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Résumé 

 L’une des remarquables originalités de la flore néo-calédonienne repose sur la présence de nombreuses 
lignées correspondant aux premières divergences des plantes à fleurs, compte tenu de leurs positions 
phylogénétiques. Au sein de ces lignées, certaines espèces sont susceptibles de porter des traits morpho-
anatomiques ancestraux. Par conséquent, dans un contexte comparatif, l'étude de ces espèces peut fournir des 
informations cruciales pour comprendre les premières étapes évolutives des angiospermes. Un premier volet de 
cette thèse vise à étudier des caractéristiques structurelles et fonctionnelles des groupes représentatifs 
d’angiospermes basales. L'étude d'Amborella trichopoda, espèce sœur de toutes les angiospermes, nous a montré 
une covariation des traits fonctionnels (tige-feuille) et une plasticité morphologique en réponse à des variations 
de l'environnement lumineux. Cela suggère que ces réponses plastiques étaient déjà présentes chez l'ancêtre 
commun de toutes les plantes à fleurs. En parallèle, l’étude de l'évolution anatomique des Piperales, ordre le plus 
riche parmi les angiospermes basales, suggère que leur ancêtre commun aurait possédé un cambium actif. Ces 
résultats supportent que les premières angiospermes avaient une forme de vie ligneuse et que la structure 
sympodiale à été acquise dans les premières étapes évolutives des angiospermes. 

 Les angiospermes basales comptent parmi les lignées d'angiospermes surreprésentées en Nouvelle-
Calédonie. Cependant, les mécanismes à l’origine de cette dysharmonie demeurent inexplorés. Un deuxième 
volet de cette thèse analyse la répartition environnementale des angiospermes basales de l'archipel afin de 
connaitre leurs préférences en termes d’habitats, ainsi que leurs exigences environnementales. Cette distribution 
environnementale a également été analysée au regard de leur résistance à la sécheresse. Nous montrons que la 
plupart des espèces présentent une préférence marquée pour des habitats de forêt humide avec des faibles 
variations en température. La vulnérabilité hydraulique face à la sécheresse apparait comme un trait majeur qui 
confine la distribution de ces espèces dans des habitats humides. Ces conditions auraient persisté dans des zones 
refuges dans l'archipel lors de la dernière période glaciaire, permettant ainsi le maintien de certaines lignées 
d’angiospermes basales. Une stabilité climatique passée pourrait donc être à l'origine de la surreprésentation de 
certains groupes d'espèces forestières qui ont disparu dans les régions voisines. La distribution des angiospermes 
basales néo-calédoniennes, ainsi que leur sensibilité à la sécheresse, supportent l'hypothèse suggérant que les 
premières angiospermes habitaient des milieux humides et stables. 

Mots-clés: anatomie du bois, angiospermes basales, biogéographie, écologie fonctionnelle, écophysiologie, 
évolution, Nouvelle-Calédonie, vulnérabilité à la sécheresse. 

 

Abstract 

 One of the remarkable characteristics of the New Caledonian flora is the presence of numerous 
angiosperm lineages recognized as the earliest divergences of the flowering plants, due to their phylogenetic 
positions. Within these lineages, some species are likely to bear ancestral morpho-anatomical features. 
Therefore, under a comparative perspective, the study of these species can provide compelling information for 
understanding the early evolutionary stages of angiosperms. The first part of this thesis aims to study the 
structural and functional characteristics of representative groups of basal angiosperms. The study of Amborella 
trichopoda, sister species to the remaining flowering plants, shows a covariation of functional traits (stem-leaf) 
and a morphological plasticity in response to changes in the light environment. This suggests that these plastic 
responses were already present in the common ancestor of angiosperms. In parallel, the study of the anatomical 
evolution of Piperales, the most diversified basal angiosperm order, suggests that their common ancestor had an 
active cambium. These results support the hypothesis that early angiosperms had a woody habit and that 
sympodial growth may have been acquired early during angiosperms evolution. 

 Basal angiosperms are among the over-represented angiosperm lineages of New Caledonia. However, 
the mechanisms underlying this disharmony remain unexplored. A second component of this thesis analyzes the 
environmental distribution of New Caledonian basal angiosperms to know their habitat preferences and their 
environmental requirements. Further, we assess the influence of their drought tolerance on their environmental 
distribution. We show that most species have a preference for rain forest habitats with small variations in 
temperature. Drought-induced hydraulic vulnerability stands as a major trait that restricts the distribution of these 
species to humid habitats. These stable conditions seem to have persisted in refugial areas in the archipelago 
during the last glacial maximum, allowing the persistence of basal angiosperm species. Therefore, a past climatic 
stability could explain the over-representation of some groups of forest species that may have disappeared in 
neighboring regions. The distribution of basal angiosperms in New Caledonia, as well as their drought 
sensitivity, support the hypothesis suggesting that early angiosperms lived in humid and stable environments. 

Keywords: basal angiosperms, biogeography, drought vulnerability, ecophysiology, evolution, functional 
ecology, New Caledonia, wood anatomy. 
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FOREWORD 
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The laboratory is part of the mixed research unit Botanique et Modélisation de 
l'Architecture des Plantes (UMR AMAP) which is based in Montpellier, France. 

This PhD thesis was funded by the of the Consejo Mexicano de Ciencia y Tecnología 
(CONACYT) through the grant number 217745.  

This is a thesis by publications. The information contained in this document has been partially 
published or submitted to international scientific journals. A list of publications is available at 
the last section of this thesis document. 
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reach a larger number of readers, most of the content of this thesis is written in English. An 
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1.1. A brief summary of the evolutionary history of vascular plants 

 The earliest land plants (embryophytes) evolved from charophycean green algal 

ancestors about 475 million years ago during the Ordovician (Wellman et al., 2003; Steemans 

et al., 2009; Fiz-Palacios et al., 2011). About 45 Myr later, during the Siluro-Devonian 

transition, a great radiation of land biotas occurred (Steemans et al., 2009). Plant diversity 

increased across an ecologically undersaturated and thus low-competition landscape, 

producing a radiation that has been compared to the Cambrian explosion of marine faunas 

(Bateman et al., 1998). Pioneer land plants struggled with physical and physiological 

problems posed by a terrestrial existence. It has been suggested that lignin was first 

synthesized in order to provide protection against solar ultraviolet radiation and desiccation 

(Lowry et al., 1980). The synthesis of lignin provided structural rigidity for the first 

tracheophytes to stand upright, and strengthened the cell walls of their water-conducting 

tracheary elements to withstand the negative pressure generated during transpiration (Weng 

and Chapple, 2010). Tracheophytes had a rapid expansion during the Silurian-Devonian 

transition (Gray, 1993). The diversification of tracheophytes had far-reaching consequences 

on terrestrial ecosystems (Kenrick and Crane, 1997). The appearance of secondary growth in 

the mid-Devonian (c. 380 Myr ago) favored water conductance and mechanical support, 

prompting diversification in growth forms (Bateman et al., 1998).  

 The photosynthetic activity of megaphyll leaves, with branched veins and flat shape, 

provided the basis of net primary production for the development of land organisms c. 360 

Myr ago during the Devonian period (Beerling et al., 2001). During the same period c. 370 

Myr ago, the earliest known modern trees emerged (Meyer-Berthaud et al., 1999). In parallel, 

the late Devonian was also the period during which the first seed plants (spermatophytes) 

evolved (Rothwell et al., 1989). During the Permian (c. 320 Myr ago), modern gymnosperm 

trees began to dominate the forest canopy. Through the Carboniferous and Permian (340 - 260 

Myr ago) the first extensive forests appeared, and the ecosystem dynamics that control 

modern vegetation were established (Bateman et al., 1998). Gymnosperms had a long 

ecological dominance through the Triassic and Jurassic (250 -150 Myr). During the late 

Jurassic c. 150 Myr ago the first flowering plants appeared (Sun et al., 1998). The rise of the 

flowering plants was followed by a major invasion into the gymnosperm niche during the 

Cretaceous (Bond, 1989), leading to an upset of the composition of the terrestrial vegetation 

over a relatively short period.  
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FIGURE 1.1 Angiosperm phylogeny. The flowering plants systematics is based on APG III 
(2009) relationships. Major clades are indicated by text boxes. Angiosperm orders present in 
New Caledonia are highlighted in green. 
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1.2 The flowering plants, evolution and extant lineages 

 Described by Charles Darwin as an "abominable mystery" and a "perplexing 

phenomenon", the origin and early evolution of flowering plants (angiosperms) is pivotal in 

the evolutionary history of terrestrial biota (Leebens-Mack et al., 2005). The fascination of 

Darwin with the early radiation of angiosperms is legendary, and perhaps no other group of 

organisms merited Darwin’s attention in such dramatic terms (Friedman, 2009). It is not by 

chance that one of the most outstanding naturalists of all times showed much fascination (and 

frustration) with the evolutionary history of a particular group of organisms. The origin of 

angiosperms was followed by a rapid rise of ecological dominance, inducing one of the 

greatest terrestrial radiations of life (Davies et al., 2004). Since their origin, angiosperms have 

extraordinarily diversified and they currently dominate the vegetation of most terrestrial 

ecosystems (Crane et al., 1995). Along with their species richness, angiosperms also exhibit a 

vast morphological, ecological, and functional versatility, establishing the structural and 

energetic basis of the great majority of current terrestrial ecosystems (Magallón and Castillo, 

2009; Crepet, 2013). Angiosperm richness represents more than that of all other groups of 

land plants combined. Crepet and Niklas (2009) have estimated that 89.4% of extant 

embryophyte species are angiosperms, having much more species richness than ferns (3.99%) 

or gymnosperms (0.29%). Angiosperms are currently represented by c. 350 000 extant 

species, and advances in molecular systematics have provided strong bases for the recognition 

of major angiosperm clades and the establishment of their relationships (Fig. 1.1) (APG III 

2009). Within flowering plants, eudicots (Fig. 1.1) constitute the richest group, containing 

73% of extant angiosperm species richness (Magallón et al., 2015). The largest proportion of 

species richness of eudicots is contained in the large clades Asterids and Rosids (Fig. 1.1), 

which represent 35.2% and 29.2% of extant angiosperm richness, respectively (Magallón et 

al., 2015). Monocots, the second largest angiosperm group (Fig. 1.1) has 23.3% of extant 

species richness  (Magallón et al., 2015). Preceding the massive monocots-eudicots clade, 

"basal angiosperms" are an ensemble of poorly diversified lineages, arising from the first 

nodes of the angiosperms' phylogeny (Fig. 1.1). 

1.3 Basal angiosperms, the earliest diverged lineages of the flowering plants 

  Amborellales, Nymphaeales, and Austrobaileyales have been identified by 

several studies (using multiple nuclear, plastid, and mitochondrial genes) as successive sister 

lineages relative to all other flowering plants, and represent the earliest diverging branches of 
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the angiosperms' phylogeny (Figs. 1.1; 1.2) (Mathews and Donoghue, 1999; Soltis et al., 

1999; Qiu et al., 2000; Zanis et al., 2002; Moore et al., 2007). These orders form a 

paraphyletic group which is usually referred to as the ANA grade (Figs. 1.1; 1.2) (Finet et al., 

2010). Within this grade, Amborellales is the earliest lineage, and diverged about 139.4 Myr 

ago (Fig. 1.2) (Magallón et al., 2015). 

 

FIGURE 1.2 Basal angiosperm time-tree. Terminals were collapsed to represent orders. 
Numbers next to nodes indicate median ages for each lineage. The tree was constructed using 
the R package ape (Paradis et al., 2004) with node ages estimated in Magallón  et al. (2015). 
The number of species within each group was obtained from Stevens (2001-onwards). Basal 
angiosperm orders present in New Caledonia are highlighted in green. Endemic lineages from 
New Caledonia are indicated with an asterisk. 

 Stem ages of all basal angiosperm lineages date back from the early angiosperm 

radiation during the Early Cretaceous (Fig. 1.2). Diverging immediately after the ANA grade, 

Chloranthales and magnoliids form another early branching angiosperm clade (Moore et al., 

2007; Moore et al., 2010) with an estimated common stem age of c. 134.62 Myr (Fig. 1.2) 

(Magallón et al., 2015). These clades do not form a natural group given that they do not share 

a direct common ancestor (i.e. they are not monophyletic) (Figs. 1.1; 1.2). However, because 

of their early divergence, the grouping of the ANA grade + magnoliids + Chloranthales are 

considered as "basal angiosperms" (Amborella-Genome-Project, 2013). This nomenclature 

will be followed in this work and we will hereafter consider as basal angiosperms all species 

diverging before the monocots/eudicots node (Figs. 1.1; 1.2). Basal angiosperms have low 

species richness compared to eudicots and monocots (Fig 1.2). For instance, although 

Piperales have high species richness (Fig. 1.2), the entire magnoliids clade contains only 3.6% 

of extant angiosperm species richness (Magallón et al., 2015). The low number of basal 
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angiosperm species is probably linked to their old ages given that the age of a clade is 

negatively related to its diversification rate in angiosperms (Magallón and Castillo, 2009).  

 

FIGURE 1.3. Global geographical distribution of families in the ANA grade. Cabombaceae 
and Nymphaeaceae (Nymphaeales) are cosmopolitan and not displayed on the map. 
Reproduced from Buerki et al. (2014). 

 Five of the seven families in the ANA grade are distributed in tropical East and South-

East Asia, Australia and the Pacific islands (Fig. 1.3) (Buerki et al., 2014). Only 

Cabombaceae and Nymphaeaceae, composed of aquatic plant species, are cosmopolitan. 

Families within the magnoliid clade have a much larger geographical distribution. However, 

they are mostly pantropical, and a great majority of their lineages are represented by tropical 

rainforest species (Liu et al., 2014). Although some species-rich magnoliid families have 

representatives in temperate regions (e.g. Aristolochiaceae, Lauraceae and Magnoliaceae), the 

greatest species richness of these groups is observed within the tropics, notably in Asian and 

Australasian tropical rainforests (Morley, 2001). Moreover, some magnoliid families such as 

Eupomatiaceae, Degeneriaceae, and Himantandraceae have distributions restricted to tropical 

Australia and the Pacific islands (Stevens, 2001-onwards). Finally, Chloranthales are also 

largely restricted to tropical and subtropical habitats, distributed predominantly in non-

seasonal montane cloud forests with high rainfall (Feild et al., 2003; Feild et al., 2004). 

1.4 ‘Basal’ but not ‘primitive’, what does basal mean?   

 As shown in the previous section, basal angiosperms are the species-poor successive 

sister lineages of the highly diversified monocots-eudicots clade (Fig. 1.2). Differences in the 
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diversification rates between these two angiosperm groups result in an unbalanced tree (Fig. 

1.1). Unbalance in phylogenetic trees frequently leads scientists to adopt a linear and cohesive 

narrative of evolutionary stories, assuming that the poorly diversified group is more 

‘primitive’ (O'Hara, 1992; Crisp and Cook, 2005; Gregory, 2008). However, evolution is not 

linear, but branched, and evolution does not cohere, but diverges (O'Hara, 1992). Moreover, 

the tree balance that we observe today may have significantly changed over time (Fig. 1.4). A 

linear narrative of evolution prevailed for over a century since the ‘great chain of being’ (also 

known as scala naturae) was proposed by Charles Bonnet in 1745 (Rigato and Minelli, 2013). 

The production of the first tree diagram and the notion of ‘evolutionary tree’ contained in the 

The Origin of Species of Charles Darwin (1859) changed the long-held linear vision of 

evolution.  

 

FIGURE 1.4. Hypothetical evolutionary tree showing differences in tree balance through time 
in two sister groups (blue and red). (a) Both groups originate at the same speciation event at 
time t0, and therefore have the same age. All extant and extinct lineages arising within both 
taxa are shown until the present (t2). Thin lines indicate lineages that are now extinct. (b) 
Reversal of tree balance; at time t1 the red group was more speciose. (c) Current tree where 
the blue group is more speciose. Although lineages A and B have the same crown age; clade 
B has greater stem age and diverged earlier from their most recent common ancestor. 
Redrawn and adapted from Crisp and Cook (2005). 

 Although the idea of a ‘ladder of progress’ driving evolution has been left behind since 

the end of the 19th century, many biological studies aiming to reconstruct ancestry confuse 

present-day descendants and long-dead ancestors because of misinterpretation of phylogenetic 

trees (Crisp and Cook, 2005; Omland et al., 2008; Rigato and Minelli, 2013). For instance, 

statements such as "Amborella is the most ancient angiosperm" (Goremykin et al., 2003), or 

"Amborella represents the first stage of angiosperm evolution" (Qiu et al., 1999), denote 

linear narratives in evolutionary stories, and can eventually confuse unwary readers. 

Therefore, to avoid possible misinterpretations, we would like to underline that all extant 
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angiosperms are contemporary and 'basal' angiosperm does not mean 'primitive' angiosperm. 

However, a phylogenetic tree can effectively show successive branching over time (case c in 

Fig. 1.4) (Krell and Cranston, 2004). In this sense, by embracing ‘tree thinking’, we consider 

that basal angiosperms are species belonging to the earliest branching lineages of 

angiosperms. Even if they are not primitive per se, the study of basal angiosperms can provide 

insightful information for understanding the early stages of flowering plant evolution. 

1.5 What can studying basal angiosperms tell us about flowering plant evolution? 

 Under a comparative perspective, basal angiosperms are indispensable in studies 

interested in the evolutionary patterns of angiosperm functional and structural attributes. 

Moreover, it has been suggested that basal angiosperm species bear primitive features.  

1.5.1 Basal angiosperms are fundamental in comparative studies 

 Comparative biology depends on understanding the distribution patterns of organismal 

characters across taxa. Using a comparative approach we can detect feature that characterize 

single clades, pointing to potential synapomorphies, or characters that arise repeatedly in 

different evolutionary lineages resulting in evolutionary convergences (Losos, 2011). 

Comparative studies are stronger to the extent that they include more lineages. The more 

representative lineages are included in a study, the more "evolutionary opportunities” for 

diverging from a given pattern are included (Harvey and Pagel, 1991). When there are many 

different ancestral character states, the potential number of independent evolutions of the 

same feature increases in the dataset, improving statistical confidence in the result. 

Consequently, for comparative studies it is crucial to include an array of clades as wide as 

possible. Given that basal angiosperms represent the successive sister lineages of the 

monocots-eudicots clade (Figs. 1.1; 1.2), they constitute an essential part of the array of 

flowering plants. Therefore, sister lineages such as Amborella, when compared with other key 

lineages, can provide unique insights into angiosperm ancestral characteristics (Amborella 

Genome Project, 2013). In the previous section of this chapter we have stressed the risks of 

using intuitive interpretations of ancestry from phylogenetic trees. However, ancestral 

features can be inferred from a phylogeny by applying a method that optimizes the 

distribution of the states of a character over the whole phylogenetic tree (Pagel, 1999). 

Phylogenetic optimizations help to infer ancestral character states at each node of a tree by 

using an evolutionary model that provides the best-fit of a character distribution along the tree 
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(Crisp and Cook, 2005). Examples of case studies using such adequate comparative methods 

are provided in Box 1.  

Box 1. Basal angiosperms in comparative studies to infer evolutionary histories  

Tracheids,  the ancestral xylem conduits of flowering plants. 

The lack of protoxylem vessels in all non-angiosperm lineages, as well as in key basal angiosperm 

lineages such as Amborellales and Nymphaeales (Fig. 1.5), suggests that the common ancestor of all 

angiosperms had vesselless wood. This was confirmed by a maximum parsimony phylogenetic 

optimization performed by Feild and Brodribb 

(2013), which suggests that tracheids are the most 

parsimonious ancestral state for the common node 

of all angiosperms (Fig. 1.5, arrow). These results 

suggest that angiosperms are the only vascular 

plants that have acquired xylem vessels in the 

primary xylem. Furthermore, their results suggest 

that at least three independent origins of vessel 

elements with simple perforation plates occurred 

late during flowering plant evolution (Fig. 5, stars). 

FIGURE 1.5 Summary of the phylogenetic distribution 
of primary element conduits across vascular plants. 
The figure represents a maximum parsimony character state reconstruction of primary xylem evolution. 
Redrawn from Feild and Brodribb (2013). 

1.5.2 Plesiomorphic features are evident in basal angiosperms 

 In a previous section we have underscored that basal angiosperm is not equal to 

primitive angiosperm. However, while a living species cannot be more primitive in 

comparison to another living species, the characters they bear can be primitive (i.e. 

plesiomorphy), or derived (i.e. apomorphy) (Gregory, 2008). It has been proposed that 

primitive structural and functional features are observed in basal angiosperm representatives 

(Box 2). For instance, in a recent synthesis of wood anatomical evolution, Carlquist (2012) 

states that "primitive features are evident in earlier branchings of phylogenetic trees". 

Moreover, Feild et al. (2004) stated that when several lineages are successively sister to a 

major clade, as is the case in angiosperms, any states that they share can be inferred to be 

ancestral, even if each of these lineages is apomorphic for other characters. Examples of 

primitive anatomical and physiological features occurring in basal angiosperms are provided 

in Box 2. 
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Box 2. Basal angiosperms bear primitive character states   

Xylem conduits and their physiological implications. 

The wood anatomy of basal angiosperms is by no means uniform (Metcalfe, 1987). However, it has 

been proposed that primitive xylem conduits (i.e. tracheary elements), such as tracheids or narrow 

vessels with long scalariform perforation plates (Fig. 1.6A), are frequently evident in basal angiosperm 

representatives (Carlquist, 2012). It has been shown that xylem conduit anatomy can strongly 

influence hydraulic conductivity (Christman and Sperry, 2010). Similarly, xylem conduit type seems 

to be related to leaf vein density (Fig. 1.6B) (Feild and Brodribb, 2013), secondarily affecting 

associated functions such as leaf gas exchange and photosynthetic capacity. Basal angiosperms have 

low vein densities as compared to monocots and core eudicots (Fig. 1.6C). Moreover, when 

considering lineage ages, it has been evidenced that the ANA grade species, Chloranthales, and 

magnoliids represent early stages of the angiosperm leaf vein escalation that occurred during the 

Cretaceous (Fig. 1.6C). The lower vein densities of basal angiosperms probably result from their 

constrained xylem vasculature (Fig. 1.6B). If a feature observed in basal angiosperm species is 

plesiomorphic, or similar to a trait plesiomorphic in most angiosperms, then studying its properties can 

reveal information about the functional performance of the traits present in early angiosperms. 

 
FIGURE 1.6. Anatomical diversity of xylem conduits and associated functions. (A) Morphological gradient from 
tracheids to vessel elements with scalariform and simple perforation plates; redrawn from Nardini and Jansen 
(2013). (B) Relationship between xylem conduit morphology and leaf vein density in angiosperms; reproduced 
from Feild and Brodribb (2013) . (C) Increase of angiosperm leaf vein density over evolutionary time. Non-
angiosperms and major groups of angiosperms are included; redrawn from Brodribb and Feild (2010). 
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1.6 Basal angiosperms as modern analogs of early flowering plants 

 The early diversification of angiosperms in diverse ecological niches, and their 

ancestral form and function, are among the aspects of flowering plant evolution that remain 

very ambiguous due to gaps in the fossil record. Several scenarios of the ancestral structure 

and ecophysiology of angiosperms have been proposed using extant basal angiosperms as 

modern analogs. The resolution of the earliest divergences of flowering plants has influenced 

the formulation of various hypotheses about the ancestral ecophysiology of angiosperms. The 

traditional representations of early angiosperms proposed by Takhtajan (1969; 1980) and 

Cronquist (1988) prevailed during a long time. This hypothesis considers woody magnoliids, 

with large multiparted flowers like those of extant Magnoliales and Winteraceae, as a starting 

point for angiosperm evolution (Crane et al., 1995). Based on comparison with these living 

taxa, the first angiosperms would be slowly growing trees with large leaves having low 

photosynthetic rates (Feild et al., 2004). By analogy with the ecophysiology of extant 

magnoliid taxa, early angiosperms would have established in wet and low-light habitats 

(Takhtajan, 1969; Cronquist, 1988). Other authors have proposed alternative scenarios that 

challenge this traditional vision. For instance, Stebbins (1974) has suggested that early 

angiosperms were weedy xeric shrubs that lived in disturbed and sun-exposed habitats of 

tropical semi-arid regions. Later, during the nineties, Taylor and Hickey (1992; 1996) 

performed a cladistic analysis to reconstruct the ancestral form and ecophysiology of 

angiosperms. Their analysis placed Chloranthaceae and Piperales at the base of the 

angiosperm tree. By tracing ancestral character states, they proposed the 'paleoherb' 

hypothesis, which holds that the protoangiosperm was a diminutive, rhizomatous and 

perennial herb.  

 At the beginning of the 21st century, several studies identified the ANA grade as the 

earliest branching lineages of angiosperms (see section 1.3). Following this updated 

phylogenetic topology, Sun et al. (2002) proposed that early angiosperms were aquatic herbs 

similar to modern Nymphaeales and Ceratophyllum. This hypothesis is supported by lower 

Cretaceous fossil evidence of herbaceous aquatic angiosperms such as Archaefructus (Sun et 

al., 1998; Sun et al., 2002) and Montsechia (Gomez et al., 2015). However, it has been shown 

that aquatic angiosperms were derived from plants that previously occupied terrestrial 

environments (Philbrick and Les, 1996). The most recent hypothesis on the ancestral 

ecophysiology of angiosperms has been developed by Taylor S. Feild and colleagues (Feild et 

al., 2003; Feild et al., 2004; Feild and Arens, 2005; 2007; Feild et al., 2009) by studying 
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Amborella, Austrobaileyales and Chloranthales in combination with fossil records to elucidate 

the ancestral ecophysiology of angiosperms. Considering that most basal angiosperms have 

low hydraulic capacities, which restrict them to humid localities, and a photosynthetic 

apparatus adapted to dark environments, their work led them to propose that early 

angiosperms were woody plants that inhabited wet, dark, and disturbed habitats (Feild et al., 

2004; Feild and Arens, 2007).  

1.7 New Caledonia, study location  

 As underscored in a previous section of this chapter, a large proportion of basal 

angiosperm families are located in South-East Asia, Australia and the Pacific islands (Buerki 

et al., 2014). The archipelago of New Caledonia stands out among these territories because, 

despite its small surface, it harbors two ANA grade families (Fig. 1.3), along with 

representative species from Chloranthales and from all magnoliid orders (Fig. 1.2). Given its 

isolation and its distinctive biota, the archipelago of New Caledonia is considered to be one of 

the main Pacific biogeographic regions (Mueller-Dombois and Fosberg, 2013). This intrinsic 

property, along with its particular richness in basal angiosperms, makes New Caledonia an 

ideal location for the study of the evolutionary history and the ecological behavior of basal 

angiosperms.  

1.7.1 Geography  

 New Caledonia is a remote archipelago located in the south-west Pacific just above the 

tropic of Capricorn (17-23°S, 162-169°E), about 1400 km east of Australia, 2000 km north of 

New Zealand, and 250 km south-west of Vanuatu (Fig. 1.7A). The archipelago comprises 

Grande Terre, which is the main island with a total area of 16 400 km2, and other smaller 

islands (Fig. 1.7B). Grande Terre is about 50 km wide and extends over 400 km from south-

east to north-west (Fig. 1.7B). The Loyalty Islands are composed of three main islands located 

c. 100 km east of Grande Terre. North to south, the Loyalty Islands are Ouvéa (132 km2), 

Lifou (1 207 km2), and Maré (642 km2). Other islands with smaller surfaces are Belep, and Ile 

des Pins, located respectively north and south of Grande Terre.  

1.7.2 Orography and Geology  

 Grande Terre has a continuous mountain range that traverses the entire island. The 

highest peaks of the mountain range are Mt. Panié (1629 m) in the north and Mt. Humboldt 
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FIGURE 1.7 Geographical, environmental and geological characteristics of New Caledonia. 
Location of New Caledonia in the South-West Pacific (A); geographic and environmental 
characteristics (B-F); and tectonic evolution of New Caledonia (G-I).    
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(1618 m) in the south (Fig. 1.7B) (Bonvallot, 2012). The mountain range is closer to the east 

coast of Grande Terre, constituting a geographical boundary between the steep and 

mountainous east coast and the large coastal plains of the west coast. Some isolated massifs 

are also present in the northwestern coast with several peaks exceeding 800 m (Bonvallot, 

2012). The highest elevations of the other islands of the New Caledonian archipelago do not 

exceed 300 m. Three main types of geological substrates occur in New Caledonia (Fig. 1.7C) 

(Fritsch, 2012): 1) ultramafic substrates (UM) covering the southern third of the Grande 

Terre, and some isolated massifs along the north-west coast; 2) substrates derived from 

volcano-sedimentary rocks (non-UM) covering two-thirds of the Grande Terre and occurring 

mainly at the northern half of the island; and 3) calcareous substrates, which are the least 

represented type of substrate, prevailing mainly on the Loyalty Islands.  

1.7.3 Climate  

 New Caledonia has a humid subtropical climate with a pronounced cool and dry 

season from May to October, and a warm and rainy season from November to April 

(Maitrepierre, 2012). As a consequence of Grand Terre's topography and the associated rain 

shadow effect, mean annual precipitation (MAP) ranges from 800 mm yr-1 along the western 

coastal plains to 4500 mm yr-1on the eastern slopes of the mountain range (Fig. 1.7D) (Météo-

France, 2007). Mean annual temperature (MAT) in lowland areas is between 27 and 30 °C 

(Fig. 1.7E), and it is also influenced by topography with an adiabatic lapse rate of c. 0.6°C 

/100 m of elevation (Maitrepierre, 2012). Like several tropical regions of the southern 

hemisphere, New Caledonia has a south-east trade wind regime. These winds have little 

annual variability and wind speeds of 10 to 20 knots dominate over the year (Maitrepierre, 

2012).  

1.7.4 Vegetation types 

 The combination of elevation, substrate, rainfall, and human-induced disturbances 

determines the occurrence of different vegetation types in New Caledonia (Jaffré et al., 2012). 

Vegetation types are commonly classified into rainforest of low- to high-elevations (i.e. dense 

humid evergreen forest), summit shrubland, dry sclerophyll forest, low elevation shrubland 

(known as “maquis”), halophytic vegetation, including mangrove and littoral vegetation, 

savanna and secondary thickets (Fig. 1.7F) (Jaffré et al., 2012). Rainforest is the richest 

vegetation of the island with more than 2000 native vascular plant species, and covers c. 3800 

km2 of the island (1800 km2 on non-UM, 1100 km2 on UM, and 900 km2 on calcareous 
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substrates) (Birnbaum et al., 2015). A recent study analyzing the distribution of 702 tree 

species has shown that most rainforest tree species are likely to have a high environmental 

tolerance given that 56% of the tree species are ubiquist with regard to geological substrate, 

rainfall and elevation (Birnbaum et al., 2015). However, while substrate-generalists seem to 

be the most represented, many plant species are restricted to a single substrate. In this sense, 

New Caledonian tree species can be classified into three edaphic groupings corresponding to: 

UM specialists, non-UM specialists, and substrate-generalists (Ibanez et al., 2014).  

1.7.5 Characteristics of the flora 

 The flora of New Caledonia is characterized by a high level of species richness with  

3371 inventoried species of vascular plants (Morat et al., 2012). Angiosperms account by 

themselves for 91% of the New Caledonian vascular plants with c. 3100 species (Morat et al., 

2012). The most diverse families in New Caledonia are Myrtaceae and Rubiaceae, and the 

three most speciose genera in the archipelago are Phyllanthus L. (116 sp.), Psychotria L. (81 

sp.), and Syzygium Gaertn. (70 sp.). Gymnosperms also have a great species richness with 46 

endemic species (Jaffré et al., 1994). Indeed, the archipelago comprises a very distinctive and 

diversified conifer flora, representing the largest assemblage in the Pacific region (De 

Laubenfels, 1996). The flora of New Caledonia is also very distinctive as reflected by its high 

endemism levels. For instance, 74.7% of the vascular plant species and 77.8% of the 

spermatophyte species are endemic to the archipelago (Morat et al., 2012). Endemism is also 

observed at the supra-specific level with 98 endemic genera (13.7%) and three endemic 

families (Amborellaceae, Oncothecaceae, and Phellinaceae). Given its high levels of species 

diversity and endemism, and because of its high rates of habitat loss, New Caledonia is 

considered to be one of the global hotspots for conservation priorities (Myers et al., 2000). 

 A third major characteristic of the New Caledonian flora is its disharmony. The flora 

of New Caledonia is regarded as disharmonic because some groups are either over- or under-

represented compared to the floras of neighboring areas (Jaffré, 1980; Pillon et al., 2010). For 

instance, Cunoniaceae, Rubiaceae, and Sapindaceae are over-represented in terms of species 

richness compared to the Australian flora; while other families such as Asteraceae, Ericaceae, 

and Lamiaceae are under-represented (Jaffré, 1980; Barrabé et al., 2014). Because of its 

isolation, the disharmony of the New Caledonian flora has been generally attributed to 

different dispersal abilities among plant groups (Carlquist, 1974). However, it has also been 

hypothesized that the high incidence of ultramafic (UM) geological substrates may be another 
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main explanation for the over-representation of some plant lineages (Pillon et al., 2010). 

Because of their chemical and physical properties, UM substrates present several important 

constraints to plant growth (Jaffré, 1980). They have high levels of heavy metals (e.g. chrome, 

cobalt and nickel), low levels of nitrogen, phosphorus and potassium, and very poor water 

retention (Jaffré, 1980; Jaffré et al., 1994; van der Ent et al., 2015). In order to cope with 

these constraints, plants have specific adaptations to UM substrates such as sclerophyllous 

life-form traits or hyperaccumulation of heavy metals (Jaffré et al., 2013). Pillon et al. (2010) 

assessed the two competing hypotheses: a disharmony due to uneven dispersability versus 

resulting from uneven adaptation to UM substrates. The authors concluded that exaptation 

(i.e. ‘features that now enhance fitness but were not built by natural selection for their current 

role’ (Gould and Vrba, 1982)) of plant species to UM substrates seems to be a main 

mechanism explaining the disharmony observed in the New Caledonian flora. For instance, 

species of Phyllanthus and Psychotria, which are among the largest and over-represented 

genera in New Caledonia, possess well-known nickel hyperaccumulating species (Jaffré, 

1980; Reeves, 2003; Pillon et al., 2010; Barrabé et al., 2014). 

1.8 Geological and natural history of New Caledonia  

 According to Cluzel et al. (2001; 2012) and Pelletier (2006) the tectonic evolution of 

New Caledonia can be synthesized in the following three main stages: 

1) Early to Late Cretaceous (120-80 Mya): the New Caledonian basin split from the east 

Gondwanian margin through a marginal rifting and a subsequent spread (Fig. 1.7G).  

2) Paleocene to Eocene (62-50 Mya): the New Caledonian basin immersed, probably entirely 

(Fig. 1.7H). The New Caledonian landmass was subducted and covered with oceanic crust, 

the addition of  ultramafic terranes occurred during this period.  

3) Middle to Late Eocene (50-34 Mya): the New Caledonian basin reemerged by the action 

of orogenic forces that uplifted the New Caledonian landmass (Fig. 1.7I). Previously accreted 

ultramafic terranes emerged along with the New Caledonian basin originating the ultramafic 

soils that we observe today across Grande Terre.  

 For a long time New Caledonia has been described as an intact and unchanged piece of 

Gondwana. This assumption is linked to the high representation of remarkable relictual 

endemic taxa such as representatives of basal angiosperms, gymnosperms and Proteaceae 

(Morat, 1993; Lowry, 1998). However, the shaky geological history of New Caledonia 
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invalidates this hypothesis. The geological history of New Caledonia implies that the local 

biodiversity is not older than its reemergence c. 37 Myr ago (Cluzel et al., 2012) and that the 

local biota is the result of long- or short-distance dispersal events (Grandcolas et al., 2008; 

Keppel et al., 2009; Espeland and Murienne, 2011; Pillon, 2012). A second plausible scenario 

implicates the existence of other intermediate islands, now sunken, during the submersion of 

the New Caledonian basin (Pelletier, 2006). These islands may have temporarily hosted a part 

of the New Caledonian biota during the submersion of the main New Caledonian landmass.  

 By abandoning the ‘Gondwanian museum’ model and adopting a new vision 

considering the spatio-temporal history of New Caledonia, recent studies have raised the 

question of whether the local biodiversity is the consequence of recent dispersals and local 

radiations. Grandcolas et al. (2008) summarized several studies that provided evidence of 

post-emersion local radiations in several animal lineages including insects (Murienne et al., 

2005; Murienne et al., 2008), freshwater fishes (Waters et al., 2000), and reptiles (Bauer et 

al., 2006). Similar scenarios have been proposed in plants in the genera Codia (Pillon et al., 

2009), Diospyros (Paun et al., 2015), Geisois (Pillon et al., 2014), Psychotria (Barrabé et al., 

2014) and Pycnandra (Swenson et al., 2015). However, even if we assume that the New 

Caledonian flora is the result of post-emergence colonization events and local radiations, there 

is a lack of explanations for the spatio-temporal distribution and the macroevolutionary 

mechanisms behind the presence of basal angiosperm lineages with ages older than the 

reemergence of the archipelago. A plausible explanation is that representatives from these 

early divergence lineages colonized the island from nearby territories such as Australia, 

subsequently disappearing from their lands of origin (Pillon, 2008).  

1.9 New Caledonia, a land of basal angiosperms 
 Several authors have highlighted that one of the main characteristics of the New 

Caledonian flora is the significant representation of ‘relictual’ groups such as gymnosperms 

and basal angiosperms (Morat et al., 1994; Pillon, 2008; Morat et al., 2012). Basal 

angiosperms are represented by 109 species distributed in 22 genera and 10 families in New 

Caledonia (Table 1.1). Four genera are endemic to the archipelago (Adenodaphne S. Moore, 

Amborella Baill., Kibaropsis Vieill. ex Guillaumin, and Nemuaron Baill.). Ninety percent of 

basal angiosperm species are endemic to the archipelago and only 11 species are considered 

to be autochthonous. A full list of the orders, families, genera, species, and subspecies of all 

currently recognized New Caledonian basal angiosperms is provided in Table 1.1 
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TABLE 1.1 List of basal angiosperms from New Caledonia 
 

Amborellales 
 
Amborellaceae (1 genus / 1 species) 
Amborella trichopoda Baill. 

 

Austrobaileyales 
 
Trimeniaceae (1 genus / 1 species) 
Trimenia neocaledonica Baker f. 

 

Canellales 
 
Winteraceae (1 genus / 19 species) 
Zygogynum acsmithii Vink  
Zygogynum amplexicaule subsp. 
amplexicaule var. amplexicaule (Vieill. Ex 
P.Parm.) Vink 
Zygogynum amplexicaule subsp. 
amplexicaule var. isoneuron (Tiegh.) Vink 
Zygogynum amplexicaule subsp.  luteum Vink 
Zygogynum baillonii Tiegh. 
Zygogynum bicolor Tiegh.  
Zygogynum comptonii var. angustifolium 
Vink 
Zygogynum comptonii var. comptonii  (Baker 
f.) Vink 
Zygogynum comptonii var. taracticum  Vink 
Zygogynum crassifolium (Baill.) Vink  
Zygogynum cristatum Vink 
Zygogynum fraterculum Vink  
Zygogynum mackeei subsp. mackeei  Vink 
Zygogynum mackeei subsp. paniense Carlquist 
Zygogynum oligostigma Vink  
Zygogynum pancheri subsp. arrhantum Vink 
Zygogynum pancheri subsp. deplanchei 
(Tiegh.) Vink 
Zygogynum pancheri subsp. elegans Vink 
Zygogynum pancheri subsp. pancheri (Baill.) 
Vink 
Zygogynum pancheri subsp. rivulare (Vieill. 
ex P.Parm.) Vink 
Zygogynum pauciflorum (Baker f.) Vink  
Zygogynum pomiferum subsp. balansae 
(Tiegh.) Vink 
Zygogynum pomiferum subsp. pomiferum 
Baill. 
Zygogynum schlechteri (Guillaumin) Vink 

Zygogynum stipitatum Baill.  
Zygogynum tanyostigma Vink  
Zygogynum tieghemii subsp. 
synchronanthum Vink 
Zygogynum tieghemii subsp. thulium Vink 
Zygogynum tieghemii subsp. tieghemii Vink 
Zygogynum vieillardii Baill. 
Zygogynum vinkii Sampson 
 
Piperales 
 
Piperaceae (2 genera / 13 species) 
Peperomia baueriana Miq.*  
Peperomia blanda var. floribunda (Decne. ex 
Miq.) H.Huber* 
Peperomia caledonica C.DC. 
Peperomia insularum Miq.*  
Peperomia kanalensis C.DC.  
Peperomia leptostachya Hook. & Arn.*  
Peperomia lifuana C.DC.  
Peperomia sarasinii C.DC.  
Peperomia subpallescens C.DC.  
Peperomia tetraphylla (G.Forst.) Hook. F & 
Arn.* 
Peperomia urvilleana A.Rich.*  
Piper insectifugum C.DC. ex Seem.* 
Piper staminodiferum C.DC. 
 

Laurales 
 
Atherospermataceae (1 genus / 1 species) 
Nemuaron vieillardii (Baill.) Baill. 
 
Hernandiaceae (2 genera / 3 species) 
Gyrocarpus americanus Jacq.*  
Hernandia cordigera Vieill.   
Hernandia nymphaeifolia (C.Presl) Kubitzki* 
 
Lauraceae (6 genera / 47 species) 
Adenodaphne macrophylla Kosterm. 
Adenodaphne spathulata Kosterm. 
Adenodaphne triplinervia Kosterm. 
Adenodaphne uniflora var. francii (Däniker) 
Kosterm. 
Adenodaphne uniflora var. uniflora 
(Guillaumin) Kosterm. 
Beilschmiedia neocaledonica Kosterm. 
Beilschmiedia oreophila Schltr. 
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Cassytha filiformis L.* 
Cryptocarya aristata Kosterm. 
Cryptocarya bitriplinervia Kosterm. 
Cryptocarya chartacea Kosterm. 
Cryptocarya elliptica Schltr. 
Cryptocarya gracilis Schltr. 
Cryptocarya guillauminii Kosterm. 
Cryptocarya leptospermoides Kosterm. 
Cryptocarya lifuensis Guillaumin 
Cryptocarya longifolia Kosterm. 
Cryptocarya mackeei Kosterm. 
Cryptocarya macrocarpa Guillaumin 
Cryptocarya macrodesme Schltr. 
Cryptocarya odorata Guillaumin 
Cryptocarya oubatchensis Schltr. 
Cryptocarya phyllostemon Kosterm. 
Cryptocarya pluricostata Kosterm. 
Cryptocarya schmidii Kosterm. 
Cryptocarya transversa Kosterm. 
Cryptocarya velutinosa Kosterm. 
Endiandra baillonii (Pancher & Sebert) 
Guillaumin 
Endiandra lecardii Guillaumin 
Endiandra neocaledonica Kosterm. 
Endiandra polyneura Schltr. 
Endiandra poueboensis Guillaumin 
Endiandra sebertii Guillaumin 
Litsea deplanchei Guillaumin 
Litsea humboldtiana Guillaumin 
Litsea imbricata Guillaumin 
Litsea lecardii Guillaumin 
Litsea longipedunculata Kosterm. 
Litsea mackeei Kosterm. 
Litsea miana Guillaumin 
Litsea neocaledonica S.Moore 
Litsea ovalis Kosterm. 
Litsea paouensis Guillaumin 
Litsea pentaflora Guillaumin 
Litsea racemiflora Däniker 
Litsea ripidion Guillaumin 
Litsea stenophylla Guillaumin 

Litsea triflora Guillaumin 
 
Monimiaceae (2 genera /10 species) 
Hedycarya aragoensis Jérémie  
Hedycarya baudouini Baill.  
Hedycarya chrysophylla Perkins 
Hedycarya cupulata Baill.  
Hedycarya engleriana S.Moore  
Hedycarya parvifolia Perkins & Schltr.  
Hedycarya perbracteolata Jérémie  
Hedycarya rivularis Guillaumin  
Hedycarya symplocoides S.Moore  
Kibaropsis caledonica (Guillaumin) Jérémie 
 
Magnoliales 
 
Annonaceae (5 genera / 12 species) 
Fissistigma punctulatum (Baill.) Merr.  
Goniothalamus dumontetii R.M.K.Saunders & 
Munzinger 
Goniothalamus obtusatus (Baill.) R. M. K. 
Saunders 
Huberantha nitidissima (Dunal) Chaowasku*  
Meiogyne baillonii (Guillaumin) Heusden 
Meiogyne dumetosa (Vieill. ex Guillaumin) 
Heusden 
Meiogyne lecardii (Guillaumin) Heusden 
Meiogyne tiebaghiensis (Däniker) Heusden 
Xylopia dibaccata Däniker  
Xylopia pallescens Baill.  
Xylopia pancheri Baill.  
Xylopia vieillardii Baill. 
 
Chloranthales 
 
Chloranthaceae (1 genus / 2 species) 
Ascarina rubricaulis Solms  
Ascarina solmsiana var. grandifolia Jérémie 
Ascarina solmsiana var. solmsiana Schltr. 

