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Abstract 

Optical microscopy is an indispensable tool for research in neurobiology and medicine, 

enabling studies of cells in their native environment.  However, subcellular processes 

remain hidden behind the resolution limits of diffraction-limited optics which makes 

structures smaller than ~300nm impossible to resolve. Recently, single molecule 

localization (SML) and tracking has revolutionized the field, giving nanometer-scale 

insight into protein organization and dynamics by fitting individual fluorescent 

molecules to the known point spread function of the optical imaging system. This fitting 

process depends critically on the amount of collected light and renders SML techniques 

extremely sensitive to imperfections in the imaging path, called aberrations, that have 

limited SML to cell cultures on glass coverslips.  

A commercially available adaptive optics system is implemented to compensate for 

aberrations inherent to the microscope, and a workflow is defined for depth-dependent 

aberration correction that enables 3D SML in complex biological environments. A new 

SML technique is presented that employs a dual-objective approach to detect the 

emission spectrum of single molecules, enabling 5-dimensional single particle imaging 

and tracking (x,y,z,t,λ) without compromising spatiotemporal resolution or field of view. 

These acquisitions generate ~GBs of data, containing a wealth of information about the 

localization and environment of individual proteins. To facilitate quantitative 

acquisition and data analysis, the development of biochemical, software and hardware 

tools are presented. Together, these approaches aim to enable quantitative SML in 

complex biological samples. 

Keywords 

Superresolution Microscopy, Single Molecule Localization Microscopy, Adaptive Optics, 
Spectral, Single Particle Tracking



 

 
 

Imagerie quantitative des molécules uniques en 
profondeur dans les échantillons biologique à l'aide 

d'optiques adaptatives 

Résumé 
 

La microscopie optique est un outil indispensable pour la recherche de la neurobiologie 

et médecine qui permets l’étude des cellules dans leur environnement natif. Les 

processus sous-cellulaire restent néanmoins cachés derrière les limites de la résolution 

optique, ce qui rend résoudre les structures plus petites que ~300nm impossible. 

Récemment, les techniques de la localisation des molécules individuelles (SML) ont 

permis le suivi des protéines de l’échelle nanométrique grâce à l’ajustement des 

molécules unique à la réponse impulsionnelle du system optique. Ce processus dépend 

critiquèrent sur la quantité de lumière recueillit et rends ces techniques très sensibles 

aux imperfections da la voie d’imagerie, nommé des aberrations, qui limitent 

l’application de SML aux cultures cellulaires sur les lamelles de verre. 

Un system commerciale d’optiques adaptatives est implémenté pour compenser les 

aberrations du microscope, et un flux de travail est défini pour corriger les aberrations 

dépendant de la profondeur qui rend 3D SML possible dans les milieux biologiques 

complexe. Une nouvelle méthode de SML est présentée qui utilisent deux objectifs pour 

détecter le spectre d’émission des molécules individuelles pour des applications du suivi 

des particule uniques dans 5 dimensions (x,y,z,t,λ) sans compromis ni de la résolution 

spatiotemporelle ni du champ de vue. Pour faciliter les analyses de manière quantitative 

des Go de données générés, le développement des outils biochimiques, numériques et 

optiques est présenté. Ensemble, ces approches ont le but d’amener l’imagerie 

quantitative des molécules uniques dans les échantillons biologiques complexes. 

Mots clés 

Microscopie de superresolution, localisation des molécules individuelles, Optiques 

Adaptatives, Spectrale, Suivi des particules uniques
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istorically, fundamental advances in human knowledge occur as a direct result of scientific 

and technological progress. Over our evolution as a society, we have begun narrowing our 

attention in an attempt to comprehend how the interaction of a complex network of small 

microscale events act together to induce a macroscale effect. This is particularly true in biology, 

where the advent of the microscope in the 16th century enabled the visualization of individual 

cells and their interactions together. The microscope has allowed us to gain a wealth of 

knowledge not only about the human body, but also about our surrounding environment.  

However, optical microscopy has been restricted to visualization of ~micrometer scale structures 

due to physical limits that govern the propagation of light. Within the past decades, techniques 

have emerged that push optical microscopes to their technical limit, allowing for the first time 

the visualization and tracking of individual proteins in live cells. These so-called super-

resolution microscopes are capable of resolving nanometer scale structures, but the full 

capabilities of these young techniques have yet to be fully exploited. In particular, the optical 

sensitivity combined with the huge amount of data generated by these techniques has 

conventionally limited their applications to cells cultured on glass coverslips, preventing 

quantitative nanoscale biology in more complex but physiologically relevant environments like 

tissue.  

This thesis aims to address some of these limitations by the development of new biological, 

optical and software tools in an effort towards enabling the quantitative study of nanoscale 

protein interactions in complex biological samples. This work was part of a CIFRE collaboration 

with Imagine Optic, a company at the forefront of advanced optical tools for metrology and 

microscopy.  Finally, this work was made possible thanks to the collaborative environment of 

the Interdisciplinary Institute for Neuroscience, where the lines between chemistry, biology, 

optics and computer science are blurred through collaboration.  

Organization of the Thesis: Chapter Descriptions 

This dissertation is composed of an introductory chapter and 3 main chapters that represent 3.5 

years of work on individual paths towards improving single molecule localization microscopy 

H 
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along separate vectors, with the ultimate goal of enabling quantitative single molecule biology 

of multiple proteins in physiological biological environments. 

In Chapter 1, I introduce the notion of fluorescence microscopy and its fundamental limits in 

terms of imaging speed and resolving power. I detail the decade-new discovery of super 

resolution fluorescence microscopy and its capacity to uncover nanometer-scale protein 

localization and dynamics.  I cover the requisite notions of single molecule localization 

microscopy (SMLM), from sample labeling techniques to efficient fluorophore excitation and 

detection, highlighting the current limitations that restrict its application to a subset of 

biological models. 

In Chapter 2, I detail several distinct collaborative paths I explored during this thesis towards 

improving single molecule localization microscopy to help enable quantitative biological 

imaging. I begin with a photopatterning technique to create quantitative single molecule assays 

for characterizing the photophysical properties of single molecule labels in absence of cellular 

noise. I then introduce a novel automated acquisition pipeline for high content single molecule 

imaging to facilitate dSTORM, DNA-PAINT and (spt)PALM imaging in multi-well plates. To 

address the issue of quantitative analysis of SMLM data, I detail a new method of cluster analysis 

based on Voronoï segmentation constructed from the localized molecule coordinates. I detail its 

application to DNA origami structures that serve as excellent metrological tools for single 

molecule localization microscopy (SMLM), as well as a quantitative investigation of AMPA 

receptor clustering in hippocampal neuron cultures. 

Chapter 3 tackles the topic of 3D single molecule imaging and the limitations that restrict 

conventional 3D SMLM methods close to the coverslip surface. I introduce the concept of 

adaptive optics for single molecule localization microscopy, a field of optics pioneered for 

astronomy to correct for atmospheric distortions in land-based telescope images. As part of the 

CIFRE collaboration with Imagine Optic, I detail the development of a plugin for the MetaMorph 

acquisition environment, which facilitates the use of adaptive optics for wavefront correction in 

single molecule imaging. I describe the implementation of a plug-and-play adaptive optics kit 

and discuss how it is used for correction of wavefront aberrations, allowing for thicker 3D 

imaging than conventional methods as well as SMLM imaging up to 10µm away from the 

coverslip, notably facilitating 3D dSTORM in hippocampal brain slices.  

In the final fourth chapter, I outline the development of a microscope that retains high 

spatiotemporal resolution of conventional epifluorescence collection while adding spectral 

discrimination abilities through a second collection objective placed in the transmission 

geometry. By using a dispersive element in the second optical path, the average emission 

wavelength of each single emitter can be estimated, allowing for simultaneous 3D multicolor 

structural imaging and protein tracking without compromises. I discuss our unique 

implementation of the method using two commercial microscopy bodies in an effort to 

maximally stabilize the system and make it as accessible to users as possible. I conclude with 

several applications of the method for a variety of biological models and fluorescent probes, 

demonstrating the sensitivity and versatility of the technique for 5-dimensional single particle 

tracking. 
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his introductory chapter establishes the foundation of the burgeoning field of single 

molecule localization microscopy, which has given unprecedented insight into nanoscale 

biological structure and dynamics over the past 2 decades thanks to an order of magnitude 

improvement in resolution.  

A complete understanding of super-resolution microscopy techniques requires a thorough 

introduction to the contrast mechanism used to pinpoint individual molecules in the protein-

dense cellular environment. I begin by briefly describing the theory of the light-matter 

interaction known as fluorescence, highlighting in particular its advantages and utility as a 

specific marker for biological imaging, and discuss its fundamental limitations. I then focus on 

methods that circumvent the optical resolution limits in so-called super-resolution imaging, 

specifically techniques based on single molecule blinking and localization. I cover non-

exhaustively the most important aspects of single molecule imaging in the context of optimizing 

image resolution, from sample labeling with fluorescent probes to their efficient excitation and 

sensitive detection.  

Improving these three criteria form the foundation for my PhD work, with the ultimate goal of 

extending single molecule imaging beyond the coverslip into more biological complex and 

physiologically relevant samples. 

1.1 

Specificity is a fundamental issue in any optical imaging system, particularly in the domain of 

microscopy, where images are frequently used for decorticating complex biological circuits or 

diagnosing medical diseases. The ability to separate a specific protein or structure of interest 

from its surrounding environment is critical in successfully achieving this. For decades, the light-

matter interaction known as fluorescence has been utilized to distinguish molecules from its 

neighbors. By selectively attaching such a fluorescent molecule, known as a fluorescent probe or 

T 
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tag, to a certain protein of interest, the field of fluorescence microscopy has become an integral 

tool for research in biology and medicine.  

 

The process known as fluorescence occurs as the result of a specific interaction between a 

molecule and an incident electromagnetic (EM) wave. When a fluorescent molecule absorbs an 

EM wave, its electrons are excited from an energetic ground state to a higher-energy excited 

state. Briefly, these energy levels are a result of the quantized nature of energy that discretizes 

the energy of a given molecule into a combination of distinct atomic rotational, vibrational and 

electronic states. Figure 1.1a depicts the electronic energy levels of a molecule during its 

fluorescence cycle, commonly referred to as the Jablonski diagram. During the photon 

absorption process, the fluorescent molecule gains a discrete amount of energy (E) inversely 

proportional to the wavelength (𝜆) of the incident photon:  

𝐸 = ℎ𝜈 = ℎ
𝑐

𝜆
 (1.1) 

where 𝜈 is the light’s frequency and 𝑐 ≈ 6.626×10−34J • s is Planck’s constant. Absorption of the 

incident photon’s energy induces a molecular transition to a higher electronic energy state, 

where it remains on the order of nanoseconds before relaxing to the ground state. When 

relaxing, it releases energy by a non-radiative transfer of energy to a lower-energy state, or by 

emitting this energy in the form of photons. Notably, these emitted photons contain less energy 

than the excitation photon due to energy loss in the form of vibrational relaxation in the upper 

electronic state. The energy difference between the excited and the emitted photons is called the 

Stokes Shift. Furthermore, the large number of vibrational states within each electronic state 

causes variability of the energy of each emitted photon, resulting in broad fluorescence 

excitation and emission spectra (Figure 1.1b). 

Fluorescence is just one of many processes by which a molecule can internally transfer its energy. 

An energy transfer which induces a change in electron spin pushes the molecule in to a triplet 

state via a process known as intersystem crossing. These triplet states have a much longer 

 
Figure 1.1: The Principle of Fluorescence. (a) Jablonski Diagram showing the timeline of fluorescence. 
The molecule is raised to an excited electronic state through the absorption of an incident photon (yellow). 
It releases this energy either in the form of a fluorescence photon (red), or may transition to a long-lived, 
lower energy triplet state, from which it can emit higher wavelength phosphorescence photons.  (b) The 
large number of energetic sub-states from vibrational and rotational modes allow the Alexa647 fluorescent 
molecule to absorb and emit a spectrum of photons. The energy lost due to internal conversion and 
vibrational relaxation results in a red-shift of the fluorescence spectrum with respect to the emission 
spectrum, called the Stokes Shift. 
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lifetime than singlet excited states because depopulating these quantum mechanically forbidden 

energy levels requires emitting the appropriate amount of energy and simultaneously changing 

electron spin in order to emit a photon in a process known as phosphorescence. When 

considering the timeline of single molecule photophysics, these triplet states are commonly 

considered as “dark states”, as the molecule can reside here from milliseconds to hundreds of 

seconds before returning to the electronic ground state where it can begin a new fluorescence 

cycle.  

This cycle of energy absorption and re-emission can occur indefinitely as long as the system is 

not perturbed. However, for most fluorescent molecules, this fluorescence lifecycle typically 

ends with a structural change to the chemical bonds of the molecule known as photobleaching, 

which prevents it from absorbing further photons.  

Fluorescence microscopy has proven to be a powerful method for studying biology due to its 

simple implementation into an optical system. Many molecules which possess the ability to 

fluoresce can be easily and specifically tagged to single proteins, rendering them visible on the 

microscope. Combining the physical process of fluorescence as a proxy for the biological 

structure to image, fluorescence microscopy has given protein-specific contrast to biological 

structures. Fluorescence excitation sources such as fluorescence lamps or lasers are now 

commonly available, as are a wide range of filters at various wavelengths and spectral 

bandwidths used to selectively allow only photons in the emission spectrum of the fluorescent 

molecule to be imaged by the system.  

Historical Aside: The term fluorescence was first coined by Sir George Gabriel Stokes in 1843, 

where he observed the phenomenon with his own eyes using sunlight as an excitation source for 

calcium fluoride (Stokes 1852). The first fluorescence microscopes, originally developed by the 

Carl Zeiss company in the early 20th century, exploited the autofluorescence of various 

biomolecules as a contrast mechanism. Later, the advent of fluorescent tags that specifically 

target individual proteins brought about rapid growth of the field of fluorescence microscopy.  

 

While fluorescence microscopy adds inherent specificity and contrast, it is subject to the laws of 

light propagation and diffraction, limiting the theoretical resolution of the technique to the 

micrometer scale. 

Perhaps the most common metric used to measure the power of a microscope or other optical 

system its capacity to separate two point sources from each other, a quantity commonly referred 

to as resolution. This resolution ultimately determines the finest details the microscope can 

image. 

When considering the resolution of a microscope, it is essential to understand how the imaging 

system creates an image of an infinitesimally small source of light, known as a point source. 

There are two key notions to consider when imaging a single emitting point source, the 

fluorescence of which propagates radially outward from the point source. The first is that only a 

finite portion of the radiations can be collected, resulting in incomplete or “lossy” photon 

collection. Second, the radiated photons periodically interfere with each other due to the wave 

nature of light in a process called diffraction. Considering an optical system where the photons 
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emitted from a single molecule are collected with a simple lens, it is mechanically impossible to 

collect the entirety of the emitted light with one single lens. When quantifying the collection 

efficiency of an optical element or system, it is common to reference the maximum emission 

angle of light collected by this lens, known as its numerical aperture (NA), mathematically 

formalized as 

𝑁𝐴 = 𝑛 sin 𝛼 (1.2) 

where n is the refractive index and  is the half-angle of the cone of light that enters the lens, as 

shown Figure 1.2a. 

 

As a result of this limited collection ability, the focused fluorescence emission from a single 

fluorescent emitter does not perfectly interfere. Practically, a single point source of light 

therefore appears as an image with a finite size, in a blurry representation known as the point 

spread function (PSF). The wave nature of light underlies the PSF’s representative spatial 

distribution in the form of a 2-dimensional Airy Function (Figure 1.2b), with most of the energy 

concentrated in a large central peak and several peaks and troughs emanating radially from the 

emitter’s center. The width of the main lobe of this airy function depends critically on two 

factors: the wavelength of the emitted photon, as well as the amount of light collected by the 

imaging system, introduced previously as the numerical aperture of the system. Collecting more 

light from the emitted source (by increasing the objective’s NA, for example) results in a more 

perfect interference between the collected EM radiation, reducing the effective size of the PSF. 

Similarly, light with smaller wavelengths results in a narrower interference pattern and reduces 

the PSF size.  

If we consider an imaging system as an optical signal processor, the point spread function is 

essentially the microscope’s impulse response, and any image created by the system is simply a 

linear superposition of the PSFs of each emitting fluorescent molecule, a process called 

convolution. The image of a complex sample can be considered as the sum of the point spread 

functions of all each individual fluorescing molecule inside the sample. Thus, understanding the 

point spread function is essential to defining the resolving capabilities of an imaging system. 

 
Figure 1.2 Consequences of the Limited Photon Collection of an Optical Imaging System. (a) The 

numerical aperture (NA) of an imaging system is defined by its ability to collect a given angle, , of 
emission light from a point source. A high-NA system (red) collects more light than a low-NA system 
(blue). (b) The partial collection of light from a single point source results in a 2D Airy diffraction pattern 
at the focal plane called the point spread function. High-NA systems (red) that collect more light more 
perfectly interfere, resulting in a narrower and more intense central peak. 
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Using the point spread function as the fundamental unit of an optical imaging system, the ability 

to discriminate the point spread functions emanating from two adjacent single emitters defines 

the system’s spatial resolution. Formally, several mathematical descriptions of this criteria 

exist, differing only in their definition of the minimum distance necessary to effectively separate 

the two airy functions (Figure 1.3a).  

Ernst Abbe 1, however, was the first to mathematically formalize this notion in 1873 by calculating 

the spot size, d, of a point source imaged through a microscope objective as  

𝑑 =
𝜆

2𝑁𝐴
 (1.3) 

Shortly thereafter, Lord Rayleigh in 18792, expanded on this notion by defining the minimum 

discernable separation between the spatial intensity distribution of two converging point 

sources, called the Rayleigh criteria, imposing this distance such that the maximum of one 

point spread function is placed exactly at the first minimum of its adjacent PSF. Mathematically, 

this was formalized as 

∆𝑥𝑎𝑖𝑟𝑦 = 0.61
𝜆

𝑁𝐴
 (1.4) 

and is commonly used as a reference for resolution in microscopy, and is as small >200nm for 

visible light (𝜆 =400nm-700nm, NA=1.4) used in biological applications. 

It is important to distinguish the lateral resolution, discussed above, and the axial resolution, 

that is the ability of the imaging system to discriminate two point sources which have the same 

lateral xy position but differ in their z axial position. Again, calculating the spatial profile of the 

interference of the collected EM waves and using the Rayleigh criteria for separation, this axial 

resolution is given by  

∆𝑧𝐴𝑖𝑟𝑦 = 2𝑛
𝜆

𝑁𝐴2(1.5) 

and is typically >800nm, ~3-4x larger than the lateral spatial resolution.  

Following Rayleigh’s resolution criterion, one would postulate the maximizing resolution is as 

simple as minimizing the wavelength. While mathematically valid, complications arise when 

applying fluorescent to biological studies. Due to their molecular structure, water, blood and 

 
Figure 1.3: Spatiotemporal Resolution Considerations. (a) Two common definitions exist for defining 
the capability of an imaging system to resolve two adjacent emitters, but the resolution of an optical 

system is generally simplified as /2NA. (b) Several hundreds of photons must be acquired to create an 
accurate image of a single emitter. This schematic representation ignores noise sources (from an imaging 
sensor or the stochastic photon emission process) in a simple illustration that longer exposure time allows 
accumulation of more photons for higher SNR.  
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tissue have an electromagnetic attenuation minimum between 𝜆=600nm – 1µm. This is 

frequently referred to as the biological window, as light in this spectral range can be easily 

transmitted without scattering. Lower wavelengths, towards the ultraviolet (UV), contain a 

biologically harmful amount of energy and should be used sparingly in biological imaging. Much 

work is taking place in pushing microscopy towards the near infrared (NIR), although excitation 

sources and fluorescent probes in this range remain scarce and/or expensive. 

 

The resolving power of a microscope extends beyond its ability to spatially discriminate point 

sources. Another critical notion to understanding the resolution of a microscope is its ability to 

temporally distinguish these point sources.  

The fundamental limit to the temporal resolution of a fluorescence imaging system can be 

considered as the single emitting molecule to complete its fluorescence cycle. Revisiting the 

Jablonski diagram in Figure 1.1a, we notice that once excited by an incident photon (a process 

which occurs on the order of picoseconds), the fluorescent molecule with remain in its excited 

state for a time on the order of nanoseconds before emitting radiation in the form of a 

fluorescence photon or transitioning to a lower-energy state. 

The theoretical temporal resolution of an optically perfect imaging system capable of imaging 

single photons is therefore on the order of nanoseconds. To accurately create an image of a 

fluorescent sample, several hundreds of photons are required, resulting in typical exposure times 

on the order of microseconds to milliseconds (Figure 1.3b).  

 
While diffraction optically limits the far-field resolution of an imaging system, there are means 

to improve the capacity of the optical system to resolve structures by optimizing contrast. A 

common idea used to improve the effective resolution of a microscope is to limit the thickness 

 
Figure 1.4: Electromagnetic Transmission Window for Biological Studies. Water and biological 
tissue have a transmission window in the visible and near-infrared wavelengths. Future laser and probe 
development further in the near infrared wavelength range is promising for biological applications of 
optical microsopy. 

From: https://www.osa-opn.org/home/articles/volume_26/september_2015/features/optics_in_the_molecular_imaging_race/ 
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of the specimen effectively imaged by the optical system. There are two straightforward ways to 

implement this: by confining the excitation or the detection to a thin slice of a thick specimen. 

In both cases, limited the effective thickness of the imaged sample results in greatly improved 

axial resolution. 

One of the first implementations of this confined excitation exploits the ability to limit excitation 

light inside the coverslip on which the sample is imaged. While widefield or epifluorescence 

imaging illuminates an entire sample, focusing a laser source near the extremity of the back focal 

plane of the microscope objective results in a beam that is totally internally reflected in the 

coverslip due to the refractive index difference between the glass and the imaging medium. This 

causes an evanescent wave to propagate along the coverslip surface, whose intensity decreases 

exponentially with the axial distance into the sample. Known as Total Internal Reflection 

Fluorescence (TIRF) microscopy3, this evanescent wave can be used to excited fluorescent 

markers several hundred nanometers from the coverslip, the exact distance of which can be 

carefully calibrated and controlled based on the position of the focused incident beam in the 

back focal plane of the objective (Figure 1.5a). The result is an extremely high contrast signal 

thanks to the optical confinement of the excitation light.  

One major drawback to the TIRF method is intrinsic to the physics that power the technique: 

TIRF is inherently restricted close to the coverslip surface and therefore cannot be used to image 

many cellular structures deeper into the cell.  A slight variation of the technique, informally 

referred to as “dirty TIRF” or oblique excitation, brings the laser excitation slightly close to the 

optical axis such that the light is no longer internally reflected, but instead creates a highly 

inclined thin optical sheet that provides enhanced contrast over widefield imaging when 

imaging within several microns from the coverslip4 (Figure 1.5b). A more advanced technique 

enables deeper imaging at the expense of slightly weaker optical sectioning. Light Sheet 

Microscopy, or Selective Plane Illumination Microscopy (SPIM), dissociates the excitation 

light from the detection plane, typically by employing two objectives in a perpendicular 

geometry (Figure 1.5c), creating a strong optical sectioning effect that can be exploited for 

cellular, tissue, or even entire-organism imaging.  

An alternative method to improve contrast is to provide a widefield excitation but prevent the 

out-of-focus background light from reaching the detector. By placing a pinhole in a plane 

optically conjugate to the image plane, only the in-focus light rays are permitted to pass the 

spatial filter and onto the photodetector (Figure 1.5d). These confocal microscopes typically 

employ a point scanning excitation, where an excitation laser is focused on the sample plane and 

raster scanned through the field of view, with a single photodetector collecting the emission 

sequentially from each point. This technique is temporally limited by the ability to rapidly scan 

the laser and detect a sufficient number of photons per point. However, a slight optimization to 

the conventional confocal microscope with an array of spinning pinholes and a 2-dimensional 

imaging sensor have made spinning disk microscopy an exceedingly used technique in 

biological studies of fixed tissue due to its high contrast and fast imaging speed.  

Finally, multiphoton microscopy is a laser-scanning based technique that benefits from 

excitation-based optical sectioning without the need for a detection pinhole by exploiting 

temporal properties of advanced laser sources (Figure 1.5e). In two photon microscopy, 

femtosecond laser pulses with twice the desired excitation wavelength are used, allowing only 
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fluorophores very close to the focus simultaneously absorb two photons and reducing the 

effective excitation to very small focal volume (~0.1µm2)5. 

The optical sectioning capabilities of these illumination techniques are overviewed in Figure 1.5 

and will be treated in greater detail in section 1.4.2. 

 
TIRF, light-sheet, multiphoton and confocal microscopy improve axial resolution using a 

common notion: limiting the collected fluorescence to an axial subset of fluorescent molecules 

prevents interference from out-of-focus molecules. While the result is improved contrast and 

improved axial resolution, the resolution of these techniques is still limited by the diffraction of 

light. 

In 2014, Nobel Prize in Chemistry was awarded to three scientists instrumental to the creation 

of the first so-called “super-resolution” microscopes, capable of circumventing the diffraction 

barrier to image fluorescent molecules with nanometer precision. These super-resolution 

methods do not break the fundamental laws of EM wave propagation, but rather play clever 

tricks to increase the effective image resolution in the far-field.  

Structured Illumination Microscopy (SIM)6 achieves a two-fold improvement over 

conventional diffraction-limited microscopy through a combination of patterned excitation and 

image processing that increase the acquired spatial frequencies and thus image resolution. The 

sample is excited with specific patterns that make high spatial frequencies accessible by 

diffraction-limited optics. SIM offers a 2x gain in resolution for little compromise in terms of 

image acquisition time, setup complexity, or required laser power, and is an ideal choice for live-

cell imaging of structures ~100nm in size. 

A second superresolution approach called Stimulated Emission Depletion (STED) 

Microscopy7 extends upon a traditional point scanning microscope with confocal detection, 

adding a second excitation laser that quenches the fluorescence around the excitation point. It 

is achieved by shaping the spatial profile of the depletion laser in a doughnut-shaped ring 

concentric with the fluorescence excitation laser. The excitation and depletion laser are scanned 

 
Figure 1.5: Improving Axial Resolution by Optical Sectioning. (a) Total Internal Reflection excitation 
confines the excited fluorophores to several hundred nanometers from the coverslip surface. (b) Oblique 
or HiLo excitation creates a thin, highly inclined optical sheet that allows imaging within several 
micrometers from the coverslip surface. (c) Light sheet, or selective plane, illumination decouples the 
excitation and detection, enabling imaging up to organism scale. (d) Widefield laser scanning based 
approaches can benefit from optical sectioning with a confocal detection pinhole, allowing only excited 
light from the focal plane to reach the detector. (e) Multiphoton excitation techniques confine the 
excitation volume by requiring multiple photons to be simultaneously absorbed. 
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simultaneously using a high-precision galvanometric scanner, generating an image of the 

fluorescent sample where only the fluorophores in the sub-diffraction limited area inside the 

quenching ring contribute to the image. The resolution of this method is theoretically infinite, 

as the inner radius of the quenching ring decreases with increasing laser power. Practically, 

however, laser power must be limited when imaging biological samples to prevent damage to 

the fluorescent markers or to the underlying biological structure. 

Whereas STED uses advanced illumination techniques and precise knowledge of the location of 

the excitation beams to acquire a sub-diffraction limited image, single molecule localization 

based techniques exploit temporal separation of spatially overlapping fluorophores to 

numerically estimate their position with nanometer precision. By accumulating tens of 

thousands of imaging frames and reconstructing a single image containing the localizations of 

hundreds of thousands of molecules, in 2006 Betzig et al first demonstrated fluorescence 

photoactivated localization microscopy ((f)PALM)8) and shortly thereafter Rust et al stochastic 

optical reconstruction microscopy (STORM9) for sub-diffraction limited imaging.  

Fundamentally, PALM, STORM differ only in their means of rendering optical sparsity to 

spatially overlapping fluorescent molecules, and will be discussed in further detail in section 

1.3.3.  

By giving access to nanometer-scale protein localization and dynamics, these techniques and 

their derivatives have enabled biologists to study the complex cellular circuitry and protein 

interactions at a new level.  

1.2 

Single molecule imaging techniques combine conventional full field microscopes with new 

stochastically-activated fluorescent probes that allow a single molecule to fluoresce amongst a 

sea of otherwise dark molecules. If only a single molecule is imaged in a diffraction-limited area, 

its image on the camera sensor will appear as a diffraction-limited and pixel-binned 

representation of the airy-distributed point spread function. This condition of a single molecule 

underlying the imaged PSF is exploited to determine the centroid of the PSF, usually by fitting 

the fluorescence distribution to a model point spread function. The result is an estimate of the 

molecule’s position with an order of magnitude higher resolution than the optically-limited 

 
Figure 1.6: Comparison of Superresolution Methods. (a) Structure Illumination Microscopy (SIM) 
achieves a 2x improvement in resolution by using patterned illumination to fold higher spatial frequencies 
into the diffraction limit. (b) Stimulated Emission Depletion (STED) microscopy uses a second laser beam 
with a doughnut spatial profile to quench fluorescence outside of a tight focus. (c) In Single Molecule 
Localization Microscopy (SMLM), stochastic activation of spatially overlapping fluorophores allows 
localization of single emitters with a precision an order of magnitude greater than the diffraction-limited 
resolution. 
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image (Section 1.2.6 discusses the validity of this assumption and the consequences of its 

violation). 

In Single Molecule Localization Microscopy (SMLM), this localization process is repeated 

for up to hundreds of thousands of image frames, ideally until all fluorescent molecules have 

been localized, accumulating the spatial coordinates of fluorescent molecules to reconstruct one 

final image with up to millions of localization points. The tradeoff for spatial resolution is 

evident: a single reconstructed image requires several tens of seconds to tens of minutes in order 

to effectively image and localize all fluorophores in a given sample. The term SMLM 

encompasses a variety of individually-named techniques including (non-exhaustively) 

(spt)PALM8,10, STORM11, dSTORM12, (u)PAINT13,14, and GSDIM15. While the variety of 

terminology can be daunting, the techniques are fundamentally identical, distinguished 

primarily by the type of fluorescent tags used and how they obtain sufficient spatial sparsity for 

single molecule localization. 

A high-level overview of the analytical approach to single molecule localization and 

reconstruction is given here. For a more thorough analysis, I refer the reader to a recent review 

article by Lee et al.16, which provides a comprehensive look at each analytical step. 

 

SMLM can be performed using relatively simple optical system as shown in Figure 1.7a, typically 

composed of two distinct optical paths: the excitation path (light red), where one or multiple 

light sources are projected onto the sample plane through a system of lenses, and the collection 

or detection path (dark red), where the light emitted from the sample plane is collected and 

imaged via a tube lens onto a photosensitive device, such as a camera. In a commonly employed 

geometry, the inverted microscope, these two paths share a common element: the microscope 

objective; the excitation light is focused through the objective onto the sample, and the 

fluorescence emission is back-collected using the same objective, after which a wavelength-

sensitive dichroic mirror is used to separate the fluorescence emission from the excitation light. 

Coupling the two optical paths through the microscope objective allows for both the excitation 

and detection to take advantage of the benefits of these highly precise optical elements, but also 

imposes some constraints that will be detailed in section 1.4.  

Establishing imaging conditions where only a single fluorescent molecule is emitting in a 

diffraction-limited area differs depending on the specific technique. It is generally accomplished 

by very low-power photoactivation (PALM-like), by immerging the sample in an imaging buffer 

that heavily favors molecular dark states (dSTORM) or by adjusting the concentration of 

antibodies coupled to a fluorophore (PAINT-like). Under these single molecule conditions, a 

single exposure frame contains from ten to hundreds of spatially distinct fluorescent spots. 
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For well aligned optical systems, these individual fluorescent spots can be considered as accurate 

representations of the diffraction-limited point spread function of the microscope. In order to 

gain spatial information below the diffraction limit, these individual PSFs are fitted numerically 

to a model point spread function of the microscope, generally a Gaussian approximation of the 

Airy function, with the primary purpose of retrieving the position of the fluorophore at the 

epicenter of the fluorescence emission (Figure 1.7b). 

 

As mentioned in section 1.1.2.1, the intensity profile of a single molecule is imaged as an airy disk, 

whose width depends directly on the wavelength of emitted light and inversely on the numerical 

aperture of the collection objective. However, numerically fitting an airy function is not only a 

calculation-intensive task, but the spatial sampling and number of photons collected from a 

single fluorescing molecule limit the detectability of even the first side lobes. For these reasons, 

it is common practice to use a numerically simpler yet physically similar fitting model, namely a 

Gaussian curve:  

𝐼(𝑥) = I𝑏𝑔 +
𝐼0

𝜎√2𝜋
𝑒

(−
(𝑥−𝑥0)2

2𝜎2 )
 (1.6) 

The width of the Gaussian fit, , is related to the full width at half maximum of the PSF via the 

following relationship:  

𝐹𝑊𝐻𝑀 = 2√2ln2𝜎 ≈ 2.3548𝜎 (1.7) 

 
Figure 1.7: A Standard Single Molecule Localization Microscope with Gaussian Fitting Routine. 
(a) A standard inverted microscope geometry is typically employed in single molecule localization 
microscopy. An excitation laser is injected into the back focal plane of a high numerical aperture, high 
magnification microscope objective, exciting fluorescent markers in the biological sample. The emitted 
fluorescence is collected through a back-reflection geometry and focused onto a sensitive detector. (b) 
Individual images of fluorescent single molecules are segmented from the image and fit to a 2D Gaussian 

function of width  (full width at half maximum ~2.35). This fitting process has a precision of ∆𝑥, 
generally in the tens of nanometers. (c) Hundreds of localizations from tens of thousands of frames can 
either be accumulated into a density map or temporally reconnected to form single molecule trajectories 
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While a 2-dimensional Gaussian fit is generally used for single molecule localizations, the fitting 

process is more easily visualized in 1-dimension (Figure 1.7b), where the similarity of a theoretical 

Airy and its Gaussian fit is particularly apparent in the central peak of the Airy function. 

 

The ability to numerically extract the central coordinates of this Gaussian approximation to the 

point spread function, in part, limits the effective resolution in SMLM (other factors contributing 

the resolution of SMLM images will be discussed in 1.2.5.1). Quantitatively, this is referred to as 

the localization precision. The theoretical variance of the coordinates of the single molecule, 

given by the Cramer-Rao lower bound, is detailed by Ober et al. 17 and gives a fundamental limit 

to the localization precision. More practically, in 2002, Thompson et al. first quantitatively 

investigated the uncertainty with which the center position of a single fluorophore can be 

extracted from its image through a real optical system, with sensor noise and finite pixel size18. 

⟨(∆𝑥)2⟩𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 =
𝜎2+𝑎2

12⁄

𝑁
+

8𝜋𝜎4𝑏2

𝑎2𝑁2  (1.8) 

Mortensen et al. later refined this uncertainty to include excess noise from the electron 

multiplication process in EMCCDs commonly used in SMLM, resulting in the slight modification 
19:  

⟨(∆𝑥)2⟩𝑀𝑜𝑟𝑡𝑒𝑛𝑠𝑒𝑛 =
𝜎𝑎

2

𝑁
(

16

9
+

8𝜋𝜎𝑎
2𝑏2

𝑁𝑎2 ) (1. 9) 

with 𝜎𝑎 = 𝜎 + 𝑎2/12 and 𝑎 ≤ 𝜎 where 𝜎 is the standard deviation of the PSF (1/e value for 

Gaussian approximation), a is the effective pixel size of the imaging system, N the number of 

photons collected, and b is the background noise.  

In most cases and for EMCCD cameras, the background noise caused by readout error or dark 

current can be considered negligible, and the localization process finds itself in a regime limited 

principally by photon shot-noise. In this case, the second background term is ignored, and the 

approximate uncertainty with which a single molecule can be localized reduces to 

⟨(∆𝑥)⟩𝑆ℎ𝑜𝑡 𝑛𝑜𝑖𝑠𝑒 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 =
𝜎𝑎

√𝑁
     (1.10) 

Simply stated, a single fluorescent emitter imaged through a digital imaging system like a 

microscope can be localized with greater certainty by increasing the number of photons 

collected in a single image frame or by reducing the standard deviation of the PSF (discussed in 

detail previously in 1.1.2.2), accomplished by reducing the wavelength of emitted light or 

increasing the numerical aperture of the collection objective. For example, a molecule that emits 

100 photons, as is typical in PALM imaging, could theoretically be localized 10x more precisely 

thanks to the fitting processs. While this idealistic simplification is often used for localization 

precision estimates, it should be noted that it is only truly valid when the sensor noise is low 

compared to the signal and is less applicable in PALM imaging (where the signal per localization 

is quite low) or when using an sCMOS camera as a detector (where in individual pixel noise can 

greatly influence the fitting process). Furthermore, other sources of background noise like out 

of focus excited fluorophores add stochastic variability to the background and decrease the 

localization precision. 
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This localization and fitting process is applied to the array of molecules (~hundreds) in a single 

image frame, and by acquiring several tens of thousands of such single molecule images, a final 

reconstructed image can be generated. These localizations can be accumulated into a single 

density map, or localizations in the subsequent frame gives access to building single molecule 

trajectories with nanometer-scale precision (Figure 1.7c). 

 

Imaging single molecules has opened the doors to a wealth of biologically-relevant information 

about protein dynamics that are rendered invisible by the ensemble averaging of conventional 

bulk fluorescence imaging. The idea of temporally tracking single molecule fluorescence images 

was demonstrated as early as 1982, when Barak et al measured single receptor diffusion 

coefficients using bright fluorescent probes20. Localization-based approaches soon followed, 

allowing tracking of membrane molecules21 and motor proteins22 at the nanometer scale.  

The advent of photoactivable fluorescent proteins like PA-GFP and Eos-FP decoupled the 

protein labeling density from the fluorescence imaging by allowing a small, stochastically 

activated subset of fluorescent tags to be imaged. By genetically fusing these photoactivable 

fluorescent proteins to proteins of biological interest, high-density mapping of protein 

populations with several orders of magnitude more tracks could now be obtained, revealing 

previously hidden heterogeneities in single protein dynamics with sptPALM10. Over the past 

decade, these high-density localization-based single particle tracking methods have allowed 

cellular biologists to peer even deeper in to protein dynamics and structure with spatial 

resolutions around 30nm23-25.  

While a high-level introduction of these approaches is outlined here, the interested reader is 

referred to two recent review articles that detail further advances in dynamic single molecule 

localization imaging 26,27. 

 

Temporally reconnecting spatially proximate localizations in adjacent image frames forms 

individual trajectories of individual molecules from which protein dynamics can be extracted 

(Figure 1.8a). For high-density SPT acquisitions, this can become a very computationally 

complex task requiring multiple-particle tracking, and therefore a-priori knowledge of the 

expected maximum velocity of the protein is frequently used to define a maximal spatial radius 

for track reconnection. Presently, dozens of software packages and methods are available to 

perform these trajectory reconnections. In a collaboration between more than 30 participating 

researchers, Chenouard et al present an excellent review of the state of the art of particle tracking 

methods28, ultimately concluding that while no single software package is flawless, most 

methods work for a strong signal to noise ratio (SNR). 



CHAPTER 1 OPTICAL SINGLE MOLECULE FLUORESCENCE MICROSCOPY 

16 

Spatiotemporal analysis of these trajectories can reveal not only how these proteins move in their 

local biological environment, but also how they interact with other proteins. The Mean Square 

Displacement (MSD) is one such commonly used analysis, extracting the diffusion coefficient 

of a freely diffusing molecule by quantifying the area that the molecule explores over time. As 

shown in Figure 1.8b, fitting the MSD data with several different model motion curves can unveil 

if a molecule is being actively directed, confined, or moving stochastically due to Brownian 

motion29. Furthermore, the MSD curve can be used to calculate a global diffusion coefficient per 

trajectory in addition to instantaneous diffusion coefficients per image frame for each trajectory, 

giving insight into the evolution of individual molecule’s dynamics over time.  

 

Essential to the analysis and interpretation of these single molecule dynamics is the 

comprehension of the technique’s limitations. The MSD data must be carefully interpreted as a 

function of the fluorescent probe and linker’s size and bio-accessibility26. Ultimately, the 

molecular diffusion coefficients are bound by the acquisition speed of the single molecule image 

stack (upper) and localization precision (lower). The imaging parameters must be carefully 

adjusted to consider the speed of protein motion, as any translation motion during camera 

exposition can blur the resulting image and induce localization error, especially when using a 

Gaussian fit model30.  

 
The Gaussian fitting process can provide a very accurate estimation of the position of the 

fluorescent molecule underlying the PSF, but it is a computationally intensive task. The 

processing time for several hundred localizations per image frame can take as much 

computation time as the SMLM acquisition itself. To expedite the localization process, an 

alternative method for estimating the molecule’s position based on the computationally 

inexpensive Wavelet transform was initially proposed by Izeddin et al. in 2012 31. By segmenting 

the PSF in the Wavelet space, the image is much less sensitive to noise and background than in 

the direct image space, and the centroid can be used as a proxy for the molecule’s position with 

relatively high accuracy (Figure 1.9). 

The reduced computational complexity of a wavelet domain centroid-based localization 

method, as well as its parallelizable nature, allowed for Kechkar et al. to create a localization tool 

 
Figure 1.8: Single Particle Tracking and Mean Squared Displacement. (a) Localizations from 
individual single molecules are temporally reconnected across subsequent imaging frames, generating 
single particle trajectories that contain information and protein position and dynamics. (b) The mean 
square displacement is commonly used to define protein motion in complex cellular environments.  

From Sibarita et al 27 
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that performs the localization process in real-time on the acquisition system by exploiting the 

graphics processing unit (GPU) for parallel computation (Figure 1.9)32.  

A key advantage to localizing single molecule signatures in real-time during the acquisition is 

the ability to modify experimental conditions on-the-fly. For example, the number of activated 

molecules can be adjusted to optimize acquisition time, or even dynamically modulated over the 

course of the acquisition to maintain a constant number of localizations. Similarly, real-time 

super-resolution reconstruction can validate the correct level of protein expression or 

immunostaining, or alert the experienced experimenter of potential artifacts. This direct 

feedback is essential to facilitating SMLM more widespread application. On-line localization and 

image generation also alleviate one major numerical constraint that limits SMLM applications: 

saved data size. While SMLM image stacks can easily reach multiple gigabytes per image, online 

localization affords the ability to save only a single reconstructed image and/or a localization file 

containing all the localization and fit information for each individual localization, reducing the 

data storage required by nearly 2 orders of magnitude to hundreds of megabytes.  

Critically, the ability to generate a super-resolution reconstruction during the acquisition 

addresses one key issue in SMLM: how many images are needed before the reconstruction can 

be considered “completed,” or, more quantitatively, what is the effective molecular density 

desired in the super-resolution reconstruction. 

 
Figure 1.9: Real-time localization with GPU-based Wavelet Segmentation. GPU parallelization of 
single molecule localization highly multiplexes the localization process and allows for simultaneous real-
time localization of hundreds of localizations.  

From Kechkar et al 32 
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While there are multiple ways to define resolution in conventional microscopy, these definitions 

are based on semantic differences, as the true resolution is ultimately limited optically by the 

size of the point spread function. This, unfortunately, is not the case in single molecule 

localization microscopy, where the definition of resolution is a more complex notion. 

 

In the field of microscopy, a notion known as the resolution tradeoff has been a longstanding 

dogma: there is inherent compromise between spatial resolution, temporal resolution, spectral 

resolution, imaging depth, or biocompatibility (with respect to the total dose of light inflicted 

on the sample). This tradeoff is even more important in SMLM due to the limited number of 

photons that a single molecule can emit before photobleaching. This photon budget has 

restricted SMLM acquisition speed and biological applicability of the technique to single 

cultured cells close to coverslip, as imaging into complex biological tissue results in a loss of 

collected photons that either degrades resolution or completely prevents single molecule 

localization.  

Two independent factors together contribute to the final localization density in a SMLM 

reconstructed image, and therefore to its resolution: localization precision and labeling density.  

The first, localization precision, is the SMLM analog to optical resolution, and has been 

previously discussed in section 1.2.2.2. To summarize, in the absence of noise, the uncertainty 

with which a single molecule’s position can be estimated from an image of its fluorescence 

emission varies linearly with the PSF size and inversely with the square root of the number of 

photons collected above the background in that image. Bright fluorescent probes allow more 

precise PSF fitting and therefore less error in the centroid calculation.  

The second factor, labeling density, is slightly more esoteric with no conventional microscopy 

analog, and yet can be related to the Nyquist criterion in a traditional signal processing 

perspective. Applying this theorem to the case of SMLM data, it implies that there must be a 

molecular probe at least every n/2 nanometers along the entirety of the structure to achieve a 

resolution of n nanometers, although some suggest that even a labeling spacing of n/20 (10x 

Nyquist sampling) is barely sufficient for high-quality single molecule reconstructions33. 

Similarly, the notion of linker length, the distance between the protein of interest and its 

fluorescent tag caused by the ligand that binds the two, and probe size, both typically 

disregarded in conventional microscopy, become critical at the nanometer scale of single 

molecule imaging.  

Example Biological Model: Microtubule Network 

To visually illustrate the inherent difficulties in single molecule imaging in a biological context, this 
chapter will investigate the single molecule labeling and imaging of the microtubule structure. 
Microtubules are one of several cytoskeletal proteins, forming an intricate network of hollow tubes ~25nm 
in diameter. Their small size, highly dense protein composition, and biological relevance have rendered 
microtubules ideal structures for super-resolution imaging.  
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Deschout et al. 34 give an excellent demonstration of the joint effects of localization precision, 

linker length and labeling density with respect to microtubule imaging (Figure 1.10b). In the 

cases of long linker length, low labeling density, and low localization precision, individual 

fluorescent molecules are able to be localized without error, but the final reconstruction bears 

little resemblance to the original microtubule structure; precise, accurate, and dense 

localizations are required to effectively reconstruct the underlying biological structure. 

The combination of independent factors contributing to the overall image resolution in SMLM 

prevents a simple, single, measurable metric from being used to quantify resolution. As labeling 

density and accuracy are difficult to quantify, measures for experimental localization precision 

are often given as an approximation of a maximal resolution, assuming sufficient localization 

density in the reconstruction. These values can be simply estimated by calculating the standard 

deviation of the localizations emanating from a single molecule34. For highly dense samples, it is 

difficult to spatially separate single molecules, and Endesfelder et al. 35 demonstrated the use of 

a nearest neighbor calculation in the subsequent image frame to estimate the true localization 

precision, assuming that a single molecule will be imaged in several consecutive frames. 

Importantly, this precision varies for each localization across an imaging field of view, resulting 

in a variable effective resolution throughout the image that makes assigning a single value for 

image “resolution” difficult.  

Methods do exist, however, the take into account both localization precision and labeling 

density for calculating the effective resolution of SMLM images. One method, the Fourier Ring 

 
Figure 1.10: Resolution in SMLM requires precise localization of accurate, densely labeled probes.  
(a) Schematic representation of the critical notions behind resolution in single molecule localization 
microscopy. Successive localizations of an individual fluorescent probe create a cloud of localizations 
whose spatial confinement is given by the localization precision. This localization cloud is offset from the 
true position of the tagged protein by a distance given by the linker length. (b) Long linker length, low 
labeling density, or low localization precision results in inaccurate structural imaging with SMLM.  

Adapted from Deschout et al.34 
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Correlation36 (FRC), was originally implemented in electron microscopy and can give an 

estimation of the image resolution by computing a Fourier-domain correlation between two 

separate images reconstructed from half of the localization data set. This method, however, has 

one innate drawback in that it is fundamentally reliant on the generation of an image 

reconstruction.  

Resolution vs. Localization Precision: Conventions 

Ultimately, the community has yet to converge on a single measure for quantifying image resolution in 
single molecule localization microscopy. For clarity, the term “resolution” will be used in this manuscript 
as the ability to separate two individual molecules in any dimension (spatially, temporally, spectrally, etc.). 

When a resolution is specified, the Abbe criteria (𝑑=
𝜆

2𝑁𝐴
 (1.3) or FWHM is implied. Otherwise, the 

localization precision (, the standard deviation of the localization cloud associated with a single 
fluorescent molecule or bead) along will be used as a relative indicator of image resolution without 
factoring in labeling considerations.  

In any imaging system, it is essential to understand the processes behind the contrast 

mechanism from which the image is generated. The key to this in SMLM is ensuring sparse 

fluorescence such that each separate fluorescent spot can be considered an ideal point spread 

function of the imaging system. However, the fluorescence is generated from the electric field 

emitted from nanometer sized molecules, which can vary greatly in their degrees of spatial 

freedom; some molecules may be immobilized on the coverslip surface, whereas others may be 

spinning and diffusing freely. In fact, the dipole orientation of these emitters has been shown to 

have a great effect on the position of the imaged point spread function relative to the true 

position of the molecule37,38, although this bias can be removed optically filtering the emission 

to contain only azimuthally-polarized light39,40. These localization biases are important to 

consider when analyzing single molecule data or quantitatively comparing conditions. 

