes H3K9 and K4K20 methylation, and 
KDM1A/HDAC complexes catalyse H3 and H4 demethylation and 
deacetylation. Figure adapted from Gifford et al, 2013. 
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1.4 – Murine ERVs 

 

 A large proportion of insights into host:ERV co-evolution have been 

made in mice. The mouse is an extremely common model organism in 

medical genetics, and has been extensively characterised and studied. This 

extends to genomic data: the bulk of genome and annotation data available 

for the mouse is second only to that of the human. Also, the mouse is used 

and bred frequently as a model organism, due to a low generation time and 

small size, making it easy to validate and study ERV-related insights acquired 

from genome data. Mice possess ERVs of all three classes (Figure 1.7). 

 

 

 

 

 

 

 

 

 

 

Figure 1.8) Phylogeny of known murine ERV lineages. Class indicated by 
coloured ring, the same coloured text within indicates murine ERV 
lineages. ‘%’ indicates % of the murine genome taken up by ERV sequences 
of the given class. Figure from Stocking, 2008. 
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1.4.1 - Class I murine ERVs 

 

Of the three ERV classes in mice, class I ERVs are the most diverse but 

lowest in number (Figure 1.7). All class I murine ERVs described so far are 

gammaretroviruses. MLV is the most extensively characterised class I murine 

ERV (Gross, 1953). A endogenous gammaretrovirus with an exogenous 

counterpart, endogenous MLV is capable of reinfecting the mouse genome, 

and is polymorphic between different strains of inbred mouse (Frankel et al, 

1990). MLV possesses a Pro PBS, with 49 loci present in the published genome 

of the C57BL/6 mouse. About 20 copies are shared between every mouse, 

(Jern et al, 2007; Kozak, 2015). It is split into three groups based on their 

ability to infect cells of the mouse and other species: xenotropic, polytropic 

and modified polytropic (xmv, pmv and mpmv respectively – not to be 

confused with the Mason-Pfizer Monkey Virus). (Kozak, 2015).  

 

 Mus musculus retrovirus utilising tRNAGLN (GLN) is present at about 80 

copies in the murine genome (Itin and Keshet, 1986; Ribet et al, 2008). 

GLN proviruses are ~8.4kb long with a 430bp LTR. Two GLN proviruses possess 

all the requirements for infectious particle formation, which was observed in 

in vitro analyses of GLN (Ribet et al, 2008).  

 

 Loci in the Mus musculus endogenous retrovirus (MMERV) (Bromham et 

al, 2001) also possess intact envelopes, leading to speculation that it may be 

present as an endogenous gammaretrovirus of mice. In silico searches have 

identified 191 MMERV loci in the genome of the mouse (Lee et al, 2012), and 

this lineage has been shown to possess two PBS specificities  (PBSpro and 

PBSgly). MMERV has been discovered in Mus caroli and Mus dunni also (named 

McERV and MdEV).  MMERV proviruses are ~8.6kb in length, with ~450bp LTRs, 

and possess gag, pol and env ORFs, some of which are completely intact. Like 

MLV, MMERV has a ~99bp 5’ extension of Gag, forming a Glyco-Gag ORF. 

(Bromham et al, 2001). 

 

 There are three non-intact lineages of class I murine ERV. The first is 

murine retrovirus like sequence (MuRRS). (Schmidt et al, 1985), with an 

estimated copy number of 50-100, 600bp LTRs and a 5.7kb long genome 

missing env and punctuated by stop codons. The second is murine endogenous 
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retrovirus C (MuERV-C), a similarly degraded gammaretrovirus (Zhao et al, 

1999) with a LINE1 fragment in place of a 5’LTR and Gag c-terminus, a 

deleted env ORF and numerous stop codons and frameshifts. The final 

degraded class I murine ERV is murine retrovirus on the Y chromosome 

(MURVY). MURVY has an 8.8kb genome, and 627/628bp long 5’/3’ LTRs 

respectively. Around 500 inactivated copies of the MURVY exist on the Y 

chromosome as part of a duplicated segment. (Hutchison and Eicher, 1989; 

Eicher et al, 1989).  

 

1.4.2 - Class II murine ERVs 

 

Class II ERVs group close to exogenous Betaretroviruses. Indeed, the 

Betaretrovirus type species is MMTV (Green et al, 1946). Three copies of 

MMTV have been found in the C57BL/6 mouse genome (Kozak et al, 1987), 

all of which are intact and capable of particle formation. (Figure 1.7). 

 

The remaining class II murine ERVs are known to be retrotransposons, 

the most prolific of which is the intracisternal a-type particle (IAP) (Dalton et 

al, 1961). IAP has since been characterised as a diverse ERV ‘superfamily’ 

(Qin et al, 2010; Magiorkinis et al, 2012). Although an env-encoding IAP 

locus exists and, is capable of infectious particle formation (Ribet et al, 

2008), IAP has undergone env loss and explosive proliferation in the genomes 

of several mammalian species, including that of the mouse (Magiorkinis et al, 

2012). Although IAP displays a diverse range of structures and LTR sequences, 

they are unified by the presence of intact Gag and Pol encoding genes, 

flanking LTRs 300-600bp in length, and betaretrovirus-like sequence features 

(described in greater detail above).  

 

The Mus musculus D-type retrovirus (MusD) is a retrotransposing class 

II ERV, discovered due to its similarity to ETn. (Mager and Freeman, 2000). 

MusD is ~6-7.8 kb in length, with some proviruses encoding intact Gag and Pol 

peptides, and capable of forming intracellular particles. However, in all cases, 

the Gag peptide is missing the n-terminal myristoylation signal, precluding 

infectious particle formation. Provision of this signal, and an in trans 

expressed env protein allows for rescued particle formation (Mager and 

Freeman, 2000; Benit et al, 2007).  
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The final class II murine ERV is MYSERV. A poorly defined group of 

murine ERVs, MYSERV is a RepBase designation for an inactive family of ERVs 

marked by their similarity to mys and mysTR, a group of ERV-like 

retrotransposons undergoing explosive amplification in other species of 

rodent, in a similar manner to IAP (Wichman et al, 1985; Cantrell et al, 

2005).  

 

1.4.3 - Class III murine ERVs 

 

The only known class III murine (spumaretrovirus-like) ERV is MuERV-L 

(Cordonnier et al, 1995). Part of the ERV-L lineage, MuERV-L is marked by 

its advanced age, predating the divergence of placental mammals (Lee et al, 

2014). In many lineages, including humans, ERV-L is inactive and degraded. 

Contrastingly in mice, MuERV-L is an active retroelement, having undergone 

multiple bursts of expansion in the last 2-10 million years (Benit et al, 1997; 

Costas et al, 2003), and has contributed to mice the antiretroviral fv1 gene 

(Benit et al, 1997). MuERV-L is approximately 6 kb in length, with intact 

Gag-Pol ORFs and paired LTRs of ~500nt in length and a PBS complementary 

to tRNAlys. (Figure 1.7).  

 

1.4.4 - ERV-like transposons 

 

 What I describe here as ‘ERV-like’ transposons corresponds to the 

‘altered ERVs’ described above. These elements possess flanking LTRs 

homologous to extant ERVs, but possess internal regions that display little or 

no homology to retroviral genes. In all three instances (ETn, VL30 and MaLR), 

the elements have LTRs homologous to known ERVs, suggesting that they 

replicate in a non-autonomous fashion, utilising the proteins of other ERVs to 

replicate.  

 

 Approximately 5kb in length, VL30 (virus-like 30) elements consist of 

paired LTRs flanking fragmented gag and pol ORFs. (Keshet and Itin, 1982; 

Adams et al, 1988). The gag and pol like ORFs bear only a faint homology in 

certain sections to other retroviral proteins. VL30 LTRs were found to be 

similar to MdEV, an endogenous gammaretrovirus of mice (Wolgamot et al, 
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1998): a prelude to the discovery of MMERV (Bromham et al, 2001). As such, 

there is speculation that recombination between VL30 and an ancestral 

gammaretrovirus was responsible for the generation of MdEV/MMERV 

(Wolgamot et al, 1998). 

 

Early transposon (ETn) elements were characterised as retrovirus like 

elements active during murine embryogenesis (Brulet et al, 1983). The full-

length ETn element is 5.6kb in length, is flanked by paired LTRs ~200bp in 

length. The internal region has no potential ORFs, nor any significant 

homology to retroviral proteins (Sonigo et al, 1987). The finding of a small 

region of homology in ETn to a fragment of betaretrovirus led to the 

characterisation of MusD – a transposing ERV with identical LTRs to ETn. 

(Mager and Freeman, 2000). 

 

The mammalian apparent retrotransposon (MaLR) is the final non-

autonomous ERV-like transposon. Present in the murine genome at ~388,000 

copies, it is by far the most numerous retrotransposon. The internal region is 

unrelated to known ERVs, but it shares ~50% LTR homology with MuERV-L 

LTRs, suggesting that it replicates by utilising MuERV-L proteins. (Waterston 

et al, 2002; Smit et al, 1993).  

 

1.5 – Direct paleovirology: EVEs 

 

 Compared to ERVs, non-retroviral EVEs (EVEs) are relatively rare. 

However, a surprising level of diversity of integrated EVEs has been 

discovered in eukaryotic genomes, starting with the 2004 discovery of 

endogenous flaviviral elements in the genome of the Aedes mosquito. 

(Crochu et al, 2004). Subsequently, it has been found that every known 

group of viruses is capable of endogenisation (Katzourakis and Gifford, 2010; 

Aiewsakun and Katzourakis, 2012). 

 

 The mechanism by which retroviruses endogenise is obvious – genomic 

integration of a dsDNA intermediate is an obligate step in the retroviral life 

cycle. Mechanisms of EVE integration are less obvious. It has been 

documented that DNA viruses can integrate into host genomes via non-
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homologous dsDNA end-joining (e.g. for hepadnaviruses, Bill and Summer, 

2004) and telomeric homologous recombination (e.g. for herpesviruses, 

Morissette and Flamand, 2010). For RNA viruses, the mechanisms of 

integration are even more mysterious, given that existence as a DNA 

intermediate, presence in the nucleus and chromosomal integration are not a 

necessary part of their life cycle. It has been proposed that RNA viruses are 

reverse transcribed and integrated by retroviral or retrotransposon proteins 

to aid endogenisation (Katzourakis and Gifford, 2010). Additionally, 

recombination between ERVs and exogenous RNA viruses can take place, 

leading to integration of the RNA virus as an EVE (Geuking et al, 2009).  

 

For ssDNA viruses of eucaryotes, only the integration of parvoviruses 

through non-homologous DNA recombination has been studied, due to the 

potential of adeno-associated virus in gene therapy. (Kotin et al, 1992; 

Krupovic and Forterre, 2015). For circular ssDNA viruses, such a circoviruses, 

nanoviruses and geminiviruses, no integration mechanism has been found, 

despite evidence of widespread integration of these viruses into eucaryotic 

germlines (Katzourakis and Gifford, 2010). It has been proposed that 

integration took place during repair of chromosomal DNA strand breaks via a 

nonhomologous end joining mechanism. Additionally, the rolling-circle 

method of replication employed by these viruses may be significant, given 

that rolling circle rep-like endonucleases mediate integration of circular 

ssDNA molecules in prokaryotic genomes (Krupovic and Forterre, 2015).  

 

1.5.1 - Circoviruses 

 

The increasing body of sequence and metagenomics data is bringing 

attention to the circular ssDNA viruses, particularly circoviruses (family 

Circoviridae). Circoviruses are small, with 1.8-2.1kb ssDNA genomes. (Figure 

1.8). All circoviruses encode two genes: cap and rep, with a third ORF (orf3) 

being encoded by porcine circoviruses (PCVs), and other ORFs being 

identified in other circovirus species (Rosario et al, 2017). The rep and cap 

genes diverge from one of two intergenic regions (IR) in an ambisense fashion 

(Figure 1.8), and are transcribed as such. In the case of PCVs, alternative 

splicing takes place, leading to the production of numerous transcripts. 

However, this has not been studied in other circoviruses (Cheung et al, 
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2012). cap encodes the Cp protein: the viral structural protein. Cp is 

significantly divergent, with the only distinguishing motif being an N terminal 

domain rich in basic amino acids. This is hypothesised to have DNA binding 

activity, and may be involved in the intracellular distribution of viral proteins 

during replication (Cheung and Greenlee, 2011). rep encodes the replication 

associated protein (Rep), also known as the replicase (referred to as such 

hereafter). Rep is the most conserved circovirus protein, and possesses 

features associated with rolling circle replication (RCR) in other ssDNA viruses. 

The IR between the 5’ ends of the genes is characterised by a conserved 

nonanucleotide motif, where Rep initiates RCR (Figure 1.9).  

 

The circovirus life cycle begins with entrance via clathrin-mediated 

endocytosis (Cheung et al, 2012). The viral particle then penetrates the 

nucleus, where it uncoats. In the nucleus, the ssDNA genome is converted to 

dsDNA by host factors, and transcribed to produce viral mRNAs, which are 

translated into viral proteins in turn. RCR of the viral genome is initiated via 

a stem loop structure in the intergenic region which is marked by a conserved 

nonanucleotide motif. The viral Rep protein ‘nicks’ the genome at this 

location, and the exposed ssDNA is bound by host DNA polymerase. The host 

DNA polymerase synthesises a new copy of the viral ssDNA genome, and the 

old strand is displaced. The resulting dsDNA (consisting of an original DNA 

strand and the newly synthesised complementary strand) is again nicked by a 

viral Rep protein, and the process begins anew, allowing rapid synthesis of a 

large amount of viral genomes (Cheung et al, 2012).  

 

1.5.2 - Circovirus classification 

 

 Circoviruses are circular, rep encoding ssDNA viruses (CRESS-DNA). A 

large number of CRESS-DNA sequences are highly divergent, and are 

ubiquitous. They are commonly discovered in metagenomics samples of the 

environment and of oceanic invertebrates, as well as stool and tissue samples 

of animals (Delwart et al, 2012). This group of loosely-defined viruses 

represents a pool of incredible diversity (Simmonds et al, 2017; Schulman 

and Davidson, 2017), of which established ssDNA virus groups, such as 

Circoviridae, represent just a part. 
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Family Circoviridae consists of two genera: Circovirus and Cyclovirus. 

The two genera share the basic structural features of Circoviridae: rep and 

cap ORFs arranged in an ambisense orientation in a small circular ssDNA 

genome. Cycloviruses are classified based on phylogeny, and on the putative 

differences in replication and transcription employed by cycloviruses. First, 

the 3’ IR present in circoviruses is absent or consistently smaller in 

cycloviruses (Li et al, 2010). Secondly, the putative origin of replication 

(nonanucleotide motif) is located on the Rep encoding strand of circoviruses 

and the Cp encoding strand of cycloviruses. Finally, the presence of introns 

has been reported for cycloviruses. (Rosario et al, 2012).  

 

 

 

1.5.3 - Circovirus diversity, host range, and role in disease 

 Members of the genus Circovirus have been studied extensively as 

veterinary pathogens. They have been identified in numerous species of bird, 

including pigeons, geese (Todd et al, 2001a), canaries (Todd et al, 2001b), 

finches, gulls (Todd et al, 2007), and corvids (Stewart et al, 2006). They 

are well known as the agent causing beak and feather disease (Raidal et al, 

2015). Similarly, PCV-1/2 has been well-studied as the causative agent of 

postweaning multisystemic wasting disease in swine (Hamel et al, 1998). As 

well as well-studied disease associations, circoviruses have been identified in 

numerous hosts through a series of degenerate PCR and metagenomics studies, 

including freshwater fish (Lorincz et al, 2011; Lorincz et al, 2012), 

chimpanzees, humans, (Li et al, 2010) dogs (Hsu et al 2016), and Aleutian 

Figure 1.9) Canonical circovirus genome structure. Orange and green ORFs 
are labelled with direction of expression.  
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mink (Lian et al, 2014). In addition to discovery in a wide range of hosts and 

being veterinary pathogens, circoviruses have gained prominence due to their 

presence as a contaminating agent in the live-attentuated rotavirus (RotaRix) 

vaccine (Victoria et al, 2010), although no adverse reactions or human 

infection by circoviruses as a result of this vaccine have been reported 

(FDA.gov). In addition, despite having no evidence of human infection, 

circoviruses are studied as possible contamination agents in porcine-human 

xenotransplantation (Denner and Mankertz, 2017).   

 

 Circovirus EVEs (CVe) are relatively widespread in animal genomes. 

Similarity-search based approaches have established a wide past host range 

of circoviruses in multiple mammalian groups (Katzourakis and Gifford, 

2010), birds (Cui et al, 2014), snakes (Gilbert et al, 2014) and fish (Feher 

et al, 2013). In addition, a study by Liu et al, 2011 found numerous circo-

like viruses integrated in the genomes of mites and a gastropod (Liu et al, 

2011). These studies have also informed the time-scale of circovirus 

evolution: an ortholog between different members of genus Crotalus set the 

minimum estimated date of circovirus infection of snakes to at least 10 

million years ago (mya). (Gilbert et al, 2012). Similarly, the discovery of an 

orthologous CVe between the dog and the cat set the date of circovirus 

invasion of carnivore germlines to at least 54mya (Katzourakis and Gifford, 

2010).  

 

 In contrast to circoviruses, cyclovirus CVe have yet to be discovered. 

Cycloviruses have been isolated from invertebrates and vertebrates. 

Mammals and birds, including a large number of domestic animals – chickens, 

sheep, cows, goats, horses and cats (Delwart and Li, 2012), make up the 

vertebrate sources of cyclovirus sequences, where arthropods (cockroaches 

and dragonflies) make up the invertebrate sources. Interestingly, cycloviruses 

have also been isolated from human samples of sera, cerebrospinal fluid (CSF) 

and bronchial aspirate (Phan et al, 2014; Smits et al, 2013; Tan et al, 

2013). These discoveries, have led to speculation that cycloviruses may be 

the etiological agents behind human diseases. For example, cyclovirus-Viet 

Nam (CyCV-VN) was identified in the CSF of patients with CNS infections (Tan 

et al, 2013). CyCV-VN was subsequently discovered to have a geographical 

distribution spanning Asia, Africa, Europe and South America. (Macera et al, 
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2016; Garigliany et al, 2014; Phan et al, 2014). These studies have led to 

speculation that cycloviruses may be an emerging human pathogen, resulting 

from cross-species transmission of mammalian and arthropod circo- and 

cycloviruses (Li et al, 2011; Delwart et al, 2012).  

 

1.6 - Indirect paleovirology – antiviral genes 

 

The majority of viruses do not leave behind EVEs, making the viral 

fossil record as sparse as its geological-paleontological counterpart. The 

study of antiviral genes can be used to infer the presence and activity of 

viruses over evolutionary timescales. This approach is called ‘indirect 

paleovirology’. (Patel et al, 2011) This approach is most powerful where a 

virus:host conflict is known – i.e. where a gene is known to be antiviral. For 

example, many studies involving paleovirology have focussed on interferon 

stimulated genes (ISGs).  

 

1.6.1 - Interferon stimulated genes (ISGs).  

 

ISGs are a component of the innate immune system. They are 

stimulated by Type I, II and Type III interferons (IFNs), often secreted in 

response to the detection of conserved pathogen associated molecular 

patterns (PAMPs). The induction of these genes in response to IFN signalling 

leads to the expression of hundreds of antiviral factors, resulting in an 

‘antiviral state’ within the cell that is refractory to viral replication. 

(Schoggins et al, 2011). ISGs are critical in combating viral infection, and 

there are numerous examples of direct co-evolutionary conflicts between 

viruses and antiviral ISGs (Sawyer et al, 2005; Daugherty et al, 2014). 

These conflicts can be studied as a history of history of host:virus co-

evolution, and can be traced through indirect paleovirology studies of ISGs. 

 

1.6.2 – Virus:ISG coevolution  

 

Viral evolution requires the host to co-evolve in order to counteract 

constantly changing viruses. Variants of host genes are fixed under selection 

pressure exerted by viral disease. This fixation is more rapid than usual due 

to the fitness cost associated with inability to repel viral infection – the host 
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may suffer less due to a variant gene than an inability to combat the virus. 

The virus then counter-evolves, and the variant then begins to exert a 

renewed selection pressure. These bouts of selection represent virus:host 

conflict and co-evolution. (Daugherty and Malik, 2012). They can be 

identified by searching protein coding gene sequences for instances of 

positive selection – whereby beneficial mutations are increased in frequency 

until they become fixed in the opoulation. This is assessed by studying the 

ratios of non-synonymous nucleotide changes that change the amino acid 

sequence versus synonymous changes that leave the amino acid unchanged 

due to genetic code redundancy. A greater rate of fixation for non-

synonymous changes versus synonymous is mostly explained by the action of 

positive (aka diversifying) selection. (Lemey et al, 2009). Examples of genes 

that are, or have been, under positive selection are trim5a and 

tetherin(Sawyer et al, 2005, McNatt et al, 2009; Busnadiego et al, 2014). 

Signatures of residues under positive selection at the host:virus interface can 

be used to guide in vitro studies of host:virus co-evolution. For example, 

Sawyer et al, (2005) successfully used selection analyses to discern specific 

residues responsible for antiviral activity and species specificity in primate 

TRIM5a sequences.  

 

1.6.3 – Antiviral gene dynamism  

 

Antiviral gene groups often undergo lineage specific changes in copy 

number, as these changes are more likely to be selected for in ISGs. This is a 

potential adaptation by the host to adapt antiviral specificity without losing 

existing function. This phenomenon, referred to as gene dynamism 

(Daugherty et al, 2016; Mitchell et al, 2015), is particularly common in ISG 

families (Shaw et al, 2017). 

 

Duplication at antiviral ISG loci presumably confers a selective 

advantage, in that multiple copies of an antiviral gene can then go on to 

encode different antiviral specificities (Daugherty et al, 2014). A broad 

study of the mammalian interferome found that antiviral ISGs were 

significantly more likely to have undergone expansion (Shaw et al, 2017). 

This is mirrored by studies of single genes/gene groups. Gene duplication has 

been reported at the trim5 locus in cows, and at the mxb locus in the 
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common ancestor of eutherian mammals. (Sawyer et al, 2007; Mitchell et al, 

2015). Relatively extensive duplication has taken place at mammalian 

apobec3g and parp family loci. (Daugherty et al, 2014; Munk et al, 2012). 

The consequences of these gene duplications are evident: parp family 

duplication has given rise to a gene family encoding a diverse range of 

antiviral specificities. (Daugherty et al, 2014). This is supported by in vitro 

analyses of IFIT1 and IFIT1B specificities: ancestral duplications at the 

mammalian ifit1 locus gave rise to multiple ifit proteins encoding different 

antiviral specificities (Daugherty et al, 2016).  

 

Numerous instances of gene loss have been observed at antiviral gene 

loci., The mx proteins have been inactivated in toothed whales (Braun et al, 

2015). These losses occur either through pseudogenisation, gene conversion, 

or deletion of the locus, and they have occurred in the mx, ifit, parp, trim5 

and apobec3g gene families (Mitchell et al, 2015; Daugherty et al, 2016; 

Daugherty et al, 2014; Sawyer et al, 2007; Munk et al, 2012). The 

selective advantage of gene loss is more difficult to ascertain, especially in 

contrast to gene duplication – where the duplicate gene can be analysed in 

silico and in the lab. Braun et al, (2015) speculate that loss of the mx genes 

in odontoceti (toothed whales) is due to viral infection that exploited the mx 

genes. By contrast, it is possible that a relaxation of selection pressures may 

be responsible for gene inactivation and loss. This could occur either through 

assumption of the lost gene’s function by a paralog or through relaxation of a 

specific viral selection pressure (Sawyer et al, 2007).  

 

Studying gene dynamism can be a valuable tool in indirect 

paleovirological studies of host:virus co-evolution. Gene loss can be used to 

make inferences on the lineage-specificity of antiviral activity. In addition, 

the lineage-specific loss of a gene suspected of antiviral activity can provide 

supporting evidence for its antiviral activity: loss of a gene indicates that a 

housekeeping role is either unlikely, highly lineage specific, or redundant. 

Contrastingly, studying ISG expansion can give insights into the range of 

specificities encoded by the duplicated genes (Daugherty et al, 2014; 

Daugherty et al, 2016). 

 

1.7 - Using paleovirology to study host:virus co-evolution 
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 Indirect (gene-based) and direct (ERV and EVE based) paleovirological 

analyses can provide insights into host-virus co-evolution. These analyses are 

performed on ERV, EVE and ISG nucleotide or amino acid sequences acquired 

through the mining of genome data, either through in silico approaches, such 

as similarity searching, or through molecular cloning, sequencing and assaying 

of virus and gene sequences (Katzourakis and Gifford, 2010; Frankel and 

Stoye, 1989).   

 

1.7.1 - Phylogenetic analysis 

 

 ERV and EVE sequences can be used to reconstruct the phylogenetic 

relationships between endogenous and extant exogenous viruses. This can be 

used as a basis for classification. (Tristem et al, 2000; Benit et al, 2001). In 

addition, it can identify new genera and groups. An example of this is in 

Retroviridae, where ERV diversity grouping outwith established genera 

warrants the creation of new genera within Retroviridae (Johnson et al, 

2015). Similarly, the identification of novel parvoviruses by metagenomic 

and in silico screening led to the (tentative) proposition of the 

Chapparvovirus genus. (de Souza et al, 2017).  

 

 In addition, phylogenetic analysis can be used to identify virus past 

host range. The discovery of an EVE or an ERV in a host species definitively 

extends the host range of that virus group to the species in which it was 

discovered. Examples of this are the unexpected discovery of filovirus EVEs in 

rodent genomes (Taylor et al, 2010), and the discovery of a deltaretrovirus 

ERV in the genome of the long-fingered bat (Hron et al, 2018). Furthermore, 

where a phylogeny of retroviral peptides from multiple hosts is different to 

that of their corresponding hosts, it is indicative of host switching having 

taken place. (Diehl et al, 2016). These discoveries of host range can 

underscore the stability or instability of host range in groups of viruses (i.e. 

how prone they are to crossing species barriers), and could potentially be 

used as predictive factors for identifying virus reservoirs by guiding virus 

discovery efforts. (Taylor et al, 2010; Katzourakis and Gifford, 2010).  
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 The strong conservation of virus polymerases (Xiong and Eickbush, 

2010), makes them candidates for the phylogenetic analysis of EVE and ERV 

evolution, and many studies rely on the RT domain for classification and 

phylogenetic analysis of ERVs (Tristem, 2000; Jern et al, 2005; Hayward et 

al, 2015). In addition, an apparent conservation and predisposition of viral 

polymerases to integrate has made them the most appropriate candidates for 

phylogenetic analysis of EVEs. (Katzourakis and Gifford, 2010; Beyli et al, 

2010). Other peptides can be used: the TM domain of Env has been used in 

phylogenetic screening and analysis of Retroviridae (Benit et al, 2001). The 

propensity of retroviruses to recombine has resulted in the resolution of 

different evolutionary histories for different protein coding genes within 

single retrovirus lineages (Benit et al, 2001; Diehl et al, 2016). An example 

of this is the evolutionary history of recombination between the retroviral 

envelope and polymerase. Env, which determines host specificity, has a 

specificity for mammals in the genus Betaretrovirus, and for a diverse range 

of hosts in genus Gammaretrovirus. Betaretroviral acquisition of a 

gammaretrovirus env gene can confer a more diverse host range, and result 

in the reactivation of previously defunct ERVs (Henzy and Johnson, 2013).   

 

The amplification processes and history of individual ERV lineages is 

reflected in phylogenies of ERV sequences (Katzourakis et al, 2005). As such, 

they can be used to infer the dynamics of ERV reproduction in a host genome. 

ERV phylogenies can produce distinct types of topology based on their age. 

‘Starlike’ trees have short internal branches, and long external branches. 

(Figure 1.9).  The short internal branches may reflect ancient proliferation 

events, with the long branches indicating subsequent lengthy residence in the 

host germline following inactivation. (Figure 1.9). These topologies are 

displayed by ancient ERVs, such as ERV-Fb (Katzourakis et al, 2005), and 

HERV-W (Grandi et al, 2016). ‘Comblike’ trees are often displayed by 

youthful, proliferating ERV lineages, such as mysTR (Cantrell et al, 2005), 

HERV-K-HML2 (Katzourakis et al, 2005) and IAP (Magiorkinis et al, 2012). 