 

 

Notes: Native species whose distribution also extends outside the archipelago are marked with an 
asterisk. This list of species was extracted from the FLORICAL Database (Morat et al. 2012); an 
online checklist of the flora of New-Caledonia: http://botanique.nc/herbier/florical. Last update: 
27/05/2014
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 All basal angiosperm orders, with the sole exception of Nymphaeales, are represented 

in New Caledonia (Fig. 1.2). Pillon et al. (2010) have shown that most of these families are 

among the over-represented groups of the New Caledonian flora in comparison to the 

Australian flora. Seven out of ten basal angiosperm families are among the over-represented 

families in the local flora. Only Atherospermataceae, Chloranthaceae and Hernandiaceae are 

not over-represented, although they are not considered as under-represented (Appendix S1 in 

Pillon et al., 2010). Because of the occurrence of basal angiosperm lineages, New Caledonia 

is part of the global region that has been proposed by Buerki et al. (2014) as a potential 

refugium that triggered early angiosperm diversification (Fig. 1.3).  

 Among the basal angiosperms of the archipelago, the endemic dioecious shrub 

Amborella trichopoda Baill., is perhaps the most notorious because of its prominent 

phylogenetic position. Since the end of the last century, several studies have strongly 

supported Amborella as the single living species of the sister lineage to all other extant 

angiosperms (Figs. 1.1; 1.3) (Mathews and Donoghue, 1999; Soltis et al., 1999; Mathews and 

Donoghue, 2000; Qiu et al., 2000; Soltis et al., 2000; Amborella Genome Project 2013; 

Poncet et al., 2013), attracting the attention of plant biologists to this discrete species. Given 

that A. trichopoda is the only species of the order Amborellales, this species is the single 

survivor of a lineage that diverged c. 140 Mya (Fig. 1.2) (Magallón et al., 2015). Because of 

its phylogenetic position, the analysis of Amborella from a comparative perspective can 

contribute to the comprehension of the evolution of flowering plants (Amborella Genome 

Project, 2013). However, in spite of its importance, several aspects of the biology and ecology 

of this key species remain to be analyzed. 

1.10 Main objectives  

 The present work aims to increase our understanding of basal angiosperms form, 

function and ecology by giving a special focus to species from New Caledonia. By describing 

mechanical, anatomical, and morphological features linked to the variation of growth forms in 

key basal angiosperm lineages such as Amborella and the globally megadiverse Piperales, this 

thesis aims to provide new perspectives for understanding the ancestral growth form of 

flowering plants. Using a trait-based approach, we examine variation in functional traits as 

well as patterns of trait-trait and trait-environment relationships, to understand the 

fundamental coordination between morphological and functional traits in basal angiosperms. 
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A summary of the methodological approaches used in this study, along with a list of the traits 

measured, are provided in figure 1.8 and table 1.2 respectively. 

 As previously underscored, New Caledonia has a great and unusual diversity of basal 

angiosperms. However, no study to date has proposed a mechanism to explain the persistence 

and the diversity of basal angiosperms in the archipelago. By assessing the past and present 

environmental conditions linked to the distribution of basal angiosperm lineages in New 

Caledonia, this thesis aims to test different hypotheses that could explain their persistence and 

local over-representation. Finally, we assess whether drought vulnerability can explain the 

patterns of distribution of basal angiosperms in the archipelago.  

 

 

 
FIGURE 1.8 Overview of the methodological approaches used in each thesis chapter. 
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TABLE 1.2 List of functional traits and structural features measured 

Group Attribute (abbreviation) Units References Chapter 

Whole plant Architecture categorical  
Hallé et al., 1978;  

Barthélémy and Caraglio, 2007 
2 

Whole plant Growth form categorical Péréz-Harguindeguy et al., 2013 2, 3  

Stem 
Primary and secondary 

xylem anatomy 
categorical 

Esau, 1960; Carlquist, 1975;  

Carlquist, 2001 
3 

Stem Wood density (WD) g/cm-3 
Chave et al., 2009;  

Péréz-Harguindeguy et al., 2013 
5 

Stem Stem water content (SWC) % Poorter et al., 2010 2 

Stem Stem specific density (SSD) g/cm-3 Méndez-Alonzo et al., 2012  2 

Stem Xylem conduit type  categorical Carlquist, 1975 3, 4, 5 

Stem Modulus of elasticity (MOE) N/mm2 Rowe and Speck, 2005 2 

Stem Modulus of rupture (MOR) N/mm2 Gere and Timoshenko, 1999 2 

Stem 
Xylem embolism 

vulnerability (P12/50/88) 
MPa Cochard et al., 2013 5 

Leaf Leaf area (LA) cm2 
Wilson et al., 1999; 

 Péréz-Harguindeguy et al., 2013 
2 

Leaf Leaf mass per area (LMA) mg mm-2 
Poorter et al., 2009;  

Péréz-Harguindeguy et al., 2013 
2, 5 

Leaf 
Leaf dry-matter content 

(LDMC) 
mg g-1 

Wilson et al., 1999;  

Péréz-Harguindeguy et al., 2013 
2 

Leaf Leaf vein density (VD) mm mm2 Sack and Scoffoni, 2013 5 

Note: Traits are arranged into different groups according to organ categories. References of studies 
containing fundamentals and protocols are provided. Detailed descriptions of trait measurement 
techniques are included in each chapter.  

 

1.11 Thesis outline  

 This thesis follows an article-based format. It comprises four chapters that have been 

published or are in preparation for submission to scientific journals (Fig. 1.8). Each chapter 

aims to examine specific aspects of basal angiosperms form, function, and ecology. The main 

objectives of each chapter are as follows: 

Chapter 2. Describe the growth form of Amborella trichopoda, the only representative of the 

first diverging lineage of angiosperms, and assess its morphological and functional plasticity 

in response to environmental variation in canopy openness.  
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Chapter 3. Investigate the variations in the degree of cambial activity and wood anatomical 

features underlying the high diversity of forms in Piperales, the largest basal angiosperm 

order. The evolutionary history of woodiness in Piperales is assessed, and an ancestral form is 

proposed. 

Chapter 4. Outline the current geographical distribution of New Caledonian basal 

angiosperms, examine their distribution during the last glacial maximum, and propose 

possible Pleistocene refugia in New Caledonia.  

Chapter 5. Investigate whether drought vulnerability is correlated with the environmental 

distribution of basal angiosperms.  

 Finally, in Chapter 6 the main conclusions are summarized and research perspectives 

for future studies are provided. Moreover, this chapter discusses the contributions of our study 

to the evolutionary history of flowering plants, the natural history of New Caledonia, and the 

conservation of its unique flora.  



   

CHAPTER 2 

  

Trait coordination, mechanical behavior, and growth 

form plasticity of Amborella trichopoda under 

variation in canopy openness1 
 
 

 
 

 
 
 
 
 
 

 

                                                 
1  A version of this chapter has been submitted for publication. Trueba, S., Isnard, S., Barthélémy, D., 
Olson, M.E. (2016). AoB Plants.  

⋅ Architectural and biomechanical properties of Amborella 

⋅ Morphological and functional responses to light availability 

⋅ Whole-plant functional coordination in Amborella 
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Abstract 

  Understanding the distribution of traits across the angiosperm phylogeny can 

help map the nested hierarchy of features that characterize key evolutionary nodes. Finding that 

Amborella trichopoda is sister to the rest of the angiosperms has raised the question of whether 

it shares certain key functional trait characteristics and plastic responses apparently widespread 

within the angiosperms at large. With this in mind, we test the hypothesis that local canopy 

openness induces plastic responses in Amborella. We use this variation in morphological and 

functional traits to estimate the pervasiveness of trait scaling, and leaf and stem economics.  

  We studied the architecture of Amborella and how it varies under different 

levels of canopy opennesses. We analyzed the coordination of 12 leaf and stem structural and 

functional traits, and the association of this covariation with differing morphologies. 

  The Amborella habit comprises a series of sympodial branched complexes that 

vary in size and branching pattern under different levels of canopy openness. Correlations were 

found between most leaf and stem functional traits. Despite substantial modulation of leaf size 

and leaf mass per area by light availability, branches in different light environments had similar 

leaf area-stem size scaling. Amborella stems vary from self-supporting mechanical to semi-

scandent. Stem mechanics are not affected by local canopy openness.  

  Changes in stem elongation and leaf size in Amborella produce distinct 

morphologies under different light environments. Stem tissue mechanics do not differ 

significantly across light environments. The sympodial growth observed in Amborella could 

point to an angiosperm synapomorphy. Our study provides evidence of intraspecific 

coordination between leaf and stem economic spectra. Variation of traits along these spectra 

provides Amborella axes with adaptive functional strategies under different light environments, 

and suggests that these plastic responses were likely present in the angiosperm ancestor. 

 

 

 

Keywords: Adaptation, allometry, biomechanics, leaf mass per area, leaf dry matter content, 

modulus of elasticity, phenotypic plasticity, plant architecture, light environment, trait ecology. 
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2.1 Introduction 

 Comparative biology is built on an understanding of the patterns of distribution of 

organismal characters. Those that uniquely characterize single clades are known as 

synapomorphies. The nested hierarchy of synapomorphies across the tree of life helps to 

reconstruct the patterns of relationships between taxa (Nixon and Wheeler, 1990). In contrast, 

characters that arise repeatedly can reflect an array of processes from convergent evolution to 

shared propensities for evolving similar traits independently, reflecting convergence or 

parallelism (Harvey and Pagel, 1991; Losos, 2011; Scotland, 2011). To understand the 

distribution of traits within a group, it is crucial to study as wide an array of lineages as 

possible. Among the flowering plants, Amborella trichopoda Baill. (Amborellaceae), a 

dioecious woody plant endemic to the moist forests of New Caledonia, has attracted the 

attention of plant science since the end of the last century, after several phylogenetic studies 

supported the position of Amborella as the single surviving representative of a lineage sister 

to all other extant angiosperms (Mathews and Donoghue, 1999; Soltis et al., 1999; Mathews 

and Donoghue, 2000; Qiu et al., 2000; Soltis et al., 2000; Amborella Genome Project 2013; 

Poncet et al., 2013).  

 Because of its phylogenetic position, the analysis of Amborella traits can provide key 

elements to understand the evolution of the ecology, function, and structure of flowering 

plants (Amborella Genome Project 2013). Finding that there are features shared by Amborella 

and other flowering plants, but not the gymnosperms, could point to angiosperm 

synapomorphies. On the other hand, finding that there are features shared by Amborella and 

the gymnosperms but not the rest of the angiosperms could reveal useful information 

regarding the early sequence of character evolution within the flowering plants. This study 

focuses on patterns, potentially synapomorphic as well as homoplasious, that are currently 

being documented all across the woody plants. Through the description of Amborella's 

architectural and biomechanical organization, combined with analyses of the coordination of 

functional leaf and stem traits and their variation under different light environments, we can 

provide elements for understanding the evolution of growth forms in the flowering plants and 

how these forms vary developmentally under different light conditions.  

 One of the longstanding questions in the study of angiosperm structure concerns the 

habit and growth form of the earliest flowering plants. Amborella has a multi-stemmed habit 

with stems that have been described as scandent (Feild et al., 2001; Feild and Wilson, 2012). 
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This growth habit is often called "cane-like", and seems to be widespread in the "basal" 

lineages of angiosperms (e.g. Aristolochia, Eupomatia, Illicium, Piper, Sarcandra, Thottea 

and Trimenia) (Carlquist, 1996; 2001; Feild and Arens, 2005; Carlquist, 2009; Isnard et al., 

2012), pointing to a potential angiosperm synapomorphy. The cane-like habit is characterized 

by a combination of sympodial growth and mechanical laxness, with stems relatively long for 

their tissue stiffnesses (Feild and Arens, 2007; Carlquist, 2009). The sympodiality and laxity 

observed in the stems of these cane-like shrubs can be directly assessed by the analysis of 

their architectural and mechanical properties. Stem mechanical properties are significantly 

linked to stem anatomical structure and can be used to characterize different growth forms 

based on the observation of mechanical shifts of structural Young's modulus (E) and flexural 

rigidity (EI) during development (Rowe and Speck, 2005; Lahaye et al., 2005). Amborella 

differs from most of the other "basal" cane-like representatives in that it has a vesselless 

wood, an anatomical feature that involves lower hydraulic conductivity per unit transectional 

area as compared to species bearing vesselled wood (Feild et al., 2000; Carlquist and 

Schneider, 2001; Feild et al., 2001; Hacke et al., 2007). Analysis of the stem mechanical 

properties of Amborella can be potentially important in understanding the mechanical 

organization behind the scandent habit in vesselless plants, as well as in discerning how 

widespread mechanical plasticity is within vesselless angiosperms.  

 Independently of the multiple forms expressed by plants, several leading dimensions 

of trait covariation have been documented (Ackerly and Donoghue, 1998; Enquist, 2002; 

Niklas and Enquist, 2002; Westoby et al., 2002; Wright et al., 2004; Olson et al., 2009). 

These apparently highly homoplasious patterns of trait variation appear to span most 

flowering plant lineages given that they are observed across species and across habitats. One 

of the best documented of these relationships is the 'leaf size-twig size' spectrum (Ackerly and 

Donoghue, 1998; Cornelissen, 1999; Westoby et al., 2002; Westoby and Wright, 2003; Sun et 

al., 2006; Wright et al., 2007; Olson et al., 2009), which includes "Corner's Rules" (Corner, 

1949). The leaf size-twig size spectrum includes the tendency for plants with large leaves to 

have predictably thick twigs made up of tissues with low specific density (Wright et al., 2006; 

Swenson and Enquist, 2008; Olson et al., 2009). Finding how Amborella fits into these global 

patterns is essential for documenting how widespread these patterns are across the 

angiosperms. Although these relationships are predictable, the absolute values of functional 

traits can vary across species reflecting different ecological strategies. Within the context of 

these strategies, phenotypic plasticity allows individuals to modify developmental trajectories 
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in response to specific environmental cues (Sultan, 2000; Chambel et al., 2005; Pigliucci et 

al., 2006; Fusco and Minelli, 2010).  

 Among the environmental variables that influence plant plasticity, light availability is 

one of the most heterogeneous (Valladares and Niinemets, 2008). Light incidence has a very 

well documented influence on leaf structure. For instance, light tends to have a negative effect 

on leaf size (Poorter, 1999; Rozendaal et al., 2006) and a positive effect on specific mass 

(Abrams and Kubiske, 1990). Other changes induced by light availability include mass 

allocation (Poorter et al., 2012), and overall plant architecture (Charles-Dominique et al., 

2010; 2012). Given that selection seems to favor thicker twigs as leaf size increases, and 

because light has a documented effect on leaf size, then we can expect that light can indirectly 

influence stem size.  Hence, plants should be able to plastically respond to differing light 

environments along a given stem-leaf scaling slope, "moving" to different degrees along the 

leaf size-twig size spectrum. Although the effects of light on leaf traits have been well 

documented, the effect of environmental variation on other traits such as stem mechanical 

properties remains poorly explored. A previous work, which assessed the effect of canopy 

openness on stem mechanics concluded that light has an effect on the bending mechanics of 

Croton nuntians, a liana that exhibits a variety of growth habits during its ontogeny 

(Gallenmüller et al., 2004). Environmental effects on stem mechanical properties have also 

been measured by Rosell and Olson (2007) using plant growth rate as an indirect estimation 

of environmental variation. These authors concluded that environment does not have an effect 

on stem mechanics. Finally, Zhang et al. (2011) showed that wood mechanical parameters are 

related to mean annual precipitation across a large distributional range. These contradictory 

conclusions lead future studies to explore the effect of environmental variables on stem 

mechanics, which is one of the main features behind the development of diverse growth 

forms.  

 A previous study has shown that individuals of Amborella growing in different light 

environments exhibit variations in leaf thickness and orientation (Feild et al., 2001). 

Nevertheless, Feild et al. (2001) reported an absence of variation in leaf area-specific 

hydraulic conductivity, and photosynthetic light use, concluding that Amborella has limited 

developmental flexibility to light flux density. However, no study to date has examined 

possible plastic responses of Amborella in architectural and mechanical organization, as well 

as in ecologically informative functional traits such as leaf mass per area (LMA), leaf dry 

matter content (LDMC), stem specific density (SSD), and stem water content (SWC). 
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Analyzing the influence of light on functional traits and the coordination between these traits 

can help us to understand to what degree Amborella is able to respond to light variability. To 

the extent that Amborella structural variation fits into the currently known spectra of variation 

across the flowering plants, then this would increase our confidence that the potential for 

plastic variation along these axes was present in the angiosperm ancestor.  

 Through our architectural description, we show that Amborella growth involves the 

stacking of sympodial modules. The axes making up these sympodial modules have a pattern 

of increasing mechanical stiffness with increasing diameter, corresponding to the mechanical 

profile of a self-supporting plant. Canopy openness influenced leaf size and leaf mass 

investment, and triggered changes in Amborella architecture, varying from a long-branched 

shrub with pendulous axes under closed canopies to a short-branched self-supporting shrub 

under open canopies. We use this variation in form to understand how the scandent and self-

supporting habits are produced developmentally. Our results show that canopy openness does 

not seem to affect the mechanical properties of stem tissues. Therefore, the scandent and self-

supporting forms in Amborella are produced by different stem length-diameter 

proportionalities without tissue mechanical differentiation. Moreover, our analyses show that 

across light environments, leaf and stem traits predict one another, following Corner’s Rules, 

with stem tissue density negatively correlated with leaf area. The documentation of this trait 

coordination in the sister to all other flowering plants reaffirms the pervasiveness of these 

traits integrations.  

2.2 Materials and Methods 

2.2.1 Plant material, study sites, and sampling 

 Amborella trichopoda Baill. is a woody evergreen shrub 6-9 m tall, which grows in the 

understory of rainforests in the central mountain range of New Caledonia on acidic substrates 

at 100-900 m elevation (Jérémie, 1982). Amborella is dioecious with small (3-5 mm) 

unisexual flowers that are wind/insect pollinated, and it grows in small, male biased 

populations with measured densities of 433 individuals per ha (Thien et al., 2003). Our 

architectural observations were carried out on individuals from a population in the natural 

reserve of Mount Aoupinié in the northern province of New Caledonia. Mt. Aoupinié has one 

of the populations of Amborella with the highest levels of genetic diversity (Poncet et al., 

2013). A forestry road runs east to west along the ridge of Mt. Aoupinié, and the associated 

clearing has exposed several individuals to a considerable increase in light conditions. 
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Seedlings and young individuals growing in the greenhouses of the Institut Agronomique 

Néo-Calédonien (IAC) at Saint Louis, Mont Dore, New Caledonia, were also used for 

architectural observations. 

TABLE 2.1 Structural and functional stem and leaf traits measured. 

Trait Abbreviation Units 

Stem length SL cm 

Internode length IL cm 

Internode diameter ID cm 

Length-diameter ratio LDR - 

Number of leaves NL - 

Leaf area LA cm2 

Leaf mass per area LMA g m-2 

Leaf dry matter content LDMC mg g-1 

Stem specific density SSD g cm-3 

Stem water content SWC % 

Modulus of elasticity MOE N mm-2 

Modulus of rupture MOR N mm-2 

  

 To evaluate stem and leaf economics within Amborella, we measured 9 stem and three 

leaf structural and functional variables (Table 2.1). Outer canopy branches were collected 

along a gradient from sun exposed roadside individuals to individuals growing in the shaded 

forest understory. We sampled 24 peripheral branches bearing all of their distal leaves for 

allometric analysis as well as for stem and leaf trait measurements. We selected branches 

bearing fully expanded leaves, avoiding leaves with pathogens or herbivore damage. 

Additional segments were collected for mechanical and stem trait analyses. Sampled branches 

were immediately defoliated and wrapped in moist paper, sealed in plastic bags, and stored in 

the dark for transport.  

2.2.2 Measurement of canopy openness  

 Canopy openness (CO, in %) represents the percentage of open sky at a given point, 

and is a useful index of the light environment experienced by a given plant (Jennings et al., 

1999). CO was measured to assess the effect of light availability on the structural and 

functional properties of Amborella. We used hemispherical photographs to characterize local 
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CO at each sampled branch (Fig. 2.1). Before collecting each branche, three photographs were 

taken above the basal, medial, and apical branch sections using a 180° hemispherical lens 

(Samyang fisheye 8 mm f/3,5. Samyang, South Korea) mounted on a Canon EOS 7D camera 

body (Canon, Japan). The reported CO for a given branch is the average of the three 

photographs. Photographs were taken between 1100h and 1300h preferentially on cloudy 

days. The resulting images were analyzed using gap light analyzer software (Frazer et al., 

1999).  

 
FIGURE 2.1 Hemispherical photographs used for canopy openness measurements showing 
two localities with different values of canopy openness. 

 

2.2.3 Architectural analysis  

 Plant axes were described morphologically and illustrated following the criteria of 

Hallé et al. (1978), Barthélémy and Caraglio (2007), and Charles-Dominique et al. (2010). 

The architectural description focused mainly on the aboveground structure. Axes of each 

observed individual were categorized in terms of: 1) growth process (monopodial or 

sympodial), 2) growth direction (orthotropic or plagiotropic), 3) branching pattern (whether 

branches elongate immediately after bud initiation or branches originate from dormant buds 

with a delayed extension), 4) branch position (whether branches are located at a basal 

(basitonic), medial (mesotonic) or distal (acrotonic) position on the parent axis), 5) presence 

and position of inflorescences, and 6) symmetry (whether the leaves and branches are 

disposed radially or bilaterally). Below, we use the term "module" in describing a structural 

unit repeated over time and composed of a single dominant axis and its lateral subordinates 

axes. Our architectural analysis was based on in situ observations of individuals at different 

growth stages, defined a priori on the basis of morphological criteria (Charles-Dominique et 

al., 2010). Some of these criteria included branching and accumulation of relays. "Relay" is 
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used here to denote axes that originate from dormant buds and that grow into new branching 

systems. Relays accumulate over time, providing a basis for classifying individuals into 

different stages (Charles-Dominique et al., 2010). Regardless of the environment they are 

growing, individuals from older stages have more relays than those of earlier stages. The age 

of each individual was estimated by comparison with field and greenhouse individuals of 

known age. Through architectural and morphological descriptors we described differences 

between mature individuals growing in various light environments. 

2.2.4 Leaf traits and branch dimensions 

 We measured leaf area (LA), leaf mass per area (LMA), and leaf dry matter content 

(LDMC) of all the leaves, petioles included, borne by the 24 branches sampled. This sampling 

allowed us to determine the total LA for each branch. Leaves were scanned in the field using 

a portable scanner (CanoScan LiDE 25, Canon, Japan) and fresh mass was immediately 

measured using an analytical balance. LA was calculated from the scanned images using 

ImageJ 1.47v. (NIH Image, Bethesda, MD, USA). Leaves were then oven dried at 70°C for 

72 h for the LMA and LDMC calculations. LMA was calculated as the ratio of leaf dry mass 

to LA; LDMC was calculated as leaf dry mass over leaf fresh mass (Pérez-Harguindeguy et 

al., 2013). Branch measurements included number of leaves (NL), total stem length (SL),  

internode length (IL), internode diameter (ID), and the ratio of stem length to stem diameter 

(LDR), which was calculated as SL over ID of the basal most internode. IL and ID 

measurements were made at each internode of the sampled branches.  

2.2.5 Stem mechanics 

 We measured modulus of elasticity (MOE), also known as Young's modulus, along 

with modulus of rupture (MOR) and flexural rigidity (EI) of stem segments from the same 

branches sampled for the measurements of leaf traits. To cover the widest possible range of 

stem thickness given our testing apparatus, we sampled additional stems of wider diameters, 

which were included in a separate dataset. We measured a total of 100 stem segments with 

diameters ranging from 1.97 to 22 mm. Segments were tested in three-point bending (Fig. 

2.2A) with an Instron InSpec 2200 test machine fitted with 10 kN, 125 kN, or 500 kN load 

cells (Instron Corporation, Norwood, Massachusetts, USA). Stem segments had length : 

diameter ratios of 20 : 1 to avoid shear (Lahaye et al., 2005; Méndez-Alonzo et al., 2012). 

The diameter of the tested segments was calculated as the average of the basal, midpoint, and 

apical diameters measured with a digital caliper at two perpendicular points. The axial second 
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moment of area (I) was calculated by Eq. 1 assuming that the stem cross section is 

approximated as a solid ellipse: 

� = ���� ∙ �	
� ∙ 	�
                                                                                                                     (1)                                                                                                             

where r1 is the radius of the stem in the direction of the applied force and r2 is the radius in the 

perpendicular direction. Stem flexural rigidity (EI), represents the resistance of a beam to 

bending forces in terms of size, geometry, and material properties. It was calculated using Eq. 

2: 

�� = ��
���                                                                                                                (2) 

where L is the distance between the supports of the testing apparatus and m is the slope of the 

initial elastic portion of the deflection vs. force curve (Fig. 2.2B). For the MOE and EI 

calculations, a force was applied at a speed of 0.25 mm/s, inducing a displacement of 2.5 mm. 

MOE is an index of the capacity of a material to resist bending assuming that the stem is 

made of a uniform material.  MOE was calculated with Eq. 3: 

MOE = ��
�                                                                                                                (3) 

MOR, also known as flexural strength, represents the highest stress experienced by the stem 

at its moment of rupture. In the MOR tests, load displacement was conducted until reaching 

maximal force (Fmax, the maximum load at the moment of breakage or the limit of the elastic 

phase in absence of breakage) (Fig. 2.2B). Fmax was calculated with the software IX Instron 

System (Instron Corporation, Norwood, Massachusetts, USA). Fmax was used to calculate 

MOR using Eq. 4:  

MOR = �����	×�	×�

��                                                                                                   (4) 

where L is the length between the supports, r is the averaged radius, and I is the second 

moment of area (Gere and Timoshenko, 1999; Méndez-Alonzo et al., 2012).  
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FIGURE 2.2 Three-point bending test performed with an Instron mechanical testing apparatus 
(A), illustration of a deflection vs. force curve showing the slope of the elastic portion and the 
maximal force before stem breakage (B). 

2.2.6 Stem density and stem water content 

 We collected stem samples 2.5 to 3 cm long from central sections of the segments 

tested mechanically. Stem volume was calculated using the water displacement method. We 

oven-dried stem samples at 70°C for a minimum of 72 h until constant mass. Stem specific 

density (SSD) was calculated as dry mass/fresh volume (Méndez-Alonzo et al., 2012). Stem 

water content (SWC), an indicator of water capacitance, was calculated as 100(1 - (dry 

mass/fresh mass)) (Poorter et al., 2010). To test the hypothesis that branches with greater leaf 

area have stems with lower tissue density, we used an approach similar to that of Wright et al. 

(2006) by measuring SSD of the apical-most branch sections, taking exclusively stem 

segments collected < 350 mm from the branch tip. Apical stem density should reflect the 

conditions prevailing during the production of the standing crop of leaves, and therefore 

should correlate well with leaf characteristics. 

2.2.7 Data analysis  

 All of the analyses were conducted in R v.3.1.2 (R Development Core Team, 2014). 

Functional and structural variables were log-transformed to meet assumptions of normality 

and homoscedasticity. Data were compiled in two datasets. The first, hereafter referred to as 

the "branches" dataset, contained arithmetically averaged values of all of the measured traits 

(Table 2.1) for each of the sampled branches. The second dataset, hereafter referred to as the 

"biomechanics" dataset, contained values for the stem mechanics traits along with SSD, SWC 

and CO values of 100 measured segments. The "biomechanics" dataset was used to analyze 
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the variation in mechanical properties on a wider range of stems diameters, allowing us to test 

predictions regarding mechanical variation during development.  

 Given that we observed architectural differences under different CO, especially in the 

terminal branched complexes, we explored whether there were changes in scaling between 

stem dimensions and total leaf area between light environments. We divided our dataset into 

two different light environment sites taking 15% CO as a threshold, using a "sun/shade" site 

categorical variable. This CO threshold was chosen because all of the branches collected in 

the understory (shade sites) had values of <15% CO while branches sampled in forest 

clearings along the road (sun sites) had values of > 15% CO. Allometric scaling between stem 

size (diameter and length) and total leaf area under different CO values was estimated in log-

log bivariate relationships using standardized major axis (SMA) regressions using the R 

package 'smatr' (Warton et al., 2012). We built a model predicting total leaf area based on 

stem diameter, site, and a stem diameter - site interaction term. A second model predicted 

total leaf area based on stem length, site, and a stem length - site interaction term. Using these 

models we estimated the relationship between stem size and total leaf area across CO sites, 

and we compared scaling slopes of sun branches with those of shade branches via likelihood 

ratio statistics for common slopes. After finding that there were no slope differences between 

sites, we fit models without the site interaction term. We then used Wald statistics for equal 

elevations included in the 'smatr' package to compare intercepts between sites. Similar slopes 

but different intercepts indicate that stem size differs significantly between sites but foliage-

stem scaling is similar. SMA regression was also used to assess the relation between apical 

SSD and LA. SMA is designed to describe relationships between variables in which the 

causality of one on the other is likely mutual rather than unidirectionally one variable on the 

other, making it appropriate for the present situation (Smith, 2009).  

 We explored relationships between traits using pairwise Pearson correlations on the 

"branches" and "biomechanics" datasets. Separately, the effect of CO on the modulation of 

leaf traits was analyzed with ordinary least squares linear regressions (OLS) on the "branches" 

dataset. To document changes in stem mechanical properties with ontogeny, we measured the 

effect of stem diameter on MO and MOR using OLS regressions on the "biomechanics" 

dataset. To explore a possible joint effect of stem diameter, SSD, and CO on stem mechanical 

properties, we performed multiple regression analyses on the "biomechanics" dataset. The 

strength of the contribution of each stem trait and CO was evaluated using semipartial 

correlations.   
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2.3 Results 

2.3.1 Architectural analysis  

Stage 1-small seedlings. Amborella seedlings have a tap root and a single orthotropic stem 

with alternate spiral phyllotaxy (Fig. 2.3A). After about 12 weeks, as observed in the 

greenhouse, seedlings have a stem 5 cm tall and a large root system (Fig. 2.3A). 

Stage 2-young saplings. As the first orthotropic axis elongates, it becomes plagiotropic (i.e. 

becomes a “mixed” axis, with both orthotropic and plagiotropic sections) becoming 

pendulous under its own weight (Fig. 2.3B). Phyllotaxy is alternate, oriented spirally in the 

proximal orthotropic section.  
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FIGURE 2.3. Illustration of the ontogenetic architectural stages of Amborella trichopoda, and 
architectural variability under closed or open canopies. (A) Seedling and unbranched young 
plant 6 months after germination (stage 1). (B) 1-year-old plant (stage 2). (C) 1.5-year-old 
plant with a rooted "pseudo-rhizome" (stage 2). (D) Around 6-year-old plant (stage 3). (E) 
>10-year-old plant growing under a closed canopy (stage 4). (F) >10 year-old-plant growing 
under open canopy (stage 4). Only some of the successive branched complexes of stage 4 
individuals are represented. Abbreviations: Adv, adventitious root; BC, branched complex; 
Co, collar zone; mod, architectural module. Thick lines represent structural axes, thin lines 
represent lateral branches, arrowhead lines represent relays, crosses are dead apices, circles 
are inflorescences, and gray shadings indicate BCs.  

Leaf orientation is bilaterally symmetrical in the distal plagiotropic section. A lateral mixed 

axis makes up a second architectural module with the same phyllotaxy as the parent axis. 

Branching is sympodial. In most of the individuals observed, a single branch developed after 

apical death of the parent axis (Figs. 2.3B,C). Apical death occurs mainly after the bending of 

axes (Fig. 2.3B). Branching is predominantly mesotonic, and on the upper surface of the 
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bending zone (Fig. 2.3B). The basal diameter of the lateral branch becomes equivalent to that 

of the section of the parent axis preceding the branching (Fig. 2.4A). As the upper module 

develops, the distal part of the parent axis withers and decays (Figs. 2.3B,C). Growth of the 

sympodium stops after reaching about 25 cm, and the set of modules make up a branching 

system, which will be hereafter referred as a branched complex (BC) (Figs. 2.3B,C). Relay 

branches of fast growth sprout on the first BC originating from dormant mesotonic buds 

(Figs. 2.3B,C). In some individuals, the first module comes to lie on the ground, this stem can 

develop adventitious roots and resprout, then becoming a "pseudo-rhizome" from which 

several stems develop (Fig. 2.3C). 

Stage 3-early maturity. Larger individuals grow continuously with a sympodial branching 

pattern (Fig. 2.3D). Only some nodes produce lateral branches and there is no obvious regular 

distribution of branches in tiers (Fig. 2.3D). Branch production seems to be associated with 

environmental conditions, given that we observed increases in lateral branch production under 

light patches, and after trauma such as falling branches. All axes are morphologically similar, 

and we did not observe a hierarchical architectural construction with distinctive axis 

categories (Fig. 2.3D), unlike as in conifers, which have distinct central and lateral stems. 

Modules derived from the relay stem originating from the first BC establish a second BC (Fig. 

2.3D). At this stage, acrotonic sympodial branching can occur in peripheral branches (Fig. 

2.4B). The axillary bud of the terminal leaf activates, producing a new module that maintains 

the same growth direction as the parent module from which it originates (Figs. 2.3D; 2.4B).  

Stage 4-maturity. Individuals at this stage are built by the sequence of over four branched 

complexes, having thick basal areas and significant height (Figs. 2.3E,F). BCs are formed by 

a combination of branch-bearing stems and leaf-bearing lateral branches. The sequence of 

BCs is repeated by mesotonic relays and basitonic relays originating from dormant buds 

located at the collar zone. As a consequence of the accumulation of iterated complexes, the 

plant has a multi-stemmed shrub form and a leader stem is not distinguishable (Figs. 2.3E,F). 

Flowering is lateral, occurring in axial meristems of both stems and lateral branches (Figs. 

2.3E,F). No architectural differences were observed between male and female individuals. 

Adventitious roots were frequently observed above the ground at the stem base (Fig. 2.3E). 
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FIGURE 2.4. Illustration of morphological features of Amborella trichopoda. (A) Young 
individual growing in the understory showing sympodiality by stacking of modules. Note the 
changes in diameter of the parent axes (A1, A2) after the branching of upper modules. (B) 
Linear sympodial structure after apical death (arrow). A second axis produced by the lateral 
bud of the more distal leaf continues axis construction keeping the same growth direction. (C) 
A supernumerary bud is located below an axillary bud showing onset of growth. (D) Under 
high-light conditions, both axillary buds can activate, producing small axes. Abbreviations: 
A1, A2, A3, axis orders; b1, axillary bud; b2, supernumerary bud; L, axillary leaf; P, parent 
axis. 

Morphological differences across canopy opennesses. Given a lack of recruitment in sun 

exposed sites, we observed stages 1 to 3 only in shaded understory conditions. We observed 

qualitative morphological variation in branched complexes under different canopy opennesses 

in large (stage 4) individuals. The crowns of plants growing in more shaded environments 

were made up of very elongate and sparsely branched axes (Fig. 2.3E). Plants in open canopy 

environments had more lateral branches (Fig. 2.3F). Under a closed canopy, several relays 

occurred mostly at mesotonic positions, whereas under an open canopy relays were less 

frequent and were usually basitonic. Under open canopy conditions, inflorescences were more 

abundant (Fig. 2.3F) and axillary supernumerary meristems activated (Fig. 2.4C). 

Supernumerary axillary buds produce additional small branches (Fig. 2.4D). The lifetime of 
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the short axes produced by the supernumerary buds seems to be very short, given that we 

observed a frequent abscission of small branches in the crowns of individuals growing under 

open canopies (Fig. 2.3F). 

 

FIGURE 2.5 SMA regressions showing the scaling of total leaf area (sum of areas of all leaves 
borne by the stem) with stem dimensions of branches growing under open canopy (>15% CO) 
and closed canopy (<15% CO). (A) Total leaf area and stem diameter allometry. (B) Total 
leaf area and stem length allometry. *** P < 0.001. 

2.3.2 Foliage-stem scaling in Amborella 

 Both stem diameter and length were significantly related to total leaf area (Fig. 2.5). 

Stem diameter, equivalent to the diameter of the basal most and thickest internode of each 

branch, predicted 62% of the variation in total leaf area across light environments (Fig. 2.5A). 

Stem length was also strongly related to total leaf area, explaining 81% of its variation (Fig. 

2.5B). When assessing differences in the scaling of stem diameter and total leaf area among 

sites, the model indicated that both types of sites have similar SMA slopes (Likelihood ratio 

statistics; P = 0.68). SMA slopes ranged from 1.58 (95% CIs 1.10-2.27) for shade branches to 

1.82 (95% CIs 0.97-3.41) for sun branches. Assuming homogeneity of slopes, branches from 

shade exposed sites had an elevation of 3.08 (95% CIs 2.96-3.21), which was not quite 

significantly higher (Wald's test; P=0.01) than the elevation of sun exposed branches (2.85; 

95% CIs 2.39-3.32). Biologically, this result indicates that similar allometric scaling 

relationships are maintained regardless of the light environment, with sun branches having 

slightly thinner stems. With regard to stem length, SMA slopes of sun branches (1.39; 95% 

CIs 0.92-2.10) and shade branches (1.17; 95% CIs 0.83-1.66) were not significantly different 

(Likelihood ratio statistics; P = 0.48). Elevations were also similar (Wald's test; P = 0.18) 
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between sun branches (0.16; 95% CIs -0.74-0.92) and shade branches (0.66; 95% CIs -0.12-

1.46). In addition to the leaf area and stem size scaling, total leaf number was also 

significantly correlated with stem length and diameter (Table 2.2).  

 

 
FIGURE 2.6 SMA regression showing the relationship between SSD of apical stem sections 
and mean LA of the leaves subtended by each stem (**P = 0.008; slope -2.83, 95% CI -4.09 
to -1.96). 

2.3.3 Coordination of leaf and stem functional traits, and effect of canopy openness  

 Most stem and leaf traits were significantly correlated (Table 2.2). LDMC and LMA 

had the strongest relationships with stem traits such as SWC and SSD. LA was strongly 

correlated with the remaining leaf traits, but it was not significantly related with any of the 

stem traits (Table 2.2). Stem size traits such as total stem length as well as internode diameter 

and length were very strongly correlated with leaf traits and stem mechanical traits, but were 

not correlated with SSD and SWC. SSD was positively correlated with both MOE and MOR. 

SWC and stem mechanical properties were negatively correlated, indicating that stems with 

higher water contents had tissues that were both more flexible and less resistant to breakage. 

Branch averaged values of SSD and LA were not significantly correlated (Table 2.2). 

However, average LA was negatively correlated with SSD of branch apical segments 

(Pearson; r = -0.52, P = 0.008) and scaling between both traits was detected (Fig. 2.6), 

indicating that broad leaved branches of Amborella have stem tissues of lower density. 
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FIGURE 2.7 Influence of canopy openness on leaf traits variation. (A) Decrease of leaf area 
with increasing canopy openness. (B) Increase of leaf mass per area with increasing canopy 
openness. (C) Increase of leaf dry matter content with increasing canopy openness (n = 24) 
*** P < 0.001. 

 

CO, which reflects light availability, was significantly correlated with leaf and stem size traits 

(Table 2.2). SWC was negatively associated with CO (Table 2.2), suggesting lower water 

contents in sun exposed branches. Canopy openness had a very important effect on leaf trait 

variation (Fig. 2.7). LA was negatively related to CO (Fig. 2.7A) while CO was strongly 

positively related to both LMA (Fig. 2.7B) and LDMC (Fig. 2.7C). Sun exposed leaves were 
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smaller than shade leaves but had higher mass per unit of area and higher dry matter content 

than leaves under closed canopy.  

TABLE 2.2 Pairwise Pearson correlations between stem and leaf traits and canopy openness. 

 

 
SL IL ID LDR NL LA LMA LDMC SSD SWC MOE MOR 

IL 0.85***  
         

  

ID 0.74***  0.77*** 
        

  

LDR 0.74***  0.58*** 0.23 
       

  

NL 0.86***  0.55** 0.53** 0.62***  
      

  

LA 0.77***  0.89*** 0.73***  0.38 0.57***  
     

  

LMA -0.49** -0.60***  -0.19 -0.46* -0.29 -0.62***  
    

  
LDMC -0.39 -0.59***  -0.25 -0.34 -0.14 -0.56***  0.89*** 

   
  

SSD -0.25 -0.36 -0.11 -0.26 -0.06 -0.33 0.48* 0.53* 
  

  

SWC 0.26 0.35 0.10 0.25 0.09 0.39 -0.67***  -0.69***  -0.85***  
 

  

MOE 0.66** 0.59*** 0.67***  0.36 0.54** 0.59** -0.12 -0.01 0.46*** -0.49***    
MOR 0.51* 0.44* 0.34***  0.34 0.55** 0.48* -0.07 0.03 0.56*** -0.59***  0.72***   
CO -0.49* -0.73***  -0.31 -0.35 -0.21 -0.72***  0.88*** 0.85*** 0.35 -0.53** -0.21 -0.06 

 

Notes: Correlations based on averaged values of 24 sampled axes. Variables were log transformed 
prior to analysis. See Table 2.1 for traits abbreviations and units. Correlations between MOE, MOR, 
ID, SWC and SSD were calculated using the "biomechanics" dataset (n = 100). Significant 
correlations are shown in bold. * P < 0.05; ** P < 0.01; *** P < 0.001.  

2.3.4 Stem mechanics  

 Mechanical parameters (MOE and MOR) were significantly predicted by stem 

diameter (Fig. 2.8). MOE increased with stem diameter (Fig. 2.8A) from 500–2000 N mm-2 in 

stems of 1.98–2.5 mm to 7000–9000 N mm-2 in stems with diameters of >10 mm. Because 

higher values of MOE reflect higher material stiffness, this result indicates that tissues in 

thicker basal stems are stiffer than those in narrow apical ones. As regards MOR, narrower 

stems had lower resistance to rupture whereas wider stems were more resistant to rupture 

(Fig. 2.8B). Flexural rigidity of Amborella stems was strongly correlated with diameter (r2 = 

0.97; P < 0.001), indicating that higher loads were needed to produce deflection in stems of 

largest diameters.  

 Light environment did not have an effect on mechanical parameters, as suggested by 

the lack of correlation of CO with either MOR orand MOE using branch-averaged values 

(Table 2.2). However, multiple regressions including the effect SSD and CO (Table 2.3) on 

stem mechanics suggest slight mechanical variations with CO. 
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FIGURE 2.8 Relationships between mechanical properties and stem diameter. (A) Increasing 
of stem stiffness (MOE) with increasing diameter. (B) Increase of stem resistance to breakage 
(MOR) with increasing diameter. n = 100. *** P < 0.001. 

 

 When MOR was explained by diameter, SSD, and CO, the coefficient associated with 

CO was not significant (Table 2.3). As for MOE and EI, the coefficient associated with CO 

was significant. Despite the significance of these coefficients, CO was the variable that 

contributed least to the models, as shown by the lower semipartial correlation values when 

compared to those of the other parameters (Table 2.3). MOE and EI increased with both stem 

diameter and SSD, with shade axes tending to be stiffer. With regard to MOR, SSD had the 

highest semipartial correlation explaining more of the total variation in MOR than stem 

diameter (Table 2.3). The lower association of MOR with stem diameter, as compared to the 

association between MOE and diameter, was readily observed in the scatter plots (Fig. 2.8). 

SSD also had a significant effect on MOE, but it had a lower semipartial correlation than stem 

diameter (Table 2.3), suggesting that SSD plays a major role in stem resistance to rupture and 

a lesser but nevertheless important effect on stem flexibility.  
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TABLE 2.3 Multiple regressions of Amborella mechanical properties predicted by canopy 

openness (CO), stem diameter (D), and stem specific density (SSD). 

response r2 Ftest βD βSSD βCO PD PSSD PCO 

MOE 0.55 F3,96 = 39.56*** 0.47***  1.00***  -0.18** 0.47 0.38 0.22 
MOR 0.41 F3,96 = 39.56*** 0.12* 1.02***  -0.07ns 0.18 0.54 0.13 

EI 0.98 F3,96 = 1717*** 4.46***  1.00***  -0.18** 0.91 0.08 0.04 

 

Notes: r2 = adjusted coefficient of multiple determination. βD = coefficient associated with stem 
diameter;  βSSD = coefficient associated with stem specific density; βCO = coefficient associated with 
canopy openness. PD, PSSD, and PCO are semipartial correlations indicating the contribution of each 
predictor. (N= 100). ns = non significant; * P < 0.05; ** P < 0.01; *** P < 0.001. 

2.4 Discussion 

 Amborella trichopoda, the sister species to all other flowering plants, varies 

predictably in functional and structural traits with light environment. Within this variation, 

leaf and stem economics are coordinated. For example, though axes of Amborella varied in 

LMA and LDMC under variation in canopy openness, they maintained similar foliage-stem 

scaling. The confirmation of these patterns of covariation in Amborella, together with their 

wide distribution across both the angiosperms and conifers suggests that these coordinated 

plastic responses were likely part of the basic developmental toolkit of the ancestral 

angiosperm. Here we discuss some of the patterns of trait coordination that are widespread in 

plants in the context of the Amborella growth form and what these characteristics might 

indicate regarding angiosperm synapomorphies or symplesiomorphies. 