 

Nanoscale mechanical microscope motion, whether emanating from the microscope system or 

the sample itself, is essential to consider when imaging single molecules. As imaging typically 

occurs over several minutes, motion that is invisible in diffraction-limited microscopy becomes 

detrimental to single molecule imaging, since this mechanical drift can exceed the spatial 

resolution of the imaging system. The principal source for drift in most SMLM microscopes is 

thermal; focused high-power laser sources temperature create temperature gradients in the 

sample that result in a slow sample drift on the order of tens of nanometers to several microns 

after several minutes of acquisition. Thermal isolation and stabilization are thus commonly 

employed by the use of local sample heating chambers or plexiglass caging. Furthermore, optical 

air tables are essential for suppressing short time-scale (faster than an image exposure time) 

mechanical vibrations. Even with vibrational and thermal isolation, residual sample drift may 

still occur, and a number of methods have been introduced to correct for these drifts, from 

mechanical stabilization using optical feedback loops to post-processing using stable fiducial 

markers in the sample.  
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A straightforward method to compensate for lateral drift is to implant photostable fiducial 

markers into the sample that do not blink or photobleach over the course of the acquisition.  

This is traditionally achieved by implanting polystyrene beads of sub-diffraction limit diameter 

coated with fluorescent dyes, whose excitation and emission spectra are compatible with the 

spectra of the individual single molecules to be imaged. Tracking the bead’s displacement over 

the course of acquisition, a frame-by-frame xy-displacement trajectory can be generated and 

applied to correct the single molecule localizations (Figure 1.11a). 

This approach has served as the gold standard in lateral drift correction since the advent of 

SMLM for a number of reasons. The large number of fluorophores adhered to each bead results 

in fairly stable fluorescence emission over time, even when imaging in thiol and oxygen 

scavenger based imaging media. Furthermore, these polystyrene beads adhere easily to the 

coverglass and can be coated with multiple colors of fluorescent dyes, making drift correction 

feasibly even when imaging multiple fluorescent species.  

One key drawback to using fluorescent beads as fiducial markers is fundamental to their reliance 

on fluorescent dyes: they are inherently prone to intensity fluctuations and eventually 

photobleaching over time. Gold nanoparticles have been used as fiducial markers, however their 

surface chemistry makes them difficult to adhere to uncoated glass coverslips and their relatively 

unstable photochemistry induces blinking unsuitable for frame-by-frame localization. Recently, 

nanodiamonds have been used as photostable fiducial markers for drift compensation41-43. Their 

fluorescence mechanism is based on nitrogen-vacancy point defects in the diamond structure, 

rendering them ideal fiducial markers with broad excitation and emission spectra44, and 

incredibly stable fluorescence emission immune photobleaching.  

Fiducial markers allow for lateral drift correction with a slightly higher precision than the 

localization precision of single molecule detection due to their more abundant photon emission. 

In order to further improve their localization accuracy, and because the drift is a slow process 

compared to the acquisition frame-rate, it is common to temporally filter the positions, using 

e.g. a median filter. 

These fiducial markers must be injected into the sample with a sufficient density to be in the 

field of view of the structure to be imaged, which is not also biologically feasible. For imaging 

continuous structures such as cytoskeleton filaments, an alternative method is sometimes 

preferred, based on inferring the drift by generating intermediate images made from temporal 

subsets of the localizations 45. By cross-correlating these images, lateral sample drift can be 

inferred. While this method works well for small, constant drifts in samples with a finite 

structure and a large localization density, it is less precise than fiducial registration both spatially 

and temporally.  

Fiducial markers serve an excellent tool for estimating and correcting lateral mechanical drift 

because the precision with which the xy-drift trajectory can be calculated is greater than the 

average localization precision of the individual blinking fluorophores comprising the SMLM 

image. However, such drifts can also occur in the axial direction, and a posteori axial localization 
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correction is non-ideal since axial drift shifts the focal plane, quickly resulting in out of focus 

molecules due the small depth of field of the high NA objectives used in SMLM. Furthermore, 

axial localization (to be discussed in detail in section 3.1) is several times less precise than the 

lateral localization precision and can induce further variability in the axial localization instead 

of the desired stabilization. 

Therefore, alternative optical systems based on closed-loop feedback are typically implemented 

in high-precision SMLM microscopes to provide mechanical real-time axial stabilization. While 

several implementations are available, the most common solution is to detect the axial position 

of the surface of the coverglass and mechanically shift the microscope objective axially to 

stabilize its focal plane. By injecting a near infrared light emitting diode (LED) into the 

microscope objective such that it is focused on the coverglass, back-reflected, collected by an 

offset lens and finally imaged onto a line CCD, the imaging system’s focal plane is decoupled 

from the coverslip surface plane, which can be continuously positioned axially using the line 

CCD. Commercial implementations of this technique offer the ability to stabilize the focal plane 

with 50nm axial precision. 

While this real-time axial repositioning of the objective is simple to implement, it has several 

key drawbacks. Since the system is based on using a reflection off the top surface of the coverslip, 

a refractive index difference between the imaging media and the coverslip is essential to proper 

function, preventing axial correction of samples embedded in high-NA gels like vectashield or 

glycerol. Furthermore, the use of near-IR diodes for coverslip surface detection limits the 

spectral selection of dyes for single molecule imaging to a maximum of 800nm.  

A new technique introduced by Bon et al. uses gold nanoparticles embedded between the 

coverslip and the biological sample instead of reflection to sense the coverslip surface, allowing 

for combined lateral and axial active drift correction46. While promising, this technique requires 

significant modifications to the optical path and requires a quantitative phase imaging camera 

to image the gold nanoparticles, limiting its implementation in current conventional 

microscopes. 

 
The fundamental assumption underlying single molecule localization methods is that the 

localized region represents the ideal, diffraction-limited point spread function of only one single 

emitting molecule. It is critical to consider the implications of this assumption and the 

consequences of their violation. 

 
Figure 1.11: Lateral and Axial Drift Correction for SMLM. (a) Lateral drift can be compensated post-
acquisition by generating a drift trajectory from a fiducial marker present in every imaging frame. (b) 
Axial drift is commonly corrected using a system similar to the Nikon Perfect Focus System (PFS) that 
uses an NIR LED to detect the coverslip surface. 
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An inherent issue when imaging densely labeled stems from the stochastic activation of single 

molecules exploited in SMLM. Indeed, while it is possible to slightly reduce the activation 

density by minimizing UV-light power density or modifying the imaging buffer to favor long-

lived dark triplet states, there is a non-null probability that multiple fluorescent emitters will be 

simultaneously activated in a given spatial region at a given time. The fluorescent image of these 

multiple emitters is segmented and localized, but the resulting localization is biased and can 

create artifacts in super-resolution reconstructions47. These density-based artifacts can be 

particularly misleading when studying protein clustering, where artefactual localizations could 

cause the appears of false clusters of spatially-separated proteins, although a recent method 

based on varying the labeling density can be used to validate true degree of protein clustering48. 

A numerical solution also exists in the form of density-aware fitting algorithms. A logical 

extension of the single Gaussian fit used in typical localization algorithms is to use a multiple-

Gaussian fit49. While these multi-emitter techniques are effective, they are much more 

computationally intensive than simple single Gaussian fits, and are themselves prone to errors, 

particularly when the point spread function of the microscope differs from an ideal Airy function, 

as in 3D imaging. Moreover, these methods offer inferior localization precision, and prevent 

efficient single-molecule tracking experiments, restricting their use to very particular 

applications with extremely very high fluorescence density. 

To ensure accurate and efficient reconstructions, it is imperative that only a single fluorescent 

molecule emitting in a diffraction-limited area per frame. To achieve this single molecule 

condition, a combination of the appropriate protein labeling technique and correct imaging 

conditions must be implemented.   

1.3 

Single molecule imaging is very sensitive to a variety of labeling errors, which are otherwise 

transparent in traditional fluorescence microscopy. Labeling specificity for the desired structure 

is of critical importance, as is minimizing the linker error, the distance between the fluorescent 

marker and the protein it is tagging. This section details the import of these labeling properties 

for single molecule imaging. 

The field of fluorescence microscopy owes its specificity to the ability to specifically tag 

fluorescent molecules to biomolecules of interest. The first major innovation with this regard 

occurred in 1941, where Coons et al50 first demonstrated the ability to couple antibodies to 

organic fluorescent dyes, thereby allowing any antigen of interest to be selectively labeled and 

imaged. Commonly referred to as immunostaining or immunolabeling (immuno as a 

reference to the immunological origin of the antibodies), this technique is widely used in the 

field of biology as a readout for a specific protein.  Furthermore, the technique is inherently 

multiplexible, allowing for several antibody tags with spectrally separate fluorescent dyes to 

simultaneously tag multiple proteins of interest in a single biological sample. However, the 

technique is fundamentally limited by the antibody accessibility and antigen specificity; “bad” 

antibodies result in unspecific binding which manifests itself as background in microscopy 

images. 



CHAPTER 1 OPTICAL SINGLE MOLECULE FLUORESCENCE MICROSCOPY 

24 

It wasn’t until 1962 with the discovery of the Green Fluorescent Protein (GFP)51 and progress in 

molecular biology that eschewed the use of exogenous markers and allowed for the direct 

expression of proteins fused directly to various fluorescent proteins. The advent of these 

genetically encoded fluorescent proteins in a wide variety of spectral ranges retained the 

multiplexibility of antibody-based techniques with an even higher molecular specificity, at the 

expense of generally dimmer fluorescent proteins in comparison to organic fluorescent dyes. 

While this technique has been frequently used, it is often criticized in biological studies as they 

are difficult to express in the same concentration as the original, unmodified protein, and these 

fused protein complexes possibly change the function or accessibility of the original protein. 

While it is possible to study these complexes at the native concentration by knocking out the 

entirety of the original protein and expressing the fused complex with the fluorescent protein at 

the original concentration, this method cannot function for all proteins and is fundamentally 

restricted to a single generation of cells, as the supplemental RNA which codes for this protein 

complex is not incorporated into the organism’s genome. 

Quite recently, a targeted genome editing system known as CRISPR-Cas9 (Clustered regularly 

interspersed short palindromic repeats) has addressed this issue by allowing for permanent 

modification of the genetic code of an organism52. These revolutionary advances in molecular 

biology permit the native expression of fused fluorescent protein complexes in cell lines or even 

entire organisms, opening fluorescence microscopy to the study of a wide variety of proteins at 

their native expression level in genetically modified cells.  

 
Single molecule super-resolution imaging takes advantage of the unique photophysics of certain 

fluorescent molecules. When considering probes for single molecule imaging, there are two 

major components which need to be optimized: The fluorescent molecule and its underlying 

photophysics, and the ligand or mechanism used to attach the fluorescent molecule to the 

protein of interest. This section discusses the relevant photophysical properties to consider for 

ideal single molecule imaging, as well as how to efficiently and specifically label these single 

fluorescent molecules to biological structures of interest. 

 

In terms of photophysics, brightness, total number of photons, and temporal stability of photon 

emission are essential parameters to consider when evaluating the performance of a fluorophore 

for single molecule imaging. Together, these quantities define the number of photons per 

localization event, affecting the localization precision and thus the effective image resolution.  

 

In all single molecule fluorescence imaging, it must not be forgotten that the fluorescent probe 

is just a proxy for the protein of interest. Its localization is not necessarily identical to the location 

of the protein of interest. Indeed, a variety of methods exist that link the fluorescent molecule 

to the protein of interest, and the size of this linker defines the linker length between the 

fluorescent molecule and the actual protein.  

Conventional labeling approaches for bulk widefield and confocal microscopy use the 

immunolabeling process with antibodies targeted against the protein of interest. These 
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antibodies can easily be coupled to a wide range of bright organic dyes. While this labeling 

technique is also used for SMLM, common full-size antibodies are ~15nm in length. The 

combination of primary and secondary antibodies can therefore easily introduce 20-30nm 

between the probe and the protein, thereby introducing a linker-induced localization bias larger 

than the localization precision. Furthermore, the relatively large size of antibodies can prevent 

them from reaching targets in protein-dense cellular compartments due to steric hindrance. 

Antibody size can be reduced by using antibody fragments (Fabs) or directly-coupled primary 

antibodies or nanobodies53. However, specific antibodies do not exist for all proteins, and non-

specific binding of antibodies can result in a strong background in super-resolution 

reconstructions or false interpretation of the biological structure. 

An alternative to immunolabeling is to couple organic dyes to small biological or synthetic 

ligands to increase specificity and decrease linker error. Genetically encoding short binding sites 

like HaloTag 54, Snap-tag55, or  Flag56 greatly reduce the linker length to just a few nanometers, 

but background specificity can be difficult to control. A recently introduced technique based on 

the highly specific biotin-streptavidin coupling scheme combines the small linker length of an 

genetically expressed tag enzymatically converted to a  biotin tag with monomeric streptavidin 

coupled to organic dyes to perform live- and fixed-cell super-resolution imaging.57 

The final common technique is to genetically express a photoactivable fluorescent protein 

directly coupled to the protein of interest. These tags, based on the cylindrical structure of GFP, 

are just ~3-4nm in size, and can be genetically coupled to the protein of interest at very specific 

molecular sites inaccessible by conventional immunolabeling. However, genetic modification of 

proteins requires careful control experiments to verify the protein overexpression level. 

Critically, these fluorescent proteins have a photon budget an order of magnitude smaller than 

their organic dye counterparts, limiting their localization precision to the 10s of nanometers 

regime. Furthermore, there is currently no bright photoactivable fluorescent protein in the 650-

700nm emission wavelength range, a spectral window especially important for background-free 

cellular imaging. 

 
Figure 1.12: Probe-Protein Proximity in SMLM Labeling Strategies. The linker length between the 
fluorescent probe directly affects the accuracy of the localization. Immunolabeling techniques used in 
conventional microscopy result in ~20nm of linker error that, while invisible in conventional microscopy, 
is critical in SMLM. Directly coupled primary antibodies or nanobodies offer the same labeling specificity 
yet bring the fluorescent molecule much closer to the protein of interest. New labeling strategies like 
monomeric streptavidin increase labeling specificity and density while minimizing linkage error. 
Genetically encoded fluorescent proteins like GFP offer the advantage of exact protein position, but are 
much dimmer than organic dyes. 
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Compared to electron microscopy, which is generally considered the gold-standard in terms of 

resolution, single molecule based super-resolution microscopy provides a key advantage: it can 

be used to image live cells. However, the electromagnetic radiation that is absorbed by the cell 

must be taken into consideration when selecting the appropriate probe for live single molecule 

imaging. The previously discussed immunolabeling techniques have the disadvantage that 

antibodies cannot penetrate the cell membrane, and thus these techniques can only be used to 

label surface proteins like membrane receptors. To access internal structures with antibodies, 

the cell must be fixed and the membrane must be permeabilized58-60. Perhaps the most common 

and minimally-invasive technique for live-cell imaging uses the genetically fusion of the target 

protein with fluorescent protein derivatives of GFP in a wide spectrum of absorption and 

emission wavelengths .  

 
The field of single molecule imaging found its first hallmark biological application in single 

protein tracking. This was accomplished by subsampling the entire population of the protein of 

interest with low-density tagging. Functionalization of the fluorescent quantum dots (QDs) 

enabled the first In-vitro and in-vivo QD-SPT applications61, and their brightness continues to 

make them an excellent choice for SPT applications where brightness is preferred to a large 

number of tracks, recently having been demonstrated for neurotransmitter receptor tracking in 

brain slices62,63. However, their large size, in the tens of nanometers, causes steric hindrance and 

prevents them from entering tight, dense cellular compartments. While these low-density 

techniques continue to have their use in certain low-density single particle tracking applications, 

newer, stochastically-activated probes have enabled nanometer-scale structural imaging with 

high-density single molecule imaging. 

 

The recent photochemical advances in fluorescent probes have opened the doors to a new realm 

of single molecule imaging where the entire population of interest is tagged with stochastically 

activated fluorescent probes, simultaneously allowing high-density labeling and spatially sparse 

imaging. A variety of extremely similar techniques named with confusing acronyms make 

introducing the field of SMLM difficult; here, the techniques are simply separated by their 

method of illuminating individual single molecules. 

 

Photoactivated localization microscopy (PALM)8,64 was the first single molecule localization-

based imaging method that allowed for nanometer-scale imaging of individual proteins. This 

technique was made possible by the advent of photoactivable fluorescent proteins that are 

genetically expressed adjacent to a protein of interest, offering high density, specific labeling. 

The stochastic photoactivation process induces a shift in the chemical structure of the protein, 

red-shifting its excitation and emission wavelength. By photoactivating with microWatts of UV 

excitation, a sparse subset of these fluorescent proteins are stochastically photo-activated over 

time, enabling single molecule in the photo-activated channel.  
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While a wide range of photoactivable molecules exist65 based on photoactivable-GFP66, PA-

mCherry67, EosFP68, and Dendra269 are the most commonly used in PALM imaging. The 

relatively low intensity of light required for their photoactivation (µWs) and imaging (mWs) as 

well as their relatively good brightness for a FP render them ideal for live-cell single molecule 

imaging and tracking10. These fluorescent proteins, however, are not as bright as common 

organic fluorophores and have a smaller total emitted photon budget, resulting fewer, less 

precise localizations. Furthermore, they must be genetically expressed by the cell, causing 

concerns of overexpression and potential protein modification.  

 

Introduced shortly after PALM in 2006, STORM11 allows for single molecule imaging using 

traditionally immunolabeling techniques by labeling with a pair of fluorescent dyes and weakly 

activating to induce stochastic blinking of a reporter dye. While this technique was the first to 

demonstrate stochastic single molecule imaging, immunolabeling with a specific activator-

reporter dye pair prevents the technique for general accessibility. In 2008, direct STORM 

(dSTORM)12 demonstrated stochastic blinking of single conventional organic dyes when placed 

in a special imaging buffer containing an oxygen-scavenger like glucose oxidase and a dark-state 

favoring thiol, like ßMEA. While many commercially available dyes can be used for dSTORM 

imaging, Alexa647 is still considered as the gold-standard in terms of brightness and blinking 

quality70. STORM imaging with organic dyes offers extremely high localization precisions, on 

the 5-10 nanometer scale, at the expense of a high dose of laser power required for efficient 

blinking, in the kW/cm2 range. This intensity of light, plus the toxic imaging buffer, has limited 

most STORM imaging to the structural study of fixed cells. 

 

Transient labeling approaches exploit the high photon count of organic fluorophores without 

the requirement of special imaging buffers or high-intensity lasers to enable single molecule 

conditions. Another way to introduce spatial sparsity is to stochastically label the protein of 

interest during the imaging process. First proposed in 2006 under the name of Points 

Accumulation for Imaging in Nanoscale Topography13, PAINT imaged fluorescent molecules 

which specifically bind to biological structures of interest. This technique was later refined by 

Giannone et al71 by transiently binding antibodies coupled to organic fluorophores, allowing the 

tracking of endogenous membrane-based proteins in a variant called uPAINT (universal 

PAINT). DNA-PAINT72 extends dissociates the protein labeling process from fluorescent probe 

 
Figure 1.13: High-Density Single Molecule Labeling Approaches. PALM uses fluorescent proteins 
that photoconvert or photoactivate with application of a low dose of UV light (~µW) to ensure single 
molecule conditions. In dSTORM, a special imaging buffer enable stochastic blinking of conventional 
fluorescent probes. The DNA-PAINT technique decouples the protein labeling from the fluorescent tag, 
linking the two with complementary strands of DNA. This technique allows nearly infinite and potentially 
quantitative single molecule imaging thanks to the well-understood binding kinetics of DNA. 
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binding by inserting a pair of complementary DNA-strands coupling the probe to the antibody, 

thereby rendering photobleaching of individual fluorescent markers negligible by allowing an 

essentially infinite number of fluorescent probes to be imaged. 

 

One of the hallmark advantages of fluorescence microscopy is its inherent ability to be 

multiplexed: by using fluorescent markers with spectrally distinct excitation and emission 

spectra, multiple biological structures can be imaged in the same sample, opening the doors to 

a suite of analyses to investigate the respective organization and potential interaction of several 

proteins. In conventional diffraction-limited microscopy, one often refers to spatial overlap, 

commonly referred to as colocalization  as a readout of molecular interaction. However, true 

molecular spatial colocalization cannot exist, and the measured colocalization is a fundamental 

artifact of the limited resolution.  

SMLM has opened the doors to determining molecular coordinates with nanometer-scale 

precision and the study of the proximity of several proteins. The first report of multicolor SMLM 

was an implementation of multicolor STORM by Bates et al in 2007 using a shared reporter dye, 

Cy5, with 3 spectrally separate activation dyes acquired sequentially73. For multicolor dSTORM, 

it is essential to find the correct combination of spectrally separate dyes which retain good 

blinking properties in a common imaging buffer. Significant research has gone into the choice 

of fluorophores70 and imaging buffer74, but these constraints generally limit dSTORM to two 

colors. A common and simple solution to 2-color SMLM imaging has been dSTORM of Alexa647 

combined with PALM imaging of mEOS, obviating the need for imaging buffer optimization for 

several organic fluorophores.  

Conventional multicolor SMLM imaging using static labeling is hindered by a number of 

experimental difficulties, from the necessity of special filter sets for each wavelength, to differing 

localization precision for each wavelength and wavelength-dependent chromatic aberrations. 

To address this, a number of methods have been proposed to dynamically label and sequentially 

image several different proteins of interest with the same fluorescent probe. In 2014, Jungmann 

et al introduced an easily multiplexible method, called DNA-PAINT, using orthogonal DNA 

strands bound to conventional secondary antibodies to tag 4 proteins of interest, and 

sequentially performing stochastic DNA-PAINT imaging of each structure 72. This Exchange-

PAINT technique has recently been generalized to primary antibodies and other small-molecule 

binders for sequential DNA-PAINT imaging of 9 proteins75. Similarly, Kiuchi et al demonstrated 

the screening and application of several PAINT probes which specifically bind to various 

biological structures with a sufficiently low affinity such they can be efficiently washed away 

between acquisitions76.  

Whether concurrently or transiently labelled, multicolor SMLM experiments are frequently 

performed sequentially, using a specific filter set for each imaging channel to optimize contrast 

for each fluorescent probe. The result is a linear increase in the acquisition and analysis time, 

and total volume of acquired data. Commercial systems exist for performing simultaneous 

multicolor imaging of up to 4 channels, by optically splitting the total fluorescence emission 

using a set of dichroic mirrors for each fluorophore being imaged and dividing the field of view 

into wavelength-specific regions on the imaging sensor. While these simultaneous multi-

channel imaging methods are critical to live-cell imaging, they limit the temporal resolution and 
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the field of view by mandating the use of the full imaging sensor. Moreover, they require a set of 

filters for each specific fluorophore reducing the number of collected photons and therefore the 

localization accuracy for SMLM. Importantly there is a tradeoff between the number of 

wavelengths imaged, the spatial and temporal resolutions, and the field of view being imaged. 

In SMLM, the localization uncertainty of each individual localization, and thus the effective 

point spread function, varies as a function of the fluctuating number of photons collected per 

localization per image frame. Additionally, each distinct fluorescent species exhibits a unique 

photon emission cycle and total number of photons emitted, resulting in localization precisions 

that vary between the color channels. Furthermore, nanoscale chromatic aberrations on the 

order of the localization precision stemming from imperfectly corrected optical components 

must be carefully characterized and corrected when performing quantitative comparisons 

between color channels77. 

1.4 

Once the target protein has been efficiently labeled with fluorescent probes, we must consider 

how to appropriately excite these fluorophores and efficiently collect their emitted photons. 

When imaging single molecules with low photon counts, it is essential to maximize the signal to 

noise ratio. The first single molecule imaging methods were restricted at first to cryogenic 

temperatures78 due to the lack of sensitive detection but shortly thereafter, advancements in 

fluorescent probes and detector photosensivity enabled single molecule imaging applications to 

expand into live-cell imaging applications. 

 
While each fluorescent probe has its own unique advantages and disadvantages for imaging use, 

all fluorescent molecules share one common disadvantage: the number of fluorescence cycles is 

limited, and after a certain number of excitation-emission events, the molecule’s chemical 

structure will be irreversibly altered in such a way that it can no longer fluoresce. This process, 

known as photobleaching, essentially limits the total number of photons that a single fluorescent 

molecule can emit, giving each probe its own unique photon budget. In single molecule imaging, 

it is essential to optimize the imaging system and parameters to the limited photon budget of 

the fluorescent molecule being imaged. 

 
There are a number of commonly employed excitation schemes used for single molecule 

imaging, ranging in complexity of implementation, imaging thickness, penetration depth, and 

perceived contrast. 

The simplest illumination scheme is a classical wide-field or epifluorescence illumination 

(Figure 1.14a). Focusing the excitation laser at the back focal plane of the objective along the 

optical axis results in the light exiting the objective parallel to the optical axis. While this 

illumination scheme works effectively in conventional microscopy, the strong background from 
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out of focus fluorescence above and below the focal plane greatly reduces contrast and makes 

single molecule imaging quite difficult. 

 
Figure 1.14: Single Molecule Excitation Schemes. (a) Widefield imaging suffers from strong 
background from excitation of out of focus fluorophores. (b) TIRF imaging exhibits strong optical 
sectioning within a few hundred nanometers from the coverslip surface. (c) Oblique or HiLo imaging 
creates thin sheet of light that improves contrast over widefield imaging for a few microns above the 
coverslip surface. (d) The recently-introduced flat-field imaging uses advanced excitation optics to 
eliminate the Gaussian spatial profile of the excitation beam and creating a homogeneous, high-power 
excitation beam. (d) Light sheet imaging decouples the excitation from the detection by the use of two 
separate objectives, but the geometry is mechanically difficult to implement for single molecule imaging. 
(f) A single objective light sheet excitation (soSPIM) uses a 45° mirror in the sample to benefit from the 
excellent optical sectioning of light sheet excitation combined with the collection efficiency of high 
numerical aperture collection objectives.  

Total Internal Reflection of Fluorescence (TIRF) 3 addresses the strong background in widefield 

illumination by exciting only the first few hundred nanometers above the coverslip surface with 

an evanescent wave (Figure 1.14b). It is obtained by including a set of beam steering mirrors in 

the excitation path and focusing the excitation near the outside of the back focal plane of the 

objective, adjusting the excitation laser such that it is totally internally reflected in the coverslip 

due to the difference in refractive index of the sample imaging medium. This provides an 

excellent signal-to-noise ratio and extremely thin optical sectioning. When imaging true 

biological samples, however, classical TIRF systems are often marred by interference patterns. 

One convenient solution is to rotate the excitation beam in the back focal plane of the objective, 

thereby homogenizing any interference that might result from single angle illumination while 

retaining the optical sectioning of TIRF.  

To image thicker specimens, Highly Inclined Laminated Optical Sheet (HiLo)4 can be used, 

where the excitation beam is focused closer to the optical axis of the back focal plane, resulting 

in a thin sheet of light with an angle oblique to the optical axis (Figure 1.14c). This imaging 
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method can provide excellent optical sectioning and a strong signal to noise ratio at a couple of 

microns into the sample. 

To address the issue of field inhomogeneity due to the Gaussian spatial profile of the excitation 

lasers, Douglass et al.79 and Deschamps et al.80 recently introduced similar methods for 

illuminating the sample plane with a homogeneous, flat illumination field (Figure 1.14d). This 

technique trades the optical sectioning of TIRF excitation with a high power, uniform 

illumination, which is particularly imperative when doing quantitative single molecule 

photophysics analyses.  

Ideally, the excitation and detection paths would be completely decoupled, as in conventional 

selective plane illumination microscopy (SPIM), also called light sheet microscopy. In SPIM 

imaging, two separate objectives are mounted orthogonally to each other, sharing a common 

focus at the sample plane, allowing for strong optical sectioning through the creation of a thin 

sheet of light perpendicular to the collection objective (Figure 1.14e). However, the high NA 

objectives used in single molecule imaging impose strict mechanical constraints that prevent 

two commercial microscope objectives to be placed in an orthogonal geometry. Recently, Legant 

et al. 81 demonstrated single molecule lattice light sheet imaging in this orthogonal geometry 

using a pair of custom-developed low-NA excitation and high-NA detection objectives. Even 

with these custom designs, the geometry still imposes constraints on the size of samples being 

imaged. 

A new technique has emerged that allows for the creation of this light sheet orthogonal to the 

collection path was introduced in 2015 by Galland et al.82. The single objective SPIM (soSPIM) 

system exploits polymer-based 45° microfabricated mirrors to create a thin sheet of light in the 

same field of view as the single molecules to be imaged (Figure 1.14e). This allows all the benefits 

of high-NA immersion based detection with the optical sectioning of light sheet systems. 

 

Single molecule imaging mandates an extremely efficient collection scheme due to the low 

photon emission count of common fluorescent molecules. Microscope systems are thus designed 

to maximally collect fluorescence emission, employing high numerical aperture (NA) objectives. 

To achieve a NA greater than 1, immersion objectives remove the air gap between the glass 

objective and coverslip by introducing an “index-matching” intermediate layer of water, glycerin, 

oil, or other viscous transparent gels that increases the NA aperture of such objectives up to 1.49 

with standard glass. These microscope objectives are composed of a complex system of precisely 

designed and manufactured glass lenses. Most objectives used in single molecule imaging have 

a magnification of 60x or 100x to effectively spread the point spread function onto several pixels. 

 

Spatial sampling of single molecule fluorescence through a digital imaging system requires 

discretization of the point spread function onto a digital sensor. A certain compromise is 

inherent when binning a limited number of collected photons into discrete pixels: smaller pixel 

size allows for better sampling at the tradeoff of reduced photons per pixel. It is usual, in single-
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molecule imaging as in microscopy in general, to use the ideal Shannon-Nyquist sampling 

criterion defined by a pixel size equal to half the lateral resolution. The magnification of the 

detection objective and any additional zoom provided by the tube lens are therefore carefully 

chosen to effectively sample the point spread function onto the camera.  

 

Most single molecule imaging techniques use a widefield detection scheme, where an entire field 

of view of the sample is imaged directly onto a grid of photosensitive detectors in a scientific 

camera. This allows a high degree of spatial multiplexing, imaging fields of view on the order of 

around 100µm x 100µm.  

Conventionally, charge-coupled devices (CCD), and in particular electron multiplying CCDs 

(EMCCD) have been used for single molecule detection, due to their high quantum efficiency 

(>95%). In order to efficiently detect single molecules emitting a small number of photons, it is 

essential to reduce sensor noise. CCDs are generally air- or water-cooled to reduce background 

“dark current,” a thermally-induced Poisson distributed background. Similarly, the electron 

multiplication stage of EMCCDs renders insignificant the pixel readout noise inherent to CCDs, 

but itself introduces a new source of stochastic excess noise. The impressive sensitivity of 

EMMCDs has made them the de facto detector for full-field single molecule imaging in recent 

years.  

While other detector alternatives exist, few technologies are as well suited to single molecule 

fluorescence imaging as EMCCDs. Complementary Metal Oxide Semiconductors (CMOS) 

detectors, for example, provide exceptional speed and sensor size, but have traditionally lacked 

the necessary quantum efficiency for single molecule imaging applications. Recently, however, 

scientific CMOS (sCMOS) devices have improved their peak quantum efficiency to nearly 80% 

and dynamic range over conventional CMOS devices, rendering them ideal for high frame rate, 

large field of view acquisitions. Commercially available sCMOS cameras commonly have 2048 x 

2048 pixel grids with 6.5µm x 6.5µm pixels, and can image between 100Hz-1000Hz depending on 

the size of the region of interest. Typical EMCCDs, however, have a smaller maximum sensor 

size of 512 x 512 pixels, albeit with larger, 16µm x 16µm pixels and a reduced imaging speed 

between 20Hz-100Hz. Although they are subject to very strong pixel-dependent readout noise 

and must be carefully calibrated for accurate localizations83, sCMOS cameras have been shown 

to be especially effective for fast imaging of bright molecules and ideal for fast dSTORM 

imaging83. 

 

With extremely fast and sensitive detectors like sCMOS, the limiting factor in the temporal 

sampling of single molecule fluorescence is not technological, but is rather due to the 

photophysical process of fluorescence itself. While the fluorescence cycle (absorption of an 

excitation photon and emission of a fluorescence photon) occurs on the order of nanoseconds, 

many collected photons are required in order to generate an accurate image of the single 

molecule. The exposure time is ideally matched to the length of the single molecule fluorescence 

emission burst. Typical single frame exposure times for single molecule imaging of most 

conventional fluorescent probes is typically in the range of 1-100 milliseconds. 
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The camera’s ability to create an accurate image of the ideal point spread function of the 

microscope assumes a perfect optical imaging system. Any deviations to this ideal model, known 

as wavefront aberrations, result induce imperfect wavefront focusing, thereby reducing the 

number of photons in the focal plane. The resulting localization is therefore less precise and 

possibly skewed with respect to the true position of the molecule. These aberrations emanate 

from a variety of different sources – both from the sample and the microscope system itself – 

and aberrations emanating from specific optical misalignments have common names. While this 

topic will be further discussed in CHAPTER 3, some common wavefront aberrations which and 

their specific implications in SMLM are briefly introduced here. 

Spherical aberration is perhaps the most commonly found optical aberration in microscopy 

systems, specifically in single molecule imaging systems. The use of high magnification, high 

NA, oil-immersion microscope objectives to collect a maximal number of photons comes with a 

tradeoff: most biological samples are submerged in imaging media with a refractive index close 

to water, and this refractive index mismatch between the sample (containing the single 

molecules being imaged) and the coverslip/immersion medium axially stretches the PSF: rays 

closer to the optical axis will focus at a different axial position than those near the extremities. 

The net effect is a reduction of the photons and a marginally wider PSF in the effective focal 

plane, which in turn reduces the localization precision and the effective resolution in SMLM 

images (Figure 1.15). 

While these spherical aberrations are very common, it is possible to alleviate their impact or 

modify the optical system to minimize these aberrations. It is common to submerge the sample 

 
Figure 1.15: The Effect of Common Microscope Aberrations on Localization. The astigmatism 
aberration results in a cross-shaped PSF in the nominal focal plane, slightly reduces the peak intensity 
and decreasing localization precision. The coma aberration is detrimental to single molecule localization 
as it laterally shifts the localization cloud from the true position of the single emitter. Very common in 
microscopy, spherical aberration reduces the photon count in the nominal focal plane and greatly 
increases the variance of the localization process. 
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in an imaging medium with a refractive index close to that of the immersion medium and 

coverglass. This is unfortunately incompatible with live-cell experiments. Another alternative is 

to use a water immersion objective at the cost of a slightly reduced numerical aperture (~1.2 

compared to ~1.4 for oil immersion objectives). 

Two other primary aberrations quite commonly found in single molecule microscopes stem from 

misalignments in the optical path of the imaging system. Similar to spherical aberration, 

astigmatism is the effect of varying focal length for a set of rays emanating from a common 

point in the sample plane; however, unlike spherical aberration, there is not radial symmetry to 

an astigmatic system. An astigmatism occurs when rays from two perpendicular planes converge 

to two separate foci; simply, horizontal rays will have a separate focus than vertical rays, resulting 

in a cross-like shape of the PSF at the average focal plane (Figure 1.15). 

Lastly, and perhaps the simplest to visualize, known as coma, which manifests itself as a slightly 

comet shaped PSF, with a central node and a large tail, is linked to an off-axis optical element in 

the imaging path. This can be due to an improperly aligned lens (either the microscope objective 

or the tube lens), or quite commonly due to the coverslip being non-orthogonal to the imaging 

element. This induces a lateral offset in the localizations, resulting in inaccurate localization of 

the true position of the fluorescent molecule (Figure 1.15). 

In widefield microscopy, these optical aberrations may be observed as a slight, nearly 

imperceptible blurring of the image. In SMLM, however, these aberrations are amplified via the 

Gaussian fitting process, resulting in biased, sometime false, estimates of the localization of the 

underlying emitter. The reduction of in focused photons due to these aberrations as well as the 

contrast needed for single molecule imaging has restricted SMLM applications close to the 

coverslip surface, making imaging in complex biological imaging environments impossible. It is 

therefore critical to have an optimally aligned imaging system with minimal aberrations, and 

advancing SMLM imaging will require correction for any sample-induced aberrations. 

1.5 

The past few decades have seen swift advances in chemical probes and optical schemes that have 

enabled single fluorescent molecules to be visualized, localized, and tracked in native cellular 

environments. A critical, recurring theme found in this introductory chapter on single molecule 

imaging has been that the resolution gained by localizing single fluorescent molecules is 

fundamentally limited by the ability of the imaging system to accurately and efficiently collect 

the limited number of photons emitted by these individual molecules. Due to these low photon 

counts and the optical aberrations stemming from system imperfections or sample 

inhomogeneities, SMLM has been traditionally limited to imaging on the surface of glass 

coverslips. 

This thesis aims to address the issues limiting depth, resolution and spectral information in 

three-dimensional single molecule imaging using a combination of optical, chemical and 

numerical approaches. Together, these contributions advance SMLM towards quantitative 

single molecule biology in complex systems. 
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Figure 1.16: Expanding the Resolution Triangle with Advanced SMLM Techniques. This thesis 
aims to expand the resolution and applicability of conventional single molecule imaging systems 
through two primary methods: correcting wavefront aberrations using adaptive optics to enable 3D 
imaging deep in complex biological samples, and adding a second collection objective to enable 
spectral detection of single molecules. 
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ingle molecule imaging offers a unique peek into the nanoscale molecular environment that 

has previously been hidden behind the blur of the diffraction limit. While sub-micrometer 

scale structural information can be obtained by localizing individual fluorescent molecules and 

accumulating these nanometer-scale precision localizations over tens of thousands of imaging 

frames, a wealth of additional quantitative information can be extracted from the localized 

molecule spatio-temporal pattern. However, the stochastic nature of SMLM renders the 

localization process susceptible to errors that make quantitative SMLM a non-trivial problem. 

In this chapter, I introduce some of the collaborative work we have done to achieve quantitative 

single molecule biology, focusing on several aspects including protein labeling, fluorescence 

acquisition and image analysis. Each of these contributions were investigated in the context of 

separate projects, and are presented here as individual steps towards an ultimate goal: 

quantitative single molecule biology.  

S 

 
Figure 2.1: Steps Towards Obtaining Quantitative Single Molecule Data. This chapter presents 
several independent workflows towards enabling quantitative single molecule in biology in the form of 
protein labeling, characterization of reference structures, and clustering from localized single molecule 
coordinates. 
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2.1 

A single SMLM experiment typically generates millions of localizations, allowing for statistical 

analyses unique in the domain of microscopy. Coupling the spatial and temporal localization 

patterns with supplementary information garnered from the PSF fitting process, a wide array of 

quantitative vectors can be used to assess acquisition quality or filtered to remove imaging 

artifacts that help to respond to specific quantitative biological questions.  

 
The Gaussian fit used in the PSF localization process provides a wealth of information beyond 

the lateral spatial localization of the emitter, including an estimate of the axial position of the 

molecule (to be discussed further in section 3.1). Furthermore, it can be exploited to give 

feedback on the quality of the acquisition, including validation of single molecule conditions 

and estimation of the individual precision of each localization, which can be incorporated into 

the visualization to visually favor precise localizations and allow more accurate segmentation. 

The intensity of the Gaussian fit can, in fact, give a good estimate of the true fluorescence 

intensity of the emitter since the integrated intensity of the 2D Gaussian curve estimates the 

total number of photons collected by the imaging system. While special care should be taken to 

quantitatively measure the number of photons per localization (to be briefly discussed in section 

2.1.2), the intensity per localization histogram can contain some information relative to the 

acquisition conditions, in particular the density of emitting single molecules. Figure 2.2b shows 

several frames of a dSTORM acquisition of the centrosome protein CEP164, a frequently imaged 

structure in SMLM due to its small but known structure (~300µm diameter). Over the course of 

imaging, the intensity of the single molecule image fluctuates, and plotting the intensity 

histogram (Figure 2.2c) from all of the localizations shows a bimodal distribution. These first, 

larger peak can be considered to be the localization of a single emitter; however, since the 

dSTORM process is stochastic by nature, a small fraction of the localizations might accidentally 

localize multiple emitting fluorophores, resulting in false centroid localizations47. Figure 2.2d 

demonstrates that by filtering the localizations to those only from the single emitter population, 

inaccurate localizations in the center of the structure are removed and the centrosome image is 

improved.  

This intensity distribution also demonstrates the variability in the precision of each individual 

localization, which is typically disregarded in the spatial histogram image reconstructions like 

those found in Figure 2.2d. As discussed in detail in 1.2.2.2, the intensity per localization, 

proportional to the number of photons (𝑁), can be combined with the variance (𝜎) of the 

Gaussian fit to estimate its theoretical localization precision (∆𝑥), based on the simplified 

equation:  

By incorporating the intensity and localization precision into Gaussian reconstructions, more 

precise localizations can provide more visual weight, helping increase the effective signal to 

noise of the super-resolution reconstructed images without the need for filtering. This effect is 

demonstrated in Figure 2.2e on the clustering of membrane receptors (detailed further in 

⟨(∆𝑥)⟩ ≈
𝜎

√𝑁
     (2. 1) 
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section 2.4.4), where the Gaussian visualization clearly helps to visually distinguish individual 

AMPA receptor clusters by prioritizing regions with high-density, high-precision localizations. 

It should be noted that this Gaussian visualization distributes a single localization across several 

pixels according to the calculated localization precision, which requires precise calculation of 

the number of photons that contribute to that localization.  

 
Beyond its use in localization precision and visualization, the number of photons per localization 

𝑁 is a common quantitative metric frequently used to compare SMLM experiments. With an 

EMCCD camera, calculating the number of photons per localization is a straightforward 

conversion from the image intensity: 

where IADU is the integrated Gaussian intensity in ADU and η(λ)𝑁=IADU×Stage GainEM 

Gain×1η(λ)    (2.2 2.2 may be used. The importance of this EM gain calibration must not be 

understated as it is imperative to the proper calculation of photon count and essential when 

comparing photon counts from different cameras. 

 
Figure 2.2: Gaussian Fit Provides Quantitative Single Molecule Information. (a) The localization 
precision is inversely proportional to the number of photons acquired, N. (b) The stochastic blinking may 
result in multiple single molecules emitting during a single camera exposure frame, inducing localization 
errors. (c) The localization intensity histogram may reveal these multiple-emitter localizations in the form 
of a bimodal distribution, with single (green) or double (red) emitters per localization. (d) The centrosome 
structure is a hollow ring, but localization errors due to double emitters result in some localizations 
appearing in the center of the ring. Filtering these localizations based on the intensity histogram removes 
these erroneous localizations and clean the superresolution image for better quantification. (e) Weighting 
the localization precision into the visualization prioritizes more accurate localizations and regions of 
higher localization density, like these neurotransmitter receptor clusters. 

(b-d) Cep164-Alexa647 dSTORM. Collaboration with Karine Monier, ENS Lyon 
(e) GluA2-Alexa647 dSTORM Collaboration with Benjamin Compans, IINS 

𝑁 = IADU×
Stage Gain

EM Gain
×

1

η(λ)
    (2.2) 
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In addition to the number of photons, many other photophysical parameters of fluorescent dyes 

impact their quality as super-resolution probes. In the stochastic imaging process of single 

molecule imaging, the time required for the single fluorescent probe to complete an on-off cycle, 

known as the duty cycle, has a drastic effect on acquisition quality. As discussed in detail in 

section 1.2.5.1, resolution in SMLM is a function of both localization precision as well as the 

labeling density of fluorescent probes, but ensuring that only a single molecule is emitting 

fluorescence in a given imaging frame requires that the fluorescent probes have a low duty cycle; 

that is, the fluorophores are only in their fluorescent electronic configuration for a small fraction 

of the time compared to a long-lived dark state. More quantitatively, for M fluorescent molecules 

in a diffraction limited area, the duty cycle of the fluorophores must be at least 1/M for accurate 

single molecule localization70. Figure 2.5 from Dempsey et al70 clearly validates Alexa647 as an 

ideal dSTORM probe with high but infrequent photon emission bursts, allowing many precise 

localizations and an accurate reconstruction of the true object. 

An ideal image frame would expose for exactly the duration of fluorescence emission, but the 

stochastic nature of fluorophore blinking combined with the finite exposure times of 

 
Figure 2.3: Assessing EMCCD’s EM-Gain Stage Calibration. The electron multiplication stage of 
EMCCDs are very sensitive to light exposure and aging. A quantitative conversion from intensity ADU to 
number of incident photons requires proper calibration, ideally once per week. The maximum image 
intensity as a function of desired EM gain can be used to differentiate a well calibrated EM gain stage 
(green curve) from one that needs calibration (red curve). 

Photometrics EVOLVE512 EMCCD 

 
Figure 2.4: Effect of Photon Count and Duty Cycle of the Fluorescent Tag. (a,d) Alexa647 is an ideal 
dSTORM probe due to its low duty cycle and high photon emission per burst. (b,e) Atto655 is rarely used 
in dSTORM imaging due to its low photon count, which increases localization error. (c,f) The high duty 
cycle of Cy5.5 makes dense dSTORM imaging difficult, but is frequently used in conventional STORM 
where an activator fluorophore limits the fluorescent emission over time. 

From Dempsey et al70 

Well Calibrated

Needs Calibration
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commercially available scientific cameras impose a compromise in a fixed exposure time. Until 

recently, EMCCD cameras were exclusively used for single molecule detection due to their high 

sensitivity (1.4.3.2), but even the fastest EMCCD cameras are limited to 50Hz imaging across 

their full field of view. While the blinking kinetics of single molecules can be modified using 

special imaging buffers and high laser power, dSTORM acquisitions of densely labeled proteins 

are frequently marred by multiple fluorophores emitting in the same diffraction limited area in 

a single image frame. Recently, sCMOS cameras capable of millisecond exposure times have been 

used for high-speed acquisition SMLM imaging84, accelerating imaging speed and noticeably 

reducing these artifacts (Figure 2.5). Ultimately, the total acquisition time is fundamentally 

limited by the local dimensionality of the structure being imaged; inherently 3D structures 

require many more localizations for complete reconstruction than single protein clusters85. 

 
Figure 2.5: Matching exposure time to single molecule blinking rate. (a) Increasing image 
acquisition rate by decreasing frame exposure time is only beneficial if the single molecule switching rate 
is faster than the exposure time. (b) For densely-labeled proteins, a single exposure frame can capture 
multiple single molecule blinking events, resulting in false localizations and potential image artifacts. 

(a) from Lin et al. 84 
(b) GluA2-Alexa647 dSTORM | Hippocampal neuron cultures | sCMOS  

 

One of the ultimate goals of SMLM as a quantitative tool is to quantify the number of tagged 

proteins from single molecule localization data. Techniques for measuring protein stoichiometry 

and oligomerization state using well-characterized fluorescent proteins like mEOS286 have been 

introduced, and newer methods evade the constraints of molecular photophysics such 

measurements with mEOS87 and even Alexa647 under dSTORM conditions88. However, while 

the previously described sampling artifacts are undesirable in structural imaging and decrease 

the effective SNR of the super-resolution image, they are detrimental to these protein counting 

approaches. Furthermore, undercounting due to fluorophore bleaching, protein folding errors, 

and fluorescence quenching from densely labeled structures, prevent accurate protein counting 
89. Therefore, tools to quantitatively prepare, acquire and analyze SMLM data are essential to 

making SMLM truly quantitative. 

3ms/frame 20ms/frame
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2.2 

A wide range of labeling techniques are commonly employed in SMLM, but characterizing the 

optical properties of these fluorescent probes for particular use cases can be tedious as not all 

ligands adhere efficiently to the glass surface of a coverslip. A new technique introduced by Strale 

et al.90 in 2016 named light-induced molecular adsorption (LIMAP), allows for quantitative 

protein adhesion to a glass coverslip via the use of a digital micro-mirror device (DMD) to 

spatially pattern UV-light(Figure 2.6a). Briefly, a layer of Pll-g-PEG is adsorbed to the surface of 

a clean coverslip, creating a coating that prevents molecules from adhering to the coverslip 

surface. By incubating the coverslip in a photoinitiator and illuminating it with spatially 

patterned UV-light, the PEG layer is selectively removed in the black regions of the pattern. 

Subsequent incubation of the coverslip with a desired protein allows its selective adhesion to the 

coverslip only in the patterned, PEG-free regions. Repeating this process for several proteins 

allows for multi-protein patterning (Figure 2.6b).  

Notably, the combination of the grayscale patterning abilities of the DMD with a quantitative 

relationship between the UV dose and the patterned molecular density (Figure 2.6c) make it 

ideal for single molecule studies. The multi-scale technique was demonstrated for various 

applications, including orthogonal patterning of adhesion proteins to spatially separate cell 

types, but its performance as a tool for single molecule imaging has yet to be demonstrated. 

Specifically, we were interested in the technique’s ability to create patterns of varying molecular 

density for quantifying the SMLM performance of various single molecule labels. 