(Figure 1.9). Such topologies can be used to make general inferences as to 

the evolutionary history and transpositional activity of an ERV. 
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1.7.2 - Sequence analysis 

 

Sequence analysis of ERVs and EVEs, and the identification of 

conserved structural motifs can be used to assist phylogenetic analysis and 

classification (Jern et al, 2005; Rosario et al, 2017). The presence or 

absence of features idiosyncratic to a viral lineage can be identified, such as 

the presence of accessory genes, structural features in protein coding ORFs, 

non-coding motifs (PBS, PPT, nonanucleotide motif) and replication strategies 

(e.g. ribosomal frameshifting/termination suppression). These features assist 

in classification of virus sequences. (Jern et al, 2005; ). (Figure 1.5). 

 

Where retroviral genome features have been analysed in vitro, their 

presence, absence and characteristics can be used to make inferences in ERV 

and EVE biology. For example, the loss of the Gag myristoylation signal in 

MusD indicates that it is incapable of forming infectious particles – a defect 

rescued by provision of the signal in vitro (Ribet et al, 2007). Subsequently, 

the loss of particle-forming activity has been proposed as important in 

determining env loss, intracellularisation and intragenomic proliferation 

(Dewannieux et al, 2004; Magiorkinis et al, 2012). In addition, the activity 

of innate immune effectors can be identified in ERV sequences: Jern et al, 

2007 and Lee et al, 2008 identify evidence of APOBEC3G mediated 

hypermutation in the proviruses of MLV and HERV-K(HML2) respectively. 

Figure 1.10) ERV amplification dynamics reflected in their phylogenies. 
Left: a ‘star-like’ phylogeny commonly displayed by old, inactive ERV 
lineages (HERV-FB), contrasted with Right: a ‘comb-like’ phylogeny of the 
type commonly shown by recently acquired, possibly active ERV lineages 
(HERV-K-HML2). Figure adapted from Katzourakis et al, 2005. 
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Mutations in ERV proviruses can therefore be studied and corrected. Then, 

the ancestral forms of EVE and ERV sequences can be reconstructed in silico 

and used in in vitro studies of the properties of these viral elements and 

genes, with examples being the reconstruction and assaying of HERV-K and 

MuERV-L as HERV-K(CON) and ancML (Dewannieux et al, 2006; Lee and 

Bieniasz, 2007; Blanco-Melo et al, 2018).  

 

1.7.3 – The timeline of host:virus co-evolution 

 

 EVE and ERV sequence data can be used to calibrate the time-scale of 

host:virus evolution. They can be dated using orthology - where an 

integration is shared between two species, having integrated in a common 

ancestor). This approach uses estimates of host divergence times to propose 

minimum estimated integration dates of ERV and ERV loci. (Lee et al, 2013; 

Keckesova et al, 2012). (Figure 1.10). Additionally, EVE and ERV sequences 

can be dated using the co-divergence between the two sequences that has 

taken place since integration. For example, in duplicated EVEs, or in the 

paired LTRs of ERVs, the sequences are identical upon integration. The 

pairwise distance between the sequences can be estimated, and used with 

the host rate of neutral substitution to estimate the date of duplication or 

integration (Gifford et al, 2008). However, recombination or gene 

conversion that alters LTR sequences can lead to artefactual results when 

estimating the age of ERV integrations (Johnson, 2015). These events can be 

resolved through phylogenetic analysis of ERV LTR sequences.  

 

These data can provide multiple insights into the timescale of 

host:virus co-evolution. They have shown that viruses are much older than 

molecular clock estimates provide –the slowest molecular clocks indicate that 

viruses are hundres, if not thousands of years old (Drummond, 2003). Not 

only do EVEs and ERVs contradict this estimate quite dramatically – ERV-L 

orthologs indicate that Retroviridae is at least 100 million years old (Lee et 

al, 2014), but they also allow for reassessment of the ages of viral groups 

previously thought to be quite modern. The discovery of lentivirus orthologs 

in the genomes of primates shows them to be at least 12 million years old 

(Gifford et al, 2008). Similarly, hepadnaviruses were thought to be relatively 

modern viruses, with an age in the order of thousands of years (Zhou and 
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Holmes, 2007), but orthologous hepadnaviruses in bird genomes 

demonstrates their age to be around 40 million years (Gilbert and Feschotte, 

2010). ERV and EVE sequence data has provided evidence that, despite rapid 

mutation, viruses have remained relatively conserved over deep time. This 

process is described as ‘idempotence’ – rapid evolution in a constrained 

mutational space leads to converged evolution to similar, conserved states. 

(Gifford, 2012; Holmes et al, 2011). Finally, the identification of dated 

EVEs can date the association of viruses with certain species groups (e.g. the 

association of snakes with circoviruses is at least 12 million years old (Gilbert 

et al, 2014).  

 

1.7.4 – Functional genomics analyses 

 

 In many instances, EVE and particularly ERV sequences have been 

shown to have been functionalised by the host. Typically this involves either 

the LTR based or epigenetic regulation of genes, or the direct contribution of 

an ERV/EVE ORF to the repertoire of host protein coding genes. (Mager and 

Stoye, 2015). ChIP-seq studies can discern regulatory factor binding and 

histone methylation state at or around ERV sequences to determine their role 

in gene expression and regulation. These studies rely on genome annotation 

of ERVs and EVEs, which in turn allow study of individual ERV loci and thus 

giving context to studies of ERV functionalisation. For example, Schmid et al, 

2010 find that STAT1 binds MER41 elements in humans. Chuong et al, 2016 

build on this to find that MER41 is a primate specific ERV LTR.  

 

 

Figure 1.11) ERV invasion leads to orthologous integrations (a). b) Shows 
how acquired EVE/ERV lineages are lost from the viral fossil record by 
lineage extinction prior to the present day.  
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1.7.5 – Study of gene evolution 

 

 There are numerous cases where ERV genes have been functionalised 

or ‘exapted’ by the host, with notable examples being fv1 and syncytin.  

Additionally, an exapted EVE ORF has also been found in parasitic wasps 

(Bezier et al, 2009), and endogenous bornavirus like elements are also under 

scrutiny for their potential role in host physiology (Kobayashi et al, 2016; 

Fujino et al, 2014).  Identification of potentially exapted ERV ORFs can be 

undertaken through screening of genome data for intact ORFs, analysis of 

discovered ORFs for signatures of selection, followed by in vitro analysis of 

the ORF. An example of this is the identification of percomORF – a retroviral 

Env ORF under purifying selection in spiny-rayed fish (Henzy et al, 2017).  

 

1.8 – Mining genome data for paleovirological insight 

 

Direct and indirect paleovirology studies rely on gene and ERV/EVE 

sequences. The largest source of gene and EVE/ERV sequence data is WGS 

data. (Hayward et al, 2013; Hayward et al, 2015; Katzourakis and Gifford, 

2010). Sequence data is accumulating at an enormous rate – not just whole 

genome sequence assemblies, but also transcriptome, ChIP-seq and 

metagenomics data. ERVs and EVEs are often not captured by conventional 

automated analysis pipelines. Additionally, information on gene dynamism 

and birth/loss has the potential to not be captured by annotation pipelines. 

(Braun et al, 2015). This presents a requirement for methods that allow the 

retrieval of ERV, EVE and ISG peptides in a manner that fully leverages the 

rapidly burgeoning bulk of genome sequence data to allow indirect and direct 

paleovirological analyses to be performed.  

 

1.8.1 – Similarity searches 

 

Similarity searching can be used to find sequences homologous to a 

query in a specified database (an organism WGS assembly, for example). 

(Lemey et al, 2009). It is frequently used in paleovirological analyses of 

ERVs, EVEs and ISGs. (Tristem et al, 2000; Katzourakis and Gifford, 2010; 
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Daugherty et al, 2016 – amongst many others). In some cases, similarity 

searches can be used to identify genome features that are not conserved (and 

thus cannot be directly identified using a similarity search), but are 

identifiable based on their positional relationships to more conserved 

sequence features (Figure 1.12c). This approach is particularly useful when 

characterizing genomic sequences such as endogenous viruses and 

transposons that have relatively predictable structures comprising compact 

arrangements of genes, and is relied upon by the RetroTector (Sperber et al, 

2009) and LTR-Digest (Steinbiss et al, 2009) ERV detection tools. 

 

Hidden markov models (HMMs) can be used in an iterative approach. 

Using HMMER  (Prakash et al, 2017), a set of query sequences is used to 

create a hidden Markov model (HMM). This in turn is used to query sequence 

databases further and find more distant homologies. Distant homologs are 

used to update the HMM. This process is repeated until no new sequences are 

found (Figure 1.12b). HMMs have been used to make inferences into virus 

evolution in deep time (Nasir and Anolles, 2015). However, HMMs tend to 

rely on intact peptide sequences or complete coding ORFs, making them less 

amenable to use in investigations involving ancient, non-functional DNA 

sequences.  

 

One of the most common methods of similarity searching is the basic 

local alignment search tool (BLAST) (Camacho et al, 2009). BLAST takes a 

user inputted query sequence and efficiently searches target databases for 

sequences exhibiting similarity (homology) to  the query (hits) (Figure 1.12a).  

BLAST based approaches are useful in that they do not rely on existing 

annotations, they can be used to study features that have not been captured 

by automated annotation pipelines, and rely less on the presence of a 

complete open reading frame (ORF). Examples include undiscovered genes, 

transposable elements, non-coding sequences, and any type of degraded 

genomic material. In the most basic example, similarity searches can be used 

to retrieve single sequences from genomic databases for further analysis – 

using the NCBI BLAST webserver, for example. Similarity searches can be 

augmented with other strategies to enable recovery of more distantly 

homologous sequences. Position specific iterated BLAST (PSI-BLAST) use 

iterative approaches to achieve this. (Altschul et al, 1997). In PSI-BLAST, 
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the first search is performed to identify related amino acid sequences in the 

target database. The MSA constructed using these sequences is used to create 

a position specific scoring matric (PSSM). The search then continues in a 

similar manner to HMMER as described above, halting when convergence is 

reached (no new sequences are discovered) (Figure 1.12b).  

 

BLAST-based approaches are especially useful when investigating 

genomic features that are not well annotated in public sequence databases, 

such as small RNAs, pseudogenes, transposable elements, highly dynamic 

gene families, ERVs and EVEs. These investigations often take the form of a 

heuristic process (i.e. a trial-and-error discovery process with loosely defined 

rules). Tools are required that not only implement automated screening 

pipelines, but also facilitate interrogation, analysis and interpretation of the 

data they produce. 
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Figure 1.12) Strategies for similarity searches of genomes based  
 
(a) Basic approach: a sequence probe is used to search target genomes, 
and the results are used to investigate; (i) copy number variation across 
species genomes; (ii) relationships between a set of aligned, homologous 
sequences are analysed with phylogenetics. 
(b) Iterative approaches to detect remote homologies: in position-
specific iterated BLAST (PSI-BLAST), an initial similarity search is 
performed to identify related sequences in the target database, these are 
used to derive a PSSM which in turn is used to search for more matches. 
This can lead to the detection of new homologs, which are used to update 
the PSSM for another round of screening. This process is repeated until 
derived, or until convergence (the point at which no new sequences are 
identified by searching). A similar approach is implemented in HMMR, but 
using a hidden Markov model (HMM) in place of a PSSM. 
(c) Using conserved sequences to detect and characterize novel genes, 
pseudogenes and mobile genetic elements: characterization of loci 
detected via similarity-based screening can sometimes lead to the 
identification of new probes for subsequent rounds of screening. In this 
instance, the expected structure of a retroviral genome is used to identify 
conserved features common to Retroviridae.  
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1.8.2 - Introduction to DIGS 

 

 The database integrated genome screening (DIGS) tool is an 

implementation of BLAST coupled with a relational database management 

system (RDBMS) that can be used to systematically screen organism genomes 

for sequences of interest. DIGS screens take on two main steps. (Figure 1.12), 

and require two key components (in addition to a genome database): the 

reference and probe libraries.  

 

The reference library is used to classify hits identified in the first 

round of screening. It consists of a FASTA file of sequences. The sequences in 

the reference library typically encompass the genetic diversity of the 

sequences under investigation. For example, in DIGS for ERVs using RT, we 

used a reference library that spanned the diversity of Retroviridae – Spuma-, 

Gamma-, and Betaretroviruses, as well as non-retroviral transposon 

sequences derived from gypsy, copia, and LINE1 elements. The inclusion of 

non-retroviral RT sequences was so that if searches for retroviral RT matched, 

Figure 1.13) Basic DIGS searching strategy involving 1) the searching of 
target databases with a subset of probes derived from a reference library. 
This is followed by the ‘genotyping’ of extracted hits by comparison to the 
reference library and recording in MySQL (2). This approach can be 
extended to perform a heuristic program of investigation based on analysis 
of results (green line). Figure provided by Rob Gifford. 
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however distantly, to non-retroviral elements, they would be classified as 

such. The probe library is used to screen the genomes under investigation. 

The probes are often derived from the reference library. Although the entire 

reference library can be used, a subset is usually sufficient. If the probe 

library consists of amino acid sequences, tBLASTn is used in BLAST searches. 

If nucleotide sequences, BLASTn is used. 

 

Screening proceeds in two rounds. First, BLAST is used to search each 

genome specified in the control file with each sequence contained in the 

probe library. The results of this screen are stored. In the second round of 

screening, each result of the first round of screening is BLASTed against the 

reference library. It is then classified based on the highest significant 

sequence match. This is called the ‘genotyping’ stage. The results of this 

second stage are stored in the results table (Figure 1.12). 

 

1.8.3 - Why use DIGS? 

 

In addition to utilising BLAST – a well-established tool, DIGS has a 

number of advantages. It can be used to implement automated screens in a 

heuristic investigation, screening the published body of genome data using 

BLAST to search for any sequences of interest: ERVs, EVEs or ISGs.  

 

This flexibility is reflected in the second ‘genotyping’ step of screening, 

where hits are classified according to the reference library. This allows the 

user to essentially create a bespoke screening programme. For example, if 

the user is interested in studying Betaretroviruses, they can compile a 

reference library encompassing a high diversity of betaretroviral sequences 

for more accurate classification. This reference library can be updated with 

newly acquired and analysed sequences, allowing for more fine-grained 

classification of the sequences of interest by repeating the ‘genotyping’ step 

of screening with the updated library. This can be used to discover 

endogenous viral diversity by implementing a ‘phylogenetic screening’ 

approach. 

 

The use of an RDBMS is a key feature of DIGS. BLAST reports are large 

and extensive. The amount of processing and organisation required for 
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analysis beyond the scope of manually searching the results of the web-tool is 

not trivial. In addition, web-based and command-line BLAST are limited in 

the data sets that can be interpolated with the results. Using an RBDMS is an 

easy way to store BLAST results – the database is interrogated using 

structured query language (SQL), allowing powerful and flexible 

interrogations and operations to be performed on the data. In addition, the 

use of auxiliary data tables allows the layering of multiple different 

datatypes onto DIGS results (discussed in Methods). 

 

1.9 - Research scope and aims 

 

Direct and indirect paleovirological analyses use ERV, EVE and ISG 

sequences to make discoveries of biological relevance to host:virus co-

evolution. These sequences can be retrieved from publicly available WGS 

databases using similarity-search based approaches. With the increasing ease 

of genome sequencing, genome data is accumulating at a rate faster than can 

currently be analysed. There is therefore unprecedented scope for mining 

genome data in heuristic investigations into host-virus co-evolution. The aim 

of this PhD was to study host:virus co-evolution by systematically mining 

genome sequence data. Accordingly, I chose to study endogenous viral 

elements, endogenous retroviruses, and interferon stimulated genes.  
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Chapter 2 – Materials and Methods 

 

2.1 - Materials  

 

2.1.1 – Sequence data 

 

Genomes 

 

Animal WGS data was retrieved from NCBI genomes. WGS assembly 

information, corresponding animal taxonomy, and usage in each chapter, is 

tabulated in Appendix 2.1.  

  

Datasets 

 

Host taxonomy data were retrieved from NCBI taxonomy and tabulated 

in Appendix 2.1. Functional genomics datasets were retrieved from the NCBI 

Gene Expression Omnibus (GEO) (Edgar et al, 2002). (Table 2.1). The 

functional genomics datasets were generated as part of ChIP-seq surveys of 

chromatin and genomic features in mouse embryonic stem cells. (see Table 

2.1). 

 

Probe and reference libraries 

 

Reference libraries for the ERV screens were derived from previously 

published studies of ERV and exogenous retrovirus (XRV) taxonomy (Tristem, 

2000; Benit et al, 2001; Herniou et al, 1999), as well as reviews and 

analyses of murine ERVs (Stocking, 2008). Probe libraries were extracted as 

subsets of the reference. (Table 2.2) Similarly, previous studies of 

Circoviridae taxonomy, as well as literature searches, were used to derive 

reference libraries spanning the established diversity of Circoviridae, as well 

as basal CRESS sequences. (Table 2.2). For the ISG screens, The probe 

consisted of the human orthologs of the core mammal gene in question, and 

the references consisted of the human paralogs and mammalian orthologs of 

that gene, retrieved from Biomart. (Smedley et al, 2015). 



	 62	

 

 

 
 
Table 2.1: Functional genomics datasets used in this thesis 
Cell type Factor ChIPped Citation GEO Accession 

mES TRIM28 dependent mH3K9 Rowe et al, 2013 GSE41903. 

E14 SOX2 Chen et al, 2012 GSE11431 

E14 OCT4 Chen et al, 2012 GSE11431 

E14 NANOG Chen et al, 2012 GSE11431 

E14 ESRRB Chen et al, 2012 GSE11431 

E14 SMAD1 Chen et al, 2012 GSE11431 

E14 E2F1 Chen et al, 2012 GSE11431 

E14 TCFCP2I1 Chen et al, 2012 GSE11431 

E14 CTCF Chen et al, 2012 GSE11431 

E14 ZFX Chen et al, 2012 GSE11431 

E14 STAT3 Chen et al, 2012 GSE11431 

E14 KIF4 Chen et al, 2012 GSE11431 

E14 c-Myc Chen et al, 2012 GSE11431 

E14 n-Myc Chen et al, 2012 GSE11431 

E14 GFP/control Chen et al, 2012 GSE11431 

E14 p300 Chen et al, 2012 GSE11431 

E14 Suz12 Chen et al, 2012 GSE11431 

mES p53 Li et al, 2012 GSE26360 

Murine BMM STAT1 Ng et al, 2011 
GSE33913  
 

 
	
Table	2.2	–	Reference	sequences	used	in	DIGS	screening	for	ERVs	and	EVEs	
 
Full name Abbrev Virus family Accession 

Beak and feather disease virus BFDV Circoviridae NC_001944 

Columbid circovirus CoCV Circoviridae NC_002361 

Starling circovirus StCV Circoviridae NC_008033 

Canary circovirus CaCV Circoviridae NC_003410 

Starling circovirus SvCV Circoviridae NC_008033 

Raven circovirus RaCV Circoviridae NC_008375 

Gull circovirus GuCV Circoviridae NC_008521 

Finch circovirus FiCV Circoviridae NC_008522 

Zebra finch circovirus ZfCV Circoviridae NC_026945 

Duck circovirus DuCV Circoviridae NC_007220 

Swan circovirus SwCV Circoviridae NC_025247 

Barbel circovirus BarbCV Circoviridae NC_015399 

Wels catfish circovirus SgCV Circoviridae NC_025246 

Porcine circovirus 1 PCV-1 Circoviridae NC_001792 

Porcine circovirus 2 PCV-2 Circoviridae NC_005148 

Canine circovirus 1 CfCV Circoviridae NC_020904 
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Mink circovirus MiCV Circoviridae NC_023885 

Mexican free-tailed bat circovirus TbCV Circoviridae NC_028045 

Porcine circovirus 3 PCV-3 Circoviridae NC_031753 

Cyclovirus VN isolate cs1  CyCV-VN Circoviridae KF031471 

Human cyclovirus VS5700009  CyCV-VS5700009 Circoviridae KC771281 

Bat circovirus isolate BtRp-CV-14/GD2012 BtRp-CV-14 Circoviridae KJ641714 

Human stool-associated circular virus NG13 CyCV-NG13 Circoviridae GQ404856 

Dragonfly cyclovirus 5 DfCyV-5 Circoviridae JX185426 

Circoviridae 5-LDMD-2014 5-LDMD-2013 CRESS NC_025710 

Circoviridae 11-LDMD-2014 11-LDMD-2013 CRESS NC_025716 

Circoviridae 13-LDMD-2014 13-LDMD-2013 CRESS NC_025717 

Circoviridae 16-LDMD-2014 16-LDMD-2013 CRESS NC_025720 

Avon-Heatchote Estuary Associated Virus 13 AHEaCV-13 CRESS NC_026639 

Avon-Heatchote Estuary Associated Virus 14 AHEaCV-14 CRESS NC_026641 

Avon-Heatchote Estuary Associated Virus 21 AHEaCV-21 CRESS NC_026648 

Calanoida sp. copepod associated circular virus COACV CRESS NC_027795 
Baboon Endogenous Retrovirus BaEV Retroviridae AHZZ01047987.1* 

Chimpanzee Endogenous Retrovirus 1 CERV-1 Retroviridae See GLUE project 
repo 

Chimpanzee Endogenous Retrovirus 2 CERV-2 Retroviridae 
See GLUE project 
repo 

Canis familiaris Endogenous Retrovirus CfERV Retroviridae See GLUE project 
repo 

Feline Leukemia Virus FeLV Retroviridae M18247.1 

Gibbon Ape Leukemia Virus GaLV Retroviridae M26927.1 

Human Endogenous Retrovirus T HERV-T Retroviridae AC022143.7* 

Koala Retrovirus KoRV Retroviridae AF151794.2 

Mus dunni Endogenous Virus MDEV Retroviridae AF053745.1 

Murine Leukemia Virus (Moloney) MLV Retroviridae J02255.1 

Type C Murine Retroviruslike DNA Sequence MuRRs Retroviridae X02487.1 

Reticuloendotheliosis Virus REV Retroviridae NC_006934 

Rhinolophus ferrumequinum Retrovirus RfRV Retroviridae JQ303225.1 

Human Endogenous Retrovirus W HERV-W Retroviridae AC005187.1* 

Endogenous Retrovirus 9 ERV-9 Retroviridae CT737353.7* 

Endogenous Retrovirus E ERV-E Retroviridae AL023280.1* 

Endogenous Retrovirus F Type C ERV-Fc Retroviridae See GLUE project 
repo 

Lemon Shark Endogenous Retrovirus RV-Lemonshark Retroviridae Y07810.1 

Komodo Dragon Endogenous Retrovirus 
RV Komodo 
Dragon Retroviridae Y07807.1 

Human Endogenous Retrovirus - I HERV-I Retroviridae M92067.1 

Human Endogenous Retrovirus F type B HERV-Fb Retroviridae AP001629.1* 

Human Endogenous Retrovirus X type A HERV-Xa Retroviridae AC114321.2* 

Walleye Epidermal Hyperplasia Virus WEHV Retroviridae AF133051.1 

Walleye Dermal Sarcoma Virus WDSV Retroviridae AF033822.1 

Human T-Cell Lymphotropic Virus 1 HTLV-1 Retroviridae J02029.1 

Human T-Cell Lymphotropic Virus 2 HTLV-2 Retroviridae M10060.1 

Bovine Leukemia Virus BLV Retroviridae K02120.1 

Rabbit Endogenous Lentivirus K RELIK Retroviridae FJ493031.1 
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Grey Mouse Lemur Prosimian Immunodefiency 
Virus 

pSIVgml Retroviridae FJ461357.1 

Human Immunodeficiency Virus type 1 HIV -1 Retroviridae K03455.1 

Feline Immunodefiency Virus FIV Retroviridae M25381.1 

Avian Leukosis Virus ALV Retroviridae M37980.1 

Human Endogenous Retrovirus K, type HML2 HERV-K HML2 Retroviridae KJ155476.1* 

Human Endogenous Retrovirus K, type HML4 HERV-K HML4 Retroviridae AC010617.8* 

Human Endogenous Retrovirus K, type HML5 HERV-K HML5 Retroviridae AC068723.5* 

Human Endogenous Retrovirus K, type HML6 HERV-K HML6 Retroviridae AC026775.6* 

Human Endogenous Retrovirus K, type HML9 HERV-K HML9 Retroviridae AC091849.2* 

Human Endogenous Retrovirus K, type 14C HERV-K14C Retroviridae AC069306.6* 

Human Endogenous Retrovirus K, type HML8 HERV-K HML8 Retroviridae AC016955.15* 

Kangaroo Endogenous Retrovirus KERV Retroviridae AF044909.1 

Python molurus Endogenous Retrovirus pyERVmol Retroviridae AF500296.1 

Mouse Mammary Tumour Virus MMTV Retroviridae M15122.1 

Jaagskiete Sheep Retrovirus JSRV Retroviridae M80216.1 

Mason Pfizer Monkey Virus MPMV Retroviridae M12349.1 

Mus D Type Endogenous Retrovirus 1 MusD Retroviridae AF246632.1 

Oryctolagus cuniculus Endogenous Retrovirus H RERV-H Retroviridae AF480924.1 

Endogenous Retrovirus L ERV-L Retroviridae Y12713.1 

Murine Endogenous Retrovirus L MuERV-L Retroviridae AJ233590.1 

Human Endogenous Retrovirus S HERV-S Retroviridae  AC004385.1* 
Taenniopygia guttata Endogenous Retrovirus 
Type F TgERV-f Retroviridae XM_012576299.1 

Mallard Retrovirus RV-Mallard Retroviridae See GLUE project 
repo 

Alligator Retrovirus RV-Alligator Retroviridae See GLUE project 
repo 

Human Endogenous Retrovirus R type B HERV-Rb Retroviridae AC004045.1* 

Opossum Retrovirus RV-Opossum Retroviridae AJ236123.1 

Endogenous Retrovirus P HERV-P Retroviridae AC002069.1* 

Apteryx australis endogenous virus RV-Kiwi Retroviridae AY820065.1 

Zebrafish Retrovirus ZFERV Retroviridae FO704649.2 

Snakehead Retrovirus SNRV Retroviridae U26458 

Mys Transposable Endogenous Retrovirus mysTR Retroviridae DQ139770.1 

Equine Foamy Virus EFV Retroviridae AF201902.1 

Feline Foamy Virus FFV Retroviridae Y08851.1 

Simian Foamy Virus SFV1 Retroviridae NC_001364.1 

 
 

2.1.2 – Software and tools 

 

Genome screening 

 

 The database-integrated genome screening (DIGS) tool (version 1.1) 

was used to perform systematic screening of whole genome sequence 

assemblies. (Zhu et al, 2018) 
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Alignment and phylogenetic analysis 

 

 MUltiple Sequence Comparison by Log-Expectation (MUSCLE) is 

multiple sequence aligner for both nucleotide and protein sequences. (Edgar, 

2004). MUSCLE v3.8.31 created all multiple sequence alignments (MSA) used 

in this thesis. MSAs were then manually edited using AliView. (Larsson et al, 

2014). 

 Substitution models were estimated using the ModelFinder 

implementation of the IQ-TREE suite (Kalyaanamoorthy et al, 2017). IQ-

TREE-omp was used to perform phylogenetic analysis of ERV and EVE peptide 

sequences, with support evaluated using 1000 ultrafast bootstrap (UFBOOT) 

replicates (Minh et al, 2013).  

 

Annotation and analysis of ERV and EVE sequences 

 

 ERV and EVE sequences were recovered from host genomes and used to 

generate MSAs. Known structural features were searched for in the 

alignments.  LTRharvest and LTRdigest are implemented utilities of the 

GenomeTools package. GenomeTools v1.5.8 was applied in this study. 

LTRharvest is a de novo detection tool designed specifically for LTR 

retrotransposons (Ellinghaus, et al 2008). LTRdigest is the annotation tool 

for characterising the internal coding region defined by LTRharvest (Steinbiss 

et al, 2009). The domain detection function of LTRdigest is performed by 

using phmmer, a program of the HMMER package. 

 Phylogenetic analysis using parsimony (PAUP) (Swofford, 2002) was 

used to calculate pairwise distances between LTRs for LTR-based dating of 

ERV sequences.  

 DFAM (Hubley et al, 2015) was used to search for repetitive elements 

in genomic sequences. 

 

Functional genomics analyses 

 

Bedtools is a set of utilities that are used for a wide-range of genomics 

analysis tasks (Quinlan and Hall, 2010). Bedtools allows the user to intersect, 
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merge, count, complement and shuffle genomic intervals in various formats, 

e.g. BAM, BED, GFF/GTR/VCF. 

UCSC Liftover (Kent et al, 2018) was used to map locus coordinates 

between different genome builds.  