2.4.1 Corner's Rules and Amborella growth form plasticity  

 Across species, plants vary from those with thick twigs bearing large leaves to those 

with narrow twigs bearing small leaves (Westoby and Wright, 2003). Here we show that this 

spectrum can be observed among individuals of Amborella, which exhibit similar foliage-

stem scaling across light environments. It has been proposed that foliage-stem scaling is a 

consequence of the mechanical and hydraulic requirements of leaves as well as self-shading 

avoidance trough leaf spacing (Enquist, 2002; Westoby et al., 2002). Moreover, if similar 

crown areas fix similar amounts of carbon, then carbon limitation requires such a foliage-stem 

scaling if leaf spacing is greater in larger-leaved species (Olson et al., 2009). In addition to 

foliage-stem scaling in Amborella, we observed an association of low stem specific density 

with rapid stem extension, high leaf area, and leaf spacing. Across light environments, 
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Amborella has narrow stems of high density bearing small leaves with high mass per area or 

thick branches of low densities bearing wide leaves with low mass per unit area. Our results 

thus converge with the metabolic mechanism proposed by Olson et al. (2009), suggesting that 

if leaves and stems maintain a metabollically driven proportionality, large-leaved axes with 

greater leaf spacing require low density tissues and thicker stems as a response of rapid 

volumetric extension and stem tissue mechanics given carbon limitation. 

 A second component of Corner's rules implies that species with larger leaves and 

twigs also tend to have less frequent branching with wider branching angles, whereas species 

with smaller leaves and twigs have more frequent branching with narrower branching angles 

(Corner, 1949; Ackerly and Donoghue, 1998; Westoby and Wright, 2003). Our architectural 

analysis shows that the crowns of Amborella individuals have conspicuous morphological 

differences depending on light environment. Crowns of individuals growing under a closed 

canopy have sparser branching and few, long lateral branches, whereas crowns of individuals 

growing under an open canopy show an increase in branching. This greater branching is 

accompanied by the activation of supernumerary buds leading to a short, densely leaved, and 

narrow crown. Similar crown morphological responses to light availability have been 

observed across shade-tolerant angiosperm species (Cornelissen, 1993; Niinemets, 1996). The 

observed variation in the architecture of Amborella individuals under different canopy 

opennesses suggests that intraspecific architectural plasticity follows Corner's Rules.  

2.4.2 Phenotypic plasticity of Amborella leaves in response to canopy openness 

 Numerous studies spanning a wide diversity of plant lineages have highlighted that 

leaf characteristics can be strongly influenced by local light environment. Here we extend this 

documentation to Amborella, whose leaves vary markedly in size and mass allocation under 

different canopy opennesses. This variation in leaf traits in different light environments is 

very likely adaptive (Poorter et al., 2009). For instance, Amborella leaves in shade conditions 

have greater area for a given unit of biomass, increasing the surface available for light 

interception. Lower LMA in understory Amborella leaves reflects a reduction in the cost of 

leaf construction. It has been shown that lower construction investment is favored in 

environments with low photosynthetically active radiation (Poorter et al., 2006). In addition 

to light availability, canopy openness is also positively related to air temperature and 

negatively related to relative humidity (Pineda-García et al., 2013). Therefore, the reduction 

of leaf area under open canopy conditions, along with the increases in LDMC and LMA that 
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we observe in Amborella, can also be considered as adaptive responses to potential 

desiccation and water stress (Niinemets et al., 1999).  

 Several mechanisms can underlie the variation we observed in the absolute values of 

LMA in response to light availability (Fig. 2.7B). It has been proposed that leaf tissue density 

is strongly correlated with LMA in woody plants (Castro-Díez et al., 2000; Villar et al., 2013) 

and leaf tissue density seems to predict LMA better than leaf thickness (Villar et al., 2013). A 

previous study suggested that Amborella leaf epidermal and hypodermal thickness do not 

change in response to varying light levels (Feild et al. 2001). Feild et al. (2001) also reported 

limited adjustments in total leaf thickness, with sun leaves being ca. 10% thicker than shade 

leaves. Our results, however, show a very strong effect of light availability on leaf area and 

mass investment (LMA and LDMC) (Fig. 2.7). The variability we observe in LMA and 

LDMC suggests that while Amborella leaf thickness is not highly variable, as suggested by 

Feild et al. (2001), light incidence may induce significant shifts in tissue density. Further 

studies would be needed to detect potential structural changes at the cellular level in both the 

epidermis and the mesophyll of leaves. This could provide information on the leaf 

constituents that drive Amborella LMA variation under different light environments.  

 The plastic responses of leaf size and leaf mass allocation to light variability observed 

in Amborella is consistent with numerous reports for angiosperm species in both tropical 

rainforests and temperate forests, as well as in crops and domesticated plants (Buisson and 

Lee, 1993; Miyaji et al., 1997; Poorter et al., 2006; Lusk et al., 2008; Matos et al., 2009). 

Similar leaf responses span both eudicots and monocots (Buisson and Lee, 1993; Laurans et 

al., 2012; Yang et al., 2014). Analogous variation in leaf traits has also been described at the 

intraspecific level in Arabidopsis thaliana (Pigliucci and Kolodynska, 2002; Poorter et al., 

2009). Further, similar LMA increases in response to light have been recorded across 

gymnosperm species (Abrams and Kubiske, 1990; Bond et al., 1999) and also within 

individuals (Koch et al., 2004). Our documentation of leaf trait variability as a consequence 

of habitat openings in Amborella highlights the adaptive importance of this phenotypic 

response, which seems to operate in similar ways across the major lineages of vascular plants. 

2.4.3 Trait coordination and tradeoffs, different strategies within a single species 

 The study of key functional traits and their variation across species can be very 

informative regarding plant ecological strategies (Westoby and Wright, 2006). For instance, 

the median LMA in Amborella (74.5 g.m-2, n = 409) is very close to the 73 g.m-2 median 
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reported for tropical rainforest species in general (Poorter et al., 2009). The LMA observed 

here is thus congruent with the habitat preferences of Amborella, whose distribution is 

restricted to rainforest-type habitats (Poncet et al., 2013; Pouteau et al., 2015). It is now 

broadly accepted that plant functional traits need to be studied in a 'network' perspective, with 

multiple traits correlation and tradeoffs assemblages shaping the ecological strategies of 

species (Poorter et al., 2014). Our results show that coordination of leaf and stem economic 

traits is present at the intraspecific level in Amborella. Hence, Amborella traits can 

coordinately shift as a response to local light environments. 

 Axes growing under open canopies seem to adopt a resource conservation strategy 

linked to a slower relative growth rate (RGR). It has been shown that plants with higher LMA 

have lower RGR, and are favored under high-light environments (Poorter and Van der Werf, 

1998). The characteristics of leaves in open canopy environments seem to be coordinated with 

stem traits that reflect similar conservation strategies. Indeed, mass allocation to leaves and 

stems seems to be coordinated in Amborella as evidenced by the LDMC/LMA - SSD positive 

correlations. A positive correlation between LDMC and SSD has been observed across 

angiosperm species (Méndez-Alonzo et al., 2012), suggesting coordinated evolution between 

these leaf and stem traits. A coordinated increase in mass allocation to stems and leaves may 

confer a survival advantage by reducing the probability of physical hazards such as wind 

mechanical stress and herbivore attack (Zimmerman et al., 1994; Poorter et al., 2009). At the 

other end of the spectrum, plants with low LMA, corresponding here to closed canopy 

Amborella axes, tend to have higher photosynthetic rates per unit leaf mass (Wright and 

Cannon, 2001) as well as faster resource acquisition and high RGR. Fast stem extension in 

internodes can minimize self-shading in large-leaved branches (White, 1983). The fast growth 

of the large-leaved shade axes in Amborella is reflected by their longer internodes and their 

lower values of SSD. It has been shown that wood density, which greatly contributes to SSD, 

is negatively related with photosynthetic capacity (Santiago et al., 2004). Accordingly, 

efficient acquisition of photosynthates likely allows shade branches to have accelerated 

volumetric expansion, lowering stem tissue densities.  

 In addition to positively related traits, we also observed negatively related traits that 

could indicate tradeoffs. Our study suggests inter-organ tradeoffs in Amborella such as the 

negative relationship between SSD of apical branch sections and LA. Apical SSD explained 

27% of the variation in leaf size in Amborella (Fig. 2.6), which is similar to the relations 

presented by Wright et al. (2007) when relating leaf area and wood density of simple-leaved 
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species. The apical SSD-LA tradeoff in Amborella is consistent with similar findings of 

negative relations of leaf size with both wood density and branch mechanical stiffness across 

species of different habitats (Pickup et al., 2005; Wright et al., 2006; Wright et al., 2007; 

Swenson and Enquist, 2008; Olson et al., 2009). To our knowledge, this is the first evidence 

of this tradeoff at the intraspecific level. Wright et al. (2006; 2007) explained this tradeoff via 

plant hydraulics, suggesting that stems with low wood density enable higher hydraulic 

conductivity per sapwood area (KS), allowing higher leaf surface. However, a previous study 

(Feild et al., 2001) has shown that KS was not different between sun exposed and understory 

branches of Amborella, which, as we have shown here, tend to have significant variation in 

LA. If we assume that similar amounts of photosynthates are on average produced per unit 

crown area among light environments, the apical SSD-LA tradeoff could then be a 

consequence of the fast primary growth rate of Amborella's shade wide-leaved axes (Olson et 

al., 2009). A fast primary growth rate can be deduced from the low SSD and wide pith (data 

not shown) observed in stems from closed canopy environments. 

 Another tradeoff is likely indicated by the strong negative relation between SWC and 

SSD. This pattern seems to emerge as a compromise between mechanical strength and water 

storage (Santiago et al., 2004). Our data were consistent with such a tradeoff in Amborella, 

with the observed negative relationship between both stem mechanical traits (MOR and 

MOE) and SWC. Respectively, gains of mechanical strength are observed as SSD increases. 

These results are congruent with studies showing that lower density is associated with lower 

capacity to resist bending and breakage, but higher xylem water conductivity and storage 

(Pratt et al., 2007; Onoda et al., 2010; Méndez-Alonzo et al., 2012). Rosell et al. (2012) 

proposed a possible mechanism for this tradeoff, suggesting that higher levels of stem water 

storage would be associated with greater allocation the cell lumen and less to the cell walls 

that are largely responsible for stem material mechanical stiffness.   

2.4.4 Amborella architecture and mechanical properties in the context of the evolution of 

angiosperm growth form  

 Flowering plants have evolved into an unparalleled diversity of growth forms and 

architectures. The architecture of a plant is defined by the nature and arrangement of each of 

its parts (Barthélémy and Caraglio, 2007). Because most of the axes of Amborella are initially 

orthotropic bending secondarily by gravity, its architecture corresponds to Champagnat's 

architectural model (Hallé et al., 1978). However, the observed changes in leaf orientation, 
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from radial to bilateral symmetry according to their position on the axis, are features of 

Mangenot's architectural model (Hallé et al., 1978). Amborella may thus represent an 

intermediate form suggesting an architectural continuum between these models (Barthélémy 

and Caraglio, 2007). Both models are characterized by the lack of a main trunk and 

construction based on the superposition of modules. The absence of a main trunk and the 

similar morphologies of its modules characterize the body of Amborella. The lack of a 

hierarchical organization in the axes of Amborella contrasts with the very hierarchical 

architecture commonly observed in gymnosperms (Grosfeld et al., 1999). These observations 

suggest that angiosperms may have evolved a less restricted body construction that could 

have promoted the development of a wider range of growth forms.  

 A possible example of such novel growth forms includes sympodiality, which is 

widespread among basal angiosperms. Sympodiality has also been suggested as a retained 

character in Ranunculales, the eudicot order sister to the rest of the eudicots (APG III, 2009). 

Because of this phylogenetic pattern, and because of the absence of sympodial growth in 

gymnosperms, sympodiality has been suggested as a synapomorphy for the angiosperms 

(Carlquist, 2009). Carlquist (2009) also suggested that sympodiality may have provided 

angiosperms with numerous competitive advantages, such as rapid spreading over wider 

lateral areas, securing footholds and tapping new soil resources by the rooting of branches, 

and escaping hydraulic and mechanical failures by the production of numerous branches that 

can potentially root. The production of branches from dormant buds confers on Amborella the 

ability to resprout through basitonic and mesotonic relays (Figs. 2.3E,F). Resprouters seem to 

have an increased ability to persist after disturbance events (Bond and Midgley, 2001). As 

such, sprouting ability has been suggested to be a key feature of plant strategies (Bond and 

Midgley, 2001). Collar sprouting, as seen in the basitonic relays observed in Amborella (Fig. 

2.3F), is generally rare in conifers (Del Tredici, 2001). The sprouting ability and sympodial 

construction observed in Amborella are morphological characteristics observed in other cane-

like basal angiosperm groups (Isnard et al., 2012). This suggests that sympodiality, and 

associated sprouting and rooting ability, which can be considered as competitive 

morphological attributes, were acquired early during the evolution of the flowering plants.  

 The cane-like form of Amborella and other basal angiosperms is often associated with 

the presence of scandent stems (Feild and Arens, 2005; 2007). The laxity of these scandent 

stems should be reflected by the relationship between stem size and stem mechanical 

properties. Our work provides a first estimation of the stem mechanical properties of 
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Amborella. We show that its vesselless stems have the mechanical organization of a self-

supporting plant, with tissue stiffness increasing with stem diameter (Fig. 2.8A; Table 2.3) 

(Rowe and Speck, 2005). A previous study analyzing the stem mechanics of cane-like basal 

angiosperms has shown a similar mechanical organization in shrubs and treelets in 

Aristolochia, Thottea, and Piperaceae (Isnard et al., 2012). In spite of the indisputable role of 

stem tissue mechanical properties in the development of different forms, plant habits are also 

the result of the interplay of stem mechanics with stem length and stem diameter (Castorena 

et al., 2015). The mechanical organization of Amborella and other cane-like basal 

angiosperms corresponds to the profile of a self-supporting plant, given that MOE increases 

with stem diameter, unlike very long lianas, whose flexible tissues do not increase in MOE 

with increases in stem size. Therefore, the scandent form of Amborella, and other cane-like 

basal angiosperms, should be regarded as the result of increases in stem length without an 

offset in stem diameter.  

 Amborella axes can vary morphologically from short axes growing under open canopy 

(Fig. 2.3F) to long pendulous axes developing under closed canopy (Fig. 2.3E). Given that 

MOE and stem diameter relationship is similar across canopy opennesses (Table 2.3), local 

light environment does not seem to have a direct effect on stem tissue mechanical properties. 

This result converges with the conclusions of Rosell and Olson (2007), who also found a lack 

of environmental effect on stem tissue mechanical properties. Our findings are however 

contradictory to the conclusions of Gallenmüller et al (2004), who stated that canopy 

openness has an influence on stem mechanics. However, Croton nuntians, the species 

considered in their work, exhibits ontogenetic shifts of mechanical patterns between juvenile 

freestanding and adult climbing individuals. Therefore, canopy openness may influence the 

ontogenetic development of C. nuntians with stem bending as an associated response. It has 

been suggested that size variations are sufficient to generate functional diversity even in the 

absence of shifts in stem tissue mechanic properties (Rosell et al., 2012). Our results suggest 

that light-induced changes in stem length can effectively affect the mechanic behavior of 

Amborella axes, producing habit variations without further shifts in stem tissue mechanical 

properties. We show here that variation in canopy openness has a significant effect on leaf 

size and leaf mass investment.  

 Leaf and stem economics are coordinated in Amborella and leaf size shows a strong 

association with stem size. Moreover, shifts in stem size seem to influence the mechanical 

behavior and growth habit expressed by Amborella. Our study on the sister species to the 
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remaining flowering plants underscores that these coordinated plastic responses in structural 

and functional traits, which likely provide adaptive functional strategies, were likely already 

present in the common ancestor of all extant angiosperms. 

 



   

CHAPTER 3 

  
Evolution of woodiness in Piperales, a mega-diverse 

basal angiosperm order1 
 

 
 

 
 
 
 
 
                                                 
1  A version of this chapter has been published. Trueba, S., Rowe, N.P., Neinhuis, C., Wanke, S., Wagner, 
S.T., Isnard, S. (2015).  International Journal of Plant Sciences 176: 468-485. 
 

⋅ Anatomical organization of Piperales lineages 

⋅ Cambial activity and woodiness evolution 

⋅ Anatomical variation of vessel element perforation plates  
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Abstract 
 
 Piperales, the largest basal angiosperm order with c. 4090 species, displays a wide diversity of 

growth forms. This diversity in growth forms appears to be linked with differences in cambial activity 

and subsequent derived wood production. To date no overall synthesis of the evolution of woodiness 

in Piperales has been done and few studies have proposed an ancestral habit (woody/herbaceous). This 

chapter provide anatomical data of all lineages within Piperales, and reconstruct ancestral character 

states, focusing on the origin of woodiness within the order and on the ecological significance of key 

anatomical features.  

 Stem anatomical observations, with special emphasis on wood anatomical features, were 

performed on 28 species of the Piperales, including New Caledonian Piper species and Piperales 

representatives from other regions around the world. By combining previously published studies with 

original data, we conducted phylogenetic reconstructions of cambial activity and vessel element 

perforation plates to assess the origin of woodiness and vessel evolution in Piperales. 

 Different patterns of cambial activity are observed in Piperales, from active secondary growth 

in both intra- and interfascicular areas in Aristolochia, Thottea (Aristolochiaceae), Saruma 

(Asaraceae), Manekia and Piper (Piperaceae) to cambial activity mainly restricted to fascicular areas 

in Saururaceae and a complete lack of secondary growth in Verhuellia. Vessels in Piperaceae, 

Aristolochiaceae and Asaraceae present simple perforation plates while those of Saururaceae are 

mostly scalariform. A stem endodermis bearing a Casparian band —an atypical feature in aerial 

stems— is reported for all genera within the Piperaceae and for Saururus and Houttuynia in the 

Saururaceae.  

 The common ancestor of the order likely had an active cambium and woody habit, including 

vessel elements with simple perforation plates. All Piperales woody species share several wood 

features including wide and tall rays, suggesting a single origin of wood in the order. The high 

diversity of growth forms observed in Piperales are linked to frequent shifts in cambial activity and 

changes in habit-related features within the different lineages. In the local context of New Caledonia, 

the exceptional climbing and herbaceous forms of Piperaceae species, which are absent in the rest of 

the New Caledonian basal angiosperms, may underlie the high niche marginality of this family. This 

suggests that growth form diversity is a promoter of ecological diversification.  

 
 
Keywords: Growth forms, Piperales, protracted juvenilism, stem endodermis, vessel element 
perforation plates, wood anatomy, wood evolution, woodiness. 
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3.1 Introduction  

 Variations in the degree of cambial activity and the subsequent production of 

secondary tissues are key elements behind the diversity of forms that we observe in extant 

angiosperms (Rowe and Speck 2005; Carlquist 2009; Spicer and Groover 2010). Flowering 

plants present a broad array of growth forms ranging from massive trees with a high 

production of wood, woody herbs with a limited secondary growth production—frequently 

localized at the base of the stems—herbs with a very reduced cambial activity limited to the 

fascicular areas and genuine herbs which present a complete loss of the cambial activity, with 

stems that are exclusively formed by primary tissues (Spicer and Groover 2010; Rowe and 

Paul-Victor 2012; Lens et al. 2012a). This diversity in the degrees of woodiness has arguably 

enabled flowering plants to explore new and diverse ecological strategies (Rowe and Speck 

2005; Rowe and Paul-Victor 2012; Carlquist 2013). 

 The transition from woody to herbaceous growth forms and vice versa seems to have 

occurred many times within the different lineages of angiosperms, leading to complex 

patterns of woodiness across the flowering plant phylogeny. An increasing number of studies 

demonstrates that secondary growth can be highly variable and represents a labile process in 

plants (Kim et al. 2004; Dulin and Kirchoff 2010; Lens et al. 2012a; 2013). Distributions of 

stem anatomical traits within phylogenetic hypotheses can provide meaningful insights about 

the evolution of plant's anatomical features (Olson et al. 2003; Lens et al. 2009; Pace et al. 

2009; Wagner et al. 2012). Moreover, we are gaining knowledge about the distribution of 

woodiness among angiosperms and the genetic mechanisms behind secondary growth are 

being progressively untangled (Oh et al. 2003; Ko et al. 2004; Groover 2005; Melzer et al. 

2008; Spicer and Groover 2010; Lens et al. 2012b). In this context, the study of wood 

structure and the variations in the degrees of woodiness within the main angiosperm groups 

are of great importance in understanding how these modifications have occurred and 

influenced the evolution of plant forms. 

 Current phylogenetic hypotheses strongly support the grade containing Amborellales, 

Nymphaeales and Austrobaileyales as the first successive lineages of angiosperms (Zanis et 

al. 2002; Qiu et al. 2005; Soltis et al. 2008; Moore et al. 2010; Amborella Genome Project 

2013), followed by the Chloranthaceae and the magnoliids (Laurales, Magnoliales, Canellales 

and Piperales). This topology is suggested to support the idea that early diverging lineages of 

angiosperms possessed an active bifacial cambium (Carlquist and Schneider 2001; Feild and 
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Arens 2005; Spicer and Groover 2010). Because of its phylogenetic position and its diversity 

of growth forms, Piperales has been considered as a key lineage for understanding the early 

diversification of angiosperms (Carlquist 2009; Isnard et al. 2012). 

 Piperales is a pantropical species-rich clade with approximately 4300 extant species; it 

includes a wide spectrum of growth habits including herbs, shrubs, treelets and climbers (Fig. 

3.1), living in both terrestrial and semi-aquatic environments. In the archipelago of New 

Caledonia, Piperales are represented by 15 species (Table 1.1) belonging to the genera 

Peperomia (herbs), and Piper (woody lianas; Fig. 3.1B). A broad survey of growth forms, 

architecture, anatomy, and biomechanics within Piperales has recently demonstrated that the 

frequent shift in growth forms is probably a major source of diversity within the group (Isnard 

et al. 2012). The patterns of growth form evolution within Piperales potentially reflect some 

overall changes within angiosperms, especially related to transitions in woodiness, diversity 

of mechanical organizations and shifts in architectural development. 

 Among the several works that have treated the anatomy of Piperales, Sherwin 

Carlquist's studies are key references, for describing the anatomy of Aristolochiaceae 

(Carlquist 1993), Lactoris (Carlquist 1990) and Saururaceae (Carlquist et al. 1995; Schneider 

and Carlquist 2001).  Substantial amounts of information on Piperaceae anatomy can be found 

in the literature since the 19th century (Schmitz 1871; Debray 1885; Hoffstadt 1916; Yuncker 

and Gray 1934; Murty 1959; Ravindran and Remashree 1998; Souza et al. 2004). Datta and 

Dasgupta (1977) published the only study attempting to outline the anatomy of the entire 

Piperales order, but this work included only three genera out of 16 and merely considered the 

general distribution of tissues. More recently, the stem anatomy of the perianth-bearing 

Piperales has been investigated with a special focus on Aristolochia (Wagner et al. 2012; 

2014). In addition, Isnard et al. (2012) briefly explored the stem anatomy of Piperales, but did 

not describe the wood anatomy and the differences in cambial activity within the order. 

 Woodiness in Piperales has long been argued to be secondarily derived based on 

observations of wood anatomical features pointing to protracted juvenilism  (Carlquist 1993; 

Carlquist et al. 1995; Spicer and Groover 2010). Protracted juvenilism (or "wood 

paedomorphosis" sensu Carlquist 1962), is a form of heterochrony where features of primary 

xylem are observed in the secondary xylem, which consequently maintains a juvenile 

appearance (Carlquist 1962; 2009; Dulin and Kirchoff 2010). The presence of protracted 

juvenilism in wood has been proposed as indicative of secondary woodiness, where woody 

species are derived from an herbaceous ancestor (Carlquist 2009; 2012). This association 
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results from the frequent observation of protracted juvenilistic features in insular woody 

species, which are supposed to be derived from an herbaceous ancestor (i.e. secondary woody 

species). Because protracted juvenilism can't be strictly associated with secondary woodiness 

(Lens et al. 2013), the origin of woodiness should be evaluated through comparative anatomy 

in a phylogenetic context. 

 

 
 

FIGURE 3.1 Illustration of the diversity of growth forms in Piperales. (A) Piper hispidinervum 
(Piperaceae), treelet with significant wood production, growing in the living collection of the 
Xishuangbanna Tropical Botanical Garden, China. (B) Piper insectifugum (Piperaceae), 
overview of this woody liana, growing in the humid forest of Mt. Aoupinié, New Caledonia. 
(C) Saruma henryi (Asaraceae), rhizomatous woody herb producing a limited amount of 
wood restricted to the base of the stem, growing in the greenhouse of the Botanical Garden of 
Dresden, Germany. (D) Thottea iddukiana (Aristolochiaceae), subshrub presenting several 
stems with a slight production of wood, growing in Kerala, India. (E) Peperomia blanda 
(Piperaceae), a strictly herbaceous and small-sized plant, growing on a rocky hillside in 
Yunnan, China.  

 The phylogenetic relationships within Piperales have been progressively resolved over 

recent years and this provides a well-founded basis from family to generic levels to be used 
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for ancestral character state reconstructions (Jaramillo and Manos 2001; Nickrent et al. 2002; 

Jaramillo et al. 2004; Neinhuis et al. 2005; Ohi-Toma et al. 2006; Wanke et al. 2006; Wanke 

et al. 2007a; 2007b; Samain et al. 2009; Naumann et al. 2013). This provides the opportunity 

to explore the variations in cambial activity and wood anatomy in this large order, and to 

reconstruct the putative ancestral cambial activity and wood features of Piperales.  

We combine available data from literature with original anatomical descriptions of Piperales 

representatives. Two New Caledonian Piper species were included in a global dataset 

including some poorly known taxa such as Manekia, Verhuellia and Zippelia (Piperaceae) 

whose phylogenetic positions have only recently been resolved (Wanke et al. 2007a; 2007b). 

The main objectives of this study are to (1) compare the cambial activities and anatomical 

features between all main lineages and (2) address the origin of woodiness in Piperales using 

ancestral character state reconstructions over a recent molecular phylogenetic hypothesis. 

3.2 Material and Methods 

3.2.1 Plant material 

 Piperales comprise two well-supported clades that can be named perianth-less and 

perianth-bearing (Naumann et al. 2013). The first clade consists of Piperaceae (Piper, 

Peperomia, Manekia, Zippelia and Verhuellia) and Saururaceae (Anemopsis, Gymnotheca, 

Houttuynia and Saururus). The second clade includes Aristolochiaceae (Aristolochia and 

Thottea), Asaraceae (Asarum and Saruma), Lactoridaceae (Lactoris) and Hydnoraceae 

(Hydnora and Prosopanche). We adopted the most recent molecular phylogenetic hypothesis 

where all Piperales families are statistically supported as monophyletic (Naumann et al. 

2013). Stem samples of 28 species belonging to 11 genera were collected during field work in 

China, Colombia, India, Mexico and New Caledonia, and from the living collections of the 

Botanical Gardens of Bonn and Dresden in Germany and Kerala in India (see Appendix A1 

for the species list and collection sites). 2 to 5 samples per species were collected on basal 

portions of the stems corresponding to the main axis of mature plants. This allowed us to 

ensure that the analysis was done on fully developed stems since wood development can be 

restricted to the most basal parts of stems. Plant maturity was assessed through the 

observation of sexual maturity (flowering and fruiting) or through architectural features as the 

presence of reiterations and the full development of branches on large and unpruned 

individuals. After collection, all samples were preserved in 70% ethanol. 
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3.2.2 Anatomical descriptions and microtecnique  

 Anatomical sections were carried out on all three different planes: transverse, radial 

and tangential for all of the sampled species. Laboratory work was carried out in the UMR 

AMAP (Mixed Research Unit, Botanique et Bioinformatique de l'Architecture des Plantes) in 

Montpellier, France. Before sectioning, samples were immersed for five minutes in a 

histological clearing agent (Histo-clear, National Diagnostics. Atlanta, USA). Histological 

sections were cut using a vibratome (Thermo Scientific Microm HM 650V); the more 

resistant samples and stems with diameters greater than 2 cm were sectioned using a sliding 

microtome. Hand sectioning using a razor blade was also carried out for some samples. In the 

case of Zippelia begoniifolia we followed the method proposed by Barbosa et al. (2010), 

using a polystyrene foam solution to reinforce the section. The latter method as well as 

embedding in Agar 6% was used for Verhuellia lunaria because of the small diameter and 

softness of its stems. Stem sections were stained with 0.1% aqueous Toluidine Blue O for 5-

10 min. Once stained, sections were mounted on microscope slides using one of the following 

mounting media (Eukitt, Kindler GmbH. Freiburg, Germany; Isomount, Labonord. 

Templemars, France).  

 Wood macerations were used for observations of vessel element morphologies. Pieces 

of the outer and most recently produced layers of wood were dissected using a double-edged 

razor blade. Strips of wood were then chemically macerated by immersion in capped 2 ml 

vials containing a maceration solution (1 : 1 by volume, 35% H2O2 : glacial acetic acid) and 

placed in an oven at 60 °C for 72 h until the wood became translucent. Wood macerates were 

then stained by immersion in 0.1% aqueous Toluidine Blue O for 10 minutes; wood macerates 

were then shaken in order to loosen vessel elements, filtered and immersed in distilled water. 

After settling, a drop of the colored wood macerates was pipetted onto a slide and digital 

images of macerated xylem vessel elements were carried out immediately after mounting. 

Anatomical observations were carried using a binocular stereo microscope (Olympus SZX9. 

Japan) and optical light microscope (Olympus BX51. Japan). The 21 wood anatomical 

characters used in the study follow the IAWA terminology for microscopic features (Wheeler 

et al. 1989). Twelve additional characters of stem anatomy were used (see Table 3.1 for the 

complete list of characters). IAWA wood features could not be attributable for species 

producing a limited amount of wood, vessel element descriptions were based on the 

metaxylem tracheary elements for these species. 
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3.2.3 Literature review 

  Our sampling includes representatives of all Piperales genera, with the exception of 

Lactoris, Anemopsis, Asarum and the Hydnoraceae family, for which anatomical data were 

compiled from literature (Appendix A2). We also completed our anatomical observations of 

species-rich genera though an extensive literature survey; this allowed us to cover a wide 

proportion of infrageneric diversity and to increase the number of species for large genera 

(see Appendix A3 for a complete list of the proportion of species and infrageneric clades). A 

high representativeness was obtained for poorly diversified genera. Species representation 

clearly falls to low percentages in very large genera such as Aristolochia, Peperomia and 

Piper for which it would be nearly impossible to sample all species. Our work, however, 

includes representatives from most of the major infrageneric clades (Appendix A3). 

3.2.4 Data processing and character mapping  

 We adopted the topology of Piperales from a recent molecular phylogenetic analysis 

where the internal nodes of the order are well supported (Naumann et al. 2013). The topology 

at the generic level was obtained from previous phylogenetic studies where the relationships 

were statistically supported (Wanke et al. 2007a; 2007b). We scored character states at the 

generic level and ancestral character state reconstructions were carried out using maximum 

parsimony (MP) and maximum likelihood (ML) methods using the StochChar module 

(Maddison and Maddison 2006) of Mesquite 2.75 (Maddison and Maddison 2011). ML 

reconstructions estimate the uncertainty of ancestral state reconstructions and help to quantify 

the inferred ambiguities (Pagel 1999). We employed ML reconstructions using a Markov k-

state 1-parameter model of evolution, assuming one step per change with the cost of gains 

equal to the cost of losses of a given state for each character, this is designed to estimate 

transition rates of discrete characters over a phylogeny (Pagel 1994; Jaramillo et al. 2004). 

The likelihood of each character state is shown in the pie chart at each single node of the tree. 

ML reconstruction methods do not however allow polymorphic states; MP was consequently 

used to code polymorphisms when two potential character states were known to occur in 

terminal taxa, we employed an unordered parsimony model with equal gain/loss costs 

assuming one step per change. We chose Canella winterana, from the Piperales sister order 

Canellales (Qiu et al. 2005; APG-III 2009; Massoni et al. 2014) as outgroup. The anatomical 

description of the outgroup was obtained from Feild et al. (2002) and from the InsideWood 

data base (InsideWood 2004-onwards).  
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3.2.5 Cambial activity characterization and character states description   

 Distinguishing the limits between herbaceous and woody species is especially difficult 

when dealing with intermediate expressions of cambial activity leading to different degrees of 

wood production as occurring in Piperales (Fig. 3.1) (Rowe and Paul-Victor 2012; Lens et al. 

2012a; Lens et al. 2013). We used observations of cambial activity location and assessments 

of wood productivity in order to classify the degrees of woodiness in Piperales. We 

established 5 possible states of cambial activity which correspond to herbaceous and woody 

conditions following the next criteria: 1) "Absent" = No cambial activity. 2) "Restricted to 

fascicular areas" = Cambial activity exclusively located at the intrafascicular areas. 3) 

"Woody herb" = Cambial activity in both intra- and interfascicular areas, producing a 

complete wood cylinder of determinate thickness (less than 20 cell layers) and restricted to 

the base of the main stem. 4) "Slightly woody" = Cambial activity in both intra- and 

interfascicular areas, producing a complete wood cylinder of determinate thickness (less than 

20 cell layers) extended along the main stem. 5) "Truly woody" = Cambial activity in both 

intra- and interfascicular areas, forming a complete wood cylinder with a significant and 

indeterminate production of wood (more than 20 cell layers).  

 The threshold of 20 cell layers of secondary tissues produced by cambium was 

established after observing that small-sized species of Piperales corresponding to poorly 

lignified lianas and subshrub forms had a limited and determinate wood production that never 

exceed ca. 20 cell layers. On the other hand, all of the observed species exceeding 20 cell 

layers corresponded to small trees, shrubs or lianas with a high and indeterminate production 

of wood. During literature survey, if the location and productivity of cambial activity were not 

explicitly reported, we used the descriptions of growth habit to code character states. For 

instance,  Anemopsis and Asarum were coded as "woody herbs" according to our literature 

review (Appendix A2). Secondary xylem in Asarum canadense and A. cardiophyllum have 

been declared as forming a wood cylinder restricted to the base of the aerial stem (Wagner et 

al. 2014) thus corresponding to the woody herb state. Carlquist et al. (1995) reported that 

secondary growth is obvious in Anemopsis californica in both fascicular and interfascicular 

areas, as secondary growth of this species is exclusively located to the rhizomes it can be 

coded as a woody herb. 

 MP character optimization in cambial activity reconstruction allowed us to code two 

possible states for a given genus. This alternative coding concerned Aristolochia, Thottea, 

Peperomia and Piper, where various degrees of cambial activity might occur. Coding of 
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Aristolochia was supported by a recent evolutionary analysis on the growth forms of the 

genus (Wagner et al. 2014), proposing a climbing or a shrub ancestral habit for Aristolochia 

and rejecting the possibility of an herbaceous ancestry. In terms of cambial activity these 

growth forms correspond to “truly woody” (shrub and liana) or “slightly woody” (vine) states. 

Piper and Thottea were alternatively coded as "truly woody" or "slightly woody" 

corresponding to our own observations (Table 3.1) and literature survey (Appendix A2). 

Despite of a low specific representativeness, our work include species of all major clades and 

growth forms within these genera (Appendix A3), providing a good level of confidence. 

Cambial activity in Peperomia was coded as "absent" or "restricted to fascicular areas" as our 

literature survey and our anatomical observations suggested both possibilities in this large 

genus, for which anatomy is known to be homogeneous. Finally, we performed ML ancestral 

character state reconstruction on vessel element perforation plates, a feature of major interest 

in the understanding of the evolution of wood structure. Perforation plates were coded with 

two possible states (“simple” or “scalariform”), Verhuellia's perforation plates were coded as 

"inapplicable" because this species lacks metaxylem vessel elements. 

3.3 Results 

3.3.1 Tissue distribution and cambial activity 

 Saururaceae. All species present a cambial activity restricted to the fascicular areas 

and producing only a few cell layers. Vascular bundles are organized in a single ring. 

Tangential alignments of cells are exclusively restricted to the vascular bundles and the 

fascicular cambium produces a negligible amount of secondary tissues (Figs. 3.2A,B). 

Interfascicular cambium is never active (no radial or tangential divisions were observed) 

(Figs. 3.2A,B). Aerenchyma is present in both, the medullar and cortical areas of Saururus 

chinensis (Fig. 3.2A, stars), while in Gymnotheca chinensis it was exclusively observed in the 

cortical area (Fig. 3.2B, star), aerenchyma is absent in Houttuynia cordata. In G. chinensis 

and H. cordata a complete ring of sclerenchyma fibers is present outside the vascular bundles 

with a width of 1-3 cell layers (Fig. 3.2B). A few fibers are present at the adaxial and abaxial 

surfaces of the bundles in S. chinensis, but not forming a complete ring (Fig. 3.2A). 
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TABLE 3.1. Stem anatomical characters of Piperales 
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    GENERAL ANATOMY 
Number of cycles of vascular bundles 1 1 1 1 1 1 1 1 1 1 1  1  > 2 > 2 > 2 2 2 2 > 2 2 > 2 2 2 - 2  1 1 1 
Medullary bundles - - - - - - - - - - -  -  + + + + + + + + + + + + +  - - - 
1 exclusive medullary bundle - - - - - - - - - - -  -  - - - - - - - - - - - + -  - - - 
Presence of mucilage canals - 

- - - - - - - - - -  - 
 

P, C - P 
P, 
C 

P, 
C 

- - 
P, 
C 

- - - - - 
 

- - - 
Active phellogene, bark production + + - + - + + + + + -  -  + - + + + + + + + - - - -  - - - 
Stem endodermis with a Casparian band - - - - - - - - - - -  -  + + + + + - - + - + + + +  - + + 
Sclerenchyma ring geometry C C C C C C C C C C U  D  C D D U U U U U U U U - U  C C D 
Width of the sclerenchyma ring (mean no. of cells) 4 4 5 2 3 2 2 4 3 3 3  NA   4 NA NA  7 3 4  5 8 4 6 4  NA 4  4 3 NA  
Aerenchyma - - - - - - - - - - -  -  - - - - - - - - - - - - -  + - + 
Calcium oxalate D D - - - - - - - - -  -  D,P,R - D,R - - R - - P,R - R - R  R D - 
Cambial activity  5 5 4 5 4 5 4 5 5 5 4  3  5 1 2 5 5 5 5 5 5 4 5 1 2  2 2 2 
Cell layers produced by cambium >20 >20 <20 >20 <20 >20 <20 >20 >20 >20 <20  <20  >20 - R >20 >20 >20 >20 >20 >20 <20 >20 - <20  R R R 

    WOOD ANATOMY 
Growth rings boundaries distinct (1) - - - - - + - - - + -  -  - - - - - + - - - - - - -  - - - 
Vessels in diagonal and / or radial pattern (7) + + + + + + + + + + +  +  + NA NA + + + + + + + + NA NA  NA NA NA 
Vessels exclusively solitary (90% or more) (9) + + - + - + + - - - -  +  - NA NA - - - + - + + + NA NA  NA NA NA 
Vessels in radial multiples (10) - - - - - - - + + - -  -  - NA NA + + - - - - - - NA NA  NA NA NA 
Vessel clusters common (11) - - + - + - + + + + +  -  + NA NA + + + - + - - - NA NA  NA NA NA 
Simple perforation plates (13) + + + + + + + + + + +  +  + NA NA + + + + + + + + NA +  - - - 
Scalariform perforation plates (14) - - - - - - - - - - -  -  - NA NA - - - - - - - - NA -  + + + 
Intervessel pits scalariform (20) - - - - - - - - - - -  +  + NA NA + - + - + + + + NA +  + + + 
Intervessel pits opposite (21) - - - - - - - - - - -  -  - NA NA - - - - - - - - NA -  - + + 
Intervessel pits alternate (22) + + + + + + + + + + +  +  - NA NA - + - + - - - - NA -  - - - 
Axial parenchyma absent or extremely rare (75) - - NA - NA - - - - - NA  +  - NA NA - - - - - - - - NA NA  NA NA NA 
Axial parenchyma diffuse (76) + - NA + NA - + - - - NA  -  - NA NA - - - - - - - - NA NA  NA NA NA 
Axial parenchyma diffuse-in-aggregates (77) + + NA + NA + + + + + NA  -  - NA NA - - - - - - - - NA NA  NA NA NA 
Axial parenchyma scanty paratracheal (78) + + NA + NA + + + + + NA  -  - NA NA - - - - - - - - NA NA  NA NA NA 
Axial parenchyma vasicentric  (79) - - NA - NA - - - - - NA  -  + NA NA + + + + + + + + NA NA  NA NA NA 
Axial parenchyma in narrow bands (86) + + NA + NA + + + + + NA  -  - NA NA - - - - - - - - NA NA  NA NA NA 
Ray width – commonly 4- to 10- seriate (98)  - + - + - - - - - - -  -  - NA NA - - - - - - - + NA NA  NA NA NA 
Ray width – commonly > 10-seriate (99) - - + - + + + + + + +  -  + NA NA + + + + + + + - NA NA  NA NA NA 
Wood rayless (117) - - - - - - - - - - -  +  - NA NA - - - - - - - - NA NA  NA NA NA 
All ray cells upright and / or square (105) - - - - + + + + + + +  -  + NA NA + + + + + + + + NA NA  NA NA NA 
Ray lignification E E E E E E E E E E E  -  - NA NA - I E E I E E I NA NA  NA NA NA 



   

 

←TABLE  3.1 Notes. Analyzed characters for the general anatomy (primary body) and wood anatomy 
of Piperales, indicating the presence (+) or absence (-) of each character for each species. NA = not 
applicable. Presence of canals: P, Peripheral canals, several canals occurring at the perimeter of the 
stem as seen in transverse section. C, Central canal, a single canal occurring in the center of the stem. 
Sclerenchyma ring geometry: C, Circular continuous band of sclerenchyma fibers seen in transverse 
section. D, Discontinuous bands of sclerenchyma, fibers occurring as islands or caps contiguous to 
vascular bundles. U, Undulating and continuous band of sclerenchyma. Calcium oxalate: D, Druses, 
P, Prismatic crystals. R, Raphides. Cambial activity: 1, Absent. 2, Restricted to fascicular areas. 3, 
Woody herb. 4, Slightly woody. 5, Truly woody. Cell layers produced by cambium: >20, more than 
20 cell layers. <20, less than 20 cell layers. R, few cell layers restricted to fascicular areas. Ray 
lignification : E, Complete lignification over the entire width of the stem. I, Incomplete or partial ray 
lignification. Numbers between brackets correspond to the IAWA wood feature numbers. 

 

 Aristolochiaceae. In Aristolochia and Thottea, many species can develop a high 

amount of secondary xylem forming large wood cylinders (Figs. 3.2C,D). Despite active 

secondary growth, the fascicular cambium rarely produces rays and the interfascicular 

cambium never produces fusiform initials. Vessel elements and fibers are consequently absent 

in the interfascicular area and we observe exclusively wide multiseriate rays composed of 

secondary parenchyma cells (Figs. 3.2C,D). Ray cells are lignified in all Thottea species 

studied (Fig. 3.2C; Table 3.1), ray lignification was variable between Aristolochia species 

(Table 3.1). Growth rings were observed in T. duchartrei and T. sivarajanii (Table 3.1). A 

continuous ring of pericyclic fibers  was observed in Aristolochia and Thottea (Figs. 3.2C,D). 

This ring of fibers undergoes fragmentation and subsequent repair via parenchyma intrusion 

and lignification during secondary growth. 

 Asaraceae. Saruma henryi shows little and determinate production of wood regarding 

the rest of the woody representatives in the perianth-bearing Piperales. Interfascicular 

cambium does not produce radial initials (Fig. 3.2E), consequently presenting a rayless wood. 

Raylessness in S. henryi is a unique feature regarding the remaining woody species of the 

perianth-bearing Piperales. S. henryi does not present the continuous ring of fibers commonly 

observed in the sister group Aristolochiaceae, mechanical support is then provided by 

sclerenchyma bundle caps and an external ring of 3-5 cell layers of collenchyma (Fig. 3.2E). 

 Piperaceae. All Piperaceae, except Verhuellia lunaria, presented a polycyclic 

arrangement of vascular bundles, which is a characteristic of the family. Vascular bundles are 

organized in two or more concentric rings in Piper, Manekia and Zippelia (Figs. 3.2G-I; 

Table 3.1). In species undergoing secondary growth, secondary thickening is restricted to 

peripheral bundles (Fig. 3.2H).  
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FIGURE 3.2 Variation in cambial activities and tissues distribution in Piperales species 
observed in transverse sections. (A) Saururus chinensis, vascular bundle with intrafascicular 
cambium producing a limited number of cells, absence of interfascicular cambial activity, 
note the presence of aerenchyma (indicated by stars), scale bar: 100 µm. (B) Gymnotheca 
chinensis, vascular bundles surrounded by a continuous band of fibers; limited cambial 
activity is restricted to intrafascicular areas (arrow), absence of interfascicular cambial 
activity, cortical aerenchyma is indicated by a star, scale bar: 200 µm. (C) Thottea barberi, 
full cambial activity in both inter- and intrafascicular areas, interfascicular cambium produces 
exclusively ray-like secondary parenchyma and vessels are arranged in a radial pattern, scale 
bar: 500 µm. (D) Aristolochia impudica, vessels are predominantly solitary and arranged in a 
radial pattern, wide secondary rays, a ring of fibers surrounding the vascular system is still 
present, scale bar: 500 µm. (E) Saruma henryi, vessels are arranged in a radial pattern, vessels 
are not much wider than the surrounding fibers, scale bar: 200 µm. (F) Piper gorgonillense, 
wide secondary rays produced by the interfascicular cambium, vessels solitary or in clusters 
and presence of a growth ring, scale bar: 500 µm. (G) Zippelia begoniifolia, presents two 
cycles of vascular bundles, only the peripheral bundles present a slight cambial activity (inset, 
black arrow), note the presence of a Casparian band (inset, white arrow), scale bar: 1000 µm 
(100 µm for the inset). (H) Piper nudibracteatum, secondary production is limited to the 
peripheral vascular bundles while the medullary bundles remain inactive, notice the wide 
secondary rays formed by parenchyma cells, scale bar: 500 µm. (I) Manekia sydowii, three 
rings of vascular bundles are visible, the intern-most bundles present a procambial inversion 
with primary xylem developing externally, parts of the central and peripheral mucilage canals 
are visible at the bottom and the top, scale bar: 500 µm.  
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 In Peperomia, vascular bundles are surrounded by ground parenchyma and are 

scattered throughout the stem section without an obvious concentric distribution. Similar to 

Aristolochiaceae and Asaraceae, the interfascicular cambium of woody Piperaceae produces 

exclusively wide secondary rays composed of secondary parenchyma (Figs. 3.2F,H). 