 
Figure 2.6: Principle of LIMAP Photopatterning Technique. (a) Spatially patterned UV light 
selectively activates a photoinitiator, removing a PEG antifouling surface coating and allowing protein 
incubation at the coverslip surface. (b) The process can be repeated, allowing for multiple proteins to be 
patterned in different spatial locations. (c) Immobilized mEOS2 molecules as a function of UV-dose (d) 
Spatial patterning is achieved by conjugating a digital micromirror device (DMD) to the focal plane of a 
microscope objective. (e) 9 PDMS microwells allow several conditions to be imaged on a single coverslip 
and minimize the amount of reagents used (5 µL per well). 

From Strale et al.90 
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experimental fl uorescence intensity profi le are plotted (Figure  2 B) 

and are in good agreement. Interestingly, this process can be 

repeated sequentially for the superimposed patterning of two 

different proteins. A fi rst linear gradient of GFP was patterned 

according to the previously described protocol. A second oppo-

site gradient of the protein mCherry was printed on top of the 

fi rst pattern with a good agreement with the expected linear 

theoretical profi les (Figure  2 C). As a demonstration of the 

robustness of LIMA protein printing, we reproduced “the birth 

of Venus” of Botticelli by superimposing complex patterned 

gradients of three different fl uorescent molecules (Figure  2 D). 

To our knowledge, with a resolution of about 50 000 dpi and 

a printing speed of about 0.1 mm 2  s -1 , the “color” molecular 

printing capabilities of LIMAP overcome by far the existing 

methods [ 18,19 ]  (Table S1, Supporting Information). Furthermore, 

LIMAP is a generic method compatible with all the substrates 

commonly used in cell biology (glass, plastic, and elastomer) 

(Figure S7, Supporting Information), and with a wide range of 

biomolecules without any chemical modifi cation. The orthog-

onal micropatterning of multiple functional biomolecules on a 

surface is a challenging task. [ 18 ]  A major diffi culty is to avoid 

nonspecifi c binding while retaining the functionality of the 

immobilized proteins. We used LIMAP to pattern two different 

antibodies at different locations of the same fi eld of view. After 

an incubation step of a mixture of their fl uorescently labeled 

ligands, we observed their expected segregation ( Figure    3  A). 

Adv. Mater. 2016, 28, 2024–2029

www.advmat.de
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 Figure 1.    A) Schematics of the LIMAP patterning principle. (1) A solution of Pll-g-Peg is deposited on an air-plasma-activated glass cover-slip. Positively 

charged Pll-g-Peg molecules adsorb to the negatively charged substrate and form a dense antifouling polymer brush. (2) After rinsing of the Pll-g-Peg 

solution, a solution of photoinitiator is added. (3) A fi rst pattern of UV light is projected onto the surface. The light-activated photoinitiator molecules 

locally cleave the PEG chains. In turn the substrate becomes adhesive for the fi rst incubated proteins (4). This process can be repeated to create 

another pattern of a second protein (4-5-6). B) Two-color epifl uorescence microscopy image of a pattern composed of GFP (green) and mCherry (red). 

On the outer square, both proteins are patterned. Scale bar: 50 µm. C) Quantifi cation of the density of immobilized mEOS2 proteins plotted against 

the UV dose in mJ mm -2 . D) Schematic of the optical arrangement for DMD-based-UV-patterned illumination. L1, L2:  f  = 20 mm lens (UV Fused 

Silica Bi-Convex). L3, L4:  f  = 150 mm lens (UV Fused Silica Bi-Convex). L5:  f  = 200 mm lens (UV Fused Silica Bi-Convex). AD: Aperture diaphragm. 

M1, M2: UV dielectric mirror mounted on a kinematic mount in a periscope arrangement. RHD: Rotating holographic diffuser (diffuser angle 10°, rota-

tion speed 1000 rpm). DMD: Digital Micromirror Device. DM: Single band dichroic mirror (cutoff wavelength: 405 nm) placed in the fi lter turret of the 

epifl uorescence microscope. Obj: Microscope objective. E) Photograph of the sample holder placed on top of the microscope objective. The sample 

consists in a 22 mm ´ 22 mm glass cover-slip with nine silicone microwells. Each microwell is fi lled with a droplet of 5 µL of reagent.
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While the spatial patterning technique remains diffraction limited with the use of UV light, the 

exact patterning resolution remained in question. In collaboration with Pierre-Olivier Strale, we 

patterned single DMD pixel width diagonal lines separated by a single pixel to create a 

diffraction-limited response to these finite patterns (Figure 2.7). To ensure that the lines were 

maximally filled in the super-resolution reconstructions, we used the DNA-PAINT technique, 

which affords a nearly infinite number of fluorescent probes and localizations. We patterned the 

Goat Anti-Rabbit-D2 DNA-PAINT antibody (in a collaboration with the Ultivue company, who 

commercializes DNA-PAINT oligomers for single molecule localization imaging), and imaged 

for 80,000 full image frames (512px x 512px @ 50ms/frame) at 4nM I2-550 @ ~5kW/cm2 561nm 

excitation to ensure single molecule conditions (Figure 2.7a). The final reconstruction (Figure 

2.7b), composed  of >25,000,000 localizations, was cross-correlated in ThunderSTORM 91) for 

drift correction, as fluorescent beads bleach over the course of such long acquisitions. A line scan 

of the Gaussian super-resolution reconstruction @ 10nm/pixel shows a distinct sinusoidal 

pattern with a period of 571nm resulting from the convolution of the patterning microscope PSF 

with the single-width pixel (Figure 2.7d). 

This experiment also demonstrates the strong field of view dependence of the single molecule 

imaging excitation used for DNA-PAINT. The diagonal lines are uniformly patterned, and ideally 

would have the same intensity in the super-resolution reconstruction; however, we notice a 2D 

Gaussian profile to the intensity. The higher intensity near the center of the Gaussian profile 

results in faster single molecule bleaching in this zone at this excitation angle and power, visible 

as more single-molecule conditions near the center of the FOV (Figure 2.7,a,b) than near the 

edges of the image. This spatial-dependence to the excitation is especially important in dSTORM 

experiments to ensure high power density for fast blinking and true single molecule conditions. 

This kind of experiment could be used in conjunction with further analysis of spatially isolated 

localization clusters for determining the FOV variance of localization precision.    

 
LIMAP’s ability to orthogonally pattern various proteins renders it a useful tool for quantifying 

labeling specificity of new techniques. For example, the DNA-PAINT technique may suffer from 

nonspecific labeling if the fluorescently tagged DNA-oligomer adheres to any structure other 

than its antibody-coupled complementary oligomer. To ensure test the cross-talk between two 

DNA-PAINT probes, we orthogonally patterned rabbit and mouse IgGs and incubated Anti-

 
Figure 2.7: Measuring LIMAP Patterning Spatial Resolution and Spatial Dependence of Excitation 
with DNA-PAINT. Measuring the spatial resolution of LIMAP with a diagonal pattern a single DMD pixel 
wide followed by DNA-PAINT acquisition of the pattern results in >25,000,000 localizations across the full 
field of view and a linescan shows a spatial patterning resolution of 571nm. Simultaneously, this puts into 
evidence the inhomogeneity of the single molecule excitation scheme. 
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Rabbit-D1 and Anti-Mouse-D2 and performed sequential DNA-PAINT imaging of 0.5nM I2-650 

@ 105mW 640nm and then 0.25nM I1-550 @ 50mW 561nm. Only 8,000 frames were acquired to 

demonstrate the orthogonality of the technique (Figure 2.8e). The slight crosstalk between the 

two channels can be attested to the D2 (650nm) antibody adhering to unfilled sites in the first 

D1 pattern and not to aspecificity of the DNA-PAINT labels themselves, as critically the 

localizations remain primarily localized in the ying-yang pattern. 

In addition to labeling orthogonality, this technique allowed us to separately evaluate each DNA-

PAINT probe in terms of brightness as an SMLM label. The intensity per localization histogram 

(Figure 2.8, right) shows that for our illumination and detection scheme, the 550nm probe is 

~20% more intense than the 650 probe, and thus was chosen as the optimal probe for further 

DNA-PAINT imaging. 

 

In DNA-PAINT imaging, the imager concentration can be varied at the time of imaging to ensure 

single molecule imaging conditions. This is not the case, however, in fixed dSTORM imaging, 

where the protein is directly labeled with a fluorescent probe. In this case, the number of 

fluorescent probes per antibody or ligand, is critical for accurate superresolution imaging.  

We used LIMAP to characterize two anti-GFP nanobodies53 (fabricated and coupled by Matthieu 

Sainlos), one with a low degree of labeling (DoL) (~0.73 Alexa647 molecules per nanobody) and 

the other with a high DoL (~2.53 Alexa647 molecules per nanobody) for superresolution imaging. 

We photopatterned a 3 x 3 grid of varying densities of squares in which the GFP molecule was 

incubated for 5 minutes at 1µg/mL and then washed 3 times. The nanobodies were incubated for 

2-3 minutes at their stock concentration, selectively binding to the GFP pattern (Figure 2.9, top 

left, DoL 2.53). Tetraspeck beads were incubated for 5 minutes at 1:1000 in PBS for post-

acquisition drift correction. The coverslip was then submerged in dSTORM buffer solution 

(Glucose Oxidase + Catalase + 100mM MEA) and dSTORM imaging was performed for 20,000 

frames, resulting in >5,000,000 localizations in total.  

 
Figure 2.8: Pattern for DNA-PAINT Orthogonality Characterization. Anti-Rabbit D1 and Anti-Mouse-
D2 DNA-PAINT secondary antibodies were patterned in the shape of a ying yang. Slight crosstalk in the D2 
channel is due to the fact that it was patterned after the D1 antibody, filling some unoccupied sites in the 
orthogonal pattern. Localization intensity quantifications (right) show that the 550nm probe is slightly 
brighter in our imaging configuration. 
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A single square with single molecule densities in the dSTORM imaging was then selected for 

nanobody analysis. The resulting clusters of individual nanobodies (Figure 2.9, top right, inset) 

were then quantified for common properties of SMLM labels (Figure 2.9, bottom): number of 

photons per localization (left), lateral localization distribution FWHM (center), and finally 

number of localizations per nanobody (right). The number of photons per localization is 

expected to be the same between conditions and was validated as a quality control metric that 

the photon emission of the Alexa647 fluorophore was consistent between experiments and 

dSTORM buffers. Similarly, as the number of photons remains the same, the distribution showed 

a negligible difference in median FWHM around 21nm. However, the higher DoL nanobody 

showed 2.2 times the number of localizations per nanobody, a critical metric for dSTORM 

imaging as it allows. Together, these quantifications validate the higher DoL nanobody as the 

more effective label for dSTORM imaging, particularly of sparsely labeled proteins. 

2.3 

The previously outlined photopatterning technique addresses one issue in quantitative single 

molecule imaging, namely in the preparation of accurate single molecule assays. Another major 

hurdle preventing routine single molecule imaging is ensuring consistency between imaging 

conditions to be able to extract biologically relevant data. SMLM acquisitions are quite slow; 

imaging a single cell can commonly take 10 minutes of acquisition time, thus acquiring enough 

data to compare biological conditions can take hours or even days of non-stop imaging, yet the 

user is required to stay near the microscope to find new cells to image, change coverslips, verify 

proper blinking characteristics, etc. The large volume of raw image data generated in such 

 
Figure 2.9: Anti-GFP Nanobody Degree of Labeling Comparisons with Photopatterned GFP. The 
degree of labeling affects the localization density in final superresolution reconstructions. (top left) Two 
anti-GFP nanobodies were fabricated with different degrees of labeling and quantified using GFP patterns 
of different densities. (top center) After dSTORM imaging, a single square was selected for nanobody 
characterizations. (bottom) The two nanobodies were compared, showing negligible difference in photon 
count per localization (left) or localization precision (center). The higher degree of labeling nanobody 
shows 2.2 times the number of localizations (right), making it a higher quality label for SMLM. 
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acquisitions complicates matters further, with post-acquisition image and data analysis doubling 

the required image processing time, not to mention the immense time required to compare all 

the quantitative single molecule data in a statistical manner. 

An automated SMLM acquisition, analysis and data mining pipeline capable of imaging and 

compare multiple biological conditions would obviate the need for user intervention over the 

course of the imaging session and prevents user biases in image reconstruction.  

 

We sought to address these issues by combining some aspects of high content screening (HCS) 

with single molecule super-resolution microscopy in a pipeline called SR-HCS. Widely used in 

cell biology and particularly in drug discovery, HCS massively multiplexes and automates 

microscopy image acquisitions, using a precise lateral translation stage and multi-well plates 

(commonly containing 6, 12, or 96 wells), allowing for multiple conditions to be tested in 

triplicate without user intervention. While HCS has been used extensively for drug discovery 

and other applications, it has yet to be applied to single molecule super-resolution techniques 

for a variety of reasons, mostly technical. 

The SR-HCS pipeline (Figure 2.10a) begins with the automatization of a commercial microscope 

for multi-well acquisition with an oil-immersion objective. Maintaining oil contact with the 

coverslip surface over the large size of 96-well plates is challenging, but feasible by painting a 

thin layer of immersion oil on the bottom of entire 96-well plate surface. Intra- and inter-well 

displacement is automated via an xy-translation stage, while axial position is maintained using 

the Nikon Perfect Focus System, ensuring consistent sample illumination across the entire plate.  

Random or user-defined positions can be imaged in (spt)PALM, dSTORM or DNA-PAINT 

configurations. Online Gaussian fit, localization and tracking performed with the WaveTracer 

module obviate the need to save the raw image stacks, saving only the localization data and a 

super-resolution reconstruction for each position (Figure 2.10b), and most importantly saving 

time compared to classical SMLM acquisitions (Figure 2.10d). Finally, the localization and 

tracking data from all positions are compiled into a database for easy comparison between 

positions (Figure 2.10c). It is worth noting that while this automated workflow is essential for 

true high content SMLM, for example in 96-well plates, it is equally applicable to imaging single 

coverslips.  
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A proof of concept experiment was designed with the goal of assessing the combined effect of 

label linker length and probe localization precision on the effective resolution of a single tagged 

membrane receptor. This differs from the nanobody characterizations in section 2.2.3 in that the 

linker length adds further localization uncertainty, and potentially increases the distribution of 

localizations around their central point. To be properly labelled, the protein of interest must 

properly be expressed, fixed and labelled in a biological model such that they are spatially 

isolated enough for single molecule cluster quantification.  

A preliminary version of the SR-HCS pipeline based on the MetaMorph Multi-dimensional 

Acquisition functionality and manual imaging FOV selection was used to screen HeLa cells for 

optimal expression, fixation, and labeling of individual membrane receptors. This kind of 

experiment is typical in cell biology, where the biologist has created several DNA vectors 

containing genetically modified versions of the protein of interest tagged with different 

fluorescent proteins or tags, and would like to see which of the genetically-modified proteins are 

most efficiently and correctly expressed by the cell. The biologist may desire validation of proper 

cell fixation without inducing artifacts, and for single molecule imaging they must confirm 

optimal labeling conditions from a variety of possible antibodies. A conventional single molecule 

imaging approach with a single condition per coverslip would need to limit the number of 

avenues explored in the interest of time. 

 
Figure 2.10: SR-HCS Automated SMLM Workflow. (a) A conventional SMLM microscope can be 
automated with a motorized xy-stage for imaging multiwell plates. (b) Single molecules are localized, 
fitted to Gaussians, and connected for tracking online, eliminating the need to save the raw data stacks. 
(c) The cumulate data from all positions are pooled into a databased for easy data analysis. (d) The 
automatization and online localization accelerates the single molecule imaging process by nearly 2x and 
obviates the need for user intervention during the acquisition. 
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The 96-well plate commonly used in HCS lends itself extremely well to these kind of crossed 

experiments, and thus we prepared 70 wells of two separate 96 well plates with HeLa Cells, and 

electroporated one row with one of six DNA vectors, each a genetically tagged variant of the 

GluA1 subunit (Figure 2.11a, left). One plate was allowed to express for 24-hours, whereas the 

second was fixed after 48-hours to ensure a sufficient density of receptors had expressed to the 

membrane surface. Half of each row was fixed only with 4% Paraformaldehyde (PFA), while the 

second half was fixed with 4% PFA + 0.2% Glutaraldehyde (GA) (Figure 2.11a, center).  After 

quenching cross-linking induced fluorescence from the PFA and GA and surface blocking with 

BSA, 3 different labeling strategies were employed in separate columns of each fixation block 

(Figure 2.11a, right). This orthogonal plate layout across two plates creates 140 separate 

biological conditions, a daunting number for conventional imaging approaches with separate 

coverslips per condition, but requiring only a single plate change in the SR-HCS approach.  

Three of the tested parameters could be assessed based on diffraction-limited imaging. A 

widefield scan of the plates allowed us to choose, based subjectively on image quality, an optimal 

transfection vector (pDisplay GluA1-SEP, row B) and fixation method (PFA 4% + 0.2% GA, 

columns 7-11) expressed for 24-hours.  

 
Figure 2.11: SR-HCS Facilitates Protein Expression, Fixation and Labeling Selection. (a) 70 wells of 
two 96-well plates were plated with HeLa cells and electroporated with 6 different transfection vectors, 
fixed with 2 different fixation protocols, and labeled with 3 different labeling strategies. The two 96-well 
plates were allowed to express the electroporated protein for either 24- or 48 hours, culminating in 140 
different biological conditions, from which an optimal expression plasmid and fixation protocol were 
selected. (b) Representative images of the three labeling strategies from the two different expression times 
show similar results in terms of labeling efficiency.  
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Once the optimal conditions were selected, wells B8-10 were submerged in conventional 

dSTORM buffer (Glox + Catalase + 100mM MEA), and superresolution images were acquired. A 

subset of the results from the labeling strategies are presented in Figure 2.11b, showing little 

visual difference in cluster size between nanobody, primary antibody, and primary + secondary 

antibody labeling.  

Cluster analysis was performed (using a cluster analysis method to be discussed in the next 

section, 2.4) on the three labeling conditions (Figure 2.12, left), quantifying the spatial 

distribution and number of localizations per cluster. Notably, the primary and secondary 

antibody has a slightly larger spatial spread (23nm FWHM) than the primary antibody (16nm) 

or nanobody (17nm), and roughly twice the number of localizations per cluster (54 localizations 

for the primary and secondary antibody vs. 28 and 25 for primary antibody and nanobody, 

respectively). These results confirm the expected effect of increased linker length due to primary 

and secondary antibody labeling of a single protein.  

We next tested the effect of a different dSTORM buffer that has been shown to increase the 

brightness of Alexa647 with the addition of cyclooctatetraene (COT)92. The Glox buffer was 

imaged first, the wells were washed 3 times with PBS, and then the COT solution was imaged. 

Surprisingly, the dSTORM buffer did not effect the size (FWHM) of these localization clusters, 

indicating that the increased number of photons, and thus better localization precision, of the 

COT buffer does not have a concrete effect on effective receptor resolution.  

In tandem, these results demonstrate that resolution in SMLM is truly a combination of labeling 

density and localization precision, and an increase in just one of these parameters does 

individually improve resolution of an individual protein.  

 
Figure 2.12: SR-HCS Screening Assay for dSTORM Buffer and Labeling Strategy. Two dSTORM 
solutions and three labeling strategies were used to quantify single receptor labeling efficiency. The COT 
dSTORM buffer (right), which has previously been shown to increase the number of photons per 
localization92, does not noticeably decrease the median size of GluA1 clusters expressed in the HeLa cell 
membrane when compared to the commonly employed dSTORM buffer (left). However, the use of 
primary and secondary antibodies (top) does increases the effective cluster size with respect to primary 
antibodies (middle) or nanobodies (bottom), indicating that the cluster size is governed by the fluorescent 
probe’s linker length. 

pDisplay-GluA1-SEP in HeLa cells | Anti-GFP primary antibodies or nanobodies | 20nm/px reconstructions 
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2.4 

The kinds of cluster analysis presented in section 2.3.2 are common in single molecule biology, 

where the spatial organization of membrane receptors is frequently imaged. Image-based 

quantifications of these clusters are heavily dependent on pixel size of the reconstruction and 

localization density; large pixels may not provide enough accurately sample small clusters, while 

small pixels are more sensitive to variations in localization density. 

To address these potential biases in cluster analysis, we introduced a new segmentation method 

of single molecule localization super-resolution data using the localization coordinates 

directly93. Based on Voronoï tessellation, the spatial subdivision method creates polygons around 

each individual localization, giving intrinsic weight to denser molecular regions. While Voronoï 

tessellation had previously been used in super-resolution imaging, it had been limited to 

visualization94. 

 
Figure 2.13: Principle of Voronoï Segmentation in SR-Tesseler. (a) Individual localization coordinates 
are used as seeds at the center of polygons, the edges of which are formed by the perpendicular bisectors 
between seeds. (b) Individual localizations are quantified by their area and number of neighbors. (c) 
Regions of higher localization density exhibit intrinsic contrast, demonstrated here with GluA1-mEOS2. 
(d) A single parameter based on the normalized localization density is used for automatic segmentation. 

From Levet et al.93 

The basic principle of our implementation of Voronoï tessellation for single molecule 

visualization and cluster analysis, called SR-Tesseler, is shown in Figure 2.13. Excerpts from our 

article Levet et al.93 detail the Voronoï diagram creation (section 2.4.1) and automatic 

segmentation (section 2.4.2). 

 
The Voronoï diagram is built from localized molecule coordinates as the center of the polygon 

regions, called seeds. As the Voronoï edges are equidistant from the two nearest seeds, the 

simplest way to generate the diagram is to compute the perpendicular bisectors between the 

seeds (Figure 2.13a). Each polygon Pi of seed si has an area Ai and several neighbors (Figure 

2.13b). First-rank neighboring polygons P1
i,j of si are defined by the n1

i polygons of area A1
i,j sharing 

edges with Pi, centered on the seeds s1
i,j. Similarly, higher rank polygons Pk

i,j, k > 1, are defined as 

the nk
i polygons sharing edges with Pk−1

i,j. The neighborhood of si at the kth rank is then defined 

by the {n1
i, ..., nk

i} localized molecules. Each Voronoï polygon has on average six neighbors, 

making the structure robust to labeling density. For each seed si, various parameters can be 

computed, such as the area Ak
i and density δki. These parameters provide quantitative 

information on the localizations surrounding each seed. Therefore, Voronoï diagrams are a 

a b

d

c
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natural way to characterize and efficiently navigate the molecular neighborhood of each 

localized molecule at multiple scales, where regions with higher molecular densities are 

composed of smaller and denser polygons (Figure 2.13c). 

 
A difficulty in single molecule imaging is the definition of a bias-free threshold for segmentation 

that can be compared across biological conditions and is insensitive to localization density. In 

SR-Tesseler, segmentation thresholds can be either manually adjusted or automatically 

determined to avoid user bias. We defined a general criterion for automatic thresholding, which 

the user can infer by comparing the localization distribution to a reference distribution that is 

spatially uniform. The average density δ of such a distribution can be approximated as the 

number of localizations divided by the image area. With the first-rank density δ1
i as the main 

parameter, the automatic segmentation is achieved through selection and merging of all the 

polygons having δ1
i > αδ (Figure 2.13d,right), where α is a positive multiplicative coefficient. As 

a control, the same threshold applied to a reference distribution did not provide any objects 

(Figure 2.13d, left). 

To test the versatility of SR-Tesseler, we automatically segmented multiple levels of organization 

in different types of biological data and SMLM modalities, using a unique density parameter δ1
i 

> 2δ (Figure 2.14a–c). On neuronal data, we could automatically segment both the neuronal cell 

body and the molecular clusters of receptors of GluA1 fused to the mEOS2 fluorescent protein 

 
Figure 2.14: Automatic Segmentation in SR-Tesseler based on Normalized Local Density. A unique 
density parameter, δ1

i > 2δ, is used for automatic, multi-scale segmentation of different biological 
structures. Original SMLM localization data (left) and automatic segmentation (right) for GluA1-mEOS2 
(a), Integrin-ß3-mEos2 (b), and ß-tubulin-Alexa647 (c). 

From Levet et al.93 
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(GluA1-mEOS2; Figure 2.14a). Similarly, we could automatically extract the three levels of 

organization (cell contour, adhesion sites and inter- action clusters) in live PALM data of 

fibroblasts expressing integrin-β3−mEOS2 (Figure 2.14b). Finally, we could identify 

nonisotropic structures such as microtubules in dSTORM data of COS7 cells labeled with 

tubulin−Alexa647 (Figure 2.14c). Another important feature of SR-Tesseler is its robustness to 

noise; segmentation of noisy data and cleaned data led to very similar results (Figure 2.14c).  

 
Testing SR-Tesseler for cluster analysis required the need for a model with known cluster 

properties. Biological models are difficult to quantify; genetically encoding fluorescent proteins 

for PALM imaging requires compensation for fluorophore bleaching and improper protein 

folding for accurate quantification, and the variability in protein labeling and the stochasticity 

of fluorescence emission make quantifying dSTORM images difficult. To avoid biological 

models, we tried single molecule assays using the LIMAP system (section 2.2) to pattern regions 

of varying antibody densities, but were unable to obtain quality data demonstrating quantitative 

differences in cluster analyses. 

Luckily, a new tool capable of accurately and reproducibly creating nanometer sized structures 

that can be labeled with a known number of fluorescent markers was recently introduced into 

the world of single molecule imaging. DNA origamis95 are ideal structures for quantifying 

resolution and validating cluster analysis tools for SMLM, due to their small size (in the tens of 

nanometers) and ability to precisely control the location of fluorescent tags on their structure, 

as shown in Figure 2.15 from 96.  

 

Briefly, DNA origami are carefully designed strands of DNA that self-assemble into 2D or 3D 

structures, folding into a pre-designed shaped97. By placing fluorescent probes at specific 

locations along the DNA structure, these DNA origamis have found their place in single molecule 

super-resolution as tools for metrology98.  

Figure 2.15: 2D DNA-Origami Structures. Individual DNA origamis organized as 4x3 rectangles with 
20nm between each DNA docking site. Here, DNA-PAINT is used to label each of the 12 individual docking 
sites, but individual fluorophores can also be attached to the origami grid for dSTORM imaging. 

From Schnitzbauer et al. 96 
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We performed dSTORM imaging of DNA origamis (in a collaboration with Ralf Jungmann, Max 

Planck Institute) assembled in a 2x2 grid with 40nm horizontal and 60nm vertical spacing 

between Alexa647 molecules to apply the automatic multiscale segmentation of the SR-Tesseler 

(Figure 2.16). The top row shows the multiscale segmentation; The first level of segmentation 

separates individual origami (pink) from background localizations, and a second density-based 

segmentation inside the origamis separates corners (red) inside individual origami. A pair 

correlation analysis (PCA) of the localizations in each cluster was used to calculate the spatial 

distribution of the localizations in each cluster (Figure 2.16, right). From the PCA analysis of 

individual origamis (Figure 2.16, left middle). shows a calculated size of 64nm x 41nm (for a true 

structure size of 60nm x 40nm). Furthermore, PCA analysis of the individual corners of the 

origamis (Figure 2.16, left bottom). show an average size of 17nm and represents the localization 

precision of the setup and confirms the localization precision results seen with Alexa647 anti-

GFP nanobodies in section 2.2.3. 

 
We used SR-Tesseler to analyze in more detail the clustering of AMPA receptors imaged in 

dSTORM conditions (Figure 2.17). Nair et al24 have shown previously that these 

neurotransmitter receptors organize in ~70nm size synaptic clusters, called nanodomains. This 

 
Figure 2.16: Quantifying Size of DNA Origami with SR-Tesseler. Rectangular DNA-Origami with 
Alexa647 molecules placed in the corners of a 60nm x 40nm rectangle. Sequential automatic segmentation 
provides access to individual origami (level 1) and individual corner molecules (level 2). A PCA analysis was 
performed to quantify the size of each segmentation level (bottom), showin a calculated median origami 
size of 64nm x 41nm and corner size of 20nm x 14nm. 

60nm x 40nm Alexa647 Origami | dSTORM | Collaboration with Ralf Jungmann, Max Planck Institute 
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analysis used image-based cluster quantification to quantify cluster size, and we wanted to 

validate the cluster analysis tools against these previous analyses.  

The density-based automatic thresholding separates isolated AMPARs from AMPA 

nanodomains and isolated antibodies, opening the door to precise quantifications of the 

molecular content per object family (Figure 2.17b,c). While it is difficult to quantify the number 

of tagged proteins based on the random spatiotemporal distribution of localizations in dSTORM 

imaging, an estimate can be made if a reference can be obtained. The isolated fluorophores, 

sticking non specifically to the glass coverslip outside the neuronal structures, were used as a 

reference for the average number of localizations per antibody and microscope resolution 

(Figure 2.17e). Normalizing the number of localizations per individual AMPAR allowed for 

estimation of the number of fluorophores per receptor (Figure 2.17e), as well as the average 

number of receptors per nanodomains and nanodomain size of ~70nm (Figure 2.17h), 

confirming the results presented by Nair et al24. 

It should be noted that these classifications were dependent on a manual segmentation step 

based on a low-resolution widefield Alexa647 image taken prior to dSTORM imaging that 

allowed separation of neuronal areas (dendritic and synaptic) from nonspecific adsorption of 

antibodies to the coverslip surface. Recent work in a collaboration with Valentin Nagerl’s group 

on a dual-modality STED-SMLM microscope obtains information about spine morphology that 

can be used to much more accurately classify spatial organization of AMPA receptors and their 

nanodomains as being localized principally to the spine neck or the spine head, for example. The 

nanoscale colocalization needed to extract this kind of quantitative information a highly precise 

field of view transformation. As part of separate work (4.2.1) in this thesis project, a highly robust 

and versatile field of view transformation was implemented into our single molecule localization 

software, PALMTracer. The 2-dimensional third order polynomial transformation (equations 4.1 

and 4.2) accounts for scale, rotation, shift, and higher order deformations between the STED 

detection and the single molecule imaging path with sub-localization precision error. For the 

STED-SMLM project, this FoV transformation is calibrated for a given imaging configuration 

(objective, filter sets, etc.) and applied to the single molecule localization data such that it can 

be accurately overlaid onto STED images for much higher-resolution classification that may help 

to lead to new physiological discoveries thanks to multimodal STED-SMLM imaging. 
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From Levet et al 93, Nature Methods 2015 

A keen eye might notice the large number of dark blue localizations in Figure 2.17c, 

corresponding to localizations that are inside the manual neuron segmentation but are below 

the automatic density threshold for individual receptor segmentation. These localizations are 

likely multiple emitters artifacts due to the stochastic nature of fluorophore blinking in 

dSTORM, and the intensity-based filtering workflows detailed in 1 could be beneficial for future 

quantitative analysis. These kinds of structures are frequently imaged using dSTORM but the 

variability in local protein density (individual receptors vs clusters of several tens of receptors) 

make high-quality, artifact-free imaging difficult. 

DNA-PAINT offers the unique advantage of being able to control the density of fluorophores 

independently from the ligand density, allowing an effectively unlimited source of fluorescent 

tags. Despite the long linker length of commercially available primary and secondary antibody 

labeling DNA-PAINT kits (UltiVue), we performed DNA-PAINT imaging on endogenous GluA1 

receptors (Figure 2.18a) for 80,000 imaging frames as a proof of concept. A super-resolution 

reconstruction of all 2,234,959 localizations is shown in Figure 2.22a. The SR-Tesseler was used 

to generate a Voronoï diagram and an individual dendritic spine was selected for nanodomain 

analysis (Figure 2.18b). The first level of clustering coarsest outlined the dendritic area, and a 

second level of clustering outlined nanodomains and individual AMPA receptors on the 

membrane surface (Figure 2.18c). A third level of clustering (Figure 2.18d) inside a single 

nanodomain (green outline) reveals several areas of high localization density (white ellipses) 

with FWHM ranging between 24-34nm, similar to the expected resolution limit of primary and 

secondary antibody labeling (section 2.3.2). While one would like to try to extract more 

 
Figure 2.17: SR-Tesseler for AMPAR Nanodomain Quantifications. dSTORM Cluster quantifications 
with primary and secondary antibodies, validating SR-Tessler’s cluster analysis on receptor clustering (a). 
(b,c) Localizations are clustered into 3 levels: isolated fluorophores outside of the neuron (light blue), 
isolated AMPA receptors (red), or regions of high density with several clustered receptors, called 
nanodomains (purple). (d-i) Quantifications match image-based cluster analysis in Nair et al24, notably 
demonstrating a median cluster diameter of ~70nm that grows linearly with number of receptors. 
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quantitative information about the spatial organization of individual nanodomains, the labeling 

strategy prevents further interpretation of the data. 

Further improvements to protein labeling with DNA-PAINT, for example using primary 

antibodies, antibody fragments or nanobodies coupled to the DNA oligomer, are required before 

a quantitative analysis of the internal structure of nanodomains can be obtained. This is an 

ongoing project in collaboration with Matthieu Sainlos from Daniel Choquet’s group.  

2.5 

Localizing a high density of single molecules provides a vast amount of quantitative information 

about biological structures and their environments, but the complex sample preparation, image 

acquisition and data analysis have prevented the mainstreaming of SMLM. In this chapter, tools 

to facilitate quantitative SMLM have been presented, as well as their application to a complex 

biological model, AMPA receptor clustering in hippocampal neuron cultures.  

An ultimate goal of single molecule quantitative biology is to be able to count individual proteins 

in their native environment. While statistical step photobleaching approaches99,100 have been 

demonstrated for synaptic protein counting101, and specifically AMPAR subunit composition 

counting102, these approaches do not offer the spatial resolution to resolve individual receptors 

or subunits in their native cellular environment. The localization-based radiometric approach 

outlined here is effective as an estimate but highly dependent on fluorophore blinking. 

Furthermore, quantifying individual receptors requires extremely precise and well-known 

labeling efficiency, and the primary and secondary antibody labeling used the previous work 

presented in this chapter introduces variability in the stoichiometry of fluorescent labels to 

receptors. While true protein counting will require further advances in labeling strategies, new 

tools are becoming available that enable quantitative SMLM label counting independent of 

fluorophore photophysics. 

 
Figure 2.18: GluA2 DNA-PAINT and Nanodomain structure. (a) Reconstruction of 2,245,959 
localizations from 80,000 DNA-PAINT imaging frames. (b) Voronoï diagram of a single dendritic spine. 
(c) Automatic Multi-scale segmentation of individual receptors and nanodomains (d) An individual 
nanodomains (green outline) is segmented into sub-regions of 24-34nm (white ellipses, FWHM), 
representing the labeling-limited resolution of the experiment. 

DNA-PAINT | Endogenous GluA2 | Hippocampal Neuron Culture | Scale bars: (b, c) 500nm, (d) 100nm 
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Recently, Jungmann et al. introduced an exciting new tool expanding on their DNA-PAINT 

modality that decouples fluorophore counting from the intrinsically variable molecular 

photophysics in a method called quantitative PAINT (qPAINT)103. The basic principle uses the 

well-known and reliable binding kinetics of the fluorescently tagged DNA-strands to calculate 

the number of DNA binding sites (Figure 2.19). The dark times, 𝜏𝑑, between fluorescence bursts 

(Figure 2.19b) for a given spatial region are calculated and their cumulative distribution function 

is plotted (Figure 2.19c) and fit to an exponential, from which the average dark time 𝜏𝑑* is 

extracted. The influx rate of imager strands,  𝜉 = 𝑘𝑜𝑛×𝑐𝑖, is calibrated using a structure of known 

stoichiometry (a DNA origami with known number of binding sites, validated by image 

reconstruction to ensure all binding sites are functional). With this influx rate calibration, the 

number of DNA binding sites for any given region can be calculated as: (𝑘𝑜𝑛×𝑐𝑖×𝜏𝑑∗)−1 =

(𝜉×𝜏𝑑
∗ )−1. Figure 2.19e-g from Schnitzbauer et al clearly demonstrates the power of qPAINT in 

its accurate counting of binding sites even when visual identification is difficult or impossible, is 

in the 10-nm grid Origami (Figure 2.19f). 

Like dSTORM counting, qPAINT requires a reference for single binding site to enable relative 

counting between conditions. Whereas Jungmann et al. used DNA origami with a known number 

of binding sites for this calibration, our commercially available DNA-PAINT kit was not 

 
Figure 2.19: Quantitative PAINT (qPAINT). (a) DNA origami are used as reference structures with 
known stoichiometry. (b) The dark time, 𝜏𝑑, between fluorescence bursts decreases with increasing 
number of binding sites. (c) The average dark time, 𝜏𝑑∗, can be calculated from an exponential fit of the 
cumulative distribution function of all dark times. (d) The influx rate of imager strands can be calculated 
based on known numbers of binding sites in a given region, enabling quantitative calculation of number 
of binding sites in any region based solely on its dark time distribution. (e) DNA origamis with variable 
number of binding sites and their calculated number of binding sites. (f) Smaller spacing between DNA 
origami reduces the ability to visually distinguish binding sites but the qPAINT technique can still 
accurately extract the number of binding sites based on the dark time distribution. (g) Distributions of 
the number of binding sites (units) per grid origami 

from Schnitzbauer et al 96 
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compatible with our DNA origami, and so we implemented the qPAINT analysis routine to test 

if we could use a ratiometric approach for counting similar to the previous dSTORM approach. 

We used LIMAP to spatially pattern a 4x4 grid of various densities (Figure 2.20a) and we 

manually selected spatially isolated binding sites in low-density regions as the reference for a 

single binding site (Figure 2.20b, top). Bright fluorescent spots that contained significant 

variance in maximum intensity over the course of the 10,000 imaged frames were considered as 

multiple fluorophores in a diffraction-limited area and ignored for calibration (Figure 

2.20b,bottom). A MATLAB program was developed to correct for short-term blinking and 

binarize the fluorescent time traces from these individual regions, and the dark time between 

blinking events for each time trace was calculated. The dark time cumulative density function 

of all single binding sites was calculated and fit to an exponential (Figure 2.20c, blue line), 

indicating a mean dark time of 133 seconds between blinking events. As a proof of concept of the 

method, time traces were compiled from 3 spatially isolated individual single binding sites and 

analyzed with the same MATLAB routine, revealing a mean dark time of 58.5 seconds for the 

triple binding sites (Figure 2.20c, red line). The ratio between the mean dark times gives an 

estimate of the number of binding sites calculated by qPAINT as 2.16. While this preliminary 

qPAINT application did not find the true number of binding sites, 3, this is likely due to improper 

calibration or limited statistics. The use of DNA origami will enable true binding site calibration, 

and recent advances in DNA labeling for highly multiplexed imaging and DNA-conjugated 

primary antibodies 75 could allow for better specificity and labeling quality in biological qPAINT 

applications. 

 
Further improvements to protein labeling with fluorescent probes will allow for more 

quantitative SMLM. Small ligands like monomeric Strepatividin57,104 (Figure 2.21) and 

nanobodies53 allow for high-density labeling of target proteins, allowing for extremely 

homogeneous labeling of small molecular compartments. In combination with new methods for 

cluster analysis, either by software105,106, varying labeling density48, or in combination with 

 
Figure 2.20: Preliminary Quantitative PAINT Tests with UltiVue DNA-PAINT Antibodies 
(a) Antibodies were patterned in a 9x9 grid of squares with varying densities (b) Time traces of single 
DNA-binding sites (top) and multiple binding sites (bottom). Localizations are overlayed on maximum 
projection of 10,000 acquisition frames  and color coded for time. The lateral spatial shift due to sample 
drift helps to visually separate temporally distinct localizations of the same binding site. (c) The qPAINT 
method was used to calculate the cumulative density function of the fluorescence dark time, that is, the 
time between DNA binding events. The CDF was fitted to an exponential, and the ratio of the mean dark 
times is used as a quantitative indicator for the number of binding sites.  

Goat Anti-Rabbit D2 Patterned by LIMAP | DNA-PAINT Acquisition for 10,000 frames, 50ms/frame  
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quantitative DNA-PAINT, these small probes will help to make cluster quantification in terms 

of protein counting via single molecule imaging a reality. 

 

An important consideration when performing such long-duration experiments like dSTORM or 

DNA-PAINT is the quality of drift correction with a fiducial marker; the limiting factor in 

number of frames is typically bleaching of tetraspeck beads after the ~1 hour of imaging time. 

Using nanodiamonds as stable fiducial markers can allow for imaging over an indefinite amount 

of time43. Furthermore, averaging the drift trajectory of several fiducial markers across the field 

of view of the acquisition can improve the quality and most notably variance of the drift 

correction (Figure 2.22). However, imaging nanometer structures will require more precise drift 

correction. Recently, Dai et al107 proposed a method of drift correction using precisely labeled 

DNA origami for drift correction with residual error less than 1 nanometer, visually resolving 

fluorophores that were spaced only 5 nm apart. This kind of accurate drift correction will be 

essential for individual protein visualization in the future, making DNA-origami essential 

structures for quantitative SMLM for both protein counting and image registration. 

 
Figure 2.21: High-Density Labeling Techniques for SMLM in Neuron Cultures. Monomeric 
Strepatividin57,104 enables extremely high density, low linker-length dSTORM imaging of Neuroligin1 in 
hippocampal neuron cultures.  

Neuroligin1 | mStrav:Alexa647 dSTORM | Rat Hippocampal Neuron Cultures | Collaboration with Ingrid Chamma 

mStrav:Nlg1
40,000 imaging frames

1µm

5µm



CHAPTER 2 TOWARDS SINGLE MOLECULE QUANTIFICATION AND IMAGING 

60 

Finally, when performing the kinds of cluster analyses presented in this chapter, it is critical to 

consider the biological context being imaged. The AMPA receptor clusters presented in this 

chapter were imaged on the dendritic surface of hippocampal neuron cultures. While neuron 

cultures adhered to the glass surface and are considered flat relative to the complex 3D network 

of a complete brain, they still possess a thickness of several micrometers, which, if neglected, 

can induce errors in cluster analysis or protein counting and artifacts when imaging structures. 

An example of these 2D projection artifacts can be seen in Figure 2.23, where the 2-D projection 

of localizations analyzed by the SR-Tesseler combines clusters of localizations with different 

axial positions, skewing the cluster size and count statistics. Furthermore, 3D cluster analysis is 

imperative when investigating the spatial relationship between multiple proteins (Figure 2.24) 

Thus, a clear need exists for precise 3D axial localization, especially for quantitative SMLM 

imaging. Chapter 3 will introduce conventional approaches for axial localization at the coverslip 

 
Figure 2.22: Averaging the drift from several fiducial markers improves drift correction. 
Conventional image registrations are performed using a single bead (left, red), but averaging the 
trajectories of multiple beads across the imaging field of view provides ~25% more precise drift correction 
(right, green). 

100nm Tetraspeck beads, 640nm Excitation 

 
Figure 2.23: 2D Projections of 3D Environments Produce Artifacts in Cluster Analysis. (left) 2D 
Voronoï Diagram created with SR-Tesseler of GluA1 in a single dendritic spine, automatically segmented 
for spine (blue region) and AMPAR clusters (green ellipses). Color code: Normalized density. Overlaying 
individual localizations color-coded for axial position (center) shows that clusters may be artificially 
identified as a single cluster (right) when they are actually two distinct, axially separated clusters of 
localizations. 

Endogenous GluA1 | DNA-PAINT I1-550 | 3D with Cylindrical Lens 
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surface, as well as a new approach for 3D SMLM imaging in complex biological environments 

like brain tissue.  

 

 
Figure 2.24: 3D Imaging reveals colocalization between clusters of synaptic proteins. AMPA 
Receptors (green) form nanodomains near the edges of intracellular the PSD95 scaffolding protein (red), 
showing the importance of axial localization for protein co-organization. 

From Hosy et al108 
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ingle molecule localization techniques like PALM, STORM, and PAINT offer unique access 

to the nanometer-scale environment of individual proteins. In a biological context, the study 

of the spatial organization and dynamics of individual proteins, and especially the co-

organization of several proteins, requires a 3D vision of the sample. While PSF fitting methods 

introduced in Chapter 1 provide greatly improved lateral resolution, the axial resolution with 

these techniques remains diffraction-limited. Furthermore, imaging into nonhomogeneous 

samples induces optical aberrations, which reduces the number of collected photons and 

therefore the localization precision with depth. 

The 3D organization of biological structures makes axial localization imperative for single 

molecule biology, but requires more advanced optical and numeric approaches. Moreover, 

detecting and correcting these depth-induced aberrations is essential to progressing SMLM away 

from the coverslip surface and into more complex and physiologically-relevant biological 

models, such as brain tissue. 

In this chapter, I outline several techniques that enable axial localization beyond the diffraction 

limit by encoding axial position of the molecule into the point spread function, comparing the 

drawbacks and advantages of each technique in terms of PSF complexity, imaging depth, and 

resolution. I introduce the notion of adaptive optics for correcting common aberrations, using a 

deformable optical element to directly compensate for phase variations induced by 

imperfections in the optical path, and detail our implementation of a commercially available 

plug-and-play adaptive optics system for single molecule localization microscopy (SMLM). As 

part of the CIFRE collaboration with Imagine Optic, the software integration I developed within 

the MetaMorph acquisition environment is employed for depth-dependent aberration 

correction. Finally, in collaboration with various teams in the IINS, I outline a workflow that 

enables aberration correction for 3D SMLM in brain slices. 

S 
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3.1 

In order to accurately localize individual molecules, SMLM microscopes impose stringent 

criteria on the optimization of the excitation and detection that maximize the contrast of single 

molecule fluorescence by minimizing background. At best, residual background fluorescence 

reduces the localization precision of the event; at worst, it can make segmenting individual 

localizations impossible, completely omitting single molecule events. Even when successfully 

localized, the fitting process discussed in 1.2.2 gives access only to the lateral xy coordinates of 

the single emitter. However, as shown in 2.5.3 Figure 2.24, this 2D projection may result in false 

biological conclusions when imaging 3D structures. Unfortunately, accessing the axial position 

of the molecule is not as straightforward as the centroid-based techniques used for lateral 

localization, as the point spread function is laterally symmetric and lacks axial optical 

discrimination.   

 
The Airy pattern created by the diffraction of the point source through the optical system 

presented in Figure 1.2 of section 1.1.2.1 is just one transverse slice of the more complete, 3-

dimensional diffraction pattern, which extends symmetrically above and below the focal plane 

previously investigated. This axial Airy diffraction pattern is anisotropic, resulting in the 

intensity pattern spreading much more axially than laterally. This axial resolution, given by: 

∆zFWHM = 2n
λ

NA2  (3) 

is highly dependent on the wavelength and objective numerical aperture and is typically between 

600nm-800nm for visible light. While high-NA objectives afford maximal photon collection and 

maximal lateral and axial resolution, they do so at the expense of limiting the depth of field, 

the thickness of single focal plane, given by the equation: 

where d is the depth of field, typically limited to ~1µm for SMLM microscopes using conventional 

optics. The effect of numerical aperture on depth of field and axial resolution is shown in Figure 

3.1 . 

𝑑 = 𝑛
𝜆

𝑁𝐴2  (4) 

 
Figure 3.1: Axial Resolution Blurs Images of 3D Objects. (a) Increasing the numerical aperture of the 
collection objective reduces the thickness of the imaged area, called the depth of field. (b) The axial PSF 
as collected by a high-NA objective displays a much larger spread axially than laterally. (c) Out of focus 
fluorophores (blue) are spread storngly in the axial direciton and cause strong blurring in the image plane.  
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Combining the axial spread of fluorescence from a single molecule with this concept of depth of 

field, it can be easily shown that excited fluorophores outside the focal plane can still create a 

strong signal in the focal plane, blurring features in conventional microscopy and creating a 

strong background that degrades single molecule imaging. While confocal systems use a pinhole 

optically conjugate to the focal plane to spatially filter out of focus light, preventing background 

fluorescence from blurring the image, the widefield detection schemes used in single molecule 

imaging preclude this kind of confocal filtering. SMLM techniques therefore seek to minimize 

the out of focus light by ensuring single molecule conditions through weak photoactivation or 

optimizing imaging buffers. 

Once the single molecule has been separated from the background, a single image frame still 

lacks the information necessary to extract the molecule’s axial position. In 2003, Speidel et al 

demonstrated that the axial position of the emitter from the focal plane is actually encoded in 

the observed intensity pattern as the number and diameter of rings of the Airy function, but this 

3D single particle tracking method requires extensive experimental PSF characterization, 

extremely bright, spatially sparse fluorescent beads and is sensitive to optical aberrations 109 

(Figure 3.2). Using the lateral shape and size of the PSF to estimate axial localization is marred 

by two main flaws: the photon count and thus the localization precision of this method decrease 

with axial position relative to the focal plane, and a perfectly isotropic emitter’s PSF is axially 

symmetric and therefore lacks the discrimination to indicate whether the molecule is above or 

below the focal plane.  

 
Recently, a variety of techniques have been developed to address the lack of axial discrimination 

in conventional microscopy, enabling axial localization of single molecules well below the 

diffraction limit. The experimental setups and effective superresolution PSFs of each technique 

is summarized in Figure 3.3.  