CCG-ChIP-seq is a suite of tools used for analysing the results of ChIP-

seq experiments. It was used to plot enrichment of genomic features (i.e. 

transcription factor binding) at ERV loci. (Ambrosini et al, 2016).  

The genome regions enriched for annotations (GREAT) webtool was 

used to assess uploaded tracks of genomic features for enrichment close to 

protein coding genes (McLean et al, 2010). 

 

Collation of ERV and EVE sequences and auxiliary data 

 

Genes Linked by Underlying Evolution (GLUE) is a bioinformatics 

environment designed for building projects of alignments linked by 

evolutionary hypotheses. It was used to store and manipulate all alignments 

in this thesis.  In addition, it was also used to manage and leverage tables of 

auxiliary data (i.e. genomic features). (Singer et al, 2018).  

 

Locus analysis 

 

 The UCSC and NCBI genome browsers are resources that we used for 

interactively visualising genomic data. (Kent et al, 2002).  

 Genomicus (Louis et al, 2013) is a webtool for visualising shared 

genomic organisation across animal species.  

 

Other software and tools 

 

 Geneious (Kearse et al, 2012) is an all-purpose platform for the 

organisation and analysis of sequence data.  

 EMBOSS (Rice et al, 2011) is a web suite of tools for the analysis of 

sequence data. Of EMBOSS, Dottup and Seqret are tool used for the 

visualisation of pairwise alignments, and the conversion of sequence file 

formats respectively. 

 Timetree (Hedges et al, 2015) is a public knowledge-base for 

information on the evolutionary timescale of life. Data from thousands of 
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published studies are assembled into a searchable tree of life scaled to time. 

The data can be searched to produce taxa divergence times, timelines for 

speciation events for individual taxa, and to produce time calibrated 

phylogenies of the evolution of life.  

Structured query language (SQL – pronounced ‘sequel’) is a 

programming language for retrieving and operating on data held in relational 

databases.  

Perl and Python are high level, object oriented programming 

languagea. In a bioinformatics context, they are often used to script basic 

functionality, as well as perform more in-depth analyses. All in-house scripts 

used in these studies were written in Perl 5 and Python 2.7.  

R is a statistical and graphing programming language commonly used 

for data analytics and graphing. 

 

2.2 – Methods 

 

2.2.1 – DIGS 

 

DIGS links BLAST (Camacho et al, 2009) with the MySQL RDBMS. It can 

be used to implement systematic genome screens in a heuristic manner. DIGS 

screens, at a minimum, employ a reference library, a probe library, and a 

screening target (organism WGS). The reference library is used to classify hits 

identified in the first round of screening. It consists of a FASTA file of 

sequences. The sequences in the reference library typically encompass the 

genetic diversity of the sequences under investigation. For example, in DIGS 

for ERVs using RT, we used a reference library that spanned the diversity of 

Retroviridae – Spuma-, Gamma-, and Betaretroviruses, as well as non-

retroviral transposon sequences derived from gypsy, copia, and LINE1 

elements. The inclusion of non-retroviral RT sequences was so that if 

searches for retroviral RT matched, however distantly, to non-retroviral 

elements, they would be classified as such. The probe library is used to 

screen the genomes under investigation. The probes are often derived from 

the reference library. Although the entire reference library can be used, a 

subset is usually sufficient. If the probe library consists of amino acid 

sequences, tBLASTn is used in BLAST searches. If nucleotide sequences, 

BLASTn is used. 
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Screening proceeds in two rounds. First, BLAST is used to search each 

genome specified in the control file with each sequence contained the probe 

library. The results of this screen are stored in the database. In the second 

round of screening, each result of the first round of screening is BLASTed 

against the reference library. It is then classified based on the highest 

significant sequence match in the reference library. This is called the 

‘genotyping’ stage. The results of this second stage are stored in the 

digs_results table (Figure 2.3). 

 

Searches in DIGS can take on an iterative aspect. The reference library 

can be updated to reflect analysis performed on sequences found in previous 

searches. For example, if searching for ERV sequences in an organism with an 

undescribed ERV complement: the gulper eel (used here as an example), the 

hits in the digs_results table will correspond to the previously described 

sequences in the reference library. Although a good ‘first-pass’ estimation of 

ERV diversity, further analysis is needed for fine-grained classification of 

ERVs in the gulper eel. Hits are retrieved from the database and classified 

with phylogenetic analysis. The classified hits are added to the reference 

library. The contents of the results database can be put through the second 

genotyping stage of DIGS screening again. Sequences bearing significant 

similarity to the new addition will be updated as such. This process can be 

repeated numerous times until the contents of the results database reflects 

more properly the contents of the genomes under investigation. Using this 

iterative phylogenetic screening approach, DIGS can be used in heuristic 

investigations of genomes (Figure 2.2). 

  

A key aspect of DIGS is the use of relational databases. Relational 

databases are information storage frameworks that incorporate shared 

relations between stored pieces of information (Figure 2.3). These 

relationships are based on unique keys that are shared between different 

data objects in a database (Figure 2.3). Relational databases use tables to 

store data. The tables are arranged in columns. The database consists of 

multiple tables that share common ‘keys’. These shared keys comprise the 

‘relations’ in the relational database. (Figure 2.3). Data can be retrieved 

from the database by searching for specific columns within a table, for 
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example, to retrieve all data corresponding to ‘MuERV-L’ from the organism 

‘Mus musculus’. 

 

Relational databases have a number of features that make them useful 

for genome mining. Firstly, relational databases are capable of storing and 

managing millions of rows of data. In a bioinformatics context, NCBI 

taxonomy and ENSEMBL are based on MySQL relational databases. Screening 

many species groups with large numbers of sequences can produce many 

hundreds of thousands of rows of data – an RBDMS offers a convenient and 

tidy way to store such large datasets. Relational databases offer methods to 

retrieve data from these large datasets based on properties. For example, 

one can easily retrieve all data pertaining to a specific species, gene type, or 

any other data objects produced in DIGS screening, as the data in the DIGS 

screening database is essentially list of BLAST reports. Similarly, the data can 

be flexibly interrogated by joining the digs_results database with user-

defined auxiliary data tables. For example, a data table containing virus 

taxonomy information can be joined (using a shared key) to the digs_results 

table to retrieve results that only correspond to a specific virus genus, family 

or order. Auxiliary data tables can be added at the user’s leisure, enabling 

the interpolation of a diverse range of datasets. Finally, SQL commands, data 

can easily be summarised into tables. For example, the breakdown of ERV 

sequences by taxonomy in a given species can be achieved, to give detailed 

data summaries. 

 

 

 
 

 
 

Figure 2.1 – Genome screening in DIGS. Details the searching of target DBs 
with probe sequences, and subsequent classification. Figure provided by Dr 
Rob Gifford. 
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Figure 2.2  -Phylogenetic screening with DIGS. Details the search of target 
genome databases with a probe set derived from a more comprehensive 
reference sequence library (1), and subsequent ‘genotyping’ via comparison 
of hits to the reference library (2). Then, sequences are classified using 
phylogenetic analysis and added to the reference library (3). (1) (2) and (3) 
are then repeated. Figure provided by Dr Rob Gifford. 
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Figure 2.3:  Entity-Relationship diagram of MySQL database generated by 
the DIGS tool. 
For each DIGS screening project, the DIGS tool creates a new schema in the 
MySQL database. Each schema has four tables: BLAST_chains, Digs_results, 
Seaches_performed, and Active_set. Crossbars show the range of information 
section in the table; the relationship between each table are linked by 
relational arrows. Figure kindly provided by Dr Henan Zhu. 
 

2.2.2 - GLUE 

 

 All of the ERV and CVe sequences, alignments and metadata were 

collated in GLUE. GLUE is an open, data-centric bioinformatics environment 

for organising and leveraging sequence data (Singer et al, 2018). The data 

are published as online repositories at: 

https://github.com/giffordlabcvr/Retroviridae-GLUE  

and  https://github.com/giffordlabcvr/DIGS-for-EVEs 

 

2.2.3  - Host evolutionary timelines 

 

 Timelines and phylogenies of host evolution were retrieved from the 

Timetree database. Information gained from analyses in this thesis were then 
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plotted on the time-calibrated phylogenies. For example, where an orthologs 

was established, it was plotted onto the host phylogeny for that lineage.  

 

2.2.4 – Recovery of proviruses 

 

Where ERV lineages lacked representative proviral sequences, the 10kb 

regions flanking the RT hit were extracted using blastdbcmd wrapped in a 

custom perl script. The sequences were analysed using ORFfinder, manual 

and local sequence alignment, HMMs and positional homology (the 

identification of sequence features in reference to the RT hit) to identify 

conserved features common to retroviral genomes. Where possible, LTRs 

were manually identified using sequence alignment visualised in DOTTUP 

(Rice et al, 2000), followed by identification of 5’/3’ TG/CA motifs, target 

site duplications (TSDs) and U3, R and U5 regions.  

 

2.2.5 – Provirus screening and consolidation 

 

 Retroviral ORFs and LTRs were derived from representative provirus 

sequences of the murine ERV lineages analysed in this thesis, and used to 

create probe and reference libraries. These libraries were used in DIGS 

screens of the murine genome. Provirus sequences were identified using the 

‘consolidate’ subroutine of DIGS. Consolidation involves the merging of 

adjacent or overlapping DIGS hits based on proximity and significance into 

proviral loci. Briefly, hits are ordered by chromosome, position, and 

orientation, and merged if they follow the structure LTR-Gag-Pol-(Env)-LTR 

(where Env is optional) and are < 10,000 nucleotides in length. Consolidated 

proviruses and solo LTRs were extracted using blastdbcmd and entered into 

MSAs in the GLUE framework. 

 

2.2.6 – Sequence analysis 

  

 Provirus sequences were analysed for sequence features (ORFs, genes, 

non-coding features) using LTRDigest. LTRdigest uses phmmer to assess the 

presence of protein motifs and domains. Additionally, it uses similarity 

searches within the regions bound by LTRs to search for non-coding features 
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(LTR sections, PBS and PPT). Furthermore, retroviral sequences were 

investigated through alignment to annotated reference sequences in GLUE. 

 

2.2.7 – Pairwise LTR dating 

 

Non recombinant proviral LTRs were used in pairwise-LTR dating. Bash 

scripts were used to each pair of LTRs for each provirus into alignments 

which were then aligned using MUSCLE. The alignments were converted into 

NEXUS format in EMBOSS Seqret (Rice et al, 2000), appended with a NEXUS 

block stipulating the appropriate model of evolution (GTR+G4), and the 

pairwise distance calculated using PAUP (Swofford , 2002). This output was 

used to calculate the approximate date of integration for each pair of LTRs 

(representing a provirus). LTRs are identical upon provirus integration, upon 

which they become subject to the host background rate of substitution 

(4.5x10-9 substitutions per year, for the mouse (Waterston  et al, 2002) . As 

such, the age of the provirus can be calculated using the formula: 

Approx. integration	date = 012	34567589	:58;4<=9
>?8;	<9@;64A	8@B8;5;@;5?<	64;9 /2  

 

2.2.8 – Enrichment of genomic features at ERV loci 

 

  Enrichment of ERVs close to protein coding genes was assessed 

by uploading annotation tracks of murine ERVs to GREAT as ‘test features’ for 

assessment of enrichment across the whole murine genome (build mm10). 

GREAT calculates statistics by associating genomic regions with nearby genes 

and applying the gene annotations to the regions. Association is a two-step 

process. First, every gene is assigned a regulatory domain. Then, each 

genomic region is associated with all genes whose regulatory domain it 

overlaps. In this instance, we selected parameters that searched for the 

single nearest gene to an ERV locus within 1000kb, including curated 

regulatory domains (where experimental demonstration of gene regulation 

extends the regulatory domain to be beyond the 1000kb parameter). Results 

were downloaded, parsed, and tabulated.  

 

When assessing murine ERV loci for enrichment of transcription factor 

binding, ChIP-seq datasets were mapped to the mm9 build of the Mus 



	 74	

musculus genome using UCSC Liftover. The converted tracks, along with ChIP-

seq BED files were uploaded to the CCG-ChIP seq analysis web server and 

analysed using ChIP-cor, which reads ChIP-Seq tag positions/annotation files 

and generates a positional correlation histogram between the two annotation 

datasets, showing the abundance of the 'target' feature as a function of the 

distance from the 'reference' feature. Range (distance from ‘0’ from the ERV 

centre) was given as 10kb, window width (intervals into which counts are 

binned) was given as 1000, and the results were globally normalised, so that 

the enrichment as plotted on the histogram represented the value relative to 

the background level of binding for the genome (mm9). As such, the value on 

the histogram effectively represents the fold binding increase vs genome 

background. The raw data used to build the histograms were entered into 

Prism, and plotted. For clarity, only factors with a fold enrichment of five or 

greater were included in the plots. 

 

2.2.9 – Chromosomal distribution of ERVs 

 

Chromosomal distribution of ERVs was calculated by deriving murine 

chromosome lengths using bash script. The fraction of each chromosome of 

the genome was calculated (by dividing the chromosome size by the total 

genome size). The expected number of ERV integrations per chromosome was 

calculated by multiplying the total number of ERV integrations with the 

chromosome fraction, as done in a previous study for VL30 (Markopoulos et 

al, 2016). The chi-squared test was used to analyse the chromosomal 

distribution of VL30 elements by comparing the observed with the expected 

number of Murine ERV elements, assuming a random insertion model. 

 

2.2.10 – Orthologous ERV and EVE integrations 

 

 Sequences for which >100bp of unambiguous (i.e. >80% identity) 

genomic flanking sequence were identified in sister taxa to the host  were 

considered orthologous. In addition, DOTTUP was used to create dotplots of 

aligned genomic regions. The dotplots were used to visualise flanking 

genomic regions to in supporting evidence of orthology. For example, where 

ambiguous genomic flanking regions existed but the alignment of the greater 
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genomic context supported orthology. Species divergence times were 

extracted from the Timetree database. (Hedges et al, 2015).  

 

2.2.11 – CVe sequence analyses 

 

 CVe were considered endogenous where >100bp of flanking sequence 

could be identified. The presence of sequence degradation (following lengthy 

residence in the host germline) was used as supporting evidence.  

 

2.2.12 – PCR of CVe-Pseudomyrmex – performed by Peter Flynn 

 

 Genomic DNA was extracted from ant tissue samples following the 

Moreau protocol (Moreau, 2014) and a DNAeasy Blood & Tissue Kit (Qiagen). 

PCR amplification of CVe-Pseudomyrmex was performed using two sets of 

primer pairs designed with Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/), 

each comprising one primer anchored in the CVe sequence, and another 

anchored in the genomic flanking sequence. Primer Pair 1 amplified a 

sequence that was 694 bp long and Primer Pair 2 amplified a sequence that 

was 286bp long. Primers were tested using illustra PuReTaq Ready-To-Go PCR 

Beads (GE Lifesciences). A temperature gradient PCR was performed to assess 

the optimum annealing temperature for the specific primer pairs. PCR was 

then performed using the genomic DNA ant extractions. The PCR conditions 

for this run were: an initial denature stage of 5 minutes at 95°C, 30 cycles of 

30 seconds denaturing at 95°C, 30 seconds annealing at 49.7°C for Primer 

Pair 1 and 62°C for Primer Pair 2, and an extension at 72°C for 1 minute, 

then after 30 cycles a final extension at 72°C for 5 minutes. Each run 

included a negative control. Amplification products (800-1000bp) for each 

PCR reaction were excised and run on agarose gels. Bands of the expected 

size were excised, purified and sequenced via Sanger sequencing. 

 

2.2.13 – ISG screen design 

 

 The ISG reference libraries were compiled on an individual basis – for 

each gene, all known human paralogs and mammalian orthologs were 

downloaded, suffixed with their common gene name, so that the FASTA ID 

consisted of “>ENSEMBL-ID_COMMON-NAME”. The probe for each gene 
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consisted of the longest human isoform of each gene, retrieved from 

ENSEMBL using BioMart. The genes consisted of the ‘core mammal’ ISG set as 

described by (Shaw et al, 2017). (See chapter 5 for more details). Each 

mammalian genome as listed in Appendix 2.1 was screened using DIGS. Each 

individual gene was allotted an individual database. Unlike previous screens, 

the searches did not take on an iterative ‘phylogenetic screening approach’, 

and ceased after the first round of DIGS screening. 

 

2.2.14 – ISG data processing and display 

 

 Each gene was subjected to a bitscore cutoff that returned all exons of 

that gene from the human genome. The data were normalised to the median 

count for each gene in each species, to get a normalised count in each 

species for each gene. The resulting normalised data were saved as a tab-

delimited text file. To generate a heatmap of normalised ISG counts across 

Mammalia entered into gitools (version 2.3.1) (http://www.gitools.org/). The 

data were ordered on the Y axis by ‘tree order’ as established through 

Timetree (Hedges et al, 2015). The linear colour scale (Parameter = Value = 

Colour code) was set as Minimum = 0.1 = FEFDFD, Middle = 5 = FEEE00, 

Maximum = 10 = FF0000, Empty = NULL = A5A4A4. Spurious results for HLA 

were deleted from the heatmap. Additionally, the data table was entered 

into Tableau Professional Edition and published in Tableau Public for 

interactive visualisation at 

(https://public.tableau.com/profile/tristan.dennis#!/vizhome/ISG_0/Sheet1?

publish=yes) 

 

2.2.15 – Shared genomic organisation 

 

 Shared genomic organisations were studied using the UCSC and NCBI 

genome browsers in concert with BLAST and BLAT. Query ERV and ISG 

sequences were BLASTed against host genomes, and the location of the 

resulting hits opened in the corresponding genome browser. In addition, 

Genomicus was used to survey gene organisation across multiple mammalian 

species.  
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Chapter 3 – Discovery and characterisation of murine endogenous 

retroviruses 

 

3.1 – Introduction 

 

Retroviruses (family Retroviridae) are enveloped viruses that infect 

vertebrates, causing neoplastic and immunosuppressive disease. All 

retroviruses are characterized by a replication strategy in which the viral RNA 

genome is converted to DNA and stably integrated into the genome of the 

host cell (a form referred to as ‘provirus’). Retroviral infection of germline 

cells (i.e. sperm, eggs or early embryo) can lead to vertical inheritance of 

proviral loci as host alleles termed endogenous retroviruses (ERVs). 

Mammalian genomes typically contain thousands of ERV loci, reflecting a 

long-term co-evolutionary relationship with retroviruses (Gifford et al, 

2003). 

 

ERV sequences in mammalian genomes typically group into 

phylogenetically distinct lineages (sometimes referred to as ‘families’) that 

are thought to have arisen from a small number of germline colonisation 

events in which integration of proviral sequences into the germline has been 

followed by copy number expansion, either through reinfection of germline 

cells, or retrotransposition within them (Ribet et al, 2008; Belshaw et al, 

2007). A subset of ERV insertions have been genetically fixed in the host 

germline, and these sequences constitute a kind of genomic ‘fossil record’ 

from which the long-term evolutionary history of retroviruses can be 

inferred. In addition, recent studies have demonstrated that ERVs sequences 

have often been co-opted or exapted by host genomes, and this has exerted a 

profound impact on mammalian evolution and biology (de Parseval and 

Heidmann, 2005; Gifford et al, 2013). Characterising ERVs can shed light on 

the biology of ancient retroviruses, and reveal insights into the co-

evolutionary processes through which ERVs have shaped host genomes.  

 

The mouse (Mus musculus musculus) is a small mammal in the diverse 

order Rodentia. The mouse is one of several mammalian species that have 

formed a synanthropic relationship with humans (Boursot et al,1993), and as 
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a result have been introduced to every continent barring Antarctica. The 

small size and short generation time of the mouse have also led to its 

widespread adoption as a model organism for mammalian biology, disease 

and genetics, and has led to the production of a richly annotated reference 

genome sequence. The genome of the C57BL/6J mouse was the second 

vertebrate genome to be sequenced after that of the human (Waterston et 

al, 2002). In addition to a high-quality reference sequence, numerous 

functional genomics, and other kinds of genetics studies have been 

performed on the mouse, and many inbred variants have been created. In 

addition, the genomes of additional inbred mouse strains, and other species 

in genus Mus have recently become available (Adams et al, 2015).  

 

The mouse reference genome was generated via Sanger sequencing, 

reducing biases against the inclusion of repetitive elements (like ERVs) in the 

assembly (as exist for reference assemblies based on short-read sequencing). 

Sanger, and long-read HTS technologies generate long stretches of sequence 

that often overlap the repetitive element, allowing it to be placed in the 

genome assembly. By contrast, short-read sequencing technologies generate 

reads for repetitive sequences (such as ERVs) that may map to many regions 

of the genome (if the ERV is commonplace), making it difficult to place with 

confidence into the finished assembly. (Gordon et al, 2016; Keane, 2016, 

personal communication). A large amount of information on host:ERV co-

evolution has been gathered through in silico and translational studies in the 

mouse, especially regarding the regulatory role of ERVs in development and 

immunity (MacFarlan et al, 2012; Rowe et al, 2013; Chuong et al, 2016; 

Schmid et al, 2010). Despite this, the discovery and characterisation of 

murine ERV lineages is largely based on well-characterised lineages identified 

through hybridisation and in vitro studies – for MLV and GLN, for example 

(Frankel et al, 1989; Itin and Keshet, 1986), or through single-lineage 

analysis using similarity searches (Bromham et al, 2001; Xhao et al, 1999). 

Such investigations have focussed largely on individual lineages. Large scale 

investigation of ERVs in the murine genome has usually involved using 

approaches that characterise only intact loci (McCarthy et al, 2004), or has 

used the RepBase database of repetitive elements (Jurka et al, 2005). 

RepBase, although comprehensive, uses numerical designations and 

classification that do not necessarily reflect the evolutionary provenance of 
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the element in question (Mager and Stoye, 2015).  There is therefore scope 

for the discovery and evolutionary analysis of ERVs in the mouse using a 

‘phylogenetic screening’ approach. This approach, in Homo sapiens, 

identified numerous ancient ERV lineages (Tristem et al, 2000). Thus, the 

aim of this chapter was to identify novel murine ERV lineages through a 

comprehensive survey of murine ERV diversity using DIGS. Subsequently, I 

wished to analyse recovered murine ERV sequences to make insights into 

host:ERV co-evolution.  

 

3.2 - Results 

 

3.2.1 - Assessment of murine ERV diversity using phylogenetic screening 

 

In order to assess murine ERV diversity, I used DIGS to perform 

phylogenetic screening with ERV RT peptides. To gain an initial estimate of 

the number of distinct ERV lineages in Mus musculus, the clustering of 

aligned murine ERV RTs (Appendix 3.1) relative to exogenous retroviruses 

(XRVs) and ERVs from non-murine species was examined. ERV lineages arise 

when germline invasion is followed by ERV copy number increase through 

retrotransposition or reinfection. Since most members of an ERV lineage are 

separated by relatively few rounds of viral replication, they tend to group 

relatively closely with one another in phylogenies (Tristem et al, 2000). 

Therefore, well-supported clades of closely-related murine ERVs that are 

separated from one another in RT phylogenies by ERVs or XRVs that occur in 

non-rodent hosts can generally be assumed to have arisen in independent 

germline invasion events. Based on the RT phylogeny, thirteen distinct ERV 

lineages can be distinguished in the Mus musculus genome (Figure 3.1). The 

RT phylogeny disclosed three main clades (I-III), corresponding to the three 

major divergences in the evolution of Retroviridae (Llorens et al, 2008). 

Endogenous representatives of each clade were identified in the murine 

genome. Seven of the thirteen ERV RTs fall within the established diversity of 

two exogenous genera, Gammaretrovirus (n=4) and Betaretrovirus (n=3) 

(Figure 3.1). The remaining six represent retroviruses for which closely-

related exogenous representatives have not yet been identified. 
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Twelve of the seventeen ERVs identified by my analysis have been 

reported previously. Eight of the twelve previously reported ERVs grouped 

robustly within the clades defined by exogenous Gamma- and 

Betaretroviruses. The remaining four include two groups (IAP and MysERV) 

that cluster with clade II (Betaretrovirus-related) ERVs, one (MuERV-L) that 

clusters with clade III (Spumavirus-related) ERVs, and one (MuERV-Fc) that 

clusters with the basal clade I (Gammaretrovirus-related) ERVs.  Five of the 

ERVs identified in this analysis have not previously been described in mice. 

Novel and previously described murine ERVs were tabulated in Table 3.1. In 

total, I identified 4297 RT sequences in the murine genome.  

Table 3.1: Murine ERV RT counts retrieved by phylogenetic screening of the 
murine (mm10) genome. RT counts are broken down by genus, with the 
lineage, accession (if applicable) and first description (if applicable). 

 

 I named new sequences based on the genus, established or provisional 

(Gifford, unpublished) in which they grouped. Three previously unreported 

ERVs were identified that grouped robustly within the clades defined by 

exogenous Gamma- and Betaretroviruses. The two novel gammaretroviruses 

were named Mus.Gamma.1 (Mus.g1) and Mus.Gamma.2 (Mus.g2), and the 

novel betaretrovirus as Mus.Beta.1 (Mus.b1). Additionally, two new ERVs 

were reported that did not group within the established diversity of 

exogenous genera. These were one clade I (Gammaretrovirus-related) ERV: 

Mus.Iota.1 (Mus.i1, HERV-I related), and one clade III ERV, referred to here as 

Mus.Sigma.1 (Mus.s1, HERV-S related). Additionally, I identified a murine ERV 

Genus Lineage Accession First described      RT 
Lambda MuERV-L Y12713 Cordonnier et al, 1995 846 

Sigma Mus.Sigma.1 This study This study 1 
Zeta MuERV-Fc This study Diehl et al, 2016 118 
Iota Mus.Iota.1 This study This study 1 
Gamma MMERV AC005743 Bromham et al,  2000 546 

Gamma MuRRS X02487 Schmidt et al, 1985 209 
Gamma GLN AC136922 Itin and Keshet, 1986 93 

Gamma MLV NC_001501 Gross, 1953 60 

Gamma MURVY X87639 Hutchison and Eicher, 1989 56 

Gamma Mus.Gamma.1 This study This study 3 

Gamma MuERV-C AF049340 Zhao et al 1999 3 

Gamma Mus.Gamma.2 This study This study 1 
Beta Mus.Beta.1 This study This study 18 
Beta  MMTV M15122.1 Green et al 1946 18 
Beta-like IAP A Dalton et al 1961 1923 

Beta-like MusD AF246633 Mager et al 2000 341 
Beta-like MYSERV NT_165681 Wichman et al 1985 60 
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grouping robustly with ERV-Fc. (Figure 3.1). Initially, I called it Mus.Zeta.1, 

and referred to it during this analysis. Upon publication of a study of ERV-Fc 

evolution in mammals by Diehl et al, 2016, I found that RT sequences 

recovered in their study matched those I recovered for Mus.Zeta.1. Thus, I 

changed the name of Mus.Zeta.1 in this study to MuERV-Fc in order to match 

their nomenclature.  

 

	
	
Figure	3.2.1	–	The	mouse	genome	contains	13	phylogenetically	distinct	ERV	lineages.	
Phylogenetic	relationships	between	exogenous	and	endogenous	retroviral	RT	peptide	
sequences.	The	ML	tree	was	produced	under	the	rtREV+G4	model,	and	support	
evaluated	using	1000	ultrafast	bootstrap	(UFBOOT)	replicates.	UFBOOT	support	of	
95%	indicated	by	asterisk	(*).	Scale	bar	indicates	substitutions	per	site.	Coloured	
brackets	indicate	established	and	provisional	retroviral	genera.	Murine	ERV	lineages	
are	highlighted	in	red. 
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3.2.2 - Identification of additional murine ERV lineages 

 

In the process of recovering representative proviral genome structures 

I determined that some of the thirteen lineages identified by our initial, RT-

based analysis were likely to be derived from two or more independent 

germline invasions by relatively closely-related viruses, rather than a single, 

discrete event. This was indicated firstly by RT phylogenies, which revealed 

well-supported subclade structures within murine ERV lineages, and secondly 

by LTR sequences, which often differed (i.e. could not be aligned) between 

members of the subgroups.  

 

Longer (~750 amino acid) Pol sequences were derived from the 

representative genomes, aligned, and used to reconstruct the evolutionary 

history of the Gammaretrovirus and Betaretrovirus genera. The resulting 

phylogenies were used in concert with LTR sequences to estimate the number 

of distinct ERV lineages. ERVs with different LTRs were assumed to be 

derived from different germline invasion events. 