 Rays are entirely lignified in mature wood, except in climbing species where ray 

lignification is partial or absent. The climber Manekia sydowii produces a high amount of 

wood and secondary rays remain completely unlignified (Table 3.1). We recorded a 

procambial inversion of the most internal medullary bundles of M. sydowii, where primary 

xylem developed centrifugally while primary phloem developed centripetally (Fig. 3.2I). 

Peperomia blanda and P. incana show only a slight cambial activity, where secondary 

production is very limited and is absent in most of the observed vascular bundles (not shown). 

Cambial activity is also very limited in Zippelia begoniifolia, and the fascicular cambium 

produces only a tiny amount of secondary tissues (Fig. 3.2G inset, black arrow). Cell 

alignments were observed in some sections between the bundles of Zippelia, but the 

interfascicular cambium can be considered inactive as it only presents a few divisions of cells 

and the observed alignments seem to be the product of tangential procambial divisions, 

therefore no wood cylinder is present. Cambial activity is completely absent in Verhuellia 

lunaria, and the stem comprises only one exclusively medullary bundle, which is embedded 

in ground parenchyma (Fig. 3.6B). This is composed of 5-9 protoxylem elements and a small 

amount of primary phloem. A complete ring of sclerenchyma fibers was observed in 

Manekia, Piper and Zippelia. The ring of fibers is internal to the peripheral bundles and 

presents an undulating pattern (Figs. 3.2G,H; 3.5A). Fibers are present only as externally-

oriented caps on the vascular bundles of Peperomia and they are completely absent in 

Verhuellia (Table 3.1).  

3.3.2 Wood features of Piperales 

 Rays. All of the woody species of Piperales present very wide and tall multiseriate 

rays (Figs. 3.2C,D,F,H; 3.3A; Table 3.1). Most of the species present rays of more than 10 

cells wide (Fig. 3.3A), only Thottea barberi and Piper sp. present rays with a width less than 

10 cells but which are nevertheless considered as multiseriate. As mentioned above, Saruma 

henryi is the only observed species with rayless wood (Fig. 3.2E). We observed a few short 

lignified bi-seriate rays in some sections of Saruma henryi, however, they become 

indistinguishable from the rest of the lignified tissues by the late stages of development. Ray 
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composition is the same for all species with predominantly upright cells and a few square 

cells (Figs. 3.3B-D). For most of the examined species, ray cells become lignified; ray-

lignification is absent or partial in most climbing species. 

 

 
FIGURE 3.3 Ray features of Piperales. (A) Thottea iddukiana, tangential plane, rays are 10 to 
15 seriate, scale bar: 500 µm. (B) Thottea sivarajanii, radial plane, upright cells of ray tissue 
with lignified walls, scale bar: 100 µm. (C) Thottea siliquosa, radial plane, rays are composed 
of mixed upright and square cells, scale bar: 200 µm. (D) Piper gorgonillense, radial plane, 
upright and square cells of ray tissue, scale bar: 300 µm. 

 
 Vessel elements. Perforation plates and lateral wall pitting:  All species within 

Aristolochiaceae, Asaraceae and Piperaceae present simple perforation plates (Figs. 3.4A-J; 

Table 3.1). The metaxylem tracheary elements of Saururaceae presented scalariform 

perforation plates (Figs. 3.4K-M). Vessels of Aristolochia and Thottea generally present 

alternate pitting and only some species of Thottea bear vessel elements with opposite to 

alternate pits (Figs. 3.4A-D; Table 3.1). We observed mostly alternate pitting in Saruma 

henryi but a few scalariform pits were also observed in some vessel elements (Fig. 3.4E; 

Table 3.1). Most of Piperaceae species present scalariform pitting (Figs. 3.4F-J). Finally, 

Saururaceae metaxylem vessel elements also present scalariform pitting (Figs. 3.4K-M) and 

only some vessels in Houttuynia cordata and Saururus chinensis bear opposite pits.  
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FIGURE 3.4. Morphological diversity of xylem vessel elements of Piperales representatives. 
Simple perforation plates in Aristolochiaceae (A-D), Asaraceae (E) and Piperaceae (F-J), 
scalariform perforation plates in Saururaceae (K-M). A, Thottea dinghoui. B, Thottea 
ponmudiana. C, Thottea duchartrei. D, Thottea barberi. E, Saruma henryi. F, Manekia 
sydowii. G, Piper nudibracteatum. H, Piper insectifugum. I, Piper hispidinervum. J, Piper 
sarmentosum. K, Saururus chinensis. L, Houttuynia cordata. M, Gymnotheca chinensis. Scale 
bar: 200 µm. 

Vessel arrangement and grouping: All the woody Piperales species present a radial 

distribution of vessels, with linear or diagonal arrangements (Figs. 3.2C-F; Table 3.1). 

Solitary vessels were predominantly observed in Aristolochia, Thottea and Piper (Figs. 3.2D; 

3.5B,C; Table 3.1), only Thottea ponmudiana and T. siliquosa exhibit radially distributed 

clusters of >4 vessels (Fig. 3.5A), vessel clusters were frequently observed in both Thottea 

and the Piperaceae representatives (Table 3.1). Vessel grouping was very ambiguous as in 

some species we observed grouped and solitary vessels with an almost equal ratio; Piper 

gorgonillense for example, presents both solitary and grouped vessels (Fig. 3.2F). 

 Axial parenchyma. Axial parenchyma is one of the wood characters that differ 

between woody species of Aristolochiaceae and Piperaceae. In Aristolochia and Thottea, 

apotracheal axial parenchyma is sometimes diffuse to diffuse-in-aggregates and a 

predominance of banded parenchyma forming narrow tangential bands was observed in both 

genera (Figs. 3.5A,B, black arrows). Conversely Piper and Manekia have mostly paratracheal 

vasicentric axial parenchyma (Fig. 3.5C, arrows). Absence of axial parenchyma was observed 

in Saruma. 

3.3.3 Degrees of woodiness in Piperales 

 Piperales species exhibit several degrees of cambial activity, from species with 

significant wood production to species completely lacking secondary growth (Fig. 3.2). These 

shifts in cambial activity arise repeatedly within the different lineages of Piperales. Many 
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Piper and Manekia species along with Lactoris fernandeziana, produce a large wood cylinder 

along the main axis (Fig. 3.2F; Table 3.1; Appendix A2). Similarly, most of the species within 

Aristolochia and Thottea are truly woody plants with significant secondary growth (Figs. 

3.2C,D; Table 3.1; Appendix A2).  

 

 

 
FIGURE 3.5 Axial parenchyma in Piperales woody species observed in transverse sections. 
(A) Thottea siliquosa, apotracheal axial parenchyma in tangential narrow bands (black 
arrows), occasional parenchyma cells are associated with the vessels (white arrow), scale bar: 
100 µm. (B) Aristolochia impudica, apotracheal axial parenchyma in tangential narrow bands 
(black arrows), scale bar: 200 µm. (C) Piper hispidinervum, paratracheal vasicentric axial 
parenchyma forming a narrow sheath around the vessels (arrows), scale bar: 200 µm. 

 

 Some shifts towards a decrease of woodiness are observed within these groups, some 

Thottea representatives produce narrow wood cylinders and are considered as slightly woody 

shrubs (Table 3.1). Aristolochia serpentaria present a few cell divisions in the interfascicular 

areas and its wood cylinder is restricted to the base corresponding to a woody herb typology 

(Appendix A2). The monospecific Saruma and its related genus Asarum (Asaraceae), both 

present cambial activity in the interfascicular and fascicular areas, but they produce a narrow 

wood cylinder (Fig. 3.2E) restricted to the rhizome or to the base of its stems and therefore 

can be also considered as woody herbs (Table 3.1, Appendix A2). In extreme cases of 

reduction of cambial functioning, species such as Verhuellia and some Peperomia species 

completely lack cambial activity (Table 3.1, Appendix A2). Peperomia and Zippelia 

(Piperaceae) never form a wood cylinder; when secondary growth is present, it is restricted to 

a few tangential divisions in the fascicular areas. In Saururaceae, only a few tangential 

divisions may occur in the intrafascicular areas in Gymnotheca, Houttuynia and Saururus 

(Fig. 3.2B) while Anemopsis present secondary growth in both intra- and interfascicular areas 

forming a narrow wood cylinder at the base of the stem (Appendix A2). Finally, the 
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holoparasitic genera Hydnora and Prosopanche (Hydnoraceae) also exhibit a reduction of 

cambial activity with a restriction to the fascicular areas (Appendix A2). 

3.3.4 Presence of an endodermis with Casparian bands in aerial stems of Piperales 

 Stem endodermis with a Casparian band was observed in all genera within Piperaceae 

as well as in Houttuynia cordata and Saururus chinensis (Saururaceae). The endodermis was 

present as a layer of cells of procambial origin, generally located at the limits of the vascular 

system and the cortical area. The endodermis shows a typical Casparian band, staining with a 

dark blue indicating the presence of suberin and/or lignin, observed in the radial and 

tangential walls of the endodermic cells (Fig. 3.6). Stem endodermis was external to the 

sclerenchyma cap of the peripheral bundles and observed around the entire circumference of 

the stem in Manekia sydowii, Piper flaviflorum, P. sarmentosum, P. sp. and Zippelia 

begoniifolia (Fig. 3.2G inset, white arrow; Figs. 3.6A,C, arrows). Stem endodermis was 

present surrounding some vascular bundles in Peperomia species and around the single 

bundle of Verhuellia lunaria (Fig. 3.6B). In Houttuynia cordata, a ring of rectangular-shaped 

cells contiguous to the peripheral ring of sclerenchyma was observed; some of these cells 

presented a marked Casparian band. In Saururus chinensis a Casparian band was observed as 

a continual layer external to the vascular bundles. This character was not observed in 

Gymnotheca chinensis.  
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←FIGURE 3.6 Stem endodermis with a Casparian band in Piperaceae. (A) Piper sarmentosum, transverse 
view of a young stem, note the  endodermis with a Casparian band colored in dark blue and visible as a 
single layer of cells external to the vascular bundles ring (arrows), scale bar: 100 µm. (B) Verhuellia 
lunaria, transverse section showing the central and single vascular bundle composed exclusively of helical 
protoxylem elements, note the endodermis surrounding the vascular bundle and presenting a Casparian 
band on its radial walls (arrows), scale bar: 50 µm. (C) Piper sp. radial view of the Casparian band 
(arrowed) that contains suberin and lignin, occurring on the radial and tangential anticlinal walls of cells, 
scale bar: 200 µm. 

3.3.5 Anatomical character state reconstructions  

 Maximum parsimony reconstruction of five states, using polymorphisms in large 

genera presenting different cambial activities, supports a “truly woody” ancestral state for the 

Piperales (Fig. 3.7A, node 2) with a continuous cambium producing a complete wood 

cylinder of significant development. Cambial activity reconstruction is also univocal for the 

ancestor of the perianth-bearing Piperales (Fig. 3.7A, node 3) where cambial activity is also 

reconstructed as “truly woody” (Figs. 3.2C-F). The restriction of cambial activity to fascicular 

areas (Figs. 3.2A,B) was consistently reconstructed as ancestral for the Saururaceae (Fig. 

3.7A, node 5), while the ancestral state of the cambial activity remains ambiguous for 

Piperaceae (Fig. 3.7A, node 6). MP suggest that "woody herbs" presenting a wood cylinder 

restricted to basal parts of the stem evolved at least two times within Piperales, in the 

Saururaceae (Anemopsis) and the Asaraceae. Complete loss of vascular cambium has 

probably evolved independently in Verhuellia and in some Peperomia representatives.  

 While all Aristolochiaceae, Asaraceae and Piperaceae present simple perforation 

plates (Figs. 3.4A-J), scalariform perforation plates occur in all Saururaceae (Figs. 3.4K-M), 

with the exception of Anemopsis (Appendix A2). ML reconstruction indicates that the 

presence of scalariform perforation plates is most probably a plesiomorphic feature of 

Saururaceae (0.61 proportional likelihood value (pl)) (Fig. 3.7B, node 5), thus suggesting that 

simple plates have evolved secondarily in Anemopsis. ML reconstruction strongly supports 

the hypothesis of simple perforation plates as an ancestral state for the perianth-bearing 

Piperales (0.95 pl) (Fig. 3.7B, node 3) as well as for the internal node within Piperaceae 

excluding the protostelic Verhuellia (0.94 pl) (Fig. 3.7A, node 7). The simple perforation 

plate is highly supported in the common ancestor of Piperales (0.71 pl) (Fig. 3.7B, node 2). 
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FIGURE 3.7 Ancestral character state reconstructions of Piperales. (A) maximum parsimony 
(MP) reconstruction of the cambial activity in Piperales, MP method is used to code 
polymorphisms when two potential character states are known to occur. (B) maximum 
likelihood (ML) reconstruction of the vessel element perforation plates, pie charts indicate 
ML probabilities for each character state at each internal nodes. Descriptions of character 
states and the employed reconstruction methods are provided in Material and Methods 
section. Nodes are numbered for easier reference to the text. 

 

3.4 Discussion 

3.4.1 Primary woodiness in Piperales 

 Uniformity of wood features in Piperales. A striking feature of Piperales is the 

characteristic and highly conserved kind of wood anatomy. Specific combinations of wood 

features distinguish woody Piperales from many other groups of angiosperms, including: 

vessels in radial patterns, vessel elements with simple perforation plates, vessel-to-vessel 

pitting alternate to scalariform, vessel to axial parenchyma pitting mainly scalariform, wide 

and tall rays composed exclusively of upright and squared cells and storied wood. Among the 



CHAPTER 3. Evolution of woodiness in Piperales 

 

73 
 

wood features mentioned before, the wide and tall rays composed of secondary parenchyma, 

which change little over time, and the upright and squared nature of these ray cells, constitute 

the main “trademark” of Piperales wood anatomy. As mentioned by Carlquist (1993) the 

wood of the Aristolochiaceae, Lactoris and Piperaceae is “amazingly similar”. Even the 

highly specialized holoparasite Hydnora presents "piperalean" anatomical features such as 

simple perforation plates and scalariform to alternate vessel pitting (Tennakoon et al. 2007), 

despite some divergences due to their holoparasitic habit and their highly derived sub-

terranean morphology (Wagner et al. 2014).  

 The uniformity of numerous wood features throughout Piperales constitutes a strong 

argument supporting a unique origin of wood formation in the order. Some combinations of 

features might distinguish woody lineages within Piperales; these include (a) exclusively 

vasicentric axial parenchyma in Piperaceae and Lactoridaceae versus the paratracheal axial 

parenchyma in combination with predominantly diffuse-in-aggregates or narrowly banded 

axial parenchyma in Aristolochia and Thottea (Fig. 3.5; Table 3.1)(Carlquist 1993), (b) 

alternate intervessel pitting in Aristolochia and Thottea versus scalariform intervessel pitting 

mostly observed in Piperaceae (Table 3.1). However, these features are not strictly fixed in 

each lineage. For instance, we observed predominantly alternate pitting in Piper flaviflorum 

and P. hispidinervum, and only scanty paratracheal axial parenchyma in several Aristolochia 

and Thottea species (Fig. 3.5; Table 3.1). We suggest that these relatively minor anatomical 

divergences might thus reflect specific habitat or growth form adaptations rather than 

independent origins of wood formation in the different lineages.  

 A truly woody putative ancestor of Piperales. Despite a wide diversity of cambium 

functioning in extant Piperales, our ancestral character state reconstruction univocally 

supports a strictly woody common ancestor for Piperales. The uniform wood organization of 

Piperales supports this view and suggests that herbaceousness is secondarily derived in the 

different lineages. Reduction of woodiness in woody herbs and strictly herbaceous habits 

might result from a reduction of cambial activity and its limitation to the fascicular areas. 

Canellales the sister group to Piperales is widely represented by woody species, suggesting 

that full cambial activity and a woody habit were already present in Canellales + Piperales 

common ancestor (Fig. 3.7A, node 1). At a large phylogenetic scale, magnoliids have been 

suggested to be evolved from a woody ancestor, while Piperales have been alternatively 

coded as herbaceous or woody (Kim et al. 2004; Feild and Arens 2005). Our work supports 

the view that the herbaceous habit arose several times independently within magnoliids. 
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3.4.2 Herbaceousness as a derived condition in extant Piperales 

 Loss of secondary growth in Piperaceae, a rearrangement of the polycyclic vascular 

bundles. Verhuellia and Peperomia (Piperaceae) present a derived herbaceous condition, 

involving the complete loss of the bifacial cambium (Fig. 3.7A). Stem anatomy of Verhuellia 

lunaria is strikingly rudimentary and reduced to a primary vascular system with a single 

central vascular bundle composed of five to nine annular and helically thickened protoxylem 

tracheary elements surrounded by protophloem (Fig. 3.6B). In Peperomia the scattered 

vascular bundles are composed of proto- and metaxylem tracheary elements. Piperaceae 

evolved several derived anatomical features, the most striking being the polycyclic or 

scattered arrangement of their vascular bundles (Figs. 3.2G-I) (Isnard et al. 2012). Debray 

(1885) proposed that the vascular bundles of Peperomia, undergoing little or no secondary 

growth, might be homologous to the medullary vascular bundles of Piper species, which also 

have little or no secondary growth. Intensive secondary growth indeed occurs preferentially in 

the peripheral vascular bundles of Piper (Fig. 3.2H); consequently the loss of the peripheral 

cycle of vascular bundles could lead to stems with scattered medullary bundles with limited or 

no secondary growth, as observed in Peperomia. The protostelic organization of Verhuellia 

might represent an extreme rearrangement of the vascular system, where only one single 

medullary bundle is produced. In fact, very few dicotyledonous species have completely lost 

secondary growth; the pervasiveness of the genetic ability to produce secondary xylem among 

dicotyledonous plants suggests a significant genetic stability of the vascular cambium. In 

Piperaceae the rearrangement/loss of vascular bundles is a source of variation in habits, which 

might differ from any irreversibly suppressed cambial activity since the loss of secondary 

growth could result from the loss of the peripheral vascular bundles. 

3.4.3 Anatomical particularities in Piperales  

 Stem endodermis in Piperaceae + Saururaceae. One of the main clade-specific 

anatomical features is the presence of a stem endodermis in the aerial stems of Piperaceae and 

Saururaceae. A stem endodermis bearing Casparian bands has been previously reported in 

several genera including Piper, Peperomia and Saururus (Bond 1931; Carlquist et al. 1995; 

Lersten 1997; Souza et al. 2009). The present study extended the presence of a stem 

endodermis to other genera within Piperaceae and Saururaceae (Manekia, Houttuynia, 

Verhuellia and Zippelia) (Fig. 3.6), indicating that the Casparian bands in aerial stems are 

present in all genera of Piperaceae, and in several genera of Saururaceae. To our knowledge, 
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stem endodermis has, however, never been reported for other Piperales lineages, and the 

occurrence of this feature suggests that stem endodermis was present in the common ancestor 

of Piperaceae + Saururaceae. Stem endodermis occurs sporadically in angiosperm phylogeny 

(Lersten 1997) and has been attributed to several functions associated with water or oxygen 

conservation and pathogen protection by acting as a barrier (Enstone et al. 2003; Meyer and 

Peterson 2011). In Saururaceae, stem endodermis is found in aquatic to semi-aquatic species 

(Saururus and Houttuynia). In Piperaceae, stem endodermis is found in epiphytic and 

terrestrial species producing adventitious roots, suggesting a water storage function. Some 

Piper species developed additional water-related adaptations such as mucilage canals, and 

Saururaceae possesses aerenchyma, which points to the importance of water-related 

adaptations in these lineages. 

 Scalariform perforation plates in the vessel elements of the Saururaceae. The 

scalariform perforation plates of Saururaceae (except Anemopsis (Carlquist et al. 1995; 

Schneider and Carlquist 2001)) is one of the main diverging xylem features in Piperales. The 

vessel elements of Saururaceae have been proposed to be “relictuals” based on their primitive 

nature, according to the Baileyan scheme of wood evolution (Bailey and Tupper 1918), and 

on the assumption of an unchanged history of life in mesic habitats (Carlquist et al. 1995). 

The occurrence of scalariform plates in Saururaceae could be explained as the result of 

limited secondary growth, lack of hydrolysis of the pit membrane in the end walls and 

retention of primary xylem features. Such relictual condition of scalariform plates in 

Saururaceae would imply at least three independent evolutionary lines of simple plates within 

Piperales (Fig. 3.7B), despite not being the most likely, this evolutionary scenario is still 

plausible as simple perforation plates, which provide an enhanced hydraulic conductance 

(Christman and Sperry 2007), are found in genera presenting large-bodied and climbing forms 

(Aristolochia, Thottea and Piper) (Figs. 3.1A,B) which demand an efficient water 

conductance. 

 Reversal from simple to scalariform perforation plates (i.e. after complete loss of the 

structure) in Saururaceae is however supported by our character reconstruction (Fig. 3.7B, 

node 5). Previous works have suggested possible reversals in perforation plates morphology 

in a large clade of Ericales and in the genus Meryta (Lens et al. 2007; Oskolski and Jansen 

2009). These previously documented reversals from simple to scalariform perforation plates 

together with the observed widespread occurrence of scalariform perforation plates along all 

major groups of angiosperms (Olson 2014), challenge the vision of irreversibility of the 
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Baileyan trend in perforation plates morphology and suggest that parallelisms and reversals 

resulting in scalariform perforation plates may be more common than previously thought. 

Further work on the ecophysiology of the Saururaceae and other angiosperms presenting this 

potential character reversal would be needed in order to understand which are conditions 

driving the reversal from simple to scalariform perforation plates. 

3.4.4 Protracted juvenilism in wood in relation to Piperales growth habits  

 Several paedomorphic wood features, in the Carlquistian sense, have been previously 

reported in Piperales,  these include the flat length-on-age curve recorded for Macropiper 

excelsum (Carlquist 1962), the rayless wood of Saruma henryi (Dickison 1996) and the 

multiseriate rays composed by upright cells which correspond to the paedomorphic ray type II 

according to Carlquist (2009). This last paedomorphic condition, characterizing the woody 

Piperales, involves a slower rate of horizontal subdivision of cambial initials resulting in 

vertically longer ray cells. Additionally, subdivision of rays that commonly occur through 

intrusive growth of fusiform cambial initials does not occur in Piperales, leading to rays that 

remain largely unaltered in secondary xylem. In typically woody angiosperms the primary 

rays are usually wide and composed of upright cells that progressively become procumbent, 

subdivided and “replaced” by fiber or vessel elements in the secondary xylem (Carlquist 

2009; 2013).  

 In a recent work, Lens et al. (2013) provide an extended list of primarily woody taxa 

which actually exhibit protracted juvenilism in wood such as the rays composed by upright 

cells. It was proposed that protracted juvenilism in wood may be related to specific growth 

forms such as small-sized shrubs, rosette trees or succulent stems. The presence of juvenilistic 

rays in Piperales may be linked to the sympodial growth form which is widely represented in 

the order and has been recently reconstructed as ancestral for Piperales (Isnard et al. 2012). A 

relationship between the sympodial construction observed in early-diverging angiosperms 

(including Aristolochiaceae and Piperaceae) and the wide and tall rays commonly observed in 

their wood was already suggested by Carlquist (2009). Functional reasons can explain the 

widespread occurrence of upright cells in Piperales rays. Many Aristolochia, Thottea and 

Piper species present liana and cane-like habits with several elongated stems growing from 

the base of the plant (Isnard et al. 2012)(Figs. 3.1B,D). Radial transport  of photosynthates in 

these relatively narrow stems may not be an important constraint for the plant, promoting the 
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development of upright cells that enhance a vertical conduction (Carlquist 2012) which plays 

a more important role in these growth forms. 

 Mabberley (1974) proposed that the flat age-on-length curves obtained by Carlquist 

(1962) for the vessel elements of Macropiper excelsum are the result of the geometry of its 

stems. Indeed, Mabberley (1974) argued that M. excelsum presents wide piths which become 

wider at the higher portions of the stem, considerably increasing stem radius. A greater radius 

may increase the number of cambial initials for anticlinal divisions and therefore diminishing 

the intrusive growth from cambial initials from a lower level, as a consequence of this, vessel 

element length remains constant (Dulin and Kirchoff 2010). In addition, as reported by Lens 

et al. (2013), the study of Bailey (1923) presented flat length-on-age curves for vessel 

elements of primarily woody species with storied cambia. We have observed storied wood 

structure in Aristolochia and Piper representatives (not shown) and it is reported by Carlquist 

(1993) as a common feature in Piperales, this condition may also explain the reported curve 

for M. excelsum by Carlquist (1962).  

 Raylessness is also considered as a criterion of wood juvenilism (Carlquist 2009) 

pointing to secondary woodiness, the rayless wood observed in Saruma henryi appears to be 

an original feature regarding the rest of Piperales and can also be linked to a particular growth 

form. The rayless condition of Saruma has already been reported by Dickison (1996) who 

observed multiseriate and tall rays in the vicinity of the cambium, suggesting that the upright 

ray cells become transformed into more elongated and lignified cells (Dickison 1996). Based 

on this report, we can interpret the cambium in Saruma as not devoid of “piperalean” rays, but 

instead, a derived organization where wide and tall rays undergo further specialization into 

fiber-like elements. Raylessness in the woody herb Saruma might represent a stem 

mechanical adaptation where the fiber elements provide additional structural support for the 

stem which undergoes limited secondary growth restricted to the basal parts of the stems 

(Dickison 1996; Carlquist 2001).  

3.4.5 Piperales anatomy, a major source of growth form diversification  

 A significant challenge in Piperales, as in angiosperms in general, is to identify a 

putative herbaceous/woody ancestor, as the state observed today may not be the 

herbaceous/woody state of yesterday's ancestors. Therefore, this chapter focus on cambial 

activities and wood anatomical comparisons to identify the putative form of Piperales 

common ancestor. Our data show that "woodiness" is actually homogeneous in Piperales 
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while "herbaceousness" can show diverse anatomical organizations, from the single vascular 

bundle of Verhuellia and the scattered bundles of Peperomia to the single cycle of bundles 

with very limited production observed in Saururaceae and Hydnoraceae; suggesting that 

herbaceousness is most probably derived in the different lineages. This hypothesis is 

supported by a recent work proposing that the herbaceous habit in Aristolochia and in Asarum 

+ Saruma evolved independently (Wagner et al. 2014).  

 Large self-supporting forms (Fig. 3.1A) are however confined to few species within 

Piperales, where ray lignification could have reduced flexibility of the wood cylinder (Isnard 

et al. 2012). Since the climbing growth form has been reconstructed as derived in Aristolochia 

(Wagner et al. 2014), the wide and tall rays which seems to be a synapomorphy of Piperales 

wood, could be an exaptation for the climbing form. Wide rays in lianas are indeed widely 

known to promote stem flexibility and are largely considered as an adaptation to the climbing 

habit (Putz and Holbrook, 1991; Rowe et al. 2004, Isnard and Silk 2009). The evolution of the 

climbing habit in angiosperms might have promoted diversification (Gianoli 2004), while the 

evolution of herbaceousness from woodiness is argued to correlate with an increase in the 

diversification rate and to be implicated as a direct cause of species richness in angiosperm 

families (Dodd et al. 1999). In the local context of New Caledonia, Piperaceae is the only 

basal angiosperm family showing liana and herbaceous growth forms. Indeed, with the 

exception of the notable herbaceous parasite Cassytha (Lauraceae), all of the remaining New 

Caledonian basal angiosperm families are represented by tree and shrub forms. Piperaceae is 

the basal angiosperm family that shows the highest niche marginality in New Caledonia 

(Chapter 4) (Pouteau et al. 2015). Most likely, the growth forms of Piperales, which diverge 

from the rest of the local basal angiosperms, may have promoted the marginalization of this 

family. The lability of the cambial activity, allowing recurrent shifts in habit from woodiness 

to herbaceousness and the “piperalean” wood construction, promoting highly variable growth 

forms, have therefore been key elements in the diversifications of species and habitat 

preferences in Piperales.  



   

 

CHAPTER 4 

  

Habitat preferences of New Caledonian basal 

angiosperms, past and present species distribution1 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1  A version of this chapter has been published. Pouteau, R., Trueba, S., Feild, T.F., Isnard, S. (2015). 
Journal of Biogeography. 42: 2062-2077 

⋅ Environmental distribution of basal angiosperms  

⋅ Mechanisms behind basal angiosperms over-representation in New Caledonia 

⋅ Xylem vascularization and habitat preference 
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Abstract 
 
 Basal angiosperm lineages are over-represented in New Caledonia. However, the 
mechanisms responsible for such a distribution remain unclear. This thesis chapter explores 
two key hypotheses: (1) the diversity  of basal angiosperms reflects adaptation to ultramafic 
substrates, which act as ecological filters for plant colonists; and (2) the diversity stems from 
wet climatic conditions that have persisted in New Caledonia during the late Quaternary while 
Australia and some nearby islands likely experienced widespread extinction events. Given 
that basal angiosperms present a high anatomical diversity of xylem conduits, we estimated if 
the presence of different xylem conduit types is likely to promote ecological differentiation.  

 We used species distribution models to determine the environmental correlates for 60 
basal angiosperm species. Environmental variables used to characterise habitats included 
vegetation, substrate, and climate variables. We then tested whether the variety of xylem 
conduit structures borne by New Caledonian basal angiosperms, which is expected to affect 
plant hydraulic capacity, was correlated with habitat preference. Finally, we analysed species 
prevalence on different substrates and projected habitat size and distribution to the last glacial 
maximum (LGM).  

 We found a clear habitat preference among basal angiosperms for rainforest habitats 
located on non-ultramafic substrates, with the exception of taxa bearing true vessels with 
simple perforation plates which harboured a wider habitat breadth. We also show that these 
rainforest habitats experienced a range reduction and an eastward shift during the LGM 
forming two refugial areas located on the warm and rainy east coast of Grande Terre. 
Prevalence of basal angiosperms in habitats characterised by low evaporative demand appears 
to be related to xylem hydraulic limitations.  

 The great representation of basal angiosperm species in New Caledonia can be 
explained by the persistence of rainforests in the island despite global Quaternary fluctuations 
that affected floras in the region. This study offers a new model to explain why certain 
angiosperm families are disharmonically represented in New Caledonia.  

 

 

 

 

 

 

 

 

Key-words: climatic refugia; geographic information system; niche modelling; palaeodistribution; 
plant-climate interactions, relictual angiosperms; xylem anatomy. 
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4.1 Introduction 

 Basal angiosperms are frequently considered as relict species because of their early 

divergence times, and because of their low diversification compared to the eudicots-monocots 

group (see section 1.3). Relict species can be considered as the extant remains of a larger and 

more widespread group of organisms in which most taxa are now extinct (Fig. 1.4). These 

relicts have often been incorrectly viewed as indicating the location of the ancient centre of 

diversity of a group (Ladiges and Cantrill, 2007; Jones et al., 2009). Such a simplistic 

consideration is inherently flawed since it ignores dispersal and extinction events that shape 

the biogeographic evolution of most lineages. Although relicts can hardly serve as evidence 

for permanence in the geographical area they currently occupy, the habitat distribution of 

extant species can help to elucidate how they have survived in a recent past (Grandcolas et al., 

2014). Moreover, under the perspective of  niche conservatism, we can expect that modern 

basal angiosperms occupy an environment similar to the habitat of their common ancestor 

(Losos, 2008). 

 New Caledonia harbours an impressive richness in species belonging to early 

branching lineages such as the flightless bird Rhynochetos jubatus, gymnosperm species, and 

the basal angiosperm Amborella trichopoda, which is the sister group to all other extant 

angiosperms (Morat, 1993; Grandcolas et al., 2008). Basal angiosperms provide a good model 

to understand ancestral ecology because angiosperms form the largest group of relict taxa in 

New Caledonia. As mentioned in section 1.9 of the first chapter of this thesis, basal 

angiosperms include 109 species, 22 genera and 10 families belonging to the ANA grade, 

Chloranthales and magnoliids (Morat et al., 2012). Analyses of floristic affinities (Morat, 

1993) as well as recent phylogenies (Swenson et al., 2014; Thomas et al., 2014) have 

identified Australia as the most likely origin for a substantial proportion of the New 

Caledonian flora. However, seven of the 10 basal angiosperm families present in New 

Caledonia have been recognised as significantly over-represented compared to the flora of 

Australia (see section 1.7). 

 Disharmony refers to the non-random representation of species among colonists of 

oceanic islands as compared with the source mainland (Carlquist, 1974). A common 

explanation for disharmony on island floras is dispersal limitation. In New Caledonia, a recent 

work found that dispersal might not be the main process that explains the disharmony of the 

flora because plant families with low amounts of endemism (used as a surrogate for high 
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dispersal capacities) tended to be under-represented (Pillon et al., 2010). Thus, the 

disharmony was suggested to stem from particular ecological conditions occurring in New 

Caledonia. 

 The distribution of plant species in New Caledonia has often been hypothesised as 

constrained by New Caledonia's unusual ultramafic substrates (Morat, 1993). Ultramafic 

rocks possess low amounts of essential plant nutrients and are rich in toxic heavy metals 

(Jaffré et al., 1987; van der Ent et al., 2015). Preadaptation of immigrating lineages to 

ultramafic substrates has long been considered to have driven the flora disharmony in New 

Caledonia because these lineages would be able to establish and radiate on an unusual 

substrate (Jaffré et al., 1987; Pillon et al., 2010). Examples of such ultramafic pre-adapted 

lineages include conifers and some angiosperms, for instance the locally diverse Cunoniaceae 

(Jaffré, 1995; Pillon et al., 2009; Pillon et al., 2010). However, it is not clear whether basal 

angiosperms also possess a distributional preference for ultramafic substrates (Jaffré, 1995; 

Pillon, 2008). 

 More broadly, the richness in basal angiosperm lineages such as ANA grade families 

and magnoliids in Asia-Australasia (Fig. 1.3) has been hypothesised as arising from the 

maintenance of stable climatic conditions suitable for their persistence or diversification in the 

region (Morley, 2001; Buerki et al., 2014). Rapid and extensive climatic shifts, however, 

affected the Australian flora during the Pleistocene and likely drove the extinction of many 

lineages, especially in the rainforest flora (Byrne et al., 2011). Thus, another possible 

explanation of the over-representation of basal angiosperms in New Caledonia is that climatic 

stability during this period favoured the persistence of basal angiosperms while other nearby 

regions became relatively depauperate. 

 Feild et al. (2004; 2009) have demonstrated that basal angiosperm distributions are 

significantly hemmed in by drought. In these studies, only members of the ANA grade as well 

as Chloranthales were considered. These taxa possess vascular systems that are highly 

vulnerable to drought-induced xylem cavitation and their leaves wilt at relatively mild leaf 

water potentials (Feild et al., 2009). In addition, the anatomy of their xylem conduits confer 

high hydraulic resistances in their leaves and stem xylem systems (Feild and Wilson, 2012). 

In concert, these physiological functions have been hypothesised to limit species to humid 

forest habitats where peak transpirational demands are low.  

 The putative drought intolerance of ANA and Chloranthales would be mechanistically 

linked to their xylem structure and function (Sperry et al., 2007; Feild and Wilson, 2012). 
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Indeed, vesselless basal angiosperms, such as Amborella, occur preferentially in wet, low 

evaporative demand rainforest habitats because their low xylem hydraulic capacities do not 

impose lethal leaf water stress versus derived vessel-bearing angiosperms bearing 

hydraulically streamlined vessels with simple perforation plates (Sperry et al., 2007). The 

xylem conduits found in ANA grade and Chloranthales species suggest that maintance of 

stable, wet conditions in New Caledonia may explain basal angiosperm disharmony in New 

Caledonia. However, to our knowledge, while a similar distributional pattern has been 

proposed (Morley, 2001), no study has addressed the question of whether magnoliids might 

possess similar drought-induced limitations on their habitat distributions. This chapter aims to 

analyse the influence of xylem conduit type, which influences xylem hydraulic function, on 

the distribution of basal angiosperms. 

 Although functional traits could provide the basis to predict a species' habitat, the trait-

based approach is inherently limited due to the considerable co-variation and trade-offs 

among traits that shape plant life-histories (Vuorisalo and Mutikainen, 1999). In contrast, 

species distribution models (SDMs) assess habitat characteristics directly by statistically 

correlating the known spatial distribution of species with a number of GIS (geographic 

information system) environmental variables. In this paper, we determined environmental 

correlates of 60 basal angiosperms native to New Caledonia through SDM to complement the 

trait-based hypothesis of relict angiosperms as adapted to wet forests. We address the 

questions of (i) whether relict angiosperms share ecological requirements; and (ii) whether the 

over-representation of relict angiosperm families in New Caledonia is linked to the presence 

of ultramafic substrates versus the persistence of suitable climatic conditions on the 

archipelago during the Pleistocene. Further, we assess the influence of xylem vasculature on 

the distribution of plant species. 

4.2 Materials and methods 

4.2.1. New Caledonia 

 New Caledonia (Fig. 1.7) has a tropical climate with annual mean temperature in 

lowland areas between 27°C and 30°C from November to March and between 20°C and 23°C 

from June to August. Annual precipitation ranges from 300 mm to 4,200 mm with greater 

precipitation on the windward east coast (Fig. 1.7). Three main types of substrates occur: (i) 

ultramafic substrates covering the southern third of Grande Terre and isolated ultramafic 

massifs along the west coast; (ii) substrates derived from volcano-sedimentary rocks roughly 
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covering the northern two thirds of Grande Terre; and (iii) calcareous substrates prevailing on 

the Loyalty Islands (Fig. 1.7C) (Fritsch, 2012). The landscape is a mosaic composed for half 

of secondary vegetation, one quarter of low- to mid-elevation shrublands or ‘maquis’ found 

on ultramafic substrates below 800 m, another quarter of low- to mid-elevation rainforests, 

1% of montane rainforests and shrublands found above 800 m, with a few relictual patches of 

dry sclerophyll forests scattered along the west coast, and wetlands including the c. 50 km² 

marshes of the Plaine des Lacs (Fig. 1.7F) (Jaffré, 1993; Jaffré et al., 2012). A detail of the 

main peaks of the central mountain range is presented in figure 4.1. A full description of the 

geography and environment of New Caledonia is provided in Chapter 1 (section 1.7). 

 

FIGURE 4.1 Elevation and toponyms cited in the text. The main peaks of Grande Terre's 
mountain range are indicated. Other geographical and environmental features of New 
Caledonia are presented in the section 1.7. 

4.2.2 New Caledonian basal angiosperms; species representation, anatomical data 

 We gathered distributional data from locality information on specimens from the 

Herbarium of the IRD Centre of Noumea (NOU) using the Virot database (http://herbier-

noumea.plantnet-project.org) and from forest inventories of the NC-PIPPN plot network 

(Ibanez et al., 2014). Among all basal angiosperm taxa native to New Caledonia (Morat et al., 

2012), we selected those with at least 10 occurrence records separated by more than 

one kilometre to avoid duplication of taxa in the same grid cell. Florical (Morat et al., 2012) 

served as taxonomic reference base. Taxa with questionable taxonomic limits (J. Munzinger, 

pers. comm.) and specimens whose identification was uncertain were removed from the 

sampling. Subspecies and varieties were treated separately as the distinction with different 

species was sometimes blurred and infraspecific taxa often occupy different habitats. Using 
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these procedures, we sampled 60 taxa belonging to 18 genera and 10 families for which 1,851 

occurrence records were compiled. Our sampling captured all basal angiosperm families 

native to New Caledonia, between 50% and 100% of genera within each family and between 

27% and 100% of species per family (Table 4.1). It included the two ANA grade taxa present 

in the archipelago, Amborella trichopoda (Amborellaceae, Amobrellales) and Trimenia 

neocaledonica (Trimeniaceae, Austrobaileyales), two Chloranthaceae (Ascarina solmsiana 

var. solmsiana and A. rubricaulis), as well as 56 magnoliids (Table 4.1). 

 Since xylem conduit structure affects plant hydraulic capacity (Sperry et al., 2007; 

Christman and Sperry, 2010), variation in xylem conduit structure is hypothesized to 

represent an important trait bearing on variation in species habitat occurrence. To test whether 

conduit structure was correlated with environmental preference, we conducted a literature 

survey of xylem tracheary element types possessed across basal angiosperms of New 

Caledonia (Appendix A4). Taxa were coded as to whether they bear tracheids, vessel 

elements with scalariform perforation plates, or vessel elements with simple perforation plates 

(Fig. 4.2). These three categories binned three major hydraulic designs in angiosperms (Feild 

and Wilson, 2012). Tracheid-based xylem conducts low amounts of water, while xylem with 

vessels bearing simple perforation plates often possesses high water conduction capacity. 

Perforation plates exhibit broad structural diversity in angiosperms (Fig. 1.6A). Nevertheless, 

two broad categories are recognized: 1) simple perforation plates that are a wide and single 

apical pore; and 2) scalariform perforation plates that consist of a ladder-like array of pits 

varying in number, widths, and bar number (Feild and Wilson, 2012). Xylem with vessels 

bearing scalariform perforation plates possess hydraulic capacities generally lower than xylem 

systems with simple perforation plates vessels (Christman and Sperry, 2010). Moreover, some 

angiosperm scalariform plated vessels possess hydraulic capacities within the range of 

tracheid-based  xylem (Feild & Wilson, 2012). 

4.2.3 Environmental variables 

 Current climate data were downloaded from the WorldClim database (Hijmans et al., 

2005). The 30 arc-second resolution (c. one kilometre) of the WorldClim data matched well 

with the spatial accuracy of the oldest plant occurrence records. Although WorldClim data are 

derived from global climate databases, they were preferred to local data at similar resolution 
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TABLE 4.1 Summary of the 60 basal angiosperm taxa and corresponding modelled distribution area (in km²) and model performance. 

Biogeographical status: F = Endemic family; G = Endemic genus; E = Endemic species; I = Native non-endemic species. Habit: T = Tree; S = Shrub; E = 
Epiphyte; L = Liana. Preferred substrate type (model output): V = Volcano-sedimentary substrates only; U = Ultramafic substrates only; S = Several types of 
substrate. Preferred vegetation type (model output): RF = Rainforest; M = Shrubland; D = Dry forest. 