 
Figure 3.2: Simulated Lateral Profile of Isotropic Emitter at Various Axial Positions. (a) The size of 
the Gaussian fit can be used as an estimate for the axial position of a single emitter when it is close to the 
focal plane (b) The characteristic ring structure of the PSF exploited in 109 is complex to fit, requiring a 
strong signal 

From Deshout et al.34 
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The first set of techniques disambiguates the axial position of a single emitter by directly imaging 

multiple planes. First demonstrated for single particle tracking110 and shortly thereafter for PALM 

imaging111, the bi-plane method separates the fluorescence emission into 2 image paths using a 

50/50 dichroic beamsplitter; the first path images creates a conventional single molecule image, 

whereas the second optical path is slightly longer and creates a concurrent image at focal plane 

axially shifted by ~500nm-1µm. By simultaneously imaging two focal planes, the molecule’s axial 

position can be unambiguously determined by measuring lateral PSF size. Unfortunately, this 

method sacrifices axial resolution for lateral localization precision due to the requirement of 

splitting the detected fluorescence in 2 paths. This technique was expanded upon Dahan’s group 

in 2014 by placing a phase mask in the detection path and simultaneously imaging 9 planes, 

enabling whole-cell PALM112. However, this multiplane technique compromises imaging depth 

for a greatly reduced field of view. Another very recently introduced technique achieves similar 

10µm thick imaging with ~50-100nm axial resolution by using an electrically tunable lens to 

convert axial displacement into a lateral shift in the PSF over the course of a single image 

exposure113.  

One slightly different technique uses a unique physical property of high NA objectives to 

quantitatively assign an axial position to the emitter. Objectives with a numerical aperture great 

than 1, such as the oil-immersion objectives commonly employed in SMLM, are able to detect 

fluorescence that is coupled into the coverslip and that propagates as an evanescent wave, 

known as the super-critical angle fluorescence (SAF). In the detection-analog to total internal 

reflection excitation, Bourg et al114and Deschamps et al115 optically calculate the amount of SAF 

per localization to axially localize single fluorescent molecules with 20-25nm axial localization 

precision. Because the SAF depends exponentially on the distance of the emitter to the coverslip 

surface, this technique has the unique ability to determine an absolute axial localization with 

respect to the coverslip surface and can be used for quantitative comparisons between coverslips 

without the need for extensive calibration; however, like TIRF, SAF is only valid for several 

hundred nanometers above the coverslip.  

By similarly sacrificing depth of field, interferometric approaches increase experimental 

complexity for nearly isotropic axial localization precision. The iPALM116 technique employs an 

interferometric approach where fluorescence emission is collected by two objectives interfered 

onto 3 separate cameras. While the axial localization position is extrapolated from the relative 

intensities with extreme accuracy, resulting in axial localization precision ~10nm even more 

precise than its ~20nm lateral localization precision, the technique is limited to a thickness of 

𝜆/2. The 4Pi-SMS117 technique interferes orthogonal polarizations of the emission collected by 

the two objectives to extend the imaging depth to ~650nm. 
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These previously mentioned interferometric approaches for axial localization exploit valuable 

information in the phase of the collected fluorescence, information that is lost through a 

conventional imaging system. Since traditional imaging cameras are incapable of determining 

the entire complex light field and image simply the square of the electromagnetic wave’s electric 

field, a set of complementary axial localization techniques seek to modify the phase of the 

detected light field such that the axial information is encoded in the intensity profile of the point 

spread function, a technique called PSF engineering. By placing a phase modifying element in 

the Fourier plane of the detection path, also known as the pupil plane as it is optically 

conjugate to the back focal plane of the objective (Figure 3.1c), it is possible to perform optical 

spatial frequency transformations that enable the desired phase to intensity conversion.119. The 

exact shape of the point spread function depends on the specific phase profile applied to the 

detection system. In SMLM, a calibration of the intensity profile of the PSF as a function of axial 

position is used to generate a lookup table from which axial positions of individual emitters can 

be assigned.   

One of the first implementations of PSF engineering for axial localization was introduced by 

Pavani et al in 2008, where they used a double-helix point spread function to encode axial 

position as a rotation of two individual points120. The centroid of the two localization gives a 

lateral localization precision of x,y~25nm laterally, and the rotation between them gives an axial 

localization precision of z~50nm through an imaging depth of ~1.5µm. A key advantage of these 

PSF engineering techniques is that, by carefully modifying the phase and thus the interference 

of the collected fluorescence, information that is technically outside of the optical depth of field 

of the objective can be obtained, enabling sub-diffraction limit spatial information in an axial 

range larger than optically possible. 

 

 
Figure 3.3: Methods for Axial Localization Beyond the Diffraction Limit A non-exhaustive list of 
common methods for axial localization. Notably, the iPALM technique has the highest axial localization 
precision at the expense of experimental complexity. The tetrapod phase mask has the largest depth of 
field of nearly ~20µm for bright molecules, and the SAF technique benefits from a quantitative axial 
assignment from the coverslip surface. The astigmatism method is very simple to implement optically and 
numerically, making it the most common axial localization method 

Inspired by 34, 118 
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W.E. Moerner’s group has been instrumental in the optimization of the point spread function 

for 3D single molecule imaging and tracking. In 2014, Shechtman et al introduced a pupil-plane 

phase pattern that was specifically designed to maximize information content in the low-signal, 

high-background context of single molecule imaging. Dubbed the Saddle-point PSF121, this phase 

pattern produced a point spread function capable of localization with high precision (x,y~15nm 

and z~20nm) over an extended axial range of 3µm. Just a year later, the same group introduce 

the Tetrapod PSF family122, which is currently considered the optimal point spread function for 

single particle tracking applications as it extends the localizable axial range to 20µm for 

sufficiently bright fluorescent markers. 

These aforementioned phase alteration techniques have several drawbacks that prevent their 

widespread implementation. In addition to a small 4f optical relay system to perform the optical 

Fourier transform (Figure 3.3), they require specifically designed and fabricated phase masks. 

While dynamic elements like spatial light modulators (SLM) can be employed, phase 

modification techniques are inherently wavelength sensitive, making multicolor SMLM difficult. 

Furthermore, one key tradeoff of the tetrapod PSF is the compromise in spatial spread of the PSF 

for imaging depth; the tetrapod point spread function is spread over ~10x the spatial extent from 

the diffraction-limited, aberration-free PSF. This large PSF area restricts the number of 

concurrent emitters per SMLM frame, and limits the tetrapod PSF primarily to SPT applications. 

As in conventional microscopy, the resolution tradeoff becomes apparent in axial single 

molecule localization: imaging depth cannot be increased while retaining the same temporal 

resolution in the form of imaging speed.  

The most popular method for injecting axial discrimination into the PSF of a SMLM microscope 

situates itself as a good compromise between imaging depth, spatial and temporal resolution. 

The method, first employed in 1994 in an SPT application123, explicitly introduces the common 

system aberration of astigmatism into the detection path, which induces an ellipticity in the 

PSF that varies based on axial position. Using a cylindrical lens to create this astigmatism, Huang 

et al 124 were the first to apply this for high-density single molecule localization in their STORM 

application, demonstrating comparable localization precision to bi-plane imaging125 (x,y~20-

30nm, z~60-70nm) over an axial range of ~600nm. They addressed this limited imaging depth 

shortly thereafter by combining astigmatic detection and axially stepping the focus, enabling 

whole-cell STORM over a 3µm axial range126. Recently, Legant et al combined astigmatic single 

molecule detection with their lattice light sheet excitation to perform multi-color PAINT 

imaging of entire cells up to 20µm thick81. 

In addition to its relative low cost and optical simplicity to implement into an existing SMLM 

microscope, astigmatism has the unique advantage over the majority of axial localization 

techniques in its numeric simplicity. The ellipticity of the PSF can easily be measured by 

extending the Gaussian fit model to 2-dimensions, an operation which is relatively easy to 

parallelize and implement into existing SMLM localization pipelines compared to the 

complicated PSF model fitting required in other techniques. 
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Astigmatism, and all phase-modification based axial localization techniques, share a common 

aberration sensitivity that limit their application to complex biological samples. Combining 

inherent field-dependent microscope aberrations with a fixed phase element like a phase mask 

or cylindrical lens induce biases on lateral localization and/or axial lookup127. Furthermore, 

depth-dependent spherical aberrations reduce the PSF’s axial discrimination, making 

uncorrected astigmatic 3D imaging unreliable away from the coverslip’s surface128. Therefore, 

having a wavelength-insensitive, dynamic element that can correct for system and sample 

aberrations is imperative for accurate 3D single molecule imaging in complex biological samples.  

3.2 

Originally developed in astronomy to correct for fluctuations caused by atmospheric turbulence, 

adaptive optics (AO) has become a recently begun to make its way into the domain of 

ophthalmology129 and microscopy, where similar distortion correction is desired. The term 

adaptive optics is generally used to refer to the use of a dynamic optical device capable to correct 

wavefront aberrations. In microscopy applications of AO, such adaptive correction can be used 

to correct the excitation or detection path. In confocal, two-photon and STED microscopy, it is 

common to correct only the excitation path, whereas the widefield detection approaches used 

in single molecule imaging require only correction of the detection path130. Adaptive optics have 

an essential role in SMLM, where a diffraction-limited PSF is essential for accurate single 

molecule localization, as aberrations may induce localization errors larger than the localization 

precision131. Izeddin et al132 were the first to use AO in single molecule localization microscopy to 

correct wavefront aberrations originating from the microscope to perform astigmatic 3D PALM 

imaging with higher precision than a cylindrical lens. However, SMLM imposes certain 

constraints that make conventional approaches to adaptive optics difficult to implement, 

particularly in quantifying aberrations in a low-signal environment.  

 
Figure 3.4: High-NA Single Molecule Microscopy and Wavefront Aberrations Wavefront aberrations 
are deviations from the ideal wavefront caused by imperfections in the optical path either from the sample 
or the microscope itself. SMLM is especially sensitive to these defects,  
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Understanding this adaptive correction requires a brief introduction to a wave optics perspective 

of microscopy. A single fluorescent point source emits its fluorescence a spherically radiating 

electromagnetic wave, of which a portion is collected using a high numerical aperture objective. 

Physically, the radial difference in thickness of the lens results in longer optical path length 

(OPL) for rays at the center of the optical axis compared to the extremities: 

where n(x) is the refractive index, which can vary as a function of distance, x. This radially-

dependent optical path delay transforms the spherical wavefront of the point source into a 

planar wavefront. The microscope’s tube lens then converges the light onto the imaging device 

in a similar manner, where a clear image is obtained.  

Whereas ideal lenses modify the wavefront in a fixed, controllable manner to focus light, 

imperfections in the optical system result in a quantifiable local phase delay to the wavefront. 

These aberrations deviate the local wavefront from its ideal shape by a phase that is dependent 

on the wavelength of light and the optical path length: 

The effect of these phase aberrations on image formation can be understood by mathematically 

considering the frequency-space formalization of the point spread function. The complex pupil 

function describes the transmission of light through an optical system in radial coordinates 

(r,𝜃): 

with the imaginary number i, and the amplitude variation function A(r,𝜃), which is frequently 

disregarded unless considering strongly aberrating samples. The image formation in incoherent 

fluorescence imaging can thus be formalized as a convolution of the sample’s fluorescence 

distribution, f(x), with the Fourier Transform of the pupil function: 

This relation directly shows the effect of system and sample-dependent aberrations, Ψ, on the 

resulting image. The local phase deviations prevent proper focusing (Figure 3.4), spreading the 

focus both laterally and axially and reducing the maximum intensity in the focal plane and 

elongating the PSF along the optical axis133. 

OPL = ∫ 𝑛(𝑥)𝑑𝑥   (5) 

Ψ =
2𝜋

𝜆
𝑂𝑃𝐿  (6) 

𝑃(𝑟, 𝜃) = 𝐴(𝑟, 𝜃)𝑒𝑖Ψ(r,𝜃) (7) 

𝐼(𝒙) = 𝑓(𝒙) ⊗ |𝐹𝑇[𝑃(𝑟, 𝜃)]|2 = 𝑓(𝒙) ⊗ |𝐹𝑇[𝐴(𝑟, 𝜃)𝑒𝑖Ψ(r,𝜃)]|
2
  (8) 
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In this context, the fundamental idea of adaptive optics is simple: directly compensating for 

these aberration-induced optical path length differences using an adaptive element allows 

proper focusing of the wavefront and restores the diffraction-limited PSF.  

One such adaptive element capable of precisely controlling the wavefront is called a deformable 

mirror (DM). As the name suggests, DMs are composed of a highly reflective surface whose 

shape can be locally modified to create a non-conventional but continuous deformation. While 

several kinds of DMs exist, the most commonly-employed in microscopy adaptive optics consist 

of a reflective membrane attached to an array of electromagnetically activated actuators, as 

shown in Figure 3.5. The DM is placed in a plane conjugate to the pupil plane such that the 

deformation of the membrane surface imparts relative changes in the OPL across the beam 

profile. By applying the proper deformation to exactly compensate for the aberrations in the 

imaging path, the wavefront can be restored to its pristine flat profile.  

Since the complex wavefront containing the instantaneous phase profile cannot be directly 

imaged using conventional imaging optics, specific optics and algorithms are required for 

wavefront detection. In Direct Wavefront Sensing, a Shack-Hartmann wavefront sensor 

(SHWFS) is placed in a plane conjugate to the pupil plane, in which an array of microlenses 

placed in front of a CCD camera converts the local phase of the wavefront at each microlens into 

a spatial displacement that can be measured on the sensor. Combined with a known distance to 

the microlens array, the angle orthogonal to the wavefront can be calculated at each point in the 

microlens array, from which a continuous wavefront can be inferred.  

 
Figure 3.5: Adaptive Optics Corrects Aberrations and Restores Diffraction-Limited Focus Wavefront 
aberrations can be separated into two classes based on their source of origin: sample aberrations (blue) are 
induced by inhomogeneities in biological samples or depth-dependent imaging errors, while system 
aberrations (red) stem from the microscope system itself. A deformable mirror (DM) can be used to correct 
these wavefront aberrations, restoring a flat wavefront (green) and a diffraction-limited focus.  
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Most conventional adaptive optics techniques combine the use of a WFS for wavefront detection 

with a DM for wavefront correction in a closed-loop configuration as shown in Figure 3.6. A 

short calibration step performs a push-pull operation sequentially over each actuator while 

measuring the wavefront deformation from individual actuators. This actuator command matrix 

is then numerical inverted to obtain an interaction matrix (IM) that gives the corresponding 

actuator changes required to induce a given wavefront modification. After proper calibration, a 

wavefront optimization routine flattens the wavefront within the mechanical constraints of the 

deformable mirror. 

Once the wavefront is known, it is common practice to represent the wavefront as a linear set of 

the orthogonal Zernike modes134: 

𝜙(𝑥, 𝑦) = ∑ 𝑎𝑘𝑧𝑘(𝑥, 𝑦) + 𝜕𝜙(𝑥, 𝑦)

𝑀

𝑘=1

   

where M is the total number of Zernike polynomials, zk(x,y) is the kth Zernike polynomial with 

ak being its coefficient, and (x,y) is the error due to the truncation of using only M Zernike 

polynomials. Defined on a unit circle, these Zernike polynomials represents an excellent base for 

describing wavefront aberrations through optical systems with circular apertures. Furthermore, 

common system wavefront aberrations found in many microscope systems like coma, spherical 

aberration and astigmatism are conveniently related to individual Zernike modes. In fact most 

microscopy applications can limit their Zernike decomposition into the first 10 polynomials. 

These primary aberrations and their corresponding Zernike polynomial, can be found in Figure 

3.7. 

 
Figure 3.6: AO Modes of Operation (Left) In direct wavefront sensing, a wavefront sensor (for example, 
a Shack-Hartmann, SHWFS) is placed in a closed feedback loop with the deformable mirror, allowing for 
fast and precise wavefront correction. (Right) Indirect wavefront sensing optimizes the wavefront based on 
an image quality metric, requiring iterative image-based aberration detection algorithms to correct the 
wavefront. 
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However, directly measuring the wavefront in this manner requires the wavefront sensor to 

image the wavefront from a single focal point. Astronomical adaptive optics applications employ 

a single, stable, point-like reference source, known as a “guide star”. In microscopy, such single 

bright point-sources are difficult to achieve. The pinhole detection scheme of two-photon 

microscopy allows for the detected signal to be used as a proxy for a point source136, but the 

widefield-detection scheme used in SMLM prevents this method from being functional. While 

large fluorescent beads can be injected into a sample137, their size prevent access into biological 

tissues and their exact position is difficult to control. The large photon count requirement 

combined with issues of parasitic background fluorescence prevents the adoption of direct 

wavefront sensing in single molecule microscopy.  

Therefore, an alternative method of accessing the wavefront that does not require a wavefront 

sensor known as indirect wavefront sensing is commonly employed in microscopy techniques. 

The basic principle is founded on the idea that the optimal focus is obtained from an aberration-

free wavefront, and thus the maximum intensity of the lateral PSF at the focal plane can be used 

as a metric for wavefront quality. The same camera used for imaging the sample is then used to 

image a single fluorescent point source (Figure 3.6) while the deformable mirror iterates over 

the individual, orthogonal Zernike modes. While a range of optimization algorithms exist, the 

 
Figure 3.7: Primary Zernike Modes and their Associated Aberrations (Left) The primary Zernike 
modes, most commonly found in microscopy, are commonly referred to by a common aberration name, 
for example mode 10 is spherical aberration.  (Right) The Zernike modes represented as their phase 
deformation. 

From Zhu et al.135  

 

Figure 3.8: 3N Algorithm for Indirect wavefront aberration detection.  (a) Indirect wavefront detection involves 
measuring the point spread function of the microscope as a function of an applied fixed amount of a specified Zernike 
mode, for example (1)+60nmRMS astigmatism and (2) -60nm RMS astigmatism. An image-based merit factor like the 
maximum intensity is maximized, and the resulting optimal aberration weight is applied to optimize the PSF (3). (b) 
This process is repeated for each of a given number of Zernike modes, commonly the primary Zernike modes. The 
final wavefront correction is a linear weighted combination of the iterated Zernike modes. 
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commonly‐employed  3n  algorithm  iterates  over  n  Zernike modes,  taking  an  image  with  a 

quantity of ‐a, 0, +a aberration for that particular mode (Figure 3.8). From these 3 images, 

the  optimal  amount  of  the  particular  aberration, n,  is  then  calculated  by maximizing  the 

wavefront quality metric (here, maximum intensity). The resulting optimal wavefront correction 

is a linear weighted combination of the optimized Zernike polynomials, which are assumed to 

be orthogonal in the sample plane138, giving indirect access to the underlying aberrations of the 

wavefront. 

While indirect wavefront sensing simplifies the hardware implementation of adaptive optics due 

to lack of wavefront sensor, it is accompanied by the tradeoff of more complicated software in 

the form of wavefront optimization algorithms. Furthermore, proper alignment and calibration 

of the deformable mirror into conventional microscope systems is difficult and can be daunting 

for the everyday user. 

 Adaptive Optics for 3D Single Molecule Localization Using MicAO 
To address these implementation difficulties and lower the barrier to entry of adaptive optics 

into single molecule imaging, a plug‐and‐play adaptive optics system containing the requisite 

hardware and ease to use software is desirable. The MicAO 3DSR system from Imagine Optic, a 

CIFRE  collaborator  for  this PhD project,  contains  a deformable mirror  and  all  the  requisite 

optical  components  to  conjugate  the DM  to  the  pupil  plane  of  any  conventional  inverted 

microscope. A  Shack‐Hartmann wavefront  sensor  is  also  included,  used  only  for  alignment 

purposes at the initial installation or if the optical configuration of the microscope is changed, 

for example the installation of a new objective.  

In addition to the adaptive optics hardware, the MicAO 3DSR also includes a complete software 

suite that allows detailed control of the entire adaptive optics workflow. The large number of 

configurable  parameters  can  make  the  software  daunting  at  first  impression.  Software 

integration and ease‐of‐use are key to widespread adoption of new technologies across a large 

user base, and most microscopes are operated by biologists who do not need to understand the 

mathematical description of how aberrations affect the pupil function; they are simply interested 

in  optimizing  their  image  quality  in  a  fast  and  reliable manner  so  they  can  extract  their 

biologically‐relevant data quickly. As part of  the CIFRE collaboration  for  this PhD project, a 

 
Figure  3.9:  The  MicAO  Plug  and  Play  3DSR  Adaptive  Optics  Kit  from  Imagine  Optic.  The 
commercially available kit contains a deformable mirror and wavefront  sensor as well as  the  required 
software for easy implementation of adaptive optics on single molecule localization microscopes. 
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plugin for the MetaMorph software acquisition environment was developed that was designed 

to obviate the need for the user to interface directly with the more complicated MicAO software. 

The interface, architecture and modes of operation of this plugin are detailed in Appendix 0 

The single molecule adaptive optics workflow using this MetaMorph plugin will be described in 

detail here and forms the foundation for the subsequent 3D SMLM imaging using AO. It should 

be noted than initial hardware installation and alignment step is required. The system is 

considered properly aligned when closed-loop wavefront optimization using the included WFS 

removes the majority of aberrations such that the residual wavefront error is less than 20nm 

RMS. At this point, the AO system uses only the DM in conjunction with the interaction matrix 

to perform wavefront modulation in an indirect wavefront sensing configuration. 

 

The first step in the SMLM AO workflow is to optimize the wavefront. An indirect wavefront 

sensing approach and 3N algorithm are used to optimize the maximum intensity of the PSF 

established a single fluorescent bead on the coverslip surface. While the advanced user can 

specify the specific Zernike modes used for the 3N algorithm, a sufficient correction can 

generally be obtained using Zernike modes 3-10, the primary aberrations commonly known as 

defocus, astigmatism, coma, trefoil and spherical aberration. In this manner, system aberrations 

inherent to the microscope are corrected, including the objective, dichroic mirrors, filters and 

tube lens. In general, these aberrations remain constant as long as the optical system is not 

perturbed. However, this optimization also accounts for optical path length differences induced 

by coverslips with varying thickness. 

 

After the crucial optimization step where residual system aberrations are removed from the 

wavefront, the deformable mirror is used to selectively add a dynamic amount of the astigmatism 

aberration that is commonly exploited for giving axial discrimination to the PSF in SMLM 

imaging as described in 3.1.3.  

 
Figure 3.10: PSF Optimization using the developed MetaMorph MicAO Plugin.  (a) MetaMorph 
MicAO plugin interface with one click PSF optimization.  (b) PSFs (top) and representative wavefront 
reconstructions (bottom). 3N Optimization of the primary Zernike modes flattens the wavefront and 
restores the diffraction-limited, aberration-free PSF. (c) PSF intensity linescan demonstrating 
enhancements of aberration correction. 
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Compared to the conventional cylindrical lens approach, AO provides several advantages. The 

cylindrical lenses used for SMLM generally introduce other wavefront aberrations than just 

astigmatism that can significantly influence the axial localization of single molecules. Most 3D 

localization techniques do not use the actual PSF of the microscope for axial localization but 

reduce the complicated 3D diffraction of light into a calibration curve. For astigmatic imaging, 

this calibration curve is a 2-dimensional fit to axial divergence of the beam waist, w(z), of a 

Gaussian beam with higher order terms to correct for aberrations. 

𝑤(𝑧) =  𝑤0√1 +
𝑧 − 𝑧0

2

𝑧𝑅
+ 𝐴

𝑧 − 𝑧0
3

𝑧𝑅
+ 𝐵

𝑧 − 𝑧0
4

𝑧𝑅
 

where  w0 is the beam waist at the focal position, z0, and zR is the Rayleigh range. This fit is 

performed in both lateral dimensions by fitting the PSF width at varying axial positions. An ideal 

astigmatism will separate the focal positions z0 in the x- and y- directions while retaining the 

same beam waist w0. 

Quantifying the quality of this astigmatism can be accomplished by comparing the astigmatic 

calibration curves that are used as a look-up table for axial localization. Critically, if this fitted 

curve does not match the experimental PSF, improper axial assignments will occur. Figure 3.11 

demonstrates the effect of the residual system aberrations combined with the additional 

aberrations induced by the cylindrical lens on these calibration curves. Notably, the astigmatic 

calibration curves from the cylindrical lens are usually laterally asymmetric, indicated residual 

aberrations that prevent optimal focusing. Furthermore, calculating the difference between the 

width and height of the PSF for each plane along the z-axis shows a non-linear dependence of 

x-y on z, which can be interpreted as an axially-dependent resolution. In contrast, the PSF 

optimization step in the MicAO workflow corrects these residual aberrations, and the 

application of a pure 60nm RMS astigmatism results in symmetric calibration curves and a linear 

relationship of x-y over a larger axial range. With adaptive optics correction and pure 

astigmatism, the astigmatic 3D SMLM depth of field can be performed up to extended to nearly 

~1µm, compared to just 600nm from a fixed cylindrical lens. 
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One advantage of using a wavefront modulator like the deformable mirror is in its capacity to 

modify the amount of astigmatism based on the application; while 60nm RMS astigmatism gives 

a comparable astigmatism to the conventional cylindrical lens approach, increasing this 

astigmatism to 90nm RMS increases the axial discrimination of the PSF and thus axial resolution 

at the expense of imaging depth as shown in Figure 3.12. 

It is important to keep in mind the lateral localization precision, which is heavily dependent on 

the photon count and the PSF size. In the focal plane, the astigmatic PSF has a slightly larger, 

cross-like shape, which in theory would increase the localization uncertainty. For the case of the 

cylindrical lens, this is the case; 3D astigmatic SMLM with a cylindrical lens suffers from a slight 

increase in lateral localization uncertainty. Figure 3.13 demonstrates that interestingly, even 2D 

 
Figure 3.11: Comparison of Cylindrical Lens to Adaptive Optics for Astigmatic 3D Imaging. (a) 
While the diffraction limited PSF has little axial discrimination, injecting an astigmatism into the 
detection path via a cylindrical lens (red) or adaptive optics (green) allows for unambiguous axial 
localization. (b) 3D calibration curves with the cylindrical lens are frequently asymmetric due to residual 

system or sample aberrations, resulting in a variable resolution ( x-y) (c) Correcting system aberrations 
with adaptive optics and applying a pure 60nm RMS astigmatism to the wavefront results in a symmetric 
3D calibration curve and a constant axial resolution over ~1µm for bright fluorescent markers. 
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Figure 3.12: Dynamic Astigmatism using Adaptive optics. Using adaptive optics, a customizable 
astigmatism can be applied to the wavefront for specific applications. 90nm RMS astigmatism provides 
stronger axial discrimination over a shorter axial range compared to 60nm RMS (comparable to a 
cylindrical lens) 
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imaging with a cylindrical has an increased localization uncertainty. This can be attested to the 

fact that the additional relay lenses in the Nikon cylindrical lens kit used for these experiments 

result in a reduction of the number of photons at the focal plane as well as possibly inducing 

some small aberrations. In contrast, the adaptive optics system provides the same lateral 

localization precision while performing astigmatic 3D imaging as the imaging path with no 

additional optical elements, and we see a slight improvement to the localization precision with 

2D imaging due to the correction of system and coverslip-thickness aberrations that increase the 

photon count in the focal plane. 

 

While correcting for system aberrations can show an improvement in the PSF quality, the 

majority of SMLM microscopes are precisely aligned and carefully calibrated, using high-quality 

optical components intended to minimize aberration sources. Furthermore, many high-NA 

objective lenses include a correction collar that finely adjusts the internal network of lenses to 

compensate for thermally induced optical path length differences or variations in coverslip 

thickness. However, these correction collars are difficult to properly manually adjust, and these 

static elements cannot dynamically adjust for depth-dependent aberrations.  

The major limiting factor preventing SMLM from imaging away from the coverslip surface is the 

spherical aberration that stems from the refractive index mismatch between the immersion 

medium and the sample. In more detail, this refractive index difference creates a change in angle 

at the coverslip surface that deviates the actual focal plane (AFP) from the nominal focal plane 

(NFP). This change in angle adds a radial dependence to the optical path length, which is 

commonly known as spherical aberration. These spherical aberrations axially stretch the point 

spread function, which results in a degradation of axial resolution in conventional microscopy. 

Furthermore, as the desired focal plane extends further from the coverslip surface, the effect of 

these spherical aberrations increases linearly with imaging depth139. 

 

 
Figure 3.13: Localization precision comparison between conventional 2D SMLM imaging and 
2D/3D astigmatic imaging with a cylindrical lens and adaptive optics system. The experimental 
localization precision, measured by the spatial distribution of individual beads across the field of view, 
remains constant after PSF optimization using adaptive optics for 2D or 3D imaging. The insertion of a 
commercial cylindrical lens kit in the detection path (right) makes the localization process less precise for 
2D or 3D imaging. 
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The axial stretching of the PSF has a critical effect on localization microscopy in the net 

reduction of photon count in the focal plane. Figure 3.14 demonstrates this effect for a Nikon 

NA1.49 oil-immersion objective imaging fluorescent beads distributed in an agarose gel. The 

maximum fluorescence intensity is reduced to 50% at just 24µm imaging depth. For SMLM 

imaging, this intensity reduction greatly decreases the localization precision, resulting in a ~2x 

larger lateral distribution of the localizations (for 100 localizations at the same focal plane). 

The combination of uncorrected spherical aberration and a fixed astigmatism reduces the 

effective PSF stretching induced by fixed astigmatism. For localization microscopy, the net effect 

is a reduction in axial discrimination, demonstrated in Figure 3.15. At 24µm deep, the axial 

discrimination, visualized as the slope of the x-y curve as a function of depth, is nearly 

completely removed compared to at the coverslip surface.  

 
Figure 3.14: Spherical Aberrations Axially Spread the PSF (a) The refractive index mismatch between 
the immersion and imaging medium shifts the Nominal Focal Plane (NFP) from the Actual Focal Plane 
(AFP) (b,c) Axial spreading reduces the number of photons in the focal plane, demonstrated as a reduction 
in the maximum intensity of a PSF linescan and an increased localization uncertainty. Adaptive Optics 
can correct for spherical aberrations and regain maximum intensity in the focal plane. 

100nm Tetraspeck Bead | exc=640nm | 100x NA1.49 oil-immersion objective (n=1.515) |  EMCCD 

 
Figure 3.15: Depth-dependent spherical aberrations reduce axial discrimination with a 
cylindrical lens. Fixed astigmatic elements like a cylindrical lens (left) provide sufficient astigmatism 
at the coverslip surface, but depth dependent spherical aberrations reduce the effect of the astigmatism 
when imaging away from the coverslip surface. The wavefront modulator in the MicAO adaptive optics 
system (center) can apply a constant astigmatism as well as correction for these depth-dependent 
spherical aberrations, allowing for sufficient PSF deformation for 3D assignment. (right) The slope of the 
difference between the vertical and horizontal PSF elongation can be used as an indicator for axial 
discrimination ability. Here, the corrected adaptive optics system with spherical aberration correction 
has the same axial discrimination as the cylindrical lens at the coverslip surface. 
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Using MicAO to correct for system aberrations at the coverslip surface and apply a pure 

astigmatism creates a strongly linear relationship of x-y as a function of imaging depth, as 

expected. At 24µm imaging depth, optimizing the PSF for defocus and spherical aberration using 

the 3N aberration detection algorithm corrects for the depth-dependent aberrations, and 

applying a pure 60nm astigmatism at this depth enables astigmatic 3D imaging with the same 

axial discrimination as the cylindrical lens at the coverslip surface. 

3.3 

Adaptive optics provides a large astigmatic depth of field of nearly 1µm, a size of import in 

cellular neuroscience imaging. In biological applications, these adaptive corrections are assumed 

to be valid over the entire field of view140, although this assumption is invalidated when imaging 

deep into samples141. The ability to correct for system and depth-dependent aberrations, 

particularly spherical aberration, is requisite for enabling 3D SMLM imaging of biological 

samples away from the coverslip using high NA oil-immersion objectives.  

 
The first application of adaptive optics for biological single molecule localization microscopy in 

2012 by Izeddin et al. demonstrated PALM imaging and quantum dot tracking with an axial depth 

of ~800nm and an axial localization precision of z~15-40nm at the coverslip surface132. This 

pioneering work served as a basis for the adaptive optics for SMLM workflow outlined in 3.2.2, 

which we employed for several SMLM applications at the coverslip surface, specifically high-

photon count applications like dSTORM and QD tracking. 

 

The extended astigmatic depth of field provided by MicAO was first explored using 3D dSTORM 

to image ß-tubulin in various cultured cell lines. Cell culture methods, including fixation, 

permeablization, and ß-tubulin labeling using primary and secondary antibodies can be found 

in Appendix 3. Once the coverslip was prepared and placed onto the microscope, system 

aberrations were corrected by first optimizing the PSF of a fluorescent bead at the surface of the 

coverslip using the 3N algorithm. A nearby cell was chosen for dSTORM imaging, and a widefield 

image was acquired with an aberration-free PSF, after which a pure 60nm RMS astigmatism was 

applied and dSTORM imaging was performed as detailed in section 3.2.2.2. A representative 

widefield image, 2D and color-coded 3D reconstructions of the tubulin cytoskeleton in COS-7 

cells are demonstrated in Figure 3.16, with typical acquisitions ranging from 10,000-80,000 

frames for a single reconstruction.  



3.3 ABERRATION CORRECTION ENABLES 3D SMLM IN COMPLEX BIOLOGICAL ENVIRONMENTS 

81 

The benefits of using AO for aberration correction and astigmatism generation were then 

compared against using a fixed cylindrical lens. 3D dSTORM was first performed using the 

adaptive optics system for 20,000 frames, then immediately using the cylindrical lens by 

switching the output port of the microscope. As can be seen in Figure 3.17, the microtubules 

appear more continuous both laterally and axially for the adaptive optics case. This is quantified 

in an axial localization histogram, demonstrating the adaptive optics imaging not only has more 

localizations, but it localized over a larger axial range as well. Two different EMCCDs were used 

for these experiments, each with their own respective EM-Gain curves, and therefore a direct 

comparison of intensity per single molecule event would be inaccurate. The increased number 

of localizations can be attested to the photon gain thanks to the PSF optimization process for 

the adaptive optics system. Another unspoken benefit of using AO for 3D dSTORM is the facility 

to enable/disable the astigmatism; conventional cylindrical lenses induce a small field of view 

deformation when inserted into the imaging path, slightly skewing the 2D and 3D images. This 

makes direct comparison between the widefield image and the super-resolution reconstructions 

difficult. 

 
Figure 3.16: Representative 2D and 3D Reconstructions of ß-Tubulin::Alexa-647 dSTORM Imaging 
in COS-7 Cell. (Left) Widefield image of the tubulin network. (center) 2D accumulation of localizations 
from 20,000 imaging frames shows the clear benefit in resolution of the dSTORM technique. (right) Using 
adaptive optics for astigmatic 3D imaging allows accurate axial assignment over 1 µm depth. 

COS-7 Cell | ß-Tubulin::Alexa647 | Primary and Secondary Antibody | Imaged at Coverslip, z=0µm 
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The adaptive optics workflow for 3D astigmatic imaging the coverslip surface was also performed 

for tracking quantum dots in fibroblast cells. The quantum dots were tagged to the 

overexpressed GPI-GFP membrane protein using an anti-GFP antibody. As the bright QDs 

diffuse across the cell membrane, they outline the 3D contour of the cell over more ~1.5µm.  

 
While system aberration correction using adaptive optics provides some significant 

improvements compared to conventional techniques, the true power of AO systems for SMLM 

resides its ability to dynamically modify the wavefront to correct for depth-dependent 

 
Figure 3.17: Comparison between cylindrical lens and adaptive optics for 3D ß-Tubulin dSTORM 
imaging in RPE1 Cells. The same field of view was imaged first with MicAO and subsequently with 
MicAO. The zoom (center) demonstrates the visual improvement of 3D reconstructions using the 
adaptive optics system, notably in the continuity of the microtubule network and the small variation in 
axial assignment. (right) The axial localization histogram shows that the adaptive optics system is able 
to localize more single emitters over a larger axial range compared to the cylindrical lens. 

RPE1 Cell | ß-Tubulin::Alexa647 | Primary and Secondary Antibody | Imaged at Coverslip, z=0µm 

 
Figure 3.18: 3D Quantum Dot Tracking of a Membrane Protein in Fibroblast cells. Individual 
Tracks and 3D Projection of quantum dots specifically tagged to freely diffusing overexpressed GPI 
proteins in the cell membrane. Bottom: The astigmatism of the individual QD changes over time as it 
displaces vertically, along the optical axis. 

Fibroblast Cell | GPI-GFP | -GFP:QD655 | Imaged at Coverslip, z=0µm | 37°C 
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aberrations. The high-NA objectives used in single molecule imaging are only well corrected for 

imaging near the coverslip surface and require aberration correction for proper 3D imaging away 

from the coverslip surface.  

Correcting for the system aberrations, as well as the depth-induced aberrations from imaging 

away from the coverslip, requires precise knowledge of the aberrations at the desired focal plane. 

Measuring these aberrations using indirect wavefront sensing methods requires a bright and 

stable fiducial marker, which are difficult to accurately place in complex 3D biological samples 

such as brain tissue. In situations where a fiducial marker is not present, an alternative technique 

outlined here characterizes the depth-dependent spherical aberrations in a model system with 

a similar refractive index as the biological sample, which is then used as a calibration curve to 

estimate spherical aberration as a function of imaging depth in the real sample, allowing 3D 

astigmatic SMLM at the desired focal depth. 

This workflow for 3D imaging away from the coverslip surface in complex biological media is 

outlined in further detail here. 

 

Correcting spherical aberrations requires precise knowledge of the linear relationship between 

spherical aberration and imaging depth, which is primarily dependent on the difference of 

refractive index between the immersion medium and imaging medium; for biological samples, 

the refractive index of the imaging medium is generally close to nwater=1.33. By embedding 

tetraspeck beads in 2% agarose gel, the beads are distributed in 3-dimensions. Individual beads 

were chosen in the field of view, their distance from the coverslip surface was measured using 

the perfect focus system (PFS) of the Nikon microscope, and the PSF optimization routine 

outlined in 3.2.2.1 was performed only for spherical aberration. Comparing the mirror shape for 

beads embedded in the gel with a reference bead on the coverslip surface allowed extracting the 

relative phase aberrations between the two imaging planes in the Zernike bases. This is possible 

by using the interaction matrix generated when the adaptive optics system was aligned, which 

converts mirror deformation in the pupil plane into PSF deformation in the image plane. Coma, 

astigmatism, and spherical aberration were recorded for each of ~20 beads in the sample. A linear 

interpolation of the RMS value of spherical aberration vs. measured bead position revealed a 

slope of ~5nm RMS spherical aberration per micrometer imaging depth (Figure 3.19a).  

 

After mounting the coverslip to be imaged on the microscope, aberrations must first be corrected 

using the PSF optimization routines outlined in 3.2.2.1 on fiducial markers placed on the 

coverslip surface. 

 

Once the structure of interest has been identified, the imaging distance relative to the coverslip 

surface was measured using the PFS. Using the calibration curve from step 3.3.2.1, the required 

amount of spherical aberration is calculated and applied to the wavefront with the MicAO 

software. This process is outlined in Figure 3.19, where the sample is mounted between two 

coverslips in 30µm of imaging medium and placed upside-down on the microscope to 

intentionally image at z=30µm. 
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Once the system and spherical aberrations have been corrected, the final step is to apply 60nm 

RMS astigmatism and begin 3D SMLM imaging. Figure 3.20 demonstrates the detrimental effect 

of spherical aberrations on the astigmatic PSF of a tetraspeck bead using the cylindrical lens, 

whereas correcting these aberrations using MicAO regains the focal separation needed for 3D 

SMLM. 

 

While SMLM has been used extensively in molecular neuroscience, its application has been 

mostly limited to cells cultured near the coverslip surface. The physiological relevance of 

studying the molecular distributions and interactions of proteins in such artificial environments 

has frequently been questioned, but the resolution required to investigate such interactions is 

lacking in other microscopy modalities. Dani et al142 were the first to report STORM in brain 

tissue, and recently Tang et al143 also employed multicolor 3D astigmatic PALM-dSTORM 

imaging to uncover nanoscale columns aligning presynaptic neurotransmitter release with 

postsynaptic neurotransmitter receptor localization in these complex environments. However, 

these works are limited very close to the slice surface due to lack of aberration correction. 

We applied the previously described AO-3D SMLM to image postsynaptic neurotransmitter 

receptors in organotypic brain slices from the rat hippocampus. The first attempts proved to be 

limited not optically, but rather by the labeling of the desired protein in the brain slice. Effective 

SMLM requires proper labeling techniques that can efficiently label the protein of interest with 

 
Figure 3.19: Calibration of Spherical Aberration Depth Dependence. (a) Calibration curve of 
spherical aberration as a function of imaging depth. (b) Applying 150nm of spherical aberration improves 
PSF and image quality @ z=30µm. 

(a) Tetraspeck Beads in 2% Agarose Gel | exc=640nm. (b) COS-7 | ß-Tubulin::Alexa647 | Imaging depth z=30µm 

 
Figure 3.20: Spherical Aberration Correction enables astigmatic 3D imaging at 8µm depth in Brain 
Tissue.  (a) Application of ~40nm RMS spherical aberration improves widefield intensity and 
image quality. (b) Astigmatic focal separation is regained by correcting spherical aberrations with AO. 

GluA1-GFP | Alexa647 Nanobody | Organotypic rat hippocampal brain slice | Oblique Illumination @ =640nm | 
8µm imaging depth 
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a fluorescent tag, and while conventional antibodies can be used for cell culture labeling, small 

probes must be used for maximum labeling coverage in brain slices. However, bulk labeling of 

all of the neuronal cells in a brain slice results in an extremely strong background signal that 

prevent localizing individual blinking molecules in these dense environments. We therefore 

chose to perform single-cell electroporation of individual neuronal cells to express the desired 

membrane protein, which was then surface stained using a small fluorescent probe. 

As a proof of concept collaboration with Daniel Choquet’s group and specifically Eric Hosy and 

Julia Goncalvez, a single neuron electroporated with soluble GFP and GluA1-SEP and 

subsequently live labeled with an anti-GFP nanobody coupled to Alexa647 (degree of labeling 

~2.3) before PFA fixation and imaging. Anti-GFP nanobodies are an excellent choice for brain 

slice labeling due to their small size, specific labeling, and easy conjugation to organic 

fluorophores commonly used in dSTORM imaging. Figure 3.21 shows this specific labeling of the 

Alexa647 nanobody to the individual neuron expressing GluA1-SEP. 

Once efficiently labeled with the Alexa647 nanobodies, the AO-3D SMLM workflow was 

performed, as outlined in Figure 3.22. System aberrations were corrected at the surface of the 

brain slice by optimizing the PSF for 100nm tetraspeck beads adhered to the slice surface, which 

unfortunately do not penetrate into the tissue. A z-stack was performed in the GFP channel to 

select the desired focal plane; here, criteria were primarily good labeling density and number of 

dendritic spines in a single FOV. The best focal plane was chosen at z=10µm, and 50nm RMS 

spherical aberration was applied to the wavefront, providing a slightly improvement to the 

contrast of the widefield Alexa647 image. 60nm RMS astigmatism was added in addition to the 

system and spherical aberration corrections previously applied, and 3D dSTORM imaging was 

acquired. 20,000 image frames were acquired. Efficient single molecule blinking was ensured by 

optimizing the oblique illumination, slightly varying the lateral position of the excitation beam 

in the back aperture of the 100x NA1.49 TIRF microscope objective to maximize the power 

density at the focal plane. Once the image was acquired and data analyzed, a nearest neighbor 

 
Figure 3.21: Anti-GFP Nanobody Labeling in Organotypic Brain Slices. Z-stacks in the GFP channel 
(top) and Alexa647 channel (bottom) show the highly specific nanobody labeling to the single 
electroporated neuron in the brain slice. 

Hippocampal Organotypic Brain Slice | Single-cell Electroporation GluA1-SEP | Nanobody Anti-GFP:Alexa647 | 
Oblique Illumination 
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in adjacent image frame analysis for experimental localization precision was performed,35 giving 

an experimental lateral localization precision of x,y~19nm (resolution of ~44nm) at an imaging 

depth of 10µm. 

The use of the anti-GFP nanobody imposes certain constraints on the molecular biology of the 

imaged structures, specifically in that the protein must be overexpressed and genetically fused 

to a GFP tag which may not be possible for all proteins. It was therefore crucial to seek alternative 

labeling strategies to expand the applications of the AO-3D SMLM workflow in brain slices. 

Ingrid Chamma in Olivier Thoumine’s group had recently developed a monomeric variant of 

streptavidin (mStrav) for use in single molecule imaging applications. Briefly, a single neuron 

was electroporated with Neuroligin1-AP (Nlg1-AP) and an enzyme that biotinilates this AP tag 

when it reaches the cell membrane. mStrav:Alexa647 was then used to selectively and efficiently 

link Alexa647 fluorophores to Nlg1. More details on surface protein labeling using using 

monomeric streptavidin can be found in the protocol article by Chamma et al104.Compared to 

nanobody labeling, mStrav labeling offers a shorter linker length, higher labeling density, and is 

compatible with any membrane protein which can be fused to the small AP tag. After correcting 

system aberrations using beads on the slice surface, the focal plane of interest was chosen 

directly in the Alexa647 channel as the high labeling density provided a very strong SNR for Nlg1-

mStrav:Alexa647. Spherical aberration correction was applied as a function of imaging depth, 

here only a few micrometers, and 60nm RMS astigmatism applied for 3D dSTORM imaging. 

 
Figure 3.22: AO-3D SMLM Workflow. (a) Z-stack of the solulble GFP fluorescence was obtained to select 
focal plane for imaging. (b) The focal plane at 10µm was selected, and 50nm RMS spherical aberration 
applied, improving the widefield image contrast. (c) 60nm RMS astigmatism was applied and 3D dSTORM 
images were acquired for 20,000 frames @ 50ms/frame. (d) Lateral localization precision of ~19nm was 
calculated using the nearest neighbor in adjacent frame method from Endesfelder et al.35 

Organotypic Rat Hippocampal Brain Slice| Single-cell Electroporation GluA1-SEP | Nanobody Anti-GFP:Alexa647 
Oblique Illumination 
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dSTORM images were acquired using an oblique illumination with exit angle manually adjusted 

for maximum Alexa647 blinking in the focal plane at the desired depth.   

A selection of 3D reconstructions of these acquisitions can be found in Figure 3.23, and this 

collaborative work was published in Nature Communications in 201657, the full text of which can 

be found in the Publications at the end of this manuscript. 

 
While efficient adaptive optics enables 3D single molecule localization in brain tissue and other 

complex biological media by correction wavefront aberrations in the detection path, the 

approach as outlined above is fundamentally limited by the ability to efficiently excite the 

densely labeled fluorescent probes in the sample. The inverted microscope geometry that lends 

itself very well to conventional 3D SMLM at the coverslip surface necessarily couples the 

excitation and detection paths through the same high-NA objective, imposing aberrations on 

the excitation wavefront that are left uncorrected by the adaptive optics system in the detection 

path. In point-scanning techniques like 2-photon and STED microscope, correcting these 

excitation aberrations is essential since resolution in these modalities depends on the tight focus 

of the excitation beam; in widefield imaging geometries found in conventional SMLM, these 

aberrations induced on the excitation wavefront similarly prevent optimal propagation and limit 

the power density delivered to the sample. Commonly employed techniques like dSTORM 

requiring several kW/cm2 for efficient fluorophore blinking, most SMLM is thus limited to the 

first ~10µm micrometers of complex biological tissue. 

While decoupling the excitation and detection paths, as is common in light sheet imaging, might 

seem thus advantageous for deep 3D SMLM, the high-NA detection objectives impose strict 

mechanical constraints that prevent two commercial objectives from being mounted in a 

perpendicular geometry. Eric Betzig’s group has designed a pair of excitation and detection 

 
Figure 3.23: Postsynaptic Adhesion Protein 3D dSTORM Imaging in Hippocampal Organotypic 
Brain Slices. Widefield single-cell electroporated Nlg1:Alexa647 image demonstrating labeling 
specificity and efficiency of the mStrav tag57. AO-3D dSTORM reconstructed images with 60nm RMS 
astigmatism over 1µm thickness at several micrometers depth.  

Rat hippocampal organotypic brain slices | Nlg1:Alexa647 | mStrav labeling | Oblique Illumination 
System aberration correction + depth-dependent spherical aberration correction + 60nm RMS astigmatism 
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objectives specifically for 3D SMLM81, but their custom optical design is expensive and specific 

sample mounting procedure limit the applicability of the technique.  