 

The Gammaretrovirus Pol phylogeny (Figure 3.2) displayed five 

distinct murine ERV lineages. Murine ERVs clustered robustly in a clade 

containing predominantly murine gammaretroviruses. Three non-murine 

lineages emerged from the clade of predominantly murine viruses (KwERV, 

PERVA/C and KoRV/GaLV). (Figure 3.2) 

 

Occupying the most derived position in the tree was the monophyletic 

sub-clade containing MMERV, Mus spretus endogenous retrovirus (MspERV), 

Mus dunni endogenous retrovirus (MdEV), Mus caroli endogenous retrovirus 

(McERV) and MURVY). These ERVs are derived from four species of mouse. 

These sequences, with the exception of MURVY, follow the host phylogeny for 

genus Mus (Figure 3.2). This pattern suggests that this clade is either: a 

series of orthologous ERVs (Johnson and Coffin, 1999), or a family of 

recently exogenous XRVs that have co-diverged with genus Mus. The latter is 

lent support by the fact that these ERVs have similar genome structures but 

distinct LTRs. This suggests that either: this clade is derived from multiple 
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ancestral integration events or that a recombination event took place 

between the ancestor of these lineages and another LTR containing element, 

prior to the speciation of M. musculus, M. spretus and M. dunni, but after the 

divergence between them and M. caroli. (this has been suggested by 

Wolgamot et al, 1998 as the origin of the VL30 retrotransposon).  

 

The second major sub-clade was separated robustly from the 

MMERV/MURVY containing clade by KoRV and GaLV, and contains GLN, Mus.g2, 

MuRRS, MuERV-C, and PERV-A/C. LTRs were not identified for MuERV-C. 

MuRRS, GLN and Mus.g2 had different LTRs. These murine ERVs were 

considered to have derived in the mouse from at least three germline 

invasion events. (Figure 3.2).  

 

Mus.g1 occupied the most basal position in this large clade, grouping 

on a long branch with KwERV. Similarly, MLV was the basal-most murine ERV, 

separated from the large, murine ERV containing clade, by primate 

gammaretroviruses RD114, baboon endogenous virus (BaEV) and chimpanzee 

endogenous retrovirus 2 (CERV-2).  

 

Based on the clustering of murine ERVs with one another, and 

differences in LTR sequences between these ERVs, murine gammaretroviruses 

were considered to consist of five phylogenetically distinct ERV lineages, 

derived from at least six germline invasion events.  

 



	 84	

	
Figure	3.2.2:	Phylogenetic	relationships	between	murine	and	nonmurine	
gammaretrovirus	Pol	sequences.	ML	phylogeny	was	inferred	using	the	rtREV+G4	
model,	and	evaluated	using	1000	UFBOOT	replicates,	with	support	of	>95%	indicated	
by	an	asterisk.	Scale	bar	indicates	substitutions	per	site.	Murine	ERV	lineages	are	
highlighted	in	red.	

 

 

The Betaretrovirus Pol phylogeny (Figure 3.3) showed five 

betaretroviral murine ERV lineages. Of these, four group within 

Betaretrovirus– Mus.b1, MusD, IAP and MMTV, and one (MYSERV) groups with 

HERV-K-HML2. In the tree, murine sequences tended to group basally relative 

to established non-murine retroviruses, with IAP and MMTV grouping basally 

in the Betaretrovirus genus. All of these taxa possess different LTRs, 

indicating that these lineages derive from at least five independent germline 

invasion events. 

 

The RT phylogeny discloses at least 13 murine ERV lineages. When the 

Gammaretrovirus Pol phylogeny, and LTR sequences are taken into account, 

these appear to be derived from at least 15 germline invasion events.  
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Figure	3.2.3:	Phylogenetic	relationships	between	murine	and	nonmurine	
Betaretroviruses.	The	ML	phylogeny	was	inferred	using	the	rtREV+G4	model.	Support	
evaluated	by	1000	UFBOOT	replicates.	>95%	indicated	by	an	asterisk.	Scale	bar	
indicates	substitutions	per	site,	and	murine	ERV	lineages	are	highlighted	in	red.	
	
3.2.3 - Evolutionary history of Gag and Env 

 

 Retroviruses are prone to recombination. Different ORFs within a 

retroviral lineage may therefore be differently related to one another. 

Phylogenies of all retroviral peptides can reveal histories of recombination in 

ERV lineages. (Diehl et al, 2016; Henzy and Johnson, 2013). I aligned 

Gammaretroviral Gag and TM peptides and used them to generate ML 

phylogenies. I used the TM subdomain of env due to its relative sequence 

conservation (Benit et al, 2001).  

 

Aligning Betaretrovirus Gag to Gammaretroviral Gag proved to be 

problematic due to sequence divergence, so I analysed only 

Gammaretrovirus-derived Gag sequences. Additionally, most murine 

Betaretroviral ERVs do not possess an env gene, so only Gammaretroviral TM 

peptides were analysed.  
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The Gammaretrovirus Gag phylogeny showed a similar topology to 

Gammaretroviral pol (Figure 3.4; Figure 3.2). The main lineage subclades 

remained relatively constant, and weak support at deeper nodes within the 

Gag tree made its evolutionary history difficult to confidently determine. 

Interestingly, KoRV and GaLV split the MMERV containing clade (albeit with 

limited support ~60%), indicating that recombination has taken place 

between different members of this lineage, and that the ancestor of KoRV 

and GaLV lies in this lineage.  

 

The TM phylogeny disclosed two major clades. The first contained 

MPMV and RD114, and represented the gamma-like env peptides of 

Betaretroviruses. (Henzy and Johnson, 2013). (Figure 3.5). The second 

major clade was split into two robustly supported subclades (Figure 3.5). The 

first contained a TM lineage belonging to PERV, KoRV and GaLV, and the 

MMERV and Mus.g1 lineages. For these ERVs, the TM phylogeny disclosed a 

similar topology formed as for Gag and Pol, with the absence of KoRV/GaLV 

and PERV, suggesting that env shares a similar evolutionary history with Gag 

and Pol (Figure 3.2; Figure 3.4; Figure 3.5). The second TM lineage 

contained MLV, Mus.g2 and GLN, with Mus.g2 and GLN grouping with RfRV, a 

retrovirus of bats, suggesting that the GLN and Mus.g2 env is more closely 

related to RfRV than to other murine ERVs. 	

		
Figure	3.2.4:	Phylogenetic	relationships	between	murine	and	nonmurine	
gammaretrovirus	Gag	sequences.	ML	phylogeny	was	inferred	using	the	rtREV+G4	
model,	and	evaluated	using	1000	UFBOOT	replicates,	with	%	support	indicated	at	
nodes.	Scale	bar	indicates	substitutions	per	site.	Murine	ERV	lineages	are	highlighted	
in	red.	
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Figure	3.5:	Phylogenetic	relationships	between	murine	and	nonmurine	
gammaretrovirus	TM	sequences.	ML	phylogeny	was	inferred	using	the	rtREV+G4	
model,	and	evaluated	using	1000	UFBOOT	replicates,	with	%	support	indicated	at	
nodes.	Scale	bar	indicates	substitutions	per	site.	Murine	ERV	lineages	are	highlighted	
in	red.	

 

3.2.4 - A survey of murine ERV counts 

 

Having obtained an overview of murine ERV diversity, I then used DIGS 

to assess ERV provirus and solo LTR copy number in the murine genome. A 

secondary aim of this was to collect murine ERV sequences into high-quality 

alignments for sequence evolutionary analysis, and annotation ‘track’ 

generation for interpolation with functional annotation datasets.  I used 

murine ERV representative sequences to generate libraries of translated ERV 

gene and LTR sequences. These libraries were used in DIGS screens of the 

murine genome. (see Methods). The counts for proviruses and solo LTRs were 

collated and compared with results from previous analyses. (Table 3.2). 

 

A total of 4113 proviruses and 16424 solo LTR elements were recovered. 

Consistent with previous estimates, I found that class II ERVs made up the 

highest copy number of murine ERVs (n=2509), consisting largely of IAP 
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(n=1923) and MusD (n=102), MuERV-L (class III, n=658) had the second highest 

provirus copy number, followed by MMERV (class I, n=305). (Table 3.2). 

 

Generally, solo LTRs outnumbered proviruses. Exceptions to this were 

MLV and MMTV. This perhaps reflects their status as ‘endogenising’ ERVs – 

they have not spent enough time in the murine germline to generate a large 

number of solo LTRs. Additionally, I did not find any solo LTRs for MURVY – a 

consequence of its replication solely as part of a duplicating element on the Y 

chromosome. The ratio at which solo LTRs outnumbered proviruses varied. At 

the most, Mus.g2 solo LTRs outnumbered proviruses by 609:1. Generally, this 

ratio was less in ‘intermediate’ copy number lineages (MuRRS, MusD and GLN 

proviruses were outnumbered by solo LTRs at ratios of 10:1, 5:1 and 11.9:1 

respectively). The highest copy number lineages showed the highest ratio of 

solo LTRs:proviruses LTRs, with IAP, MuERV-L and MMERV at approximately 

4:1, 3:1 and 1:1 respectively (Table 3.2). 

 

When mapping ERV counts from other studies onto the counts shown in 

Table 3.2, I found that in every lineage except for MURVY, the provirus 

counts from this study matched the results from other studies – in the case of 

MMTV. I excluded IAP from these comparisons, as it has been shown to be 

highly polymorphic, with copy number varying markedly across different 

murine genome assemblies (Ray et al, 2011). Furthermore, manually 

curating such a large volume of sequences was not feasible.  
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Table 3.2: Murine ERV proviruses and solo LTRs. Murine ERV proviruses and 
solo LTRs were retrieved using DIGS and broken down by genus. Additionally, 
estimates of copy number from published literature are listed on the right 
hand sides 
	

Genus Lineage Provirus Solo LTR Previous estimate of prov. copy number 
Lambda MuERV-L 654 1930 50 (Costas et al, 2003 ) 
Sigma Mus.Sigma.1 0 0 n/a 
Zeta MuERV-Fc 1 0 n/a 
Iota Mus.Iota.1 0 0 n/a 
Gamma MMERV 305 173 191 (Lee et al, 2012) 
Gamma MuRRS 35 1962 50-100 (Schmidt et al 1985) 
Gamma GLN 53 423 50 (Ribet et al, 2008) 
Gamma MLV 66 3 54 (Frankel et al, 1989 
Gamma MURVY 206 0 500 (Hutchison and Eicher, 1989) 
Gamma Mus.Gamma.1 1 49 n/a 
Gamma MuERV-C 1 0 1 (Zhao et al, 1999) 
Gamma Mus.Gamma.2 1 609 n/a 
Beta Mus.Beta.1 1 0 n/a 
Beta  MMTV 3 0 4 (Kozak et al, 1987) 
Beta-like IAP 2402 6356 polymorphic 
Beta-like MusD 102 893 100 (Ribet et al, 2007) 
Beta-like MYSERV 1 0 n/a 

	
 

3.2.5 - Analysis of novel ERVs 

 

To further characterise novel and partially characterised ERV lineages, 

I aligned their proviruses to phylogenetically related reference sequences, 

(i.e. Mus.g1 was aligned to MLV) and sequence comparisons were performed 

to identify putative ORFs and retroviral genomic features. Interestingly, I 

identified 12 novel MLV loci, and these were included in my analysis. 

Additionally, the MuERV-Fc lineage was characterised in greater detail. All of 

the loci I recovered for these lineages were (apart from MLV) highly degraded, 

encoding no intact ORFs. As such, I was unable to identify translation 

strategies. Of the five novel lineages, four possessed identifiable retroviral 

genes. The remaining two, Mus.i1 and Mus.s1, only possessed fragmented RT 

sequences.  

 

Mus.g1 
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 I found a single Mus.g1 locus in the genome of the mouse. I was able to 

identify gag, pol and env genes that were interrupted by stop codons and 

frameshifts, as well as flanking LTRs 449bp in length. We could not find any 

TSDs, presumably due to mutational degradation of the Mus.g1 locus. (Figure 

3.6), but were able to detect PBSPRO in the region adjoining the 5’LTR and 

Gag. I was able to recover a partial Gag ORF containing the 5’ myristoylation 

signal of MA, suggesting that Mus.g1 was capable of forming particles upon 

integration. I characterised features in the Mus.g1 genome that were similar 

to those of contemporary gammaretroviruses. Firstly, the Gag peptide 

possessed a single NC zinc finger motif (Figure 3.6), as well as a single late 

domain (Figure 3.6). In addition, I found a GPHF motif toward the C-terminal 

of integrase, as well as a CXCC disulphide motif in env, characteristic of 

gammaretroviruses (Jern et al, 2005). (Figure 3.6) 

  

Mus.g2 

 

 Mus.g2, like Mus.g1, possessed a single provirus. I identified 

fragmented sequences bearing homology to gag, pol, and env flanked by two 

relatively short (220bp) LTRs, themselves flanked by 4bp TSDs. (Figure 3.6). 

The 4bp TSDs are indicative of a gammaretrovirus (Ballandras-Colas et al, 

2013).  Like Mus.g1, I identified the 5’ Gag myristoylation signal (MG) and a 

patch of basic amino acids at the 5’ end of MA, suggesting that this Mus.g2 

locus was capable of forming particles upon integration.  

 

Typically for a gammaretrovirus, the Gag ORF encoded a single NC zinc 

finger, and a single late domain of identical specificity to Mus.g1 (PPPY) 

(Figure 3.6). The Mus.g2 locus also possessed a fragmented IN domain, in 

which the gammaretroviral GPYL motif could be identified. (Figure 3.6). I 

could also identify a CXCC motif in env. (Figure 3.6).   

 

MuERV-Fc 

 

MuERV-Fc is class I ERV, also identified in mice by Diehl et al, 2016, 

who found degraded Gag sequences, and generated an RT consensus 

(included in Figure 3.1).  
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I recovered a single, highly fragmented MuERV-Fc provirus from the 

murine genome. Investigation of the MuERV-Fc sequence revealed sequences 

homologous to Gag, Pol and Env, but no LTRs. Additionally, I was only able to 

identify the TM domain of Env. I found two zinc fingers in MuERV-Fc NC, 

characteristic of non-primate ERV-Fc (Diehl et al, 2016), as well as a single 

‘YPRL’ late domain. I was also able to find a 5’ Gag myristoylation site 

(Figure 3.6). Additionally, I identified a GPYL motif in IN, a c-terminal zinc 

finger, and a CXCC motif in env.  

 

MYSERV 

 

MYSERV is the name of a RepBase consensus sequence. It is marked by 

its close relationship to the mysTR family of ERVs undergoing 

retrotranspositional expansion in other rodent species (Cantrell et al, 2005). 

I identified a locus with sequences bearing homology to gag and pol. These 

sequences were highly degraded, with numerous stop codons, frameshifts and 

a truncated pol sequence, limiting my ability to characterise the ancestral 

ORFs of MYSERV. Typically for a class II retrovirus, I identified two zinc 

fingers in NC. (Figure 3.6). Additionally, I identified a fragmented ORF 

similar to pol, bearing homology to RT, RNaseH and a c-terminal IN zinc 

finger.  

 

MLV 

 

 I identified 12 novel MLV loci. (Table 3.3). Alignment of these loci to 

an MLV reference sequence revealed that two of these loci encoded complete 

proviruses (Table 3.3). The remaining ten proviruses had deleted env ORFs, 

of which six had fragmented Gag ORFs, and two had deleted sections in IN. 

(Table 3.3). These loci have remained undiscovered by previous searches of 

the murine genome for MLV (Jern et al, 2007; Frankel et al, 1989), 

conceivably  because these studies have used the env ORF as a probe for in 

vitro and in silico searches.  

 

Mus.b1, Mus.i1 and Mus.s1 
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 For Mus.b1, I was only able to recover a fragmented Pol peptide. I 

could recover even less for Mus.i1 and Mus.s1: only finding RT sequences 

(Figure 3.6).  

	
	
	
Figure 3.6 – Genome structures of novel murine ERV lineages. Proviruses of 
novel and partially characterised lineages were extracted from the murine 
genome and analysed for distinguishing sequence features to assist in 
phylogenetic and sequence characterisation. Lineage name indicated on the 
left. Retroviral LTRs indicated by blue bars, and genes by labelled green bars. 
Shaded regions indicate retroviral sequence motifs as labelled.  
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Table 3.3 – Novel MLV proviruses. Indicates the chromosomal location and 
distinguishing features of novel murine ERV proviruses.		
	

	
 

3.2.6 - Evolutionary analysis of murine ERVs 

 

I used the sequences collected in our screens to generate Pol and solo 

LTR alignments. I used these alignments to generate phylogenies of ERV 

lineages. (Figure 3.7). Additionally, I mapped PBS specificity as a character 

onto the phylogenies in an attempt to find instances of PBS switching, which 

could indicate periods of exogenous replication, or an attempt to adapt to 

the tRNA abundancies in different murine cell types. (Tristem et al, 2000; Li 

et al, 1994; Whitcomb et al, 1995). 

 

I examined the topologies of the phylogenies and used previous 

phylogenetic analysis of ERV lineages, and literature regarding the inference 

of past processes from ERV phylogenies (Katzourakis et al, 2005) to make 

inferences as to the past and present activity of murine ERVs. Generally, I 

found that ERV pol phylogenies formed star-like or comb-like topologies. The 

star-like phylogenies possessed flat, deep branching nodes (indicative of 

ancestral expansion), followed by long terminal branches (indicating lengthy 

residence in the host germline). The comb-like phylogenies possessed long 

Scaffold	 Start	 End	 Features	
chr10	 8542060	 8553473	 Stop	codon	in	gag,	no	env	
chr11	 60576721	 60588134	 Deleted	env	
chr12	 54772056	 54783499	 Intact	provirus	
chr13	 21810284	 21821697	 Deleted	env	
chr19	 38372853	 38384266	 Stop	codon	in	gag,	no	env	
chr4	 15233494	 15244937	 Deletions	in	env	and	pol	
chr4	 32788395	 32799838	 Stop	codon	in	gag,	no	env	
chr5	 122190722	 122202135	 Stop	codon	in	gag,	no	env	
chr6	 73284833	 73296276	 Stop	codon	in	gag,	no	env	
chr8	 123162591	 123173995	 Deleted	env	
chr8	 123425408	 123436851	 Intact	provirus	
chr8	 85123082	 85134525	 Deletions	in	env	and	pol	
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basal branches, with derived clades emerging with shorter branches and 

lower intra-clade divergence, indicating a subset of potentially active ERV 

loci (Katzourakis et al, 2005). I found that demonstrably active (transposing 

or reinfecting) ERV lineages displayed comb-like topologies in midpoint-

rooted phylogenies (Figure 3.7A-D), with intact, env encoding ERV loci 

clustering in derived positions (Figure 3.7 – green dots). Examples of these 

are MusD, GLN and MuERV-L. MMERV showed a striking two-clade structure, 

both of which showed comb-like topologies. The two clades were marked by 

different PBS specificities, with clade one possessing PBSGLY  and clade two 

possessing PBSPRO (Figure 3.7B). Additionally, these clades were divergent 

with respect to one another, perhaps indicating a period of exogenous 

replication. Inactive ERV lineages tended to display star-like topologies, with 

flattened deep nodes followed by long terminal branches. I observed this 

basic topology in MuERV-Fc, MuRRS, MYSERV and Mus.g1/Mus.g2 (solo LTR). 

This topology likely represents a period of ancestral expansion, followed by 

lengthy residence in the murine germline (Katzourakis et al, 2005). (Figure 

3.7G-H). 

 

IAP and MLV are active ERV lineages that did not display comblike 

phylogenies. (Figure 3.7E-F). They formed highly structured trees comprised 

of well-defined subclades. In the case of MLV, we found that the subclades 

corresponded to the three canonical MLV receptor tropisms – xenotropic 

(xmv), polytropic (pmv) and modified polytropic (mpmv), with PBS 

specificities corresponding to analyses performed by Jern et al, 2007. The 

novel loci we described consisted of xmv (n=2), pmv (n=4) and mpmv (n=6) 

subtypes. (Figure 3.7E). In the case of IAP, the pol phylogeny The IAP 

phylogeny consisted of ten major clades, each separated from another by 

long branches. The ten clades possess distinct LTR homologies and PBS 

specificities. It is possible that IAP is an ERV lineage derived from at least 

eight germline invasion events. Of these clades, one (clade six) contains loci 

that possess intact env ORFs. In the rest of the sequences, the env ORFs are 

either fragmented, or missing entirely.  

 

I attempted to recover PBS sequences for murine ERV lineages. For 

MuERV-Fc, MuRRS, Mus.b1, MYSERV and MuERV-C (Mus.s1 and Mus.i1 

notwithstanding), we were unable to recover PBS sequences due to sequence 
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degradation. For remaining lineages, we mapped PBS specificity as a 

character onto the trees (Figure 3.7 – coloured branches). Mapping PBS 

between groups on the tree shows that PBS mixing is common in IAP clades, 

with six of the clades containing two PBS specificities, two of then possessing 

one, and two clades being two degraded to find the PBS. (Figure 3.7F - 

clades nine and ten). When the RepBase designations for IAP elements were 

mapped to the clades on the tree it was apparent that multiple designations 

existed for each clade (e.g. clade two being known as IAPEY2 and IAPE3 

(Figure 3.7F – clade labels). This was not reflected in the clade organisation 

(e.g. IAPEY2 and IAPEY3 do not group as monophyletic subclades within clade 

two).  With the exception of MMERV and IAP, PBS switching was relatively 

sporadic, occurring rarely in phylogenies (Figure 3.8). These rare instances 

of PBS switching could conceivably be due to mutation in the host germline. 

(Figure 3.7B, 3.7F). Intriguingly, the MusD phylogeny shows an instance of 

PBS switching, whereby the ancestral PBSLEU was substituted for PBSLYS, then 

back to PBSLEU  in the clade containing the intact, active proviruses (Figure 

3.7C).  

 

 The LTR phylogenies tended to mimic the basic topology of the pol 

phylogenies, suggesting that the proliferation of solo LTRs is mostly due to 

proviral recombination into solo LTRs. Proviral LTRs tended to group in 

derived positions, especially in active ERV lineages – this was not the case for 

MuRRS or Mus.g2 (Figure 3.7). We observed numerous instances of past 

expansion and recombinational deletion in murine ERV lineages, whereby 

expansions have taken place, and become inactive separately from the ‘main’ 

lineage of identifiable proviruses. This was apparent when an LTR phylogeny 

showed large clades of solo LTRs grouping separately to proviral LTRs. An 

example of this is GLN – with three major LTR clades but only most derived 

one containing GLN proviruses – indicative of three past genome expansions 

of which the present is the most recent (Figure 3.7A). Similarly, the MusD 

LTR phylogeny is indicative of three intragenomic expansions, of which one 

contains the majority of MusD proviruses. (Figure 3.7C). For MMERV (Figure 

3.7B), almost all of the solo LTRs were contained within a single clade. By 

contrast, the MuERV-L LTR phylogeny disclosed relatively little evidence of 

expansion distal to the provirus containing clade. (Figure 3.7D). Notably, 

Mus.g2 showed evidence of extensive past expansion followed by inactivation 
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with a large LTR phylogeny consisting of multiple structured clades and only a 

single provirus. (Figure 3.7H). 
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Figure 3.7 – ML phylogenies of GLN (A) and MMERV (B)  Pol and LTR sequences. 
Aligned amino acid (Pol) and nucleotide (LTR) sequences were analysed using IQTREE. 
Coloured branches indicate PBS specificity on Pol tree (see key). Red branches on LTR 
trees indicate proviral LTRs.  

A	

B	
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Figure 3.7 (cont) – ML phylogenies of MusD (C) and MuERV-L (D)  Pol and LTR 
sequences. Aligned amino acid (Pol) and nucleotide (LTR) sequences were analysed using 
IQTREE. Coloured branches indicate PBS specificity on Pol tree (see key). Red branches 
on LTR trees indicate proviral LTRs.  
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Figure 3.7 (cont) E – ML phylogeny of MLV Pol. Aligned amino acid sequences were 
analysed using IQTREE. Coloured branches indicate PBS specificity. Scale bar indicates 
substitutions per site. 
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Figure 3.7 (cont) F – ML phylogeny of IAP Pol. Aligned amino acid sequences were 
analysed using IQTREE. Coloured branches and brackets indicate IAP subclade, with 
RepBase LTR designation detailed next to the brackets. Coloured boxes indicate PBS 
specificity. Scale bar indicates substitutions per site. 
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Figure 3.7 (cont) – ML phylogenies of MuRRS (G) Pol and LTR and Mus.g2 (H)  LTR 
sequences. Aligned amino acid (Pol) and nucleotide (LTR) sequences were analysed 
using IQTREE. Coloured branches indicate PBS specificity on Pol tree (see key). Red 
branches on LTR trees indicate proviral LTRs.  
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Figure 3.7 (cont) – ML phylogenies of Mus.g1 LTRs, Mu-ERV-Fc Pol (I) and MYSERV 
pol (J). Phylogenies inferred from aligned amino acid Pol (MuERV-Fc and MYSERV) and 
nucleotide (Mus.g1) sequences using IQTREE. Scale bars indicate substitutions per site. 
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3.2.7 - Functional analysis of murine ERVs 

 

Next, I generated annotation tracks of murine ERVs, and used them to 

assess murine ERV lineages for signatures of functionalisation. First, I 

uploaded the annotation tracks to GREAT, to see if they were significantly 

enriched for integration near to genes. For the most part, murine ERVs were 

located in regions between 50 and 500kb from genes (Figure 3.8). However, I 

found three murine ERV lineages that were significantly associated with gene 

groups. IAP and MusD were significantly enriched proximal to genes 

associated with gamete generation and reproductive processes (Table 3.4; 

Table 3.5). Additionally, Mus.g2 (solo LTRs) were found to be significantly 

enriched with respect to KRAB-ZFPs (Table 3.6).  

 

I then searched murine ERV loci for signatures of transcription factor 

binding and histone methylation (see Methods). I selected ChIP-seq datasets 

from studies of: transcription factors involved in embryonic development 

(Chen et al, 2012), and p53 binding in mESCs (Li et al, 2012). The resultant 

plots showed 20- and 10-fold enrichment for TRIM28 dependent H3K9 

methylation at IAP and MusD loci respectively, in line with previous analyses 

(Rowe et al, 2013). In addition to TRIM28-dependent H3K9 methylation at 

IAP and MusD loci,  I found that that TRIM28-dependent H3K9 methylation 

was enriched tenfold at Mus.g2, GLN and MMTV loci, and 20-fold at MLV loci. 

(Figure 3.9). All other ERV lineages analysed showed little or no evidence of 

TRIM28-dependent H3K9 methylation. The only lineage for which evidence 

could be found of p53 binding in mESCs was GLN, which showed ~tenfold 

enrichment of p53 binding relative to the genome background ((Figure 3.19). 

Finally,  I found evidence of approximately  five- and eight-fold enrichments 

respectively of NANOG and SMAD1 binding, and approximately 20-fold 

enrichment of SOX2 and ESRRB binding at Mus.g1 loci. (Figure 3.9). 
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Figure 3.8: Enrichment of ERVs relative to gene transcription start sites. 
(TSS). Annotation tracks consisting of ERV proviruses and solo LTRs recovered 
in DIGS screens were uploaded to GREAT. 

	
Figure 3.9: Enrichment of TF binding and histone methylation at 
ERV loci. Murine ERV LTR and Provirus annotation tracks were 
compared to ChIP-seq datasets of epigenetic changes and transcription 
factor binding in mESCs in CCG-ChIP-cor.  Y axis indicates fold 
enrichment, X axis indicates position relative to ERV centre. Coloured 
plots indicate different factors as denoted by the key (bottom right). X 
axis indicates position of relative to the start of the locus, and Y axis 
indicates read enrichment relative to genome background. 
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Table	3.4	–	IAP	proviruses	are	significantly	enriched	proximal	to	gene	groups	involved	in	reproduction.	GO	Term	name	indicates	GO	(gene	

ontology)	term	for	the	gene	group	proximal	to	which	IAP	is	enriched.		

	

	

Table	3.5	–	MusD	proviruses	are	significantly	enriched	proximal	to	gene	groups	involved	in	reproduction.	GO	Term	name	indicates	GO	(gene	

ontology)	term	for	the	gene	group	proximal	to	which	MusD	is	enriched.		