Family Taxon Status Habit Substr. Veget. # of 
occurrences 

Current 
distr. 
area 

CCSM 
distr. 
area 

 

MIROC 
distr. 
area 

 

AUC 
BIOCLIM 

AUC 
DOMAIN 

AUC 
SVM 

AUC 
Ensemble 

Amborellaceae Amborella trichopoda F ST V RF 56 3439 1175 75 0.94 0.93 0.91 0.91 
Annonaceae Goniothalamus obtusatus E T V RF 24 4861 575 300 0.71 0.84 0.81 0.85 
Annonaceae Hubera nitidissima E T V D 32 10640 5875 1925 0.47 0.46 0.67 0.74 
Annonaceae Meiogyne baillonii E T U RF 28 6748 2050 800 0.56 0.52 0.85 0.79 
Annonaceae Meiogyne lecardii E T V RF 13 458 300 75 0.78 0.95 0.97 0.94 
Annonaceae Meiogyne tiebaghiensis E T V D 53 11830 2400 850 0.61 0.56 0.76 0.64 
Annonaceae Xylopia dibaccata E ST S M 14 2912 50 50 0.63 0.74 0.89 0.72 
Annonaceae Xylopia pancheri E S U M 56 3818 925 225 0.77 0.73 0.73 0.80 
Annonaceae Xylopia vieillardii E T V RF 58 3628 1375 450 0.75 0.90 0.83 0.89 
Atherospermataceae Nemuaron vieillardii G T V RF 45 5248 2600 800 0.69 0.80 0.80 0.91 
Chloranthaceae Ascarina rubricaulis E T S RF 36 3392 2075 925 0.89 0.79 0.87 0.95 
Chloranthaceae Ascarina solmsiana var. solmsiana E T S RF 28 2978 1775 600 0.88 0.99 0.95 0.97 
Hernandiaceae Hernandia cordigera E T U RF 49 7704 2075 950 0.67 0.82 0.77 0.86 
Lauraceae Beilschmiedia oreophila E ST S M 16 1854 1225 675 0.97 0.91 0.95 0.85 
Lauraceae Cryptocarya aristata E T V RF 25 3836 1475 425 0.96 0.99 0.90 0.93 
Lauraceae Cryptocarya elliptica E T V RF 45 3930 750 300 0.85 0.86 0.90 0.88 
Lauraceae Cryptocarya guillauminii E ST U RF 51 5431 700 275 0.96 0.91 0.94 0.84 
Lauraceae Cryptocarya leptospermoides E T S M 12 3900 2025 725 0.65 0.92 0.87 0.85 
Lauraceae Cryptocarya lifuensis E T S D 11 696 25 25 0.80 0.92 0.74 0.97 
Lauraceae Cryptocarya longifolia E T U M 44 6530 3875 1800 0.80 0.81 0.71 0.84 
Lauraceae Cryptocarya macrodesme E T V RF 19 2396 1125 475 0.89 0.93 0.91 0.92 
Lauraceae Cryptocarya odorata E T U RF 43 4321 1150 525 0.56 0.63 0.61 0.81 
Lauraceae Cryptocarya oubatchensis E T S RF 44 4610 3225 1525 0.83 0.89 0.87 0.92 
Lauraceae Cryptocarya phyllostemon E T U RF 14 688 300 125 0.83 0.97 0.98 0.90 
Lauraceae Cryptocarya pluricostata E T S RF 11 2345 600 75 0.76 0.76 0.86 0.74 
Lauraceae Cryptocarya transversa E T U RF 19 2072 150 125 0.83 0.92 0.93 0.82 
Lauraceae Cryptocarya velutinosa E T V RF 15 3279 450 250 0.80 0.89 0.83 0.92 
Lauraceae Endiandra baillonii E T U M 39 1190 475 250 0.84 0.87 0.91 0.96 
Lauraceae Endiandra sebertii E ST S RF 21 6278 3000 1225 0.59 0.71 0.80 0.87 
Lauraceae Litsea deplanchei E ST U M 39 778 125 75 0.78 0.78 0.80 0.80 
Lauraceae Litsea ripidion E S U M 12 3516 3225 1400 0.98 0.99 0.94 0.98 
Monimiaceae Hedycarya chrysophylla E S V RF 40 4571 3275 1400 0.81 0.92 0.87 0.89 
Monimiaceae Hedycarya cupulata E S V RF 138 4518 1975 900 0.78 0.88 0.78 0.89 
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TABLE 4.1 (Continued) 

Family Taxon Status Habit Substr. Veget. # of 
occurrences 

Current 
distr. 
area 

CCSM 
distr. 
area 

MIROC 
distr. 
area 

AUC 
BIOCLIM 

AUC 
DOMAIN 

AUC 
SVM 

AUC 
Ensemble 

              
Monimiaceae Hedycarya chrysophylla E S V RF 40 4571 3275 1400 0.81 0.92 0.87 0.89 
Monimiaceae Hedycarya cupulata E S V RF 138 4518 1975 900 0.78 0.88 0.78 0.89 
Monimiaceae Hedycarya engleriana E ST V RF 58 7644 4325 1650 0.80 0.86 0.88 0.94 
Monimiaceae Hedycarya parvifolia E T S RF 108 1899 3175 1600 0.74 0.77 0.74 0.89 
Monimiaceae Kibaropsis caledonica G T V RF 49 3679 325 125 0.85 0.93 0.92 0.96 
Piperaceae Peperomia baueriana I E V RF 10 4717 1275 600 0.87 0.68 0.90 0.66 
Piperaceae Peperomia urvilleana I E V RF 17 7628 625 275 0.64 0.61 0.89 0.80 
Piperaceae Piper comptonii E L S RF 17 13961 2700 825 0.51 0.70 0.79 0.72 
Piperaceae Piper insectifugum I L S D 57 1185 2875 1575 0.51 0.58 0.69 0.58 
Trimeniaceae Trimenia neocaledonica E T V RF 22 456 175 125 0.83 0.94 0.95 0.96 
Winteraceae Zygogynum acsmithii E T V RF 10 2408 1925 650 0.99 0.97 0.99 0.88 

Winteraceae 
Zygogynum amplexicaule subsp. amplexicaule var. 
amplexicaule 

E S V RF 11 1658 1725 600 0.67 0.84 0.93 0.95 

Winteraceae 
Zygogynum amplexicaule subsp. amplexicaule var. 
isoneuron 

E ST U RF 22 863 850 225 0.87 0.93 0.96 0.95 

Winteraceae Zygogynum amplexicaule subsp. luteum E S S RF 24 912 225 125 0.86 0.97 0.94 0.95 
Winteraceae Zygogynum baillonii  E T V M 28 127 275 150 0.84 0.97 0.97 0.84 
Winteraceae Zygogynum bicolor  E T S RF 11 1259 1325 475 0.98 0.99 0.92 0.99 
Winteraceae Zygogynum comptonii var. comptonii E S U RF 20 1809 1525 300 0.84 0.89 0.93 0.97 
Winteraceae Zygogynum comptonii var. taracticum E S S RF 16 2282 2625 975 0.77 0.67 0.94 0.89 
Winteraceae Zygogynum crassifolium E T V M 37 2277 750 325 0.80 0.84 0.88 0.88 
Winteraceae Zygogynum pancheri subsp. arrhantum E T S RF 16 1427 475 275 0.72 0.86 0.92 0.92 
Winteraceae Zygogynum pancheri subsp. elegans E ST U RF 15 2388 900 275 0.75 0.85 0.91 0.85 
Winteraceae Zygogynum pancheri subsp. pancheri E T S RF 41 820 500 250 0.84 0.85 0.89 0.91 
Winteraceae Zygogynum pancheri subsp. rivulare E S S RF 16 417 1025 150 0.75 0.96 0.92 0.98 
Winteraceae Zygogynum pauciflorum E T S RF 10 608 150 150 1.00 0.91 0.99 0.92 
Winteraceae Zygogynum schlechteri E S V RF 14 3738 500 125 0.83 0.98 0.97 0.99 
Winteraceae Zygogynum stipitatum E T V RF 36 915 725 350 0.86 0.91 0.89 0.92 
Winteraceae Zygogynum tieghemii subsp. tieghemii E T V RF 14 2866 225 75 0.87 0.98 0.96 0.94 
Winteraceae Zygogynum vieillardii E T U M 12 1522 1900 425 0.92 0.94 0.89 0.91 
Winteraceae Zygogynum vinkii E T U RF 10 6278 3000 1225 0.76 0.86 0.89 0.98 
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 We addressed variable multi-collinearity by examining cross-correlations (using 

Spearman’s r). For variables with correlations of r > 0.8, we retained only the variable that 

decreased model accuracy the most when omitted from the 60 full models. Such a selection 

method identified four climate variables: isothermality (BIO3), temperature mean diurnal 

range (BIO4), precipitation of the driest month (BIO14) and precipitation seasonality 

(BIO15). Vegetation and substrate shapefiles published in the Atlas of New Caledonia were 

added to climate data after being rasterized and scaled to 30 arc-seconds (Fritsch, 2012; Jaffré 

et al., 2012).  

TABLE 4.2 Habitat distribution of narrow-range endemic basal angiosperm species sensu 
Wulff et al. (2013). 

 Rainforest & mountain shrubland 
Low- to  

mid-elevation 
shrubland 

 Northern  
refugial area 

Southern  
refugial area Outside 

refugial areas 
 CCSM MIROC CCSM MIROC 

Lauraceae 
  

Adenodaphne macrophylla X X     
Adenodaphne triplinervia   X 
Beilschmiedia neocaledonica X      
Cryptocarya bitriplinervia  X  
Cryptocarya schmidii   X 
Endiandra poueboensis X      
Litsea humboldtiana   X 
Litsea imbricata   X 
Litsea mackeei      X 
Litsea ovalis   X 
Litsea paouensis X X     
Litsea pentaflora   X 
Litsea racemiflora   X 
Litsea stenophylla   X 
 
Monimiaceae 

  

Hedycarya aragoensis X X     
 
Winteraceae 

  

Zygogynum cristatum X      
Zygogynum fraterculum X      
Zygogynum oligostigma X      
Zygogynum tanyostigma X      

Notes: Crosses indicate whether narrow-range endemics occur in rainforest and mountain shrubland or 
in low- to mid- elevation shrubland and, in the former case, whether or not they overlap with last 
glacial maximum refugial areas we inferred. Species that have not been included in the SDMs 
(Zygogynum acsmithii and Z. pauciflorum (Winteraceae)) have not been included in the analyses. 

 We projected habitat size and distribution to the last glacial maximum (LGM) (c. 21 

000 yr ago) to test whether species persisted on Grande Terre during the Pleistocene climate 

changes. Historical LGM distributions were estimated using climate simulations of the two 

coupled global circulation models CCSM (Collins et al., 2006) and MIROC (Hasumi and 
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Emori, 2004) provided by WorldClim at 2.5 arc-minute resolution. SDMs were re-run with 

the four most informative climate variables and the substrate map (assumed to be identical to 

present) upscaled to 2.5 arc-minute resolution. Vegetation was removed from past projection 

analyses as no historical vegetation map was available and past vegetation pattern was likely 

to have been shaped by climate and soil in the absence of human impacts. LGM sea level was 

considered the same as today since the high amplitude and rapid rises/retreats of the lagoon 

during the Pleistocene temporarily formed a calcareous coastal plain (Pelletier, 2006). Such a 

habitat is likely to be unsuitable for most of basal angiosperms because of salinity-induced 

water stress (Feild et al., 2009). Another common approach to infer Pleistocene refugia 

consists in identifying centres of endemism  (Pintaud et al., 2001; Weber et al., 2014). To test 

for putative LGM refugia inferred through SDM, we tested whether refugia overlapped with 

occurrences of narrow-range endemic basal angiosperms. According to the analysis of Wulff 

et al. (2013), there are 21 narrow-range endemic species which belong to the families 

Lauraceae (14 species), Monimiaceae (1) and Winteraceae (6). We only included 19 of them 

in these analyses and did not consider two species (Zygogynum acsmithii and Z. pauciflorum) 

which satisfied the conditions to be included in the SDMs (Table 4.2). 

4.2.4 Species distribution modelling 

 We fitted three presence-only SDMs (i.e. without absence or pseudo-absence): 

BIOCLIM, DOMAIN and one-class support vector machines (SVM). BIOCLIM is a climate 

envelope procedure that computes the suitability of a site by comparing the values of 

environmental variables at any site to the percentile distribution of the values at sites of 

known occurrence (Busby, 1986). We used the 5-95% percentile limits as core bioclimate. 

The DOMAIN algorithm uses a range-standardised point-to-point similarity metric to assign a 

classification value to any site based on its proximity in environmental space to the most 

similar occurrence (Carpenter et al., 1993). We set the similarity threshold at 99%. SVM is a 

machine-learning method that contours the volume occupied by a species in a high 

dimensional hyperspace (Drake et al., 2006). The shape of the volume fitted by SVM is 

controlled by a kernel function, γ, and a regularisation parameter, C. We used the one-class 

SVM implementation provided in the e1071 package (Meyer et al., 2014) developed under 

the R software (R Development Core Team, 2014). The ‘tune’ function searched for the 

optimal γ and C in the range [2-10, 2-9, …, 210] after 10-fold cross-validation to prevent 

overfitting. 
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 Model accuracy was assessed with the area under the curve (AUC) of the receiver 

operating characteristic (ROC) (Fielding and Bell, 1997). We converted continuous maps to 

presence/absence maps by selecting for each species a threshold where sensitivity was equal 

to specificity (Liu et al., 2005). For each species again, the three binary outputs were 

assembled into a single ensemble model by majority voting (a pixel was labelled as to the 

class that was chosen by at least two separate models) (Marmion et al., 2009).  

4.2.5 Habitat overlap and marginality 

 To explore whether basal angiosperms share a common environment, we introduced a 

habitat overlap index (HO) as the proportion of relict angiosperms expected in each site 

according to the individual projection of their fitted habitat. HO was implemented by stacking 

binary maps so that they expressed the local potential richness of basal angiosperms over each 

pixel of the combined map (Guisan et al., 1999), which was then converted into a proportion 

by dividing that value by the total number of basal angiosperms. To deal with unbalanced 

numbers of taxa within genera and genera within families, HO was estimated at three 

taxonomic levels: (i) family, (ii) genus and (iii) species and infra-specific levels (hereafter 

referred to as the species level). At the genus and family levels, HO was computed by 

merging taxon-based SDMs rather than by building new SDMs from merged taxon 

occurrences because it was easier to manage unbalanced occurrences and it seemed to be 

more consistent with the species-specific concept of habitat. 

 HO was analysed within each vegetation and substrate type and we built a regression 

model to understand how HO varies along environmental gradients on the 23,586 pixels of 30 

arc-second resolution covering the archipelago. Environmental variables included the four 

selected WorldClim variables as well as mean annual rainfall (BIO12) and elevation (SRTM 

digital elevation model upscaled to 30 arc-seconds). Environmental correlates of HO were 

explored using boosted regression trees (BRTs), a boosting procedure that combines large 

numbers of relatively simple tree models to optimise predictive performance (Elith et al., 

2008). BRT models were built using the R package dismo (Elith and Leathwick, 2015). A bag 

fraction of 0.5 was used, which means that, at each step of the boosting procedure, 50% of the 

data in the training set were drawn at random without replacement. The learning rate 

searching for the contribution of each tree to the model was set at 0.01. The maximal number 

of trees for optimal prediction was limited to 2,000. The tree complexity, referring to the 

maximal number of nodes in an individual tree, was set to 9. 



CHAPTER 4. Basal angiosperm species distribution in New Caledonia 

 

92 
 

 We also developed a habitat marginality index (HM) for each taxon to separate basal 

angiosperms as to whether they co-occur in a shared environment or occupy a separate 

habitat. The HM index was calculated as follows: 

 ! = 1	 −	$%  &'
(

)
*+, - 

Where p is the number of pixels where a taxon is predicted to be present. A value of 100% 

reflects a marginal taxon whose suitable habitat is altogether different from the other taxa, 

while a value of 0% denotes a gregarious taxon whose suitable habitat overlaps that of all its 

relatives. The main difference between HM and other habitat marginality metrics proposed in 

previous works (Hirzel et al., 2002) is that marginality, as expressed by HM, is quantified 

relatively to the habitats of other species rather than to background environmental conditions 

available across the study area. 

4.3 Results 

4.3.1 Modelling assessment 

 Although SDMs were based on occurrence records derived from opportunistic 

sampling schemes prone to spatial autocorrelation (e.g., near Noumea, at sites of recognised 

botanical interest, along walking tracks), we found poor matching between current HO pattern 

(Fig. 4.3) and density of points used as SDM input (Appendix A5). Such a result suggests that 

our modelling approach provides a good generalisation. The ensemble model also 

outperformed all individual SDMs in predicting basal angiosperm distribution (mean AUC = 

0.877), the difference with BIOCLIM being significant (0.790; pairwise comparison t-test 

with Bonferroni post-hoc correction; P-value < 0.05) but not with DOMAIN (0.845; P-value 

= 0.54) or SVM (0.875; P-value = 1.00) (Table 4.1). 

4.3.2 Testing for a shared habitat of New Caledonian basal angiosperms 

 Similar geographic patterns of basal angiosperm diversity were found at the three 

taxonomic ranks considered (Fig. 4.3). Occupation of Grande Terre was asymmetrical with 

regard to a gradient of windwardness (diversity was lower along the drier west coast than the 

wetter east coast). The area of highest basal angiosperm richness was broadly rhomboidal, 

oriented northwest-to-southeast whose northwestern angle corresponds to Mont Panié (1,628 

m a.s.l.) followed in a clockwise direction by the Massif des Lèvres (1,091 m), Plateau de 

Dogny (1,000 m) and Mont Aoupinié (1,006 m), where HO became maximal (Fig. 4.3A’). 



 

FIGURE 4.3 Distribution of
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of the richness (as expressed by the habitat overlap 
 A’), genera (B) and families (C) under current climate.

L=Massif des Lèvres, A=Mont Aoupinié, D=Plateau de Dogny.
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FIGURE 4.4 Distribution of habitat overlap within each vegetation type over the entire 
territory of New Caledonia (N=23,586 pixels). Shaded boxes show significantly highest 
habitat overlap at a 5% threshold. Vegetation types are based on Jaffré 
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Distribution of habitat overlap within each vegetation type over the entire 
territory of New Caledonia (N=23,586 pixels). Shaded boxes show significantly highest 
habitat overlap at a 5% threshold. Vegetation types are based on Jaffré et al. (2012).
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 In relation to edaphic variables, the richest sites in basal angiosperms occurred 

predominantly on volcano-sedimentary substrates. We observed that 25 species (including 

both members of the ANA grade), seven genera and four families occurred only on volcano-

sedimentary substrates; 16 species, two genera and one family occurred exclusively on 

ultramafic substrates, no species occurred exclusively on calcareous substrates, and 19 

species, nine genera and five families occurred on two or more substrates (Table 4.1). Overall, 

basal angiosperm species occurred more frequently on volcano-sedimentary substrates (mean 

HO = 20%) than on ultramafic (14%; pairwise t-test with Bonferroni correction; P-value < 

0.05) or calcareous substrates (3%; P-value < 0.05) but at supra-specific levels the difference 

in mean HO between volcano-sedimentary and ultramafic substrates gradually decreased and 

was not statistically significant (P-value = 0.72 at the genus level and P-value = 1.00 at the 

family level).  

4.3.3 Similarities and differences in habitat 

 Habitat marginality (HM) expresses the degree to which the environment that a basal 

angiosperm inhabits differs from the most-occupied habitats, i.e. mesic to moist rainforests 

with slight precipitation and temperature changes and primarily on volcano-sedimentary 

substrates. The HM index was not affected by the number of species per genus (F-test; P-

value = 0.49; N = 18), the number of species per family (P-value = 0.23; N = 10) or the 

number of genera per family (P-value = 0.17; N = 10). Species whose suitable habitat 

deviated the most from these most-occupied environments were members of the family 

Lauraceae, including: Cryptocarya lifuensis (HM = 94%) which is found in dry to mesic 

forests on sedimentary and calcareous substrates; Litsea deplanchei (78%), widespread in 

shrublands along the west coast of Grande Terre; and Cryptocarya leptospermoides (77%), 

exhibiting a patchy distribution within low-elevation dry to mesic forests and shrublands in 

northwestern Grande Terre (Fig. 4.6; distribution maps are presented in Appendix A6).  

 The family Piperaceae was ecologically more marginal (71%) than the locally diverse 

family Lauraceae (68%). Hernandiaceae were ranked third (67.4%) followed very closely by 

Annonaceae (66.9%). In contrast, the least marginal species, Zygogynum pauciflorum (51%), 

Cryptocarya macrodesme (51%) and Zygogynum vinkii (52%), as well as all taxa within the 

least marginal families, Trimeniaceae (54%), Monimiaceae (56%) and Amborellaceae (59%), 

were restricted to most-occupied habitats, with the exception of Hedycarya parvifolia 

(Monimiaceae), also found in ‘maquis’ vegetation (Fig. 4.6). 



 

FIGURE 4.6 Habitat marginality
whether they bear tracheids
vessel elements with simple
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marginality of New Caledonian basal angiosperms. Asterisks
tracheids (*), vessel elements with scalariform perforation

simple perforation plates (***) as indicated in Appendix A4.
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 The four top-ranked families for marginality (Annonaceae, Hernandiaceae, Lauraceae 

and Piperaceae) represented the only basal angiosperm taxa in New Caledonia bearing simple 

perforation plates in their vessels (Fig. 4.6; Appendix A4). In contrast, vesselless 

Amborellaceae and Winteraceae, as well as taxa with scalariform perforation plates 

(Atherospermataceae, Chloranthaceae, Monimiaceae and Trimeniaceae) were on average the 

least marginal and tended to be restricted to similar mesic to moist habitats.  

2.3.4 Distribution of New Caledonian basal angiosperms at the last glacial maximum 

 Across New Caledonia, the CCSM and MIROC global circulation models predicted a 

decrease of annual mean temperature of 1.9°C and 2.1°C and a decrease of annual 

precipitation of 197 mm and 372 mm, respectively. Under these scenarios, basal angiosperm 

habitats shifted eastward during the LGM. Mean habitat area also reduced by 44% (CCSM 

model) to 78% (MIROC model) (Fig. 4.7; Table 4.1). These contractions predicted the 

formation of two potential refugial areas on the east coast of Grande Terre. Using the CCSM 

scenario, the northeastern refugium ranged from Mont Panié in the north to Gwâ Rùvianô 

(1,089 m) in the south, excluding Massif des Lèvres, and the highest species HO reached 68% 

on Mont Aoupinié (Fig. 4.7A). The MIROC scenario yielded a smaller northeastern refugium, 

located more easterly and ranging from Roche de Ouaïeme in the north to Gwâ Pûûkiriwé 

(920 m) in the south, but including Massif des Lèvres (Fig. 4.7B). The highest species HO 

was 53% on Görö Tâné (707 m). The southeastern refugium ranged from Petit Borindi in the 

north to the western Plaine des Lacs in the south according to CCSM, while MIROC again 

predicted a smaller refugium with Mont Ouinné (362 m) as its northern limit (Fig. 4.7). 

Overall, these refugial areas overlapped with the restricted distribution of all narrow-range 

endemic basal angiosperms that currently occur in rainforests (and not in ‘maquis’ vegetation) 

with the only exception of Cryptocarya bitriplinervia (Lauraceae) (Table 4.2). 

2.4 Discussion 

2.4.1 Habitat characteristics of New Caledonian basal angiosperms 

 We identified a range of rainforest locations along the east coast of Grande Terre, 

including Mont Aoupinié, Mont Panié, Plateau de Dogny and the Massif des Lèvres, as areas 

with the most co-occurring basal angiosperm taxa. These sites, hosting up to 62% of basal 

angiosperm taxa included in the SDMs and almost all genera and families, are characterised 



 

by stable wet tropical climates

throughout the year. 

FIGURE 4.7 Distribution of the richness (as expressed by the habitat overlap index) in basal 
angiosperm species under the last glacial maximum (LGM) climate according to the global 
circulation models CCSM (A) and MIROC (B).
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climates that experience moisture-laden south

Distribution of the richness (as expressed by the habitat overlap index) in basal 
angiosperm species under the last glacial maximum (LGM) climate according to the global 
circulation models CCSM (A) and MIROC (B). 
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appears to occur at supra-specific ranks since 95% of the genera and 100% of the families co-

occur in the same rainforest sites while only 59% of the genera and 70% of the families 

within the total native vascular flora are found in rainforests (Morat et al., 2012). 

TABLE 4.3 Maximal habitat overlap (HO) of basal angiosperms found in the different 
vegetation types in comparison to the total vascular flora of New Caledonia. 

Taxonomic level Rainforest Low- to mid-elev. shrubland 
Marsh 

& other wetland 
Dry & sclerophyll 

forest 

Maximal HO of basal angiosperms (%) / Proportion of the total vascular flora (%) 

Families 100/70 44/54 41/30 33/41 
Genera 95/59 32/39 34/18 24/27 

Species 62/62 20/34 20/34 11/10 

Over-representation rate 

Families 1.42 0.81 1.36 0.81 
Genera 1.60 0.83 1.94 0.91 

Species 1.00 0.59 2.30 1.07 

Note: secondary forests and anthropogenic grasslands were not presented as they were merged in 
Jaffré et al. (2012) and divided into two formations in Morat et al. (2012) which precludes a 
comparison. 

 Similar to Winteraceae and Amborella, other basal angiosperm lineages, such as 

Trimeniaceae and Chloranthaceae, possess functionally and structurally tracheid-like ‘basal 

vessels’, that are highly obstructive to hydraulic flow versus other perforation plate types 

occurring across most derived angiosperm lineages (Sperry et al., 2007; Carlquist, 2012; Feild 

& Wilson, 2012). These taxa always co-occur with vesselless angiosperms in New Caledonia. 

Interestingly, we found a similar distributional association for magnoliids bearing vessels with 

scalariform perforation plates. Overall, the high basal angiosperm diversity that occurs in 

New Caledonian humid rainforests, where up to 95% of the genera and 100% of the families 

co-occur, suggests that neither the presence nor absence of vessels is selected for or against in 

such habitats. In contrast, taxa bearing vessels with simple perforation plates displayed 

distributions that extended to dry and mesic forests or open shrublands (Table 4.1; Fig. 4.2). 

Relict angiosperms, and especially those possessing drought sensitive xylem hydraulic 

characteristics (Feild & Wilson, 2012), appear so constrained by vegetation and climatic 

conditions that their abundance on Grande Terre attests to the prolonged climatic stability in 

the region since the time they reached New Caledonia. Such a conclusion is strengthened by 

dated phylogenetic trees of other rainforest-specialist lineages in the families Nothofagaceae, 

Proteaceae and Arecaceae suggesting that rainforests have probably been continuously 

present in New Caledonia for the last 7 My (Pillon, 2012). 
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2.4.2 Reasons for basal angiosperm over-representation in New Caledonia 

 Because ultramafic substrates represent an ecologically challenging environment for 

many plants, such substrates have been posited as a barrier to taxa immigrating to New 

Caledonia from nearby non-ultramafic regions (Jaffré et al., 1987; Pelletier, 2006). Although 

only covering a third of Grande Terre today, ultramafic substrates have been shown to host an 

equivalent number of species and more endemics than volcano-sedimentary substrates, which 

cover almost two thirds of the island (Jaffré, 1993). However, we found no evidence that such 

a hypothesis is supported for the majority of basal angiosperms. New Caledonian basal 

angiosperms occur primarily on volcano-sedimentary substrates. Rainforests, their 

preferential habitats, are two times more prevalent on volcano-sedimentary substrates than on 

ultramafics (Fritsch, 2012; Jaffré et al., 2012). Thus, we suspect that instead of reflecting an 

affinity for a particular substrate, the substrate distribution of basal angiosperms signals a 

predominant preference for rainforest habitats where accumulated soil organic matter buffers 

the ecological effects of underlying bedrock. In contrast, the drought-feeble xylem hydraulic 

systems of most basal angiosperms may be more constraining in more open and drier 

ultramafic shrublands. The hypothesis that basal angiosperms would be better adapted to 

ultramafic substrates than derived angiosperm colonists should be rejected. Our study 

therefore provides evidence that ultramafics are not the only driver of disharmony in the New 

Caledonian flora. Our recovered pattern is clearly distinct from the view drawn from 

gymnosperm and some other angiosperm lineages which are more diverse in the south of 

Grande Terre on ultramafic substrates (Jaffré et al., 2010; Pillon et al., 2010). 

 CCSM and MIROC climate simulations appeared to model well the LGM distribution 

of basal angiosperms in New Caledonia. We conclude this because the modelled refugia of 

basal angiosperms overlaid with a number of Pleistocene rainforest refugia previously 

proposed. Indeed, inferences based on the current distribution of New Caledonian palm 

micro-endemism suggested four Pleistocene rainforest refugia on the east half of Grande 

Terre (Pintaud et al., 2001). More recently, LGM projections of Amborella distribution 

supported by genetic evidence revealed that Pleistocene rainforest refugia overlapped with 

those hypothesized from palm chorology (Poncet et al., 2013). Moreover, our results are 

supported by palynological records showing a continuous presence of rainforest on the Plaine 

des Lacs since c. 90,000 BP (Stevenson and Hope, 2005). 

 The distribution of narrow-range endemics belonging to basal angiosperm lineages 

also supports the location of refugia that we inferred through SDM. In New Caledonia, 
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narrow-range endemism has widely been interpreted as a result of substrate specialisation in 

the past. In Nattier et al. (2013), all species in the grasshopper genus Caledonula occur in the 

southern half of Grande Terre in association with reduced seasonality (BIO 15 < 42%). In our 

study, most basal angiosperms have poor substrate specialisation and are found in the north-

east of the island in association with substantial seasonality (BIO 15 > 42-50%). The 

confrontation of both studies using two different biological models highlights the importance 

of climate seasonality as another probable driver of local endemism in New Caledonia. 

Interestingly, most of narrow-range endemics also remain restricted to rainforests, with the 

exception of taxa bearing vessels with simple perforation plates (Lauraceae) that exhibit wider 

habitat breadth. Environmental requirements of basal angiosperms that we identified from the 

most prevalent half of species occurring in New Caledonia thus appear to apply to c. 75% of 

New Caledonian basal angiosperm taxa. 

 Our study suggests that Pleistocene rainforest refugia might have influenced the 

current over-representation of basal angiosperms in New Caledonia by buffering them from 

recent major climate-driven extinction events that more strongly affected Australia and some 

nearby South Pacific islands (Byrne et al., 2011). Several other regions of the Pacific where 

basal angiosperms are also abundant are also recognised for the persistence of rainforests 

during the late Quaternary through glacial refugia such as in south-east Asia, New Guinea and 

Queensland (Bowler et al., 1976; Wurster et al., 2010; Byrne et al., 2011). 
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Drought vulnerability as a major driver of the 
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1  A version of this chapter is in preparation for submission to New Phytologist. Trueba, S., Pouteau, 
R., Lens, F., Feild, T.S., Isnard, Olson, M.E., Delzon, S. (2016). in preparation 

⋅ Evaluation of basal angiosperms trait-environment relations 

⋅ Drought sensitivity of basal angiosperms 

⋅ Effect of xylem conduit type on drought resistance 
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Abstract  

 
 Basal angiosperm species in New Caledonia are mainly distributed in rainforest habitats. 

Moreover, these habitats may have acted as potential past refugia for basal angiosperm species from 

the archipelago. A main hypothesis is that basal New Caledonian basal angiosperm species are 

restricted to rainforest habitats because of a high vulnerability to drought-induced hydraulic failure. In 

the current context of climate change, increases in drought-induced tree mortality are being observed 

in tropical rainforests worldwide, and are also likely to affect the geographical distribution of tropical 

vegetation. However, the mechanisms underlying the drought vulnerability and environmental 

distribution of tropical species have been little studied.  

 We measured vulnerability to xylem embolism (P50) of 13 tropical basal angiosperm rainforest 

species endemic to New Caledonia with different xylem conduit morphologies. We examined the 

relation between P50 and a range of habitat variables, along with other commonly measured leaf and 

xylem functional traits.  

 Selected basal angiosperm species had P50 values ranging between -4.03 and -2.00 MPa with 

most species falling in a narrow resistivity range above - 2.7 MPa. Embolism vulnerability was 

significantly correlated with elevation, MAT, and percentage of species occurrences in rainforest 

geographic areas. Xylem conduit type did not explain variation in P50. Commonly used functional 

traits such as wood density and leaf traits were not related to P50.  

 Xylem embolism vulnerability behaves as a physiological trait closely associated with the 

distribution of basal angiosperm species in rainforests. Our study suggests that ecological 

differentiation in P50 is decoupled with wood density in rainforest species, meaning that evolutionary 

paths between hydraulic safety and wood density are not forced to coordinate in wet habitats. Finally, 

we underscore the high conservation risk of basal angiosperm species from montane rainforest 

localities in New Caledonia. 

 

 

 

Keywords: basal angiosperms, drought resistance, embolism vulnerability, functional traits, leaf vein 

density, rainforest, vesselless angiosperms, wood density, xylem conduit. 
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5.1 Introduction 

 The previous chapter has shown that basal angiosperms in New Caledonia have a 

preference for rainforest habitats. Moreover, rainforests appear to have acted as refugia for 

basal angiosperm diversity in the archipelago (Pouteau et al., 2015). A major hypothesis is 

that drought sensitivity may restrict most basal angiosperm species to humid and stable 

habitats. However, the persistence of this particular habitat may be threatened by changes in 

climate. Climate projections predict changes in rainfall regimes and soil moisture, forecasting 

more severe and widespread droughts in many areas (Dai, 2013). Global changes in rainfall, 

combined with increased temperature, are likely to cause tree mortality and biogeographic 

shifts in vegetation in many parts of the world (Adams et al., 2009; Allen et al., 2010). 

Moreover, strong shifts in rainfall are expected to affect forest areas of tropical regions 

(Chadwick et al., 2015). Given that an increase in tropical rainforest tree mortality due to 

water stress has already been observed (Phillips et al., 2010) and because most species are 

operating within a narrow hydraulic safety margin (Choat et al., 2012), the survival and 

distribution of tropical rainforest species clearly seem threatened by drought.  

 A major goal in plant ecology is to understand the links between functional traits and 

species distribution (Violle & Jiang, 2009). However, while the distribution of plant species 

along environmental gradients has been well documented, the plant traits and physiological 

mechanisms driving distributions of tropical species are poorly known (Engelbrecht et al., 

2007). The identification of plant traits underlying the distribution of species along 

environmental gradients can be very important in the selection of highly informative key 

ecological traits (Westoby & Wright, 2006). Detecting relevant plant traits and their 

interactions with environmental variables is especially relevant for understanding the likely 

fate of current vegetation types in the context of global climate change (Breshears et al., 2005; 

Allen et al., 2015). Therefore, analyzing key ecophysiological traits related to drought 

vulnerability and plant water use is essential in understanding current and projected future 

distributional patterns of plant species in tropical rainforests. 

 According to the tension-cohesion theory, water transport through xylem is initiated 

by surface tension during leaf transpiration and the integrity of the water column is 

maintained by cohesion between the water molecules and adhesion between the water column 

and xylem conduit walls (Tyree, 1997; Tyree & Zimmermann, 2002). Water movement is 
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prone to dysfunction because significant decreases in xylem pressure can be caused during a 

drought event. Subatmospheric xylem pressures can disrupt the cohesion between the water 

molecules, producing gas bubbles by cavitation (Tyree & Sperry, 1989). Cavitation may result 

in large embolisms inside the xylem conduits, consequently reducing water flow. According 

to the air-seeding hypothesis, such embolisms can propagate from a non-functional conduit to 

a functional conduit through the lateral intervessel pits (Tyree & Zimmermann, 2002; 

Cochard et al., 2009; Delzon et al., 2010). Plant drought resistance can be assessed by 

measuring vulnerability to xylem embolism, and P50, the negative pressure at which 50% of 

hydraulic conductivity is lost, is a commonly used parameter in ecophysiological research. It 

has been shown that vulnerability to embolism (hydraulic failure) is strongly related to 

drought-induced mortality in gymnosperm and woody angiosperm species in both temperate 

and tropical forests (Brodribb & Cochard, 2009; Urli et al., 2013; Barigah et al., 2013; 

Rowland et al., 2015).  

 Given the strong selective force exerted by water stress on vegetation (Brodribb et al., 

2014), the distribution of plant species along environmental gradients can be expected to be 

strongly influenced by their vulnerability to xylem embolisms (Pockman & Sperry, 2000). 

Global meta analyses have shown that embolism vulnerability (P50) is related to climate 

variables such as mean annual precipitation (MAP) and mean annual temperature (MAT) 

(Maherali et al., 2004; Choat et al., 2012). These studies have shown that angiosperms tend to 

have less negative P50 values than gymnosperms, and are thus more vulnerable to xylem 

embolism. Moreover, within the angiosperms, tropical evergreen taxa native to high rainfall 

areas are among the most vulnerable species. Because of the relation between embolism 

resistance and habitat occupation, it has been suggested that xylem embolism vulnerability 

can be useful for distinguishing plant adaptive strategies (Lens et al., 2013; Anderegg, 2015). 

However, tropical rainforest angiosperms, occurring in high rainfall habitats with MAP above 

2000 mm are currently poorly studied. Among the rainforests of the world, the ecology of wet 

rainforests of high-elevation islands is among the least documented in spite of their high 

percentage of endemic species and the vulnerability of their floras (Loope & Giambelluca, 

1998; Kier et al., 2009; Harter et al., 2015). In this study, we analyze embolism vulnerability 

of basal angiosperm rainforest species and its relation to environmental distribution in New 

Caledonia, a megadiverse and highly endemic oceanic archipelago.  

 Because of its high levels of species richness and endemism, New Caledonia is 

recognized as a global biodiversity hotspot (Myers et al., 2000). Previous work has shown 
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that biodiversity hotspots are highly vulnerable to climate change, reinforcing their status as 

global conservation priorities (Malcolm et al., 2006; Bellard et al., 2014). A characteristic 

feature of the New Caledonian flora is an over-representation of  basal angiosperms (Pillon, 

2012). We have demonstrated that Amborella trichopoda Baill. (Amborellaceae) along with 

some 60 other basal angiosperm species endemic to New Caledonia, have a high 

environmental niche overlap in habitats with low evaporative demand characterized by 

moderate diurnal variations in temperature (≤ 7°C) and MAP greater than c. 2000 mm year-1 

(Pouteau et al., 2015). However, the ecophysiological mechanisms behind this habitat 

distribution, and in particular the potential role of vulnerability to drought-induced xylem 

embolism, have not been investigated.  

 Interestingly, these species have a broad diversity of xylem conduit anatomies that 

range from vesselless, tracheid-only wood, to vessel-bearing woods with scalariform and 

simple perforation plates (Fig. 5.1). The wood of some of these taxa (vesselless wood or 

woods with narrow vessels bearing long scalariform perforation plates) is thought to resemble 

conditions primitive with respect to the majority of the angiosperms, which have short, wide 

vessel elements with simple perforation plates (Hacke et al., 2007; Carlquist, 2012; Olson, 

2012). It has been hypothesized that the evolution of vessels may have provided angiosperms 

with increased hydraulic efficiency compared to wood comprising only tracheids (Carlquist, 

1975; Sperry, 2003). However, a possible developmental trade-off during early vessel 

evolution may have increased vulnerability to drought-induced xylem embolism (Sperry, 

2003). Sperry et al. (2007) assessed this hypothesis and showed that vulnerability to 

embolism was higher in species with vessel elements with scalariform perforation plates than 

in vesselless angiosperms, suggesting that early vessel evolution may have been limited to 

wet habitats due to the risk of hydraulic failure in drier environments.  

 Beyond xylem conduit structure, wood and leaf traits have also been suggested as 

being linked with resistance to xylem embolism or drought tolerance. Wood structural 

investment, as quantified in part by wood density (WD), has been suggested to be a predictor 

of drought tolerance, given that some studies found WD to be negatively related to P50 (Hacke 

et al., 2001; Chave et al., 2009; Delzon et al., 2010; Markesteijn et al., 2011). Leaf dry mass 

per unit leaf area (LMA) has been suggested as another key trait reflecting leaf and whole 

plant function (Poorter et al., 2009). It has also been suggested that drought tolerance 

increases with LMA across species (Poorter et al., 2009). Therefore, a reasonable prediction 

might be that LMA should be negatively related to embolism vulnerability in rainforest 
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rainforest species. Explaining the environmental distribution of insular rainforest s
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differentiation by drought resis

FIGURE 5.1 Illustration of basal angiosperm xylem conduit morphologies as seen in radial 
view with scanning electron microscopy. (A
in Cryptocarya aristata. (B) Vessel elements with scalariform perforation plates in 
cupulata. (C) Tracheids with many, distinctly bordered pits in 
bar, 80 µm for a and b, 100 µm for c.

5.2 Materials and Methods

5.2.1 Study site, plant material, and sampling

 New Caledonia is an archipelago located north of the Tropic of Capricorn in the 

southwest Pacific Ocean (Fig. 5.2 inset). The main 

central mountain range that runs along the entire island. The highest points are Mt. Panié 

(1628 m) in the north (Fig. 5.2)

Drought vulnerability of New Caledonian basal angiosperms 

108 
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a tropical climate with a marked dry season from June to November. As a consequence of 

Grand Terre's topography and the resulting rain shadow effect, MAP ranges from 800 mm yr-

1 along the western coastal plains to 4500 mm yr-1on the eastern slopes of the mountain chain 

(Météo-France, 2007) (Fig. 5.2). Mean annual temperature in lowland areas is between 27 and 

30 °C but varies along the elevational gradient with an environmental lapse rate of c. 0.6°C 

/100 m elevation (Maitrepierre, 2012). Grande Terre is mainly covered by substrates derived 

from volcano-sedimentary rocks but the southern third of the island and some isolated massifs 

of the northwestern coast have substrates derived from ultramafic rocks (Fritsch, 2012). A 

combination of climate, substrate, and human-induced disturbance determines the presence of 

different vegetation types in New Caledonia. Terrestrial vegetation types are commonly 

classified into low-elevation scrubland (known as maquis), savanna, rainforest, summit 

shrubland, and dry sclerophyll forest. Rainforest, the most species-rich vegetation type, with 

more than 2,000 native vascular plant species, now covers c. 3,800 km2 on the main island 

(Birnbaum et al., 2015) (Fig. 5.2). The diversity of habitats in New Caledonia, along with the 

extensive cover of rainforest, provide an ideal context for testing changes of plant traits over 

environmental gradients. 

 

FIGURE 5.2 Map of New Caledonia with rainforest, elevation, and rainfall distributions along 
the main island. Sampled rainforest localities are indicated in the map. See figure 1.7 for a 
detailed representation of each environmental variable.  
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TABLE 5.1 Xylem embolism vulnerability parameters, and functional traits of 13 insular basal angiosperm rainforest species. 

Species Family Conduit type P12 
(MPa) 

P50 
(MPa) 

P88 
(MPa) 

Slope 
(% MPa -1) 

WD 
 (g cm-3) 

VD 
(mm mm-2) 

LMA  
(g m-2) 

Amborella trichopoda Amborellaceae tracheid -2.3 -2.7 -3.0 177.2 0.508 3.7 93.1 

Ascarina rubricaulis Chloranthaceae vessel (scal) -1.6 -2.2 -2.9 97.5 0.472 4.7 106.7 

Cryptocarya aristata Lauraceae vessel (sim) -0.8 -2.0 -3.2 43.9 0.542 8.6 174.9 

Hedycarya cupulata Monimiaceae vessel (scal) -1.5 -3.2 -4.9 31.1 0.540 5.4 76.2 

Hedycarya parvifolia Monimiaceae vessel (scal) -2.0 -3.1 -4.1 48.8 0.590 6.3 112.0 

Kibaropsis caledonica Monimiaceae vessel (scal) -1.6 -2.4 -3.3 65.8 0.682 5.8 117.2 

Nemuaron viellardii Atherospermataceae vessel (scal) -1.4 -2.3 -3.2 61.8 0.629 5.3 173.1 

Paracryphia alticola Paracryphiaceae vessel (scal) -0.8 -2.1 -3.4 40.2 0.630 2.3 86.0 

Quintinia major Paracryphiaceae vessel (scal) -0.9 -2.5 -4.0 33.3 0.652 7.5 214.5 

Zygogynum acsmithii Winteraceae tracheid -2.4 -2.7 -3.0 173.0 0.583 4.8 142.9 

Zygogynum crassifolium Winteraceae tracheid -3.6 -4.0 -4.5 125.8 0.674 5.8 309.3 

Zygogynum stipitatum Winteraceae tracheid -2.2 -2.4 -2.7 214.0 0.455 4.8 85.7 

Zygogynum thieghemii Winteraceae tracheid -1.9 -2.2 -2.5 168.2 0.608 5.0 216.3 

 

Note: "scal" means that the vessels consist of elements with scalariform perforation plates; "sim" refer to vessel elements with simple perforation plates. 



    

 

 We studied xylem embolism vulnerability of 13 woody rainforest species endemic to 

New Caledonia (Table 5.1). Species were selected to represent a diversity of xylem conduit 

anatomies (Fig. 5.1). Additionally, we based our sampling on the results presented in Chapter 

4 to represent New Caledonian basal angiosperm species with different levels of habitat 

marginality (i.e. occupation of distinct habitats). Our sampling also included two rainforest 

phylogenetically basal eudicots with long scalariform perforation plates (Paracryphiaceae; 

Table 5.1), a condition though to be primitive with respect to the simple perforation plates 

found in most angiosperms. The diversity of xylem conduit morphologies spanned by our 

sampling enabled us to test possible differences in embolism vulnerability between co-

occurring vessel-bearing and vesselless angiosperms. Individuals were collected at five 

rainforest locations of Grande Terre: Mt. Aoupinié, Mt. Dzumac, Mt. Humboldt, Pic du Pin, 

and Wadjana (Fig. 5.2). Maximum vessel lengths were assessed on five branches per species 

by injecting air at 2-bars and cutting the distal end of the water-immersed stem section until 

the air bubbles emerged. This procedure allowed us to select species with suitable vessel 

lengths to avoid a potential open-vessel artifact (Martin-StPaul et al., 2014).   

5.2.2 Measurements of embolism vulnerability 

 We collected 15 sun exposed branches per species. Branches were immediately 

defoliated and wrapped in moist paper, sealed in plastic bags and stored in the dark for 

transport. Prior to taking measurements, branches were debarked and cut to a standard length 

of 27 cm. Xylem embolism resistance was measured using a Cavitron, a centrifugation-based 

apparratus that lowers the negative pressure in xylem segments while simultaneously 

measuring hydraulic conductance (Cochard, 2002; Cochard et al., 2005). We followed Delzon 

et al. (2010) for the test procedure. The percentage loss of conductance (PLC) of the stems 

was measured in 0.5 MPa pressure steps using the software Cavisoft v4.0, which calculates 

PLC with the following equation: 

./0	 = 100	 ×	$1 − 2
2�34- 

where K is the stem conductance at a given pressure and Kmax (m
2 MPa-1 s-1) is the maximum 

conductance of the stem, calculated under xylem pressures close to zero. Using the increase in 

PLC with decreasing pressure, we can produce vulnerability curves (VC) for each branch 

(Fig. 5.3). VCs were fit with a sigmoid function (Pammenter & Van der Willigen, 1998) using 

the next equation: 
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./0	 = 100
51 + exp: ;25 × �. − .>,
?@

 

 Where S (% MPa-1) is the slope of the vulnerability curve at the inflexion point and P50 

(MPa) is the xylem pressure inducing 50% loss of conductance. The slope of the vulnerability 

curve (S) is a good indicator of the speed at which embolisms affect the stem (Delzon et al., 

2010). Additionally, we used our VCs to calculate P12 and P88, which are respectively the 

12% and 88% loss of conductance. P12 and P88 are physiologically significant indexes given 

that they are thought to respectively reflect the initial air-entry tension producing embolisms, 

and the irreversible point of no return (Urli et al., 2013). 