The single objective light sheet system soSPIM82 detailed in section 1.4.2 has the unique 

advantage of combining light-sheet optical sectioning with high-NA detection on existing 

inverted microscopes used for conventional SMLM. While Galland et al demonstrated 2D 

dSTORM imaging using the technique, spherical aberrations induce a depth-dependence to the 

astigmatism that prevented the use of a fixed astigmatic element like a cylindrical lens for 

encoding axial position into the PSF. 3D acquisitions were acquired by scanning the z-stage every 

500nm, acquiring a 2D dSTORM image at each focal plane, and thus while lateral 

superresolution was achieved, the axial resolution remained diffraction limited. 

To address this, we implemented a MicAO adaptive optics system onto a Nikon Ti inverted 

microscope with Remi Galland’s soSPIM excitation system. The same AO-3D SMLM workflow 

outlined in 3.3.2 was applied, first compensating for system aberrations by optimizing the 

wavefront for a nanodiamond at the coverslip surface and then performing a second system and 

depth-dependent aberration correction via 3N optimization of a fluorescent nanodiamond 

embedded in the polymer surrounding the imaging ROI at z=15µm. For this configuration, 40nm 

RMS astigmatism was found to be optimal for 3D astigmatic imaging. Figure 3.24 shows a single 

frame from DNA-PAINT imaging of the nuclear membrane in S180 cells at a depth of z=14.3µm 

from the coverslip surface, visibly demonstrating the appropriate astigmatism for 3D DNA-

PAINT imaging, as well as a reconstruction from a single imaging plane at this focal depth of 

 
Figure 3.24: Nuclear Membrane Astigmatic 3D DNA-PAINT with soSPIM. (top left) A single imaging 
frame demonstrating 40nm astigmatism at z=14.3µm. Scanning the objective and taking an SMLM image 
every 500nm allows 5µm thick reconstructions. (top, right) Axially coded reconstruction of 3D projection 
over 5µm. (bottom, left) 2D Projection of same data. (bottom, right) Orthogonal projections showing the 
3D morphology of the nuclear membrane that necessitates SR imaging over several microns. 

S180 Cells | LaminB1 DNA-PAINT | soSPIM excitation @ =561nm| Imaging depth z = [12µm, 17µm] 
System + depth-dependent spherical aberration correction + 40nm RMS astigmatism 
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1µm thickness. To extend the effective depth of field, 3D DNA-PAINT images were acquired every 

500nm between 12µm and 17µm, resulting in a total SMLM reconstruction with a thickness of 5 

micrometers up to 17 micrometers imaging depth.  

The primary factor limiting the AO-3D soSPIM SMLM acquisitions is image registration; the 

Nikon PFS system stabilizes the system axially, while localizations from each z-plane are laterally 

drift compensated post-acquisition using beads embedded in the polymer surrounding the 

imaging ROI. However, the individual beads are only localized in a single imaging plane, 

preventing 3D stack alignment using the beads.  

3.4 

The developments in adaptive optics for single molecule localization microscopy detailed in this 

chapter provide a workflow, as well as proof of concept applications, for 3D single molecule 

imaging in heterogeneous, physiologically relevant biological environments. Despite optimizing 

hardware design and software plugins, the pipeline remains complicated for the average user, 

requiring a number of calibration steps and manual aberration correction.  

 
Like spherical aberration, the majority of biological sample-induced  aberrations in are depth-

dependent144, requiring a dynamic phase modulating device for effective wavefront correction. 

One of the largest challenges in single molecule adaptive optics is accurately detecting these 

sample aberrations via indirect wavefront sensing methods, which can have significant 

consequences on spatial measurements145 and single molecule localization.  

While bright fluorescent beads are commonly used as a reference to measure sample-induced 

aberrations137, new work by several groups optimize wavefront correction using the blinking of 

individual single molecules as proxies for PSFs. 128 used a phase retrieval algorithm to numerically 

compensate for the depth-dependent PSF, extending astigmatic 3D imaging up to 2.5µm deep 

without the need for wavefront compensation. Burke et al were the first to demonstrate sample 

aberration correction for astigmatic 3D dSTORM imaging146 by initially correcting for system 

aberrations at the coverslip surface and optimizing the correction using a phase retrieval 

algorithm for sample aberration detection directly on the dSTORM blinking events. Using this 

technique, they were able to image microtubules through ~6µm of cell (Figure 3.25). Similarly, 

using a robust genetic algorithm to detect sample aberrations, Tehrani et al147 saw a 4x 

improvement in localization precision ~50µm in tissue by using genetic algorithm to detect and 

correct sample aberrations directly on SMLM. Even more recently, Huang et al demonstrated 

4Pi AO SMLM using two objectives, with deformable mirrors in each arm of the 4Pi-

interferometric cavity to correct for system and sample aberrations148, enabling astigmatic 

superresolution up to 10µm deep with 10- to 20-nm localization precision.  
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Further integration between AO hardware and acquisition software will facilitate the user 

experience, with the ultimate goal of obviating the need for manual aberration calibrations. A 

phase diversity algorithm in the MicAO software will soon allow parameter-free wavefront 

correction that requires fewer images for wavefront optimization. Used in combination with 

real-time single molecule localization tools like WaveTracer, the effect of the adaptive optics 

correction on the PSF will be able to be analyzed and modified directly on the acquisition system, 

opening up many opportunities for real-time wavefront modification. 

At the same time, commercial development in response to customer needs will increase ease of 

use and broaden adoption. Deformable mirrors are extremely sensitive to ambient temperature, 

and small temperate variations can induce a strong and undesired astigmatism on the system. 

To address this, new MicAO systems are beginning to be shipped with automatic mirror 

temperature correction. Additionally, it may be desirable to perform certain kinds of imaging 

without wavefront correction; for this, a DM bypass mode has been integrated, allowing direct 

imaging onto the camera sensor. 

 
With its first applications appearing only a decade ago, single molecule localization microscopy 

is still in its infancy. The first applications have been limited to optically and physiologically 

simple environments, imaging cells cultured directly on the coverslip surface. Expanding the 

biological applicability of the technique requires being able to accurately spatially localize a few 

hundreds of photons traversing through tens of micrometers of aberration-inducing tissue, and 

wavefront correction can compensate for these optical path deviations if they can be well 

characterized. Thus, it is not difficult to envision a future where adaptive optics become essential 

for single molecule imaging, and this work hopes to be the first steps towards an integrated 

adaptive optics hardware and software SMLM workflow. 

 
Figure 3.25: Sample Aberration Correction for improving SMLM. (a) Image reconstructions of 
microtubules at the top of the protein-dense cell display few localizations and many image artifacts due 
to the optical aberrations of the nonhomogeneous cellular structure. (b) Correcting these sample 
aberrations allows for correct dSTORM imaging through the cell. 

From Burke et al 146 
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ingle particle tracking techniques such as sptPALM, uPAINT and QD tracking have given 

unprecedented insight into molecular dynamics in living cells. These modalities, detailed in 

section 1.3.2, allow monitoring the behavior of plasma membranes proteins at millisecond 

temporal resolution and nanometer-scale spatial resolution via centroid localization and 

subsequent temporal reconnection. While these SPT methods have been extensively used to 

study the temporal dynamics and co-organization of multiple proteins, conventional setups are 

usually limited to two simultaneous wavelengths. Increasing the number of simultaneously 

imaged wavelengths requires specific filtering optics for each fluorescent species being imaged 

and frequently compromises resolution and field of view for spectral and temporal resolution, 

limiting the minimum and maximum diffusion coefficients that can be measured and 

differentiability of different molecular diffusion behaviors. 

In this chapter I detail the development of a single particle tracking technique that includes 

spectral detection without compromising the spatiotemporal resolution or imaging field of view. 

I demonstrate how we achieved 5-dimensional single particle tracking (x,y,z,t,) of several 

membrane proteins using “commercially available” microscopes by exploiting photons unused 

in conventional SMLM imaging. Unfortunately, the project took more time than expected due 

to technical difficulties in setting up this geometry, requiring the scope to be disassembled and 

reassembled several times for Perfect Focus system modifications, addition of adaptive optics 

supports, caging for thermal isolation, and culminating in a final move to a new heavy load 

optical table capable of supporting the additional weight of all these components. Since this kind 

of dual-microscope geometry is unique, each of these modifications required case studies to 

ultimately achieve the mechanical stability necessary for routine use. Thanks to these 

microscope overhauls, the dual-microscope system outlined here is now functional, with trained 

neurobiologist collaborators able to independently perform multicolor SPT experiments. 

4.1 

In conventional microscopy systems, the overall dimensionality of the acquisition is often 

reduced to improve the resolution in a certain dimension. Typically, SMLM acquisitions gain an 

S 
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order of magnitude increase in spatial resolution, both laterally and axially, at the expense of 

temporal resolution. Similarly, field of view is often compromised with temporal resolution, as 

the readout time of imaging sensors increases with increasing field of view. Furthermore, the 

spectral bandwidth of the imaging system is entirely compressed, and spectral discrimination is 

optically performed using specific filter sets for the desired fluorescent probe.   

The limited number of photons emitted from a single fluorescent molecule requires a choice to 

be made in how to efficiently use the photons to gain information in the desired dimension 

(Figure 4.1). To avoid compromising spatiotemporal resolution and field of view, increasing the 

number of usable photons collected by the imaging system is desirable.  

 
Conventional single molecule imaging approaches collect fluorophore emission in an 

epifluorescence geometry. Increasing the numerical aperture of the collection objective allows 

acquiring more photons, but a practical limit is reached at NA~1.5, after which nonconventional 

materials must be used for the objective and coverslip. The effective NA even decreases to about 

1.3 when imaging living samples away from the coverslip due to the refractive index of the living 

material. However, a large portion of the fluorescence is emitted away from the coverslip, and is 

not collected by the microscope’s objective.  

Another way to effectively increase the numerical aperture of the imaging system is to place a 

second, high NA microscope objective in the transmission geometry. Ram et al. first 

implemented a bi-plane (section 3.1.2) dual-objective collection for single molecule imaging to 

improve axial localization, with each objective imaging a slightly offset focal plane149. Later, Xu 

et al were the demonstrated a dual-objective collection for SMLM imaging of the actin 

cytoskeleton network by STORM150, combining the spatial information from each camera to 

increase lateral and astigmatic axial localization precision (Figure 4.2). Their application to 3D 

imaging of the actin cytoskeleton remains certainly one of the most impressing SMLM images 

to date, demonstrating the quantitative benefits of dual-objective collection for increasing the 

number of photons per localization. 

 
Figure 4.1: The Resolution Compromise. Photons in SMLM are allocated to one of several dimensions 
of resolution, typically favoring spatial resolution at the expense of imaging time, limited depth, and 
spectral discrimination. 
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We chose an implementation based on two commercially available inverted microscope bodies 

to maximize mechanical stability and ease of use for imaging live biological samples. Two Nikon 

Ti inverted microscope bodies were used, one (bottom) in a conventional geometry for SMLM 

imaging and the second (top) mechanically inverted, acting as an extra photon collector, and 

mounted such that the two high-NA objectives can physically touch when at their maximum 

extent. Both the upper and lower optical paths terminate in separate Photometrics EVOLVE 

EMCCDs. The laser illumination electronically triggers the bottom and top cameras, ensuring 

simultaneous exposure between the two sensors. Unsynchronized dual camera acquisitions are 

automatically annotated in image metadata and compensated post-acquisition.  

A few key criteria motivated the creation of this microscope, summarized below together with 

several technical details on the implementation (Figure 4.3) 

• Live-cell compatibility. The coverslip is placed horizontally, sandwiched between two 

conventional inverted microscopes, both compatible with the observation of living sample 

holders.  The entire microscope system is caged in plexiglass and heated to 37°C for live cell 

experiments. A specially fabricated sample chamber was designed to allow for 30µm thickness 

between the top of a 170µm thick, 18mm-diameter coverslip on which cells were cultured to the 

bottom of a second 170µm thick 22mm-diameter coverslip. The larger upper coverslip allows the 

majority of the bottom coverslip area to be imaged without mechanically limitation, and liquid 

reservoirs allow for >100µL of imaging medium to be used while limiting the distance between 

coverslips to ~30µm. 

• Dual Perfect Focus System Compatibility. Axial stability is extremely important for 

maintaining the desired focal planes for each imaging path, especially for SMLM. The Nikon Ti 

microscope bodies used here support the Nikon Perfect Focus System (PFS) (detailed in section 

0) for realtime axial drift compensation based on LED reflection at the coverslip surface. To 

 
Figure 4.2: Dual-Objective Collection for SMLM. The first implementation of a dual-collection 
objective configuration for SMLM merged lateral and axial localization information from both imaging 
paths to increase the (x,y,z) localization precision for actin cytoskeleton imaging. 

Adapted from Xu et al150 
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ensure that two PFS systems can be used simultaneously without interfering, special filters were 

ordered and installed in the microscope bodies (Figure4.4b) 

• Objective Flexibility. Previous dual-objective systems use matching objectives to minimize 

field of view errors between the two detection paths. Our system accepts matched objectives, 

but also supports mismatched objectives, notably allowing a 60x water immersion objective to 

be used on the upper optical path with a 100x oil immersion objective on the lower path. The 

advantages of such a configuration are an increased depth of field with the lower NA water 

immersion objective and the reduction of spherical aberrations induced from imaging through 

30µm of imaging medium. The differences in field of view are compensated numerically directly 

on the localizations (more information in Section 4.2.1). 

• Fluorophore Selection, High Density Acquisitions and Camera Sensitivity. Being able to 

take full advantage of the sensitivity of the dual EMCCD configuration allows this microscope to 

track bright quantum dots as well as dimmer organic fluorophores and fluorescent proteins 

across the entire field of view of the EMCCDs, nearly 80µm x 80µm @ 30Hz, using conventional 

filter sets and dichroic mirrors. 

• Ease of use and reproducibility. A primary goal for this microscope is to render it as user 

friendly as possible for biologists. By basing the construction on commercial microscope bodies, 

the system gains mechanical stability, reducing the necessary alignment and rendering the 

system slightly more accessible to users than conventional two-objective systems. Each 

microscope body contains multiple input and output ports, making the system flexible and easy 

to upgrade using commercially available optical components. 

 
Figure 4.3: Dual-Microscope SMLM with 2 commercial inverted Nikon Ti Microscopes. Two 
inverted microscopes were mounted such that they could share a common focal plane. By using 
commercial microscopes provides mechanical stability, use of use to image live biological samples, as well 
as versatility in objective choice and the use of accessories such as MicAO and cylindrical lenses. The 
geometrical constraints imposed by using two high-NA microscope objectives required the design and 
fabrication of a unique sample chamber that is compatible with the complex geometry yet retains 
compatibility with Ludin chamber support mounts, 18mm diameter glass coverslips and live-cell imaging. 
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Stringent constraints of live-cell imaging require the top objective to image through ~30µm of 

imaging medium, inducing strong spherical aberrations on the upper wavefront when imaging 

with an oil immersion objective, as shown in Figure 4.4. The PSF peak intensity is reduced to 

~50% on the upper detection path, with a ~2x reduction in localization precision. While a water 

immersion objective can be used to minimize these spherical aberrations, we sought to use the 

extra photons provided by the second objective to seek imaging improvements beyond spatial 

resolution.  

Figure 4.4: Dual-Objective Single Molecule Localization in a Live-Cell Compatible Geometry. (a) 
Strong spherical aberrations deteriorate the PSF intensity and localization precision when imaging 
through the several tens of microns of imaging medium necessary for live cell imaging. (b) Perfect Focus 
System spectra and custom-designed filters required for dual-PFS compatibility. 

 

Indeed, not all applications require more precise localization, instead preferring to use the extra 

acquired photons to improve the dimensionality of the acquisition in the form of, for example, 

expanding the spectral bandwidth of the system. In 2015, Zhang et al expanded upon the dual-

collection objective model implemented by Xu et al150 to perform spectrometry at the single 

molecule level151. By inserting a prism in the second objective’s detection path, this optical path 

is transformed into a single-molecule spectrometer capable of imaging the spectrum of each 

individual single emitter event. Due to the strong deviation angle of the prism, simultaneously 

excited fluorescent species were able to be separated with as little as 10nm spectral difference, 

while retaining the high localization precision from the lower objective.  

However, their implementation is incompatible with live cell imaging due to the tight 

mechanical constraints that their dual-collection objective configuration imposes on the sample. 

While single objective solutions for spectral imaging have been demonstrated, techniques based 

on conventional spectrometry approaches152 require very bright probes, whereas another 

technique employing a bragg tunable filter for wavelength discrimination sacrifices temporal 

resolution by requiring 3-4 seconds to acquire a single frame153. Recently, Schechtman et al 

proposed a PSF-engineering based solution that unambiguously encodes spectral information as 
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well axial position into the point spread function using a tetrapod PSF for 3D QD tracking over 

20µm depth, and a minimally-aberrating multicolor PSF that encodes emitter wavelength 

directly into the PSF for simultaneous PALM/dSTORM imaging154. This PSF engineering 

technique provides excellent localization precision and a relatively simple optical configuration, 

but the complicated tetrapod PSF distribution requires many signal photons, and the lower-

signal multicolor PSF for SMLM imaging does not simultaneously encode axial position.  

Thus, there exists the need for a spectrally-discriminant single molecule localization and 

tracking microscope that supports live-cell imaging, without compromising spatiotemporal 

resolution or the large field of view of conventional SMLM techniques.  

4.2 

To address the need for such a spectrally discriminant high resolution microscope, we developed 

a robust yet flexible dual-microscope SMLM system capable of live-cell spectral single molecule 

imaging. The approach takes advantage of the transmitted fluorescence to obtain a spectral 

mean of each individual emitter, while simultaneously retaining the high spatiotemporal 

resolution of a traditional SMLM system with no compromises.  

 

The system is an elaboration of a conventional semi-commercial dSTORM microscope based 

around a Nikon Ti inverted microscope body. Figure 4.5a demonstrates a schematic 

representation of the dual detection paths. This lower microscope is responsible for the 

spatiotemporal coordinates of the single emitters, using either a cylindrical lens (section 3.1.3) 

or adaptive optics system (section 3.2.2.2) for 3D localization. A second Nikon Ti inverted 

microscope body is mounted onto a small optical breadboard, the combination of which is 

inverted and supported by 4 support legs at the corners of the breadboard, such that the 

objectives of this upper objective can image the same focal plane as those of the lower 

microscope. A dispersive element placed in the upper detection path converts emitter 

wavelength into a spatial displacement, laterally shifting the localization of the single emitter 

linearly with respect to its spectral mean. This spectral displacement can be measured by 

referencing the lower (x,y) localization, thereby adding spectral () information to the spatial 

localization. Tracking fluorescent probes over time using this dual-microscope approach enables 

5-dimensional single molecule localization and tracking (x,y,z,t,).  

Obtaining spectral information from the upper detection path requires the combination of 

several specific optical and software elements, described in detail here: 
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1. Dispersive Element for Spectral Detection. A weakly-dispersing (8°) wedge prism 

placed in the Fourier plane of a 1.5x zoom 4f-image relay in the upper detection path, 

inducing a linear displacement proportional to the emission wavelength. Unlike in 

spectrometry or previous work151 that spread the spectrum across several tens of pixels, 

we use a small angle of deviation prism in conjunction with fluorescent probes like 

quantum dots to shift the lateral position of the PSF without significantly enlarging it, in 

order to tradeoff localization precision and spectral displacement (give the ratio 

nm/dnm). Figure 4.5b shows this displacement effect for 2 spectrally neighboring 

quantum dots, QD705 and QD655. 

2. 2-Dimensional Gaussian Fitting. Unlike previously described spectral detection 

methods, our approach does not require special PSF fitting algorithms154 and is designed 

to work with the standard 2D Gaussian fitting localization. Since the prism only weakly 

spreads the emission spectrum, the spectral image is spatially confined to several pixels, 

the Gaussian approximation for localization is still valid on the spectral detection path 

and in particular in the direction of spectral displacement. (Figure 4.5c).  

3. Field of View Transformation. To compensate for differences in magnification, 

rotation, or other field of view distortions between the lower and upper cameras, the 

field of view transformation is calibrated. The two fields of view are spatially sampled by 

raster scanning a fiducial marker in a 7x7 grid. The corresponding 49 centroids positions 

are first localized in each channel and paired by nearest neighbor search. A 2-

 
Figure 4.5: Dual-Objective Spectrally Displaced Localization Concept. (a) A second detection path 
collects fluorescence emission in the transmission geometry. (b) The weakly dispersing prism linearly shifts 
the PSF with the emission spectrum of the single fluorescent molecule. (c) A 2D Gaussian fit localizes the 
emitter’s position separately on both detection paths. The prism does not significantly vertically stretch the 
PSF to prevent the validity of a Gaussian fit. (d) Localizations from the lower camera are transformed into 
the upper camera’s field of view, with sub-pixel post-transformation pair-distance errors (e). (f) The 
transformed lower localizations are then paired with a single localization from the upper camera. (g) 

Multiple fluorescent species can be separated using a histogram of pair distances, d = y = yupper-y'lower. The 
ratio between the spectral displacement and wavelength can be calibrated using known fluorescent species, 

here tetraspeck beads excited at =488nm (blue), =561nm (orange), and =640nm (red).  
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dimensional 3rd order polynomial transformation is computed from the paired 

coordinates by least-squares Levenberg-Marquardt minimization algorithm:  

𝑥′ = 𝑎𝑥,1𝑥3 + 𝑎𝑥.2𝑦3 + 𝑎𝑥,3𝑥2𝑦 + 𝑎𝑥,4𝑥𝑦2 + 𝑎𝑥,5𝑥2 + 𝑎𝑥,5𝑦2 + 𝑎𝑥,6𝑥𝑦 + 𝑎𝑥,7𝑥 + 𝑎𝑥,8𝑦 + 𝑎𝑥,9  (4. 1) 

𝑦′ = 𝑎𝑦,1𝑥3 + 𝑎𝑦.2𝑦3 + 𝑎𝑦,3𝑥2𝑦 + 𝑎𝑦,4𝑥𝑦2 + 𝑎𝑦,5𝑥2 + 𝑎𝑦,5𝑦2 + 𝑎𝑦,6𝑥𝑦 + 𝑎𝑦,7𝑥 + 𝑎𝑦,8𝑦 + 𝑎𝑦,9  (4. 2) 

where x’ and y’ are the transformed coordinates of x and y, respectively with coefficients 

ax,n and  ay,n. This 3rd order polynomial transformation requiring 10 coefficients per 

spatial dimension is used to render the system as versatile as possible and correct for any 

non-linear field of view deformations imparted by the spectral optics or the cylindrical 

lens. Once calibration, this transformation is applied to the lower localizations to match 

the field of view of the upper camera (Figure 4.5d), resulting in a field-dependent error 

after transformation typically ranging from 0 to ~60nm, with median values around 

=25nm (Figure 4.5e). Due to the prism in the spectral detection path, this field of view 

transformation is wavelength dependent, and this alignment process creates a 

transformation centered at the spectral mean wavelength of the emission of the fiducial 

marker.  

4. Dual-FOV Localization Pairing. Once the lower coordinates are transformed to match 

the upper field of view, a linear search around the transformed lower localization is 

performed to find its paired upper localization (Figure 4.5f). The displacement angle of 

the prism, fixed at ~0°, induces a vertical displacement of the localization as a function 

of wavelength, allowing minimize the pair search zone to reduced a linear zone. 

Minimizing the size of this pair search zone is critical as it limits the maximum density 

of simultaneously fluorescing single molecules in a single image frame, minimizing 

missed pairing. The width and height of the search zone are both user-definable based 

on a priori knowledge of the fluorescent species being imaged. Once the localizations are 

matched, their pair distance, d, is calculated as 𝑑 = 𝑦𝑢𝑝𝑝𝑒𝑟−𝑦′𝑙𝑜𝑤𝑒𝑟 and retained as a 

proxy for the spectral mean of the emitter. 

5. Quantitative Spectral Displacement and Spectral Separation.  Figure 4.5g shows a 

histogram of these pair distances, clearly demonstrating distinction between spectral 

species between three of the fluorescent dyes on a tetraspeck bead, obtained by exciting 

at exc=488nm (blue), exc =561nm (orange), and exc =640nm (red). The system was 

aligned for the red fluorophore and shows a ~20 pixel = 3.2µm vertical shift for the blue 

fluorophore. Calculating the spectral means for each of the three fluorescent dyes allows 

a quantitative calibration of the spectral shift to wavelength of ~12.3 nm / pixel. Fitting 

the individual wavelength distributions to Gaussian functions gives a spectral FWHM 

of between 6nm – 10nm, which is related to the true spectral resolution of the system. 

It is important to note that this spectral displacement localization pipeline does not alter the 

spatial localizations from the lower detection path and merely provides supplementary spectral 

information for each localization, if the localization pairing is successful, and when used for 3D 

single particle tracking applications, enables 5-dimensional SMLM (x,y,z,t,). 



4.2 5-D SPT WITH SPECTRALLY DISPLACED LOCALIZATION 

99 

 
To quantify the spatial and spectral capabilities of the system, a calibration coverslip of 

nanodiamonds was created. 100µLs of 1:100 stock nanodiamond solution (REF) was incubated on 

a #1.5H 18mm coverslip for 5 minutes, adhering a good density of nanodiamonds to the coverslip 

surface for imaging. To mount the coverslip for dual-objective imaging, the 18mm coverslip was 

placed inside the particularly designed sample support (Figure 4.3), onto which 8µL of ultra 

pure water was closed with a second #1.5 18mm coverslip. The volume of liquid and the carefully 

designed sample mount ensure that the coverslip-to-coverslip distance is ~30µm, within the 

range the perfect focus system’s range of ~60µm for the two objectives used.  

Experimentally, the desired focal plane was initially found using the bottom microscope and the 

bottom PFS was locked to retain the objective’s axial position. The second objective was then 

lowered until immersed its immersion medium (water), at which point care was taken to 

continue to lower the objective slowly to the focal plane of the lower objective to prevent the 

two objectives from touching or the coverslips from breaking. The PFS system locks the upper 

objective at the surface of the upper coverslip, and the PFS offset mechanism was used to find 

 
Figure 4.6: Spectrally Displaced Localization: Spatial and Spectral Super Resolution Point Spread 
Functions. Nanodiamonds covering the full field of view (80µm x 80µm) serve as both the reference for 
field of view transformation between the two optical paths as well as stable fiducial markers for spatial 
and spectral localization precision calculations. A single bead near the edge of the field of view was chosen 
for spatial and spectral localization precision quantifications. The spatial (x,y,z) localizations from 100 
consecutive imaging frames from the lower camera are plotted (magenta), demonstrating typical values 

of astigmatic localization precision. Note the values here are FWHM = 2.3. The spectral PSF (red), here 
the wavelength as a function of (x,y), is calculated as proportional to the pair distance via a linear 
calibration. It is homogenous over the field of view with a FWHM of 6nm. 

100x Oil Immersion NA1.49 on lower path + cylindrical lens for astigmatism (left)  
60x water immersion NA1.2 on upper path + 1.5x zoom incorporated in spectral detection system (right) 
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the bottom coverslip surface. The mechanical stability of the system allows the use of the 

objective retraction mechanisms of the Nikon Ti microscopes to quickly change coverslips 

without losing the focal plane.  

 

The dual-objective system was then used to image nanodiamonds at the surface of the bottom 

coverslip. 100 frames were acquired for the benchmarking experiments. The lower (x,y,z) 

localizations for a single bead over the 100 frames are plotted in Figure 4.6, as well as the 

distributions across the individual spatial dimensions. The FWHM of these distributions are 

typical of astigmatic 3D SMLM with a cylindrical lens. 

 

For the spectral characterizations, the field of view transformation between the upper and lower 

detection paths, detailed in the previous section, must first be calibrated. The nanodiamonds 

covering the entire field of view of the cameras were used to create this field of view calibration. 

The localizations from the bottom and top field of view were then paired, and the pair distance 

was converted into wavelength using the calibration outlined in the previous section. Figure 4.6 

shows the spectral point spread function of a single nanodiamond, demonstrating that this pair-

distance based method can quantitatively assign a wavelength to a single emitter with a FWHM 

of ΔλFWHM=6nm. Furthermore, when plotting the wavelength distribution for all of the 

nanodiamonds across the field of view (Figure 4.6), this value remains constant, demonstrating 

the accuracy of the field of view transformation. 

To better characterize the spectral discrimination capabilities of the system in more realistic 

signal intensity and blinking situations, 5 quantum dot species were adhered to the surface of 

an 18mm coverslip and excited with a single 488nm laser. 2,000 image frames of the both full 

cameras sensor at 512 x 512 pixels at 50ms/frame were acquired and analyzed with the spectral 

pairing process. The Figure 4.7a shows a single image frame from the acquisition, with the raw 

data from the upper spectral image and the color-coded assigned wavelengths on the lower 

image. Figure 4.7b shows representative super-resolution 10nm per pixel reconstructions of each 

of the individual quantum dot species imaged, again color coded for wavelength, demonstrating 

the homogeneity of the wavelength distributions for individual quantum dots. Localizations 

from the entire lower field of view are able to be matched to a spectral localization, as the 90x 

effective zoom (60x objective x 1.5x zoom) of the upper detection path images a slightly larger 

field of view than the lower objective.  

There are, however, spatial constraints on the ability to accurately pair a lower localization with 

a spectral localization from the upper camera. Specifically, the spectral shift on the upper path 

imposes a limit on the spatial density of emitting fluorescent molecules. This effect is shown in 

Figure 4.7c, where two quantum dots are separated by only ~1µm on the lower camera, resulting 

in multiple possible matches in their pair search zones on the upper channel. The analysis 

software has multiple user-selectable modes of operation for these ambiguous cases, but the 

most robust and straightforward option retains the spatial localization of such ambiguous events 

without assigning a wavelength (Figure 4.7d, left, black points), tagging them as “special” since 
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they may contain interesting information about potential colocalization events. If desired, these 

ambiguous localizations can be removed from the reconstruction (Figure 4.7d, center), at the 

risk of spectral misassignment. Filtering the ambiguous localizations results in clear spectral 

distinction of the QD605 and QD525 species, although several QD525 localizations are 

misassigned as ~700nm (Figure 4.7d, right).  

The size of this spectral ambiguity zone is primarily dependent on the spectral displacement 

vector created by the orientation and angle of the prism, determining the pair search zone in the 

upper localization space. As shown in Figure 4.7c, this ambiguity is primarily vertical due to the 

orientation of the prism, and the large spectral spread of ~300nm between QD800 and QD525 

requires an 8px x 40px (1.28µm x 6.4µm) pair search zone, representing the effective maximum 

of the spectral ambiguity zone. Since the pair search zone can be modified with a priori 

knowledge of the spectral variation of the fluorescent markers used in each experiment, this 

spectral ambiguity zone varies on a per-experiment basis. 

In SPT experiments, these ambiguous localizations can be eventually ignored or even used to 

obtain supplemental spatial information. A spectral smoothing option allows correcting for 

wavelength misassignment of individual localizations in a given trajectory, including the 

unassigned localizations. However, these ambiguous localizations can also be an indication of 

high molecular density and potential zones of protein interaction. These “special” localization 

    
Figure 4.7: Spectral Characterization with 5 Quantum Dot Species. (a) Raw spectral image (left) and 
assigned wavelength (right) of five quantum dot species adhered to a glass coverslip and imaged for 2,000 
imaging frames. (b) Individual wavelength-coded reconstructions @10nm/px of individal quantum dot 
species, demonstrating spectral homogeneity of wavelength assignment despite QD blinking. 
Representative raw spectral images are inset.  (c) In dense regions, individual emitters may have multiple 
matches in the spectral channel (white outlines), causing ambiguities in wavelength assignment. (d) 
Localizations with multiple spectral matches are tagged as ambiguous (black circles), and can be filtered 
from reconstructions if desired (center). However, this may result in false localization pairing (right). 

QD800, QD705, QD655, QD605, QD525 Steptavidin Conjugates 
Excitation 488nm | 2,000 frames @ 50ms/frame, 512x512px 
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events could, for example, be analyzed using multiple fitting algorithms and taking into account 

the spectral information in the minimization process.   

Lateral drift in either the lower or upper detection path affects the pair distance between 

matched localizations, changing the spectral resolution over the course of the acquisition. To 

avoid time-dependence in the spectral assignment, it is necessary to numerically compensate for 

the drift separately on each path post-acquisition.  Figure 4.8 shows the distinct lateral drift 

incurred on each detection path, and the compensation via separate drift trajectories. 

To ensure the spectral shift remains constant over time, tetraspeck beads were used here to 

monitor several fluorescent species simultaneous; by exciting the bead at 488nm, three 

fluorescent species were clearly distinguishable on the upper camera (Figure 4.8b). Next, two 

distinct time domains were investigated. 

(i) A short-duration time domain simulated the fast stream acquisition speed of SMLM 

experiments. Here, 200 frames at 100ms/frame were acquired, and localizations from the lower 

and upper paths were paired. Figure 4.8c shows the 2-dimensional pair distance, demonstrating 

the primarily vertical spectral displacement due to the prism and clear separation of the 

fluorescent species. The pair distance over time remains constant over ~20 seconds under 

constant laser illumination (Figure 4.8d). 

(ii) A long time-domain timelapse was performed, imaging every 15 seconds for 30 minutes, 

mimicking the fact that SMLM acquisitions range between hundreds to tens of thousands of 

frames. This duration is typical for dSTORM or SPT experiments. A stream acquisition was not 

performed over 30 minutes to avoid bleaching of the tetraspeck beads with constant laser 

illumination, thereby reducing the localization precision and spectral assignment precision. 

Figure 4.8e shows the several micrometer drift of the upper localizations over the course of the 

acquisition and the detrimental effect of this lateral drift on the localization pairing process 

(Figure 4.8f). Notably, the blue fluorescent dye is only localizable in the first few minutes, after 

which it extends out of the pair search range. However, once the drift trajectory is incorporated 

into the localizations, the pair distance remains constant over the 30 minute time duration 

(Figure 4.8g).  

The localization drift-correction routine updates the zero-order coefficients of the field of view 

transformation (equations 4.1 and 4.2) correcting micrometer-scale lateral displacements 

between the two objectives incurred after the field of view calibration procedure. This automatic 

correction of the FOV transformation ensures that the two channels are aligned (pair distance = 

0) at a fixed wavelength as long as the same fiducial markers and filter sets are used. 
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The use of lasers as excitation sources affords precise illumination and extremely narrow 

excitation bandwidth, allowing several fluorescent dyes to be imaged simultaneously by 

combining excitation powers. However, their use also requires specific emission filters to be 

placed in the detection paths that remove a small spectral range around the laser wavelength. 

For most experiments, a quad-band filter is used, which allows excitation from 405nm, 488nm 

561, and 640nm laser sources, and therefore a small spectral range of ~20-40nm around these 

center wavelengths are removed from the emission spectrum on the upper detection path. 

Figure 4.9a demonstrates this for a green fluorescent bead; the spectrum with the quad-band 

filter set (composed of a dichroic mirror as well as an emission filter, both with relatively similar 

spectral filtering capacities) appears as two distinct spots, whereas if a LP488 filter is used, all 

wavelengths greater than the cutoff wavelength of 488nm are imaged on the upper camera. 

Figure 4.9b shows the same effect on three fluorescent species of the tetraspeck beads, which 

incidentally fall nicely within the quad-band filter passband. The versatility of the system allows 

for simple replacement of the emission filters in the spectral path, allowing for quick rotation 

between a quad-band filter set (quad), a single quad-band emission filter (notch), a long-pass 

filter at 488nm, and a long-pass filter at 561nm, the latter of which is implemented in most of 

the live-cell experiments as it removes a large portion of cellular autofluorescence.  

 
Figure 4.8: Lateral Drift Correction essential for long-duration spectral imaging. (a) The lateral 
drift over the course of 200 imaging frames is distinct for the upper and lower detection paths. (b) 
Linescan of three different fluorphores on a single tetraspeck bead, demonstration a spectral shift of 
~3.2µm from red to blue. (c) 2D pair distance plot of 3 fluorescent species of a tetraspeck bead over 200 
imaging frames @ 100ms /frame. (d) The vertical pair distance remains constant over the course of the 
20 seconds. (e) Trajectories from a single tetraspeck bead over the course of a 30 minute timelapse, 
demonstrating a significantly larger drift that significantly affects the pair distance and results in false 
wavelength assignment (f). (g)Post-acquisition software drift correction restores proper pairing between 
the upper and lower localizations. 

100nm Tetraspeck Bead | Excitation 488nm 
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After characterizing its spatial and spectral capacities, we wanted to use the system to perform 

an array of simultaneous multicolor 3D single particle tracking experiments, ranging from 

quantum dot tracking of membrane proteins in neuron cultures to live DNA-PAINT imaging in 

cell cultures. Before performing live cell experiments, the optimal fluorescent probes needed to 

be chosen. 

 

For the initial tracking experiments, quantum dots were chosen due to their brightness and 

resistance to photobleaching as well as their broad absorption spectra. Figure 4.10 shows the 

emission spectra of a wide variety of commercially available quantum dots in relation to the 

bottom microscope’s emission filter, with dual pass-bands for red and far red imaging (Semrock 

FF01-594/730-25), denoted the Alexa647 Filter. This filter is used frequently in dSTORM imaging 

as it transmits the majority of the Alexa647 dye’s emission spectrum, maximizing collection 

efficiency. QD705, QD655, and QD605 were chosen as the optimal 3-color solution, providing 

sufficient spectral separation and compatibility with the filter set. It should be noted that, for 

simplicity, we opted here to make the probe choice based on our available filters; the filter cube 

can easily be changed between images without modifying the mechanical alignment of the two-

microscope system.  

An advantage of using quantum dots in simultaneous multicolor imaging is that multiple species 

can be excited with a single laser wavelength, reducing the total energy delivered to the sample 

and therefore the potential photodamage that might alter cellular behavior. 

 
Figure 4.9: Filter Selection in Spectral Path. (a) A portion of the spectrum of a green fluorescent bead 
is filtered when using the quand-band filter set, resulting in two separate intensity spots on the upper 
camera. Using a long pass filter (LP488) allows its entire spectrum to be imaged. (b) A tetraspeck bead 
excited at 488nm has three distinct spectral species, which match well with the pass-band of the quad-
band filter set. Using just  the quad band emission filter without the quad-band dichroic mirror (green) 
decreases the spectral cutting effect of the filter. Finally, using a long pass filter with cutoff wavelength 
at 488nm (red) allows the full spectra of the three fluorescent species to be image, notably resulting in a 
small overlap  

(a) Green Fluorescent Bead, EXC@488nm (b) 100nm Tetraspeck Bead, EXC@488nm 
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Once the optimal filters were selected, we performed proof of concept live-cell quantum dot 

tracking on the membrane protein NCAM in COS7 cell cultures. The NCAM protein was 

overexpressed with the genetically fused AP tag and coexpressed with Escherichia coli biotin 

ligase, BirAER, an enzyme which biotinylates the AP tag during protein maturation57.A single 

quantum dot tag, QD705, was initially used to ensure live-cell compatibility of the dual-

microscope system and spectral detection capabilities in the live-cell environment. Then, a 

second quantum dot tag, QD655, was added in conjunction with QD705. A new coverslip was 

incubated with this premix and spectrally imaged. Finally, 3 quantum dot species (QD705, 

QD655, QD605) were simultaneously excited with a single 561nm laser at ~500W/cm2 for 3-color 

3D membrane protein tracking in live cells. 

Post-acquisition, the analysis workflow outlined in section 4.2.1 was followed. Briefly, each 

detection channel was analyzed independently for (x,y) localizations, fit to a 2D Gaussian, and 

drift-corrected. Localizations from the lower channel were assigned an axial (z) position based 

on their astigmatism, transformed into the coordinate space of the upper field of view, and 

paired with a single upper channel localization in the pair search zone, here 4px x 20px 

(corresponding to a 0.64µm x 3.2µm search area). This spectral pair distance was used to assign 

a wavelength to each localization. The full set of (x,y,z,t,) localizations were then spatially 

reconnected and 3D trajectories were created.  

The large field of view of our spectral detection system allowed us to image entire COS7 cells at 

20Hz (50ms/frame) for 1500 frames (Figure 4.11b). The wavelength histogram demonstrates the 

strong spectral discrimination, even with sub-exposure time motion-induced distortion of the 

spatial and spectral localizations due to QD movements during the exposure time.  

 
Figure 4.10: Quantum Dot Selection for Live-Cell Tracking Experiments. Commercially available 
quantum dots in relation to the dual-emission filter (gray). QD705, QD655, and QD605 were chosen as 
the optimal probes. 

QD705QD605 QD655

Emission Filter 
(lower)
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Conventional multicolor SPT approaches that use a single objective and separate individual 

wavelengths onto separate regions of a single image sensor generally require the use of the entire 

image sensor to image small fields of view, limiting the acquisition speed to ~20Hz for common 

EMCCDs. At the same imaging speed, our dual-microscope approach allows for a larger field of 

view, independently of the number of colors imaged (up to 512px x 512px @ 20Hz). However, by 

reducing the imaging region to 128px x 128px, we can image at 100Hz with the same spectral 

resolution using the dual-EMCCD setup. Additionally, smaller regions have a more precise field 

of view transformation, and usually see improved spectral assignment as a result. Figure 4.12 

demonstrates multiple quantum dot discrimination at various exposure times, with a strong 

signal-to-noise ratio even at 10ms exposure time (100Hz). 

 
Figure 4.11: Simultaneous 1- 2- and 3-Color 3D QD Tracking in Live COS7 Cells. (left) Individual 
trajectories 1-, 2-, and 3-Color QD705, QD655, anad QD605 Tracking of NCAM-AP in COS7 cell, 
demonstrating significant spectral separation. (center) A large field of view wavelength-coded trajectory 
reconstruction of the COS7 cell, showing homogeneous distribution of the different fluorescent species. 
The wavelength histogram shows clearly separable spectral species. (right) A subset of longer (>50 frame 
duration) trajectories were imported into AMIRA for 3D representation. 

COS7 NCAM-AP | QD705, QD655, QD605 Streptavidin Conjugates @ 1:10,000 | 561nm Excitation @ 20Hz  
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An important criterion that was considered when developing this spectrally discriminant 

microscope was its sensitivity to photon detection, a key parameter for single-molecule 

experiments. While previous spectrally-resolved single molecule tracking experiments used 

bright fluorescent probes like QDs thanks to their high photon output, many SMLM experiments 

are performed in a signal starved environment. One of the benefits of the dual-objective 

geometry is the retention of all the sensitivity of a conventional SMLM microscope, with 

supplemental spectral information if the single molecule can be detected on the upper detection 

path. Furthermore, thanks to the minimally dispersive prism, the single molecule’s spectrum is 

still confined to relatively few pixels, thus maximizing the photons per pixel and thus the chances 

of single molecule localization. However, traditional single molecule tracking modalities like 

uPAINT require live injection of a fluorescently tagged ligand while the sample is on the 

microscope, and the two-objective geometry used here prevents such accessibility. 

To circumvent this accessibility issue, an alternative single particle tracking technique based on 

the DNA-PAINT modality was used (section 1.3.3.3). In collaboration with the company Ultivue, 

a pair of a secondary antibody (1:400) coupled to a specific DNA oligomer and its fluorescently-

labelled complementary oligomer were used in conjunction with a primary anti-GFP antibody 

(1:200) to follow the GPI membrane receptor overexpressed with a fused GFP molecule and co-

expressed with soluble GFP, enabling visualization of electroporated cells and their morphology. 

The DNA-PAINT “live” oligomers have a stronger binding affinity than the oligomers used for 

fixed imaging, ensuring the fluorescent probes stay linked to the protein of interest for several 

imaging frames.  

Figure 4.13 shows a dual-color 3D DNA-PAINT GPI-GFP tracking experiment. Figure 4.13a shows 

a single frame from the dual-color DNA-PAINT acquisition, with regions overlaid by the spectral 

localization software showing two distinct populations of organic fluorophores as well as 

 
Figure 4.12: Temporal Resolution up to 100Hz. (top) Simultaneous multicolor spectral QD tracking at 
varying temporal resolutions and fields of view, from full-chip at 20Hz to 100Hz at 128x128px. 40nm/px 
wavelength-coded track reconstructions. (Inset) Normalized single QD spectral image from upper 
detection. (Bottom) Wavelength histograms for all localizations in each image. 

COS NCAM-AP | QD705, QD655, QD605 Streptavidin Conjugates | Astigmatism with cylindrical lens 
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nanodiamonds used as fiducial markers. The two organic fluorophores coupled to 

complementary DNA oligomers at 0.1nM imaging concentration were individually excited such 

that they were detectable on both channels (exc,1=561nm @ ~500W/cm2 and exc,2=640nm @ 

~500W/cm2). 2,000 frames were acquired at 20Hz, localized (x,y,z,), and their trajectories 

computed. The wavelength-coded track reconstruction in Figure 4.13b shows the specificity of 

the DNA-PAINT technique for live-cell dual-objective spectral imaging. The wavelength 

histogram also demonstrates that the reduced signal from using organic fluorophores does not 

significantly affect the wavelength distribution. Similarly, the 3D position of the fluorophore can 

be extracted using the astigmatism encoded into the lower PSF, even in the lower signal 

environment (Figure 4.13c).  

 

The ability to combine labeling and imaging strategies is essential to a versatile SMLM 

microscope, and the sensitivity of the spectral detection path allows for multimodal single 

particle tracking using a variety of fluorescent probes. As a proof of concept, simultaneous DNA-

PAINT (550nm) and Quantum Dot (705nm) tracking was performed on the same protein, GPI-

 
Figure 4.13: Simultaneous 2-Color Live 3D DNA-PAINT Tracking of GPI-GFP in COS7 Cells. (a) A single 
frame from acquisition demonstrating localization pairing. (Right) Lower channel (Left) Upper channel, 
crosses indicate trasnforemd lower and upper localizations.  The assigned wavelength is linearly proportional 
to the spectrally-induced displacement between the two localizations. (b) Wavelength-coded tracks image 
overlayed on GFP image. The two spectral species are easily differntiable using the wavelength histogram 
(bottom). (c) Z-coded tracks, simultaenously tracked using the astigmatism encoded in the lower PSF. 

COS7 Cell | GPI-GFP | Anti-GFP (Mouse) + Anti-Mouse-D1 | 0.1nM D1-550-Live + 0.1nM D1-650-Live 
Excitation 561nm and 640nm | Astigmatism with cylindrical lens 
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GFP expressed in COS7 cells. Despite the difference in fluorescence intensity, both species are 

detected in the spectral detection channel (averaged spectra in Figure 4.14a) and easily 

separated in the wavelength histogram in Figure 4.14b. Wavelength (Figure 4.14c) and axial 

position (Figure 4.14d) coded reconstructions demonstrate the specificity of both labeling 

schemes to the transfected cell.  

This proof of concept DNA-PAINT + QD experiment tracks the same protein with two separate 

fluorescent species, which, while interesting from an optical perspective, has limited biological 

applications. However, this kind of mixed modality imaging could be useful for combining 

structural imaging with tracking; for example, using the DNA-PAINT labeling against a diffuse 

membrane protein like GPI, shown above in Figure 4.14, combined with QD-tracking of a 

protein with specific cellular compartmentalization, or potentially intracellular protein tracking 

with genetically encoded fluorescent proteins. 

 

Most single particle tracking techniques, like the previously discussed quantum dot and DNA-

PAINT based approaches, require the use of antibodies or other non-cell membrane permeable 

ligands to couple a fluorescent marker to the protein of interest and are therefore restricted to 

the tracking of membrane surface proteins. SptPALM10, however, allows tracking of intracellular 

proteins via the expression of a genetically modified variant of the protein coupled with a 

photoactivable fluorescent protein, like mEOS. Unfortunately, these proteins emit much fewer 

photons than quantum dots or organic fluorophores, requiring extremely sensitive detection 

schemes to accurately track their movement. Our dual-objective spectrally resolved single 

particle tracking system affords the unique possibility of tracking fluorescent proteins, opening 

the doors to a wide array of intracellular protein tracking. 

As a proof of concept, we expressed a genetically modified variant of the cytoskeletal protein 

Talin with mEOS3.2 fused to its c-terminal. Figure 4.15a shows a single image from the 

acquisition at 50ms per frame, and a single mEOS protein (inset) in the spatial (magenta) and 

spectral (cyan, 4x contrast) channel. Here, we used oblique illumination to allow for 3D single 

 
Figure 4.14: Multimodal Spectral SPT: DNA-PAINT + QD-Tracking. (a) Averages of ~200 individual 
single molecule spectra for QD705 (top) and ATTO550 (bottom, contrast x2). Prism displacement 
direction shown in arrow in top-left. Notably, the tail of the emission spectrum of organic fluorophore, 
ATTO550, is visible. (b) The long track length of the QDs dominates the wavelength localization 
histrogram, but both spectral species are easily distringuishable. (c) Wavelength-coded tracks 
reconstruction of DNA-PAINT 550 and QD705 Tracking, overlayed on GFP imagie of cell volume. (d) Axial 
position-coded reconstruction of the same tracks. (e) 3D reconstruction (Amira) of 2-color multimodal 
single particle tracking. 