	

GO	Term	name	 	Binom	Rank		

	Binom	Raw	

P-Value		

		Binom	FDR	Q-

Val			

	Binom	

Fold	

Enrichment		

	Binom	

Observed	

Region	Hits		

	Binom	

Region	Set	

Coverage		 	Hyper	Rank		

		Hyper	FDR	

Q-Val			

	Hyper	Fold	

Enrichment		

	Hyper	

Observed	

Gene	Hits		

	Hyper	Total	

Genes		

	Hyper	Gene	

Set	

Coverage	

gamete	generation	 1	 6.30E-08	 0.000634272	 3.940927	 21	 0.2058824	 1	 2.29063E-06	 6.071373	 19	 737	 0.2043011	

sexual	reproduction	 2	 1.49E-07	 0.000748376	 3.743214	 21	 0.2058824	 2	 5.99978E-06	 5.497054	 19	 814	 0.2043011	

single	organism	reproductive	process	 3	 9.36E-07	 0.003141419	 3.343477	 21	 0.2058824	 5	 1.59426E-05	 4.895626	 19	 914	 0.2043011	

multicellular	organismal	reproductive	

process	 4	

1.00136E-

06	 0.002520418	 3.329415	 21	 0.2058824	 3	 1.43678E-05	 5.084775	 19	 880	 0.2043011	

multicellular	organism	reproduction	 5	

1.06633E-

06	 0.002147156	 3.316342	 21	 0.2058824	 4	 1.31879E-05	 5.022	 19	 891	 0.2043011	

reproductive	process	 7	 3.09655E-05	0.044537294	 2.662587	 21	 0.2058824	 6	 0.000579437	3.850776	 19	 1162	 0.2043011	

GO	Term	name	 	Binom	Rank		

	Binom	

Raw	P-

Value		

		Binom	

FDR	Q-Val			

	Binom	Fold	

Enrichment		

	Binom	Observed	

Region	Hits		

	Binom	Region	Set	

Coverage		

	Hyper	

Rank		

		Hyper	

FDR	Q-Val			

	Hyper	Fold	

Enrichment		

	Hyper	

Observed	

Gene	Hits		

	Hyper	

Total	

Genes		

	Hyper	Gene	

Set	

Coverage	

gamete	generation	 1	 1.84E-42	 1.86E-38	 2.382744	 299	 0.1244796	 1	 6.45E-54	 3.335832	 208	 737	 0.1122504	

sexual	reproduction	 2	 2.15E-40	 1.08E-36	 2.30105	 304	 0.1265612	 2	 6.29E-49	 3.078363	 212	 814	 0.1144091	

multicellular	organismal	

reproductive	process	 3	 7.66E-37	 2.57E-33	 2.147665	 319	 0.132806	 3	 4.65E-49	 2.981801	 222	 880	 0.1198057	

single	organism	reproductive	

process	 4	 8.29E-37	 2.09E-33	 2.149975	 318	 0.1323897	 5	 1.09E-45	 2.857949	 221	 914	 0.1192661	

multicellular	organism	

reproduction	 5	 1.57E-36	 3.16E-33	 2.139232	 319	 0.132806	 4	 3.45E-48	 2.944989	 222	 891	 0.1198057	
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Table	3.6	–	Mus.g2	solo	LTRs	enriched	proximal	to		protein	coding	genes.	GO	Term	name	indicates	GO	(gene	ontology)	term	for	the	gene	group	

proximal	to	which	Mus.g2	is	enriched

GO	Term	 	Binom	Rank		

	Binom	

Raw	P-

Value		

		Binom	FDR	

Q-Val			

	Binom	

Fold	

Enrichment		

	Binom	Observed	

Region	Hits		

	Binom	Region	

Set	Coverage		

	Hyper	

Rank		

		Hyper	FDR	

Q-Val			

	Hyper	Fold	

Enrichment		

	Hyper	

Observed	

Gene	Hits		

	Hyper	

Total	

Genes		 	Hyper	Gene	Set	Coverage	

Krueppel-associated	box	 1	 3.66E-16	 3.50E-12	 6.175357	 33	 0.05400982	 1	 1.95748E-06	 3.933549	 30	 360	 0.06465517	

Zinc	finger	C2H2-type/integrase	

DNA-binding	domain	 3	 3.49E-08	 0.000111225	2.676809	 40	 0.06546645	 2	 0.001935178	2.565358	 35	 644	 0.07543103	

Zinc	finger,	C2H2	 4	

4.06061E-

06	 0.009711954	2.209497	 40	 0.06546645	 3	 0.017048646	2.288214	 35	 722	 0.07543103	

Zinc	finger,	C2H2-like	 6	

1.64673E-
05	 0.026257062	2.077672	 40	 0.06546645	 4	 0.042667792	2.162422	 35	 764	 0.07543103	
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3.2.9 – Dating ERV integrations 

 

 In ERV lineages where I could identify LTRs flanking proviruses, I used the 

LTR sequences to estimate the date of integration. I used the pairwise distance 

between LTRs, along with the mouse neutral substitution rate to estimate the 

date of integration. However, recombination or gene conversion that alters the 

LTR sequences can lead to inaccurate estimation of provirus dating 

(Subramanian et al, 2011). With this in mind, I used the phylogenies of ERV 

LTRs for 10 lineages (Figure 3.7) to identify the presence of recombinant 

sequences. Where sequences from the same provirus grouped separately to one 

another, they were discounted from the dating process. 655 eligible proviruses 

across 9 murine ERV lineages were identified. (Appendix 3.2). 

 

 635 (97%) of murine ERV loci sampled had a reported integration date of 

less than 500,000 years. 310 proviruses (47%) had an estimated integration date 

of 0, indicating integration within the last 0-50,000 years, occurring in the 

lineages MuERV-L, MMERV, MusD, GLN, MMERV, MMTV and MLV (Figure 3.10). 

The total mean integration date was 69908 years. The oldest locus in the 

lineages sampled was that of the Mus.g2 provirus, at ~1,200,000 years old. The 

lineages sampled with the most numerous loci (MLV, MuERV-L, GLN and MMERV) 

show signs of limited proliferation prior to bursts of expansion in recent history 

within the last ~660000 to ~230000 years. (Figure 3.10). By contrast, MusD and 

MuRRS show signs of relatively constant integration over million-year timescales, 

without the sharp increases in copy number occurring over ten thousand year 

timescales as shown for the lineages previously. Given that MURVY has 

replicated through segmental duplication on the Y chromosome, the shape of 

the MURVY data (two discrete groups) indicates two waves of duplication on the 

Y chromosome that have given rise to this lineage, approximately 50,000 and 

160,000 years ago (Figure 3.10). 

 

 Where we could not identify flanking LTRs, we searched for orthologous 

integrations in other rodent species. (see Methods). We were able to identify 

orthologous integrations for: Mus.i1, Mus.s1, MuERV-Fc,  and MYSERV (Figure 

3.11; Table 3.7). The oldest integration we could find was an ortholog of the 

Mus.i1 integration in the Chinese hamster (Cricetulus griseus). (Table 3.7; 
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Figure 3.11) This gives the minimum estimated integration date for this murine 

ERV of 32.7 mya. Additionally, we found that the genomic region of this locus 

was syntenic (shared organisation) between the mouse and the rat, occurring in 

both species approximately 1kb 5’ with respect to ZFP251 (Figure 3.11). For 

Mus.s1, I found an orthologous  integration on chromosome 9 of the rat (Rattus 

norvegicus). (Table 3.7; Figure 3.11), giving the minimum integration date of 

this RT locus of approximately 20 mya (Hedges et al, 2015). I was able to find 

an ortholog of MuERV-Fc in the genome of the rat. (Table 3.7; Figure 3.11). 

Thus, this integration predates the divergence of genera Mus and Rattus 

approximately 20mya (Hedges et al, 2015). Finally, I discovered a MYSERV 

integration that was shared between the mouse and the wood mouse (Apodemus 

sylvaticus), making this lineage at least 14.5 mya (Hedges et al, 2015). (Table 

3.7: Figure 3.11). 

	

	
Figure	3.10	–	Paired	LTR	estimation	of	murine	ERV	integration	dates.	Y	

axis	indicates	lineage,	X	axis	indicates	age	in	years.	Each	dot	indicates	a	single	
murine	ERV	integration.	The	pairwise	distance	between	two	paired	proviral	LTRs	
was	used	in	concert	with	the	mouse	background	substitution	rate	to	estimate	the	
integration	date	of	murine	ERVs.	Vertical	lines	indicate	mean	approximate	
integration	date.	
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Figure 3.11 – Orthologs of four murine ERV lineages. Aligned 
genomic regions (20kb), containing orthologous ERV loci between the 
mouse and indicated species (top) for MYSERV (top left), MuERV-Fc (top 
right), Mus s1 (bottom left) and Mus.i1 (bottom right). The dotplot is 
marked where sequence similarity exceeds 80%. The sequence ‘window’ 
size for comparison was 20bp. The bottom (B) is a genome browser view 
of the genomic region containing Mus.i1 syntenic between the mouse and 
rat. YourSeq indicates Mus.i1 RT sequence as a BLAT search against the 
two genomes.  

 

Table 3.7 – Orthologous murine ERV integrations, detailing the 
lineage and integration position of orthologous integrations 

	

	 	

Lineage	 Species	 Assembly		 Scaffold	 Position		
Mus.s1	 Brown	rat	 rn6	 chr6	 64195658	
Mus.i1	 Chinese	hamster	 crigri1	 KE377312	 728267	
Mus.z1	 Brown	rat	 rn6	 chr12	 4696852	

MYSERV	 Wood	mouse	 ASM130590v1	 LIPJ01000751.1	 7314	
MuERV-Fc	 Brown	rat	 rn6	 chr16	 62193762	
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3.3 - Discussion 

 

3.3.1 – Generation of a murine ERV dataset 

 

Generations of inbreeding mean that C57BL/6J genome is representative 

of  this mouse strain only. However, the overall ERV diversity is unlikely to be 

affected, instead manifesting itself in the form of varying copy number and 

polymorphism of ERV integrations, as has been noted for IAP, MMTV and MLV 

(Ray et al, 2011; Kozak et al, 1987, Frankel et al 1990). I generated a dataset 

consisting of alignments and metadata of murine ERVs. Generally, I found that 

this dataset compared well to other analyses that have been performed (Table 

3.1; Table 3.2), in terms of ERV discovery and sequence retrieval. I make this 

dataset freely available in GLUE 

(https://github.com/giffordlabcvr/Retroviridae-GLUE) in the hope that it will 

assist in other analyses of murine ERVs.  

 

Although comprehensive for many ERV lineages, I found that studying the 

highly polymorphic and numerous IAP lineage to be difficult, due to issues with 

aligning and curating data for such a large number of sequences. As such, the 

collection of sequences and data published in GLUE would be improved greatly 

through the addition of IAP provirus and LTR alignments.  

 

3.3.2 – A transition in murine:ERV co-evolutionary history 

 

 I discovered five novel murine ERV lineages, and characterised in further 

detail the MuERV-Fc lineage identified by Diehl et al, 2016. I found that, 

without exception, the novel murine ERV lineages were highly degraded and low 

in copy number relative to the majority of murine ERVs lineages. The Mus.i1, 

Mus.s1, MuERV-Fc lineages represent ERV lineages that are apparently common 

to mammals, and in the case of ERV-I, vertebrates. (Martin et al, 1997; 

Herniou et al, 1998; Diehl et al, 2016). These lineages are demonstrably 

ancient, a fact underscored by the orthologs I found, making the integrations at 

least 20-30 million years old in mice (Figure 3.12). Based on these, and other 

published data (Martin et al, 1997; Diehl et al, 2016), I estimate that these 

ERV lineages are in fact the degraded, ancient remnants of the ‘ancestral’ ERV-I, 
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ERV-S and ERV-Fc lineages that are widespread in other animals and have been 

largely lost in the mouse, despite being maintained in other mammals. In lieu of 

ancestral mammal-common ERVs, the mouse appears to be instead populated by 

evolutionarily modern, transpositionally active gamma and betaretroviruses 

bearing high degrees of similarity to extant exogenous retroviruses. Furthermore, 

ERVs from these ancestral lineages (ERV-W and ERV-H, for example), play vital 

roles in mammalian physiology (Mi et al, 2000; Chuong et al, 2016). This poses 

a question: why and how has the mouse selectively lost ERV lineages from 

ancient, provisional genera whilst they are maintained, and play important 

physiological roles, in the human? (Herniou et al, 1999; Hayward et al, 2015). 

 

The apparent loss of ancient ERV lineages in the mouse could be explained by 

genomic turnover of ERVs. Smaller mammals tend to have shorter lifespans than 

larger mammals. This creates a shorter generation time for smaller mammals 

which, in general, tends to speed up the rate of genome evolution. This would 

have the effect of loss of ancient ERVs occurring in smaller mammals at a 

greater rate than larger ones. The generation time hypothesis supports this, 

stipulating a higher level of genomic ‘turnover’ in rodents than in larger 

mammals (Laird et al, 1969).  

 

It is conceivable that the higher level of genomic turnover would extend to 

transposable elements, leading to the loss of non-proliferating, inactive ERV 

lineages and the subsequent dominance of more modern sequences. Indeed, this 

concept has been explored by Katzourakis et al, 2014; who notice lower levels 

of active ERVs in larger mammals, and suggest, based on analysing the variation 

in ERV copy number in different mammals, that 68% of the variance in ERV age 

per genome can be explained by body size. 

 

A comparative approach would therefore be an interesting future direction. 

Targeted genome screening of rodent genomes with ‘ancestral ERV’ polymerases 

to identify ERV diversity and distribution, and to see if this loss of ancestral ERVs 

is common in rodents. This approach would be well suited to DIGS – screening for 

a specific sequence diversity in a targeted group of species. Especially of 

interest would be the naked mole-rat (Heterocephalus glaber) – a rodent with a 

very long lifespan (~30 years) and higher reproductive age (~1-2 years) if our 



	

	 112	

hypothesis is correct, then one would expect the ERV diversity in the naked 

mole-rat to more closely resemble that of a human.  

 

3.3.3 – Identification of ERVs potentially involved in physiological processes 

 

 We found that all active ERV lineages are repressed by TRIM28 in mESCs, 

with the exception of MuERV-L. This is consistent with the idea that TRIM28-

based repression is a way to prevent inappropriate ERV activation during 

embryonic development, and of findings indicating MuERV-L is de-repressed in 

mESCs (MacFarlan et al, 2012). It has been suggested that ERV repression is a 

basis for transcriptional control of host genes during development (Rowe et al, 

2013; Gifford et al, 2013). Accordingly, we found that MusD and IAP are 

enriched with respect to genes involved in gametogenesis and early embryonic 

development (Table 3.4; Table 3.5).  

 

MMTV and MLV are repressed by TRIM28 dependent histone methylation in 

mESCs. These ERV lineages are very modern and possess exogenous counterparts. 

They are polymorphic between different mouse strains, with evidence indicative 

of exogenous replication followed by endogenisation. (Wolf and Goff, 2009). 

KRAB-ZFPs are highly diverse and evolving rapidly in mammals (Emerson and 

Thomas, 2009; Schmitges, et al, 2016). This functional diversity and rapid 

evolution mimics other antiviral gene families -PARP, for example (Daugherty et 

al, 2016). This raises the possibility that KRAB-ZFPs and ERVs represent a 

host:virus arms race. 

 

 Studies of the ERV:KRAB-ZFP conflict have found species specific 

modifications to ZFPs are used to repress novel transposon families as they 

emerge. In turn, this has led to the supposition that the genome is in an arms 

race with itself - as genomic transposons and ZFPs are in an evolutionary conflict 

(Jacobs et al, 2014). Our murine ERV dataset has indicators of this: Mus.g2 

shows signatures of TRIM28-dependent histone methylation in mESCs. (Figure 

3.10). In turn, Mus.g2 is enriched proximal to KRAB-ZFP genes. Additionally, I 

identified a Mus.i1 integration highly proximal to ZFP251 in mice and rats 

(Figure 3.12).  (Highly) speculatively, a circular picture emerges, whereby ERV 

integrations proximal to ZFPs are repressed, leading to repression of ZFP gene 
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expression, leading to greater ERV success in the genome. Conversely, it could 

be that the host is utilising the Mus.g2 ERV sequences proximal to ZFPs to 

regulate ZFP expression in a physiologically useful context.  

 

Mus.g1 shows signs of being bound by a diverse range of transcription 

factors in mESCs, including SOX2, OCT4 and NANOG. These transcription factors 

act as enhancers of transcription, and are all involved in cell differentiation 

regulation, being necessary for the maintenance of pluripotency in mammalian 

ESCs. Given that Mus.g1 does not encode any intact ORFs, (if it has a function), 

the possible functions include expression as an lncRNA, or regulation of nearby 

genes. Interestingly, HERV-H is an ERV that encodes an lncRNA expressed in 

response to OCT4, NANOG and SOX2 binding, and is implicated in the 

maintenance of pluripotency in human ESCs (Göke and Ng, 2016; Friedli et al, 

2014; Santoni et al, 2012). HERV-H is an ancient ERV lineage, around 40 million 

years old in primates (Mager and Freeman, 1995). By contrast, Mus.g1 locus 

itself is little more than a million years old, highlighting the potential speed of 

functionalisation in core host processes.  

 

The process of functional ERV turnover appears to be relatively common 

in mammals. Ponting et al, 2011 reviewed studies of functional and non-

functional genomic turnover in mammals, concluding that transposable elements 

make up a large proportion of transiently functional, noncoding genomic 

sequence, undergoing relatively rapid turnover. Interestingly, a comparative 

study by Nellaker et al, 2012, found that most TE integrations were introduced 

through the male germline. Although the data on the mechanics and 

consequences of this are scant, it is interesting to note that IAP and MusD 

sequences appear to be selectively enriched proximal to genes involved in 

spermatogenesis (Table 3.4; Table 3.5). 

 

In vitro and in vivo study of the Mus.g1 locus will be interesting, and 

easily achievable – as shown by Chuong et al, 2016 in their study of ERV 

regulation of nearby immune gene expression using a CRISPR-cas9 system to 

knock out ERV loci adjacent to genes. If Mus.g1 were important in pluripotency 

regulation, it would be an interesting example of evolutionary convergence, 

which has already been shown to occur for the Syncytin genes. Syncytin has been 
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exapted multiple times, from multiple different ERV lineages, in multiple 

mammalian lineages. (Vernochet et al, 2015). In this instance, it would be 

convergence on ERV regulation of ESC pluripotency – representing another 

example of how viruses have been essential drivers of mammalian evolution.		

	

3.3.4 – Conclusions 

 

 In this chapter, I performed phylogenetic screening of the murine genome, 

identifying novel ERV lineages. Additionally, I generated a sequence resource for 

murine ERV study, using it to perform evolutionary and functional analyses of 

murine ERVs. I found that my data were largely in concordance with 

contemporary theories stipulating a rapid turnover of noncoding functional TE 

sequences, as well as increased levels of ERV turnover in smaller mammals. 

Additionally, I identified specific loci and lineages that may be involved in 

physiological processes, presenting numerous interesting aspects for future study 

of host:virus co-evolution.  

 

 I found that DIGS lent itself well to the study of murine ERVs. However, I 

found that my general approach of DIGS screening followed by phylogenetic and 

sequence analysis was most effective when applied to low-medium numbers of 

sequences (i.e. in the analysis of novel, low copy number murine ERV lineages, 

or orthologous ERV integrations) as opposed to high copy ERV lineages such as 

IAP, where it was very difficult to curate the high volume of sequence data. 

Additionally, this high volume of data made it difficult to adopt a comparative 

approach across different species. With refinement (i.e. the addition of high 

copy number ERV alignments) and development of methods to manage large 

numbers of degraded ERV sequences, I believe that the utility of the data 

gathered here would be advanced. Furthermore, a comparative analysis of 

ancient murine ERV lineages such as Mus.s1, Mus.i1, MYSERV and MuERV-Fc 

would be attractive due to their low copy number, the high availability of 

mammalian genomes, and the fact that they have remained relatively unstudied 

in recent years. As such this would be relatively straightforward, as I would not 

have to adapt my experimental framework overmuch to study this aspect of 

host:virus co-evolution in rodents.  
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Chapter 4: Paleovirological analyses of endogenous circoviruses 
 

Text in this chapter has been adapted from Dennis et al, 2018 and Dennis et al, 2018(b), 

manuscripts written with the assistance of Dr Robert Gifford. 

 

Figures 1, 3, 5, 7, 8, 9 are from Dennis et al, 2018 and Dennis, et al, 2018 (b) 

 

Peter Flynn performed the PCR from which Figure 4.10 is derived, and co-wrote the 

corresponding text. 
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4.1 - Introduction 

 

Circoviruses are members of the family Circoviridae, which is divided into 

two genera: Circovirus and Cyclovirus (Rosario et al, 2017) . These viruses 

possess a small, circular ssDNA genome of 1.7 – 2.2kb, and encode two ORFS; the 

replicase (Rep) and capsid (Cap), which are responsible for genome replication 

and particle formation respectively. The known natural hosts of circoviruses 

include bats, rodents, birds, invertebrates and domestic animals (Liu et al, 

2011; Baekbo et al, 2012; Tarján et al, 2014; Lorincz et al, 2011; Raidal et 

al, 2015). 

 

Viruses of genus Circovirus are known in veterinary medicine as the 

aetiologic agents behind postweaning multisystemic wasting syndrome (PWMS) in 

swine, and psittacine beak and feather disease (PBFD) in parrots. These fatal 

diseases of pigs and birds represent both a significant economic burden in swine 

farming (Baekbo et al, 2012), and an existential threat to many endangered 

psittacine species (Raidal et al, 2015). Circoviruses have also been implicated 

in a range of other diseases, including those of commercially farmed fish, and 

pigeons (Lorincz et al, 2012; Stenzel and Konciki, 2017). In addition to 

isolation of circoviruses from diseased hosts, genus Circovirus has been 

extensively studied in vitro through microscopy, sequence analysis and serology. 

By contrast, the genus Cyclovirus consists only of viruses that have been 

identified through sequencing methods. Because of this, their host associations 

are more uncertain. The discovery of cyclovirus nucleic acids in the CSF of 

patients with unexplained paraplegia in Malawi (Smits et al, 2013), and in the 

CSF of patients with acute CNS infections in Viet Nam (Tan et al, 2013), has led 

to the increasing prominence of cycloviruses as a potential cause of hitherto 

unexplained human diseases. These viruses have gained subsequently higher 

profiles, with the European Centre for Disease Control (ECDC) commissioning a 

risk assessment of cycloviruses (Derrough et al, 2013). In 2016, an article in 

The Conversation (Rose, 2016) discussed “Newly emerging viruses, such as 

cycloviruses […] causing neurological problems with children in Asia”, and in The 

Scientist (Palmer, 2013), leading with the with the headline of “New viruses 

attack Asia and Africa”. Given the increasing profile of these viruses, it is 

important to gather more information on their host range and evolution.  
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The majority of sequences derived from Circoviridae have been isolated 

using metagenomics studies. Despite the capacity of metagenomics studies to 

generate a wealth of genome data associated with a given sample, the method 

has an important limitation with regards to virology: discovery of a sequence in 

an organism is insufficient evidence to prove that the virus infects that organism; 

seroconversion or replication data is required to prove that a virus infects a 

given host. By contrast, the discovery of an EVE in the WGS of that organism 

definitively proves an infection (past or present) by that virus of the host. By 

studying the past and present host range of viruses, inferences can be made that 

guide virus discovery and surveillance efforts, by indicating potential hosts for 

targeted virus sampling.  

 

The study of ancient EVEs can give insights into host:virus co-evolution 

over deep timescales. Viruses have the potential for extremely rapid 

evolutionary rates. This is derived from rapid substitution, recombination, host 

switching and lineage extinction (Charleston and Robertson, 2002; Holmes, 

2003; McDonald et al, 2016). The study of EVEs enables inferences to be made 

about more ancient virus sequences, as the host genomes in which EVEs are 

embedded invariably evolve more slowly than the original exogenous viruses. In 

addition, orthologs can be determined from EVEs and their flanking genomic 

sequences. Orthology represents a useful way to study ancient EVEs – relying on 

estimates of species evolution as inferred from a mixture of palaeontology, 

biogeography and molecular clock approaches (Hedges et al, 2015). The 

discovery of an EVE orthologous between multiple species sets a minimum 

estimated age for that virus integration, enabling calibration of the timescale of 

virus evolution.  

 

 Similarity-search based approaches have established the presence of 

circovirus EVEs (CVe) in animal germlines. (Cui et al, 2014; Katzourakis and 

Gifford, 2010; Byeli et al, 2010; Liu et al, 2011). The numbers of CVe in 

animal genomes are relatively low, indicating that CVe are quite rare. However, 

the full extent of CVe presence in animal genomes has yet to be established fully, 

and the rapidly growing body of publicly available WGS assemblies presents 

ample opportunity to do so. In this chapter, I screened a total of 676 animal 
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genomes, including 307 invertebrate species, with circoviral peptide sequences, 

with the aim of studying host:circovirus co-evolution.
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4.2 -  Results 

 

4.2.1 - Identification and genomic characterisation of animal CVe  

 

 I used DIGS to screen animal genomes for CVe. 676 animal genomes were 

screened (Appendix 1.1). I employed a ‘phylogenetic screening’ approach used 

in other studies (Tristem, 2000; Katzourakis and Gifford, 2010), and Chapter 

3.,  with a reference library encompassing the known exogenous (Table 4.2) and 

endogenous diversity of Circoviridae. Using this approach, I identified 297 hits 

bearing significant similarity to circovirus and CRESS-DNA sequences. These 

sequences were derived from 75 species. (Appendix 4.1; Table 4.1).  

 

 The resulting hits were analysed to determine: which portion of the 

circovirus genome they were likely to be derived from, and how likely they were 

to be bona fide CVe, as opposed to exogenous viruses contaminating the genome 

assembly. For each of the 297 hits, I attempted to identify genomic flanking 

sequence. In the absence of genomic flanking regions, it is difficult to ascertain 

whether the sequence is truly an integrated EVE, as opposed to a viral sequence 

contaminating the host genome assembly. I used the presence of contig 

sequence that flanked regions of circovirus homology (>100bp) as evidence 

supporting the designation of a sequence as CVe. Furthermore, I used the 

presence of stop codons and frameshifts as supporting evidence that indicated 

lengthy residence in the host germline, and noted them in Appendix 4.1. Based 

on flanking genomic regions, at least ~94% (n=282) of the sequences found by 

DIGS are likely to be bona fide EVE sequences. Furthermore, 52% were degraded, 

containing at least one stop codon or frameshift. (Appendix 4.1). Exogenous 

(Table 4.2) and endogenous circovirus sequences were used to construct an MSA 

spanning the whole circovirus genome. This MSA was then used to identify the 

parts of the circovirus genome that had been incorporated as CVe. Most CVe 

represented only fragments of the full circovirus genome (Figure 4.1). 92% of 

the CVe were derived from whole or fragmented Rep peptides. I found four CVe 

that consisted of cap and rep sequences (Table 4.1), and a single CVe that 

consisted only of a cap gene (in the sloth) (Table 4.1).  
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I estimated the number of integration events that the CVe represented. 

Many species (or closely related species groups) genomes contained multiple CVe, 

but in some cases it was difficult to determine whether these sequences 

represented a single ancestral integration, or multiple distinct invasion events. 

The main causes of uncertainty were due to the sequence being present on a 

short contig, multiple CVe in a single organism that were located distally to one 

another, and were derived from regions of the circovirus genome that did not 

overlap one another. However, based on the relative rarity of CVe in animal 

genomes,  (Katzourakis and Gifford, 2010; Cui et al, 2014; Liu et al, 2011) I 

assumed a single invasion event had taken place except where multiple 

integration events could be determined. I estimated that the 299 CVe identified 

here represented at least 35-39 distinct germline invasion events (Appendix 4.1, 

Table 4.1, Figure 4.1). Whether it is 35 or 39 depends on whether the CVe in 

ray-finned fish are are derived from a single invasion event, or seven distinct 

invasion events.(see section 4.3.2). The disparity between the number of CVe 

versus the number of invasion events was due to 30% (n=101) CVe in this study 

belonging to a group of highly duplicated carnivore CVe derived from a single 

invasion event. 

 

To identify potentially expressed CVe, I used each CVe sequence in BLAST 

queries against the NCBI RefSeq RNA database for each host species. This 

revealed that 46 CVe sequences are predicted to be expressed (Appendix 4.1, 

Table 4.3). Where orthologs and tandem duplications are considered as single 

CVe, 13 CVe are predicted to be expressed. (Table 4.3). 
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Table 4.1: CVe and CVl detected in published vertebrate genome assemblies. 
Asterisks denote newly discovered circovirus-like sequences (CVl) and CVe. 
Crosses indicate instances with divergent sequences in the same species. 
 