 

FIGURE 5.3 Illustration of a vulnerability curve (VC). VC of Amborella trichopoda showing 
decreasing hydraulic conductivity with decreasing xylem pressure. P12, P50, and P88 are 
indicated with horizontal lines. VCs were produced for 13 species, mean values are available 
in Table 5.1. 

5.2.3 Measurements of stem and leaf functional traits 

 Wood density (WD, g cm-3) was calculated using 4 cm long wood segments, from five 

branches sampled for embolism resistance measurements. Wood volume was calculated using 

the water displacement method. We oven-dried wood samples at 70°C for a minimum of 72 h 

until constant mass. WD was calculated as dry mass over fresh volume.  We measured leaf 

mass per area (LMA, g m-2) on 15 leaves, petioles included, borne by the branches used for 

embolism vulnerability measurements. Leaves were scanned using a portable scanner 
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(CanoScan LiDE 25, Canon, Japan). Leaf area was calculated from the scanned images using 

ImageJ 1.47v. (NIH Image, Bethesda, MD, USA). Leaves were then oven-dried at 70°C for 

72 h, and weighted for LMA calculations. LMA was calculated as the leaf dry mass over leaf 

area. Leaf vein density (VD in mm mm-2), also known as leaf vein length per unit leaf area, 

was measured on five additional leaves. Sections of leaf tissue (c. 2 cm2) were cut from the 

middle third of the lamina. Leaf sections were cleared in 5% NaOH and rinsed with distilled 

water. Clearing time varied from 20 to 72 hours depending on the species. After clearing, leaf 

veins were stained using 0.1% aqueous toluidine blue for 5-10 min, and mounted in a glycerol 

solution. We imaged the mounted sections at 5x using a light microscope (Leica DM5000B; 

Leica Microsystems, Wetzlar, Germany). Vein lengths on digital images were measured using 

ImageJ 1.47v.  

5.2.4 Species environmental distribution 

 Species distribution was obtained from occurrence records in two datasets: (1) the 

New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN) made up of 201 

plots measuring 20 m x 20 m (Ibanez et al., 2014), and 8 additional plots measuring 100 m x 

100 m distributed across rainforests of Grande Terre; and (2) voucher specimens of the 

Herbarium of the IRD Center of Noumea (NOU). The mean number of occurrences per 

species was 71. The species with the fewest number of collections was Zygogynum acsmithii 

(Winteraceae) with 14 occurrences and the most collected species was Hedycarya cupulata 

(Monimiaceae) with 171 occurrences. When several occurrences were located within a 

distance of 500 m, we kept a single occurrence positioned at the centroid to avoid 

overweighting locations that have been oversampled. For each location, five environmental 

metrics were computed: (1) MAP to test whether the association between P50 and rainfall 

observed at a global scale (Maherali et al., 2004; Choat et al., 2012) also applies at the island-

wide scale; (2) MAT to test whether the association between P50 and temperature observed at 

a global scale (Maherali et al., 2004; Choat et al., 2012) applies at the island-wide scale; (3) 

mean temperature of the driest quarter (MTDQ) to quantify species tolerance to drought and 

heat stress that peaks during the driest period characterized by a high evaporative demand; (4) 

elevation as a driver of the fine-scale distribution of climate on high-elevation islands; and (5) 

the frequency of occupation of rainforest habitats as a proxy of micro-climatic conditions, 

such as local water availability, light exposure, and disturbance regimes tolerated by the 

selected species. MAP data were extracted from a 1 km-resolution grid produced by Météo-

France through the AURELHY model by interpolating rainfall records from 1991 to 2000 
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(Météo-France, 2007). MAT and MTDQ data were extracted from the WorldClim database 

(Hijmans et al., 2005). Elevation was derived from a 10 m-resolution digital elevation model 

(DEM) provided by the Direction des Infrastructures, de la Topographie et des Transports 

Terrestres (DITTT) of the Government of New Caledonia. Each location was associated with 

the appropriate pixel on which it was centered. Finally, percentage of occurrence in rainforest 

was estimated using a vegetation map in the form of a shapefile published in the Atlas of New 

Caledonia (Jaffré et al., 2012). 

5.2.5 Data analysis  

 To recognize groups of species with similar embolism vulnerabilities, we used one-

way ANOVAs with post-hoc Tukey's HSD using 95% confidence intervals to compare P50 

values, along with other embolism vulnerability indexes across species. Independent t-tests 

were used to compare embolism vulnerability parameters between vessel-bearing and 

vesselless species. Linear regressions were used to determine the relationship of P50 with 

environmental data. Regression lines are shown only when relationships were significant. 

Pearson's correlation analyses were used to evaluate the relationship between xylem 

embolism vulnerability, leaf and stem functional traits, and environmental correlates of 

species distribution. Correlations were considered as significant at P < 0.05. Finally, to place 

the New Caledonian rainforest species in a global perspective, we combined our data with the 

worldwide dataset of Choat et al. (2012). To confirm a link between MAP and P50 at a global 

scale, we estimated this relationship by assessing a linear relationship on log10-transformed 

data. To facilitate the log10 transformation of P50 values, we used the method of Maherali et al. 

(2004) converting P50 values from negative to positive prior to data transformation. All 

analyses were performed using R v.3.1.2 (R Development Core Team, 2014). 

5.3 Results 

5.3.1 Xylem embolism vulnerability of New Caledonian basal angiosperms  

 P50 varied two-fold across species (Fig. 5.4), with significant inter-specific variation (F 

= 28.34; P < 0.001) (Fig. 5.4). Similar significant variation in P12 (F=30.63; P < 0.001), P88 

(F=23.54; P < 0.001), and vulnerability curve slopes (F=14.82; P < 0.001) was observed 

across species. Mean P50 of rainforest angiosperms was -2.60 MPa, with most species falling 

into a narrow range of P50 values between -2.0 and -2.7 MPa (Fig. 5.4). The highest P50 was -

2.0 MPa for Cryptocarya aristata. Both Hedycarya species had a similar vulnerability level 
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FIGURE 5.4 P50 , xylem pressure inducing 50% loss in conductance, of 13 basal angiosperm 
species. Different letters indicate significant differences between species at 
Standard errors are represented by bars.
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-3.0 MPa. Zygogynum crassifolium had the lowest 

MPa, standing out from the rest of the species (Fig. 5.4). Slopes of the vulnerability curves, 

which reflect the rate at which embolisms occur, varied seven-fold across species (Table 5.1), 

31 % MPa-1 recorded for Hedycarya cupulata, and the steepest slope 

Zygogynum stipitatum. The three embolism vulnerability indexes 

, which indicate xylem tensions at which different percentages of 

c conductivity are lost, all correlated well with one another. P50 

(r = 0.76; P = 0.002) and P88 (r = 0.72; P = 0.004), suggesting that 

embolism vulnerability acts similarly at different drought intensities. P50 

with the cavitation curve slope (r = -0.05; P = 0.85), suggesting that the speed of embolism 

occurrence is not related to embolism resistance across the sampled species. 

xylem pressure inducing 50% loss in conductance, of 13 basal angiosperm 
species. Different letters indicate significant differences between species at 
Standard errors are represented by bars. 
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FIGURE 5.5 Box plot of embolism vulnerability indexes for vessel
vesselless species. Boxes show the median, 25th and 75th percentiles, and bars indicate 
maximum/minimum values. Significant differences of embolism vulnerability indexes at 
0.05 between conduit morphologies are indicated with an asterisk.
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vulnerable to xylem embolism. P50 was negatively associated with MAT (Fig. 5.6c). 

also related to species distribution variables and MAT (Table 5.2). Both 

correlated with the MTDQ (Table 5.2). For other stem and leaf traits, significant relationships 

were detected only between LMA and rainforest occupancy (Table 5.2). Embolism 

vulnerability indexes were the only biological variable that correlated with more than one 

environmental variable (Table 5.2). Vulnerability to embolism was not associated with MAP 

within our group of species (Fig. 5.6d; Table 5.2). The probability of an association between 

and MAP was marginally significant (P = 0.0509) when considering a 5% significance 

level. The relationship between P50 and MAP became significant when including our data in 

MAP dataset of Choat et al. (2012), suggesting that New Caledonian rainforest 

scale relationship (Fig. 5.7).   

Relationships between proportion of occurrences in rainforest (A), elevation (B
re (C), mean annual precipitation (D), and vulnerability to embolism 

) of insular rainforest species. Points represent mean values per species. ns = non 
 P ≤ 0.05; ** P ≤ 0.01. 
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TABLE 5.2 Correlations of environmental variables with embolism vulnerability parameters 
and functional traits 

  
MAP 
(mm) 

MAT 
(°C ) 

MTDQ 
(°C ) 

Elevation 
(m) 

Rainforest 
occupancy 

(%) 
P12 (MPa) r 0.48 -0.65 -0.71 0.69 0.64 

 P 0.094 0.016 0.006 0.008 0.017 
P50 (MPa) r 0.55 -0.56 -0.65 0.61 0.68 

 P 0.051 0.044 0.015 0.025 0.009 
P88 (MPa) r 0.33 -0.18 -0.25 0.21 0.37 

 P 0.263 0.559 0.401 0.484 0.213 
Slope (% MPa-1) r -0.15 0.40 0.36 -0.41 -0.07 

 P 0.630 0.180 0.232 0.164 0.816 
WD (g cm-3) r 0.36 -0.24 0.07 0.24 -0.48 

 P 0.22 0.422 0.816 0.431 0.092 
VD (mm mm-2) r -0.38 0.24 0.28 -0.16 -0.27 

 P 0.200 0.420 0.348 0.588 0.376 
LMA (g m-2) r -0.06 0.003 0.30 -0.02 -0.71 

 P 0.839 0.990 0.321 0.934 0.006 
 
Pearson's correlation coefficients (r) and P-values (P) of bivariate cross-correlations. Bold values 
indicate significant correlations at P ≤ 0.05. Abbreviations: MAP, mean annual precipitation; MAT, 
mean annual temperature; MTDQ, mean temperature of the driest quarter; WD, wood density; VD, 
leaf vein density; LMA, leaf mass per area.  

5.3.3 Relationships between vulnerability to embolisms and leaf and xylem functional 

traits 

 P50 was not associated with any of the wood and leaf functional traits. WD scaled 

negatively with P50, but the relationship was not significant (r = -0.24; P = 0.435). Similarly, 

LMA was not correlated with P50 (r = -0.37; P = 0.214). VD was not related to P50 (r = -0.06; 

P =0.840). P12 and P88 were also not associated with any of the traits measured (not shown). 

5.4 Discussion  

5.4.1 Association between xylem embolism vulnerability and habitat occupation of New 

Caledonian basal angiosperms  

 A main result of our investigation is that vulnerability to xylem embolism correlates 

with the percentage of occupancy of the rainforest by angiosperm species. Indeed, P50 

explained 47% of the occurrence of angiosperm species in rainforest areas (Fig. 5.6a), 

suggesting that embolism vulnerability influences habitat occupation even within a moderate 

latitudinal gradient. For instance, species such as Amborella trichopoda, which occurs with a 

frequency of 82% in rainforest, may be restricted to moist habitats because of the risk of 
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suffering hydraulic failure in drier locations. Moreover, Zygogynum crassifolium, the species 

with the most highly negative P50 in our study and thus the most drought-resistant (Fig. 5.4), 

has the lowest occurrence in rainforest areas (24%). It thus appears that higher resistance to 

xylem embolism allows this species to occur on both rainforest and drier habitats such as 

scrublands. It has been shown that mean trait values of plant species correspond to their 

position along environmental gradients (Violle & Jiang, 2009). The occurrence of species 

with high embolism resistance in drier habitats likely reflects the importance of resistance to 

xylem embolism as an adaptive response to water-stress (Maherali et al., 2004). For instance, 

Callitris tuberculata, the species with the highest embolism resistance ever measured (P50  = -

18.8 MPa), inhabits extremely dry areas of western Australia in zones with MAP as low as 

180 mm at its most extreme margin (Larter et al., 2015). At the other end of the embolism 

vulnerability spectrum are species from moist habitats such as the tropical rainforest, which 

experience xylem embolisms under much less negative xylem pressures (Choat et al. 2012).  

 Our work provides the first evidence of a relation between species elevational 

distribution and embolism vulnerability, with highland species being more vulnerable to 

xylem embolism (Fig. 5.6b). For instance, Paracryphia alticola, the second most vulnerable 

species measured here (Fig. 5.4), had the highest elevational range (mean = 1011 m). This 

relation between species elevational range and embolism vulnerability, along with the 

negative relation between embolism resistance and MAT (Fig. 5.6c), has very important 

conservation implications for the flora of the New Caledonian rainforest. Temperature 

increases have already been recorded in New Caledonia over the last three decades at a rate of 

0.25°C per decade. Using the same rate, local climate models suggest that MAT could 

increase by c. 2.5 °C over the next century (Cavarero et al., 2012). Upward shifts of 

organisms' elevational distribution are expected as climate changes (Walther et al., 2002; 

Parmesan & Yohe, 2003) and have already been documented in temperate forest plants 

(Lenoir et al., 2008; Urli et al., 2014). Extensive upslope shifts toward cooler areas have also 

been documented by several studies of tropical plant species, indicating that this displacement 

is already ongoing within the tropics (Colwell et al., 2008; Feeley et al., 2011; Feeley et al., 

2013; Morueta-Holme et al., 2015). Given that temperature-induced upward shifts in species 

distribution are ultimately restricted by dispersal and resource availability (Walther et al., 

2002), montane-rainforest angiosperms can be assumed to have a limited ability to respond to 

increasing temperatures because of a reduced range to disperse into suitable microrefugia. 

Populations of New Caledonian rainforest angiosperms restricted to high elevational ranges, 
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which have the lowest drought resistances, could therefore be at significant conservation risk 

if temperature keeps increasing at the same pace.   

 Previous analyses have shown that average annual rainfall explains species embolism 

vulnerability across biomes (Brodribb & Hill, 1999; Maherali et al., 2004; Choat et al., 2012). 

Among the environmental variables analyzed in our study within a single biome, MAP was 

the only one marginally related to embolism vulnerability (P = 0.0509; Fig. 5.6d). This 

discrepancy in the relationship linking P50 and MAP likely stems from the difference in scale 

between global approaches and our island-wide study. At such a fine scale, the MAP raster 

we used probably had a resolution (1 km) too coarse to render the actual amount of water 

available for plants, which depends on microclimatic effects that were better captured by fine-

scale layers such as the DEM and the rainforest map. In addition, averaged variables such as 

MAP appear to be of lower predictive power than extreme climate variables like MTDQ, 

which are recognized as good predictors of species distribution as they are related to plant 

mortality (Zimmermann et al., 2009). Finally, we can question the ability of the MAP raster 

interpolated from 121 points (i.e., one meteorological station per 150 km²), most of which are 

located at low elevation, to account for the complex distribution of MAP resulting from a 

double gradient of elevation and windwardness.  

 In contrast to MAP, the distribution of MAT is much easier to estimate because it 

arises from a single elevational gradient through the environmental lapse rate (Maitrepierre, 

2012). In spite of the lack of relation between MAP and embolism vulnerability at the island-

wide scale, a strong relationship was detected between both variables when including our data 

in the global dataset of Choat et al. (2012) (Fig. 5.7). Our study increases the representation of 

angiosperm species from humid habitats, which were less represented in that study as 

compared to plant species from habitats with lower rainfall regimes (Fig. 5.7). We show that 

species endemic to the rainforest of New Caledonia fit the pattern described by this global 

sample, occupying one of the ends of the embolism vulnerability range (Fig. 5.7). This 

finding confirms that within continental and island ecosystems, high embolism vulnerability 

is observed in species growing in high rainfall conditions. 



 

FIGURE 5.7 Vulnerability to embolism as a function of mean annual precipitation (MAP) at a 
global scale. The 13 New Caledonian basal angiosperm species analyzed in this study fit the 
global pattern of P50-MAP. Different symbols represent gymnosperm species (open circ
angiosperm species (gray circles), and New Caledonian rainforest angiosperm species (black 
circles). Inset: Negative relationship between MAP and embolism resistance using log
transformed data. P50 values were converted from negative to positive to
transformation. The coefficient of determination corresponds to the relationship after log
transformation. Additional data obtained from Choat et al. (2012). ***
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hypothesis that vessel evolution was driven by selection for increasing efficiency in water 

conductivity.  

 With regard to water transport safety, it has been suggested that species bearing vessel 

elements with scalariform perforation plates are more vulnerable than tracheid-bearing 

angiosperms (Sperry et al., 2007). However, we did not observe significant differences in 

embolism vulnerability between vesselless and vessel-bearing angiosperms (Fig. 5.5). Only 

slight differences were observed at the onset of embolism formation (P12), with vessel-bearing 

species being less resistant (Fig. 5.5). This suggests a lack of differentiation in embolism 

vulnerability across species with different xylem conduit anatomies, with slight differences at 

low xylem tensions. The low values of embolism resistance in species with "primitive" 

vessels, and the lack of differentiation of embolism resistance between tracheids and vessels, 

supports the hypothesis that angiosperm vessels could not have evolved in xeric habitats 

because of limitations caused by embolism risk (Sperry et al., 2007; Carlquist, 2012). Despite 

suffering xylem embolisms at less negative pressures, vessel-bearing species had much lower 

embolism vulnerability curve slopes compared to vesselless species, suggesting that after the 

start of cavitation, embolism propagation proceeds slower in vessel-bearing species. Current 

research highlights the great importance of xylem ultrastructure, with characters such as pit 

membrane structure playing a key role in embolism resistance (Lens et al., 2011; Lens et al., 

2013; Jansen & Schenk, 2015; Schenk et al., 2015). The lack of differentiation in embolism 

resistance between vesselless and vessel-bearing angiosperms suggests that evolutionary 

changes in xylem conduit types are not associated with ultrastructural anatomical changes. 

Further research on ultrastructural characteristics of interconduit pits would be needed in 

order to discern which xylem properties allow variation in embolism vulnerability in tropical 

rainforest angiosperms with primitive xylem conduits. 

5.4.3 Weak association between xylem embolism vulnerability and common functional 

traits in a tropical rainforest 

 It has been shown that, to maintain a safe water conductivity under substantial 

negative pressures, the investment in the cell walls of conduits and fibers is increased, 

resulting in increases of wood density (Hacke et al., 2001). In this sense, previous studies 

have proposed a negative relation between P50 and wood density in angiosperm species 

(Jacobsen et al., 2005; Pratt et al., 2007; Hao et al., 2008; Markesteijn et al., 2011). 

Surprisingly, despite being negatively related, we did not find a significant association 
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between wood density and embolism vulnerability in our sample of New Caledonian 

rainforest species. Significant negative relationships between WD and P50 showed in previous 

studies were obtained from measurements of nine (Pratt et al., 2007) and six (Jacobsen et al., 

2005) chaparral species. Using the same number of species that we studied here, Markesteijn 

et al. (2011) showed a strong negative relation between WD and P50 in species of tropical dry 

forest, another drought-prone biome. Finally, Hao et al. (2008) showed a negative relation 

between WD and P50 when considering ten species from savanna and forest, which are very 

contrasting environments. Hacke et al. (2001) showed that the relationship between P50 and 

wood density across a wide range of species is curvilinear. In their analysis, the slope of the 

curve is lower in species with wood densities between 0.4 and 0.7 g cm-3, corresponding to 

the WD values of the species measured in this study (Table 5.1). The curve then becomes 

much steeper with increasing embolism resistance, corresponding to wood density values 

above c. 0.7 g cm-3. This suggests a lack of selective pressure for greater structural investment 

to increase conductive safety in the wood of tropical rainforest species. Wood structure can 

therefore be modulated for diverse competitive functions in environments where water stress 

does not exert an important pressure. 

 Higher values of leaf mass per unit area (LMA) in drier environments reduce leaf 

water loss by the increase of leaf tissue density or thickness (Wright et al., 2002). Therefore, 

the higher LMA values observed in drought-exposed species can be considered to represent 

an adaptive response to water stress operating at the leaf level (Niinemets et al., 1999). This is 

supported by several studies showing that LMA increases with water stress (Cunningham et 

al., 1999; Fonseca et al., 2000; Wright et al., 2002; Jordan et al., 2013). A relation between 

xylem embolism vulnerability and LMA could be expected, since both traits are related to 

plant drought resistance. However, our study shows that LMA and P50 are decoupled in New 

Caledonian rainforest species. This result agrees with similar findings showing the lack of a 

relationship between P50 and LMA (or SLA) in Neotropical dry forests (Markesteijn et al., 

2011; Méndez-Alonzo et al., 2012). Moreover, it has been shown that leaf life span, which is 

strongly related to LMA (Wright et al., 2004), is not related to P50 in plants of an Asian 

tropical dry forest (Fu et al., 2012). Furthermore, Maréchaux et al. (2015) found no 

significant relationship between LMA and leaf water potential at turgor loss point, a leaf-level 

indicator of drought tolerance. The lack of relationship between LMA and embolism 

vulnerability observed in rainforest species and within drier habitats (Markesteijn et al., 2011; 

Méndez-Alonzo et al., 2012) suggests that the two traits are not evolutionarily coordinated. 
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The absence of a relationship between a key hydraulic trait such as xylem embolism 

resistance and typically measured functional traits such as WD and LMA forewarn further 

research on the risk of using these traits as indicators of drought tolerance. 

 It has been shown that P50 is positively related to photosynthetic capacity among 

conifer species (Pittermann et al., 2012). Moreover, according to the so-called hydraulic 

safety-efficiency tradeoff hypothesis, safety in hydraulic conductivity should be selected 

against conductive efficiency (Zimmermann, 1983). The second foliar considered in our 

study, leaf vein density (VD), has been shown to be strongly positively related to functions 

such as leaf hydraulic conductivity and photosynthetic capacity (Brodribb et al., 2007; 

Brodribb et al., 2010; Feild & Brodribb, 2013; Sack & Scoffoni, 2013). In this sense, a 

positive relation between VD and P50 can be expected, with conductive-efficient species also 

being more vulnerable. However, this correlation was the weakest of those involving the traits 

measured in our study. In support of the safety-efficiency hypothesis, several studies have 

shown a tradeoff between stem hydraulic conductivity and embolism vulnerability (Pockman 

& Sperry, 2000; Martínez-Vilalta et al., 2002; Sperry et al., 2008; Zhu & Cao, 2009; 

Markesteijn et al., 2011).  

 In a large scale analysis, Maherali et al. (2004) did not detect a correlation between 

xylem-specific hydraulic conductivity and P50 when exclusively considering angiosperm 

species. More recently, a global meta-analysis by Gleason et al. (2015) has shown that there is 

a weak tradeoff between hydraulic safety and efficiency. In this regard, previous studies have 

shown that leaf P50 and leaf hydraulic efficiency, a trait which is strongly related to VD, are 

not correlated in woody species across different biomes (Blackman et al., 2010; Nardini & 

Luglio, 2014). Our results provide evidence of the lack of such a tradeoff within New 

Caledonian rainforest species, which show low hydraulic efficiency, as reflected by their low 

values of VD, but also low embolism resistance. Gleason et al. (2015) have recently shown 

that many species share this profile, having both low hydraulic efficiency and safety. Future 

research would be needed to identify the environments favouring the presence of species with 

this apparently non-optimal hydraulic profile. 

 Current plant ecological research focuses on the measurement of phenotypic attributes 

that influence plant fitness within local environments (Westoby & Wright, 2006). By using 

this functional approach, several structural traits have been proposed as indicators of drought 

tolerance. However, it has been stressed that the use of easy-to-measure traits, such as LMA, 

as indicators of drought tolerance is controversial and can potentially yield misleading results 
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(Delzon, 2015; Maréchaux et al., 2015). Among the traits measured in our study, xylem 

embolism resistance was the most closely related to environmental variables (Table 5.2), 

being associated with the ecological differentiation of tropical angiosperms. Plant hydraulic 

physiology is strongly linked with photosynthetic assimilation and derived carbon uptake 

(Brodribb, 2009). Drought-induced rainforest dieback may therefore alter the primary 

production and functional composition of one of the richest ecosystems of the world, 

consequently diminishing extensive amounts of biomass and carbon storage (Malhi et al., 

2009; Phillips et al., 2009; Phillips et al., 2010). It has recently been proposed that hydraulic 

failure is the main underlying mechanism of rainforest tree mortality (Rowland et al., 2015). 

Xylem embolism resistance may thus play a major role in the maintenance of primary 

productivity and plant function (Brodribb, 2009). Our findings emphasizes the importance of 

incorporating key ecophysiological traits such as xylem embolism resistance into process-

based models in order to estimate the response mechanisms of vegetation to global climate 

change. 
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 This chapter summarizes our main results. Moreover, we provide novel insights into: 

I) the ancestral form, function and ecology of angiosperms; II) the evolution of angiosperm 

xylem conduits and its ecological implications; III) the natural history of New Caledonia and 

the disharmony of its flora; and IV) the conservation of the New Caledonian flora. Finally, we 

provide main concluding remarks and research perspectives. 

6.1 Insights into the form, function, and ecology of early flowering plants 

 The ancestral form, function, and ecology of angiosperms, and the influence of these 

characteristics on the rise of the ecological dominance of angiosperms, are some of the 

aspects of flowering plant evolution that remain uncertain (Feild et al., 2009). Several 

hypotheses have been proposed using extant species as modern analogs of the early 

angiosperms. The 'paleoherb' hypothesis (Taylor and Hickey, 1992; Taylor and Hickey, 1996) 

is supported by a cladistic analysis that placed the families Chloranthaceae and Piperaceae as 

the first divergent lineages of the angiosperm tree. Using this topology, a reconstruction of the 

ancestral secondary growth of angiosperms was performed, suggesting that the 

protoangiosperm was a "diminutive, rhizomatous to scrambling perennial herb". The long-

standing paleoherb hypothesis has been supported by the observation of paedomorphic wood 

features in Piperales (Carlquist, 1993; 1995), suggesting an herbaceous ancestral habit. The 

assumption of Piperales as a secondarily woody lineage has persisted over almost two 

decades (Spicer and Groover, 2010). However, the ancestral habit of Piperales remained very 

ambiguous and previous studies have alternatively coded Piperales as 'herbaceous', 'woody', 

or 'secondarily woody' (Kim et al., 2004; Feild and Arens, 2005; Spicer and Groover, 2010).   

 By performing the most extensive overall synthesis to date of the anatomical 

organization and cambial activity of Piperales, the largest basal angiosperm order, we propose 

that the common ancestor of Piperales had an active bifacial cambium and a truly woody 

habit (Trueba et al., 2015). Therefore, our results challenge the long-held vision of secondary 

woodiness in Piperales and contrast with the paleoherb hypothesis. As stressed above, wood 

paedomorphisms (sensu Carlquist 1962; 2009) have been proposed as anatomical evidence of 

secondary woodiness in Piperales. However, our study suggests that instead of being an 

evidence of secondary woodiness, wood characters pointing to protracted juvenilism, such as 

raylessness and multiseriate rays, could be the result of anatomical adaptations to specific 

growth habits such as the woody herb habit of Saruma or the cane-like shrub habit of Piper 

(see Chapter 3 for a detailed explanation). Additionally, the exhaustive review of Lens et al. 
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(2013) has shown examples of primarily woody taxa that exhibit paedomorphic wood 

features. By showing the lack of a relation between wood paedomorphisms and secondary 

woodiness, we challenge the use of paedomorphic features as reliable evidence of herbaceous 

ancestry. The hypothesis of an herbaceous ancestor of the angiosperms, which is based on 

Piperaceae as a modern analog (Taylor and Hickey, 1992; Taylor and Hickey, 1996), seems 

very unlikely given that our optimization proposes that the putative ancestor of Piperales had 

a woody habit.  

 Recent changes in the topology of the angiosperm phylogenetic tree have greatly 

influenced hypotheses about the form and function of the earliest flowering plants. Sun et al. 

(2002) proposed that early angiosperms were aquatic herbs growing in stable habitats similar 

to modern Nymphaeales and Ceratophyllum. This hypothesis is supported by fossil evidence 

of herbaceous aquatic angiosperms (Sun et al., 1998; Sun et al., 2002; Gomez et al., 2015). 

However, it has been proposed that aquatic angiosperms were derived from plants that 

previously occupied terrestrial environments (Philbrick and Les, 1996). Moreover, recent 

studies have proposed that Nymphaeales, Ceratophyllum and monocots are herbaceous 

lineages derived from woody ancestors (Kim et al., 2004; Spicer and Groover, 2010). Based 

on the most recent angiosperm phylogeny, Feild and colleagues have analyzed the 

ecophysiology of extant Chloranthales and species of the ANA grade, proposing the "damp, 

dark, and disturbed" and "ancestral xerophobia" hypotheses (Feild et al., 2003; Feild et al., 

2004; Feild and Arens, 2005; 2007; Feild et al., 2009). Our study on basal angiosperm 

representatives from New Caledonia provides new insights into these last hypotheses.  

 Amborella trichopoda Baill. has a multi-stemmed habit with scandent stems, similar to 

the cane-like habit of other basal angiosperm representatives such as Aristolochia, Eupomatia, 

Illicium, Piper, Sarcandra and Trimenia (Carlquist, 1996; 2001; Feild and Arens, 2005; 

Carlquist, 2009; Isnard et al., 2012). By providing a detailed description of the architecture of 

Amborella, we show that its habit is made up of a series of sympodial branched complexes. It 

has been proposed that sympodiality is coupled with a moderate cambial activity (Blanc, 

1986). Moreover, sympodiality has previously been proposed as a widespread feature among 

early-diverging angiosperms and as a putative ancestral feature from which woodier lineages 

have been derived (Carlquist 2009). In this sense, previous studies have described a similar 

sympodial growth in other basal angiosperm representatives, and it has been reconstructed as 

an ancestral feature in Piperales (Isnard et al., 2012). This suggests that sympodiality is 

related to the development of cane-like habits in basal angiosperms. Furthermore, we show 
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the absence of a typical non-self supporting mechanical construction behind the scandent 

stems of Amborella. A similar mechanical organization has been observed in the lianescent 

vesselless angiosperm Tasmannia cordata (Feild et al., 2012). Despite its lianescence, this 

species possesses a stiff wood whose mechanical properties do not change during stem 

development. This suggests that the tracheid-based vasculature probably prevents the 

ontogenetic changes in mechanical properties observed in vessel-bearing mesangiosperm 

lianas, which exhibit increasing elasticity towards the base of the stem (Rowe and Speck, 

2005; Rowe et al., 2006). Our architectural observations on Amborella, along with the 

cambial activity reconstruction of Piperales, coincides with the ancestral growth habit 

proposed by Feild et al. (2004), suggesting that early angiosperms were shrubs or small trees 

with a sympodial growth construction. 

 Feild's hypotheses proposes that early angiosperms were fundamentally drought 

intolerant plants, preferring moist and shady habitats (Feild et al., 2004; Feild et al., 2009).  

Our assessment of the preferred habitat of New Caledonian basal angiosperms supports this 

hypothesis by showing that the highest habitat overlap of basal angiosperms in the 

archipelago occurs in mild, moist, and aseasonal environments (Chapter 4). In accordance 

with this habitat preference, we further show that representative basal angiosperms, including 

Amborella and species of Chloranthaceae, are drought intolerant. This is reflected by a 

relatively high vulnerability to xylem embolism (Chapter 5; mean P50 = -2.6 MPa). By 

providing new measurements of both the habitat preference and the drought vulnerability of 

basal angiosperms, we confirm the potential xerophobia of early angiosperms. 

 The reconstruction of the ecology of early angiosperms also suggests that these plants 

were exposed to understory disturbances such as frequent soil washouts and mechanic 

disturbances induced by falling debris (Feild and Arens, 2005; 2007). The sympodial growth 

and multi-stemmed habit of Amborella, with resprouting axes originating from dormant buds, 

may confer the capability to tolerate this type of mild-perturbation regime. Indeed, these 

morphological attributes have been suggested as key features that confer the ability to form 

new shoots after destruction of living tissues (Pausas et al., 2016). Moreover, we have also 

observed adventitious roots in the aerial stems of Amborella, a developmental feature that 

could allow Amborella's axes to re-root after a disturbance event, adopting a persistence 

strategy (Bond and Midgley, 2001). Our architectural observations suggest that Amborella's 

axes are not strongly differentiated morphologically, suggesting a lack of strong architectural 

organization and reflecting a morphological 'flexibility', which may have conferred early 
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flowering plants with significant competitive advantages during their early evolutionary 

stages in disturbed understory habitats. 

 Our research has further described pervasive patterns of trait covariation that are well 

known across vascular plants. For instance, our results have shown that across a gradient of 

canopy openness, leaf traits of Amborella such as leaf mass per area (LMA) and leaf dry 

matter content (LDMC) varied 6-fold and 5-fold, respectively (Chapter 2). It has been 

recently stressed that intraspecific trait variation accounts for a considerable percentage of the 

total trait variation within plant communities (Violle et al., 2012; Siefert et al., 2015). Our 

research on leaf trait variability in Amborella confirms the adaptive importance of this 

phenotypic response to patchy habitat openings. Moreover, this suggests that this phenotypic 

response is observed across the major lineages of vascular plants. Within this phenotypic 

variation, a coordination of leaf and stem traits seems to occur in Amborella, something that 

has been previously documented across vascular plant species at a global scale (Díaz et al., 

2004; Díaz et al., 2015). For instance, the significant coordination between LMA and stem 

specific density (SSD) observed at the intraspecific level in Amborella (r = 0.48, P = 0.01) has 

also been observed in a recent interspecific analysis considering 2870 woody species (Díaz et 

al., 2015). This may reflect that carbon allocation and organ longevity are coordinated in both 

stems and leaves within and across species. The pervasiveness of this trait coordination 

suggests the existence of an evolutionary bottleneck that may result from inescapable physical 

and physiological constraints. These constraints seem to preclude the combination of certain 

traits across and within plant species.  

6.2 Insights into the evolution and ecology of the xylem hydraulic apparatus 
in angiosperms 

Vessel evolution is not linear and reversals may have occurred 

 It has been suggested that angiosperms are ancestrally vesselless (see Box 1 in section 

1.5.1). Vessel elements are thought to have evolved from tracheids by loss of the inter-

tracheid pit membranes in both end walls, resulting in large scalariform perforations 

connecting multiple vessel elements within a single vessel (Carlquist and Schneider, 2002; 

Christman and Sperry, 2010). Further, vessel elements with simple perforation plates seem to 

have evolved via a progressive loss of bars from scalariform perforation plates (Frost, 1930). 

Bailey and Tupper (1918) published the first work that documented this structural gradient in 

angiosperm xylem conduits (see figure 1.6A). This anatomical transition has long been 
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considered as a major trend of xylem evolution, which has been frequently interpreted as a 

phyletic ladder of evolutionary progress from tracheids to vessel elements with simple 

perforation plates (Olson, 2012). However, some studies have shown that xylem conduit 

evolution is not linear and reversals to an ancestral vasculature may occur. For instance, Feild 

et al. (2002) suggested that, as a consequence of the environmental pressure of freezing 

conditions, tracheids re-evolved from a vessel-bearing ancestor within Winteraceae. 

 Our inference of the ancestral state of vessel element perforation plates in Piperales 

suggests that the scalariform perforation plates observed in Saururaceae (except in 

Anemopsis) are the result of an evolutionary reversal (Chapter 3). This reversal to scalariform 

perforation plates in Saururaceae could be the result of limited secondary growth and 

retention of primary xylem features. It has been shown that scalariform perforation plates 

significantly increase water flow resistivity in comparison to simple perforation plates 

(Christman and Sperry, 2010), but such an increase of flow resistivity is probably not 

physiologically limiting in the wet and semi-aquatic environments of Saururaceae. To our 

knowledge, only few studies have provided similar evidence of evolutionary reversals of the 

morphology of perforation plates (Lens et al., 2007; Oskolski and Jansen, 2009). Our analysis 

provides new evidence of such evolutionary reversals, which differ from the classical 

Baileyan trend of vascular evolution. This invites further studies to use similar optimizations 

in clades where various types of perforation plates are observed. Finally, further research 

would be needed to detect the environmental pressures and selective advantages behind the 

reversal to such 'unfashionable' and inefficient perforation plates. 

Xylem conduit type and its ecological implications 

 It has been suggested that species with "primitive" vessel elements bearing scalariform 

perforation plates are often confined to humid environments because of their hydraulic 

limitations (Carlquist, 1975; Carlquist, 2001). This thesis provides a first estimation of a 

possible xylem conduit-driven habitat distribution (Chapter 4). We show that basal 

angiosperm species bearing vessel elements with simple perforation plates tend to occupy 

drier and more seasonal environments. Indeed, some members of the families Lauraceae, 

Annonaceae, and Piperaceae, which have hydraulically efficient vessel elements with simple 

perforation plates, seem to escape the humid habitats in which most species of the other basal 

angiosperm families are restrained. The restricted distribution of species with 'primitive' 

vessels supports the hypothesis that vessel evolution may have been limited to wet habitats 

(Carlquist, 2001; Sperry et al., 2007). The subsequent evolution of vessel elements with 
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simple perforation plates may have allowed flowering plants to escape from the humid forests 

and diversify into more seasonal environments. 

 A main result of our study is the relationship between vulnerability to xylem embolism 

and habitat differentiation. By showing that embolism vulnerability is strongly related to 

habitat occupation, we confirm that xylem hydraulic safety has a strong influence on the 

geographic distribution of plant species. It has been suggested that 'primitive' vessels, such as 

those observed in basal angiosperms, are more vulnerable to drought than angiosperm 

tracheids (Sperry et al., 2007). However, our study suggests that xylem embolism resistance 

acts equally regardless of xylem conduit type. The only difference between vesselless and 

vessel-bearing species was observed in the cavitation curve slopes. Vessel-bearing species 

had much lower embolism vulnerability curve slopes, suggesting that after the onset of 

cavitation, embolism propagation acts more slowly in vessel-bearing species. However, while 

cavitation seems to operate differently in the two types of conduit types, P50 and P88 values 

were similar, suggesting that xylem embolism vulnerability does not differ between vessel-

bearing and vesselless species. 

 Given that we did not observe compelling differences in embolism vulnerability across 

xylem conduit types, fine-scale anatomical features may underlie the variation in embolism 

vulnerability that we observed across species. Recent research has highlighted the importance 

of anatomic ultrastructure in xylem embolism resistance (Schenk et al., 2015). Among the 

ultrastructural features involved, the thickness and porosity of pit membranes seems to be one 

of the most important (Lens et al., 2011; Lens et al., 2013; Schenk et al., 2015). Therefore, 

our results suggest that variation in pit membrane features occurs independently of the type of 

xylem conduit. Further studies including measurement of micro-anatomical and ultrastructural 

features may shed light on the xylem structures that confer embolism resistance across 

different angiosperm xylem conduit types. 

6.3 Climate stability and drought sensitivity: new insights into the 
disharmonic composition of the New Caledonian flora  

 Because of their old age and their narrow geographic distribution, several New 

Caledonian species of basal angiosperms could be considered as potential palaeoendemics. It 

has been proposed that palaeoendemism is associated with niche conservatism (Jordan et al., 

2015). The niche (sensu Hutchinson) describes the set of abiotic and biotic conditions where a 

species is able to persist (Holt, 2009). According to Wiens and Graham (2005), niche 
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conservatism is the tendency of species to conserve ancestral ecological characteristics. Crisp 

et al. (2009) have proposed that evolution rarely induces biome transitions even on large time 

scales. Indeed, it has been underscored that ecological niche evolution is a very slow process 

(Losos, 2008). For instance, by comparing the biome of disjunct sister taxa, Crisp et al. 

(2009) have shown that biome stasis during plant speciation overweighed biome shifts by a 

ratio of more than 25:1. Because it may be "easier to move than to evolve" (Donoghue, 2008) 

and because changes in biomes operate slowly, on scales of tens of millions of years, 

palaeoendemic species may therefore contain "signals of the nature of past environments" 

(Jordan et al., 2015). Regarding these assumptions, we can consider that the habitat currently 

occupied by extant basal angiosperms reflects characteristics similar to those occupied by 

members of these lineages since their arrival in the archipelago.  

 Our research has shown that the highest habitat overlap (i.e. convergence of suitable 

abiotic conditions) of 62 basal angiosperms in New Caledonia occurs in warm locations with 

mean annual precipitation ranging from 1,500 mm to 2,300 mm and with low diurnal 

variations in temperature (below 7.5 °C). Therefore, we can deduce that basal angiosperm 

species of New Caledonia have a remarkable preference for humid and stable environments. 

These environmental characteristics correspond to rainforest habitats that exhibit high 

moisture levels and low diurnal and seasonal variations in temperature. Considering the niche 

conservatism theory, our results suggest that rainforest-type environments have been the 

preferred habitat of basal angiosperms since their early diversification. This assumption 

coincides with the widespread distribution of other extant basal angiosperms in tropical 

rainforests of Asia-Australasia (Morley, 2001; Buerki et al., 2014).  

 Given that the New Caledonian landmass was submerged during the Palaeocene, 

emerging only during the late Eocene (Pelletier, 2006), the archipelago could only have been 

a secondary centre of dispersal for basal angiosperm lineages. Therefore, rainforest habitats 

may have persisted in nearby territories during the submersion of the New Caledonian 

landmass. This is a plausible scenario because it has been shown that moist climates in 

Northern Australia were contemporary with the late Eocene reemergence of New Caledonia 

(Bowman et al., 2010). Moreover, a relative global climatic stability was observed during the 

Eocene (Zachos et al., 2001). This past environmental stability allowed the widespread 

presence of an aseasonal-wet biome in Australia (Crisp et al., 2004), which may have been 

the habitat of basal angiosperm lineages before their arrival to the New Caledonian 

archipelago. 
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 After a period of climatic stability, Australia and nearby regions suffered a progressive 

desiccation over the past 25 Myr culminating in extreme aridity events over glacial cycles 

(Crisp et al., 2004; Byrne et al., 2008). The aridification of the Australian landmass during 

several Neogene and Quaternary events may have resulted in the depauperation of basal 

angiosperm species there. Because of its geographic and topographic characteristics, the New 

Caledonian archipelago has an oceanic climate with trade winds that can supply significant 

amounts of orographic cloud water. Orographic cloud water is an integral component of the 

hydrology of many coastal and mountain environments and it represents almost a half of the 

water input in these habitats (Scholl et al., 2007). The tropical oceanic climate of New 

Caledonia may have been a major mitigating variable in the survival of basal angiosperm 

lineages in New Caledonia. Indeed, our study suggests that New Caledonian rainforest 

habitats have acted as a Pleistocene refugium for basal angiosperms during the major climatic 

fluctuations of the last glacial maximum (LGM). Previous studies have proposed similar 

LGM rainforest refugia for Amborella (Poncet et al., 2013) and microendemic palm species 

(Pintaud et al., 2001). Our study thus confirms the importance of the maintenance of 

rainforest habitats in New Caledonia during past climatic fluctuations for the survival of 

rainforest lineages.  

 Jordan et al. (2015) suggested that the geographic restriction of palaeoendemic species 

mainly results from ecological selection rather than dispersal limitation, since over such long 

evolutionary time the probability of dispersal cannot be null. Pillon et al. (2010) have also 

proposed that dispersal is not a prevailing factor in explaining the over-representation of some 

angiosperm families in New Caledonia, given that other families with high effective dispersal 

capacities tend to be under-represented. Ultramafic substrates might instead play the role of 

an ecological filter in New Caledonia and over-representation of angiosperm families could 

result from exaptation to ultramafic soils (Pillon et al. 2010). However, our results show that 

the hypothesis proposed by Pillon et al. (2010) does not apply for the over-represented 

families of basal angiosperms and other rainforest lineages that preferentially occur on non-

ultramafic substrates. Many studies have shown the critical role that refugia have played in 

the survival and diversification of biota during and after the Pleistocene glaciations (see 

Keppel el al., 2012). Crisp et al. (2009) suggested that a large proportion of the Australian 

plant species that colonized New Caledonia dispersed into their same original biome. The 

presence of rainforest refugia in New Caledonia may thus have prevented the local extinction 

of basal angiosperms during the periods of global climatic instability that severely affected 
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the humid biomes of Australia (Gallagher et al., 2003; Dodson and Macphail, 2004; Byrne, 

2008; Byrne et al., 2008; Byrne et al., 2011; Kooyman et al., 2013). The disharmony between 

the flora of New Caledonia and Australia may therefore be partially explained by the presence 

of rainforest refugia that could have prevented the extinction of angiosperm lineages in the 

New Caledonian archipelago. The permanence of rainforest habitats may have also allowed 

the local diversification of rainforest lineages. 

 We have shown that geographic restriction to rainforest habitats is strongly related to 

xylem embolism vulnerability (Chapter 5), which is an indicator of drought intolerance. 