COS7 Cell | GPI-GFP | Anti-GFP Antibody + DNA-PAINT or QD Secondary Antibody 
561nm Excitation | Astigmatism with cylindrical lens 
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particle tracking, which has the downside of increased background, especially near the center of 

the cell. Averaging ~400 individual spectral images gave a good representation of the mean 

spectrum of mEOS3.2 (Figure 4.15b). Reconnecting sequential localizations results in a 

homogeneous wavelength tracking reconstruction (Figure 4.15c), and a wavelength distribution 

centered at ~610nm with a variance of 16.5nm (Figure 4.15d). This slightly larger distribution 

can be attributed primarily to the reduced localization precision because of the low photon 

count of mEOS. A representative 3D trajectory can be found in Figure 4.15e with a temporal 

color code. 

 

While the previous proof of principle experiments in cultured cell lines provided validation the 

spectral tracking capabilities of the system, studying the diffusion of membrane-bound proteins 

in these simple systems is not always biologically relevant. In neuroscience, however, many 

questions about the functional roles and interactions of membrane proteins, in particular 

neurotransmitter receptors, remain unanswered. A primary goal when designing this spectrally 

resolved tracking system was compatibility with imaging of neuron cultures, which are much 

more sensitive to photodamage, imaging medium and temperate variations than cell line 

cultures like COS7 and HeLa.   

In collaboration with Laurent Groc’s team, we first verified the compatibility with embryonic rat 

cultured neurons by tagging two spectrally distinct quantum dots (QD655 and QD705) to the 

overexpressed Dopamine D1 receptor genetically tagged with CFP, a structurally similar GFP 

variant. The wavelength-coded reconstruction in Figure 4.16a shows the signal specificity to the 

transfected neurons, as well as the clear separation between spectral species. 

 
Figure 4.15: Talin-mEOS3.2 Tracking with Spectral Detection. (a) Individual activated mEOS 
molecules are detectable on the spectral channel (left, x4 contrast). (b) Averaging several hundred 
individual localizations enables fluorescent protein spectral imaging. (c) Wavelength-coded tracks 
reconstruction. Note the track homogeneity. (d) Wavelength histogram of localizations shows a peak 
spectral mean of 610nm with a variance of 16.5nm. (e) 3D reconstruction (Amira) of a single mEOS 3.2 
trajectory color coded for time. 

Talin-CTer-mEOS3.2 | Fibroblast Cells | 256px x 256px @ 50ms/frame 
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Whereas in previous experiments a single protein type was tagged with several fluorescent 

species, we then applied our spectral single particle tracking system to track two different 

proteins in these hippocampal neuron cultures. The genetically-tagged NMDA glutamate 

receptor GluN1-Flag was co-expressed with D1-CFP, and each tagged with a spectrally distinct 

QD. Figure 4.16b shows a 3D reconstruction of a small region, color-coded for wavelength, 

demonstrating the necessity for 3D imaging when performing dual-color imaging. 

Further 2-and 3-color 3D QD-SPT experiments in neuron cultures are ongoing. The primary 

difficulty in such experiments is specifically tagging 3 separate proteins of interest using 

conventional antibodies, as not all proteins have good quality commercially available antibodies. 

In the future, combining QD single particle tracking with concurrent structural SMLM imaging 

could provide interesting information regarding the cellular environment in which the proteins 

are diffusing. 

Mixed neuron and microglia cell cultures were incubated with the primary antibody (anti-flag-

mouse @ 1/1000 and anti-GFP-rabbit @ 1/1000 ) diluted in neurobasal medium from the dish for 

10 min at 37°C (100 µl per coverslip). Cells were washed 4 times with warm, fresh neurobasal 

medium, incubated with quantum dots QD705 anti-mouse @1/50,000 and QD655 anti-rabbit @ 

1/50,000 or QD705 anti-rabbit @1/50,000 and QD655 anti-mouse @1/50,000 for 10 minutes at 

37°C (100 µl per coverslip), and washed 4 times. The samples were mounted in 50 µl of neurobasal 

 
Figure 4.16 Simultaneous Dual-Color and Dual-Protein Tracking of Neurotransmitter Receptors 
in Live Neurons.(a) Wavelength-coded trajectory reconstruction of overexpressed dopamine receptor 
D1-CFP tagged with QD655 and QD705, demonstrating feasibility of the dual-objective technique for 
hippocampal neuron cultures. (b) 3D localization reconstruction (VISP)94 of simultaneous imaging of D1-
CFP and GluN1-Flag in hippocampal neuron cultures. The combination of 3D spatial information with 
multicolor imaging is essential for understanding molecular interaction. 

Dopamine receptor D1 and NMDA glutamate receptor GluN1 in hippocampal neuron cultures.  
D1-CFP + Anti-GFP:QD705 and GluN1-Flag + Anti-Flag:QD655. 256x256 @ 50ms 
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imaging media in the custom-designed dual-objective ludin mount described in section 4.2.1, 

and covered with a 22mm coverslip before being placed onto the microscope. 

 

Single molecule localization microscopy, and fluorescence microscopy as a whole, benefits from 

the use of the photophysical process of fluorescence as a specific marker for the protein of 

interest. However, the cellular environment and imaging process induce noise that can result in 

false localizations that can be difficult to eliminate in conventional SMLM experiments. The 

dual-objective spectral imaging system proposed here can also help ensure that acquired 

photons are emitted from the specific fluorescent probe(s) desired. 

A wide array of natively expressed cellular proteins are also capable of fluorescing, and localizing 

these autofluorescent proteins can cause specificity errors in super-resolution reconstructions. 

Thanks to spectral imaging, their very large autofluorescence emission spectrum can be filtered 

out from reconstructions. Furthermore, the ability to visualize this directly on the acquisition 

system allows verification of proper labeling. 

When imaging fluorescent proteins or other low-signal fluorescent markers, a low segmentation 

threshold is used to separate the signal from sensor noise. A deleterious side effect of this low 

threshold is the possibility to accidentally localize just sensor noise. By requiring that the single 

molecule be detected on both cameras, this method can reject false localizations caused by low 

threshold or sensor noise. 

4.3 

Most conventional multicolor SMLM experiments are performed sequentially, requiring at least 

twice the imaging time and preventing the imaging of potentially interesting molecular 

interactions. While simultaneous imaging approaches do exist, they typically involve specific 

filtering optics for each fluorescent species being imaged, separating the detection path for each 

color onto a portion of a single imaging sensor, compromising the field of view and/or temporal 

resolution of imaging as well as the number of photons (hence the localization accuracy). The 

method presented in this chapter enables simultaneous multicolor SMLM imaging and tracking 

without spatiotemporal compromises by assigning a mean wavelength to each localized single 

molecule. 

 

By using a dual-objective configuration with concurrent imaging of a single focal plane on two 

separate detection paths, the wavelength is encoded as a relative lateral displacement by a 

dispersive prism in the spectral detection path. The use of two detection objectives ensures no 

compromises in spatial localization precision, sensitivity, temporal resolution, and field of view. 

We have demonstrated the proof of principle of the technique, its characterization with 5 

spectrally separate quantum dot species, its application for 3-color simultaneous quantum dot 

tracking and 2-color simultaneous DNA-PAINT tracking, as well as the sensitivity for detection 

the wavelength of single fluorescent proteins. 
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An important aspect to the development of a microscopy method with the goal to address 

important biological questions in routine, is a good understanding of its limitations and 

applicability. A few of these limitations, together with some potential solutions, are addressed 

here: 

Biological Compatibility. While the spectral detection method is extensible to any dual-

objective configuration and does not explicitly require the use of two microscopes, the 

mechanical implementation of our dual microscope configuration itself imposes some 

restrictions, notably requiring that the sample be sandwiched between two coverslips. The desire 

to use the Perfect Focus System for axial stabilization prevents the use of water dipping 

objectives, which could remove this restriction and allow for more complicated biological studies 

than simple cells grown on the coverslip surface. 

 

Photodamage. Another strong concern for biological studies is the light dose delivered to the 

sample over the course of the imaging session. Using bright fluorescent probes with a broad 

excitation spectrum like quantum dots allows the use of a single laser wavelength at relatively 

low intensity for multicolor imaging. However, as previously noted, quantum dots are not 

accessible to all cellular compartments, and some SPT experiments opt for organic fluorophores 

or genetically encoded fluorescent proteins, both of which suffer from a much narrower 

excitation spectrum and require individual laser lines for excitation and increasing the overall 

power delivered to the biological sample.  

 

Optical. The fundamental optical limits of the method reside in the ability of the spectral 

detection path to accurately localize single molecule fluorescence. Any optical aberrations in the 

spectral detection path quickly prevent single molecule localization. The first implementations 

used matching oil-immersion objectives on the spatial and spectral detection paths, but the 

spherical aberrations incurred from imaging through 30µm of water-based imaging medium 

quickly degraded the spectral signal. Using an index-matched water-immersion objective that 

reduces spherical aberrations, we have demonstrated the sensitivity to localize fluorescent 

proteins, but spectral imaging in complex media, like brain tissue slices, will require the 

implementation of adaptive optics in the spectral detection path (as outlined in section 3.3). Our 

dual-microscope system is capable of such a configuration, with mechanical mounts already in 

place for using the MicAO adaptive optics system on the upper microscope, but alignment of 

the adaptive optics path is extremely difficult in the inverted geometry. Further emphasis on 

optimizing this alignment procedure will greatly expand the biological applicability of the 

technique. 

 

Software. The spectral displacement system presented here is fundamentally based on 

localizing the emission spectrum of singe molecules, which, unlike diffraction-limited point 

spread functions, are generally not radially symmetric and do not fit perfectly to a Gaussian 

model. Our approach uses a minimally dispersive prism to reduce the elongation of the spectrum 

across several pixels, but a more precise fitting method would take into account all of the spectral 

information acquired from the spectral detection path, and not simply a spectral mean given by 

the intensity centroid. Additionally, a precise field of view calibration is essential to accurate 

spectral detection and must be performed for each coverslip, ideally for each cell imaged. A more 



5-DIMENSIONAL SINGLE MOLECULE LOCALIZATION & TRACKING 

114 

advanced algorithm could theoretically refine the field of view transformation on a per-frame 

basis and eliminate the need for the additional FOV calibration step. Currently, lateral FOV 

displacements over the course of the image acquisition are compensated via fiducial marker 

tracking separately on each channel, however a per-frame FOV transform would be able to 

account for rotation and higher-order deformations that and enable more precise wavelength 

assignment. 

 
The method presented here uses a prism to encode the emission spectrum of each individual 

molecule as a relative spatial displacement, which is calculated based on localization from two 

separate optical paths. However, the spectral information obtained is not fully exploited. For 

example, the current tracking algorithm temporally reconnects localizations strictly based on 

their spatial localizations, incorporating wavelength into the tracking algorithm could help 

disambiguate reconnection in certain applications, particularly in dense molecular 

environments. Integrating localization wavelength into the SR-Tesseler quantification software 

(section 2.4) could allow for direct multi-color cluster analysis, separating species based on the 

wavelength histogram. 

Furthermore, the spectral detection path is currently only used to assign a single mean 

wavelength to each single molecule emission, but one could imagine encoding additional 

information into the spectral point spread function via PSF engineering. For example, once the 

wavelength has been assigned, it could be possible to deconvolve the spectral image with the 

known emission spectrum of the molecule, at which point the spatial information from the 

localization could be used as well. This additional PSF engineering on the spectral detection path 

could be used to encode 3D information in the spectral PSF with an astigmatic optical element 

and improve axial resolution, similar to the first dual-objective SMLM application 150.  

In terms of biological applicability, a wealth of unique studies can benefit from this highly 

sensitive spectral detection. Chemical sensing using ratiometric or photoconvertible dyes allow 

sensing local pH155 or other biological environmental factors as a function of the emitted 

wavelength, and this system’s ability to accurately assign a continuum of wavelengths is ideally 

suited for these kinds of sensors. Additionally, single molecule FRET could be imaged 

concurrently and directly. Combining the spectral detection with our SR-HCS high content 

SMLM acquisition workflow may facilitate the discovery of new photoconvertible fluorescent 

proteins for single molecule imaging. Finally, using soSPIM for light sheet illumination on the 

lower microscope, could allow for spectrally resolved SMLM in complex biological 

environments, which is possible and straightforward thanks to the design of our 2-objective 

spectral microscope based on conventional microscopes. 
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Optical single molecule imaging has quickly revolutionized biology by allowing the 

characterization of the nanometer scale motion of proteins in their live environment. Still in its 

infancy, most SMLM is performed under the vestigial conditions of conventional fluorescence 

microscopy, without particular attention to details which can affect the nanometer scale 

localization of the fluorescent probe, namely labeling linker length and optical aberrations.  

The work presented in this thesis addresses many of these limitations in an effort to expand 

single molecule localization microscopy towards quantitative nanoscale biology. One main idea 

recurred throughout my work: accurate protein labeling is a main factor preventing quantitative 

analysis. We tested new tools such as DNA-PAINT as a means of decoupling protein labeling 

density from fluorescence density in an effort to maximize the number accurate localizations. 

Unfortunately, current commercially available DNA-PAINT labeling kits are based on secondary 

antibodies that induce a large distance between the fluorescent probes and the protein of 

interest, making quantitative nanometer scale analysis difficult. Future advances to DNA-PAINT 

probes combined with small linker length ligands like anti-GFP nanobodies or monomeric 

streptavidin will allow for much more accurate protein localization, potentially allowing 

membrane-receptor resolution in dense proteins clusters. Furthermore, decoupling these 

labeling strategies from the single molecule imager concentration with DNA-PAINT may help 

to facilitate routine SMLM in protein dense environments like brain slices. Similarly, efficient 

fluorophore excitation is essential for accurate single molecule localization, and new promising 

tools like the single objective light sheet (soSPIM) allow for deep single molecule imaging, while 

new a technique based on using STED excitation called MINFLUX greatly reduces the amount 

of photons needed for localization by performing a triangulation process instead of directly 

fitting the PSF and allows for nanometer scale localization precision with only a few tens to 

hundred photons156. 

We demonstrated the application of an adaptive optics system for 3D imaging in such protein 

dense environments by correcting for depth-dependent optical aberrations. While the adaptive 

optics system implemented over the course of this thesis project was used to extend astigmatic 

imaging depth of field at the coverslip and enable 3D imaging up to 10 micrometers from the 

coverslip surface in brain tissue, difficulties in embedding fiducial markers in tissue prevented 

accurate wavefront correction. Software advances in the form of more robust and parameter-



CONCLUSION AND PERSPECTIVES 

116 

free aberration correction algorithms based on phase diversity will simply the routine use of 

adaptive optics systems for SMLM, potentially obviating the need for fiducial markers by 

correcting aberrations based on individual blinking fluorophores. These steps towards 

simplifying adaptive optics are essential to its general adoption in routine SMLM imaging in 

complex biological environments like brain slices. 

As discussed several times throughout this manuscript, resolution in single molecule localization 

imaging is critically linked to two main factors: the ability to densely label a given protein with 

a fluorescent molecule, and the precision with which this fluorescent proxy can be localized 

through the optical system. I would also propose that a third criteria limits SMLM resolution: 

accurate analysis of the acquired localization data. Improper localization analysis can lead to 

image artifacts that bias quantitative biological data and potentially prevent resolving the 

desired structure. I presented a tool we developed for analyzing single molecule localization data 

based on tessellation. The software package makes quantitative comparison between different 

biological conditions possible thanks to a segmentation threshold based on normalized 

localization density, making it robust to the variations in localization density prevalent in SMLM 

acquisitions. In its current form, however, this segmentation takes into account only the lateral 

position of the localization. Currently under development, 3D visualization and cluster analysis 

will help avoid projection artifacts. Incorporating qPAINT analysis could give access to true 

quantitative counting, as long as appropriate reference structures exist in the data set. Finally,  

colocalization tools based on overlapping Voronoi polygons will simplify the co-analysis of 

various proteins, which is currently a tedious task.  

The most major contribution of this thesis is the development of a versatile microscope capable 

of simultaneously tracking multiple proteins in living cells. The system was designed to prevent 

compromises in spatiotemporal resolution and imaging field of view by adding a second 

detection objective capable of determining the wavelength of a single emitter with ~10-20nm 

resolution. It was constructed around two inverted microscope bodies to maximize mechanical 

stability and routine ease of use. The results presented in this manuscript represent the first 

proof of concept experiments of the technique and its application to multiple protein tracking 

in cell line and neuron cultures. We are continuing to use the system on a routine basis, 

collaborating with neurobiologists to exploit the systems spectral tracking capabilities and help 

uncover new protein interactions.  

It is my hope that, in combination with future development in accurate and proximate protein 

labeling techniques, each of the steps detailed in this thesis may help in enabling routine 

quantitative single molecule imaging in complex biological samples.
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A primary deliverable of this thesis as part of the CIFRE collaboration with Imagine Optic was 

the development of a MicAO plugin for the MetaMorph acquisition environment that simplifies 

the user experience of using the adaptive optics system for routine imaging. The software was 

developed in Visual Basic .NET and C#, as required by the MetaMorph plugin environment. 

The plugin has 4 main modes of operation to facilitate common user AO functions organized 

into separate tabs: (1) PSF Optimization, (2) Astigmatic 3D Calibration, (3) Astigmatic 3D 

 

Figure A0.1: MetaMorph MicAO Plugin Modes of Function. Designed for operation in the MetaMorph 
acquisition environment, the MicAO Plugin for MetaMorph facilitates the user experience of adaptive 
optics for single molecule imaging.  Optimization mode (left) allows for 1-click PSF optimization of 
common system aberrations using a 3N algorithm. 3D Calibration mode (center left) allows the user to 
create an astigmatic Z-stack for calibration of axial assignment routines. The user may choose to perform 
the scan using a motorized z-stage, if available from MetaMorph, or by applying gradual defocus to the 
deformable mirror. The thickeness and stepsize can be directly modified by the user. 3D Acquisition 
mode (center right) applies a constant astigmatism (defined in the MicAO software, typically 60nm RMS) 
for 3D imaging. Finally, the Confocal Stack mode (right) performs a Z-stack, applies aberrations as a 
function of depth according to a user-modifiable text file.  
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Acquisition, and (4) Confocal Stack. The left-to-right workflow and minimal user-visible options 

are designed to optimize the user experience, prevent confusion, and allow non-specialists to 

operate the software once trained. Briefly, the Optimization mode performs a PSF optimization 

routine using the algorithm chosen in the MicAO software (3N algorithm by default), performing 

indirect wavefront sensing by iterating over a fixed number of Zernike modes (focus, spherical 

aberration, astigmatism, coma and trefoil by default) and optimizing based on an image quality 

metric (maximum intensity, by default). A contrast gain indicator directly in the plugin user 

interface visually indicates the success of the PSF optimization routine. This optimization 

routine takes ~10-15 seconds to complete, depending on image exposure time, and should be 

performed using a stable monochromatic fiducial marker at the coverslip surface. Ideally, the 

PSF optimization routine should only need to be performed once when the coverslip is mounted 

onto the microscope; however, thermal drift of the mirror membrane may cause variation in the 

PSF, so it is recommended to perform before each SMLM image acquisition. 

For 3D imaging, a lookup table must be generated to associate astigmatic PSF deformation with 

axial position. The 3D calibration mode facilitates this by applying a fixed astigmatism and 

performing a Z-stack of desired thickness and step size centered around the current focal plane 

(typically, the optimal focus after PSF optimization). If the user has a motorized z-stage, they 

may choose to use it; otherwise, defocus will be applied gradually over the course of the 

acquisition to change the effective image focal plane. Once the 3D calibration stack has been 

generated and possibly verified using online localization tools (i.e. WaveTracer), the 3D 

acquisition mode can be initiated. This mode applies a constant astigmatism (60nm by default, 

but user configurable in the MicAO software) for 3D imaging. 

Last, confocal stack mode creates an stack that applies depth-dependent aberrations based on a 

user-modifiable file. For example, depth-dependent focus can be added to compensate for the 

axial displacement of a mechanical stage, or depth-dependent spherical aberrations can be 

added based on a calibration curve. 

It should be noted that the development of this software was a bit delayed due to some software 

complications. The large data sets generated in SMLM acquisition (~1-10 GB per SR image) 

mandate the use of a 64-bit acquisition environment, but the MicAO communication plugin was 

32-bit only. A 32-bit intermediate interface layer was implemented (Figure A0.2) that can make 

DLL calls to the 32-bit DLL while simultaneously communicating with the 64-bit MicAO plugin 

via InterProcess Communication (IPC). Debugging this interface layer was complicated and 

time-consuming, as it necessitated exact type matching across 3 programming languages 

(VB.NET for the plugin, C# for the interface layer, and C++ for the MicAO DLL) in 32-bit and 64-

bit environemnts. 
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Figure A0.2: MetaMorph MicAO Plugin Architecture. The large data sets in SMLM require the use of 
a 64-bit acquisition environment, preventing direct communication with the 32-bit DLLs of the MicAO 
interface. After quite a bit of research and development, a 32-bit interface layer was implemented that 
allows communication between with the 64-bit MetaMorph plugin via Inter Process Communication 
(IPC).  
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The analysis software used for localizing, pairing, and assigning wavelengths to single molecule 

images is an extension of the PALMTracer localization software initially developed by Jean-

Baptiste Sibarita and runs in the MetaMorph software environment. Each of the imaging 

channels are independently analyzed with its own unique threshold, watershed, and Gaussian 

fit options, allowing efficient single molecule localization. Localization pairing options allow for 

radial or linear search options, the prior ideal for single-color imaging, while the linear search 

option is essential for high-density multicolor imaging. The pair distance to wavelength 

calibration allows for direct visualization of the assigned wavelength of each localization. A 

wealth of filtering options exists, the most relevant of which is a wavelength gating option that 

allows generation of a wide variety of visual representations (axial position, track number, plane, 

etc) for a specific wavelength gate or channel in conventional imaging terms. Finally, exports to 

common file formats like ThunderSTORM, VISP, and Amira facilitate the use of external 

software for more advance visualizations.  

For wavelength-coded reconstructions, the pixel intensity is the wavelength of the localization 

in that pixel. True-color images, where the wavelength value is mapped to its perceived color, 

are 16-bit grayscale images where the pseudocolor lookup table is fixed to scale precisely over 

the range =[380nm, 780nm].  

For visualization purposes while analyzing the SMLM stacks, it is useful to have a similar true-

color wavelength coding for the region areas surrounding individual localizations. In this way, a 

quick glance at the current image being analyzed gives far more useful information than a 

wavelength histogram from a single frame. MetaMorph’s regions support RGB color coding, thus 

 
Figure A0.3 PALMTRACER.NET Software Interface for Dual-Objective Spectral Analysis. Our 
localization software was updated with a separate dual-channel localization pairing and spectral 
assignment module, designed as part of this thesis. 
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the wavelength value was converted to RGB values for region color-coding using the following 

algorithm: 

If ((Wavelength >= 380) And (Wavelength < 440)) Then 

Red = -(Wavelength - 440) / (440 - 380) 

Green = 0.0 

Blue = 1.0 

ElseIf ((Wavelength >= 440) And (Wavelength < 490)) Then 

Red = 0.0 

Green = (Wavelength - 440) / (490 - 440) 

Blue = 1.0 

ElseIf ((Wavelength >= 490) And (Wavelength < 510)) Then 

Red = 0.0 

Green = 1.0 

Blue = -(Wavelength - 510) / (510 - 490) 

ElseIf ((Wavelength >= 510) And (Wavelength < 580)) Then 

Red = (Wavelength - 510) / (580 - 510) 

Green = 1.0 

Blue = 0.0 

ElseIf ((Wavelength >= 580) And (Wavelength < 645)) Then 

Red = 1.0 

Green = -(Wavelength - 645) / (645 - 580) 

Blue = 0.0 

ElseIf ((Wavelength >= 645) And (Wavelength < 781)) Then 

Red = 1.0 

Green = 0.0 

Blue = 0.0 

Else 

Red = 0.0 

Green = 0.0 

Blue = 0.0 

End If 

 

If ((Wavelength >= 380) And (Wavelength < 420)) Then 

factor = 0.3 + 0.7 * (Wavelength - 380) / (420 - 380) 

ElseIf ((Wavelength >= 420) And (Wavelength < 701)) Then 

factor = 1.0 

ElseIf ((Wavelength >= 701) And (Wavelength < 781)) Then 

factor = 0.3 + 0.7 * (780 - Wavelength) / (780 - 700) 

Else 

factor = 0.0 

End If 

 

R = Red * factor * 255 

G =  Green * factor * 255 

B =  Blue * factor * 255 

 
CODE SNIPPET 1: Wavelength to RGB Conversion 

Visual Basic .NET  
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Communication in the brain occurs between a vast array of interconnected neurons.  Signal 

transmission occurs at the connection between two neurons, called a synapse, where a 

presynaptic neuron releases glutamate or other neurotransmitters that bind to their partner 

neurotransmitter receptors on the membrane of the postsynaptic neuron (Figure 0.). This 

binding process induces a conformational change in the receptor that opens an ion channel, 

depolarizing the membrane and initiating the propagation of the signal to the next neuron. 

The spatial organization and dynamics of these postsynaptic neurotransmitters are essential to 

proper signal transmission between neurons. One such neurotransmitter receptor is the AMPA 

receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor), which is composed 

of 4 individual subunits (GluA1, GluA2, GluA4, etc) assembled to form a channel ~15nm in size. 

Combining a variety of super-resolution imaging techniques, Nair et al24 with others 

demonstrated that these receptors assemble in clusters, called nanodomains, which are essential 

to proper synaptic transmission. 
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Figure 0.4: Nanometer-sized Post-synaptic AMPA Receptors serve as an inter-neuronal signal 
transduction mechanism. Communication between neurons occurs at the molecular level as the 
binding of presynaptically released glutamate to postsynaptic glutamate receptors, like AMPA or NMDA, 
through a process called synaptic transmission. While a host of synaptic proteins are involved in this 
process, the spatial distribution of the glutamate receptors and their alignment in the synaptic cleft are 
critical to proper signal transduction.  

(b) Adapted from Hosy et al108 

Synapse ~1µm

AMPAR~15nm

Neuron ~100µm
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Tetraspeck beads beads (1:1000 in 1X PBS) or nanodiamonds (1:100 in ultrapure water) Fiducial 

markers were incubated on coverslips prior to imaging. A drop of 100-150 μL of the diluted 

fiducial markers were placed on parafilm onto which the coverslip was flipped (cells face down), 

incubated for 5 minutes, and washed 3 times in PBS or ultrapure water.  

Unless otherwise stated, 18mm diameter Ludin chambers were used for sample imaging. The 

coverslip was placed into the Ludin chamber and 1 mL of imaging buffer was added. A 22mm 

coverslip was placed on top of the chamber and parafilm was used to close the perfusion holes 

to minimize gas exchange during imaging. 

The Glucose Oxidase buffer used for the majority of dSTORM experiments (unless otherwise 

noted) was aliquoted into c separate solutions. Before dSTORM imaging, aliquots were allowed 

to thaw and the final imaging buffer was mixed (1mL G, 125µL E, 125µL M). The pH was verified 

to be ~7.4-7.6 prior to imaging using pH paper. 

(G) Glucose base solution (4°C) 

• 45 mL of distilled water 

• 5 mL Glycerine (Sigma) 

• 5g Glucose (Sigma)  
 

(E) Enzyme solution  

• 100 μL Catalase (Sigma C100-0,1% w/v) 

• 200 μL TCEP (1 mol/L) (Sigma C4706) 

• 25 mL Glycerine  

• 22.5 mL distilled water  
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• 1.25 mL KCl (1 M)  

• 1 mL Tris‐HCl pH 7.5 (1 mol/L)  

• 50 mg Glucose oxidase  
 

(M) MEA solution [1 M] stock solution 

• 1,136 g of MEA-HCL (Sigma M6500) in 10 mL distilled water  

 

The Pyranose Oxidase buffer is identical to the GlOx buffer, replacing the enzyme Glucose 

Oxidase with Pyranose Oxidase that stabilizes the pH for several hours longer than GlOx. 

The COT buffer is identical to the buffer found in Olivier et al.92 The solutions were prepared 

individually before imaging, as aliquoting seemed to decrease the benefits of the COT-based 

solution. The final solution was composed of 100 mM MEA, 2mM COT, 2.5 mM PCA and 50 nM 

PCD in a 75% glucerol-25%Tris-PBS solution.  
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Progresses in microscopy have often led to major discoveries

in neuroscience, and the recent advent of super-resolution

microscopy is no exception. In this review, we will show how

imaging has advanced our modern vision of synaptic function.

More particularly, we will emphasize how novel nanoscopy

techniques have helped in deciphering the organization of

post-synaptic proteins, offering new insight into the

mechanism of synaptic transmission.
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Introduction
Historically, new developments in microscopy have trig-
gered novel concepts in biology. This is particularly
evident in the field of neuroscience, where neuronal cells
are composed of thin and dense structures ranging from
micrometers to tens of nanometers in size.

This relationship between imaging techniques and neuro-
science started in the early 20th century with the contro-
versy between Ramon y Cajal and Golgi over the structure
of the neuronal network. Only new silver-based cellular
labeling developed by Golgi allowed Cajal to demonstrate
with microscopy (i) that neurons are independent and
delimitated cells and (ii) that the junctions between
neurons, called synapses, are physically separated. In the

1950s, the intimate details of synaptic structure were finally
revealed by applying electron microscopy to neurons [1].
Subsequently, the discovery of the electrical component of
synaptic transmission by patch and voltage clamp tech-
niques and the development of molecular biology com-
pleted the current vision of the electrochemical synapse:
the pre-synaptic element triggers fast calcium dependent
release of neurotransmitter vesicles, and the post-synapse
accumulates ionic and metabotropic receptors of these
neurotransmitters. This static vision of the synapse with
neurotransmitter receptors anchored at the post-synapse
was sufficient to sketch a functional model of the synapse.

In the 1970s, new imaging techniques capable of capturing
live cell dynamics, such as fluorescence recovery after
photobleaching (FRAP) and single particle tracking
(SPT), added the idea that these membrane proteins are
not static at the surface but show a fast diffusive behavior
[2!]. The principle of the SPT technique relies on sparse
labeling of individual proteins and follows their movement
in real-time. Analysis of this motion allows determining
protein behavior in different subcellular environments,
reflecting interactions with various molecular complexes.
In the 1990s, improvements to imaging setups, charge-
coupled device (CCD) cameras, image analysis and engin-
eering of smaller and photostable  fluorescent probes like
quantum dots (QD), allowed more efficient particle detec-
tion [3]. While traditional bulk microscopy techniques were
limited in resolution to about 250 nm due to diffraction, SPT
imaging enabled monitoring protein motion with nano-
metric localization using dedicated image analysis [4–7].

The application of SPT techniques to neuroscience gave
access to a better understanding of the role of various
proteins in synaptic transmission. The first studies focused
particularly on the family of glutamate receptors, which are
most notably composed of the NMDA receptors respon-
sible for calcium entry inside the synapse and the AMPA
receptors responsible for fast synaptic transmission [8].
These experiments revealed that AMPA receptors present
two different motions, alternating between states of tran-
sient immobility and high mobility. The main conclusions
were that (i) AMPA receptors containing the GluA2 sub-
unit stop reversibly at the synaptic site, (ii) during neuronal
maturation, the stationary periods of these receptors
increase in frequency and length and (iii) a rise in calcium
favors local receptor immobilization.
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These princeps single particle tracking experiments paved
way to neurotransmitter receptor mobility characterization,
ushering in a new vision of the synapse by identifying
components of molecular complexes and unpredicted roles
of receptor motion. Nonexhaustively, applications of the
SPT technique demonstrated that (i) AMPARs are attached
to the postsynaptic density (PSD), and more particularly to a
primary scaffolding protein PSD95, through their main
associated protein named stargazin [9], (ii) the postsynaptic
adhesion protein neuroligin tends to aggregate AMPARs
through PSD95 scaffolding protein recruitment [10,11], and
(iii) Ncadherin, a pre-synaptic adhesion protein, can trans-
synaptically interact with the extracellular domain of
AMPARs to limit their diffusion [12] (Fig. 1a). Additional
QD-based SPT experiments coupled with electrophysi-
ology explained why synapses can sustain a stimulation
frequency higher than predicted by showing that synaptic
receptors exchange rapidly within tens of milliseconds [10].

More generally, the incorporation of membrane receptor
motion into the synaptic paradigm further tuned the
understanding of synaptic transmission. These QD-based
SPT experiments have now been extended to a large
spectrum of studies, demonstrating various relationships
between protein motion and physiology [13–16].

Super-resolution microscopy and first
applications to studying postsynaptic
molecule organization
Traditional single particle techniques, based on non-
renewed low probe concentration, provided between ten
and several hundred trajectories per cell. This is insuffi-
cient to gather enough temporal and spatial information to
map the entire protein organization, which is essential to
deciphering its exact physiological role. During the last 15
years, new super-resolution light microscopy techniques
have been developed to circumvent the diffraction limit.
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Synaptic transmission, post-synaptic molecule organization and super-resolution imaging techniques. (a) The current view of the glutamatergic
synapse. Neurotransmitters such as glutamate (blue) are released from pre-synaptic vesicles and diffuse freely across the synaptic cleft, creating a
concentration gradient bathing the post-synapse. Specific receptors to neurotransmitter (here the glutamatergic AMPA type receptor) accumulate in
postsynaptic subsynaptic domains in the vicinity of the release site. Binding of glutamate to AMPA receptors activate them and trigger the synaptic
current. The palmitoylated form of the postsynaptic scaffolding protein PSD-95 analogously groups in nanoclusters inside the postsynaptic density
and are a key organizer of AMPA receptors. (b) Super-resolution imaging methodologies. (Top) STED imaging [17,18] combines two lasers of different
wavelengths to engineer a sub-diffraction-limited effective excitation point spread function (PSF), which is then scanned cross the sample of interest.
Proteins of interest can be labeled by intrabodies fused with fluorescent proteins, for example PF11-GFP targeting palmitoylated PSD95 in the
dendritic spine. (Center) Localization based techniques rely on the activation of a sparse subset of densely labeled fluorescent markers to provide
precise localizations of single molecules. In PALM [22,23], a 405 nm laser is used to activate genetically encoded photoactivatable fluorescent proteins
like mEOS. In dSTORM [24–26,27!!], the sample is imaged in a specific medium that promotes the stochastic blinking of organic fluorophores coupled
to antibody labels. Using spectrally separated fluorophores, nanometer level protein co-organization can be visualized, for example that AMPARs (red)
colocalize with PSD95 (green) only at the extremities of PSD95 nanoclusters. (Bottom) High-density single particle tracking methods following the
localization of single particles over time, making it possible to quantify live protein dynamics. sptPALM [32] uses genetically encoded fluorescent
proteins with excitation light being adjusted to obtain trajectories before photobleaching, whereas uPAINT [34] allows tracking of endogenous proteins
via stochastic live antibody labeling. Super-resolution images on the right column represent PSD95 (top), GluA1/PSD95 (middle) and GluA1 (bottom)
acquired with STED, 2 color dSTORM and sptPALM respectively; extracted from [45!,46!].
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Amongst them, stimulated emission depletion (STED)
microscopy [17,18], structured illumination microscopy
(SIM), [19–21] and single-molecule localization techniques,
such as PALM [22,23] and STORM [24–26,27!!], allow the
observation of biological samples with 10–100 nm spatial
resolution, providing unprecedented insight into molecular
organization. Single molecule-based super-resolution tech-
niques are certainly the most widely used ones; initially
developed for 2D imaging of fixed samples they have been
rapidly extended to 3D [28–31] and to living cells. They
have been combined with tracking of genetically encoded
fluorescent proteins (sptPALM) [32,33!!] as well as organic
fluorophores targeted to endogenous proteins (uPAINT)
[34,35], increasing the labeling density by three orders of
magnitude compared to traditional SPT techniques.
Except for the uPAINT method, which monitors the
stochastic binding of a freely diffusible fluorescent probe
to a protein of interest, PALM-based method and STORM-
based method use laser-induced stochastic photoactivation
or photoswitching of fluorescent probes between the on and
an off states to isolate single molecules. They allow locating,
tracking and counting a substantial portion of the protein of
interest in its native cellular environment [36–38], making it
possible to decipher the composition, structure and organ-
ization of molecular complexes with a spatial resolution of a
few nanometers and a temporal resolution down to the
millisecond. This opens a window into the understanding of
complex molecular organization that, until now, could not
be addressed by the techniques of classical biology, bio-
chemistry and microscopy.

Concomitantly to the development of these new micro-
scopy techniques, the application of improved electron
microscopy (freeze-fracture replica, pre-embedding) and
synaptic modeling alluded to a potential sub-compart-
mentalization of the synapse [39,40]. Glutamate diffusion
modeling revealed that glutamate does not encompass
the entire post-synapse after its release but covers only a
200 nm diameter extent [41]. Recent mathematical
analysis of live high-density single protein tracking data
have demonstrated that AMPARs in hippocampal den-
drites move to attracting interaction potential wells smal-
ler than the diffraction limit [42]. These models sustained
the assumption that receptor clustering and relative pos-
ition inside the post-synapse with respect to the gluta-
mate release site determines the synaptic strength.

While diffraction limited microscopy techniques do not
provide sufficient resolution to decipher such protein
organization, the emergence of super-resolution tech-
niques has rendered the protein distribution inside
sub-synaptic compartments accessible. The first nan-
ometer scale study of post-synaptic molecular organiz-
ation was performed using STORM on fixed brain slices
[43]. In this work, Dani et al. classified various pre-
synaptic scaffolding protein and post-synaptic scaffolding
protein as well as the two main neurotransmitter receptors

(AMPA and NMDA) as a function of depth relative to the
synaptic cleft with 50 nm resolution. This study mainly
focused on protein position across the synaptic cleft and
provided few details on sub-compartment organization in
the membrane. In 2013, three papers employed different
complementary super-resolution techniques to tackle the
nano-organization of AMPAR and postsynaptic scaffold-
ing proteins (Fig. 1b). MacGillavry et al. used fixed and
live PALM on mEOS2 fused to PSD95, Homer and other
scaffolding proteins [44]. Fukata et al. [45!] applied
STED microscopy to study the localization of a particular
form of PSD95 presenting a membrane-anchoring palmi-
toyl. Finally, Nair et al. [46!] mainly focused on AMPAR
nano-organization and relative alignment with PSD95 by
utilizing uPAINT, sptPALM, dSTORM and STED
nanoscopy techniques, in addition to electron micro-
scopy. Each technique presents advantages and potential
limits. For example, uPAINT allows long lasting trajec-
tories recordings, but the relatively low labeling density is
insufficient to map all receptors, while sptPALM delivers
a dense AMPAR map, but the necessity of overexpression
can affect endogenous organization. In the following,
these three papers are discussed in detail.

AMPAR are organized in nanodomains
The various different imaging methodologies used in
these three studies converged to the common conclusion
that AMPARs are organized in clusters much smaller than
the PSD (Fig. 2a). These AMPAR nanodomains were
visible with all used super-resolution techniques as well
as with electron microscopy, exhibiting a homogeneous
size distribution sharply centered around a 80 nm half-
maximum. Such a well-defined size could reflect a
specific molecular organization of a subarea of the post-
synaptic density. Each synapse presented between 0 and
4 AMPAR nanodomains, showing a linear relationship
with the PSD size. Electron microscopy images revealed
that poly-nanodomain synapses could arise from either
the presence of multiple independent PSDs each facing
individual presynapses, or separate nanodomains on a
larger PSD. The average center-to-center distance be-
tween two nanodomains was measured to be 500 nm, with
only 12% closer than 250 nm, suggesting that a single
glutamate release cannot affect multiple nanodomains.

Nair et al. also investigated nanodomain composition from
dSTORM data, estimating around 20–25 individual
AMPA receptors per nanodomain. The characterization
of the various AMPAR dynamic behaviors inside the
synapse using sptPALM and uPAINT demonstrated that
AMPA receptors containing GluA2 or overexpressed
GluA1 subunits are mainly immobile inside nanodomains
but diffuse freely between them (Fig. 2b and c). These
results revealed a strong and unexpected heterogeneity of
AMPAR distribution and motion inside a single synapse,
which could be explained by a previously unobserved
scaffolding protein sub-organization.

122 Molecular imaging
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PSD95 is assembled in nanoclusters
To explore such local potentiation of a PSD subarea,
various groups investigated the organization of PSD95,
one of the main scaffolding proteins, either in its ensemble
[44,46!] or exclusively its palmitoylated form [45!]. They
all led to the similar conclusion that PSD95 covers the
entire postsynaptic density but, similarly to AMPARs, is

over-concentrated in subdomains measuring around
150 nm in diameter (Fig. 3). PSD95 organization, observed
with either sptPALM, dSTORM or STED techniques,
presented a heterogeneous distribution, with a low con-
centration encompassing the entire PSD and smaller areas
of overaccumulation (around 100 nm in size and with an
enrichment factor of 1.8). While the presence of these
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Nanometric organization and dynamics of AMPA receptors. (a) AMPARs are organized in nanoclusters. Left: diffraction limited image of AMPARs
(GluA2 subunit) labeled with primary antibody coupled to Alexa647 in a dendritic spine. Middle: Super-resolution image of GluA2-containing AMPARs
inhomogeneously distributed at the surface of the post-synapse, showing both individual receptors and nanodomains concentrating a large number of
receptors. Right: Quantitative estimation of the average number of receptors per individual objects. Values have been normalized based on the
intensity distribution of single receptors. Green circles, with a ratio close to one, show single receptors, while the red surface shows a nanodomain
composed of about 30 receptors. (b) Non-homogeneous spatial and dynamic distribution of AMPAR revealed by sptPALM. Left: Intensity super-
resolution image showing nanodomains located at spine heads. Right: Map of diffusion coefficient computed from high-density sptPALM data,
showing the non-homogeneous dynamic behavior of receptors that correlated with nanodomain location. Color bar units are in Log(D(mm2/s)). (c)
AMPARs move slower inside nanodomains and faster in between them. Left: Red trajectories (D < 10"3 mm2/s) colocalize with nanodomain locations,
while cyan ones (D > 10"2 mm2/s) show AMPARs moving faster outside nanodomains. Middle: Cumulative distribution of AMPAR diffusion coefficients
inside (red) and outside (cyan) nanodomains, illustrating that AMPARs move slower inside nanodomains and faster outside. Right: Mean square
displacement of molecules inside (red) and outside (cyan) nanodomains, showing that AMPARs are confined within nanodomains while they move
freely outside.
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PSD95 nanoclusters is widely accepted, the number of
clusters per synapse remains controversial. Concurring with
the results on AMPARs demonstrated by Nair et al., Fukata
et al. counted between one and four nanoclusters of PSD95
per synapse, where MacGillavry et al. detected mainly one
single PSD95 cluster per synapse (at more than 70%).
Interestingly, a correlation between synaptic size and clus-
ter number is reported. Larger synapses contained more
PSD95 nanoclusters, and the increase of PSD95 palmitoy-
lation mediated by DHHC2 overexpression tended to
increase PSD95 cluster number and enlarge the synapse.

Both the presence of PSD95 subclusters and the previous
identification of AMPAR nanodomains suggest a stable
local potentiation within the PSD. To validate this hypoth-
esis, all three groups performed time lapse studies. FRAP
experiments by Fukata et al. showed a constant recycling of
palmitoylated PSD95, but a conservation of overall
nanocluster structure over the course of at least one hour.
This stability is consistent with time-lapse sptPALM exper-
iments realized by Nair et al., demonstrating the immobility
of more than 30% of AMPAR nanodomains for at least
45 min. However, sptPALM experiments performed by

MacGillavry et al. on PSD95 described a more dynamic
behavior, with clusters varying in their number, shape and
position between 5-min intervals.

PSD95/AMPAR nanoscale colocalization and
implications to neurophysiology
The nanoscale colocalization of PSD95 and AMPAR was
investigated in basal conditions and as a function of synap-
tic activity by multicolor super-resolution microscopy.
Interestingly, the expected PSD95/AMPAR nanocluster
colocalization was not conclusively demonstrated. While
Nair et al. and Fukata et al. could not demonstrate a full
colocalization between nanodomains of endogenous
AMPARs and endogenous PSD95 clusters (Fig. 3), Mac-
Gillavry et al. observed a strong overlap between AMPAR
clusters and overexpressed PSD95. This discrepancy was
potentially explained by Nair et al. through the demon-
stration that overexpressing PSD95 tends to increase the
size of AMPAR nanodomains, which could have favored
the colocalization between the two proteins. By modulat-
ing synaptic activity, Fukata et al. showed that the silencing
of neuronal activity triggered an increase in PSD95 cluster
size, while an increase in activity transiently decreased
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PSD95/AMPARs organization. (a) PSD95 and AMPAR partially colocalize. Left: Two-color dSTORM super-resolution image of PSD95-RhodRed (red)
and AMPARs-Alexa647 (green) showing partial overlap of nanodomains at the tip of the PSD. Right: 3D surface rendering of two color super-resolution
data acquired with astigmatism based 3D dSTORM. PSD95 (in red), GluA1 containing AMPARs (green) and nanodomains (violet). Nanodomains are
either appose or colocalized with the PSD95 tip. (b) Colocalization and organization of PSD95 vs AMPARs. Left: intensity profiles performed on images
in A, illustrating (i) that PSD95 is organized in coarser domains compared to AMPARs, and (ii) that PSD95 and AMPA are partially colocalized. Numbers
show different levels of organization and colocalization: (1, 2, 4, 6) show single AMPARs; (3, 5) represent nanodomains either overlapping (3) or
apposed (5) with the PSD. When colocalized with PSD95, the presence of AMPARs is in general accompanied by an increase in PSD95 intensity (3, 4,
5). Right: Nanocluster diameter distribution of PSD95 (red) and AMPARs (green) showing that PSD95 is organized in coarser domains compared to
AMPARs.
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their size and disassociated AMPARs from palmitoylated
PSD95 clusters. Meanwhile, PSD95 cluster size remained
unaffected by activity in MacGillavry et al., a discrepancy
potentially explained by the high treatment strength in
Fukata et al. (KCl depolarization) compared to the softer
one in MacGillavry et al. (biccuculine).

The synaptic activity dependent modulation of PSD95/
AMPAR colocalization reveals the importance of AMPAR
organization in the control of synaptic transmission.
Indeed, the intensity of the mEPSC, the electrical
response attributed to a single synaptic vesicle release,
was previously considered to be proportional to the
quantity of glutamate in the vesicle. The discovery of
the inhomogeneous organization of postsynaptic
AMPARs introduces two new postsynaptic factors: (i)
the quantity of AMPARs per nanodomain and (ii) their
precise position with respect to the release site.

Nair et al. established that the AMPAR content inside a
nanodomain could be sufficient to mediate the current with
an intensity similar to a mEPSC (#17 pA in cell cultures).
This correlation between nanodomain composition and
synaptic current is strengthened by the fact that decreasing
the number of AMPARs per nanodomain via expression of
PSD95 shRNA triggers a proportional decrease in the
current intensity. This nanodomain AMPAR content could
represent the postsynaptic quantum of synaptic response.

The other important parameter could be the physical
correlation between release site and postsynaptic
nanoclusters. This question was investigated both in Nair
et al. and MacGillavry et al., who modeled the variation of
synaptic current intensity as a function of the distance
between release site and AMPAR nanodomains. Direct
release site and nanodomain opposition was not required
to trigger maximum synaptic response, but a shift greater
than 100 nm rapidly decreased the current intensity,
validating the hypothesis that both the precise localiz-
ation and receptor density of nanodomains are essential to
synaptic transmission efficiency.

Conclusion
In this review, we demonstrated that advances in micro-
scopy have imparted new conceptual steps to the un-
derstanding of synaptic function. Application of super-
resolution microscopy techniques has revealed that
PSD95 accumulates in sub-PSD clusters, which reorgan-
ize and resize during synaptic activity and strongly con-
centrate AMPARs. AMPARs also concentrate inside the
synapse in nanodomains of about 80 nm in diameter,
partially colocalized with PSD nanoclusters. This unex-
pected nanoscale organization brings to light that synaptic
transmission regulation does not depend exclusively on
presynaptic vesicle content, but additionally on AMPAR
nanodomain composition and alignment with the release
site.

To decipher the exact physiological role of such AMPAR
organization, it seems important to study the variability
between various synapses in the brain. Electron micro-
scopy experiments have already reported variation of
molecular organization as a function of neuron type
[47], and recent publications have demonstrated the
feasibility of single-molecule experiments in brain slices
[43,48!]. The ultimate step to understanding the intrinsic
functioning of the synapse will be correlating the pre-
synaptic organization and post-synaptic organization with
electrophysiological recording at the single synapse level.
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Localization-based super-resolution techniques open the  
door to unprecedented analysis of molecular organization. 
This task often involves complex image processing adapted to 
the specific topology and quality of the image to be analyzed. 
Here we present a segmentation framework based on Voronoï 
tessellation constructed from the coordinates of localized 
molecules, implemented in freely available and open-source 
SR-Tesseler software. This method allows precise, robust and 
automatic quantification of protein organization at different 
scales, from the cellular level down to clusters of a few 
fluorescent markers. We validated our method on simulated 
data and on various biological experimental data of proteins 
labeled with genetically encoded fluorescent proteins or 
organic fluorophores. In addition to providing insight into 
complex protein organization, this polygon-based method 
should serve as a reference for the development of new types of 
quantifications, as well as for the optimization of existing ones.