EVE name Reference Genes # Hits  # Species 

     Agnatha 
    CVl-Eptatretus* This study Rep 7 1 

     Actinoperygii 
    CVe-Anguilla* This study Rep 1 1 

CVe-Characiformes* This study Rep 1 1 

CVe-Clupeiformes* This study Rep 1 1 

CVe-Cypriniformes Feher et al, 2013 Rep-Cap 18 2 

CVe-Cyprinodontiformes* This study Rep 5 1 

CVe-Perciformes* This study Rep 7 4 

CVe-Salmoniformes* This study Rep 3 1 

CVe-Mormyridiformes This study Rep 2 1 

CVe-Cichliformes This study Rep 2 1 

     Amphibia 
    CVe-Anura Liu et al, 2011 Rep 2 2 

     Serpentes 
    CVe-Serpentes Gilbert et al, 2014 Rep-Cap 20 6 

     Aves 
    CVe-Tinamou Cui et al, 2014 Rep-Cap 2 1 

CVe-Psittaciformes Cui et al, 2014 Rep-Cap 4 3 

CVe-Passeriformes Cui et al, 2014 Rep 6 4 

CVe-Egretta Cui et al, 2014 Rep 1 1 

CVe-Gallirallus* This study Rep 1 1 

CVe-Picoides* This study Rep 1 1 

Mammalia 
    CVe-Chrysochloris* This study Rep, Cap 4 1 

CVe-Carnivora 
Katzourakis and Gifford, 
2010 Rep 108 13 

CVe-Mus.caroli* This study Rep 1 1 

CVe-Heterocephalus * This study Rep 1 1 

CVe-Phascolarctos* This study Rep 1 1 

CVe-Sarcophilus * This study Rep 1 1 

CVe-Monodelphis This study Rep 1 1 

CVe-Galeopterus * This study Rep 2 1 

CVe-Manis* This study Rep 1 1 

CVe-Choloepus* This study Cap 2 1 

     Arthropoda 
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CVe-Varroa† Liu et al, 2011 Rep 19 1 

CVe-Tropileilaps*† This study Rep 8 1 

Cve-Pseudomyrmex* This study Rep 1 1 

CVl.Galendromus* This study Rep 1 1 

CVl.Metaseilius* This study Rep 1 1 

CVl.Loxosceles* This study Rep 19 1 

CVl.Oryctes* This study Rep 1 1 

CVl.Ephydra_hians*† This study Rep 10 1 

CVl.Ephydra_gracilis*† This study Rep 8 1 

CVl.Parhyale* This study Rep 3 1 

CVl.Caligus* This study Rep 4 1 

CVl.Triops* This study Rep 1 1 

     Cnidaria 
    CVl.Thelohanellus* This study Rep 1 1 

     Mollusca 
    CVl.Modolius* This study Rep 4 1 

CVl.Mytilus* This study Rep 4 1 

CVl.Biomphalaria* This study Rep 1 1 

CVl.Conus* This study Rep 3 1 

CVl.Aplysia* Liu et al, 2011 Rep 1 1 

     Platyhelminthes 
    CVl.Taenia* This study Rep 3 1 

Total 
  

300 75 
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Table 4.2: NCBI reference sequences used in screening and initial alignment. 
Sequences were downloaded from GenBank using the accession number and included in 
MSAs and DIGS screens for CVe. 
 

 

sequence-ID name full_name clade 

NC_001944 BFDV Beak and feather disease virus Avian-1 

NC_003410 CaCV Canary circovirus Avian-1 

NC_008033 SvCV Starling circovirus Avian-1 

NC_008375 RaCV Raven circovirus Avian-1 

NC_008521 GuCV Gull circovirus Avian-1 

NC_008522 FiCV Finch circovirus Avian-1 

NC_026945 ZfCV Zebra finch circovirus Avian-1 

NC_007220 DuCV Duck circovirus Avian-2 

NC_025247 SwCV Swan circovirus Avian-2 

NC_015399 BarbCV Barbel circovirus Fish-1 

NC_025246 SgCV Wels catfish circovirus Fish-2 

NC_001792 PCV-1 Porcine circovirus 1 Mammal-1 

NC_005148 PCV-2 Porcine circovirus 2 Mammal-1 

NC_020904 CfCV Canine circovirus 1 Mammal-1 

NC_023885 MiCV Mink circovirus Mammal-1 

NC_031753 PCV-3 Porcine circovirus 3 Mammal-2 

NC_028045 TbCV Mexican free-tailed bat circovirus Mammal-2 

NC_028045 TbCV Mexican free-tailed bat circovirus Mammal-2 

NC_021707 CyCV-VN Cyclovirus VN isolate hcf1  Cyclovirus-1 

NC_020206 FWCasCYV Florida woods roach-associated cyclovirus  Cyclovirus-3 
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Figure 4.1: Genome structures of 24 endogenous circovirus (CVe) elements 
identified in animal genomes. Genome structures are shown relative to a porcine 
circovirus 1 (PCV1) reference genome (accession # NC_001792.2). CVe Rep and Cap 
coding sequences are represented schematically as green and yellow bars. A 
thickened grey line between the two ORFs indicates internal non-coding region of the 
circoviral genome. Dotted lines indicate regions of the viral genome that are not 
represented in CVe. The name of the nearest annotated gene, where one could be 
identified, is shown to the right of each element.  
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4.3.2 – Identification of orthologs and construction of a timeline of CVe 

evolution 

 

I searched the flanking genomic regions of CVe for evidence of orthology. 

Where the flanking genomic regions displayed unambiguous (see Materials and 

Methods) homology, I designated them as orthologous. I was able to identify 

orthologous CVe insertions in five different species groups – Passeriformes, 

Carnivora, Serpentes, Cyprinidae, and Varroa.  (Figure 4.2). In some cases 

sequence similarity and phylogenetic relationships (i.e. multiple CVe from the 

same species forming a monophyletic clade in a phylogeny) suggested orthology, 

but I was unable to definitively show this to be such using flanking sequences. 

Where this was the case, I designated them as potentially orthologous CVe. I 

found potentially orthologous CVe in Psittaciformes, Amphibia, Marsupialia, 

Perciformes and Actinoperygii. I used these data to create a timeline of 

circovirus invasion of vertebrate genomes (Figure 4.3). I could only find 

evidence of a single orthologous integration in invertebrate host groups 

(Varroa). Literature searches found no published divergence times between 

sequenceID accession expression_prediction_name 
CVe.Carnivore.Mustela_putorius.4.1 XR_001180410.1 Mustela putorius furo uncharacterized 

LOC101671852 
CVe.Carnivore.Ursus_maritimus.3 XR_571517.1 Ursus maritimus uncharacterized LOC103673978 

CVe.Carnivore.Ursus_maritimus.4.1 XR_571516.1 Ursus maritimus uncharacterized LOC103673978 

CVe.Cypriniformes.Cyprinus_carpio.3 XM_019084668.1 Cyprinus carpio uncharacterized LOC109067769 

CVe.Cyprinodontiformes.Kryptolebias_marmoratus.1 XM_017439363.1 Kryptolebias marmoratus uncharacterized 
LOC108249773 

CVe.Cyprinodontiformes.Kryptolebias_marmoratus.5 XM_017439647.1 Kryptolebias marmoratus 2-phosphoxylose 
phosphatase 1 

CVe.Perciformes.Acanthochromis_polyacanthus XM_022218352.1 Acanthochromis polyacanthus sequestosome 1 

CVe.Pseudomyrmex_gracilis.1 XM_020436189.1 Pseudomyrmex gracilis uncharacterized 
LOC109858690 

CVe.Salmoniformes.Salmo_salar.1 XM_014156888.1 Salmo salar TSC22 domain family protein 4-like 

CVl.Varroa_destructor.11 XM_022795351.1 Varroa destructor uncharacterized 
LOC111246180 

CVl.Varroa_destructor.14 XM_022796232.1 Varroa destructor uncharacterized 
LOC111246511 

CVl.Varroa_destructor.18 XR_002679502.1 Varroa destructor uncharacterized 
LOC111246511 

CVl.Varroa_destructor.3 XM_022854376.1 Varroa jacobsoni carbohydrate sulfotransferase 
1-like 

Table 4.3 – Expression predictions and accessions for CVe. sequenceID denotes 
sequence that was used in tBLASTn queries of the NCBI RefSeq RNA database. 
Significant expression predictions, with accession no and name, are listed on the 
right. 
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Varroa jacobsoni and Varroa destructor. Because of this, I omitted invertebrate 

hosts from Figure 4.3.  

 

When plotted onto a time-calibrated phylogeny, the minimum estimated 

integration dates of vertebrate CVe show that circoviruses have been infecting 

vertebrates since at least the end of the Mesozoic (Figure 4.3). The oldest 

ortholog, in Serpentes, dates CVe integration to 90mya. The remaining orthologs 

are clustered in the Paleogene (Figure 4.3). The potential orthologs suggest that 

Circoviridae may be even older than the Serpentes ortholog. Sequence similarity 

and phylogenetic analysis (see Section 4.3.3) indicate either that the CVe in 

fish represent an ancient ortholog predating the radiation of Actinoperygii, or 

co-divergence and endogenisation of exogenous fish-circoviruses (such as barbel 

circovirus – BarbCV) has led to this species group being represented as a 

monophyletic clade (see Figure 4.5).  

 

Figure	4.2:	Orthologs	of	four	CVe	in	fish	(A),	passerine	birds	(B),	snakes	(C),	
carnivores	(D)	and	Varroa	mites	(E).	The	dotplots	were	generated	by	aligning	2kb	
(3	in	case	of	Varroa)	genomic	extracts	of	CVe	and	genomic	flanking	regions.	
Threshold	used	for	dot	generation	was	80%.	Window	size	was	20bp.	Thick	blue	
lines	indicate	regions	containing	CVe.		
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Figure 4.3: Evolutionary relationships of vertebrate species in which 
CVe have been identified, and timeline of CVe evolution. Pink circles 
indicate confirmed orthologs. Yellow circles indicate the presence of 
potential orthologs that have not been confirmed. Blue triangles indicate 
where CVe loci are present, but no information about their ages could be 
obtained. Phylogeny obtained from the TimeTree database (Kumar et al, 
2017). Kryptolebias marmoratus was not present in the TimeTree 
database and was omitted from this figure. 
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4.3.3 - Phylogenetic analysis of Circoviridae Rep 

 

We performed phylogenetic analysis of CVe. Because of the dominance of 

the Rep protein in our screening results, and the relative conservation of the 

Rep versus the Cap protein, the root Rep MSA was used in a preliminary 

phylogenetic analysis. The tree (Figure 4.4) disclosed three major clades, one of 

which was a group of sequences largely derived from marine invertebrates. I 

surmised that these sequences belonged to the CRESS-DNA group of viruses. This 

was based on the presence of the Avon-Heathcote Estuary associated virus 

(AHEaV) isolate (Dayaram et al, 2015), the basal position in the phylogeny, and 

a high degree of sequence divergence in this region of the tree (Figure 4.4). 

Bootstrap support for branching patterns in this region of the phylogeny were 

low, reflecting the highly diverse nature of CRESS-DNA viruses circulating in 

invertebrates (Dayaram et al, 2015), and relatively poor sampling of viruses in 

invertebrates. The only vertebrate sequence to group in this clade was a 

consensus sequence derived from the genome of the inshore hagfish (Eptatretus 

burgeri). The CRESS sequences shown in Figure 4.4, are not considered to part 

of family Circoviridae (Rosario et al, 2017), and were therefore not considered 

to be CVe. Based on their basal grouping in phylogenies, and close matching to 

CRESS-DNA references, 65 sequences were designated as Circovirus like (CVl) 

CRESS. They were omitted from further analysis, removed from the MSA, and 

denoted in Appendix 4.1.  

 

The MSA was then used to construct an ML phylogeny of Circoviridae Rep 

(Figure 4.5). The phylogeny showed two robustly supported clades emerging, 

corresponding to genera Circovirus and Cyclovirus. They contained a mixture of; 

(i) CVe from WGS assemblies; (ii) sequences obtained from virus isolates; (iii) 

sequences obtained from metagenomic samples (Figure 4.5, Appendix 4.2) 

 

The first represented genus Circovirus. This grouping was based on the 

monophyletic grouping of well-described exogenous viruses, such as PCV-1/2, 

BaCV and BFDV, with CVe. (Figure 4.5). The second major clade corresponded 

to genus Cyclovirus, based on the monophyletic grouping of CVe and previously 

defined exogenous cycloviruses such as CyCV-VN, and Florida Woods cockroach 
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associated virus (Figure 4.5). In general, support at deeper nodes in the tree 

tended to be relatively low, with well supported subgroups emerging, reflecting 

the short and degraded nature of many CVe.  

 

The Circovirus clade contained a mixture of CVe and exogenous sequences. 

Both were derived exclusively from vertebrates. Subgroups emerging within this 

clade showed well-supported definitions by host-class for three main groups, 

defined here as mammal 1, cyprinid 1 and avian 1. Each of these groups showed 

CVe grouping with exogenous sequences from the same host class (Figure 4.5). 

For example, beak and feather disease virus (BFDV) grouped robustly with a CVe 

that entered the germline of passeriform birds, while barbel circovirus grouped 

robustly with CVe from the genome of the golden line barbel, in a well-

supported clade containing numerous CVe from ray-finned fish. The only 

sequence that contradicts this pattern is chimpanzee circovirus, which groups 

robustly within a cluster of avian viruses (Figure 4.5). However, this sequence 

was recovered in a metagenomics analysis of chimpanzee faeces, and a possible 

avian origin was noted following discovery (Li et al, 2010). 
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The Cyclovirus  clade contained three well-supported subclades, labelled 

cyclovirus 1-3 (Figure 4.5). Clade 1 consisted of viruses from vertebrate samples. 

Cyclovirus groups 2 and 3, however, contained intermingled sequences from 

vertebrate and invertebrate. In contrast to genus Circovirus (Figure 4.5) the 

clade structure did not reflect host associations in any way. Cyclovirus 2 

contained invertebrate EVE sequences, derived from the genomes of the Varroa 

mite (Varroa destructor), and Asian bee mite (Tropileilaps mercedesdae), in 

addition to a cyclovirus derived from a bat. Cyclovirus 3 contained vertebrate 

and invertebrate cycloviruses derived exclusively from metagenomics analyses 

and CVe.Pseudomyrmex, derived from the genome of the elongate twig ant 

(Pseudomyrmex gracilis). Sequences in this clade did not follow a pattern 

according to host grouping. Branch lengths separating vertebrate from 

invertebrate viruses (and CVe) were relatively short, with the distance between 

Figure 4.4: Phylogenetic relationships between Circoviridae and 
CRESS. Maximum likelihood phylogeny of aligned circovirus and CRESS 
amino acid Rep sequences. Genus/grouping indicated by labelled 
brackets. Scale bar indicates substitutions per site. Node labels indicate 
UFBOOT support (%).  
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vertebrate and invertebrate cyclovirus sequences being far less than the 

distances separating vertebrate circoviruses, and CRESS sequences (Figure 4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Maximum likelihood phylogeny of aligned amino acid Circoviridae Rep 
sequences. Sequences derived from metagenomic samples are indicated by colored 
circles. Taxa names are shown for sequences derived from viruses and CVe, and are 
coloured to indicate associations with host species groups, as shown in the key. 
Sequences derived from metagenomic sampling are indicated by circles coloured 
according to indicate sample associations with host species group. Pentagrams 
indicate viral taxa that have been linked to human disease. See Appendices 4.1, 4.2 
and 4.3 for accession numbers and details of taxa shown here. Asterisks indicate 
nodes with >70% bootstrap support. Scale bar indicates substitutions per site. 
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4.3.4 - Phylogenetic analysis of Circoviridae Cap 

 

In general, the Cap protein was less conserved than the Rep protein, 

reflected by the higher level of substitutions per site (Figure 4.6 – scale bar). 

Because of this, I excluded CRESS sequences from the alignment. The topology 

of the resulting phylogeny differed from that of the Rep phylogeny. In the 

midpoint-rooted Cap tree, Genus Cyclovirus remained monophyletic and was 

placed in a more derived position to Circovirus, grouping in the clade defined by 

fish circoviruses. The monophyletic clade comprising the remaining circovirus 

sequences grouped by host group (Figure 4.6) with mammal, snake, waterfowl, 

bat and bird clades forming in a in a similar manner to the Rep tree (Figure 4.6), 

but with weaker support. Comparatively robust (92%) support existed for the 

monophyletic clade containing the fish circoviruses and genus Cyclovirus. This 

topology suggests a different evolutionary history of Circoviridae Cap than that 

of Rep. 
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Figure	4.6:	Maximum	likelihood	phylogeny	of	aligned	amino	acid	
Circoviridae	Cap	sequences.	Genus	indicated	by	labelled	brackets.	
Scale	bar	indicates	substitutions	per	site.	Asterisks	indicate	UFBOOT	
support	>95%.	Red	labels	indicate	CVe.	Coloured	branches	indicate	
host	grouping	as	denoted	in	the	key.			
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4.3.5  - Species breakdown 

 

4.3.5.1 - CVe in jawless fish 

 

I found seven sequences similar to rep in the genome of the inshore 

hagfish (Eptatretus burgeri). These sequences are distinct from other 

circoviruses, grouping with CRESS sequences in the Rep phylogeny (Figure 4.4), 

and also showed relatively high genetic diversity relative to one another, 

forming three distinct clades (Figure  4.7), suggesting that these sequences are 

derived from three distinct germline invasions. This was supported by analysis of 

the putative Rep polypeptides encoded by these sequences. They contained 

several in-frame indels relative to one another, suggesting that the CVe in the 

hagfish are derived from three different germline invasions of three distinct, but 

relatively closely related viruses. These results should be taken with the caveat 

that no genomic flanking sequences were recovered for these sequences, making 

their status as CVe uncertain. 

Figure 4.7: Maximum likelihood phylogeny of CVe Rep 
recovered from the genome of the inshore hagfish. 
(Eptatretus burgeri). Scale bar indicates substitutions per site. 
Node labels indicate % UFBOOT support. 
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4.3.5.2 - CVe in Actinoperygii 

 

 Endogenous and exogenous circoviruses have been reported in fish, with 

CVe being recovered in the genome of the Indian Rohu (Labeo rohita), and 

circovirus nucleic acids and particles being recovered from fish tissues. (Feher 

et al, 2013; Lorincz et al, 2012; Lorincz et al, 2011). I identified additional 

CVe sequence in the genomes of ray-finned fishes (Class Actinopterygii) (Table 

4.1 and Table 4.3). I found that CVe in the common carp (Cyprinus carpio) and 

golden-line barbel (Sinocyclocheilus grahami) genomes were orthologs with 

respect to each other, indicating they invaded the germline of cyprinid fish more 

than 39 million years ago (Figure 4.2, Figure 4.3). (Ren et al, 2016). These 

CVe consisted of multiple complete circovirus genomes arranged in tandem. 

They were highly similar (~70% nucleotide identity across 1654 nucleotides) to 

the barbell circovirus (BarbCV), grouping next to it in phylogenetic trees. 

 

I also identified matches to rep in other species of ray-finned fish (Table 

4.1). I could not determine how many integration events these CVe represented. 

All of these sequences group together in phylogenies (Figure 4.5). A phylogeny 

of fish CVe shows that, generally, fish CVe can be sub-divided into based on host 

grouping. (Figure 4.8). Although the phylogeny is poorly supported, host group 

patterns can be loosely resolved. Perciform and cypriniform fish form the two 

largest host groups. An ortholog has been found in cyprinid fish, and the 

topology of the perciform fish clade is indicative of orthology, despite the 

grouping of a non-perciform sequence (CVe.Acanthochromis) within this clade. 

(Figure 4.8). These two groups cluster with single CVe from five other fish 

lineages in a manner that approximately follows that of the host species when 

rooted on the most basal host – the European eel (Anguilla anguilla) (Figure 4.8). 

This indicates either a single ancestral integration event >200 million years ago 

(Figure 4.3)., or distinct invasion events. The observation that CVe elements in 

order Cypriniformes (golden-line barbel and carp) occur as full-length tandem 

genomes, whereas those in Perciformes (spiny chromis damselfish, tomato 

clownfish) are derived from more divergent fragments of rep, is suggestive of at 

least two separate invasion events. This is supported by the placement of the 

amphibian CVe.Xenopus and CVe.Rana in phylogenies, in which it splits the fish 
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CVe from one another, albeit with weak support (Figure 4.8). CVe in the 

mangrove rivulus (Kryptolebias marmoratus) and the common carp encoded 

complete intact rep genes (Figure 4.1) that are predicted to be expressed 

(Table 4.3), suggesting they may have been functionalized in some manner.  

 

 

4.3.5.3 - CVe in amphibians 

 

I identified a novel CVe in the genome of the American bullfrog (Rana 

catesbiana). This sequence overlaps slightly with a CVe previously identified in 

the genome of the Western clawed frog (Xenopus tropicalis) (Liu et al, 2012). 

The possibility that these CVe are orthologous implies a minimum estimated 

integration date of ~204 mya (Figure 4.3) (Canatella et al, 2015; Roelants et 

al, 2011). However, I was unable to determine an orthology based on flanking 

genomic sequences, leading to their designation as potential orthologs only. 

 

 

 

 

Figure 4.8: Phylogeny of aligned CVe Rep amino acid sequences 
recovered from fish and amphibian genomes. Node labels indicate % 
UFBOOT support. Scale bar indicates substitutions per site.  
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4.3.5.4 - CVe in reptiles 

 

 CVe orthologous in rattlesnakes (Crotalus spp.) have previously 

been identified (Gilbert et al, 2015). I identified CVe orthologous with respect 

to these in four additional snake species (Table 4.1). These orthologs indicate 

that this CVe is ~72-90 million years old – predating the radiation of sub-order 

Serpentes. (Figure 4.3).  (Chen et al, 2013; Wang et al, 2009). 

 

4.3.5.5 - CVe in birds  

 

Similarity-search based analyses have found CVe in the genomes of the 

little egret (Egretta garzetta), white-throated tinamou (Tinamus guttatus), the 

kea (Nestor notabilis) and the medium ground-finch (Geospiza fortis),  (Cui et al, 

2014).  I identified CVe in eight additional species (Table 4.1), some of which 

appeared to be orthologous with respect to previously reported CVe. I identified 

orthologs of the CVe previously identified in the medium ground finch in several 

other passeriform (perching/song bird) species (Figure 4.3). This demonstrates 

that this CVe integration predates the radiation of Passeroida approx. 38 mya 

(Prum et al, 2015; Jetz et al, 2012) (Figure 4.2, Figure 4.3). Furthermore, I 

identified potential orthologs of the CVe previously identified in the kea (Cui et 

al, 2014), in the Amazon (Amazona aestiva) and the rosy-faced lovebird 

(Agapornis roseicollis). This suggests that these CVe are at least as old as the 

radiation of Psittaciformes, which occurred approx. 30-60 Mya (Figure 4.3). 

(Prum et al, 2015; Jetz et al, 2012). 

 

In addition to the orthologous CVe in the genomes of Passerine and 

Psittaciform birds, I identified previously unreported CVe in the Japanese rail 

(Gallirallus okinawae: order Gruiformes) and downy woodpecker (Picoides 

pubescens: order Piciformes) (Table 4.1). Both these sequences were short and 

highly divergent, and as a result I could not determine their relationships to 

other CVe and circoviruses with confidence.  

 

 

 

 



	

	 138	

4.3.5.6 - CVe in mammals 

 

The majority of CVe (n=100)  identified in our screen were identified in 

carnivore genome assemblies. Phylogenetic and sequence analysis suggests that 

all of these CVe derive from 1-4 germline invasion events involving an ancient 

carnivore rep gene. This CVe appears to have undergone a striking intragenomic 

expansion in carnivore genomes: For example, the ferret genome contains at 

least 32 duplicated CVe sequences. (Appendix 4.1). 

 

To further study the evolutionary history of carnivore CVe, I generated an 

ML phylogeny of aligned carnivore Rep sequences. The phylogeny (Figure 4.9) 

indicated that at least four CVe insertions were present in the carnivore 

germline prior to the radiation of Carnivora, some of which have undergone 

expansion in carnivores. The phylogenetic relationships between carnivore CVe 

copies (Figure 4.9), particularly in the group CVe-Carnivora-4, indicate that 

these expansions have occurred independently in ursids (bears), pinnipeds (seals 

and walruses), and mustelids. It is possible that the reason why these CVe have 

proliferated is that they have become embedded into retroelements and copied 

along with these during intragenomic expansions. I investigated the regions 

flanking CVe-Carnivora and found that each CVe was embedded in a repeated 

12kb region, that showed a high degree of homology to similar regions in the 

same and different species. I was unable to detect paired LTRs or retroviral 

genes, indicating that this sequence was not of ERV origin. The 15kb regions 

containing the repetitive sequence, and the carnivore CVe, were examined in 

DFAM (Hubley et al, 2016). This investigation showed that carnivore CVe were 

associated with long interspersed nuclear elements (LINE1). (Appendix 4.3)  

Three of the four expansion groups shown in Figure 4 were found to be 

associated with LINE-1 DNA, including the most basal. Given the age of this 

group of CVe in Carnivora to be at least 54 million years old (Katzourakis and 

Gifford, 2010), it is likely that the fusion of CVe.Carnivora and LINE-1 predates 

the radiation of order Carnivora. The sequences appeared to be highly degraded, 

with the LINE1 ORFs disrupted by stop codons and indels. Curiously, DFAM was 

unable to locate one of the two canonical LINE1 ORFs (ORF1), instead only 

finding ORF2 and 3’/5’ UTRs. (Appendix 4.3). 
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I identified a relatively intact CVe in the genome of the Ryukyu mouse 

(Mus caroli) that grouped with the exogenous canine circovirus (CaCV) recovered 

from dogs (Decaro et al, 2014). Additionally, I found degraded, divergent 

matches to cap and rep in the genome of the cape golden mole (Chrysochloris 

asiatica) on distinct contigs, meaning that I could not determine whether they 

derived from the same germline invasion event. CVe derived from cap were also 

identified in the genome of Hoffmann’s two-toed sloth (Choloepus hoffmanni) 

(Figure 4.1).  

 

CVe have previously been identified in marsupial genomes, having been 

found in the genome of the opossum (Monodelphis domestica). I identified CVe 

in the genomes of two australidelphian (Australian marsupial) species: the 

Tasmanian devil (Sarcophilus harrisii) and the koala (Phascolarctos cinereus). 

The Opossum CVe groups with mammalian CVe rep sequences derived from Mus 

caroli, PCV and CaCV. (Figure 4.5). However, the two novel CVe were short and 

highly degraded, and their position in phylogenies relative to other taxa was 

poorly supported. As such, the koala and devil sequences were omitted from 

Figures 4.4 and 4.5. I identified other short, divergent and degraded matches 

to Rep probes in the genome of the Sunda flying lemur (Galeopterus variegatus), 

Chinese pangolin (Manis pentadactlya), and the naked mole-rat (Heterocephalus 

glaber). (Appendix 4.1, Figure 4.1). 
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Figure	4.9:	Phylogeny	of	CVe	Rep	amino	acid	sequences	recovered	from	carnivore	genome	
assemblies.	At	least	four	distinct	CVe	loci	are	present	in	the	carnivore	germline	(clades	I-IV)	as	
indicated	 by	 the	 coloured	 brackets.	Note	 the	 identifier	 (CVe.Car.#)	 indicating	 the	 expansion	
number.	Scale	bar	indicates	substitutions	per	site.		
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4.3.5.6 - CVe in mites 

 

DNA sequences bearing a high similarity to cyclovirus rep genes were 

found in mite genomes. (Appendix 4.1, Table 4.1). CVe have previously been 

identified in the genome of the Varroa mite (Liu et al, 2011). I found 20 

sequences matching cyclovirus Rep, and found evidence to support the 

designation of 18 of these as CVe (based on genomic flanking regions). 

Furthermore, an orthologous integration between Varroa jacobsoni and Varroa 

destructor was found using BLASTn searches (Figure 4.2). Unlike multicopy EVE 

integrations found in vertebrate species groups, Varroa CVe sequences were 

relatively divergent, and only 16 of them were incorporated into an alignment 

used to generate the consensus for CVe.Varroa. Four of these sequences were 

predicted to be expressed (Table 4.3).  

 

Novel CVe were found in the genome of the Asian bee mite (T. 

mercedesdae). Similarly to CVe.Varroa, the Tropileilaps CVe were relatively 

divergent, and of the eight recovered, only four were incorporated into the 

CVe.Tropileilaps consensus.  