Because most of the basal angiosperms in New Caledonia occur in rainforest habitats, our 

results suggest that most of the local species in these groups are vulnerable to drought. The 

drought vulnerability of New Caledonian basal angiosperms can be regarded as a potential 

physiological signature of an uninterrupted occupancy of humid habitats during long periods 

of evolutionary time. Similar relationships between xylem embolism vulnerability and the 

environmental distributions of conifer species have been outlined (Brodribb and Hill, 1999; 

Piñol and Sala, 2000). New Caledonia has the largest assemblage of conifers in the Pacific 

region (Jaffré et al., 1994; De Laubenfels, 1996). Among them, the genus Araucaria 

(Araucariaceae) is particularly well represented given that 13 (out of the 19 worldwide) 

species occur in the archipelago (Gaudeul et al., 2014). A recent study has shown that 

Australian Araucaria species have high drought vulnerability compared to other gymnosperm 

species (Zimmer et al., 2015). Moreover, they showed an isohydric behaviour (i.e. water loss 

control through stomatal closure), which generally corresponds to high embolism 

vulnerability and occupation of mesic habitats (Piñol and Sala, 2000). The three Australian 

Araucaria species measured by Zimmer et al. (2015) have stem P50 values between -2.64 

MPa and -3.01 MPa, which correspond to the range of P50 values (-2.0 to -4.0 MPa) of New 

Caledonian rainforest angiosperms measured in this study. New Caledonian Araucuaria 

mostly occur in humid forests on ultramafic substrates (Jaffré et al., 2010; Gaudeul et al., 

2014) and they are among the most drought sensitive conifers of the archipelago (Delzon, 

pers. com.). The over-representation of relict palaeoendemic conifers, such as Araucaria, 

could therefore be a combination of both mechanisms, an ultramafic filtering, and a past 

climatic stability. 
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6.4 Implications for the conservation of the New Caledonian flora: basal 
angiosperms as potential barometers of climate change  

 New Caledonia is one of the world's hotspots for biodiversity conservation because of 

its rich, endemic and threatened biodiversity (Myers et al., 2000). Several studies have 

outlined particular threats to the New Caledonian biodiversity. Mining activities (Jaffre et al., 

1998; Pascal et al., 2008; Jaffré et al., 2010), along with wildfires (Ibanez et al., 2013; Gomez 

et al., 2014; Curt et al., 2015) and introduced invasive species (Beauvais et al., 2006; 

Soubeyran et al., 2015), have a major impact on local plant biodiversity. Surprisingly, 

although climate change represents the most pervasive of the various threats on the global 

biodiversity (Malcolm et al., 2006), to date no study has assessed its potential impact on the 

flora and vegetation of New Caledonia. Moreover, oceanic islands are thought to be 

particularly vulnerable to climate change due to inherent ecological features such as low 

habitat availability and small population sizes (Harter et al., 2015). This particular 

vulnerability requires that climate change be considered as a significant potential threat to the 

flora of the New Caledonian archipelago. 

 The climate of our planet is changing, global temperature is increasing (IPCC, 2014), 

and although forecasted changes in precipitation remain uncertain, climatic models predict 

more frequent and severe droughts in the near future (Meehl and Tebaldi, 2004; Burke et al., 

2006; Chadwick et al., 2015). It has been suggested that increases in the frequency, length, 

and severity of droughts would have a major impact on plant species mortality (Allen et al., 

2010; Allen et al., 2015). Recent syntheses have documented over 90 worldwide localities 

manifesting drought-induced forest mortality (Allen et al., 2015; Hartmann et al., 2015). 

Despite these reports, to our knowledge, this alarming phenomenon has not yet been 

documented in New Caledonia. Because basal angiosperm species are abundant in rainforest 

communities of New Caledonia and because they seem to be very sensitive to drought, we 

propose that basal angiosperm populations are potential indicators of the effects of drought on 

the flora of the archipelago. A monitoring program of selected populations of basal 

angiosperms could provide an early warning of the impact of drought on the New Caledonian 

vegetation. 

 By analyzing climatic trends of the Western Pacific region, Whan et al. (2014) have 

shown a significant increase of MAT over the past 50 years. Moreover, it has been shown that 

MAT, along with minimal and maximal temperatures, have increased in New Caledonia by 

0.25°C per decade over the last 39 years (Cavarero et al., 2012). According to climate models 
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analyzing probable climatic changes in the archipelago, minimum and maximum 

temperatures are expected to increase by +1.5 to +2.7°C by the end of the 21st century 

(Cavarero et al., 2012). Global warming is expected to induce upward shifts of the elevational 

distributions of organisms (Walther et al., 2002; Parmesan and Yohe, 2003). Such upward 

migrations have already been observed in plant species in different biomes (Colwell et al., 

2008; Lenoir et al., 2008; Feeley et al., 2011; Feeley et al., 2013; Urli et al., 2014; Morueta-

Holme et al., 2015). Previous studies have stressed that New Caledonian plant species from 

high-altitude habitats could be endangered due to a climate-driven contraction of their suitable 

habitats (Munzinger et al., 2008; Pillon and Nooteboom, 2009; Hopkins et al., 2009). This 

thesis has shown a significant positive relation between drought-induced xylem embolism 

vulnerability and the elevational distribution of species. In this context, species occurring at 

high elevations, such as Paracryphia alticola and Zygogynum tieghemii, identified among the 

most drought-vulnerable species in our study, are thus at significant conservation risk because 

of drought vulnerability and because their upward migration is limited to very restricted 

available areas. 

 Our research represents the first effort to estimate the link between drought 

vulnerability and the distribution patterns of plant species at the island-wide scale. However, 

single traits such as P50 should not be used in isolation to predict drought survival (Zimmer et 

al., 2015). Moreover, plant species can have a wide array of drought survival strategies 

(Delzon, 2015). In this sense, it would be important to include new predictors of physiological 

drought tolerance such as leaf turgor loss point (Bartlett et al., 2012), stomatal control 

(Skelton et al., 2015), and leaf-level embolism resistance (Brodribb et al., 2016). Combining 

such leaf traits with our data on stem embolism vulnerability could round out the drought 

vulnerability profile of the New Caledonian basal angiosperms. Ongoing efforts on the 

description of drought tolerance of New Caledonian gymnosperms (S. Delzon pers. comm.), 

along with future studies dealing with the drought tolerance of other angiosperm clades and 

across different vegetation types, could provide a thorough overview of the drought 

vulnerability of the flora of the archipelago. Finally, increasing efforts to gather data on 

physiological traits, such as xylem embolism vulnerability, could help to develop species 

distribution models that take into accounts trait values to predict future distributional patterns 

(Scheiter et al., 2013; van Bodegom et al., 2014). 

 Despite New Caledonia's status as a biodiversity hotspot, only 3.4% of the 

archipelago's surface is protected (Morat et al., 2012). Basal angiosperm species are highly 
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distinctive elements of the New Caledonian biota and some of them are representative of 

presumably larger groups that are assumed to have partly disappeared. From this perspective, 

they can be strongly informative about past diversity and therefore have high patrimonial 

value (Grandcolas et al., 2014). Pillon and Munzinger (2005) have outlined that although 

Amborella has been the subject of many scientific studies, none of them has considered the 

conservation of this species or its habitat. Unfortunately, 11 years later, the great interest of 

the international scientific community in local species such as Amborella has not been 

reflected in stronger conservation policy. Our research has stressed that basal angiosperm 

species restricted to humid habitats could be threatened by global warming. We therefore 

underscore that Amborella, along with other distinctive basal angiosperms, should be 

regarded as flagship species to highlight the need to preserve local biodiversity. 

 We have suggested that basal angiosperm richness in New Caledonia stems from past 

climatic stability, inherent to the oceanic climate of the archipelago, which allowed the 

persistence of refugia during major climatic fluctuations. Montane rainforests may have acted 

as a past refugia for basal angiosperms as well as other forest species (Pintaud et al., 2001). 

Because species contracted to and persisted in rainforest refugia when regional climates were 

unfavorable in the past, these refugia are likely to facilitate survival during projected 

anthropogenic climate change (Taberlet and Cheddadi, 2002; Keppel et al., 2012). Moreover, 

it has been suggested that refugia have shaped the current intra- and interspecific diversity in 

the New Caledonian flora (Poncet et al., 2013). Therefore, the conservation of refugial areas 

would preserve a significant part of its richness and the evolutionary processes involved in 

generating the island's diversity. Some of the refugial areas proposed in this study include the 

mountain range delimited by Roche de la Ouaïeme and Gwâ Rùvianô, including the Massif 

des Lèvres and Görö Tâné. It should be noted that none of these areas is protected by the local 

legislation. 

6.5 Conclusions and outlook  

 Understanding the set of evolutionary events associated with the origin and early 

radiation of flowering plants is one of the main goals of research in plant evolutionary 

biology. The research carried out during this Ph.D. thesis project provides novel insights into 

the structural and ecological features of early angiosperms. The observation of a sympodial 

habit in Amborella, combined with previous documentation of sympodiality in basal 

angiosperms, suggests that sympodial growth was acquired early during the evolution of 
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flowering plants, conferring numerous competitive advantages to the group. Moreover, our 

analysis of the anatomical evolution of Piperales suggests that they are ancestrally woody, 

refuting the long-held vision of an herbaceous ancestry for the order. These results support the 

notion that early angiosperms were woody plants, probably with sympodial growth. Future 

analysis of lineage-specific evolution of woodiness and sympodiality, covering as many 

angiosperm lineages as possible, would be needed to understand whether sympodiality and 

woodiness characterized the growth form of the common ancestor of all flowering plants. 

 This thesis has shown that New Caledonian basal angiosperms are mostly restricted to 

humid environments with relatively stable temperatures. This environmental restriction is 

particularly remarkable in species bearing primitive wood features. Our results agree with the 

hypotheses that early angiosperms occupied wet environments and that vessel evolution 

occurred in habitats with high moisture availability and low evaporative demand. This is 

supported by the observation that representative basal angiosperms have low resistance to 

drought-induced xylem embolism. Future analyses comparing drought-induced hydraulic 

failure across angiosperms would be necessary to understand this theory of vessel evolution. 

In addition to the observed habitat restriction among basal angiosperms, the proposition of 

past climatic refugia suggests that a past climatic stability may have preserved basal 

angiosperm species from extinction in the archipelago. These results expand our 

understanding of the mechanisms that underlie the local over-representation of some 

angiosperm groups and support a novel scenario to explain the high distinctiveness of the 

New Caledonian flora. Future studies modeling the past distribution of species may allow us 

to understand to what extent these refugia preserved other plant lineages from extinction.  

 Drought- and heat-related impacts on vegetation are being observed around the world, 

and these events are expected to continue to intensify. During the work done for this thesis, in 

2015, our planet had one of the hottest years in recorded history according to NOAA and 

NASA. This disturbing scenario requires that current ecological studies analyze the potential 

effects of climate change on vegetation in order to design appropriate conservation strategies. 

By demonstrating the strong effect of drought vulnerability on the distribution of plant species 

in the archipelago, this thesis opens up a critical research topic for the conservation of the 

New Caledonian biodiversity. The accumulation of drought vulnerability data from other 

plant species, along with the use of new indicators of drought sensitivity, are fundamental for 

understanding the fate that awaits the unique New Caledonian flora in the current context of 

anthropogenic climate change. 
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APPENDIX A1  

Voucher Information and Localities for Wood Samples  
 

The following information is given for the taxa investigated in each family: Taxon, authority, 
collection locality and voucher (institution). Voucher specimens collected by Carolina 
Granados (CG), David Bruy (DB), Sandrine Isnard (SI) and Santiago Trueba-Sánchez (STS) 
were deposited in Dresden Herbarium of Germany (DR); French Institute of Pondicherry, 
India (HIFP); Mexico National Herbarium (MEXU); University of Antioquia, Medellin, 
Colombia (HUA); Xishuangbanna Botanical Garden Herbarium (HITBC) and IRD Nouméa 
Herbarium (NOU). Wood specimens were collected from basal segments of the main aerial 
stem, all samples are preserved in 70% ethanol in the UMR-AMAP collection in Montpellier, 
France. *Climbing species being described by Ricardo Callejas (University of Antioquia). 
 
Aristolochiaceae. Aristolochia arborea Linden, cultivated at the living collection of Bonn 
Botanical Garden in Germany (BG Bonn); Aristolochia impudica J.F. Ortega, Mexico, CG-
486 (DR, MEXU); Thottea abrahamii Dan, P.J. Mathew, Unnithan & Pushp., India, SI-15 
(DR, HIFP); Thottea barberi (Gamble) Ding Hou, India, SI-09 (DR); Thottea dinghoui 
Swarupan., India, SI-07 (DR); Thottea duchartrei Sivar., A. Babu & Balach., India, SI-13 
(DR, HIFP); Thottea iddukiana Pandur. & V.J. Nair, India, SI-08 (DR); Thottea ponmudiana 
Sivar., India, SI-06 (DR); Thottea siliquosa (Lam.) Ding Hou , India, SI-16 (DR); Thottea 
sivarajanii E.S.S. Kumar, A.E.S. Khan & Binu, India, SI-14 (DR); Thottea tomentosa 
(Blume) Ding Hou, India, SI-20 (DR). Asaraceae. Saruma henryi Oliv., cultivated at the 
living collection of Dresden Botanical Garden in Germany (BG Dresden). Piperaceae. 
Manekia sydowii (Trel.) T. Arias, Callejas & Bornst., Colombia, SI-42 (HUA); Peperomia 
blanda (Jacq.) Kunth, China, STS-322 (HITBC); Peperomia incana (Haw.) A. Dietr., 
cultivated at BG Dresden; Piper comptonii S. Moore, New Caledonia, STS-380, STS-382, 
STS-383 (NOU); Piper flaviflorum C. DC., China, STS-321 (HITBC); Piper gorgonillense 
Trel. & Yunck., Colombia; Piper hispidinervum C. DC., China, STS-315 (HITBC); Piper 
insectifugum C. DC. ex Seem., New Caledonia, DB-59, DB-60 (NOU); .Piper nudibracteatum 
C. DC., Colombia; Piper sarmentosum Roxb., China, STS-311 (HITBC); Piper sp.*, 
Colombia, SI-37 (HUA); Verhuellia lunaria (Desv. ex Ham.) C. DC., cultivated at BG Bonn; 
Zippelia begoniifolia Blume, China. Saururaceae. Gymnotheca chinensis Decne., cultivated 
at BG Bonn; Houttuynia cordata Thunb., cultivated at BG Bonn; Saururus chinensis (Lour.) 
Baill., cultivated at BG Bonn. 
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APPENDIX A2  

Review of anatomical features of Piperales species reported in previous works 

  GENERAL ANATOMY 

FAMILY SPECIES 

Number 

of cycles 

of 

vascular 

bundles 

Medullary 

bundles 

1 exclusive 

medullary 

bundle 

Presence 

of canals 

Active 

phellogene, 

bark 

production 

Stem 

endodermis 

with a 

Casparian 

band 

Sclerenchyma 

ring 

geometry 

Width of the 

sclerenchyma 

ring 

Aerenchyma 
Calcium 

oxalate 

Cambial 

activity  

Aristolochiaceae Aristolochia asclepiadifolia Brandegee 1    +  C    5 

Aristolochiaceae Aristolochia baetica L. 1    +  C    4 

Aristolochiaceae Aristolochia californica Torr. 1 ‐ ‐ ‐ + ‐   ‐ D 5 

Aristolochiaceae 
Aristolochia chiapensis J.F. Ortega & R.V. 

Ortega 
1    +  C    / 

Aristolochiaceae Aristolochia clematitis L.  1      C    2 

Aristolochiaceae Aristolochia fimbriata Cham. & Schltdl. 1      C    4 

Aristolochiaceae Aristolochia gigantea Mart. 1    +  C    5 

Aristolochiaceae Aristolochia grandiflora Sw. 1      C    5 

Aristolochiaceae Aristolochia griffithii Hook. F. 1 ‐ ‐ ‐ + ‐ C  ‐ D 5 

Aristolochiaceae Aristolochia iquitensis O.C. Schmidt 1 ‐ ‐ ‐ + ‐   ‐  5 

Aristolochiaceae Aristolochia kaempferi Willd. 1 ‐ ‐ ‐ + ‐ C  ‐ D 5 

Aristolochiaceae Aristolochia kalebii Beutelsp. 1    +  C    4 

Aristolochiaceae Aristolochia leuconeura Linden 1    +  C    5 

Aristolochiaceae Aristolochia lindneri A. Berger 1      C    4 

Aristolochiaceae Aristolochia malacophylla Standl. 1    +  C    5 

Aristolochiaceae Aristolochia ovalifolia Duch. 1    +  C    5 

Aristolochiaceae Aristolochia promissa Mast. 1    +  C    5 

Aristolochiaceae Aristolochia rotunda L. 1      C    2 

Aristolochiaceae Aristolochia serpentaria L. 1      C    2 

Aristolochiaceae Aristolochia sipho L'Hérit. 1 ‐ ‐ ‐ + ‐ C  ‐ D 5 

Aristolochiaceae Aristolochia tomentosa  Sims 1    +  C    5 

Aristolochiaceae Aristolochia triactina Hook. F. 1 ‐ ‐ ‐ + ‐ C  ‐ D 5 

Aristolochiaceae Aristolochia tricaudata Lem. 1    +  C    5 

Aristolochiaceae Aristolochia veracruzana J.F. Ortega 1    +  C    5 

Aristolochiaceae Aristolochia westlandii Hemsl. 1    +  C    5 

Aristolochiaceae Thottea grandiflora Rottb. 1          / 

Asaraceae Asarum canadense L. 1 ‐ ‐    ‐ ‐   3 

Asaraceae Asarum cardiophyllum Franch. 1 ‐ ‐  ‐  ‐ ‐   3
 

Asaraceae Asarum hartwegii S. Wats. 1 ‐ ‐ ‐ ‐ ‐   ‐  3
 

Hydnoraceae Hydnora longicollis Welw. 1 ‐ ‐ ‐ +  ‐ ‐ ‐  2 

Hydnoraceae Hydnora triceps Drège & Meyer 1 ‐ ‐ ‐ + ‐ ‐ ‐ ‐  2 

Hydnoraceae Hydnora visseri Bolin, E. Maass & Muss. 1 ‐ ‐ ‐ +  ‐ ‐ ‐  2 
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APPENDIX A2  
 (Continued) 

  GENERAL ANATOMY 

FAMILY SPECIES 

Number 

of cycles 

of 

vascular 

bundles 

Medullary 

bundles 

1 exclusive 

medullary 

bundle 

Presence 

of canals 

Active 

phellogene, 

bark 

production 

Stem 

endodermis 

with a 

Casparian 

band 

Sclerenchyma 

ring 

geometry 

Width of the 

sclerenchyma 

ring 

Aerenchyma 
Calcium 

oxalate 

Cambial 

activity  

Hydnoraceae Prosopanche americana (R. Br.) Baill. 1 ‐  P       2 

Lactoridaceae Lactoris fernandeziana Phil. 1 ‐ ‐ ‐ + ‐   ‐  5 

Piperaceae Macropiper excelsum Miq. 
a 

          4 

Piperaceae Manekia urbani Trel. >2 + ‐ P, C       5 

Piperaceae Ottonia martiana Miq.
 b 

2 + ‐   + U    4 

Piperaceae Peperomia argyreia E. Morr. >2 +         1 

Piperaceae Peperomia cookiana C. DC. >2 +     ‐   D 1 

Piperaceae Peperomia dahlstedtii C. DC. >2 + ‐  ‐ +  ‐ ‐ D 1 

Piperaceae Peperomia ellipticibacca C. DC. >2 +     ‐  + R 1 

Piperaceae Peperomia expallescens C. DC. >2 +     ‐   R 1 

Piperaceae Peperomia hirtipetiola C. DC. >2 +     ‐   ‐ 1 

Piperaceae Peperomia latifolia Miq. >2 +     ‐   D 1 

Piperaceae Peperomia leptostachya Hook. & Arn. >2 +     ‐  + ‐ 1 

Piperaceae Peperomia lilifolia C. DC. >2 +     ‐   D,R 1 

Piperaceae Peperomia membranacea Hook. & Arn. >2 +     ‐   D,R 1 

Piperaceae Peperomia metallica Lindl. Rodig. >2 +        D 1 

Piperaceae Peperomia oahuensis C. DC. >2 +  +   ‐   R 1 

Piperaceae Peperomia obtusifolia A. Diertr. >2 +        D 1 

Piperaceae Peperomia pellucida H.B.K. >2 +         1 

Piperaceae Peperomia reflexa Kunth >2 +     ‐  + ‐ 1 

Piperaceae Peperomia rockii C. DC. >2 +     ‐   ‐ 1 

Piperaceae Peperomia sandwicensis Miq. >2 +     ‐   D 1 

Piperaceae Piper betle L. 2  ‐ P, C      D 4 

Piperaceae Piper brachystachyum Wall.          + / 

Piperaceae Piper colubrinum Link. 2 + ‐ P  + U 4   5 

Piperaceae Piper cubeba L. f.          + 4 

Piperaceae Piper diospyrifolium Kunth 2 + ‐   + U   R 5 

Piperaceae Piper kadsura(Choisy) Ohwi 2 + ‐ ‐  ‐   ‐  5 

Piperaceae Piper longum L. 2  ‐ ‐      ‐ 4 

Piperaceae Piper nepalense Miq.          + / 

Piperaceae Piper nigrum L. 2 ‐ ‐ P, C  +     4 

Piperaceae Piper palauense Horok.           / 

Piperaceae Piper pedicellosum Wall.          + / 

Piperaceae Piper subrubrispicum C. DC. >2  ‐ C      D 5 

Saururaceae Anemopsis californica Hook. 1 ‐ ‐ ‐ ‐ ‐     3 

Saururaceae Saururus cernuus L. 1 ‐ ‐ ‐ ‐ +     2 
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 WOOD ANATOMY 

SPECIES 

Growth 

rings 

boundaries 

distinct (1) 

Vessels 

in 

diagonal 

and / or 

radial 

pattern 

(7) 

Vessels 

exclusively 

solitary 

(90% or 

more) (9) 

Vessels in 

radial 

multiples 

(10) 

Vessel 

clusters 

common 

(11) 

Simple 

perforation 

plates (13) 

Scalariform 

perforation 

plates (14) 

Intervessel 

pits 

scalariform 

(20) 

Intervessel 

pits 

opposite 

(21) 

Intervessel 

pits 

alternate 

(22) 

Axial 
parenchyma 

absent or 

extremely 

rare (75) 

Axial 
parenchyma 

diffusse 

(76) 

Axial 
parenchyma 

diffuse‐in‐

aggregates 

(77) 

Aristolochia asclepiadifolia Brandegee   +           

Aristolochia baetica L.              

Aristolochia californica Torr.      + ‐   +  + + 

Aristolochia chiapensis J.F. Ortega & R.V. 

Ortega 
           

  

Aristolochia clematitis L.               

Aristolochia fimbriata Cham. & Schltdl.              

Aristolochia gigantea Mart.              

Aristolochia grandiflora Sw.              

Aristolochia griffithii Hook. F.      + ‐   +  + + 

Aristolochia iquitensis O.C. Schmidt      + ‐   +  +  

Aristolochia kaempferi Willd. +     + ‐ ‐ + + ‐ ‐ + 

Aristolochia kalebii Beutelsp.              

Aristolochia leuconeura Linden              

Aristolochia lindneri A. Berger              

Aristolochia malacophylla Standl.              

Aristolochia ovalifolia Duch.              

Aristolochia promissa Mast.              

Aristolochia rotunda L.              

Aristolochia serpentaria L.              

Aristolochia sipho L'Hérit.      + ‐   +  + + 

Aristolochia tomentosa Sims +             

Aristolochia triactina Hook. F.      + ‐   +  +  

Aristolochia tricaudata Lem.              

Aristolochia veracruzana J.F. Ortega              

Aristolochia westlandii Hemsl.              

Thottea grandiflora Rottb.              

Asarum canadense L.              

Asarum cardiophyllum Franch.              

Asarum hartwegii S. Wats.   ‐  + + ‐ +  +    

Hydnora longicollis Welw.              

Hydnora triceps Drège & Meyer      + ‐ + ‐ ‐    

Hydnora visseri Bolin, E. Maass & Muss.              

Prosopanche americana (R. Br.) Baill.              
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 WOOD ANATOMY 

SPECIES 

Growth 

rings 

boundaries 

distinct (1) 

Vessels 

in 

diagonal 

pattern  

(7) 

Vessels 

exclusively 

solitary 

(90% or 

more) (9) 

Vessels in 

radial 

multiples 

(10) 

Vessel 

clusters 

common 

(11) 

Simple 

perforation 

plates (13) 

Scalariform 

perforation 

plates (14) 

Intervessel 

pits 

scalariform 

(20) 

Intervessel 

pits 

opposite 

(21) 

Intervessel 

pits 

alternate 

(22) 

Axial 
parenchyma 

absent or 

extremely 

rare (75) 

Axial 
parenchyma 

diffusse 

(76) 

Axial 
parenchyma 

diffuse‐in‐

aggregates 

(77) 

Lactoris fernandeziana Phil. ‐ +    + ‐ ‐ ‐ + ‐ ‐ ‐ 

Macropiper excelsum Miq.
a
      + ‐       

Manekia urbani Trel.              

Ottonia martiana Miq.
 b

              

Peperomia argyreia E. Morr.              

Peperomia cookiana C.DC.              

Peperomia dahlstedtii C. DC. ‐     + ‐ + ‐ + ‐   

Peperomia ellipticibacca C. DC.              

Peperomia expallescens C. DC.              

Peperomia hirtipetiola C. DC.              

Peperomia latifolia Miq.              

Peperomia leptostachya Hook. & Arn.              

Peperomia lilifolia C. DC.              

Peperomia membranacea Hook. & Arn.              

Peperomia metallica Lindl. Rodig.              

Peperomia oahuensis C. DC.              

Peperomia obtusifolia A. Diertr.              

Peperomia pellucida H.B.K.              

Peperomia reflexa Kunth              

Peperomia rockii C. DC.              

Peperomia sandwicensis Miq.              

Piper betle L.      + ‐   +    

Piper brachystachyum Wall.      +        

Piper colubrinum Link.      + ‐   +    

Piper cubeba L. f.      +        

Piper diospyrifolium Kunth              

Piper kadsura(Choisy) Ohwi        + ‐ +    

Piper longum L.              

Piper nepalense Miq.      +        

Piper nigrum L.              

Piper palauense Horok.              

Piper pedicellosum Wall.      +        

Piper subrubrispicum C. DC.      + ‐       

Anemopsis californica Hook. +  ‐ ‐ + + ‐ + ‐ ‐ ‐ ‐ ‐ 

Saururus cernuus L.              
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 WOOD ANATOMY (Continued)  

SPECIES 

Axial 

parenchyma 

scanty 

paratracheal 

(78) 

Axial 

parenchyma 

vasicentric  

(79) 

Axial 

parenchyma 

in narrow 

bands (86) 

Ray width – 

commonly 4‐ 

to 10‐ seriate 

(98) 

Ray width 

commonly > 

10 seriate 

(99) 

Wood 

rayless 

(117) 

All ray cells 

upright 

and / or 

square 

(105) 

Ray 

lignification 

Multi‐

seriate 

rays 

REFERENCES 

Aristolochia asclepiadifolia Brandegee        + + Wagner et al. 2012; Wagner et al. 2014 

Aristolochia baetica L.         + Wagner et al. 2014 

Aristolochia californica Torr.   +   ‐ + + + Carlquist 1993 

Aristolochia chiapensis J.F. Ortega & R.V. 

Ortega 
        + Wagner et al. 2014 

Aristolochia clematitis L.          + Wagner et al. 2014 

Aristolochia fimbriata Cham. & Schltdl.        ‐ + Wagner et al. 2014 

Aristolochia gigantea Mart.         + Wagner et al. 2014 

Aristolochia grandiflora Sw.         + Wagner et al. 2014 

Aristolochia griffithii Hook. F.   +   ‐ +  + Carlquist 1993 

Aristolochia iquitensis O.C. Schmidt + +    ‐ +  + Carlquist 1993 

Aristolochia kaempferi Willd. ‐ ‐ ‐ ‐ + ‐ +  + InsideWood 2004‐onwards 

Aristolochia kalebii Beutelsp.        + + Wagner et al. 2012 

Aristolochia leuconeura Linden         + Wagner et al. 2014 

Aristolochia lindneri A. Berger        ‐ + Wagner et al. 2014 

Aristolochia malacophylla Standl.        + + Wagner et al. 2012; Wagner et al. 2014 

Aristolochia ovalifolia Duch.         + Wagner et al. 2014 

Aristolochia promissa Mast.         + Wagner et al. 2014 

Aristolochia rotunda L.         + Wagner et al. 2014 

Aristolochia serpentaria L.        + + Wagner et al. 2014 

Aristolochia sipho L'Hérit.   +   ‐ +  + Carlquist 1993 

Aristolochia tomentosa Sims         + Wagner et al. 2012; Wagner et al. 2014 

Aristolochia triactina Hook. F.  +    ‐ +  + Carlquist 1993; Wagner et al. 2014 

Aristolochia tricaudata Lem.        + + Wagner et al. 2012 

Aristolochia veracruzana J.F. Ortega        + + Wagner et al. 2014 

Aristolochia westlandii Hemsl.        ‐ + Wagner et al. 2012; Wagner et al. 2014 

Thottea grandiflora Rottb. +     ‐ + + + Carlquist 1993 

Asarum canadense L.          Wagner et al. 2014 

Asarum cardiophyllum Franch.          Wagner et al. 2014 

Asarum hartwegii S. Wats.      ‐ +  + Carlquist 1993 

Hydnora longicollis Welw.  +        Wagner et al. 2014 

Hydnora triceps Drège & Meyer          Tennakoon et al. 2007 
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 WOOD ANATOMY (Continued)  

SPECIES 

Axial 

parenchyma 

scanty 

paratracheal 

(78) 

Axial 

parenchyma 

vasicentric  

(79) 

Axial 

parenchyma 

in narrow 

bands (86) 

Ray width – 

commonly 4‐ 

to 10‐ seriate 

(98) 

Ray width 

commonly > 

10 seriate 

(99) 

Wood 

rayless 

(117) 

All ray cells 

upright 

and / or 

square 

(105) 

Ray 

lignification 

Multi‐

seriate 

rays 

REFERENCES 

Hydnora visseri Bolin, E. Maass & Muss.  +        Wagner et al. 2014 

Prosopanche americana (R. Br.) Baill.          Schimper 1880; Wagner et al. 2014 

Lactoris fernandeziana Phil. + ‐  ‐ + ‐ + + + 
Carlquist 1990b;  Metcalfe and Chalk 1957; Wagner 

et al. 2014 

Macropiper excelsum Miq.
a       +  + Carlquist 2013 

Manekia urbani Trel.         + Silva‐Sierra et al. 2014 

Ottonia martiana Miq.
 b

          Souza et al. 2004 

Peperomia argyreia E. Morr.          Datta and Dasgupta 1977 

Peperomia cookiana C.DC.          Yuncker and Gray 1934 

Peperomia dahlstedtii C. DC. ‐ + ‐ ‐ +  +   Souza et al. 2004 

Peperomia ellipticibacca C. DC.          Yuncker and Gray 1934 

Peperomia expallescens C. DC.          Yuncker and Gray 1934 

Peperomia hirtipetiola C. DC.          Yuncker and Gray 1934 

Peperomia latifolia Miq.          Yuncker and Gray 1934 

Peperomia leptostachya Hook. & Arn.          Yuncker and Gray 1934 

Peperomia lilifolia C. DC.          Yuncker and Gray 1934 

Peperomia membranacea Hook. & Arn.          Yuncker and Gray 1934 

Peperomia metallica Lindl. Rodig.          Datta and Dasgupta 1977 

Peperomia oahuensis C. DC.          Yuncker and Gray 1934 

Peperomia obtusifolia A. Diertr.          Datta and Dasgupta 1977 

Peperomia pellucida H.B.K.          Datta and Dasgupta 1977 

Peperomia reflexa Kunth          Yuncker and Gray 1934 

Peperomia rockii C. DC.          Yuncker and Gray 1934 

Peperomia sandwicensis Miq.          Yuncker and Gray 1934 

Piper betle L.     +    + Murty 1959 

Piper brachystachyum Wall.         + Datta and Dasgupta 1977 

Piper colubrinum Link.          Ravindran and Remashree 1998 

Piper cubeba L. f.         + Datta and Dasgupta 1977 

Piper diospyrifolium Kunth          Souza et al. 2004 

Piper kadsura(Choisy) Ohwi  +   +  +   InsideWood 2004‐onwards 

Piper longum L.          Murty 1959 

Piper nepalense Miq.         + Datta and Dasgupta 1977 



APPENDIX 

 

177 
 

APPENDIX A2  
 (Continued) 

 WOOD ANATOMY (Continued)  

SPECIES 

Axial 

parenchyma 

scanty 

paratracheal 

(78) 

Axial 

parenchyma 

vasicentric  

(79) 

Axial 

parenchyma 

in narrow 

bands (86) 

Ray width – 

commonly 4‐ 

to 10‐ seriate 

(98) 

Ray width 

commonly > 

10 seriate 

(99) 

Wood 

rayless 

(117) 

All ray cells 

upright 

and / or 

square 

(105) 

Ray 

lignification 

Multi‐

seriate 

rays 

REFERENCES 

Piper nigrum L.          Ravindran and Remashree 1998 

Piper palauense Horok.         + Carlquist 2013 

Piper pedicellosum Wall.         + Datta and Dasgupta 1977 

Piper subrubrispicum C. DC.       +  + Murty 1959 

Anemopsis californica Hook. ‐ + ‐ ‐ + ‐ + ‐ + Carlquist et al. 1995; Schneider and Carlquist 2001 

Saururus cernuus L.          Carlquist et al. 1995 

 

Notes: This table synthesizes the anatomical  information found in literature for Piperales species, using the same anatomical features we use in the current 
study (table 1 in the main text). Presence (+) or absence (-) of a given character is marked only when it has been explicitly declared in the consulted reference; 
blank cells denote the absence of information for a given character. Presence of canals: P, Peripheral canals, several canals occurring at the perimeter of the 
stem as seen in transverse section. C, Central canal, a single canal occurring in the center of the stem. Sclerenchyma ring geometry: C, Circular continuous 
band of sclerenchyma fibers seen in transverse section. D, Discontinuous bands of sclerenchyma, fibers occurring as islands or caps contiguous to vascular 
bundles. U, Undulating and continuous band of sclerenchyma. Calcium oxalate: D, Druses, P, Prismatic crystals. R, Raphides. Cambial activity: 1, Absent. 
2, Restricted to fascicular areas. 3, Woody herb. 4, Slightly woody. 5, Truly woody. /, Not specified. Ray lignification: E, Complete lignification over the 
entire width of the stem. I, Incomplete or partial ray lignification. Numbers between brackets correspond to the IAWA wood feature numbers. Species names 
correspond to those mentioned in the cited reference. aMacropiper excelsum Miq. is considered a synonym of Piper excelsum G. Forst. a species belonging to 
the Macropiper group which is part of the "South Pacific" clade according to Jaramillo et al. (2008). bOttonia martiana Miq. is considered a synonym of Piper 
miquelianum C. DC. 
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APPENDIX A3  

Proportion of species included in the study, infrageneric clades representation and growth habits for each Piperales genera 
 

Genera 
Species 
no. 

References 

 
Species no. in the current 
study 
 

Infrageneric clades 
% of 
species 
covered 

% of 
clades 
covered 

Growth habit 

Studied Reviewed Total 

Saruma 1 Wanke et al. 2006 (1) 1 0 1 NA 100 100 Rhizomatous herb 

Asarum ca. 85 
Wanke et al. 2006 (1); 
Kelly 1998 

0 3 3 Asarum s.s.*, Asiasarum + Hexastylis + Heterotropa 3.5 50 Rhizomatous herb 

Lactoris 1 Wanke et al. 2007b 0 1 1 NA 100 100 Shrub 
Hydnora + 
Prosopanche 

7 + 3 Naumann et al. 2014 0 4 4 NA 40 100 
Subterranean 
holoparasitic 

Thottea 35 Oelschlägel et al. 2011 9 1 10 "India"*, "SE-Asia"*, "India + SE-Asia"* 28.6 100 Shrub, subshrub 

Aristolochia ca. 450 Wagner et al. 2014 2 25 27 Aristolochia*, Pararistolochia*, Siphisia*  6 100 
Climber, shrub, 
subshrub, herb 

Saururus 2 
The Plant List 2013; 
Wanke et al. 2007b 

1 1 2 NA 100 100 Rhizomatous herb 

Gymnotheca 3 
The Plant List 2013; 
Wanke et al. 2007b 

1 0 1 NA 33.3 100 Rhizomatous herb 

Anemopsis 1 
The Plant List 2013; 
Wanke et al. 2007b 

0 1 1 NA 100 100 Rhizomatous herb 

Houttuynia 1 
The Plant List 2013; 
Wanke et al. 2007b 

1 0 1 NA 100 100 Rhizomatous herb 

Verhuellia ca. 3 Wanke et al. 2007a 1 0 1 NA  100 100 Herb 

Zippelia 1 Wanke et al. 2007b 1 0 1 NA 100 100 Herb 

Manekia ca. 5 Wanke et al. 2007b 1 1 2 NA  40 100 Climber 

Peperomia ca. 1600 Samain et al. 2009 2 17 19 
Micropiper*, Oxyrhynchum, Leptorhynchum*, Peperomia*, 
"unnamed 1"*, "unnamed 2"*, Panicularia, "unnamed 3"*, 
Pleurocarpidium, Tildenia. 

1.2 60 Herb 

Piper ca. 2000 
Quijano-Abril et al. 2006; 
Jaramillo et al. 2008 

8 14 22 "Neotropical"*, "Tropical Asian"*, "South Pacific"*  1.1 100 
Treelet, climber, shrub, 
subshrub 

 

Note: NA = Not Applicable, denotes monotypic and poorly diversified genera for which any infrageneric divisions have been proposed. Infrageneric clades 
represented by our sampling and literature survey are marked with an asterisk (*).  
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APPENDIX A4  

List of relict angiosperm genera and corresponding dominant xylem conduit structure 
 

T = tracheids; Sc = vessel elements with scalariform plates; Si = vessel elements with simple 
perforation plates. References correspond to previous works reporting xylem element structure of 
related species within the same genus (previously reported species are specified). See below for full 
references. 

Family Genus Xylem Reference(s) Reported species 

Amborellaceae Amborella T 
Bailey (1957) 
Feild et al. (2000) 

A. trichopoda 

Annonaceae 

Goniothalamus Si Ingle & Dadswell (1953) G. grandifolius 
Hubera Si ST pers. obs. Hubera nitidissima 

Meiogyne Si 
InsideWood (2004-
onwards) 
Metcalfe & Chalk (1950) 

M. mindorensis 
M. virgata 

Xylopia Si 

Ingle & Dadswell (1953) 
InsideWood (2004-
onwards) 
Metcalfe & Chalk (1950) 
 

X. acutiflora 
X. aethiopica 
X. aromatica 
X. aurantiiodora 
X. bemarivensis 
X. buxifolia  
X. cupularis  
X. danguyella  
X. ferruginea 
X. humblotiana  
X. hypolampra 
X. lamii 
X. longipetala  
X. perrieri 
X. pynaertii 
X. phloiodora 
X. acutiflora 

AtherospermataceaeNemuaron Sc ST pers. obs. N. vieillardii 

Chloranthaceae Ascarina Sc 
Carlquist (1990a) Ascarina rubricaulis 

Ascarina solmsiana 

Hernandiaceae Hernandia Si 
InsideWood (2004-
onwards) 

Hernandia spp.  

Lauraceae 

Beilschmiedia Si ST pers. obs. B. oreophila 

Cryptocarya Si 

InsideWood (2004-
onwards) 
Richter (1990) 

C. alba 
C. alseodaphnifolia 
C. caryoptera 
C. chinensis  
C. crassinervia 
C. enervis 
C. ferrea 
C. griffithiana 
C. mannii 
C. kurzii 
C. wrayi 
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Endiandra Si 
InsideWood (2004-
onwards) 

E. palmerstonii 
E. spp. 

Litsea Si 

InsideWood (2004-
onwards) 
Patel (1987) 
 

L. acuminata 
L. calicaris 
L. coreana 
L.faberi 
L.glutinosa 
L.japonica 
L. lancifolia 
L. polyantha 
L. sessilis 

Monimiaceae 
Hedycarya Sc 

Garratt (1934) 
Patel (1973) 
Poole & Gottwald (2001) 

Hedycarya angustifolia
Hedycarya arborea 

Kibaropsis Sc ST pers. obs. K. caledonica 

Piperaceae 

Peperomia Si 
Trueba et al. (2015) Peperomia blanda 

Peperomia incana 

Piper Si 

Trueba et al. (2015) 
 

Piper comptonii 
Piper flaviflorum 
Piper gorgonillense 
Piper hispidonervum 
Piper insectifugum 
Piper sarmentosum 

Trimeniaceae Trimenia Sc Carlquist (1984) T. neocaledonica 

Winteraceae Zygogynum T 

Carlquist (1982, 1983) 
Feild et al. (2002) 
Hacke et al. (2007) 

Z. baillonii 
Z. balansae 
Z. crassifolium 
Z. pancheri 
Z. pommiferum 
Z. queenslandiana 
Z. stipitatum 
Z. spp. 
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Density of relict angiosperm occurrence data from the NOU Herbarium and the NC-PIPNN plot network over New Caledonia.
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network over New Caledonia. 
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APPENDIX A6 

Distribution of relict angiosperm species occupying the three most (first line) and the three least marginal habitats (second line). 
 

Red circles denote observed occurrences and black areas modelled species distribution. Grey levels correspond to 1000 mm isohyetal lines as shown in the 
legend. 



    

 

Appendix References 

 

Bailey IW. 1957. Additional notes on the vesselless dicotyledon, Amborella trichopoda Baill. 
 Journal of the Arnold Arboretum, 38: 374–378. 
 
Carlquist S. 1982. Exospermum stipitatum (Winteraceae): observations on wood, leaves, 
 flowers, pollen, and fruit. Aliso, 10: 277–289. 
 
Carlquist S. 1983. Wood anatomy of Bubbia (Winteraceae), with comments on origin of 
 vessels in dicotyledons. American Journal of Botany, 70: 578–590. 
 
Carlquist S. 1984. Wood anatomy of Trimeniaceae. Plant Systematics and Evolution, 144: 103–
 118. 
 
Carlquist S. 1990a Wood anatomy of Ascarina (Chloranthaceae) and the tracheid-vessel 
 element transition. Aliso, 12: 667–684. 
 
Carlquist S. 1990b Wood anatomy and relationships of Lactoridaceae. American Journal of 
 Botany 77: 1498-1504. 
 
Carlquist S. 1993 Wood and bark anatomy of Aristolochiaceae; systematic and habital correlations. 
 IAWA Journal 14: 341-357. 
 
Carlquist S. 2013 More woodiness/less woodiness: evolutionary avenues, ontogenetic mechanisms. 
 International Journal of Plant Sciences 174: 964-991. 
 
Carlquist S, Dauer K, Nishimura SY. 1995 Wood and stem anatomy of Saururaceae with 
 reference to ecology, phylogeny and origin of the monocotyledons. IAWA Journal 16:133-150. 
 
Datta PC, Dasgupta A. 1977 Comparison of vegetative anatomy of Piperales. I. Juvenile xylem 
 of twigs. Acta Biol Acad Sci Hungar 28: 81-96. 
 
Feild TS, Zweiniecki MA, Brodribb T, Jaffré T, Donoghue MJ, Holbrook NM. 2000. 
 Structure and function of tracheary elements in Amborella trichopoda. International 
 Journal of Plant Sciences, 161, 705–712. 
 
Feild TS, Brodribb T,  Holbrook NM. 2002. Hardly a relict: freezing and the evolution of 
 vesselless wood in Winteraceae. Evolution, 56, 464–478. 
 
Garratt GA. 1934. Systematic anatomy of the woods of the Monimiaceae. Tropical Woods, 39: 
 18–44. 
 
Hacke UG, Sperry JS, Feild TS, Sano YE, Sikkema H, Pittermann J. 2007. Water transport in 
 vesselless angiosperms: conducting efficiency and cavitation safety. International Journal 
 of Plant Science, 168: 1113–1126. 
 
Ingle HD,  Dadswell HE. 1953. Anatomy of timbers of the south-west Pacific area. II. Apocynaceae 
 and Annonaceae. Australian Journal of Botany, 1: 1–26. 
 
InsideWood. 2004-onwards. InsideWood. Available at: http://insidewood.lib.ncsu.edu. 
 (accessed January 2015). 



APPENDIX 

 

184 
 

Isnard S, Prosperi J, Wanke S, Wagner S, Samain M-S, Trueba S, Frenzke L, Neinhuis C, Rowe 
 NP. 2012. Growth form evolution in Piperales and its relevance for understanding the 
 angiosperm diversification: an integrative approach combining plant architecture, anatomy 
 and biomechanics. International Journal of Plant Sciences, 173: 610-639. 
 
Jaramillo MA, Callejas R, Davidson C, Smith JF, Stevens AC, Tepe EJ. 2008. A phylogeny of 
 the tropical genus Piper using ITS and the chloroplast intron psbJ–petA. Systematic 
 Botany, 33: 647-660. 
 
Kelly LM. 1998. Phylogenetic relationships in Asarum (Aristolochiaceae) based on morphology 
 and ITS sequences. American Journal of Botany 85: 1454-1467. 
 
Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons, Clarendon Press, Oxford. 
 
Metcalfe CR, Chalk L. 1957 Anatomy of the dicotyledons. Vol. 1, 2nd ed. Clarendon Press, 
 Oxford. 
 
Murty YS. 1959. Studies in the order Piperales IV. A contribution to the study of vegetative 
 anatomy of three species of Piper. Proceedings of the National Institute of Sciences of  India, 
 25: 31-88. 
 
Naumann J, Salomo K, Der JP, Wafula EK, Bolin JF, Maass E, Frenzke L, Samain M-S, 
 Neinhuis C, Depamphilis CW, Wanke S. 2013. Single-copy nuclear genes place 
 haustorial Hydnoraceae within Piperales and reveal a cretaceous origin of multiple 
 parasitic angiosperm lineages. PLoS ONE, 8: e79204. 
 
Oelschlägel B, Wagner S, Salomo K, Pradeep NS, Yao TL, Isnard S, Rowe N, Neinhuis C, 
 Wanke S. 2011. Implications from molecular phylogenetic data for systematics, 
 biogeography and growth form evolution of Thottea (Aristolochiaceae). Gardens' 
 Bulletin Singapore, 63: 259-275. 
 
Patel RN. 1973. Wood anatomy of dicotyledons indigenous to New Zealand. 3. Monimiaceae and 
 Atherospermataceae. New Zealand Journal of Botany, 11: 587–598. 
 
Patel RN. 1987. Wood anatomy of the dicotyledons indigenous to New Zealand. 16. Lauraceae. 
 New Zealand Journal of Botany, 25: 477–488. 
 
Poole I, Gottwald H. 2001. Monimiaceae sensu lato, an element of Gondwana polar forests: 
 evidence from the Late Cretaceous-Early Tertiary wood flora of Antartica. Australian 
 Systematic Botany, 14: 207–230. 
 
Quijano-Abril MA, Callejas-Posada R, Miranda-Esquivel DR. 2006. Areas of endemism and 
 distribution patterns for Neotropical Piper species (Piperaceae). Journal of Biogeography 
 33: 1266-1278. 
 
Ravindran PN, Remashree AB. 1998. Anatomy of Piper colubrinum Link. Journal of Spices and 
 Aromatic Crops, 7: 111-123. 
 
Richter H. 1990. Wood and bark anatomy of Lauraceae. III. Aspidostemon Rohwer & Richter. IAWA 
 Buletin, 11: 47–56. 
 
Samain M-S, Vanderschaeve L, Chaerle P, Goetghebeur P, Neinhuis C, Wanke S. 2009. Is 
 morphology telling the truth about the evolution of the species rich genus Peperomia 
 (Piperaceae)? Plant Systematics and Evolution 280: 251-254. 
 



APPENDIX 

 

185 
 

Schimper AFW. 1880. Die vegetationsorgane von Prosopanche burmeisteri. Halle: Niemeyer. 
 
Schneider EL, Carlquist S. 2001. SEM studies on vessel elements of Saururaceae. IAWA 
 Journal, 22: 183-192. 
 
Silva-Sierra D, Callejas-Posada R, Rincón-Barón EJ, Quijano-Abril MA. 2014. 
 Observaciones de la anatomía caulinar y foliar de Manekia Trel. (Piperaceae). Poster. 
 Universidad Católica de Oriente, Antioquia, Colombia. 
 
Souza LA, Moscheta IS, Oliveira JHG. 2004. Comparative morphology and anatomy of the leaf 
 and stem of Peperomia dahlstedtii C.DC., Ottonia martiana Miq. and Piper 
 diospyrifolium Kunth (Piperaceae). Gayana Botánica, 61: 6-17. 
 
Tennakoon KU, Bolin JF, Musselman LJ, Maass E. 2007. Structural attributes of the  hypogeous 
 holoparasite Hydnora triceps Drège & Meyer (Hydnoraceae). American Journal of 
 Botany, 94: 1439-1449. 
 
The Plant List 2013 Version 1.1. Published on the internet http://www.theplantlist.org/ 
 
Trueba S., Rowe NP, Neinhuis C, Wanke S, Wagner ST, Isnard S. 2015. Stem anatomy and  the 
 evolution of woodiness in Piperales. International Journal of Plant Sciences, 176: 468-485. 
 
Wagner ST, Isnard S, Rowe NP, Samain M-S, Neinhuis C, Wanke S. 2012. Escaping the 
 lianoid habit: evolution of shrub-like growth forms in Aristolochia subgenus Isotrema 
 (Aristolochiaceae). American Journal of Botany, 99: 1609-1629. 
 
Wagner ST, Hesse L, Isnard S, Samain MS, Bolin JF, Maass E, Neinhuis C, Rowe NP, 
 Wanke S. 2014. Major trends in stem anatomy and growth forms in the perianth-
 bearing Piperales, with special focus on Aristolochia. Annals of Botany, 113:1139-1154. 
 
Wanke S, González F, Neinhuis C. 2006. Systematics of pipevines: combining 
 morphological and fast-evolving molecular characters to investigate the relationships within 
 subfamily Aristolochioideae (Aristolochiaceae). International Journal of Plant Sciences, 167: 
 1215-1227. 
 
Wanke S, Vanderschaeve L, Mathieu G, Neinhuis C, Goetghebeur P, Samain MS. 2007a. From 
 forgotten taxon to a missing link? The position of the genus Verhuellia (Piperaceae) revealed 
 by molecules. Annals of Botany, 99: 1231-1238. 
 
Wanke S, Jaramillo MA, Borsch T, Samain M-S, Quandt D, Neinhuis C. 2007b. Evolution of 
 Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution 
 contrast. Molecular Phylogenetics and Evolution, 42: 477-497. 
 
Yuncker TG, Gray WD. 1934. Anatomy of Hawaiian Peperomias. Vol. 10. Bernice P. 
 Bishop Museum Press, Honolulu, Hawaii. 
 



   

 

Ecologie, formes et fonctions 
des angiospermes basales de 
Nouvelle-

Résumé en Français

 

 

 

 

 

Directeur :  

Daniel Barthélémy (CIRAD)

Encadrants :  

Sandrine Isnard (IRD) 

Mark E. Olson (UNAM)

 

 

                         

 

Ecologie, formes et fonctions 
des angiospermes basales de 

-Calédonie  

Résumé en Français 

Santiago Trueba

Daniel Barthélémy (CIRAD) 

 

Mark E. Olson (UNAM) 

                                   

Ecologie, formes et fonctions 
des angiospermes basales de 

  

 

Santiago Trueba-Sánchez 

              



ECOLOGIE, FORMES ET FONCTIONS DES ANGIOSPERMES BASALES DE NOUVELLE-CALEDONIE 

 

187 
 

Chapitre 1. Introduction générale 

 Il y a c. 150 MA, lors du Jurassique supérieur, les premières plantes à fleurs 

(angiospermes) sont apparues. Leur apparition a été suivie d'une invasion majeure dans la 

niche écologique des gymnospermes durant le Crétacé, conduisant à un bouleversement de la 

composition de la végétation terrestre sur une période relativement courte. Depuis cette 

époque, les angiospermes se sont extraordinairement diversifiées et dominent aujourd’hui la 

végétation de la plupart des écosystèmes terrestres. En plus de leur forte richesse en espèces, 

les angiospermes présentent également une grande polyvalence morphologique, écologique et 

fonctionnelle. En outre, elles représentent la base structurelle et énergétique de la grande 

majorité des écosystèmes terrestres actuels. La richesse spécifique des angiospermes surpasse 

largement celle de tous les autres groupes de plantes terrestres combinés. Ainsi on estime que 

89,4% des espèces d'embryophytes existantes sont des angiospermes. Les plantes à fleurs 

comportent actuellement c. 350 000 espèces. Les progrès de la systématique moléculaire ont 

fourni des bases solides pour la reconnaissance des principaux clades d’angiospermes et 

l'établissement de leurs relations de parenté. 

Les angiospermes basales, les premières divergences des plantes à fleurs 

 Au sein des plantes à fleurs, les eudicotylédones constituent le groupe le plus riche car 

contenant 73% des espèces d’angiospermes existantes. Le deuxième groupe d’angiospermes 

le plus riche, les monocotylédones, contient 23,3% des plantes à fleurs. Les "angiospermes 

basales" sont un ensemble de lignées largement moins diversifiées qui ont divergé 

temporellement avant le clade massif formé par les monocotylédones-eudicotylédones. Leurs 

temps de divergence sont les plus anciens pour les angiospermes. En effet, les ordres des 

Amborellales, Nymphaeales et Austrobaileyales ont été identifiés par plusieurs études 

phylogénétiques comme des groupes frères successifs de toutes les autres plantes à fleurs. Ces 

ordres forment un groupe paraphylétique généralement dénommé le grade ANA. Au sein de 

ce grade, l’ordre des Amborellales est la plus ancienne lignée ayant divergé il y a environ 

139,4 MA. Les âges des autres lignées d’angiospermes basales datent elles aussi du Crétacé 

inférieur. Divergeant immédiatement après le grade ANA, les Chloranthales et les 

Magnoliidées correspondent à un autre clade de divergence précoce. Malgré leur paraphylie, 

les espèces incluses dans le grade ANA, les Chloranthales + les Magnolidées sont souvent 

considérées comme formant un ensemble non naturel, celui des "angiospermes basales" 

compte tenu de leurs divergences très anciennes. Ce travail de thèse suit cette nomenclature et 
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nous considérons comme angiospermes basales toutes les plantes à fleurs ayant divergé avant 

le nœud reliant les monocotylédones et les eudicotylédones. 

Que peut-on apprendre sur l'évolution des plantes à fleurs en étudiant les angiospermes 

basales ? 

Il est erroné de penser que les angiospermes basales sont des "fossiles vivants" qui 

sont restés figés dans le temps depuis leur apparition. Les angiospermes basales ne sont pas 

primitives per se car elles sont contemporaines de toutes les autres plantes à fleurs actuelles. 

Ces lignées ont eu le temps d'éprouver de nombreux changements depuis leurs divergences 

précoces. Cependant, l'étude des angiospermes basales peut nous fournir des informations 

cruciales pour la compréhension de l'évolution des angiospermes, car elles correspondent au 

groupe frère des monocotylédones + eudicotylédones. Dans un contexte comparatif nous 

pouvons donc émettre des hypothèses sur les caractéristiques des premières angiospermes. Il a 

ainsi été suggéré que les angiospermes basales portent des caractères plésiomorphiques (i.e. 

des caractères primitifs). Parmi ces caractères observés chez ces lignées, il a été proposé que 

les éléments de conduction dans le bois portent des caractéristiques primitives. Nous 

pourrions ainsi lister la présence des bois formés exclusivement par des trachéides, ou encore, 

des éléments de vaisseaux montrant des perforations scalariformes, lesquels ont été considérés 

comme une forme transitoire entre les trachéides et les éléments de vaisseaux à perforations 

simples.  

 En raison de leur position phylogénétique, mais aussi de la présence de traits primitifs, 

plusieurs études ont proposé que les angiospermes basales peuvent être des bons indicateurs 

pour comprendre l'écophysiologie, les formes de vie et l'habitat des premières angiospermes. 

Il a été proposé que les premières angiospermes auraient été des herbacées habitant des sites 

ensoleillés, des herbes aquatiques, ou encore des buissons habitant des milieux secs. 

L'avancement des techniques moléculaires et la compréhension des relations phylétiques des 

angiospermes ont beaucoup influencé ces théories. En s'appuyant sur l’observation des 

angiospermes basales des groupes ANA et Chloranthales, une des hypothèses les plus 

récentes propose que les premières angiospermes auraient été des plantes ligneuses 

buissonnantes ou arbustives qui ont diversifié dans des milieux humides et ombragés 

fréquemment soumis à des perturbations liées à la vie en sous-bois.  

Nouvelle-Calédonie, terre d'angiospermes basales 
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 La Nouvelle-Calédonie est un archipel situé dans le Pacifique sud-ouest.  Elle présente 

une très grande richesse floristique avec 3371 espèces de plantes vasculaires et un taux 

d’endémisme très élevé de 74.7% pour la flore vasculaire. L'une des originalités les plus 

remarquables de la flore néo-calédonienne repose sur l’abondance d’espèces appartenant aux 

angiospermes basales. Ces lignées sont présentes dans d'autres régions telles que l'Asie du 

sud-est et l'Australie, cependant la Nouvelle-Calédonie montre concentration exceptionnelle 

en espèces issues de lignées basales. Les angiospermes basales de Nouvelle-Calédonie sont 

ainsi représentées par 109 espèces, la plupart endémiques à l'archipel (90 %). L’espèce la plus 

emblématique, Amborella trichopoda, seule représentante des Amborellaceae et espèce sœur 

de toutes les plantes à fleurs, est également endémique de l'archipel.  

 De façon remarquable, la plupart des familles d'angiospermes basales appartiennent 

aux familles surreprésentées de la flore de Nouvelle-Calédonie, par comparaison avec les 

flores des régions voisines telles que l'Australie. Des études précédentes ont proposé qu'un 

filtre écologique imposé par les substrats géologiques ultramafiques, très répandus en 

Nouvelle-Calédonie, pourrait être à l’origine d'une telle disharmonie floristique. En effet les 

substrats ultramafiques qui couvrent un tiers de la surface de l’archipel sont très chargés en 

métaux lourds, pauvres en nutriments, et ont une faible capacité de rétention d’eau. Ces 

substrats induisent ainsi une contrainte très importante au développement des plantes, 

imposant une préadaptation des espèces colonisatrices. Si la surreprésentation des 

angiospermes basales a été signalée il y a quelques années, depuis aucun travail n'a encore 

proposé de mécanismes qui pourraient expliquer cette disharmonie, ainsi que le maintien dans 

l’archipel de ces lignées si particulières. 

Objectifs 

Ce travail de thèse a pour objectif de compléter nos connaissances sur la forme, les 

fonctions et l'écologie des angiospermes basales en s'appuyant principalement sur l'étude des 

espèces néo-calédoniennes. Plusieurs objectifs ont été fixés : évaluer l'influence de l'ouverture 

de la canopée dans la variation de la forme de vie et de la coordination des traits chez 

Amborella trichopoda, la seule représentante de la plus ancienne lignée des angiospermes 

(Chapitre 2) ; proposer des patrons évolutifs pour différents traits de bois liés aux formes de 

vie chez les Piperales, ordre le plus diversifié des angiospermes basales (Chapitre 3) ; tester 

des hypothèses écologiques et climatiques qui pourraient expliquer la surreprésentation des 

angiospermes basales en Nouvelle-Calédonie (Chapitre 4) ; et investiguer les corrélations 

entre la distribution environnementale des espèces et leur résistance à la sécheresse (Chapitre 
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5). A travers ces travaux, nous espérons donner de nouvelles perspectives pour la 

compréhension des caractéristiques des premières angiospermes, et apporter un nouvel 

éclairage sur les mécanismes expliquant le maintien des lignées d'angiospermes basales en 

Nouvelle-Calédonie. 

Chapitre 2. Coordination des traits, biomécanique, et plasticité de 
la forme de croissance d'Amborella trichopoda sous différentes 
ouvertures de canopée    

 Comprendre la distribution des traits de vie à travers la phylogénie des angiospermes 

peut aider à connaître la hiérarchie imbriquée des fonctionnalités qui caractérise des nœuds 

évolutifs clés. La découverte de la position d'Amborella en tant qu'espèce sœur de toutes les 

angiospermes soulève la question de savoir si elle partageait avec elles certains traits 

fonctionnels clés, ainsi que des réponses plastiques aux variations environnementales qui 

caractérisent les angiospermes d'un point de vue global. Avec cet objectif, nous avons (1) 

étudié l'architecture végétative d'Amborella et analysé la coordination de 12 traits structurels 

et fonctionnels des tiges et des feuilles (2) testé l'hypothèse d'une présence de réponses 

plastiques de ce traits et de leur coordination, induits par l'ouverture de la canopée. Nous 

avons ainsi montré que la croissance d'Amborella est réalisée selon une série de complexes 

ramifiés à croissance sympodiale, lesquels varient en taille et en mode de ramification selon 

l’ouverture de la canopée. L’absence de hiérarchie architecturale marquée contribue à la 

plasticité morphologique de l’espèce. Des corrélations entre la plupart des traits foliaires et 

des tiges ont été observées. Nous constatons également une importante modulation de la 

structure foliaire induite par les variations de lumière disponible. Toutefois les branches se 

développant dans différents milieux lumineux présentent une allométrie similaire. Des 

changements dans les taux d'élongation des tiges, ainsi que dans la taille des feuilles, 

engendrent des morphologies distinctes chez Amborella lorsqu'elle croît sous des conditions 

lumineuses différentes. Cependant, les propriétés mécaniques des tiges ne montrent aucune 

différence significative entre ces environnements lumineux contrastés. La croissance 

sympodiale observée chez Amborella pourrait ainsi correspondre à une synapomorphie des 

angiospermes. Notre étude apporte des preuves d'une coordination intra-spécifique entre les 

spectres économiques des feuilles et des tiges. La variation des traits le long de ces spectres 

permet la réalisation de stratégies adaptatives fonctionnelles sous différents milieux lumineux. 

L'observation de cette variation chez Amborella suggère que ces réponses plastiques étaient 

présentes chez l'ancêtre hypothétique commun à toutes les angiospermes. 
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Chapitre 3. Evolution de la croissance secondaire chez les 
Piperales, un ordre diversifié d'angiospermes basales 

 Les Piperales représentent l’ordre le plus diversifié d’angiospermes basales avec c. 

4090 espèces. Cette diversité d’espèces s’accompagne d’une grande diversité des formes de 

vie qui serait liée aux variations de l’activité cambiale fréquente au sein de l’ordre. En dépit 

des nombreuses études s’intéressant aux Piperales, aucun travail de synthèse n’a traité 

l’évolution de l’activité cambiale. Ce chapitre se propose de compiler des informations 

anatomiques de toutes les lignées de Piperales, et d’effectuer une reconstruction 

phylogénétique des états des caractères. L’origine du caractère ligneux chez les Piperales est 

discutée ainsi que la fonctionnalité écologique de certains caractères anatomiques. Les 

observations anatomiques ont été réalisées sur 28 espèces incluant des représentants néo-

calédoniens appartenant au genre Piper, et des espèces représentatives de toutes les lignées de 

Piperales d'autres régions du monde. En combinant les données originales du présent travail et 

celles d’études précédemment publiées, nous établissons une reconstruction de l’activité 

cambiale et des types de perforation des éléments de vaisseaux afin d’estimer l’origine du 

caractère ligneux et l’évolution vasculaire des Piperales. Différents patrons de l’activité 

cambiale sont ainsi décrits; variant d’une croissance secondaire localisée dans les régions 

intra- et inter-fasciculaires chez Aristolochia et Thottea (Aristolochiaceae), Saruma 

(Asaraceae), Manekia et Piper (Piperaceae), à une activité cambiale restreinte aux régions 

fasciculaires chez les Saururaceae. En outre, une absence totale de croissance secondaire est 

observée chez Verhuellia (Piperaceae) ainsi que dans quelques espèces de Peperomia 

(Piperaceae). Les éléments de vaisseaux de Piperaceae, Aristolochiaceae et Asaraceae ont des 

perforations simples tandis que ceux des Saururaceae sont principalement scalariformes. Un 

endoderme possédant une bande de Caspary (caractère atypique dans les tiges aériennes) est 

observé pour tous les genres de Piperaceae, ainsi que pour Saururus et Houttuynia 

(Saururaceae). Nos travaux suggèrent que l’ancêtre hypothétique commun des Piperales 

possédait très probablement un cambium actif et une forme de vie ligneuse, avec une 

vascularisation caractérisée par des éléments de vaisseaux à perforations simples. Cette 

hypothèse est appuyée par l’homogénéité anatomique des espèces ligneuses des Piperales qui 

partagent toutes des caractères du bois tels que des rayons très larges et longs, suggérant une 

origine commune du bois pour l’ordre. La grande diversité des formes de vie observée chez 

les Piperales est certainement liée à une histoire évolutive témoignant de changements 

fréquents de l’activité cambiale par le passé, associés à des changements de forme de vie. 
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Dans le contexte local de la Nouvelle-Calédonie, les formes grimpantes et herbacées des 

Piperaceae, inhabituelles au regard du reste des angiospermes basales néo-calédoniennes, 

pourraient être à l’origine de la grande marginalité de niche de cette famille témoignant ainsi 

d'un lien entre la diversité des formes de vie et la diversité écologique. 

Chapitre 4. Caractérisation de l'habitat des angiospermes basales 
de Nouvelle-Calédonie, distribution présente et passée des espèces 

 La flore de Nouvelle-Calédonie présente une forte disharmonie et les angiospermes 

basales font partie des lignées de plantes à fleurs surreprésentées. Cependant, les mécanismes 

derrière leur prévalence restent inconnus. Cette section de thèse explore deux hypothèses 

majeures pour expliquer cette surreprésentation: (1) la diversité d'angiospermes basales est la 

conséquence d'une adaptation aux sols ultramafiques qui fonctionnent comme un filtre contre 

des nouveaux colonisateurs; et (2) cette diversité découle d'un climat humide qui aurait 

persisté en Nouvelle-Calédonie pendant le Quaternaire tandis que l'Australie et d'autres îles de 

la région ont souffert des variations climatiques plus importantes causant des possibles 

événements d'extinction. Etant donné que les angiospermes basales présentent une grande 

diversité anatomique des conduits du xylème, nous testons si la présence des différents types 

de conduits du xylème peut expliquer une différentiation écologique au sein de notre groupe 

d'étude. Nous avons utilisé des modèles de distribution pour déterminer des corrélats 

environnementaux pour 60 espèces d'angiospermes basales.  Des variables telles que le type 

de végétation, le substrat et le climat ont été utilisées pour caractériser l'habitat type. Nous 

avons ensuite testé si le type d'élément de conduction dans le bois, lequel devrait affecter 

directement leur capacité hydraulique, est corrélé avec la préférence d'habitat des espèces. 

Finalement, nous avons analysé une possible prédominance des espèces sur différents 

substrats et projeté la taille de leur habitat et de leur distribution lors du dernier maximum 

glaciaire. Les résultats montrent une préférence des angiospermes basales pour des habitats de 

forêt humide localisés sur des substrats non ultramafiques. Seules les espèces possédant des 

éléments de vaisseaux à perforations simples présentent un habitat plus étendu. Nous avons 

également montré que ces habitats de forêt humide ont subi une réduction très importante de 

leur surface et un déplacement géographique pendant la dernière période glaciaire vers des 

zones refuges localisées sur la côte est, laquelle est plus pluvieuse et plus chaude. Le maintien 

des angiospermes basales dans des habitats caractérisés par de faibles demandes d'évaporation 

semble être lié aux limitations hydrauliques de ces espèces. La surreprésentation des 

angiospermes basales en Nouvelle-Calédonie peut donc être expliquée par la persistance des 
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forêts humides dans l'archipel malgré les fluctuations climatiques du Quaternaire qui ont 

affecté la végétation de la région. Cette étude propose ainsi un nouveau modèle pour 

expliquer la représentation disharmonique de certaines familles d'angiospermes en Nouvelle-

Calédonie. 

Chapitre 5. Influence de la vulnérabilité à la sécheresse dans la 
répartition géographique des angiospermes basales en Nouvelle-
Calédonie 

 Les angiospermes basales de Nouvelle-Calédonie ont une préférence marquée pour 

des écosystèmes forestiers humides (Chapitre 4). Or nous avons également montré que ces 

habitats forestiers ont pu constituer des refuges pour ces lignées basales au cours du dernier 

maximum glaciaire. La prévalence actuelle des angiospermes basales dans les forêts humides 

de Nouvelle-Calédonie pourrait s’expliquer par une forte vulnérabilité à la sécheresse. Dans le 

contexte contemporain de changements climatiques, une augmentation de la mortalité des 

arbres provoquée par la sécheresse est observée dans de nombreuses forêts humides de la 

planète. La sécheresse est en outre susceptible d'affecter la distribution géographique de la 

végétation tropicale mondiale. Cependant, le lien entre la vulnérabilité à la sécheresse et la 

distribution environnementale des espèces tropicales a été très peu étudié. Dans ce chapitre 

nous avons mesuré la vulnérabilité aux embolies (P50) de 13 espèces d'angiospermes basales 

endémiques de Nouvelle-Calédonie présentant des morphologies distinctes des conduits du 

xylème. Nous avons examiné la relation entre la variable P50 et une gamme de variables 

environnementales d'une part, et d'autres traits fonctionnels comme la teneur de matière sèche 

des feuilles, la densité des nervations des feuilles et la densité du bois. Les angiospermes 

basales sélectionnées ont des valeurs de P50 variant entre -4.03 et -2.00 MPa, la plupart des 

espèces se situant dans une gamme étroite de résistance inférieure à - 2.7 MPa. La 

vulnérabilité aux embolies est significativement corrélée à l'altitude, à la température annuelle 

moyenne, et au pourcentage d'occurrences géographiques des espèces dans des régions de 

forêt humide. Le type de conduit du xylème n’explique pas la variation de résistance à la 

sècheresse (P50) entre les espèces. Les traits fonctionnels mesurés, couramment utilisés 

comme proxy de la résistance à la sécheresse, ne sont pas liés à la P50. La vulnérabilité aux 

embolies dans le xylème se distingue comme un trait physiologique étroitement lié à la 

distribution des espèces de forêt humide. Notre étude suggère que la différentiation 

écologique associée à la résistance à la sécheresse est découplée de la densité de bois chez les 

espèces de forêt humide. Ces résultats suggèrent que la sécurité hydraulique et la densité de 
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bois ont pu suivre des chemins évolutifs distincts chez les espèces d'habitats humides. 

Finalement, nous soulignons un risque important pour la conservation des angiospermes 

basales des forêts humides d'altitude en Nouvelle-Calédonie. 

Chapitre 6. Discussion générale, Conclusions et Perspectives 

Un aperçu de la forme de vie, la fonction, et l'écologie des premières angiospermes 

 La forme de vie et les préférences écologiques des premières angiospermes sont parmi 

les aspects les plus incertains de l'histoire évolutive des angiospermes. L’une des hypothèses 

les plus fameuses est celle des 'paléoherbes'. Cette hypothèse s’appuie sur l'observation des 

espèces des Piperaceae et des Chloranthaceae, et propose que les premières angiospermes 

étaient représentées par herbes rhizomateuses. L'hypothèse des paléoherbes s’est appuyée sur 

l'observation de caractères juvéniles dans le bois des plantes adultes chez les Piperales, qui 

indiquerait un ancêtre putatif herbacée selon l’hypothèse du « secondary woodiness ». 

Cependant, nos travaux sur l'évolution anatomique des Piperales indiquent que l’ancêtre 

commun de l’ordre possédait plutôt un cambium actif et présentait une forme de vie ligneuse. 

Nos résultats s’opposent ainsi à l'hypothèse des paléoherbes et suggèrent que les caractères 

juvéniles dans le bois ne sont pas un indicateur fiable d'un ancêtre putatif herbacé. 

 Une hypothèse plus récente, s’appuyant sur des données fossiles et écophysiologiques, 

en accord avec nos résultats, suggère que les premières angiospermes étaient des plantes 

ligneuses qui habitaient des habitats humides, ombragés, et fréquemment soumis à des 

perturbations (hypothèse « dark and disturbed »). La croissance sympodiale ainsi que la 

capacité à produire des rejets basitones chez Amborella sont des caractéristiques qui sont très 

rares, voir absentes, chez les gymnospermes. Ces caractéristiques de développement ont été 

proposées comme des réponses adaptatives à la vie dans des milieux fréquemment perturbés 

car permettant d'adopter une stratégie de persistance après une perturbation. L’observation 

d’une croissance sympodiale chez Amborella trichopoda, laquelle a été précédemment décrite 

chez d’autres angiospermes basales, suggère que ce mode de développement était déjà présent 

chez l’ancêtre commun de toutes les angiospermes. Ces caractéristiques ont pu fournir aux 

premières angiospermes des capacités de compétition qui ont participé à leur dominance des 

écosystèmes terrestres.  

  En plus de ces caractéristiques particulières aux angiospermes basales, nos travaux ont 

pu montrer des patrons de covariation des traits qui sont connus dans des nombreuses plantes 

vasculaires. Par exemple, nos résultats ont montré que des traits fonctionnels foliaires 
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d’Amborella tels que la teneur en masse sèche, ainsi que le rapport de masse sèche par unité 

de surface fraiche, varient respectivement 6 à 5 fois en fonction des conditions lumineuses 

dans lesquels la plante se développe. Etant donné que ce type de réponses foliaires a été 

largement documenté chez d’autres groupes d’angiospermes, l’observation de cette variation 

chez l'espèce sœur de toutes les angiospermes confirme l’importance adaptative de cette 

réponse phénotypique. Nous avons également montré qu’il existe une relation forte entre la 

densité des tiges et la teneur de masse sèche par surface des feuilles. Cette coordination des 

traits entre les organes de la plante a été largement documentée dans d'autres groupes de 

plantes ligneuses (angiospermes et non-angiospermes). Le caractère universel de cette 

coordination de traits suggère donc l’existence des contraintes physiques et physiologiques 

qui pourraient empêcher la production de formes 'inaccessibles' chez les végétaux. 

Evolution et écologie de l’appareil vasculaire des angiospermes. Contributions de cette 

thèse 

 La grande majorité des études s’accordent sur l’absence de vaisseaux dans le bois de 

l’ancêtre commun des angiospermes. Les trachéides étaient alors les seules structures 

responsables de la conduction de l’eau dans les tiges. A partir de ces trachéides, les plantes à 

fleurs auraient ainsi développé des vaisseaux exhibant une grande diversité structurelle. Cette 

tendance évolutive a longtemps été perçue comme une trajectoire linéaire depuis les 

trachéides vers les éléments de vaisseaux à perforation simple. Les éléments de vaisseaux à 

perforation scalariforme représenteraient une forme transitoire. Cependant, nos travaux sur 

l’évolution de l’anatomie des éléments de conduction dans le bois des Piperales proposent une 

possible réversion des perforations simples vers des perforations scalariformes. Ces résultats 

remettent en cause le caractère irréversible de cette tendance évolutive et fournissent un 

exemple de ce type de réversion dans l’appareil vasculaire des angiospermes. D’autres cas 

épars de réversion ont été mis en évidence par le passé. De futures investigations sur 

l'évolution des clades d'angiospermes présentant les deux types de vascularisation seraient 

pertinentes afin de mieux comprendre les processus qui ont conduit à ces reversions. 

 Au delà des conclusions sur l’évolution structurelle du bois, nos recherches fournissent 

aussi des nouvelles informations sur l'influence de la vascularisation du bois dans l'écologie 

des plantes. Il a été suggéré que les premières angiospermes munies d’éléments de vaisseaux 

étaient restreintes à des milieux humides en raison d’une limitation hydraulique imposée par 

la structure de leurs vaisseaux 'primitifs', présentant des perforations scalariformes. Nos 

travaux illustrent la première relation directe entre l’occupation des habitats et le type 
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d’élément de conduction dans le bois. Ces résultats suggèrent que les espèces qui présentent 

une vascularisation formée par des éléments de vaisseaux à perforations scalariformes, ainsi 

que par des trachéides, sont restreintes à des habitats humides et peu variables en température. 

Les espèces qui présentent des vaisseaux à perforation simple, lesquels confèrent une 

meilleure performance hydraulique, seraient capables d’occuper des habitats plus diversifiés 

tels que le maquis ou les forêts sèches de Nouvelle-Calédonie où les demandes 

évapotranspiratives sont plus importantes. 

 Un autre résultat majeur de cette thèse repose sur la mise en évidence d’une forte 

influence de la physiologie du bois dans la distribution des espèces. En effet, nous avons 

montré un lien très fort entre la capacité à résister aux embolies provoquées par la sécheresse 

et l’occupation des habitats. De plus, nous n’avons pas trouvé de différence significative entre 

la résistance à la sécheresse des plantes avec ou sans vaisseaux. L’absence de différences 

malgré les différences anatomiques dans le bois suggère que d’autres caractéristiques 

anatomiques des conduits telles que les membranes des ponctuations doivent jouer un rôle 

majeur dans la résistance aux embolies. Finalement, l’absence de différentiation entre les 

espèces sans vaisseaux et les espèces pourvues des vaisseaux primitifs suggère que les 

premiers vaisseaux ont été développés dans des zones avec une humidité stable et peu 

soumises à la sécheresse. 

La stabilité climatique du passé et les zones refuge, une nouvelle explication pour la 

disharmonie de la flore néo-calédonienne 

 En se basant sur des études globales et régionales, de nombreux travaux ont montré 

que les plantes qui colonisent de nouvelles aires géographiques ont tendance à occuper des 

biomes similaires à ceux de leurs aires d'origine. Cette hypothèse connue sous le terme de 

« conservatisme de niche » repose sur l’idée qu’il est plus facile pour une espèce de se 

déplacer plutôt que d’évoluer. A partir de ce principe, nous pouvons émettre l’hypothèse que 

l’environnement occupé actuellement par les angiospermes basales de Nouvelle-Calédonie 

possède des caractéristiques similaires à celui qu’elles ont occupée avant leur arrivée sur 

l’archipel. Nos travaux ont montré que le plus grand chevauchement d'habitat de 62 espèces 

d’angiospermes basales se trouve dans des zones avec une précipitation relativement forte 

(1,500 à 2,300 mm) et de faibles variations journalières de température. Ces caractéristiques 

correspondent aux zones de forêt humides, suggérant ainsi que les angiospermes basales ont 

occupé des habitats de forêt humide depuis leur arrivée en Nouvelle-Calédonie. Etant donné 

que la Nouvelle-Calédonie a été complètement immergée pendant le Pléistocène et que sa 
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réémergence a eu lieu pendant l'Eocène supérieur, les angiospermes basales de Nouvelle-

Calédonie ont du occuper des forêts humides dans des régions voisines telles que l’Australie, 

ou des îles aujourd'hui disparues, pour coloniser par la suite l'archipel Calédonien. 

 L’Australie a souffert d’une dessiccation progressive au cours des dernières 25 MA, 

culminant dans des événements d'aridité extrême pendant les cycles glaciaires. Cette 

dessiccation a pu provoquer l'extinction d’espèces appartenant aux angiospermes basales en 

Australie. Grace à ses caractéristiques géographiques et topographiques, la Nouvelle-

Calédonie présente un climat océanique avec des alizés qui apportent une grande quantité 

d'humidité. Le climat océanique de Nouvelle-Calédonie a probablement constitué un atout 

majeur à la survie des lignées angiospermes basales sur le territoire  pendant ces périodes des 

changements climatique. En effet, notre étude suggère que des habitats de forêt humide ont pu 

subsister en Nouvelle-Calédonie, agissant comme un refuge pendant les grandes fluctuations 

climatiques du dernier maximum glaciaire. Notre étude confirme donc l’importance de la 

présence des refuges des forêts humides pour le maintien des espèces végétales en Nouvelle-

Calédonie. Cette stabilité climatique peut-être un mécanisme majeur pour expliquer la 

surreprésentation de certains groupes des plantes à fleurs en Nouvelle-Calédonie. 

Implications de cette thèse pour la conservation de la flore de Nouvelle-Calédonie 

 La Nouvelle-Calédonie est considérée comme l’un des points chauds pour la 

conservation de la biodiversité mondiale en raison de sa riche biodiversité, mais aussi en 

raison des nombreuses menaces qui pèsent sur celle-ci, telles que les activités minières, les 

feux de forêt, et les espèces envahissantes. Etonnamment, bien que le changement climatique 

représente une menace potentiellement forte sur la biodiversité globale, aucune étude n’a 

évalué son impact sur la végétation de la Nouvelle-Calédonie. En outre, les îles océaniques 

sont considérées comme fortement vulnérables aux changements climatiques en raison de 

certaines caractéristiques inhérentes telles que la faible disponibilité de surface et les petites 

tailles des populations. Cette vulnérabilité particulière exhorte à considérer le changement 

climatique comme une menace potentielle sur la flore de l'archipel calédonien. 

 Le climat de notre planète est en train de changer, la température globale augmente et 

on atteint des chiffres record. De même, on attend des changements dans le régime des 

précipitations à travers le monde. Il a été suggère que l’augmentation de la fréquence et de la 

gravité des sécheresses aurait un impact majeur sur la mortalité des espèces végétales. Malgré 

ces constats, à notre connaissance, ce phénomène n’a pas encore été observé en Nouvelle-
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Calédonie. Etant donné que les angiospermes basales sont très abondantes dans les 

communautés forestières de Nouvelle-Calédonie, mais aussi parce qu'elles semblent être très 

vulnérables à la sécheresse, les angiospermes basales pourraient constituer des indicateurs 

potentiels de l'effet de la sécheresse sur la flore de l'archipel. Un suivi des populations 

d’angiospermes basales pourrait fournir une alerte précoce de l'impact de la sécheresse sur la 

végétation en Nouvelle-Calédonie. 

 En analysant les tendances climatiques de l’archipel à travers les dernières 39 années, 

il a été suggéré que la température est en train de monter à un rythme de 0,25 °C par décennie. 

Selon les modèles climatiques, les températures devraient augmenter de c. 2 °C à la fin du 

21ème siècle. Le réchauffement climatique pourrait entraîner des déplacements altitudinaux 

dans la distribution d'organismes. Ces migrations ont déjà été observées chez des espèces 

végétales au sein de différents biomes. Cette thèse a montré une relation positive entre la 

vulnérabilité du xylème face aux embolies induites par la sécheresse et la distribution 

altitudinale des espèces. Dans ce contexte, notre étude a montré que les espèces qui se 

trouvent à des altitudes élevées comme Paracryphia alticola et Zygogynum tieghemii, sont 

parmi les espèces les plus vulnérables à la sécheresse. La vulnérabilité de ces espèces serait 

d’autant plus exacerbée que leur migration est limitée par une réduction de la surface 

disponible avec l’altitude. 

 Ces travaux de thèse représentent la première tentative d'évaluer le lien entre la 

vulnérabilité à la sécheresse et les patrons de distribution des espèces végétales à l’échelle de 

l’archipel. Cependant, des traits tels que la résistance du bois aux embolies ne devraient pas 

être utilisés seuls pour évaluer la vulnérabilité à la sécheresse car les végétaux disposent des 

nombreuses stratégies pour faire face à la sécheresse. En ce sens, il serait pertinent d’inclure 

d’autres indicateurs de résistance à la sécheresse tels que le point de perte de turgescence des 

feuilles ou le control de l'activité stomatique. L’intégration de traits physiologiques des 

feuilles pourrait compléter nos connaissances sur la vulnérabilité à la sécheresse des 

angiospermes basales. Finalement, des travaux considérant la tolérance à la sécheresse 

d’autres lignées de plantes présentes en Nouvelle-Calédonie ainsi que d'autres types de 

végétation, pourraient fournir un aperçu plus intégral de la vulnérabilité à la sécheresse de la 

flore de l'archipel. Enfin, ces traits écophysiologiques pourraient être intégrés aux modèles de 

distribution d’espèces qui prennent en compte les valeurs des traits pour projeter la 

distribution des espèces. 
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 Malgré son statut de hotspot pour la conservation de la biodiversité seulement 3,4% de 

la surface de Nouvelle-Calédonie est protégée. Les angiospermes basales sont des taxons très 

distinctifs de la biodiversité Calédonienne. De ce point de vue, il serait pertinent de mettre en 

avant des taxons tels qu’Amborella, qui ont une forte valeur patrimoniale, pour attirer 

l’attention mondiale sur la conservation de la flore locale. Nous avons suggéré que la richesse 

d’angiospermes basales en Nouvelle-Calédonie pourrait être le résultat de la stabilité du 

climat passé, qui aurait permis la présence de refuges forestiers pendant des grandes 

fluctuations climatiques globales. Ces refuges pourraient faciliter la survie des espèces 

pendant les changements climatiques d'origine anthropique qui sont en train d'affecter la 

planète. Par conséquent, la préservation de ces zones refuges pourrait permettre de conserver 

une part importante de la flore locale. Certaines zones refuges évoquées dans notre étude 

comprennent la zone de montagnes située entre Roche de la Ouaïeme et Gwâ Rùvianô, cette 

zone comprend le Massif des Lèvres et Görö Tâné. Il convient de noter qu'aucune de ces 

zones est protégée par la législation de la Nouvelle-Calédonie. La compréhension de l’impact 

du changement climatique sur les espèces de l’archipel, ainsi que la préservation des 

potentielles zones refuge, sont essentielles pour la protection de la richesse floristique de la 

Nouvelle-Calédonie.
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Résumé 

 L’une des remarquables originalités de la flore néo-calédonienne repose sur la présence de nombreuses 
lignées correspondant aux premières divergences des plantes à fleurs, compte tenu de leurs positions 
phylogénétiques. Au sein de ces lignées, certaines espèces sont susceptibles de porter des traits morpho-
anatomiques ancestraux. Par conséquent, dans un contexte comparatif, l'étude de ces espèces peut fournir des 
informations cruciales pour comprendre les premières étapes évolutives des angiospermes. Un premier volet de 
cette thèse vise à étudier des caractéristiques structurelles et fonctionnelles des groupes représentatifs 
d’angiospermes basales. L'étude d'Amborella trichopoda, espèce sœur de toutes les angiospermes, nous a montré 
une covariation des traits fonctionnels (tige-feuille) et une plasticité morphologique en réponse à des variations 
de l'environnement lumineux. Cela suggère que ces réponses plastiques étaient déjà présentes chez l'ancêtre 
commun de toutes les plantes à fleurs. En parallèle, l’étude de l'évolution anatomique des Piperales, ordre le plus 
riche parmi les angiospermes basales, suggère que leur ancêtre commun aurait possédé un cambium actif. Ces 
résultats supportent que les premières angiospermes avaient une forme de vie ligneuse et une probable structure 
sympodiale. 

 Les angiospermes basales comptent parmi les lignées d'angiospermes surreprésentées en Nouvelle-
Calédonie. Cependant, les mécanismes à l’origine de cette dysharmonie demeurent inexplorés. Un deuxième 
volet de cette thèse analyse la répartition environnementale des angiospermes basales de l'archipel afin de 
connaitre leurs préférences en termes d’habitats, ainsi que leurs exigences environnementales. Cette distribution 
environnementale a également été analysée au regard de leur résistance à la sécheresse. Nous montrons que la 
plupart des espèces présentent une préférence marquée pour des habitats de forêt humide avec des faibles 
variations en température. La vulnérabilité hydraulique face à la sécheresse apparait comme un trait majeur qui 
confine la distribution de ces espèces dans des habitats humides. Ces conditions auraient persisté dans des zones 
refuges dans l'archipel lors de la dernière période glaciaire, permettant ainsi le maintien de certaines lignées 
d’angiospermes basales. Une stabilité climatique passée pourrait donc être à l'origine de la surreprésentation de 
certains groupes d'espèces forestières qui ont disparu dans les régions voisines. La distribution des angiospermes 
basales néo-calédoniennes, ainsi que leur sensibilité à la sécheresse, supportent l'hypothèse suggérant que les 
premières angiospermes habitaient des milieux humides et stables. 

Mots-clés: anatomie du bois, angiospermes basales, biogéographie, écologie fonctionnelle, écophysiologie, 
évolution, Nouvelle-Calédonie, vulnérabilité à la sécheresse. 

 

Abstract 

 One of the remarkable characteristics of the New Caledonian flora is the presence of numerous 
angiosperm lineages recognized as the earliest divergences of the flowering plants, due to their phylogenetic 
positions. Within these lineages, some species are likely to bear ancestral morpho-anatomical features. 
Therefore, under a comparative perspective, the study of these species can provide compelling information for 
understanding the early evolutionary stages of angiosperms. The first part of this thesis aims to study the 
structural and functional characteristics of representative groups of basal angiosperms. The study of Amborella 
trichopoda, sister species to the remaining flowering plants, shows a covariation of functional traits (stem-leaf) 
and a morphological plasticity in response to changes in the light environment. This suggests that these plastic 
responses were already present in the common ancestor of angiosperms. In parallel, the study of the anatomical 
evolution of Piperales, the most diversified basal angiosperm order, suggests that their common ancestor had an 
active cambium. These results support the hypothesis that early angiosperms had a woody habit and that 
sympodial growth may have been acquired early during angiosperms evolution. 

 Basal angiosperms are among the over-represented angiosperm lineages of New Caledonia. However, 
the mechanisms underlying this disharmony remain unexplored. A second component of this thesis analyzes the 
environmental distribution of New Caledonian basal angiosperms to know their habitat preferences and their 
environmental requirements. Further, we assess the influence of their drought tolerance on their environmental 
distribution. We show that most species have a preference for rain forest habitats with small variations in 
temperature. Drought-induced hydraulic vulnerability stands as a major trait that restricts the distribution of these 
species to humid habitats. These stable conditions seem to have persisted in refugial areas in the archipelago 
during the last glacial maximum, allowing the persistence of basal angiosperm species. Therefore, a past climatic 
stability could explain the over-representation of some groups of forest species that may have disappeared in 
neighboring regions. The distribution of basal angiosperms in New Caledonia, as well as their drought 
sensitivity, support the hypothesis suggesting that early angiosperms lived in humid and stable environments. 

Keywords: basal angiosperms, biogeography, drought vulnerability, ecophysiology, evolution, functional 
ecology, New Caledonia, wood anatomy. 
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