The recent development of optical super-resolution techniques 
represents a fundamental step toward understanding biological 
organization. Single-molecule localization microscopy (SMLM) 
techniques, such as photoactivated localization microscopy 
(PALM)1,2 and stochastic optical reconstruction microscopy 
(STORM)3–5, rely on the cumulative spatial localization of fluo-
rescently tagged markers6,7. Historically, image analysis has had 
an important role in microscopy, revealing mechanisms under-
lying biological processes. It requires automatic segmentation 
for statistical, nonbiased descriptions of protein organization. 
Unfortunately, segmentation usually requires the implementation 
of complex techniques adapted to image topology and quality, and 
few studies have taken into consideration the pointillist nature of 
localization-based super-resolution data.

Recently, solutions such as K-Ripley8 functions have been pro-
posed to quantify clusters directly from molecule positions and 
have been applied to quantify protein organization in SMLM 
data9,10. Similarly, the pair-correlation method11 identifies molec-
ular interactions inside clusters by analyzing the distance correla-
tion functions between localizations. All these methods, however, 

SR-Tesseler: a method to segment and quantify 
localization-based super-resolution microscopy data
Florian Levet1–5, Eric Hosy1,2, Adel Kechkar1,2,6, Corey Butler1,2,7, Anne Beghin1,2, Daniel Choquet1–5 &  
Jean-Baptiste Sibarita1,2

are restricted to the analysis of small clusters of relatively homo-
geneous size. Moreover, they do not provide precise information 
about the number, position and morphology of clusters. Density-
based spatial clustering analysis with noise (DBSCAN) allows the 
classification of particles in an image into clusters12. It has been 
recently applied to SMLM data13–15 but is known to be sensitive 
to background noise and difficult to parametrize experimentally, 
and therefore difficult to generalize14,16. One can also analyze 
complex molecular organization by summing all localizations into 
small pixels and applying dedicated intensity-dependent analysis 
strategies. These quantifications usually combine advanced filter-
ing and analysis methods, which can be difficult to reproduce. 
Additionally, intensity-based image reconstructions of localization 
data are known to affect image resolution17, and segmentation per-
formed directly from the localization coordinates is preferred.

To overcome these limitations, we introduce a framework named 
SR-Tesseler, based on Voronoï diagrams, for the precise and auto-
matic segmentation and quantification of protein organization at 
different scales from the same set of molecular coordinates, using 
a local density parameter. We demonstrate its capability to robustly 
segment different types of biological data and to precisely quantify 
small molecular complexes as well as more heterogeneous protein 
organization. SR-Tesseler software has a graphical user interface 
that provides direct visual feedback of the results, and the software 
is freely available under a GPLv3 license.

RESULTS
Voronoï diagram reconstruction from molecule localizations
Voronoï tessellation18 is a method of subdividing space into a 
number of polygonal regions centered on a set of points, called 
seeds. These polygonal regions are defined in terms of Euclidean 
distances and provide information on the neighborhood  
surrounding the seeds. Considering S as a set of seeds in 2, 
where 2 is the real-space operator, each seed si  S, i = 1, 2, …, n,  
defines a region of space containing all points closer to si than 
any other seed of S. The regions determined by all seeds si,  
called polygons, form the mosaic of tiles that defines the Voronoï 
diagram. Voronoï diagrams are traditionally used in domains 

1Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France. 2Interdisciplinary Institute for Neuroscience, Centre National de la Recherche 
Scientifique (CNRS) UMR 5297, Bordeaux, France. 3Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France. 4Bordeaux Imaging Center, CNRS UMS 3420, 
Bordeaux, France. 5Bordeaux Imaging Center, INSERM US04, Bordeaux, France. 6Ecole Nationale Supérieure de Biotechnologie, Constantine, Algeria. 7Imagine Optic, 
Orsay, France. Correspondence should be addressed to J.-B.S. (jean-baptiste.sibarita@u-bordeaux2.fr).
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as different as three-dimensional modeling, path planning19 
and remeshing20. Their use in the field of localization-based 
microscopy data has been mostly dedicated to visualization 
purposes17,21. Delaunay triangulation, which is the dual of 
the Voronoï diagram, has been previously applied for cluster  
analysis of dSTORM (direct stochastic optical-reconstruction 
microscopy) data to characterize cardiac receptor organization 
in mouse myocytes22, but there is no existing general analysis 
framework for single-molecule data using tessellation.

In the case of SMLM data, the diagram is built from molecule 
coordinates as the seeds. As the Voronoï edges are equidistant from 
the two nearest seeds, the simplest way of generating the diagram is 
to compute the perpendicular bisectors between the seeds (Fig. 1a).  
A Voronoï edge is a portion of its corresponding bisector. It is 
defined such that a point q of the bisector is part of the Voronoï 
edge between seeds si and sj if q is closer to si and sj than to any 
other seed. This ensures that there is no intersection between any 
Voronoï polygons. Each polygon can be considered as the influence 
region of its corresponding seed, and geometric characteristics such 
as polygon area or shape can be used to describe the neighborhood 
of the seeds. In contrast to Delaunay triangles, which are shared 
by three molecules, Voronoï polygons are centered on individual 
localizations, making Voronoï tessellation better suited to describe 
single-molecule properties and neighborhoods. Moreover, each 
Voronoï polygon has on average six neighbors, making the struc-
ture more robust to labeling density and data organization.

Because of the large number of localizations provided by SMLM, 
performance of the diagram-generation algorithm is a critical 
issue. We used the sweep line algorithm23, implemented in the 
Computational Geometry Algorithms library (http://www.cgal.org/), 
with which a Voronoï diagram of hundreds of thousands of localiza-
tions can be generated in a few seconds on a standard computer.

Multiscale segmentation using a Voronoï diagram
A Voronoï diagram subdivides a super-resolution image into poly-
gons centered on localized molecules. Each polygon Pi of seed  
si has an area Ai and neighbors (Fig. 1b). First-rank neighbor-
ing polygons P1i,j of si are defined by the n1i polygons of area 
A1i,j sharing edges with Pi, centered on the seeds s1i,j. Similarly, 
higher rank polygons Pki,j, k > 1, are defined as the nki polygons 
sharing edges with Pk−1i,j. The neighborhood of si at the kth rank 
is then defined by the {n1i, …, nki} localized molecules. For each 
seed si, various parameters can be computed, such as the area Aki, 
the density ki, the mean distance dki, the shortest distance (i.e., 
distance to the closest seed) ki and the shape index ki (Online 
Methods). These parameters provide quantitative information 
on the localizations surrounding each seed. Therefore, Voronoï 
diagrams are a natural way to characterize and efficiently navi-
gate the molecular neighborhood of each localized molecule at 
multiple scales, where regions with higher molecular densities are 
composed of smaller and denser polygons (Fig. 1c).

Once the Voronoï diagram has been reconstructed and the 
parameters have been computed, the object segmentation pro-
cess is computed in three steps. First, the histogram and statis-
tics (average and s.d.) of each parameter are computed from all 
the polygons. Second, one or several parameters of interest are 
thresholded on the basis of their histograms and statistics, and 
polygons with parameters of interest in the defined thresholds 
are selected. Third, the software computes objects by merging all 
selected polygons that are touching each other and defines object 
outlines by connecting all localizations belonging to the borders 
of the objects.

Thresholds can be either manually adjusted or automatically 
determined to avoid user bias. We defined a general criterion for 
automatic thresholding, which the user can infer by comparing 
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Figure 1 | Voronoï-based segmentation. (a) The  
principle of Voronoï diagram construction: edges  
of Voronoï polygons are located equidistant from  
the nearest two seeds. If there are only two seeds,  
their Voronoï polygons are delimited by their  
perpendicular bisector. When a new seed is added,  
this bisector is cut by the bisectors computed  
between the old seeds and the new one. This  
process is repeated for each new seed to compute  
the Voronoï diagram. (b) Each seed has a polygon  
(dark orange) defined by its neighboring seeds.  
The 5 medium-orange and 11 light-orange polygons  
are defined as the first-rank and second-rank  
neighboring polygons of the original seed and the  
first-rank seeds, respectively, because they share a  
common edge with those seeds. (c) Three different  
magnification views of a Voronoï diagram built from an experimental GluA1-mEOS2 PALM data set, showing a dendrite (blue outline), a spine (red 
outline) and a cluster (magenta outline). (d) Automatic segmentation of the Voronoï diagram on the basis of the first-rank density, with a spatially 
uniform distribution to which a threshold of twice the average localization density in the image was applied (red threshold in inset) (left) and a 
nonuniform data set analyzed with the same threshold, where selected polygons were merged (right). 

http://www.cgal.org/
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the localization distribution to a reference distribution that is 
spatially uniform. The average density  of such a distribution 
can be approximated as the number of localizations divided by 
the image area. With the first-rank density 1i as the main param-
eter, the automatic segmentation is achieved through selection 
and merging of all the polygons having 1i >  (Fig. 1d), where 

 is a positive multiplicative coefficient. As a control, the same 
threshold applied to a reference distribution did not provide any 
objects (Fig. 1d).

Automatic segmentation of various biological data
To test the versatility of SR-Tesseler, we automatically segmented 
multiple levels of organization in different types of biological data, 
using a unique density parameter 1i > 2  (Fig. 2a–c). On neu-
ronal data, we could automatically segment both the neuronal  
cell body and the molecular clusters of receptors of GluA1  
fused to the mEOS2 fluorescent protein24 (GluA1-mEOS2;  
Fig. 2a). Similarly, we could automatically extract the three  
levels of organization (cell contour, adhesion sites and inter-
action clusters) in live PALM data of fibroblasts expressing 
integrin- 3−mEOS2 (ref. 25) (Fig. 2b). Finally, we could identify  
nonisotropic structures such as microtubules in dSTORM data 
of COS7 cells labeled with tubulin−Alexa Fluor 647 (Fig. 2c). 
Another important feature of SR-Tesseler is its robustness to 
noise; segmentation of noisy data and cleaned data led to very 
similar results (Fig. 2c). As a comparison, the analysis of the 
same data with different popular automatic thresholding methods 
implemented in ImageJ software26 provided very different and 
arbitrary results that were strongly dependent on image topology 
(Supplementary Fig. 1).

It is important to note that even if in most cases we used the 
same automatic threshold based on twice the average molecule 
density , the optimal threshold may vary slightly depending on 
the difference in molecular densities inside and outside the struc-
ture of interest. Similarly, we chose the first-rank density 1i as 
the main parameter for segmentation, but many other parameters 

or combinations of parameters could be used, broadening the  
possible range of biological applications.

Validation on simulations and ground truth data
To validate the capability of SR-Tesseler to identify and quantify 
clusters of single molecules, we compared it to the K-Ripley clus-
tering method9,10,27,28 using simulated data. We simulated single-
molecule data of 50-nm-radius clusters with various molecular 
densities  and enrichment factors R (Fig. 3a–c). For all condi-
tions, we successfully identified all the clusters using the Voronoï 
method. We could precisely compute the cluster dimensions, as 
well as their position in the super-resolution image and their mor-
phological properties (circularity, shape index and orientation). 
It was also possible to retrieve the number of localizations per 
cluster and the enrichment factor R. In the special situation where 
there is very low background, which is unlikely in experimental 
data, the density criterion underestimates the cluster size. In such 
cases, using a shortest distance parameter based on the localiza-
tion accuracy, such as ki < 30 nm, allows precise retrieval of 
cluster size (Fig. 3b–d). This criterion works only when clusters 
are well separated from each other and when the background is 
very low (Supplementary Fig. 2a).

For each condition, we compared the results obtained with 
the two methods by computing the ratio between the simulated 
and measured cluster sizes. Although our method performed 
robustly with respect to all the parameters of the simulation, the 
K-Ripley method was more sensitive to the R ratio. When the  
background increased (i.e., when R decreased), the efficiency 
of the K-Ripley function dropped, whereas the Voronoï-based 
method still performed robustly (Fig. 3d). We also analyzed  
simulated data with different R ratios using the DBSCAN 
method12. Although we were able to define a set of parameters 
that allowed successful segmentation of the clusters, none of  
these parameters allowed precise identification of clusters  
with a different background, illustrating the sensitivity of 
DBSCAN with respect to molecular density and background 

Tubulin–Alexa Fluor 647

1 m

Integrin- 3–mEOS2

2 m

100 nm

500 nm

GluA1-mEOS2

1 m 100 nm500 nm

a b

c

Figure 2 | Automatic segmentation of various proteins and cell types.  
(a) Segmentation of a live neuron expressing GluA1-mEOS2: original data  
set composed of 23,931 detections (left) and automatic segmentation  
performed with SR-Tesseler (left; inset shows magnification of two  
clusters). (b) Segmentation of integrin- 3−mEOS2 expressed in  
fibroblasts. Left, original data set (blue spots) composed of 276,662  
localizations, cell contour (red outline), focal adhesion sites (red  
intracellular contours) and nanoclusters (black). Right, magnification of an adhesion site showing the Voronoï tessellation (black), adhesion site (red) 
and nanoclusters (green). (c) Segmentation of dSTORM tubulin−Alexa Fluor 647 data. Left, original data set composed of 130,493 localizations (blue 
spots) and the segmentation obtained with SR-Tesseler (red outlines). Right, filtered data set based on the quality of the fit and axial coordinates, 
composed of 110,438 localizations (blue spots), and the corresponding segmentation obtained with SR-Tesseler (red outlines). We performed all 
segmentations (except the fibroblast outline) by thresholding the first-rank density by twice the average localization density in the image.
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(Supplementary Fig. 2b). Localization precision also did not have 
much influence on the segmentation efficiency of SR-Tesseler 
(Supplementary Fig. 3a).

Ripley’s functions provide the radius of maximum aggrega-
tion and are therefore not well suited for distinguishing clusters 
with heterogeneous shapes and sizes. SR-Tesseler has no such 
restriction; we were able to identify two different populations of 
200 and 100 clusters with distinct segmented areas (Fig. 3b,c,e) 
with surface accuracy of 95.51%  5.8% and 87.51%  5.82%, 
respectively.

We then validated the capability of SR-Tesseler to perform pre-
cise molecular counting on data obtained from a nanotemplate 
with known stoichiometry. To this end, we analyzed a subset of 
the PALM data of human glycine receptor (GlyR) expressed in 
Xenopus laevis oocytes described in ref. 29. GlyR is a pentameric 
structure composed, when the subunits are coexpressed, of three 

 and two  subunits, such that expression of  or  subunits 
fused to mEOS2 or PAmCherry, respectively, can serve as a  
reference stoichiometry. Using a density criterion 1i >  and a 
shortest distance parameter ki > 50 nm, we were able to iden-
tify most isolated clusters (Fig. 3f–h) 
and determine the dimeric or trimeric  
stoichiometry after blinking correction30. 
We computed the photoactivation effi-
ciency of the two proteins by binomial fit 
of the measured number of -GlyR and 

-GlyR subunits (Fig. 3i). -GlyR−mEOS2 had a photoactiva-
tion efficiency of 70%, whereas -GlyR−PAmCherry and -
GlyR−PAmCherry had equivalent photoactivation efficiencies 
of 50% and 53.5%, respectively ( 2 = 0.9573). These results were 
similar to those previously published for these particular data 
sets29.

Analysis of glutamate-receptor organization in neurons
We applied SR-Tesseler to the analysis of PALM and dSTORM 
data of GluA1 subunits (one of the four glutamate acid–receptor  
subunits) in neuronal cell cultures (Figs. 4 and 5). These 
AMPARs ( -amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors) have been reported to be densely concentrated at 
the post-synapse in clusters less than 100 nm in diameter called 
nanodomains24,31–33. As a negative control, we also analyzed a 
GPI-anchored protein that shows no clear organization34.

We obtained the neuron contours of both GluA1 and GPI 
live PALM data by thresholding the localizations, with 1i > 2 I, 
where I is the average localization density in the whole image  
(Fig. 4a–d). This first segmentation yielded a well-defined neuronal  

a b

c

d e

f g h

i

Figure 3 | Segmentation and quantification 
of simulations and well-characterized 
nanotemplates. (a) Simulated clusters with a 
density of 0.01 mol nm−2 and an enrichment 
ratio of 20. (b,c) Segmentations of individual 
clusters with densities of 0.01 mol nm−2 (b) 
or 0.0025 mol nm−2 (c) and enrichment ratios 
of `, 10 and 2.5 (from left to right in both 
panels). We obtained outlines by thresholding 
the first-rank density by twice the average 
localization density (red) and a shortest 
distance parameter of 30 nm (magenta); the 
theoretical outline is in cyan. (d) Comparison 
between segmentation by SR-Tesseler and 
segmentation by the K-Ripley function (black) 
for clusters of different densities, different 
numbers of clusters (50 and 300) and different 
ratios of background to cluster density  
(0, 5%, 10%, 20% and 40%). (e) Segmentation 
of triangular clusters with densities of 0.01 mol 
nm−2 and enrichment ratios of 20 (top) and 
2.5 (bottom). (f−i) Quantitative analysis of 

- and -subunit content in GlyR. Shown are an 
example of a localization data set of  
-GlyR−mEOS2 (f) and magnification with  

the corresponding Voronoï diagram (g).  
We segmented individual GlyRs (red contours) 
by combining thresholding of the first-rank 
density by the average localization density 
with a shortest distance parameter of 50 nm 
(h). Magenta points represent the molecule’s 
coordinates after blinking correction. Bar 
graphs show the distribution of the measured 
number of -GlyR and -GlyR subunits for 
various fluorescent proteins (black) and their 
corresponding binomial distributions (red) (i).
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shape from which we could extract the dendritic protein organiza-
tion. We computed potential clusters using a threshold 1i > 2 N, 
where N is the average localization density inside the neuron 
contour (Fig. 4b,d). We further analyzed the cluster distributions 
after blinking correction from 159 or 23 clusters obtained from 
62 or 29 spines of three cells expressing GluA1-mEOS2 or three 
cells expressing GPI-mEOS2, respectively (Fig. 4e,f).

For dSTORM data analysis (Fig. 5), the stochastic blinking 
pattern of organic fluorophores prevents the use of blinking- 
correction methods, but SR-Tesseler analysis nevertheless extracted 
quantitative information about GluA1 organization. Our analysis 
of the background area, using a threshold 1i > B combined with 
a shortest distance parameter 1i < 30 nm, where B is the average 
localization density inside the background area, revealed isolated 
clusters corresponding to fluorescent secondary antibodies stick-
ing nonspecifically to the coverslip (Fig. 5b,c). From an analysis of 
these clusters, we estimated the experimental resolution (33.9 nm   
12.9 nm ( s.e.m.) at full-width at half-maximum (FWHM); Fig. 5d) 
and the number of localizations per fluorophore (22 localizations, 
interquartile range (IQR) of 13−40, n = 853; Fig. 5e), which we then 
used as a reference for receptor quantification. We could efficiently 
segment dendritic objects using two levels of segmentation, which 
revealed isolated AMPARs as well as a dense molecular organization 
inside the spine composed of single AMPARs surrounding a few 
clusters (Fig. 5b,c). We defined single AMPARs as objects inside 
the dendrite composed of one or several fluorophores and having 
a diameter 1  d  2, with 1 = 8 nm and 2 = 59 nm being the 
minimum and the maximum diameters, respectively, defined as 
95% of the Gaussian fitting the reference distribution (Fig. 5f,g). 
We defined AMPAR nanodomains as clusters composed of several 
AMPARs inside the dendrite with a diameter d > 2 (Fig. 5h).

SR-Tesseler analysis of both PALM and dSTORM data yielded 
quantitative results similar to those in recently published  
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work24,31–33. AMPARs are clustered in nanodomains with mean 
diameters of 81.29 nm (IQR, 61.03−107.71 nm) and an average of 
2.56 ( 0.16, s.e.m.) nanodomains per spine for PALM and 73.24 nm 
(IQR, 62.21−97.17 nm) and 2.4 ( 0.13, s.e.m.) for dSTORM. As a 
comparison, K-Ripley analysis performed on the whole image did 
not provide any obvious clustering because of the complex multiscale 
organization of neuronal cells (Supplementary Fig. 3b). However, 
when we analyzed regions of interest centered on spines, we were able 
to measure similar nanodomains of 91.2 nm (IQR, 83.2−112 nm)  
(Supplementary Fig. 3c). In contrast, we could not clearly identify 
clustering with the GPI-mEOS2 protein, with only 0.79 ( 0.19, s.e.m.) 
clusters per spine with a width of 33.2 nm (IQR, 24.5−44.8 nm),  
corresponding to the resolution of the instrument.

We extracted multiple additional physiological parameters 
from these analyses. For example, both PALM and dSTORM data 
analyses revealed a linear relationship between nanodomain area 
and AMPAR content, with a measured density of 4,507 AMPARs 

m−2 (R2 = 0.92, n = 159 nanodomains) for PALM data and 2,100 
AMPARs m−2 (R2 = 0.95, n = 225 nanodomains) for dSTORM data 
(Figs. 4g and 5i). Discrepancies could be due to differences in label-
ing, overexpression (in the case of tagged receptors) or differences 
between live and fixed neurons. dSTORM data analysis revealed an 
average of 13.51 (IQR, 9.15−23.45) AMPARs per nanodomain and 
showed that spines had 19.22 single AMPARs ( 0.67, s.e.m.). These 
results suggest that nanodomains are potential crystalline structures 
concentrating about 63% of the AMPARs within the spine.

DISCUSSION
SR-Tesseler uses Voronoï tessellation to automatically segment 
SMLM data. Because information is directly computed from the 
coordinates of localized molecules, SR-Tesseler does not require any 
image reconstruction before analysis, which is known to influence 
the quantifications. SR-Tesseler allows quantification of molecular 

Figure 4 | Segmentation and quantification  
of experimental PALM data. (a−d) SR-Tesseler  
applied to live PALM data from GPI-anchored  
protein–mEOS2 (a,b) and GluA1-mEOS2 (c,d)  
receptor subunits expressed in neuronal cell  
cultures. Images show first-rank density maps  
computed from the Voronoï diagram, normalized  
by the average localization density. Blue lines  
represent the neuron contour. Insets show  
zoomed views of spines, with black lines  
representing the cluster contours. Histograms show the distribution of first-rank density for the two proteins. (e−g) Cluster analysis of 159 clusters  
and 36 clusters identified in 62 spines and 29 spines in cells expressing GluA1-mEOS2 and GPI-mEOS2, respectively, reflecting three different single-
molecule experiments. (e) Synaptic cluster size distribution for the indicated proteins. (f) Number of nanodomains as a function of spine area for  
GluA1-mEOS2 (R2 = 0.98, n = 62 spines; error bars indicate s.e.m.). (g) Number of AMPARs plotted as a function of the nanodomain surface area  
(R2 = 0.92, n = 159 nanodomains).
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organization at various cellular levels and stoichiometry determina-
tion of both genetically and immunolabeled proteins.

SR-Tesseler is insensitive to cell shape, molecular organiza-
tion, background and noise. This is very important for efficient 
and nonbiased comparisons of different biological condi-
tions affecting molecular organization and for quantifications 
of various proteins and cell types. It provides visual feedback 
on the segmentation and statistics directly on the localization 
map through a very simple and intuitive graphical user inter-
face. Its multiscale capability can be seen as a Matriochka 
analysis, which allows protein organization to be deciphered  
at multiple levels of organization.

However, whereas SR-Tesseler can provide precise quantitative 
information on protein organization (for example, morphology, 
surface and/or counting), the interpretation of the stoichiometry 
and counting from the number of localizations requires careful 
controls and calibration on well-characterized reference biologi-
cal samples. This is important in order to avoid misinterpretations 
arising from varying labeling or photoconversion efficiency or 
from incomplete protein folding.

We expect SR-Tesseler to become a method of reference for the 
investigation of molecular organization of one or multiple pro-
teins, in two and three dimensions. Combined with and designed 
for powerful localization-based super-resolution microscopy 
techniques, this analysis method could provide unprecedented 
insight into the molecular organization of cells.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Quantitative parameters computed from the Voronoï diagram. 
Given that each polygon Pi of a seed si has an area Ai and that the 
kth-rank neighboring polygons Pki,j, k > 1, are defined as the nki 
polygons of area Aki,j sharing common edges with Pk−1i,j (Fig. 1b), 
various quantitative parameters can be computed for each seed.

The area of si at the kth rank is defined by 
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The density of si at the kth rank is defined by 
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The mean distance of si at the kth rank is defined by 
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Where d(si, sj) defines the Euclidian distance between si and sj, 
and ski,j defines the seeds of the kth rank of si.

The shortest distance defines the distance between si and its 
closest seed using 

i i i jd s smin( ( , )),
1

The shape index ki of si at the kth rank is defined by the ratio 
of the minor axis to the major axis of the ellipse best fitting ski.

K-Ripley function. The principle of the K-Ripley function  
clustering method is to compare the experimental localization 
distribution with a reference spatially uniform distribution.  
If, for a given distance r, the average number of localizations is 
statistically greater than the number obtained by the reference 
distribution, given by r2, the molecules are organized in clusters.  
The K-Ripley function is defined as 

K r
n

Np r
i

n
i( ) /( )1

1  

where Npi(r) is the number of points in the vicinity of the ith 
detection at a distance r and  is the localization density. A nor-
malization of the K-function such that the expected value is 0, 
known as the H-Ripley function, is defined as 

H r K r r( ) ( )/

The traditional way to compute the cluster radius is to retrieve  
the value of r maximizing H(r), as it represents the radius of maxi-
mum aggregation. Previous work demonstrated that this value 
varies between the radius and the diameter of the clusters35.

Simulations. We have simulated several single-molecule data sets 
organized in clusters of various densities. Simulations consist of 
15 m × 15 m images with randomly placed, nonoverlapping 
clusters of 50-nm radius, each containing a given number of ran-
domly distributed molecules (Fig. 3a). For each simulation, we 
changed the number of clusters (50 and 300), the molecule density 
inside the clusters ( 1 = 0.01 mol/nm2 and 2 = 0.0025 mol/nm2) 
and the density outside the clusters (between 0 and 40% of the 
density inside clusters). We defined R as the enrichment ratio 
between the density of molecules inside the clusters and the den-
sity of molecules outside the clusters. Enrichment ratios R of `, 
20, 10, 5 and 2.5 correspond to density ratios outside clusters of 
0%, 5%, 10%, 20% and 40%, respectively.

We also simulated a mixed population of 300 clusters with 
a density 1 and an R ratio of 5; 200 clusters were circular  
with a 50-nm radius (as in Fig. 3b,c), and 100 were triangular 
inside a 50-nm circle (Fig. 3e).

To test the efficiency of our method with respect to the localiza-
tion accuracy, we degraded our simulation data by randomizing 
the molecule position with various localization accuracies (0, 5, 
10 and 20 nm).

Analysis of well-characterized nanotemplates. Histograms of 
single, double and triple peaks of the GlyR - and -subunits were 
computed after blinking correction of the segmented objects. We 
determined the photoactivation efficiency for the -GlyR condi-
tion by computing the exact solution of the dimeric stoichiometry 
binomial distribution with the observed peaks. For the -GlyR 
condition, peaks were fitted using a trimeric stoichiometry  
binomial distribution (by least-squares optimization)29.

Cluster analysis. Once clusters were identified, cluster size 
was analyzed by principal-component analysis (PCA) by linear  
least-squares fitting. We computed object lengths and widths by 
determining the s.d. along the principal components and mul-
tiplying them by 2.35, equivalent to the FWHM of a Gaussian 
distribution. Object diameter was defined as the average of the 
object’s length and width, whereas areas and numbers of locali-
zations were computed directly from the segmentation outline 
provided by the Voronoï-based method.

Benchmarking. One practical limitation of neighboring methods, 
such as Ripley functions, is that they are time consuming with-
out software optimization. Hence, the algorithm is of complexity 
O(N2) in the case of brute-force implementation, where N is the 
number of localizations. Because the Voronoï diagram is a struc-
ture that allows natural navigation within the neighboring mol-
ecules, we implemented the H-Ripley functions using the Voronoï 
diagram structure. As expected, we obtained a speedup factor of 
more than two orders of magnitude compared with the standard 
brute-force algorithm, showing a complexity of O(M log(N)),  
where M is the number of neighbors. As an example, with our 
Voronoï method and brute-force it took 36 min and 5,451 min, 
respectively, to compute the H-Ripley function on 220,775 mol-
ecules for a search radius ranging from 16 nm to 320 nm with 

r = 16 nm (Supplementary Fig. 3d). This emphasizes that the 
Voronoï structure is perfectly adapted to the type of data provided 
by single-molecule localization techniques and can also be used 
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with time-consuming existing methods such as Ripley or pair-
correlation. Nevertheless, other space-partitioning techniques are 
more suited for speeding up neighboring techniques such as the 
H-Ripley function or pair-correlation. For instance, it only took 
10 min to perform the same H-Ripley analysis with a Quadtree 
implementation36 (Supplementary Fig. 3d).

Correction for artifacts due to multiple single-molecule 
localizations. Accurate segmentation and quantifications of 
single-molecule data require consideration of possible multi-
ple localizations and blinking30,37,38. In the case of genetically 
encoded fluorescent proteins, these multiple localizations occur 
within a distance tolerance  and a blinking-time interval toler-
ance , which have to be precisely estimated to avoid over- or 
undercounting. The photophysical properties of the fluorophores 
can be described by the distribution of three main parameters: the 
number of blinks per molecule before photobleaching (Nblinks), 
the fluorescent on-time (Ton) before a blinking or photobleaching 
event, and the fluorescent off-time (Toff) between two blinking 
events (Supplementary Fig. 4a).

Multiple localizations issuing from the same molecule are reas-
signed to the barycenter position (Supplementary Fig. 4b). As  
and  depend on the localization accuracy and the photophysics 
of the fluorophore under the experimental conditions and may 
fluctuate from one experiment to another, they are estimated for 
each data set. The search radius  is defined as twice the average 
localization accuracy of the microscope. It can be fixed and global 
or dependent on each localization precision, using either 

2 / Nph  

or 

2
12 42 2 3 2

2
( / )a
N

b
aNph ph  

where  is the s.d. of the PSF emitter when fitted with a Gaussian 
model, Nph is the number of photons per localization, a is the 
pixel size and b is the background signal39. These definitions of 
the search radius may be of importance when the local density of 
fluorescent molecules is high (greater than 0.5 mol/ m2), but they 
have no real impact otherwise. To avoid an O(N2) complexity of 
the search algorithm (where N is the number of localizations of 

the data set), we used a Quadtree structure36 to efficiently perform 
the neighborhood queries with a time complexity of O(log(N)). 
The time interval  is computed experimentally in two steps as 
in ref. 30. First initialized to 0 = 20 frames, histograms of the off 
times (Supplementary Fig. 4c), blinks (Supplementary Fig. 4d) 
and on times (Supplementary Fig. 4e) were computed from all 
multiple localizations identified within the neighborhood  and 
time interval . Second, the off-time histogram was fitted with an 
exponential decay function (Supplementary Fig. 4c), and  was 
adjusted to three times the half-life of the exponential. Finally, all 
the multiple localizations were identified and replaced by a single 
detection positioned at their barycenter (Supplementary Fig. 4b), 
and the new Voronoï diagram was computed from the new list 
of localizations. As a control, we estimated the corrected number 
of molecules by dividing the number of molecules obtained with 
 = 0 (number of bursts) by the number of blinks per molecule. 

We computed the number of blinks per molecule by fitting the 
blinking distribution (Supplementary Fig. 4d) with a geomet-
ric distribution and the on-time distribution (Supplementary  
Fig. 4e) with a single exponential decay as in ref. 37. The dif-
ference between the number of molecules determined by the  
off-time method and that determined by the blinking method for 
our experimental data (n = 4,000,714 localizations, 6 cells, and 2 
different proteins) was 1.66%  0.91%.

Code availability. The software is freely available for academic 
use as Supplementary Software or (including updated versions) at 
http://www.iins.u-bordeaux.fr/team-sibarita-SR-Tesseler. Source 
code is available upon signing of a material transfer agreement.
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Critical cellular functions including adhesion and signalling
are performed by dynamic macromolecular platforms
at the cell membrane. Synaptic neuronal contacts

are examples of such complex structures, where protein
concentration is extremely high and lies in a very confined
and compartmentalized space1. Recently developed fluorescence-
based super-resolution imaging (SRI) techniques, including
STimulated Emission Depletion (STED)2, PhotoActivation
Localization Microscopy (PALM)3,4, direct STochastic
Optical Reconstruction Microscopy (dSTORM)5,6 and universal
Point Accumulation for Imaging in Nanoscale Topography
(uPAINT)7,8, provide 20–50 nm resolution maps of
single-molecule localization in biological samples, allowing a
better understanding of the organization and turnover of
these submicron multisubunit assemblies9. To accompany such
progress in imaging power, there is a pressing need for efficient
labelling strategies relying on small and penetrating probes that
provide high signal-to-noise ratio and minimal linkage error with
respect to target proteins10,11.

Protein labelling has relied for a long time on the use of
antibodies, which have the strong advantage of targeting
endogenous proteins. Yet, full-length antibodies are relatively large
(10–15 nm) compared with nanoscale biological objects, thereby
causing potential steric hindrance and localization bias11,12.
Moreover, because of their divalence, antibodies may induce
protein crosslinking at the cell surface. The recent expansion of
antibody fragments such as Fab, scFv or VhH is promising
improvements13,14; however, their development including antigen
preparation is time-consuming15. Alternative labelling approaches
consist of the use of recombinant proteins fused to fluorescent
proteins (FPs, photoactivatable or photoswitchable proteins)3,16,
reactive moieties such as modified enzymes to bind small
dye-labelled synthetic molecules17,18 or small peptide tags for
subsequent conjugation with exogenous fluorescent ligands19,20.
However, FPs usually have weaker fluorescence compared
to organic dyes, and the insertion of a FP or enzyme moiety
(25–35 kDa) may affect proper protein folding and/or
function21,22.

In this context, we searched for an efficient and orthogonal
labelling approach combining minimal tag size on the protein of
interest, probe penetrability in confined regions, absence of
artefact due to multivalence and compatibility with multicolour
imaging. We propose a new method based on streptavidin
monomers (mSA) to deliver bright organic fluorophores to
proteins that are enzymatically biotinylated on a 15-amino-acid
acceptor peptide (AP) tag23. This targeted biotinylation strategy
was previously developed in combination with monovalent
streptavidin to track membrane molecule dynamics using
quantum dots24. However, monovalent streptavidin remains a
relatively large heterotetramer (molecular weight of 60 kDa and
B6 nm across) and is difficult to produce because of the precise
3-to-1 stoichiometry that is required among the subunits24.
mSA is a structural monomer evolved from wild-type streptavidin
tetramer with the aim of maximizing aqueous stability
(denaturation temperature of 60 !C) while maintaining
sufficient biotin affinity (Kd¼ 2.8 nM)25,26. The resulting mSA
is a stable 3-nm labelling probe with a molecular weight of
12.5 kDa, which is simple to produce and to couple to various
fluorophores for SRI applications.

We demonstrate that fluorescently conjugated mSA is
compatible with a wide range of microscopy techniques,
including uPAINT, Fluorescence Recovery After Photobleaching
(FRAP), STED and dSTORM, in both live and fixed conditions.
We further show that, unlike antibodies or streptavidin, mSA
labels its targets without crosslinking and penetrates deep into
live tissues. We applied mSA-based labelling to probe several

synaptogenic adhesion proteins in neurons, including the
presynaptic neurexin-1b (Nrx1b), and its postsynaptic binding
partners neuroligin-1 (Nlg1), and leucine-rich-repeat
transmembrane protein 2 (LRRTM2), against which good
antibodies compatible with live cell imaging are lacking. We
demonstrate differential nanoscale organization and dynamics of
Nlg1 and LRRTM2, which may underlie divergent physiological
roles at the synapse.

Results
mSA labels biotinylated proteins at the cell surface.
Recombinant mSA was produced in bacteria, purified by affinity
chromatography via a 10-His N-terminal tag and covalently
conjugated to photostable organic dyes Atto 594 or Atto 647N
for uPAINT and STED experiments, respectively, or to Alexa 647
for dSTORM imaging, using standard N-hydroxysuccinimide
(NHS) ester coupling onto solvent-exposed primary amines
(Supplementary Fig. 1). Fluorophore-conjugated mSA was used
to label membrane proteins in neurons, COS-7 or HEK-293 cells
that incorporate an extracellular AP tag. Biotinylation of the AP
tag occurred during protein maturation by co-expressed Escher-
ichia coli biotin ligase, BirAER (ref. 17). When added to the
extracellular imaging solution, the mSA–dye conjugate bound
specifically to cells co-expressing AP-tagged proteins and BirAER,
and not to cells expressing either haemagglutinin (HA)-tagged
proteins and BirAER, or AP-tagged proteins but lacking BirAER

(Supplementary Fig. 2a–d). mSA labelling was efficient on all cell
types and membrane proteins tested and produced images with
high signal-to-noise ratio. The relatively fast dissociation kinetics
of mSA (koff¼ 1.05" 10# 3 s# 1)25,26 allow efficient release
of bound mSA with excess free biotin. In this regard, addition
of 200 mM biotin to the labelling solution resulted in rapid
loss of the mSA label (Supplementary Fig. 2e,f). Such reversible
binding may be exploited to visualize internalized protein
complexes using competition with modified biotin having
reduced membrane permeability27, and synthesized for this
study (Supplementary Fig. 3 and Supplementary Movie 1).
Covalent labelling or labelling with high-affinity streptavidin
derivatives, for example, monovalent tetramer (koff
B4.2" 10# 6 s# 1)17,24,28, would not allow such measurements.
Taken together, these results demonstrate the high specificity of
mSA labelling for recombinant biotinylated proteins in a cellular
context.

mSA reports on protein dynamics without crosslinking. To
evaluate the impact of probe valence on observed protein
dynamics, we used uPAINT8 to measure the diffusion of
biotinylated AP-tagged Nlg1 (AP-Nlg1) in neurons that were
labelled with divalent biotin antibody, tetrameric streptavidin or
mSA conjugated with Atto 594 (Fig. 1a and Supplementary
Fig. 1). The three probes were added at a low concentration
(1 nM) to isolate single Nlg1 molecules diffusing on the cell
surface. Neurons electroporated with AP-Nlg1 exhibited a
twofold stronger surface labelling with Nrx1b-Fc and twofold
higher anti-Nlg1 signal in western blots than control neurons
expressing empty vector or Homer1c-green fluorescent protein
(GFP), indicating a ratio of approximately one overexpressed
AP-Nlg1 molecule for one endogenous Nlg1 molecule
(Supplementary Fig. 4). In immature neurons, at 7 days in vitro
(7 DIV), the distribution of AP-Nlg1 diffusion coefficients after
mSA labelling was centred around 0.1 mm2 s# 1, revealing fast
Brownian motion (Fig. 1b,c). When the movement of AP-Nlg1
was tracked with Atto-conjugated biotin antibody or tetrameric
streptavidin, the measured diffusion coefficients were shifted
towards lower values (Fig. 1b,c) and there was a concomitant
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increase in the fraction of slowly diffusing molecules (Fig. 1d),
defined as Do0.01 mm2 s# 1 (Supplementary Fig. 5). The surface
area covered by AP-Nlg1 trajectories was also higher with mSA
than with biotin antibody or streptavidin (Fig. 1b). Together,
these results suggest that divalent and tetravalent probes alter
AP-Nlg1 distribution and dynamics through a combination of
protein crosslinking and steric hindrance.

mSA prevents aggregation compared with multivalent probes.
To examine the effects of probe size and valence on Nlg1 dis-
tribution at the nanoscale, we used dSTORM to image Nlg1 in

mature neurons (DIV 15)5,29,30. Membrane-bound AP-Nlg1 was
labelled with 100 nM mSA, biotin antibody or streptavidin
conjugated with Alexa 647 for 10 min before fixation and
observation. In contrast to our uPAINT experiments, which
rely on sparse labelling and short acquisition sequences to focus
on protein dynamics, dSTORM uses high-density labelling
combined with long acquisition times (800 s) to produce a
static representation of the overall protein organization. In
parallel, postsynaptic densities were identified using co-expressed
Homer1c-GFP31,32. mSA labelling was fairly diffuse in the shaft
and highly concentrated at synapses (Fig. 1e). In contrast,
both biotin antibody and streptavidin induced the aggregation of
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Figure 1 | Super-resolution imaging of AP-Nlg1 with mSA or biotin antibody or tetrameric streptavidin. (a) Schematic diagram of AP-Nlg1 labelled with
three different probes (mSA, monoclonal biotin antibody or streptavidin), conjugated to Atto 594 for uPAINT or Alexa 647 for dSTORM. (b) Examples of
DIV 7 neurons co-expressing EGFP as a volume marker, AP-Nlg1 and BirAER, and labelled as described above. Middle panels display AP-Nlg1 trajectories
calculated from stacks of 4,000 images with 20-ms exposure time (green: fast-diffusing pool, that is, D40.01mm2 s# 1; magenta: slow diffusing pool, that
is, Do0.01mm2 s# 1). Merged images show EGFP (grey) overlaid with AP-Nlg1 trajectories. Note that mSA explores larger surface areas with faster
diffusion than multivalent ligands. (c) Distribution of AP-Nlg1 diffusion coefficients in a semi-log plot, where the grey-shaded area represents slow
trajectories (that is, with Do0.01mm2 s# 1). (d) Corresponding percentage of slow trajectories measured in the three different conditions (***Po0.0001).
Data are from three different experiments. (e) Examples of DIV 15 neurons co-expressing Homer1c-GFP, AP-Nlg1 and BirAER, and labelled with the three
Alexa647-conjugated probes shown in a. Top panels: Homer1c-GFP signal showing mature synapses (white). Middle panels: super-resolved AP-Nlg1
detection maps generated from 40,000 frames with 20-ms integration time. Bottom panels: merged images showing AP-Nlg1 detections (green) overlaid
with Homer1c-GFP (magenta). Note the presence of large AP-Nlg1 aggregates in anti-biotin and streptavidin-labelled neurons. (f) Histogram showing the
number of Nlg1 clusters per mm2 in the three conditions (**Po0.01). (g) Histogram showing the synaptic enrichment of AP-Nlg1 compared with the shaft
(**Po0.01, *Po0.05). Data are from two different experiments. Numbers in the bar charts represent the number of cells examined.
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AP-Nlg1 into numerous small clusters on dendrites (Fig. 1e,f),
which are most likely caused by ligand-mediated receptor
crosslinking. The anti-biotin-labelled AP-Nlg1 was found
mostly on the edge of the synapses around rather than inside,
presumably because the antibody has limited accessibility to the
synaptic cleft because of its large size. With its intermediate size,
tetrameric streptavidin penetrated well inside synapses, but
because of massive extrasynaptic clustering was less enriched
than anti-biotin at synapses compared with shaft levels. Overall,
the enrichment of AP-Nlg1 at Homer1c-GFP-positive puncta was
significantly higher for mSA compared with streptavidin and
antibody (Fig. 1g), indicating that mSA enables a more accurate
visualization of receptor localization and organization at the
nanometre scale.

mSA efficiently labels Nlg1 in the confined synaptic cleft. To
assess the ability of mSA-labelled Nlg1 to dynamically access the
synaptic cleft (20 nm across), we performed uPAINT experiments
on live DIV 10–15 neurons expressing AP-Nlg1, and labelled using
either mSA or biotin antibody conjugated to Atto594. Using mSA,
we observed a gradual decrease in AP-Nlg1 diffusion across
neuronal development (Supplementary Fig. 6a–c), revealing the
stabilization of Nlg1 associated with an increase in synapse density
and maturation33. On DIV 15, AP-Nlg1 trajectories recorded with
mSA populated both the dendritic shaft and synapses and
substantially overlapped with the synaptic Homer1c-GFP staining
(Fig. 2a and Supplementary Movie 2), whereas AP-Nlg1 trajectories

obtained with biotin antibody were mostly localized on the
dendritic shaft and confined to areas around the postsynaptic
density. Quantitatively, 85% of synapses contained mSA-labelled
Nlg1, while only 40% contained antibody-labelled Nlg1 (Fig. 2b),
and the synaptic area covered by mSA-labelled Nlg1 was fourfold
higher than antibody-labelled Nlg1 (30% versus 8%, respectively;
Fig. 2c). mSA-labelled Nlg1 exhibited fast diffusion in extrasynaptic
compartments and slower diffusion at synapses (Fig. 2d), reflecting
interactions with presynaptic axonal adhesion protein, Nrx and/or
postsynaptic scaffolding proteins32. In contrast, anti-biotin labelling
showed consistently slower diffusion across the entire neuronal
surface, similar to the observations on DIV 7 (Fig. 1c). An
additional level of immobilization of mSA-labelled AP-Nlg1 on
DIV 15 was observed on incubation with soluble dimeric Nrx1b-Fc
(Supplementary Fig. 6d,e), which is consistent with the preferential
anchorage of Nlg1 to synaptic PSD-95 triggered by Nrx1b
binding32. These observations show that mSA can be used to
label both fast- and slow-moving AP-Nlg1 in developing neurons,
and to visualize trapping events in mature synapses without
introducing steric and valence bias compared with divalent
antibodies.

mSA labels target proteins in organotypic brain tissue. Given
the small size and high labelling efficiency of mSA, we tested its
capability to label neurons in dense organotypic tissue. We
co-expressed GFP, AP-Nlg1 and BirAER in individual CA1
pyramidal neurons from 150-mm-thick mouse organotypic
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Figure 2 | Different ability of mSA and biotin antibody to label AP-Nlg1 within the synaptic cleft in live conditions. (a) DIV 15 neurons expressing
Homer1c-GFP, AP-Nlg1 and BirAER were labelled with mSA or anti-biotin conjugated to Atto594 to track individual AP-Nlg1 molecules by uPAINT. From top
to bottom: Homer1c-GFP signal staining mature synapses; super-resolved AP-Nlg1 detection maps; merged images showing extrasynaptic AP-Nlg1
trajectories (green) and synaptic trajectories (magenta) overlaid with Homer1c-GFP signals (grey); insets show that mSA-stained Nlg1 fills the entire
synaptic area, whereas antibiotin remains on the edge of the postsynaptic density. (b) Percentage of synapses containing AP-Nlg1 labelled with mSA or
biotin antibody (***Po0.0001). (c) Percentage of the synaptic area occupied by AP-Nlg1 when labelled with mSA or anti-biotin (**Po0.01). (d) Semi-log
distribution of synaptic (solid lines) and extrasynaptic (dashed lines) diffusion coefficients for AP-Nlg1 measured with the two different probes. Data are
from two different experiments. Numbers in the bar charts represent the number of cells analysed.
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hippocampal slices using single-cell electroporation. Slices were
labelled by one-step incubation with 100 nM mSA-Atto 647N (for
STED) or mSA-Alexa647 (for dSTORM), then rinsed and
observed live (STED) or after fixation (dSTORM). The mSA-
labelling of AP-Nlg1 was highly specific since it stained only GFP-
co-expressing cells throughout the slice with extremely low
background, and localized exclusively to somatodendritic regions
(Fig. 3a,b and Supplementary Movie 3). The photostability of
Atto dyes combined with the thermal stability of mSA allowed an
extensive live STED imaging of optical sections at 37 !C down to
40 mm deep. Zoom on dendritic portions showed specific
enrichment of Nlg1 in spines compared with GFP (Fig. 3c,d and
Supplementary Movie 4), which is also observed in dissociated
hippocampal cultures (Fig. 1e–g).