 

4.3.5.7 - CVe in ants 

 

A Cyclovirus-like rep gene was also identified in the genome of the 

elongate twig ant (Pseudomyrmex gracilis ). CVe-Pseudomyrmex was found to 

encode an intact rep ORF, which is predicted to be expressed (Table 4.4). CVe-

Pseudomyrmex was no more distantly related to contemporary cycloviruses than 

many of them are to one another, including some that are associated with 

vertebrates (at least superficially) (Figure 4.5). This result was unexpected, and 

I sought confirm it through isolating CVe-Pseudomyrmex from the P. gracilis 

genome through PCR (performed by Peter Flynn). 

 

Peter obtained genomic DNA from four species of ant belonging to genus 

Pseudomyrmex (P. gracilis, P. elongatus, P. spinicola, and P. oculatus). PCR was 

used to amplify a region encompassing part of the CVe, and part of the genomic 

flanking sequence. The PCR produced an amplicon of the expected size in all 

three DNA samples of P.gracilis: all other samples were negative (Figure 4.10). 
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The fact that CVe-Pseudomyrmex was not detected in other members of the 

genus suggests it invaded the P. gracilis germline after this species diverged 

from P. elongatus, P. spinicola, and P. oculatus in the mid-Miocene (Gomez-

Acevedo et al, 2010). However, it was impossible to rule out that the failure to 

obtain an amplicon in these species was due to sequence divergence in the 

regions targeted by PCR primers.  

 

4.3.5.8 - CVe in other invertebrates 

 

I found 65 CRESS-DNA CVl sequences, derived from invertebrate genomes 

(Table 4.1, Table 4.5). The CVl were derived from a diverse range of hosts: 

Platyhelminthes, molluscs, arthropods and a cnidarian. CVl were highly 

divergent, with multicopy integrations from the same species group often 

bearing little similarity to one another. This was shown in Figure 4.4, with 

CRESS Rep sequences being separated from one another by long branches. This is 

a reflection both on the limited sampling of invertebrate taxa in genome 

sequencing efforts, and on the quality of many invertebrate genomes. Notably, a 

CVe was found in the genome of a Cnidarian – the parasitic myxosporean 

Thelohanellus kiteaui. 
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Figure 4.10. PCR confirmation of CVe-Pseudomyrmex presence in three populations 
of Pseudomyrmex gracilis. Columns: (1) negative control; (2) Pseudomyrmex gracilis, 
from the Florida Keys; (3)  P. gracilis, from mainland Florida, USA; (4) P. gracilis, from 
Texas, USA; (5) P. elongatus, from the Florida Keys, USA; (6) P. spinicola, from 
Guanacaste Province, Costa Rica; (7) P. oculatus, from Cusco, Peru ; (8) Cephalotes 
atratus, from Cusco, Peru; (9) negative control; (10) ladder. The PCR was performed 
and figure prepared by Peter Flynn.
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4.4 - Discussion 

 

4.4.1 – Assessment of the methods 

 

I found that DIGS was relatively well suited to searching animal genomes 

for CVe. I was able to screen a large number of animal genomes, and use MySQL 

to generate detailed summaries of CVe sequences broken down by host and virus 

taxonomy (Table 4.1). Downstream analysis of CVe was made more easy by the 

comparatively small size of the dataset (compared to chapter 3), and we were 

able to adopt a comparative approach whereby host:circovirus co-evolution was 

analysed across a wide range of species. Additionally, we were able to recover 

all CVe sequences and orthologs that have previously been described (Table 

4.1), indicating that our approach for searching organism genomes for 

endogenous viral elements is robust.  

 

4.4.2 - CVe provide retrospective information about circovirus evolution. 

 

At least ten of the loci described here have been discovered previously 

(Table 4.1), and the majority of EVE sequences described here were orthologs 

(in the case of the cyprinid, bird and snake loci) or duplicated (in the case of the 

carnivore CVe) of these CVe. However, when these are discounted, this study 

represents an increase in known past circovirus host range of at least 39 species.  

Novel orthologs were discovered in fish and birds, and previously 

characterised orthologs in snakes and carnivores were described in greater 

detail. This allowed us to establish the first minimum age estimates for some 

CVe loci, and to extend those of others (Figure 4.2; Figure 4.3). Thus, we were 

able to derive a more accurately calibrated timeline of evolution for the 

Circovirus genus, spanning multiple geological eras (Figure 4.2). The timeline 

indicated that circoviruses have been infecting a diverse range of vertebrate 

hosts over millions of years. The timeline (Figure 4.3), combined with the 

circovirus phylogeny (Figure 4.5) suggested a high degree of stability in 

circovirus host range, at least at high taxonomic levels. For example, fish 

circoviruses are at least 39 million years old and potentially up to 200 million 

years old (Figure 4.3). The Rep phylogeny shows this group of fish CVe and 

exogenous fish viruses to be monophyletic and exclusive to ray-finned fish 
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(Figure 4.5). As such, it appears that the circovirus-fish association is ancient, 

and that circoviruses have not been transmitted from fish to other species 

groups during their evolutionary history. This pattern is observed in other 

species groups – in snakes, birds and mammals, suggesting that circoviruses do 

not switch hosts readily. We observed an instance of potential inter-class 

transmission within one Circovirus sub-lineage that contains sequences obtained 

from anseriformes (waterfowl) and mammals (mink, bats, dogs and pigs) as well 

as CVe from snake genomes (see Figure 4.5). Within this clade, sequences from 

viruses of mink are robustly separated from those obtained from porcine and 

canine viruses by a CVe that invaded the serpentine germline >72 million years 

ago, based on its presence as an orthologous insertion in multiple snake species 

(Gilbert et al, 2014). This occurs as a single instance in the Rep phylogeny. 

When combined with the advanced age of the sequence groups involved, it 

suggests that if cross-class transmission occurs at all, it is relatively infrequent. 

However, many of the internal nodes in the Rep phylogeny lacked robust 

support, limiting our ability to extrapolate date calibrations determined by 

orthologous loci across the phylogeny. In addition, virus endogenisation is 

relatively rare, making the virus fossil record incomplete and obscuring other 

potential cross-species transmission events. Further sampling of circoviruses and 

CVe to allow the evolutionary relationships within the Circovirus genus to be 

determined with greater confidence, which will in turn allow more extensive 

calibrations to be made. 

 

4.4.3 - Mapping the host range of circoviruses 

 

The data presented in this chapter show a marked increase in the known 

past host range of circoviruses. Most of the new sequences discovered are 

orthologs or duplicates of one another (CVe.Carnivora, for example), but when 

these are discounted, 39 new species spanning 3 animal phyla are found to have 

been infected by circoviruses or circo-like viruses in their evolutionary past. Also 

of interest are the species groups not infected by circoviruses. Primates, for 

example, are well represented in genome sequence databases, yet evidence of 

primate infection by ciroviruses is conspicuously absent. 
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Knowledge of these host associations is useful, in that it can be used to 

guide contemporary virus discovery efforts, both in sampling exogenous viruses, 

and targeted genome sequencing of animal species for CVe. 

 

The host makeup of the CRESS clade was, with the exception of CVl found 

in the genome of the inshore hagfish, confined to invertebrates, and largely 

those that occupy a marine habitat. The long branch lengths within this clade 

likely reflect divergences deep in evolutionary time, suggesting a wealth of 

diversity that is currently unknown. Circular ssDNA viruses have previously been 

associated with marine invertebrates, (Rosario et al, 2012; Breitbart et al, 

2015; Dunlap et al, 2013) but until now, a conclusive host:virus interaction has 

not been proven beyond an association. The data presented definitively extend 

the host range of CRESS DNA to both marine and terrestrial invertebrates from 

three different phyla - Arthropoda, Cnidaria and Gastropoda. Further sampling 

of ssDNA viruses and invertebrate genomes would likely add valuable context to 

the nature and disease causing potential of this poorly studied, heterogenous 

group of viruses, as well as the possible origin of family Circoviridae. 

 

 Cycloviruses also have an uncertain host range. Prior to this analysis, 

cyclovirus sequences had only been identified through metagenomics analyses. 

In this study, we describe cyclovirus CVe in the elongate twig ant and two 

species of mite. As these are the only confirmed cyclovirus hosts, we propose 

that cycloviruses (at least clades 2 and 3) are invertebrate viruses that have 

contaminated metagenomics samples.  

 

Arthropods are ubiquitous. For example, diverse mites live on animal skin 

and in house dust. (Making it interesting to note the presence of cyclovirus CVe 

in mites (Table 4.3; Figure 4.5)). As such, it is unsurprising that contamination 

would be commonplace. An alternative explanation is that transmission occurs 

readily between arthropods and vertebrates. When contamination is discounted, 

and the phylogeny is taken at face value, this appears to be the case, with ready 

host mixing between invertebrates and vertebrates taking place in cyclovirus 

clades 2 and 3 (Figure 4.5). This is unlikely, however, for three reasons: 
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Firstly, short branches between vertebrate and invertebrate cycloviruses 

give the impression of ready host mixing. This is incongruous with the 

phylogenetic evidence that circoviruses of the closely-related genus Circovirus 

are highly host-group specific. (Figure 4.5). Within this clade, host associations 

appear stable at high taxonomic levels (i.e. at the class level), with ancient CVe 

from particular host orders or classes seen grouping together with contemporary 

viruses, with possible evidence of infrequent cross-class transmission in 

occurring in Circovirus (Figure 4.5). In addition, the only sequence that seems 

to contradict this pattern of long-term host-group specificity is derived from a 

chimpanzee stool sample and likely reflects environmental contamination (Li et 

al, 2010). Also corroborating this this is the high distance between the 

invertebrate CRESS and the vertebrate circoviruses (Figure 5), which presents a 

contrast to the short distances between cycloviruses derived from vertebrate 

and invertebrate hosts (Figure 4.5). The apparent stability of circovirus host 

range demonstrated in the phylogeny (Figure 4.5) suggests that circoviruses do 

not readily cross barriers between distantly related hosts. 

Secondly, there exists no evidence suggesting that circoviruses readily 

cross species barriers. Contemporary evidence exists suggesting that circoviruses 

do not travel between hosts of the same class. Since 2000, a large number of 

humans have been directly exposed to porcine circovirus 1 (PCV-1) through its 

presence as an contaminant in the live attenuated rotavirus vaccine (Rotarix) 

(Victoria et al, 2010). Despite this, PCV-1 is not thought to have infected any 

humans who received these vaccines, indicating that relatively strict barriers to 

cross-species transmission exist for these viruses.  

Thirdly, humans exist in close proximity to animals that are routinely 

infected by circoviruses: birds and pigs. Despite the intimate role of these 

animals in human communities, no human circovirus infection has been reported. 

If cross-species transmission of circoviruses between distinct mammalian orders 

does not occur readily, then transmission between arthropod and vertebrate 

hosts appears unlikely. 

 

The Varroa mite and elongate twig ant CVe are the first unambiguous 

evidence of host associations for cycloviruses. The confirmed presence of CVe-

Pseudomyrmex in the ant genome (Figure 4.10), combined with the fact that it 

is predicted to be expressed, confidently indicates that CVe-Pseudomyrmex is an 
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endogenous cyclovirus. Since arthropods are the only confirmed cyclovirus hosts, 

contamination of vertebrate samples with arthropod viruses is the simplest 

explanation for the host associations described here. 

 

Whereas the weight of evidence may favour cyclovirus clades 2 and 3 

being exclusively arthropod viruses that frequently contaminate vertebrate 

samples, the status of the basal cyclovirus clade 1 is more equivocal. Cyclovirus 

1 is comprised exclusively of sequences obtained from mammalian samples, and 

includes cycloviruses that have been posited as disease causing agents in humans 

(cyclovirus-VN and human cyclovirus VS5700009). Although the distance between 

this apparently mammalian lineage of cycloviruses and the invertebrate 

cycloviruses is still comparatively low compared to the distance between the 

CRESS and Circovirus, it is possible that these sequences represent a mammal or 

vertebrate-specific lineage of cycloviruses that is distinct from arthropod-

infecting lineages. Notably, false-positive detection of human cyclovirus 

VS5700009 has been reported (Chan et al, 2015).  

 

4.4.4 - Impact of CVe on host genome evolution 

 

We found that 40% of CVe encoded intact ORFs, and that 13 were 

predicted to be expressed. The overwhelming majority of CVe consisted of Rep 

sequences. This may reflect a propensity of Rep to be exapted by the host, or 

some propensity of Rep sequences for insertion. This has been observed in 

general for EVEs derived from polymerase genes to encode and express intact 

ORFs. (Katzourakis and Gifford, 2010; Arriagada and Gifford, 2014; Horie et 

al, 2016). An alternative explanation is that the higher degree of divergence in 

Cap proteins precludes it from discovery compared to the relatively conserved 

Rep.  

 

We identified intact Rep ORFs that were predicted to be expressed as 

mRNA in fish and arthropods (Table 4.3). Particularly of interest is CVe-

Pseudomyrmex, which we showed here to be a bona fide endogenous element 

(Figure 4.10). CVe-Pseudomyrmex encoded an intact rep gene product, and was 

predicted by genome annotation software (see Methods)  to express mRNA 

(Table 4.3). The occurrence of an apparently fixed, intact, and expressed 
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circovirus rep gene in an ant genome provides further evidence that these genes 

have been co-opted or exapted by host species for as yet unknown functions. For 

example, functional genomic studies in insects indicate that endogenous viral 

element (EVE) sequences have been co-opted into RNA-based systems of 

antiviral immunity (Whitfield et al, 2017).  

 

In addition, I found that the CVe.Carnivore sequence was predicted to be 

expressed in the ferret and polar bear (Ursus maritimus) as non-coding RNA 

(ncRNA), possibly reflecting its status as a retrotransposon (Table 4.4). My 

discovery of expression predictions was dependent on  genomes that have been 

subject to NCBI’s annotation pipelines being present in NCBI’s RefSeq RNA 

databases. As such, it is likely that my estimates here are conservative, and a 

potential for future study lies in the screening of organism transcriptome with 

CVe probes, to identify which CVe are expressed. 

 

4.4.5 – Conclusions 

 

In this chapter, I mined published animal genomes for endogenous 

circovirus and circovirus-like elements. This was the most comprehensive 

analysis of CVe to date, inasmuch as I searched all available animal genomes at 

the time of study, and retrieved the largest number of CVe of any previous 

studies of this type (Liu et al, 2011; Katzourakis and Gifford, 2010; Belyi et 

al, 2010). I analysed the CVe to gain insights into circovirus:host co-evolution by 

characterising their genome structures, assessing them for potential expression, 

making assessments of circovirus host range, calibrating the timeline of 

host:circovirus co-evolution, and performing phylogenetic analysis to assess the 

relationships of CVe to exogenous circoviruses. 

 

I found that the approach I defined in chapter 3 – phylogenetic screening 

of genome data, followed by detailed characterization, phylogenetic analysis 

and comparative analyses across multiple species, was well suited to the study 

of CVe, especially given that the relatively small dataset lent itself well to in-

depth study (in contrast to my difficulty in leveraging large sequence volumes in 

chapter 3).  
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The ability of CVe to make inferences regarding host:circovirus co-

evolution would be bolstered by the screening of more genomes. This would 

provide more CVe sequences for analysis. In turn, this would increase the 

potential for ortholog discovery, thus enabling more date calibrations to be 

made. In turn, the creation of more confident phylogenetic trees would allow 

more definitive statements to be made regarding circovirus:host co-evolution 

and range. In addition, the sampling of a greater diversity of invertebrate 

genomes would allow more insights into the poorly-defined CRESS-DNA viruses. 

 

In this chapter, I show how the collection and study of CVe can be used to 

inform virus discovery efforts. The comprehensive screening of a large number 

of genome assemblies for EVE sequences can greatly extend the known host 

range of virus families, guiding sampling and discovery efforts. Secondly, where 

the phylogenetic relationships of virus sequences obtained using metagenomic 

approaches are examined in the relation to virus sequences for which a host 

association has been established, this provides a robust approach for checking 

the validity of metagenomics analyses: prior to the discovery and validation of 

CVe-Pseudomyrmex, the host association of cycloviruses was uncertain. EVE 

discovery provides robust conclusions where metagenomics lacks the ability to 

make firm statements on host range. Conversely, EVE discovery is limited by 

genome availability and quality, where metagenomics is limited only by the 

physical availability of samples. As such, the two approaches have the potential 

to make a powerful combination, greatly facilitating the discovery and 

classification of novel viruses and subsequent insights into host:virus co-

evolution.  
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Chapter 5 – Searching for ISG expansion and loss in mammals 

 

5.1 - Introduction 

 

Antiviral genes can be used to gain insights into host:virus conflicts over 

evolutionary timescales. This approach is called indirect paleovirology 

(Katzourakis, 2012). In contrast to direct paleovirology – the study of 

endogenous viral elements- indirect paleovirology uses reconstruction of 

antiviral gene evolution to infer patterns of host-virus co-evolution. EVEs are 

relatively scant in animal genomes, and indirect paleovirology offers a method 

of studying host:virus co-evolution in the absence of EVEs, especially where the 

interface between host and virus has been studied. In addition to analysis of 

antiviral gene evolution, gene loci can be studied for dynamism: patterns of 

gene duplication, loss and recombination, as has been performed for the mx, ifit, 

and parp gene families, amongst others (Braun et al, 2015; Mitchell et al, 

2015; Daugherty et al, 2016; Daugherty et al, 2014). Such analyses can be 

used to guide in vitro studies of species specificity and antiviral activity across 

multiple species. 

 

The interferomes of various species have been studied using a single 

experimental method to allow the direct comparison of a snapshot of the 

interferome between multiple species. Shaw et al, (2017), used RNA-seq to 

characterise the interferomes of Homo sapiens (human), Rattus norvegicus (rat), 

Bos taurus (cow), Ovis aries (sheep), Sus scrofa (pig), Equus caballus (horse), 

Canis lupus familiaris (dog), Myotis lucifugus (little brown bat, microbat), 

Pteropus vampyrus (large flying fox, fruit bat), and Gallus gallus (chicken). In 

this study, we identified 90 mammalian ISGs – dubbed the ‘core mammal’ 

interferome that were consistently upregulated in response to interferon in nine 

mammalian species (Shaw et al, 2017).  The ‘core mammal’ ISGs contained, 

amongst others, well known antiviral restriction factors, such as mx1, ifit2 and 3, 

viperin and pml, as well as proteins involved in multiple immune and cellular 

processes.  

 

I used DIGS to investigate the evolution of core ISGs through identification 

of gene expansion and loss. I chose the core ISGs due to their increased  
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likelihood of (and in some cases known) involvement in the intrinsic immune 

response. (Schoggins et al, 2010). The transcriptomic analysis conducted by 

Shaw et al, (2017) was confined to nine species. By contrast, 111 mammalian 

genomes had been published at the time of study. As antiviral gene loci are 

prone to evolutionary innovation, including loss and expansion, the available 

genome data presented an opportunity to study this outwith established 

annotation pipelines. In the previous two chapters DIGS was used to interrogate 

a large number of animal genomes. DIGS can be configured to screen a large 

number of genome assemblies (Dennis et al, 2018a; Dennis et al, 2018b) and 

therefore provides a mechanism to screen mammalian genomes in search of 

lineage-specific patterns of ISG expansion and loss.  

 

The aim of this chapter was to explore available mammalian WGS 

assemblies to find lineage specific patterns of ISG expansion and loss, and view 

these in the context of biological data. The availability of a wide range of 

mammalian genomes, coupled with the high potential for novel discoveries at 

antiviral gene loci (Daugherty et al, 2016, Daugherty et al, 2015, Mitchell et 

al, 2015), provides ample opportunity for a study of this kind. In addition to 

potential insights into host-virus co-evolution, this chapter presented an 

opportunity to assess the utility of DIGS in an analysis of host genes, as opposed 

to horizontally acquired viral sequences.  
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5.2 - Results 

 

5.2.1 - Initial screening and results 

 

I surveyed mammalian genomes for general, lineage specific patterns of 

gene expansion and deletion. I used DIGS to perform similarity searches of 

mammalian genomes with a panel of ISGs. The list of genes corresponded to the 

core mammalian ISGs we described in Shaw et al, (2017). (Appendix 5.1). For 

each gene, I extracted probe peptide sequences from ENSEMBL. The final list 

consisted of 90 core mammalian ISGs (Appendix 5.1). I used a single reference 

library that consisted of all of the protein coding genes in the human genome, as 

this would then encompass existing human paralogs for each gene.  

 

I screened 111 mammalian genomes (Appendix 1.1) with a library of 85 

translated ISG peptide sequences (Appendix 5.1). The results were processed 

(see Materials and Methods) and displayed as a heatmap (Figure 5.1). When 

retrieving results from the database, we applied a bitscore cutoff to matching 

results to reduce the number of false-positive matches. The cutoff applied was 

the bitscore value which returned all of the exons for the probe gene from the 

human genome. For example, PARP9 has eleven exons. The highest bitscore that 

returned all of the eleven PARP9 exons from the human genome was 80. 

Therefore, only PARP9 hits with a bitscore of greater than 80 were retrieved 

from the database and counted. Data were normalised (see Methods) to account 

for the differences in exon counts between the genes screened.  

 

I excluded a number of the ‘core mammal’ ISGs from the final results. 

The results for members of the hla (a, b, c, d and e), apol (1, 2, 3 and 4) and 

tap (1/2/bp and bpl) showed high levels of cross-matching and misclassification. 

I conjectured that this was because these gene groups are highly similar to one 

another, and occur in very gene-dense regions.  

 

Overall, the heatmap showed a high degree of consistency for ISG counts 

across Mammalia (mean count of 1.17). (Figure 5.1). Generally, the heatmap 

did not show evidence of large-scale, lineage-specific gene expansion and 

deletion. 
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I found it difficult to establish with confidence whether the high counts 

for some genes (PKR, for example) were truly a result of functional gene 

duplication, pseudogenisation, or cross-matching of the probe with a similar but 

unrelated gene (for example, in protein families with modular domains i.e. 

KRAB-ZFPs). In previous chapters, I used methods that are relatively manually 

focussed following DIGS screens. Each ISG screen returned high numbers of hits 

matching the probe, even when a relatively high cutoff was applied, making it 

difficult to study in detail the results of the screen for each gene. As the aim of 

the study was to assess the more general landscape of ISG expansion and loss,  it 

was unfeasible to apply a manually focussed approach to over one hundred large 

datasets. As such, I changed my focus to using this dataset to study gene 

deletions.  

  

100 instances of count=0 for a gene in a species were shown by Figure 5.1. 

I documented these instances in Table 5.1. Where a gene possessed a count of 

zero, I followed it up by searching ENSEMBL (where the genome was listed), for 

evidence of that gene. This process was used in an attempt to confirm or refute 

the reported absence of a gene. Of the 100 instances of counts of zero, 64 

appeared to be falsely reported, with annotations in ENSEMBL existing for these 

genes (Table 5.1). The remaining 36 represented possible gene deletions, with 

no sequence being reported in the database, and no annotation existing in 

ENSEMBL. I investigated these genes using BLAST and a genome browser (see 

Materials and Methods). xaf1, ifit2 and ifit3 were the genes that showed the 

most potential for multispecies deletions. ifit2/3 were apparently missing in 

cetaceans (whales and dolphins, Figure 5.1), and xaf1 was shown as missing in 

carnivores (Figure 5.1).  
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Species	 Gene	name	
Annotation	 in	
ENSEMBL	 Reported	

Ailuropodia melanoleuca IFIT2	 TRUE	
	

Apodemus sylvaticus RFX5 TRUE	
	

Baleonoptera bonarensis FMR1	 TRUE	
	

Canis familiaris XAF1 TRUE	
	

Cavia aperea XAF1 TRUE	
	

Cavia porcellus XAF1 TRUE	
	

Chinchilla lanigera IFIT2	 TRUE	
	Choloepus	hoffmani	 DTX3L	 TRUE	
	

Choloepus hoffmani XAF1 TRUE	
	Condylura	cristata	 CMPK2	 TRUE	
	

Condylura cristata IFIT2	 TRUE	
	Condylura	cristata	 RIG-I	 TRUE	
	Daubentonia 

madagascarensis SERTAD1 TRUE	
	Dipodomys	ordii	 B2M	 TRUE	
	

Dipodomys ordii IFIT2	 TRUE	
	

Dipodomys ordii ZC3HAV1 TRUE	
	

Echinops teifari XAF1 TRUE	
	

Eidolon helvum XAF1 TRUE	
	

Elephantulus edwardii XAF1 TRUE	
	

Equus caballus IRF1	 TRUE	
	

Equus caballus RFX5 TRUE	
	

Erinaceus europaeus XAF1 TRUE	
	

Eulemur flavirons RFX5 TRUE	
	

Eulemur macaco RFX5 TRUE	
	

Heterocephalus glaber PSMB10 TRUE	
	

Heterocephalus glaber PSMB9 TRUE	
	

Jaculus jaculus XAF1 TRUE	
	

Leptonychotes weddelli XAF1 TRUE	
	

Macropus eugenii PSME2 TRUE	
	

Figure 5.1 (preceding page) – A landscape view of the heatmap showing 
normalised (see Methods) results of DIGS searches of 111 mammalian 
genomes for sequences disclosing homology to core mammalian ISGs. The 
X axis indicates gene common names (listed in Appendix 5.1). Text on 
the right is the latin binomial for species, with species groups indicated 
in brackets on the left. Heatmap colours keyed in the bar on the top 
right. Green indicates a confirmed deletion. White indicates spuriously 
reported counts of zero, and black indicates unconfirmed deletion.  
	
Table 5.1: Reported core mammal ISG deletions in Figure 1. Genes were 
investigated in ENSEMBL, and their presence as annotations recorded in 
the ‘ENSEMBL’ column. Genes shown to be deleted in Figure 1 without 
annotations in ENSEMBL were marked as ‘FALSE’ in the ‘ENSEMBL’ column 
and investigated further, the results of which were noted in the 
‘Reported’ column.  
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Macropus	eugenii	 RIG-I	 TRUE	
	

Macropus eugenii ZC3HAV1 TRUE	
	

Manis javanica FMR1	 TRUE	
	

Manis javanica TNFSF10 TRUE	
	

Manis javanica XAF1 TRUE	
	

Mesocricetus auratus PSMB10 TRUE	
	

Mesocricetus auratus PSMB9 TRUE	
	

Monodelphis domestica PSME2 TRUE	
	Monodelphis	domestica	 RIG-I	 TRUE	
	

Monodelphis domestica STAT2 TRUE	
	

Monodelphis domestica XAF1 TRUE	
	

Mustela furo XAF1 TRUE	
	

Nannospalax galili ZCCHC2 TRUE	
	

Ochotona princeps XAF1 TRUE	
	

Ochotona princeps ZC3HAV1 TRUE	
	

Odobenus rosmarus XAF1 TRUE	
	

Orcinus orca ZCCHC2 TRUE	
	

Ornithorhyncus anatinus PSME1 TRUE	
	

Ornithorhyncus anatinus ZC3HAV1 TRUE	
	

Oryctolagus cuniculus RFX5 TRUE	
	

Oryctolagus cuniculus XAF1 TRUE	
	

Parnell's mustached bat IRF7	 TRUE	
	

Phodopus sungorus FMR1	 TRUE	
	

Phodopus sungorus IFIT3	 TRUE	
	

Phodopus sungorus IFIT2	 TRUE	
	

Propithecus coquereli RFX5 TRUE	
	Pteronotus	parnelli	 CMPK2	 TRUE	
	

Rhinopithecus roxellana TNFSF10 TRUE	
	

Sarcophils harrisi PSME2 TRUE	
	Sarcophils	harrisi	 RIG-I	 TRUE	
	

Sorex aranaeus IFIT2	 TRUE	
	

Tupaia belangeri IFIT3	 TRUE	
	

Tupaia chinensis IFIT3	 TRUE	
	

Tupaia chinensis TRIM21 TRUE	
	

Ursus maritimus XAF1 TRUE	
	Acinonyx jubatus XAF1 FALSE	 Confirmed	

baleonoptera acurostrata IFIT2	 FALSE	 Confirmed	

baleonoptera acurostrata IFIT3	 FALSE	 Confirmed	

Baleonoptera bonarensis IFIT2	 FALSE	 Confirmed	

Baleonoptera bonarensis IFIT3	 FALSE	 Confirmed	

Cavia aperea IFIT2	 FALSE	
Daugherty	 et	 al,	
2016	

Cavia porcellus IFIT2	 FALSE	
Daugherty	 et	 al,	
2016	

Choloepus hoffmani IRF1	 FALSE	 Contig	missing	

Choloepus hoffmani IRF7	 FALSE	 Contig	missing	

Choloepus hoffmani IRF9	 FALSE	 Contig	missing	
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Choloepus hoffmani ISG20	 FALSE	 Contig	missing	

Choloepus hoffmani LGALS9	 FALSE	 Contig	missing	

Choloepus hoffmani SOCS1 FALSE	 Contig	missing	

Chrysochloris asiatica SERTAD1 FALSE	 False	negative	

Echinops	teifari	 RIG-I	 FALSE	 Contig	missing	

Erinaceus europaeus ZC3HAV1 FALSE	 Contig	missing	

Erinaceus europaeus IRF7	 FALSE	 Contig	missing	

Felis catus XAF1 FALSE	 Confirmed	

Lipotes vexillifer IFIT2	 FALSE	 Confirmed	

Lipotes vexillifer IFIT3	 FALSE	 Confirmed	

Macropus eugenii Mx1 FALSE	 Mitchell,	2015	

Monodelphis domestica Mx1 FALSE	 Mitchell,	2015	

Orcinus orca IFIT2	 FALSE	 Confirmed	

Orcinus orca IFIT3	 FALSE	 Confirmed	

Ornithorhyncus	anatinus	 DTX3L	 FALSE	 Contig	missing	

Ornithorhyncus anatinus PARP9 FALSE	 Contig	missing	

Ornithorhyncus anatinus SERTAD1 FALSE	 Contig	missing	

Panthera tigris altaica XAF1 FALSE	 Confirmed	

Papio anubis SERTAD1 FALSE	 Probable	deletion	

Procavia capensis SERTAD1 FALSE	 Contig	missing	

Sarcophils harrisi Mx1 FALSE	 Mitchell,	2015	

Tupaia belangeri IRF7	 FALSE	 Contig	missing	

Tupaia	belangeri	 RIG-I	 FALSE	 Xu,	2016	

Tupaia	chinensis	 RIG-I	 FALSE	 Xu,	2016	

Tursiops truncatus IFIT2	 FALSE	 Confirmed	

Tursiops truncatus IFIT3	 FALSE	 Confirmed	

 	 	 	

 

5.2.2 – IFIT 

 

To investigate the ifit locus in cetaceans, I compared genomic regions 

containing ifit2 and ifit3 in the cow (Bos taurus) (Figure 5.2) to that of the 

bottlenose dolphin (Tursiops truncatus), minke whale (Balaenoptera 

acutorostrata), baiji (Lipotes vexillifer), sperm whale (Physeter catodon) and 

the orca (Orcinus orca). I generated query sequences using the 5’ flank, and first 

80bp, of the cow ifit2, and used them in BLASTn searches of cetacean genomes 

(Figure 5.2 – green bar). I found significant matches to the 5’ flanking region, 

but no matches to the full ifit3 sequence, (Table 5.2) in every cetacean species 

searched. I found matches to fragments of ifit3 in the minke whale, baiji, and 

bottlenose dolphin, but aside from this, ifit3 was deleted. This suggests that this 

gene has been totally lost in cetaceans.  
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In our genomic comparisons, I found evidence of ifit2 sequences in 

cetaceans, despite them being shown as a count of zero on the heatmap (Figure 

5.1). Upon investigation of the cetacean ifit locus using BLAST, I found that the 

ifit2 sequence was present in cetaceans, albeit degraded. I performed 

confirmatory BLASTn searches using cow ifit2 sequences, and found that 

cetacean ifit2 was indeed present (Table 5.3). When these sequences were 

aligned to the cow ifit2 as a reference, I found clear evidence of 

pseudogenisation. In 4/5 cases, the ifit2 ORF was interrupted by a stop codon 

(Figure 5.4). The baiji sequence possessed a largely intact ORF, but was 

truncated by 62 residues in the C-terminal domain (Figure 5.4).  When taken 

together, these findings show that ifit3 has likely been lost in cetaceans, and 

that ifit2 has undergone pseudogenisation. (Figure 5.5).  

 

Figure 5.3: ifit3 has been deleted in cetaceans. Text alignment view of the 
start of  the Bos taurus ifit3 CDS, and 5’ flanking genomic region. Aligned to this 
region are BLAST hits from five cetacean species, retrieved using the orthologous 
cow region as a query (highlighted here, and in Figure 5.2 in green), to identify 
the area where ifit3 has been deleted, Red line indicates the ifit3 CDS.  
	

Figure 5.2: UCSC genome browser view of the Bos taurus ifit2 and ifit3 locus. 
Green line indicates region of sequence used as a BLAST query in cetaceans.  
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Table	5.2:	Results	for	BLASTn	queries	of	cetacean	genomes	with	queries	of	cow		genomic	regions	overlapping	IFIT3	(indicated	by	the	green	line	
in	Figure		5.2	and	Figure	5.3).			
	

	
Table	5.3:	Results	for	BLASTn	queries	of	cetacean	genomes	with	queries	of	the	cow	IFIT2	sequence.	Matching	sequences	were	aligned	to	the	
cow	IFIT2	sequence	in	Figure	5.4.		

	
	
Table	5.4:	 	Results	 for	BLASTn	sequences	of	 felid	genomes	with	queries	of	 the	cat	genomic	region	homologous	to	the	dog	 	xaf1	containing	
genomic	region.	Matching	sequences	were	aligned	to	the	dog	xaf1	containing	region	in	Figure	5.5.		
	

Species	 subject	acc.ver	 %	identity	 length	 mismatches	 gap	opens	 q.	start	 q.	end	 s.	start	 s.	end	 evalue	 bit	score	
Cat	 NC_018736.3	 100	 1080	 0	 0	 1	 1080	 733139	 734218	 0	 1948	
Leopard	 NW_017619906.1	 97.407	 1080	 28	 0	 1	 1080	 13850281	 13849202	 0	 1822	
Cheetah	 NW_015131202.1	 95.833	 1080	 31	 2	 1	 1080	 540830	 541895	 0	 1748	
Amur	tiger	 NW_006712040.1	 95.093	 1080	 29	 1	 1	 1080	 126126	 125071	 0	 1727	

Species	 Subject	accession	 %	identity	 length	 mismatches	 gap	opens	 q.	start	 q.	end	 s.	start	 s.	end	 evalue	 bit	score	
Bhaji	 NW_006773751.1	 76.818	 220	 37	 11	 46	 259	 1657969	 1658180	 5.20E-21	 111	
Minke	whale	 NW_006729234.1	 75.862	 232	 46	 8	 52	 280	 1172435	 1172659	 1.87E-20	 110	
Sperm	whale	 NW_019873573.1	 86.316	 95	 11	 2	 135	 228	 31534129	 31534222	 3.13E-18	 102	
Orca	 NW_004438446.1	 76.796	 181	 37	 5	 52	 230	 13784843	 13784666	 1.46E-16	 97.1	
Bottlenose	dolphin	 NW_017844429.1	 83.168	 101	 17	 0	 159	 259	 16138533	 16138633	 1.88E-15	 93.5	

Species	 Subject	accession	 %	identity	 length	 mismatches	 gap	opens	 q.	start	 q.	end	 s.	start	 s.	end	 evalue	 bit	score	
Orca	 NW_004438524.1	 89.819	 1385	 137	 4	 1	 1383	 4421940	 4423322	 0	 1773	
Bottlenose		 NW_017842131.1	 89.17	 1385	 145	 5	 1	 1383	 8574877	 8576258	 0	 1722	
Sperm	whale	 NW_019873556.1	 89.113	 1387	 140	 11	 1	 1383	 38546905	 38545526	 0	 1714	
Bhaji	 NW_006785831.1	 88.672	 1386	 152	 5	 1	 1383	 14738	 16121	 0	 1685	
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Figure 5.4: ifit2 has been pseudogenised in cetaceans. Alignment view of 

translated in-frame cetacean pseudo- ifit2. Sequences were aligned to Bos 
taurus ifit2 as a reference. Residues highlighted in red indicate stop codons.  
	

	
	
Figure 5.5: Genome browser schematic of the cetacean IFIT2 and IFIT3 loci. 
Shows a schematic of gene loss and pseudogenisation at IFIT2 and IFIT3 in 
cetaceans, using the syntenic cow region as a reference. Coloured arrows 
indicate gene and direction of transcription. 
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5.2.3 - XAF1 

 

The heatmap showed counts of 0 for xaf1 in most carnivores (Figure 5.1). 

Upon closer investigation in ENSEMBL, I found that the counts for xaf1 in 

caniform (dog-like) carnivores was likely misrepresented, as annotations for xaf1 

were found. In felid carnivores (cats), I found no annotations in ENSEMBL. I 

investigated the genomic region containing xaf1 in carnivores, by comparing the 

xaf1 containing region in the domestic dog (Canus lupus familiaris) and the 

syntenic region in the cheetah (Acinonyx jubatus), cat (Felis catus), leopard 

(Panthera pardus), and Amur tiger (Panthera tigris altaica). In initial genome 

browser searches, and sequence alignments, I found that exons 4 and 5 of xaf1 

had likely been retained in cats, based on sequence conservation in this region 

shown in the UCSC genome browser(Figure 5.6; Figure 5.8). BLAST searches of 

the extracted dog sequences returned no matches in felids. I instead extracted 

this sequence from the cat genome and used it in BLASTn searches of felid 

genomes, returning matches in all of the species detailed above (Table 5.4). 

The matching sequences were used to generate an MSA of xaf1 in carnivores 

(Figure 5.5). From the aligned flanking sequences, and the possible presence of 

exons 4 and 5, I suggest that xaf1 has undergone at least a partial (if not a whole) 

deletion in felids (Figure 5.8).  

 

 
Figure 5.6: Screenshot of the UCSC genome browser centred on the dog xaf1 
containing region. Browser track chrE1 indicates aligned regions of the cat 
genome. Green bar indicates region used in BLAST queries of felid genomes.	
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Figure 5.7 Alignment view of dog XAF1 intron and exon (indicated in red line) 

sequences. Aligned to this genomic region are matching felid genomic regions 
retrieved by BLAST searched of felid genomes with the probe sequence 
(indicated in Figure 5.6), showing the region where xaf1 has been deleted.  
	
	
	

	
	
Figure 5.8  Genome browser schematic of the carnivore XAF1 locus, using the 
dog (top) as a reference. Numbered arrows indicate gene exons. Coloured 
labelled arrows indicate neighbouring genes.  
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5.2.4 - SERTAD1 

 

The heatmap reported a count of zero for sertad1 in the Cape golden 

mole (Chrysochloris asiatica). Searches in ENSEMBL in the rock hyrax (Procavia 

capensis), lesser hedgehog tenrec (Echinops terifari), Cape golden mole and 

elephant (Loxodonta africana) revealed that there were no annotations available 

for SERTAD1 in this species. This prompted a search for a potential deletion of 

sertad1 in Afrotherians. I searched the region between the two genes flanking 

sertad1 in mammals (sertad3 and prx), in the UCSC genome browser, and found 

annotated sequences matching sertad1 in all of the above species.(Figure 5.9). 

 

5.2.5 - Other potentially deleted genes 

 

We investigated the remaining 26 counts of zero (Table 5.1) using BLAST 

and a genome browser. I found seven deletions that had been previously 

characterised (Table 5.1). This included a deletion of rig-I in shrews (Xu et al, 

2016), a deletion of ifit2 in guinea pigs and marsupials (Daugherty et al, 2016) 

and a deletion of mx1 in marsupials (Mitchell et al, 2015).  

The olive baboon (Papio anubis), Platypus (Ornythorhynchus anatinus), 

the lesser hedgehog tenrec, the hedgehog (Erinaceus europaeus) and the sloth 

were the four remaining species with potential deletions (n=14 total). There 

were two problems in investigating these results. The first was the fractured 

nature of the genome assemblies – the generally low contig lengths made it 

difficult to study the genome organisation surrounding the locus of the gene of 

interest. Secondly, I experienced great difficulty in finding homologous flanking 

regions in the missing genes. For example, when we searched the sloth genome 

for evidence of irf7 deletion, I used the sequence flanking the armadillo 

(Dasypus noveminctus) irf7 as a query. No significant results were found. As I 

was unable to find a shared genomic organisation, we were unable to extract 

these regions to compare them. I therefore considered the status of these genes 

in these species as speculative. 

 

I marked the results of our investigation on the heatmap, with green 

squares showing confirmed gene deletions, black squares showing unconfirmed 
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gene deletions, and white squares indicating spuriously reported counts of zero.  

(Figure 5.1)
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5.3 – Discussion 

 

5.3.1 – Assessment of the methods 

 

In this chapter, I encountered the same issue as I did in chapter 3: in some 

cases, screening with DIGS can produce a large amount of sequence data, and 

that in some cases issues can arise in processing and curating these datasets. 

Despite using relatively strict cutoffs, the screening produced a high level of 

artefacts, some of which were due to uneven genome quality, and others due to 

the rigorous cutoff applied. In view of this, I conceded that the heatmap was 

probably not representative of the true ‘landscape’ of the core mammalian 

interferome, and instead represented a more general view of ISG expansion and 

loss in mammals. This was a consequence of not being able to appropriately 

process the data. I had not accounted for the volume of data that would be 

produced for each hit. For each gene, numerous hits were produced, making it 

difficult to work out which of the hits corresponded to bona fide ISGs, and which 

were spurious cross-matches using the approach of relatively manual sequence 

alignment and analysis. 

 

Using ENSEMBL, I found that the majority of reported counts of zero were 

artefactual (Figure 5.1; Table 5.1). This was probably due to the relatively 

strict cut-off applied to each gene when retrieving the sequence (see Methods), 

whereby more divergent results were filtered from the database. This is 

reflected in Figure 5.1, where the number of reported deletions increases with 

phylogenetic ‘distance’ from Homo sapiens. The high volume of data produced 

by the screening also made ISG expansions difficult to study with the methods 

we employed, making it difficult to establish with confidence whether a high 

count truly represented functional expansion of an ISG, or a spurious result 

caused by cross-matching to pseudogenes, transposon, or other genes. However, 

the manual approaches (study of relatively few loci using genome browsers, 

BLAST, phylogenetic analysis and sequence alignments) that were unsuited to 

the high volume of data produced in the ISG screens were well-suited to the 

study of gene deletions in a limited sample of species. This style of manually-

focussed work is in the vein of Daugherty, et al (2014); Daugherty et al, (2016) 
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and Braun et al, (2015), in that it allows for robust, verifiable identification of 

gene deletion in three genes.  

 

5.3.2 – Deletions in mammalian xaf1 and ifit 

 

I found deletions in xaf1 and the ifit gene family, which were supported by 

genomic and alignment data. I discovered that xaf1 had been, at least partially, 

deleted in felids. Reviews of the literature surrounding xaf1 find no evidence of 

direct antiviral activity, so it is hard to draw concrete inferences regarding the 

cause or consequence of xaf1 loss in cats. More literature exists on the antiviral 

activity of ifit2 and ifit3. Although conflicted, studies on the crystal structure 

and function of the IFIT protein family suggest that these proteins mediate their 

antiviral activity through binding either to viral dsRNA (Yang et al, 2012), or to 

other IFIT proteins (Pichlmair et al, 2011).  IFIT2 appears to restrict replication 

in viruses lacking a 2’-O-methyl cap (Daffis et al, 2010), possibly by binding to, 

and stabilising the interaction between IFIT1 and viral RNA (Fleith et al, 2018). 

This raises the possibility that cetaceans have a) either evolved an alternative 

method for stabilising the IFIT1-viral RNA interaction, b) as proposed by Braun 

et al, 2015 for mx, there is a selective disadvantage to encoding intact ifit2 and 

ifit3 or c) undergone a population bottleneck in which only the population 

containing the defective ifit genes survived. In any case, the loss of ifit3, and 

the inactivation of ifit2 raise questions as to the impact of this gene loss on the 

cetacean response to virus infection, and to whether the IFIT family possess 

redundant antiviral specificities and properties, marking an opportunity for 

future study. 

 

A key issue in using DIGS to study ISGs as shown here is to display the data in 

a manner that accurately represented an increased count or loss of ISGs. In this 

chapter, the data were likely contained within the database (the fault not lying 

with the BLAST searches used to screen the genomes), and my main issue was 

removing false positives and false negatives. Where gene losses were concerned, 

I identified a large number of artefactual results in my DIGS search for ISG loss in 

mammals, probably due to difficulties in applying an effective cut-off. A 

potential alternative is using ENSEMBL to study gene loss. Although in this 

chapter, we identify an instance where annotation is missing for a specific gene 
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(sertad1) in ENSEMBL, it is likely that interrogating ENSEMBL’S MySQL databases 

for information on mammalian ISGs would be a quicker and potentially more 

accurate way to identify potential gene losses. This approach would rely on 

existing annotations, and would not be clouded by uncertainty over which 

sequences corresponded to genes or not. This could then be followed up by 

studying each ISG locus in detail (as performed for xaf1 and ifit2/3). In addition 

to each query taking far less time than BLAST searches of over one hundred 

mammalian genomes, the query set could quickly be changed to consist of 

whichever query set of genes were of interest. For example, instead of studying 

a set of conserved genes, it would be interesting to study ISGs that are 

differentially expressed in a species-specific manner – easily achievable with the 

datasets described by Shaw et al, 2017.  

 

 The difficulty in finding gene expansions was related to the volume of 

data produced. In addition to a different number of desired ‘hits’ for each gene 

(depending on the exons in each gene), each screen produced numerous hits 

that did not correspond to the gene, but were labelled as such in the database. 

Thus, it was difficult to determine whether a high result was due to cross-

matching, or a functional gene duplication. A potential way to refine this 

approach (and make the counts reported in my screens more accurate) would be 

to screen only with peptides that are specific to conserved regions of antiviral 

genes (the A3G Z domain, for example). The advantage of this is twofold: Firstly, 

there would be less need to process the data so extensively – the use of a single 

peptide in lieu of a whole gene sequence circumvents the issues raised by 

differing exon numbers between genes. Secondly, when one sequence is used to 

screen a genome, the retrieved sequences can be more quickly and easily 

aligned and analysed, allowing easy classification. Classified sequences can then 

be added to the reference library and used to refine the screen until the results 

contained in the database accurately represent the number and classification of 

the gene in question in the genomes surveyed. This is a methodology more in 

keeping with the ‘phylogenetic screening’ approach successfully employed in 

previous studies (Chapters 3, 4; Dennis et al, 2018a; Dennis et al, 2018b).  
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5.3.3 – Conclusions  

 

I searched mammalian genomes for signatures of ISG loss, expansion and 

evolution. DIGS was used to screen mammalian genome assemblies with peptides 

of 84 ‘core’ mammalian ISGs identified by Shaw et al, (2017). Study of the 

resulting data disclosed instances of species-specific (and in two cases group-

specific) gene losses. I found numerous artefacts and false positive results, and 

encountered difficulty in processing such a large dataset. However, I identified 

three instances of gene loss in felids and cetaceans, and set out detailed plans 

for future study whereby the large-scale mining of animal genomes with ISGs can 

be reconciled with the comparative phylogenetic approach employed in chapters 

3 and 4, enabling more effective study of ISG loss and expansion.  
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Chapter 6 - General discussion 

 

In this thesis, I performed three investigations into host:virus co-evolution. 

They were united by the use of DIGS to systematically mine WGS assemblies for 

sequences in heuristic investigations . In all three investigations, I was able to 

find novel results: inferring a history of ERV expansion, loss and functionalisation 

in the mouse, providing novel insights into circovirus host range, and identifying 

the loss of three genes in two mammalian groups. My approach involved 

assembling a library of peptides representing the diversity of the sequences 

under investigation (i.e. Circovirus peptides), and then collating a group of 

genomes corresponding to the diversity of organisms under investigations (i.e. 

genomes from kingdom Animalia). These were used in DIGS screens, the results 

of which were stored in MySQL. MySQL was used to interrogate and retrieve the 

resulting data, which were investigated using sequence alignments and 

phylogenetic analysis, along with generation of annotation tracks, identification 

of sequence features. I found that this general approach was successful in 

identifying novel results in all three projects, but the suitability varied 

depending on the application.   

 

6.1 – Assessment of the methods 

 

 Generally, I found that DIGS was well-suited to mining genome databases 

in paleovirological studies. In my analysis of murine ERVs, I found that my 

approaches (DIGS screening, alignment and analysis, and annotation track 

generation) compared favourably to the published literature in terms of ERV 

copy number (Table 3.2), and was able to recapitulate findings of TRIM28-

dependent histone methylation at ERV loci for MusD and IAP (Rowe et al, 2013), 

indicating that my approach was robust. I was able to use it to identify ancient, 

low copy number murine ERVs that have hitherto remained undiscovered. This 

was mirrored in Chapter 4, where I was able to identify numerous CVe 

integrations in animal genomes, leading to greater knowledge of circovirus host 

range and evolution. My paleovirological analyses were most powerful when DIGS 

was used to identify a low-medium (numbering a few hundred, for example) 

number of sequences across numerous species. This allowed for the creation of 

high quality alignments, often of degraded and ancient sequences (requiring 
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manual alignment) and in-depth study of host range, orthology, sequence 

features and evolution.   

 

 I found that my approach was less suited to analysing large sequence sets. 

This was shown in my difficulties studying IAP and in mining ISG sequences. The 

problem did not lie with DIGS, but was more to do with analysing the output. In 

Chapter 3, I experienced difficulties analysing the highly diverse and abundant 

IAP megafamily. Similarly in Chapter 5, the abundance of data produced in 

screening Mammalian genomes for ISGs was difficult to process using methods 

more suited to comparative approaches of relatively low numbers of sequences. 

As such, I contend that more conventional annotation-based approaches may be 

better when analysing extremely high copy number ERVs, or gene sequences. For 

ERVs, RetroTector, LTR-STRUC and LTR-Digest rely on the presence of relatively 

intact loci. As all of the high-copy number lineages in the mouse are relatively 

intact, the use to these software may be a more appropriate way to explore the 

evolution of ERV superfamilies. Similarly, studying genes may be more effective 

using the MySQL framework of ENSEMBL. However, this approach would come at 

the cost of genome availability, as the time taken between genome publication 

and ENSEMBL annotation is typically a few years.  

 

 In summary, I found that my approach (DIGS, combined with alignment 

and in-depth analysis across multiple species) was most powerful when adopting 

a comparative approach: screening a high diversity of animal genomes for a 

medium-low number of ERV, EVE or gene sequences, such as in Chapter 4. It 

was well-suited to the analysis of ancient and degraded sequences – a task that 

often necessitates careful manual analysis. In addition, DIGS can be applied to 

many contexts – exploring genome data for a wide variety of virus groups and 

non-virus sequences. The shortcomings of my approach were mostly related to 

processing large amounts of sequence data after retrieval from MySQL in DIGS. 

For Chapters 3 and 5, I experienced difficulty in analysing large sequence 

datasets, and cleaning noisy data (i.e. removing degraded ERV sequences from 

large alignments, removing false-positive and cross-matching ISG hits).  
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6.2 - Future directions 

 

 In the investigation of ISG evolution, it is possible to adapt my existing 

experimental framework to make screening for ISGs more effective. In Chapter 

5.3, I suggested that an alternative approach may utilise the MySQL framework 

of ENSEMBL. However, the quality of these annotations are themselves subject 

to the quality of the genome, and ENSEMBL annotation may not reveal instances 

of gene loss and expansion (Braun et al, 2014). Furthermore, there is a gap 

between the publication of a WGS assembly and its annotation and storage in 

ENSEMBL. Therefore, there is scope for large scale mining of WGS assemblies for 

ISG sequences in a way that does not produce overwhelming volumes of data 

(studying fewer gene families using single, conserved peptides), and allows the 

investigator to ‘stay ahead of the curve’ by using genome data that has not been 

annotated.  

 

 In my analysis of murine ERVs, I produced a large dataset of aligned 

murine ERV sequences. These could be improved by the addition and 

categorization of proviruses and solo LTRs of the IAP megafamily. Additionally, 

analysis of murine ERVs in more detail: dating of solo LTR elements, mapping 

integration dates and functional ERV properties onto phylogenies and in-depth 

analysis of ERVs integrated proximal to genes, would allow greater insight of 

mouse:ERV co-evolution to be gained from these data.  

 

 Furthermore, it would be worth developing approaches that better 

leverage large sequence datasets produced by DIGS. The difficulty with the large 

ERV datasets was aligning and analysing a large number of degraded sequencing. 

In the ISG screens, the main difficulty was accurately determining what hits 

constituted ISGs in a noisy dataset. Developing methods to overcome these 

difficulties would allow (especially in the case of ERVs), more effective analysis 

of high copy number ERVs, and genes in species with poorly annotated genomes.  

 

Having reflected on the findings and issues presented in this thesis, I 

propose two other future directions. First, moving the emphasis of study from 

high-copy number, modern ERV lineages and focussing on the ancient, low copy 

number ERVs that appear to be more closely related to HERVs (Mus.i1, Mus.s1, 
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MYSERV, MuERV-C). The relative low copy number of these ERVs in mice, 

combined with the diverse range of rodent genomes available, would make a 

comparative analysis of these lineages in rodents relatively straightforward – one 

could essentially use the same methods as I did for studying circovirus EVEs. 

Secondly, combining analysis of active, functionalised ERV lineages with 

functional genomics analyses in rodents would provide insight into the evolution 

of ERV functionalisation. Given that many physiological processes involving 

exapted ERV sequences in the mouse appear to involve recently acquired or 

active lineages (MacFarlan et al, 2012; Rowe et al, 2013), RetroTector, LTR-

Digest, or ERVAP (Zhu et al, unpublished) may be more appropriate in dealing 

with the larger volume of intact ERV sequences. 

 

My analysis of endogenous circoviral elements suggested a hitherto 

underappreciated stability in circovirus:host relationships. As such, it would be 

interesting to identify the blocks to cross-species transmission. Presently, no 

cell-culture system exists for circoviruses: if or once this has been developed, 

assaying circoviruses using ISG screens developed by Schoggins et al, 2012 

would allow the identification of anti-circoviral ISGs. Furthermore, targeted 

sampling of arthropod samples for cyclovirus CVe will clarify the specific nature 

of the relationships between cycloviruses and arthropods.  

 

6.3 – Conclusions 

 

 This PhD project explored host:virus co-evolution by mining animal WGS 

assemblies for ERV, EVE and antiviral gene sequences. I used DIGS, a similarity-

search based technique coupled with a relational database. I successfully mined 

animal genomes for insights into circovirus evolution, natural history and host 

range. My analysis of murine ERVs also produced interesting insights into 

ERV:mammal co-evolution and functionalisation, and I identified aspects of my 

approach that could be optimised. My indirect paleovirological study- attempting 

to survey ISG dynamism in mammals - uncovered three gene deletions in two 

species groups. However, I found that my approach in this instance was not well 

suited to the aim, and an overhaul of the experimental design may be required 

for further studies of this sort, as well as development of tools for analysing 

large sets of degraded ERV and gene sequences. 
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 The increasing availability of biological data in public databases make 

exploration an attractive prospect. I found that I was able to leverage the 

available body of genome (and functional genomics) data to make insightful 

findings through heuristic investigations. As sampling of organism taxa for 

genome sequencing increases, the more paleovirological data will become 

available. This essentially makes genome screening iterative, with results 

updated whenever new organism sequence data becomes available. With 

increasing publication of new genome data – especially through long-read 

sequencing technology that has no bias against transposable elements (Gordon 

et al, 2016; Whitfield et al, 2017), studies using ERVs, EVEs and antiviral genes 

will be able to draw firmer conclusions on virus host range, evolution, and 

functionalisation. Overall, this PhD project highlights the benefits of mining 

genome data for insight into host:virus co-evolution, and provides tantalising 

glimpses of the insights that are to come with the ever increasing publication of 

sequence data.  
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Appendices 

Appendix 2.1: Taxonomy and details of WGS of organisms analysed in this thesis. 

Appendix 3.1: Details and accession numbers of sequences used in MSAs of 
Retroviridae RT 

Appendix 3.2: Proviral LTRs recovered, filtered and dated in pairwise-LTR based 
dating of murine ERVs 

Appendix 4.1: Details of CVe recovered in screening of animal WGS assemblies. 
Sequence-ID indicates bespoke sequence identifier. WGS_v is assembly 
version. Bp indicates length, desc indicates where the Cve was first 
identified. 

Appendix 4.2: Sequences used in ML phylogenies of Circoviridae Rep (Figure 4.4, 
Figure 4.5 and others) 

Appendix 4.3: DFAM output of Carnivore Cve sequences 
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Appendix 5.1: ENSEMBL ID, common name, and full name of ISGs used in screens 
in chapter 5 

Due to length considerations, (~100 pages) appendices are found at: 

https://drive.google.com/file/d/1fXWL_QYL6kNncXz7slPSWOfYeJiEpCd3/view?u
sp=sharing 

 

 

 

	
 