Using conventional confocal microscopy, we evaluated how well
mSA penetrates into brain slices compared with streptavidin and
biotin antibodies. mSA and tetrameric streptavidin were able to
label AP-Nlg1 expressed in live electroporated neurons within a

few minutes, although the labelling efficiency of streptavidin
decreased rapidly with depth, suggesting an impact of the probe
size and/or valence in reaching deep tissues (Supplementary
Fig. 7a,b). At the same sample depth (B15mm below the surface of
the slice), the anti-biotin signal was not detectable after a
10-min live labelling, but became apparent after 1 h
(Supplementary Fig. 7c). Finally, we used astigmatism-based
three-dimensional (3D) dSTORM to image the distribution of
mSA-labelled AP-Nlg1 in small dendritic regions on the surface of
a slice from Nlg1 knockout (KO) mice, revealing high enrichment
of Nlg1 in spines (Fig. 3e,f and Supplementary Movie 5). These
results show that mSA penetrates deep into thick tissues, where it
can be used to label target proteins at high density and with
specificity for immediate application in SRI. Interestingly, a similar
AP-Nlg1 localization was observed in STED images made on
organotypic slices from wild-type mice, and in STORM images
made on organotypic slices from Nlg1 KO mice, where AP-Nlg1
expressed in CA1 cells replaces endogenous Nlg1.
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Figure 3 | Super-resolution imaging of AP-Nlg1 in organotypic hippocampal slices. (a) Confocal (EGFP, left), STED (mSA-Atto 647N, middle) and merged
(right) images acquired from live neurons expressing GFP, AP-Nlg1 and BirAER in organotypic hippocampal slices. Images are projections of a z-stack of 60
planes taken by 1-mm increments and colour-coded with respect to sample depth. (b) Linescan measurements of mSA-Atto 647N and GFP staining along the z
axis. The reduction in mSA-Atto 647N intensity with the sample depth likely reflects reduced laser penetration rather than weaker staining, since the GFP
signal also decreases with depth. (c) High-magnification deconvoluted STED projection of mSA-labelled Nlg1 in a hippocampal slice shows the accumulation
of Nlg1 at dendritic spines. (d) Linescans of GFP and mSA-Atto 647N fluorescence intensity in the shaft membrane and in a dendritic spine normalized to the
respective fluorescence of GFP and Atto 647N in the shaft. (e) Wide field image of mSA-Alexa647 selectively labelling one neuron expressing GFP, AP-Nlg1
and BirAER, a few microns deep from the surface of an organotypic brain slice. (f) Astigmatic-based 3D dSTORM imaging in an organotypic brain slice from
Nlg1 KO mice: (i) wide field image of mSA-Alexa647-labelled AP-Nlg1. (ii) 3D dSTORM-reconstructed image of a dendritic segment based on 1,038,506
single-molecule localizations from 64,000 images. The image is colour-coded with respect to the z distance (# 600 to þ600 nm). (iii) Normalized
localization detection maps integrated within z¼±400 nm. (iv) Magnified view of iii showing the enrichment of Nlg1 in dendritic spines.
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mSA and GFP nanobody similarly probe protein diffusion.
Monomeric VhH antibodies (nanobodies) against GFP and red
fluorescent protein have been previously used for SRI, where their
small size provides smaller linkage error relatively to the target
structure13,14. We thus sought to compare mSA to these
well-characterized tools. To this end, we labelled the same
axonal molecular target, Nrx1b, using both approaches and
compared the measured diffusion dynamics and membrane
organization. On the one hand, we labelled Nrx1b carrying a
biotinylated N-terminal AP tag with mSA-Atto594. On the other
hand, Nrx1b fused with an N-terminal GFP tag was labelled with
Atto594-conjugated GFP nanobody, resulting in a specific
enrichment at excitatory pre-synapses immunostained for the
vesicular transporter VGlut1 (Fig. 4a). Single-molecule
trajectories were then recorded for each labelling scheme using
uPAINT in DIV 15 neurons (Fig. 4b,c). The distributions of
diffusion coefficients were very similar for the two probes
(Fig. 4d), with a major fast diffusion peak centred around
B0.5 mm2 s# 1, representing free diffusion in extrasynaptic
compartments, and a minor slower diffusion peak around
0.005 mm2 s# 1, representing Nrx1b confined at presynaptic
terminals34,35. These results show that, in agreement with

their small size and monomeric nature, mSA and nanobody
labelling lead to similar diffusion measurements. Given their
orthogonality, the two approaches may thus be combined for
dual-colour SRI.

The AP tag can be inserted into small extracellular loops. An
advantage of using mSA is that the short 15-amino-acid AP tag
can be readily incorporated into extracellular protein domains,
such as protein loops, without perturbing the native function.
To demonstrate the use of the AP tag in a system that may
not be amenable for GFP fusion, we inserted the AP sequence in
the first extracellular loop of the alpha-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid (AMPA) receptor auxiliary
protein stargazin (AP-Stg)36 (Fig. 4e). Using mSA-Atto594, we
observed the localization and dynamics of AP-Stg in DIV 15
neurons by uPAINT (Fig. 4f). AP-stargazin localized at synapses
where its diffusion was reduced, consistent with previously
published work37 (Fig. 4f,g). Thus, the mSA-labelling
strategy can be successfully applied to situations where the use
of a GFP tag may not be allowed for structural or functional
reasons. To further illustrate this point, we inserted the mCherry
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coefficient distribution of AP-Stg inside and outside synapses (n¼6 cells from two different experiments).
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FP (256 amino acids) in the extracellular loop of stargazin in
place of the AP tag (15 amino acids). When expressed
in heterologous COS-7 cells, this fusion protein formed
numerous vesicular aggregates enriched in a perinuclear area,
suggesting that mCherry-stg is retained in intracellular transport
compartments, and not properly expressed at the cell membrane,
possibly because of protein misfolding (Supplementary Fig. 8).
In contrast, fusing mCherry to the C terminus of stargazin
resulted in very clear membrane localization. This experiment
clearly shows that AP tags can be advantageous compared with
large domains such as FPs for the tagging of complex membrane
proteins.

Dual-colour imaging of trans-synaptic adhesive contacts.
Postsynaptic Nlg1 interacts with presynaptic Nrx1b to form
trans-synaptic contacts38. To visualize the dynamic organization
of mature Nrx1b/Nlg1 complexes, we used mSA in combination
with GFP nanobody13,14 for dual-colour uPAINT analysis.
Neurons expressing either AP-Nlg1 or a blue fluorescent
protein Nrx1b fusion (BFP-Nrx1b) were co-cultured for 2
weeks, and the individual AP-Nlg1 and BFP-Nrx1b molecules
on the surface of dendrites and axons, respectively, were labelled
with mSA-Atto 594 and GFP nanobody-Atto 647N for tracking
(Fig. 5a,b and Supplementary Movie 6). Both BFP-Nrx1b and
AP-Nlg1 showed decreased diffusion at Homer1c-GFP-positive
areas, resulting in an increase in the slowly moving fraction
(Fig. 5b,c), which is consistent with the formation of functional
trans-synaptic complexes. The images reconstructed from all
single-molecule detections indicate that every synapse contains
one to two domains of Nrx1b and Nlg1 hot spots facing each
other (Fig. 5d), with an average diameter of 85±3 nm for Nrx1b
and 91±2 nm for Nlg1 (Fig. 5e,f). Given the dilute labelling
conditions, these domains reflect the trapping of a small number
of molecules at the synapse, whose intensity compared with
diffusive molecules is amplified by the temporal integration of
long-emitting fluorescent signals coming from the same location.
Indeed, the domain size is in agreement with the confinement
diameter measured from the mean squared displacement of
synaptic Nlg1 molecules (Supplementary Fig. 5).

Addition of ethylene glycol tetra-acetic acid (EGTA) as a
calcium chelator decreased the number of synaptic Nrx1b and
Nlg1 confinement domains (Fig. 5d) and increased the diffusion
of both proteins (Supplementary Fig. 9). Both changes are likely
caused by a dissociation of calcium-dependent Nrx1b/Nlg1
bonds39, followed by lateral motion of the two proteins. We
also used dual-colour uPAINT to examine the dynamics of
Nrx1b/Nlg1 adhesion in response to synaptic stimulation in live
conditions. We treated neurons with 20 mM N-methyl-D-aspartate
(NMDA) for 10 min to chemically induce synaptic depression40

and monitored Nrx1b and Nlg1 dynamics by uPAINT. NMDA
caused a specific and time-dependent decrease in BFP-Nrx1b and
AP-Nlg1 molecules from the cell surface (Fig. 5g,h), whereas their
number remained constant under control conditions. Such a loss
of the Nrx1b/Nlg1 complex thus represents coordinated, activity-
dependent destabilization of trans-synaptic contacts at the single-
molecule level.

Differential dynamics of Nlg1 and LRRTM2 at synapses. To
gain insight into the membrane dynamics of other synaptogenic
proteins, we examined the behaviour of another excitatory
postsynaptic adhesion molecule, LRRTM2, that competes with
Nlg1 for the binding to presynaptic neurexins41–43. We first
used the same dual-colour uPAINT analysis described above to
simultaneously image AP-LRRTM2 in dendrites and BFP-Nrx1b
in axons. Similarly to Nlg1, LRRTM2 was highly concentrated at

synapses, where it formed a small number of confinement
domains of 118±4 nm diameter overlapping with BFP-Nrx1b
(Supplementary Fig. 10). However, the average diffusion
coefficient of LRRTM2 was significantly lower than that of
Nlg1, reflecting the fact that most LRRTM2 molecules (80%) were
localized at synapses, while very few (20%) diffused freely on
dendritic shafts (Fig. 6a–c). For comparison, the synaptic and
dendritic fractions of Nlg1 were 60% and 40%, respectively.

To confirm that Nlg1 and LRRTM2 also exhibited differential
dynamics at the population level, we performed FRAP
experiments. We labelled AP-Nlg1 and AP-LRRTM2 at the cell
surface with 100 nM mSA-Atto594 and photobleached individual
synapses using a focused 561-nm laser beam. Fluorescence
recovery was analysed for up to 30 min (Fig. 6d,e). Control FRAP
experiments on Nlg1-GFP showed similar recovery curves
(Supplementary Fig. 11). The recovery curves were fitted with a
diffusion-reaction model described previously, which includes
three adjustable parameters: the fraction of adhesion molecules
trapped at the synapse, their steady-state exchange rate and
the diffusion coefficient of free molecules44. We used the fastest
AP-Nlg1 and LRRTM2 observed in uPAINT to estimate the
diffusion coefficient of free molecules (B0.1 mm2 s# 1) and
adjusted the two other parameters to obtain the best fit.
The exchange rate was approximately threefold lower for
AP-LRRTM2 than for AP-Nlg1, and the trapped fraction was
higher (81% versus 73%, respectively). Therefore, FRAP predicts
a longer synaptic residence time for LRRTM2 than for Nlg1,
consistent with the uPAINT data.

Differential nanoscale organization of Nlg1 and LRRTM2.
Finally, to gain insight on the nanoscale organization of Nlg1 and
LRRTM2, we imaged Nlg1 and LRRTM2 by dSTORM in mature
neurons (Fig. 7a–d). Unlike in uPAINT, originally diffusing
molecules appear with a similar intensity to confined ones
because of fixation, thus contributing to a homogenous signal in
the shaft and spines. This effect was especially prominent for
Nlg1, which was more diffusive than LRRTM2, resulting in a
lower synaptic enrichment when compared with shaft levels
(2.7±0.6 versus 5.3±0.8, respectively). Furthermore, the dense
labelling allows the identification of many simultaneous
Nlg1-trapping events in the dendritic spine, yielding a fairly
disperse localization with respect to the synapse centroid (Fig. 7e),
but occasionally forming one or two clusters of similar sizes as
those observed with uPAINT (average diameter 98±6 nm;
Fig. 7f,g). In contrast, LRRTM2 seemed to visit a more restricted
postsynaptic area, mostly forming one compact mass comprising
several small subclusters (107±7 nm) and being localized at a
shorter distance from the centroid (Fig. 7b,d–g). This specific
scattering of Nlg1 was not due to an increase in postsynaptic size
compared with LRRTM2 (Fig. 7h). In summary, the two Nrx
partners, Nlg1 and LRRTM2, differed considerably in their
postsynaptic nano-organization and dynamics.

Finally, to rule out the possibility of a localization artefact due
to AP-Nlg1 overexpression, saturating synaptic binding sites, we
designed a rescue strategy by replacing endogenous Nlg1 with
similar levels of exogenous AP-Nlg1. To this aim, we either
co-expressed a short hairpin RNA to Nlg1 together with a
resistant AP-Nlg1 construct in rat cultures, or expressed AP-Nlg1
in primary hippocampal cultures from Nlg1 KO mice. Western
blots and Nrx1b-binding assays confirmed that exogenous
AP-Nlg1 levels roughly reached those of endogenous Nlg1 in
both approaches (Supplementary Fig. 4). STORM images
performed with mSA-Alexa647 on these cultures revealed a very
similar distribution of rescue AP-Nlg1 compared with what we
had previously observed using AP-Nlg1 expression alone, with a
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Figure 6 | Comparison of Nlg1 and LRRTM2 dynamics in mature hippocampal neurons. (a) DIV 15 neurons expressing AP-LRRTM2, Homer1c-GFP and
BirAER were labelled using mSA-Atto 594 for uPAINT imaging of single LRRTM2 molecules. Super-resolved localization and trajectory maps are
shown (green, fast-diffusing molecules, magenta, slow-moving molecules). Note the absence of diffusion on dendritic shafts. (b) Semi-log distribution of
AP-LRRTM2 and AP-Nlg1 diffusion coefficients. (c) Corresponding percentage of synaptic LRRTM2 and Nlg1 detections by uPAINT (LRRTM2, n¼8;
Nlg1, n¼ 15 cells from three different experiments). (d) FRAP experiments performed on AP-Nlg1 and AP-LRRTM2 labelled with mSA-Atto594.
(e) Corresponding normalized fluorescence recovery curves. The intensity of unbleached synapses is shown as control for observational photobleaching.
Solid lines represent fits of the mean data points with the diffusion-reaction equation given in the Methods. The parameters obtained for Nlg1 and
LRRTM2 were the fraction of free molecules f¼0.27 and 0.19 and the turnover rate of adhesions kreac¼ 1.4" 10# 2 and 5.0" 10# 3 min# 1, respectively.
The ratio of all synaptic molecules versus free molecules (1/f) gives 3.5 for Nlg1 and 5.1 for LRRTM2, closely corresponding to the synaptic enrichment
values measured by dSTORM (Nlg1, n¼ 25; LRRTM2, n¼ 18; Nlg1 unbleached, n¼ 10; LRRTM2 unbleached, n¼8 cells for each condition from
three different experiments).
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scheme, we were able to explore real-time single-molecule
dynamics at the nanoscale level (uPAINT), and to map
representative protein organization at a precise time point to
measure local densities within immobile structures (STED and
dSTORM).

Antibodies are commonly used for labelling; however, high-
quality antibodies compatible with live imaging are not always
available, a critical issue for the synaptic adhesion molecules
studied here. Furthermore, our comparison of monomeric (mSA),
dimeric (antibody) and tetrameric (streptavidin) probes clearly
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Figure 7 | Comparison of Nlg1 and LRRTM2 organization in mature hippocampal neurons. (a,b) DIV 15 neurons expressing either AP-Nlg1 or AP-
LRRTM2, plus Homer1c-GFP and BirAER were labelled at high density with mSA-Alexa 647 for dSTORM imaging. Integrated densities over 40,000 frames
are shown. (c,d) AP-Nlg1 and LRRTM2 fluorescence across linescans represented in a,b insets show local fluorescence accumulation within synapses.
(e) Dispersion of AP-Nlg1 and AP-LRRTM2 molecules within synapses represented as the distribution of distances from individual synaptic detections
relatively to the centroid of the Homer1c-GFP signal (LRRTM2, n¼ 7; Nlg1, n¼ 5). (f) Distribution of the number of locally enriched AP-Nlg1 and AP-
LRRTM2 domains within synapses (LRRTM2, n¼ 7; Nlg1, n¼ 5). (g) The median sizes of AP-Nlg1 and AP-LRRTM2 locally enriched synaptic domains (Nlg1,
87.00, IQR 68–110, n¼ 5; LRRTM2, 98.35, IQR 76–122, n¼ 7; ***Po0.0001). (h) Synaptic area in DIV 15 neurons electroporated with AP-Nlg1 or AP-
LRRTM2 based on the Homer1c-GFP signal. (i) Representative STORM image of AP-Nlg1r expressed on a knockdown background in DIV 15 rat neurons,
shown with the corresponding low-resolution mSA-Atto647 labelling. (j) Average intensity corresponding to the linescan in i showing local AP-Nlg1r
fluorescence accumulation within a spine in a knockdown background, similar to AP-Nlg1. (k) Synaptic enrichment of AP-Nlg1, AP-Nlg1r co-expressed on a
knockdown background and AP-LRRTM2 with respect to shaft levels (AP-Nlg1, 2.73±0.62, n¼ 5; AP-Nlg1r, 2.54±0.34, n¼4; AP-LRRTM2, 5.29±0.81
n¼ 7; *Po0.05). Data are from three different experiments for AP-Nlg1 and AP-LRRTM2, and two experiments for AP-Nlg1r.
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shows that, for live SRI applications, probe multivalence affects
the measurements by generating artificial nanoscale clusters
and biasing protein diffusion. For single-particle-tracking
applications, mSA-Atto conjugates represent a significant
improvement over large and multivalent nanoparticles such as
antibody- or streptavidin-coated quantum dots, which often get
sequestered at the periphery of the postsynaptic density
because of steric hindrance31,32,47. However, because of
their resistance to photobleaching compared with organic
fluorophores, nanoparticles will remain a method of choice to
track molecules for long durations, even more so with the recently
developed non-blinking fluorescent nanoparticles48,49. mSA
labelling is in many regards comparable to that of anti-GFP
nanobody labelling, an example of monovalent detection recently
used in SRI13. In some cases, however, labelling with mSA may be
advantageous if the use of GFP as an antigenic tag is problematic.
Indeed, the 15-amino-acid AP tag, which is similar in size to
other commonly used epitopes, such as FLAG or c-Myc, can be
readily inserted between structural domains or within protein
loops with minimal perturbation of the native function.
We demonstrated this point by fusing the AP tag on a short
extracellular loop of stargazin that was previously targeted with
an engineered HA tag36, whereas FP insertion at this location
resulted in a dramatic mislocalization of the resulting fusion
construct.

A benefit of developing an orthogonal technique of comparable
capability includes the potential for dual-colour SRI. To this end,
we simultaneously applied mSA and GFP nanobody labelling of
trans-synaptic contacts in hippocampal neurons to reveal a
differential dynamic organization of the two main Nrx1b
adhesion partners at excitatory synapses, namely Nlg1 and
LRRTM2. We showed a diffusional trapping of presynaptic
Nrx1b and postsynaptic Nlg1, resulting in selective
trans-synaptic apposition of those proteins at axon–dendrite
contacts. Labelling of Nrx1b/Nlg1 complexes was rapid with both
mSA and GFP nanobody, neither of which affected their intrinsic
interaction. In contrast, some labelling strategies, such as GFP
complementation, have intrinsically slower kinetics owing to
GFP folding and can artificially increase the binding strength
between Nrx and Nlg, thus enhancing synaptogenesis38.
That Nrx1b escaped synapses more readily than Nlg1 on EGTA
treatment suggests that the molecule may be retained at pre-
synapses through extracellular calcium-dependent interactions,
for example, with Nlgs and LRRTMs. This observation is
consistent with the report that the Nrx intracellular domain is
dispensable for Nlg1-induced presynaptic differentiation50. Nlg1
may be anchored at the synapses not only via extracellular
interactions with Nrxs but also via intracellular interactions with
PSD-95, which may be promoted by Nrx1b binding32.

Whether adhesion molecules are functionally regulated by
synaptic activity remains an important, unresolved issue. Nlg1
interacts directly with the extracellular domain of NMDA
receptors51 and Nlg1 knockdown affects NMDAR-mediated
synaptic transmission52,53. In addition, the synaptogenic effect
induced by Nlg1 expression is abolished by chronic blockade of
NMDA receptor activity53, whereas synapse elimination
caused by the absence of Nlgs and LRRTMs is promoted by
calcium-calmodulin kinase II (CamKII)-dependent synaptic
activity54. Our results show that both Nlg1 and Nrx1b
trans-synaptic clusters rapidly vanish on NMDA treatment,
suggesting that Nlg1 plays a role in activity-dependent synaptic
remodelling through NMDA receptor activity. Proteolytic
shedding of Nlg1 at the cell membrane by the metalloprotease
MMP9 (ref. 55) or altered export of Nlg1 through
phosphorylation by CamKII (ref. 56) provide possible
mechanisms. In contrast to Nlg1, LRRTM2 is less mobile and is

confined in more compact synaptic domains, suggesting that the
molecule plays a strong role in maintaining trans-synaptic
connectivity. This specific function of LRRTM2 might be
achieved through direct extracellular interactions with
presynaptic Nrxs or with postsynaptic AMPA receptors43, the
latter playing a retrograde role on presynaptic differentiation57.
Indeed, alternative splicing of presynaptic Nrx3 decreases
both postsynaptic LRRTM2 and AMPA receptor levels58, and
LRRTM knockdown alters AMPA receptor-mediated synaptic
transmission and plasticity52. Both the number and size of
synaptic LRRTM2 clusters match the recently identified AMPA
receptor nanodomains59, suggesting that they may be structurally
and/or functionally related. One interesting mechanism could be
that extrasynaptic surface-diffusing AMPA receptors get
dynamically trapped at Nrx1b/Nlg1 adhesions through PSD-95
scaffolds31,33, and then become stabilized at synapses by more
durable interactions with LRRTM2.

Obtaining a more integrated view of the molecular
ultrastructure of the synapse requires multicolour SRI of adhesion
molecules, scaffolding proteins and neurotransmitter receptors.
The penetrability and labelling efficiency reached with mSA,
together with targeted expression of adhesion proteins such
as Nrx and Nlg in intact organisms60 and improved optical
detection in deep tissue61, should enable further investigation of
activity-dependent modulation of synaptic protein organization
with high spatial and temporal resolution. In addition to
addressing specific questions in neuroscience, the mSA-based
labelling strategy constitutes a significant progress towards
developing a robust staining technique for fluorescence-based
super-resolution microscopy, which should stimulate its
application to a wide range of questions in fundamental biology.

Methods
DNA plasmids. The AP-Nlg1, AP-Nrx1b, pDisplay-HA-6His-AP-CFP and BirAER

constructs21,23 were kind gifts from A. Ting (MIT, Boston). HA-Nlg1 and short
hairpin RNA to Nlg1 (shNlg1) were obtained from P. Scheiffele (Biozentrum, Basel).
The AP-Nlg1 rescue was generated by changing the nucleotide sequence of AP-Nlg1
recognized by the shNlg1 50-gaaggtactggaaatctg-30 to 50-gaGggCacGggTaaCTtg-30 ,
using silent mutations. Myc-LRRTM2 (ref. 43) was a gift from J. de Wit (Leuwen,
Belgium). Nlg1 with GFP insertion at position 728aa (Nlg1-GFP) was generously
provided by T. Dresbach (Goettingen, Germany)62. AP-LRRTM2 was generated
using the In-Fusion HD Cloning kit (Clontech), replacing the myc-tag from
myc-LRRTM2 by the AP Tag (amino-acid sequence GLNDIFEAQKIEWHE). The
AP tag sequence was amplified from pDisplay-HA-6His-AP-CFP. Oligonucleotides
used were as follows: LRRTM2-1F, 50-ACTAGTTGTCCACCCAAATG-30 ;
LRRTM2-2R, 50-GCTAGCCGCCATACCCAG-30; AP-5F, 50-GGTATGGCGGC
TAGCggcctgaacgatatcttcg-30 ; AP-6R, 50-GGGTGGACAACTAGTctcgtgccactc
gatctt-30. Homer1cGFP was a gift from S. Okabe (Tokyo University, Japan). BFP-
Nrx1b was derived from human GFP-Nrx1b (gift from M. Missler, Münster
University, Germany) by replacing the GFP sequence by PCR-amplified-EBFP2 from
pEBFP2-Nuc (obtained from Addgene, plasmid 14893). AP-SEP-transferrin receptor
was a kind gift from D. Perrais (IINS Bordeaux). HA-stargazin36 was a gift from R.
Nicoll (UCSF, USA). AP-stargazin was obtained by inserting a synthetic fragment
containing the AP tag between residues 50 and 51 (in the first extracellular loop,
same position as HA-stargazin) using HindIII and BspEI restriction sites. For
comparison of the impact of FP insertion, mCherry was inserted into the same
stargazin construct either at the same position as the AP tag (first extracellular loop,
between residues 50 and 51, AgeI and NheI restriction sites) or at position # 56
(BglII site) with respect to the C terminus (cytoplasmic tail). The plasmid for
bacterial expression of the anti-GFP nanobody14 was a kind gift from Alexis
Gautreau (LEBS, Gif-sur-Yvette, France). mSA was subcloned from the previously
described pRSET-A vector25,26 into pET-IG, a homemade vector derived from
pET-24 (Novagen) and engineered to incorporate after the start codon a
decahistidine tag immediately followed by a Tobacco Etch Virus cleavage site
(-ENLYFQS-) and no tag on the C terminus.

Protein expression and purification. Nrx1b-Fc was obtained as follows.
Conditioned medium from a stable hygromycin-resistant HEK cell line producing
Nrx1b-Fc lacking splice insert 4 was collected, and recombinant Nrx1b-Fc was
purified on a protein G column (HiTrap Protein G HP, GE Healthcare) to a
concentration of 0.6–1.0 mg ml# 1 (refs 31,32). mSA was produced similarly to
previously reported methods25,26, with slight modifications. Briefly, pET-IG-mSA
was transformed into E. Coli BL21 codon plus (DE3)-RIL and expressed for 12 h at
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16 !C in 300 ml using an autoinduction protocol63. The cells were harvested and
resuspended in 9% NaCl, transferred into a conical tube and kept at # 80 !C until
purification. The cell pellet was thawed and resuspended in 40 ml of freshly prepared
denaturing lysis buffer (50 mM Tris acetate, pH 8.0, 8 M urea and 40ml Protease
Cocktail III from Calbiochem) and gently mixed for 30 min at 4 !C. Cells were lysed
by sonication and lysates were cleared by centrifugation at 10,000g (60 min, 4 !C).
HIS-Buster Cobalt Affinity gel (AMOCOL, 1 ml) was added and incubated with the
supernatant for 2 h at 4 !C. The resin was collected, washed extensively with washing
buffer (50 mM TrisOAc, pH 8.0, 300 mM NaCl, 5 mM imidazole and 8 M urea,
freshly prepared) and the protein was eluted with 3" 1 ml of elution buffer (50 mM
TrisOAc, pH 8.0, 300 mM NaCl, 500 mM imidazole, 8 M urea, freshly prepared).
The elution fractions were added drop by drop to 40 ml of ice-cold PBS buffer
(5 mM Na2HPO4, 5 mM NaH2PO4 and 150 mM NaCl) containing 0.3 mg ml# 1

d-biotin, 0.2 mg ml# 1 oxidized glutathione and 1 mg ml# 1 reduced glutathione
under rapid stirring to refold the protein. The precipitates were removed by
centrifugation. The refolded protein was concentrated to B1 mg ml# 1 using
Amicon Ultra centrifugal filters with a 10-kDa cutoff. The anti-GFP nanobody was
expressed in the same conditions as mSA and purified under native conditions by
affinity chromatography using the HIS-Buster Nickel Affinity gel. The protein was
dialysed in PBS buffer and concentrated to B1 mg ml# 1 using Amicon Ultra
centrifugal filters with a 10-kDa cutoff. mSA and anti-GFP nanobody were kept at
4 !C and used for coupling to fluorophores within 24 h. The modified, negatively
charged biotin (Biot-DDDY-COOH) to reduce membrane permeability27 was
obtained by manual standard Fmoc-based solid-phase peptide synthesis.

Protein and antibody coupling to fluorophores. All proteins (mSA, anti-GFP
nanobody, streptavidin (85878, Sigma-Aldrich), mouse monoclonal anti-biotin (03-
3700, Invitrogen)) were prepared in PBS at B1 mg ml# 1. Coupling to Atto 647N,
Atto 594 and Alexa 647 was performed following the recommended procedures
from the manufacturers (ATTO-TEC and Life Technologies) with the corresponding
NHS ester derivatives of each dye. Briefly, labelling was conducted in the dark at
room temperature for 1 h. Excess dye was removed using Sephadex G-25 medium
(PD MiniTrap G-25, GE Healthcare) by elution with PBS. mSA-Atto 647N,
mSA-Atto 594, mSA-Alexa 647 and the Atto 647N-GFP nanobody were further
purified to homogeneity by size exclusion chromatography with a Superdex 75
HiLoad 16/60 column (GE Healthcare) on an AKTA purifier system (GE
Healthcare) using PBS as a running buffer. Labelled proteins were concentrated to
B0.2 mg ml# 1 using Amicon Ultra centrifugal filters with a 10-kDa cutoff. All
proteins were aliquoted and flash-frozen for storage at # 80 !C until use.

Cell culture and electroporation. Gestant rat females were purchased weekly
(Janvier Labs, Saint-Berthevin, France), while wild-type and Nlg1 KO mouse
strains obtained from F. Varoqueaux and N. Brose (MPI Goettingen) were raised in
our animal facility. Animals were handled and killed according to European ethical
rules. Dissociated hippocampal neurons from E18 Sprague–Dawley rat embryos or
P0 mice (from Nlg1 WT or KO background) were prepared as described64, and
electroporated with the Amaxa system (Lonza) using 500,000 cells per cuvette. The
following plasmid combinations were used: (GFP or Homer1c-GFP) þ BirAER þ
(AP-Nlg1, AP-LRRTM2, AP-STG or AP-Nrx1b) (1.5:1.5:1.5 mg DNA), BFP-Nrx1b
or GFP-Nrx1b (4.5 mg DNA), Nlg1-GFP (4 mg DNA). Electroporated neurons were
resuspended in Minimal Essential Medium supplemented with 10% horse serum
(MEM-HS) and plated on 18-mm coverslips previously coated with 1 mg ml# 1

polylysine for 2 h at a concentration of 50,000 cells per coverslip. Three hours after
plating, coverslips were flipped onto 60-mm dishes containing a glial cell layer in
Neurobasal medium (NB for rat cultures or NB-A for mouse cultures)
supplemented with 2 mM L-glutamine and 1" NeuroCult SM1 Neuronal
supplement (STEMCELL Technologies) and cultured for 2 weeks at 37 !C and 5%
CO2. Astrocyte feeder layers were prepared from the same embryos, plated between
20,000 and 40,000 cells per 60-mm dish and cultured in MEM (Fisher Scientific,
cat. no. 21090-022) containing 4.5 g l# 1 Glucose, 2 mM L-glutamine and 10%
horse serum (Invitrogen) for 14 days. For biochemistry experiments, electroporated
neurons from rats or mice were seeded in a six-well plate coated with 1 mg ml# 1

polylysine for 2 h at a concentration of 500,000 cells per well. Three hours after
plating, the medium was replaced by conditioned Neurobasal medium (rat)
or Neurobasal-A medium (mice), supplemented with 2 mM L-glutamine and
1" NeuroCult SM1 Neuronal supplement (STEMCELL Technologies) and
renewed every 3–4 days. Ara-C (3.4 mM) was added at DIV 3 and DIV 13. COS-7
and HEK-293 cells were cultured in DMEM (GIBCO/BRL) supplemented with
10% fetal bovine serum, 100 units ml# 1 penicillin and 100mg ml# 1 streptomycin.
Heterologous cells were electroporated with TfR-SEP-APþBirAER (1.5:2 mg DNA
for 2 million cells) or stargazin-mcherry (3.5 mg DNA for 2 million cells) constructs
with the Amaxa system (Lonza) using 500,000 cells per cuvette.

Neuronal lysates. DIV 14 mouse or rat neuronal cultures were rinsed in ice-cold
PBS, and then scraped into 100ml RIPA buffer (50 mM HEPES, 10 mM EDTA,
0.1% sodium dodecyl sulfate, 1% IGEPAL CA-630 and 0.5% sodium deoxycholate,
pH¼ 7.2). Homogenates were kept 15 min on ice and centrifuged at 8,000g for
15 min at 4 !C to remove cell debris. Ten microlitres per condition were loaded for
western blots.

SDS–PAGE and immunoblotting. Samples were separated by TGX stain-free
precast gels (4-15% gradient, Bio-Rad), ultraviolet-activated with ChemiDoc Touch
system (Bio-Rad) for direct imaging of total proteins and then transferred to
nitrocellulose membranes for immunoblotting analysis. After blocking with 5%
non-fat dried milk in Tris-buffered saline Tween-20 (TBST; 28 mM Tris, 136.7 mM
NaCl, 0.05% Tween-20, pH 7.4) for 45 min at room temperature, membranes were
incubated with rabbit anti-Nlg1 (129013, Synaptic systems) diluted at 1:1,000 with
0.5% non-fat dried milk in TBST, followed by horse radish peroxidase-conjugated
anti-rabbit antibody (Jackson ImmunoResearch) for 1 h at room temperature.
Target proteins were detected by chemiluminescence with Super signal West Dura
(Pierce) on the ChemiDoc Touch system (Bio-Rad). The theoretical molecular
weight of Nlg1 is 93 kDa, but the apparent molecular weight in immunoblots is
B130 kDa, likely due to glycosylations65. For quantification, the intensity of the
chemiluminescence signal of each lane was normalized by the total protein signal
on the same lane, revealed by the stain-free technology.

Organotypic cultures and single-cell electroporation. Organotypic
hippocampal slice cultures were prepared from either wild-type or Nlg1 KO mice
(C57Bl6/J strain), as described below66. Briefly, animals at postnatal day 4–6 were
quickly decapitated and their brains placed in ice-cold Gey’s balanced salt solution
under sterile conditions. Hippocampi were dissected out and coronal slices
(350 mm) were cut using a tissue chopper (McIlwain) and incubated with
serum-containing medium on Millicell culture inserts (CM, Millipore). The
medium was replaced every 2–3 days. After 3–4 days in culture, CA1 pyramidal
cells were processed for single-cell electroporation with plasmids encoding
enhanced GFP (EGFP) along with AP-Nlg1 and BirAER in equal proportions. The
pipette containing 33 ng ml# 1 total DNA was placed close to the soma of individual
CA1 pyramidal neurons. Electroporation was performed by applying three square
pulses of negative voltage (10 V, 20 ms duration) at 1 Hz, and then the pipette was
gently removed. Three to five neurons were electroporated per slice, and the slice
was placed back in the incubator for several days before imaging.

Single Molecule Tracking (uPAINT). uPAINT experiments were carried out as
previously reported8. Cells were mounted in Tyrode solution (15 mM D-glucose,
108 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2 and 25 mM HEPES, pH 7.4)
containing 1% globulin-free BSA (Sigma) in an open Inox observation chamber (Life
Imaging Services, Basel, Switzerland). The chamber was placed on an inverted
microscope (Nikon Ti-E Eclipse) equipped with an EMCCD camera (Evolve, Roper
Scientific, Evry, France), a thermostatic box (Life Imaging Services) providing air at
37 !C and an apochromatic (APO) total internal reflection fluorescence (TIRF)
" 100 oil 1.49 numerical aperture (NA) objective. BFP- and GFP-expressing cells
were detected using a mercury lamp (Nikon Xcite) and the following filter sets
(SemROCK, USA): BFP (excitation: FF01-379/34; dichroic: FF-409Di03; emission:
FF01-440/40); EGFP (excitation: FF01-472/30; dichroic: FF-562Di02; emission:
FF01-593/40). Cells expressing the different AP constructs, or BFP- or GFP- Nrx1b,
were labelled using low concentrations of Atto 594-conjugated mSA, Atto 594-
conjugated streptavidin and Atto 594-anti-biotin, or Atto 647N- and 594-conjugated
GFP nanobody (1 nM) to isolate single molecules. The GFP nanobody recognizes
BFP, given the high sequence homology with GFP. A four-colour laser bench (405;
488; 561; and 642 nm, 100 mW each; Roper Scientific) is connected through an
optical fibre to the TIRF illumination arm of the microscope. Laser powers were
controlled through acousto-optical tunable filters driven by the Metamorph software
(Molecular Devices, USA). Atto 594 and Atto 647N were excited with the 561- and
642-nm laser lines through a four-band beam splitter (BS R405/488/561/635,
SemRock). Samples were imaged by oblique laser illumination, allowing the
excitation of individual Atto-conjugated ligands bound to the cell surface, without
illuminating ligands in solution. Fluorescence was collected using FF01-617/73 and
FF01-676/29 nm emission filters (SemRock), respectively, placed on a filter wheel
(Suter). Stacks of 2,000–4,000 consecutive frames were obtained from each cell, with
an integration time of 20–50 ms. Multicolour fluorescent 100-nm beads (Tetraspeck,
Invitrogen) were used to register long-term acquisitions and correct for lateral drifts.
In some experiments, EGTA (10 mM) was applied directly in the bath and left for
10 min. For NMDA experiments, a Gilson perfusion system was used to perfuse and
change the medium up to 1 h during acquisitions. Neurons were perfused with
Tyrode solution containing the fluorescent labels during the whole acquisition time.
Cells were recorded in control solution for 10 min, treated with 20mM NMDA in
Tyrode for 10 min and allowed to recover in control solution for 10 min. Control
cells were kept in Tyrode solution the whole time. Acquisitions were steered using
the Metamorph software (Molecular Devices) in a streaming mode at 50 Hz. Cycles
of two consecutive series of acquisitions were made sequentially up to 1 h. One series
corresponds to GFP (20 frames, 50 Hz), mSA-Atto 594 (1,500 frames, 50 Hz) and
Atto 647N-GFP nanobody (1,500 frames, 50 Hz).

Trajectory analysis and image reconstruction. Image stacks were analysed using
a custom programme running on Metamorph based on wavelet segmentation for
localization and simulated annealing algorithms for tracking, described earlier67,68.
The programme allows both the reconstruction of the super-resolution image by
summing the positions of localized single molecules into a single image, and
tracking of localized molecules through successive images. The instantaneous
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diffusion coefficient, D, was calculated for each trajectory from linear fits of the
first 4 points of the mean square displacement (MSD) function versus time.
Slow trajectories were defined as trajectories with diffusion coefficients
below 0.0093B0.01 mm2 s# 1 (Supplementary Fig. 4). This threshold corresponds
to molecules exploring a region smaller than that defined by the spatial
resolution of the system (B0.054 mm, full-width at half-maximum) during the time
used to fit the initial slope of the MSD (4 points, 20 ms) and is given by
Dthreshold¼ (0.054 mm)2/(4" 4" 0.02 s)B0.0093 mm2 s# 1, as described earlier16.
Spatial resolution was determined using fixed Atto samples. Overall, 415
two-dimensional (2D) distributions of single-molecule positions belonging to long
trajectories (410 frames) were measured by bi-dimensional Gaussian fitting and
the resolution determined as 2.3sxy, where sxy is the pointing accuracy. For
trajectory analysis, synapses were identified by wavelet-based image segmentation
of the Homer1c-GFP postsynaptic marker. The corresponding binary masks were
used to sort single-particle data analyses to specific synaptic regions. For NMDA
experiments, each mSA and nanobody sequence was analysed separately as
described, and data were pooled over 10-min intervals, to obtain representative
trajectories of protein populations. The percentage of synapses containing Nlg1 was
defined as the ratio between synapses containing at least 10 detections of AP-Nlg1
over the total number of synapses on super-resolved images obtained in the same
conditions for mSA and biotin antibody. Synaptic coverage was determined from
super-resolved detection maps as the ratio between threshold areas containing
detections over a whole synaptic region determined from the low-resolution
Homer1c signal. The percentage of synaptic detection is defined as the number of
detections within synapses defined by Homer1c divided by the total number of
detections. For dual-colour imaging of Nlg1 and Nrx1b, areas with high signal
density were identified as domains by wavelet segmentation. Their number and size
were extracted from 2D isotropic Gaussian fitting, and their length was determined
as the full-width at half-maximum. In the supplemental figures, the number of
objects per frame was analysed using the ‘Analyse Particles’ plugin in ImageJ and
averaged per stack of 2,000 frames acquired every 50 ms, and the number of
trajectories per 10 mm was determined as the average number of trajectories per
dendritic segments of 10 mm. MSD analysis was performed by filtering trajectories
with Do0.01 or D40.01 mm2 s# 1 (Supplementary Fig. 4). The MSD curve as a
function of time for Do0.1 mm2 s# 1 was fitted by one-phase association curve on
GraphPad to extract the confinement area, which was estimated to be B118 nm.

dSTORM. Primary cultured neurons co-expressing Homer1c-GFP, BirAER and
AP-Nlg1 or CA1 neurons in organotypic slice cultures from Nlg1 KO mice
that were single-cell-electroporated with GFP, BirAER and AP-Nlg1 were
surface-labelled with a high concentration (100 nM) of mSA-Alexa647, biotin
antibody-Alexa647 or streptavidin-Alexa647 in Tyrode solution for 10 min, and
were rinsed and fixed with 4% PFA–0.2% glutaraldehyde in PBS–BSA 1% for
10 min at room temperature or 2 h at 4 !C. dSTORM imaging of cultured neurons
and astigmatic-based 3D dSTORM imaging of organotypic brain slices on neurons
located close to the coverslip surface was performed. We used an inverted
motorized microscope (Nikon Ti, Japan) equipped with a " 100 1.49NA PL-APO
objective and a perfect focus system, allowing long acquisition in oblique
illumination mode. Both the ensemble and single-molecule fluorescence were
collected by using a quad-band dichroic filter (Di01-R405/488/561/635, Semrock).
The fluorescence was collected using a sensitive EMCCD (Evolve, Photometrics,
USA). For 3D imaging in organotypic brain slices, astigmatism was applied using
an adaptive optics system (MicAO—Imagine Optic). 3D calibration was established
using 100-nm fluorescent beads (Tetraspeck, Life Technologies) adhered to the
slice surface. Single-molecule localization and reconstruction was performed online
with automatic feedback control of the lasers using WaveTracer module, enabling
optimal single-molecule density during the acquisition68. The acquisition and
localization sequences were driven by MetaMorph (Molecular Devices) in a
streaming mode at 50 frames per second (20-ms exposure time) using an area equal
to or less than 256" 256 pixel region of interest. The brain slice was mounted in an
oxygen-scavenging imaging buffer6 and sealed between two glass coverslips. Images
were composed of 1,038,506 localizations analysed from 64,000 frames, over which
sample drift was corrected by localizing and tracking the displacement of cellular
autofluorescence. Super-resolution reconstructions were generated with the VISP
software69, and detection density maps were generated with a neighbourhood
radius of 400 nm. The resulting lateral resolution is 20 nm for primary neuronal
cultures and 50 nm for slice cultures, while the axial resolution is B50 nm. The
number of clusters per mm2 was determined by wavelet segmentation based on
areas with strong signal intensity compared with neighbouring areas67,68 on the
super-resolved dSTORM images generated from 40,000 frames. Synaptic
enrichment was defined as the ratio between the average number of synaptic
detections (area given by the Homer1c-GFP signal) and the average number of
extrasynaptic detections. The dispersion of Nlg1 and LRRTM2 molecules
compared with Homer centroid was computed as the distribution of the distances
between each detection event and the Homer centroid. Enrichment domains were
defined by wavelet segmentation of areas with higher labelling densities relatively to
neighbouring environment as illustrated by the linescans in Fig. 7, and their
number per synapse was counted for LRRTM2 and Nlg1. Domain sizes were
extracted from 2D isotropic Gaussian fittings as the average full-width at half-
maximum.

STED imaging and data analysis. CA1 neurons co-expressing EGFP, BirAER and
AP-Nlg1 in organotypic slices from wild-type mice were surface-labelled with high
concentration of mSA-Atto647N (100 mM) in Tyrode solution for 10 min, rinsed,
observed live using a commercial STED microscope (TCS SP5, Leica) and
thermostated to 37 !C. STED illumination of Atto 647N was performed using a
633-nm pulsed laser providing excitation, and a pulsed bi-photon laser (Mai Tai;
Spectra-Physics) tuned to 765 nm and going through a 100-m optical fibre to
enlarge pulse width (100 ps) used for depletion. A doughnut-shaped laser beam was
achieved through two lambda plates. Fluorescence light between 650 and 740 nm
was collected using a photomultiplier, using a HCX PL-APO CS " 100/1.40 NA oil
objective and a pinhole open to one time the Airy disk (60 mm). A fivefold zoomed
area of 512" 512 pixels, corresponding to a pixel size of 30 nm, was scanned at
50 Hz. In-depth acquisitions were performed by scanning hippocampal slices with
an increment of 1 mm in z over 60 mm. When indicated, raw data were
deconvoluted using the measured point spread function of the system and the
Richardson–Lucy algorithm with Huygens Professional (Huygens Software). 3D
reconstructed movies were made using Imaris (Bitplane).

FRAP experiments and analysis. Neurons electroporated with Homer1c-GFP,
BirAER and AP-Nlg1 or AP-LRRTM2 and cultured for 2 weeks were labelled with
high concentration of mSA-Atto594 (100 nM) for 10 min, and then rinsed,
mounted in Tyrode solution and observed under the same set-up used for uPAINT.
The laser bench (comprising 488, 561 and 642 nm lasers, 100 mW each, Roper
Scientific) has a second optical fibre output connected to an illumination device
containing galvanometric scanning mirrors (ILAS, Roper Instrument) steered by
MetaMorph. It allows precise spatial and temporal control of the focused laser
beam at any user-selected region of interest within the sample for targeted pho-
tobleaching. Switching between the two fibres for alternating between imaging and
bleaching is performed in the millisecond range using a mirror. Oblique illumi-
nation acquisition was performed using the 561-nm laser at low power (300 mW at
the front of the objective) to precisely image molecules accumulated at the sub-
strate level. After acquiring a 10-s baseline at 0.5–1 Hz frame rate, rapid selective
photobleaching of two to three synapses was achieved at higher laser power
(3 mW at the front of the objective) during 200–300 ms. Fluorescence recovery was
then recorded immediately after the bleach sequence for 30 min at a 0.5–1 Hz
frame rate. Observational photobleaching was kept very low, as assessed by
observing control synapses nearby. Data were plotted as normalized fluorescence
intensity versus time and fitted by the formula44: f [1# erf(1/(2

ffiffiffiffiffiffiffiffiffiffi
kdiff t
p

)]þ
(1#f)[1# exp(# kreact)], where f is the fraction of synaptic Nlg1 or LRRMT2
molecules diffusing freely with coefficient D, kdiff (in min# 1) is a characteristic
diffusive rate equal to D/r2 (where r is the radius of the bleached area), (1#f) the
fraction of molecules trapped in adhesive interactions with presynaptic Nrx1b and
kreac (in min# 1) the turnover rate of bound molecules. In this model, the synaptic
enrichment of Nlg1 or LRRTM2 at synapses is equal to the total number of
molecules (bound þ free) versus free molecules, that is, the ratio 1/f. In control
experiments, FRAP was performed on DIV 15 neurons electroporated with Nlg1-
GFP using a 488-nm laser power of either 0.4 or 4 mW at the front of the objective.

Confocal microscopy. Single electroporated neurons from organotypic slice culture
co-expressing GFP, BirAER and AP-Nlg1 were surface-labelled with mSA-Atto
647N, biotin antibody-Atto594 or streptavidin-Atto 647N in artificial cerebrospinal
fluid (ACSF) (in mM, 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 NaHCO3, 1.25
NaH2PO4 and 25 glucose, pH 7.4) for 10 min or 1 h, rinsed and fixed with 4% PFA–
0.2% glutaraldehyde in PBS–BSA 1% for 2 h at 4 !C. Images were acquired on a
commercial Leica DMI6000 TCS SP5 microscope using a " 63, 1.4 NA oil objective
and a pinhole opened to one time the Airy disk. Images of 512" 512 pixels were
acquired at a scanning frequency of 400 Hz.

Statistics. Statistical values are given as mean±s.e.m., unless otherwise stated.
Statistical significance was calculated using GraphPad Prism. All data sets
comparing two conditions were tested by the non-parametric Mann–Whitney test.
Data sets containing more than two conditions were compared by one-way analysis
of variance test, followed by a post hoc Dunn’s test. Sample size was based on two to
three different cultures per condition, 2–10 cells per experiment. Randomization of
samples was performed for all experiments. When critical comparison of different
labelling conditions was involved, experiments and image analysis were performed
blindly.
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33. Czöndör, K. et al. Unified quantitative model of AMPA receptor trafficking at
synapses. Proc. Natl Acad. Sci. USA 109, 3522–3527 (2012).

34. Fu, Y. & Huang, Z. J. Differential dynamics and activity-dependent regulation
of alpha- and beta-neurexins at developing GABAergic synapses. Proc. Natl
Acad. Sci. USA 107, 22699–22704 (2010).

35. Neupert, C. et al. Regulated dynamic trafficking of neurexins inside and outside
of synaptic terminals. J. Neurosci. 35, 13629–13647 (2015).

36. Tomita, S., Fukata, M., Nicoll, R. a & Bredt, D. S. Dynamic interaction of
stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303,
1508–1511 (2004).

37. Opazo, P. et al. CaMKII triggers the diffusional trapping of surface AMPARs
through phosphorylation of stargazin. Neuron 67, 239–252 (2010).

38. Tsetsenis, T., Boucard, a. a., Arac, D., Brunger, a. T. & Sudhof, T. C. Direct
visualization of trans-synaptic neurexin-neuroligin interactions during synapse
formation. J. Neurosci. 34, 15083–15096 (2014).

39. Saint-Michel, E., Giannone, G., Choquet, D. & Thoumine, O. Neurexin/
neuroligin interaction kinetics characterized by counting single cell-surface
attached quantum dots. Biophys. J. 97, 480–489 (2009).

40. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis
by a signaling mechanism shared with LTD. Nat. Neurosci. 3, 1291–1300
(2000).

41. Ko, J., Fuccillo, M. V, Malenka, R. C. & Südhof, T. C. LRRTM2 functions
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