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Strange fascination, fascinating me
Ah changes are taking the pace I’m going through

Changes, David Bowie
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Abstract

In only six years, gravitational waves have already provided an incredible amount of infor-
mation on our Universe. For instance, they have allowed us to infer for the first time the
properties of the population of compact binaries and provided new tests of general relativity.
They have also triggered many questions, and the future of gravitational wave astronomy
promises to be very exciting. The sensitivity improvement of current detectors will increase
the detection rate and our ability to extract the source parameters. Moreover, the next
generation of detectors is already being planned. Among them, the space-based interferom-
eter LISA will complement ground-based detectors and allow us to observe a yet unexplored
population of compact binaries. In this thesis, we propose tools to exploit the full potential
of gravitational wave observations, and assess what could be learned on astrophysics and
fundamental physics from these observations, with a special focus on the LISA mission.

We perform for the first time a full Bayesian analysis on simulated LISA signals of stellar-
mass black holes binaries. We determine the accuracy to which the source parameters could
be measured and explain the correlations between them. We also show that such observations
could be used to probe low-frequency modifications in the gravitational wave phase arising
due to deviations from general relativity or to environmental effects. Thus, they will help us
constrain modified gravity theories and inform us on the astrophysical environment of the
sources.

In addition to that, we propose a phenomenological model for the gravitational wave
signal of binaries made of exotic compact objects. We use it to show that next generation
detectors could potentially observe such binaries throughout the observable Universe, but
that their detection would be difficult with current search pipelines.

On the astrophysical side, we propose a semi-analytical model for the evolution of binaries
made of a black hole accreting from a white dwarf, and show that combining it with LISA
observations enables the measurement of the masses of both binary components and the
distance to the source. This piece of information, which is usually not accessible from gravi-
tational wave observations of galactic binaries, would allow us to identify both components.
Thus, LISA could be the first instrument to convincingly detect such binaries.

Finally, we build a pipeline for inferring the population of massive black hole binaries
from LISA observations, and discriminating between different scenarios for the formation
and evolution of massive black holes. Our pipeline uses the hierarchical Bayesian framework
to measure the hyperparameters controlling the population of massive black hole binaries,
comparing the observed population to theoretical predictions. We find that our pipeline
would allow us to correctly infer the population of massive black hole binaries, but only
if the observed data set is similar enough to the predictions of the model we compare it
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against. We highlight important challenges to be tackled in the next few years, both on the
data analysis and the astrophysical modelling side.

Keywords: Gravitational waves, general relativity, gravitational wave astronomy, black
holes, astrophysics, tests of general relativity, data analysis
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Résumé

En à peine six ans, les ondes gravitationnelles nous ont déjà beaucoup appris sur l’Univers.
Elles nous ont offert de nouveaux tests de la relativité générale, et nous ont permis d’inférer
pour la première fois la population de binaires compactes dans l’Univers. Ces détections
ont aussi amené leur lot de nouvelles questions, et le futur de l’astronomie gravitation-
nelle s’annonce prometteur. Les détecteurs actuellement en marche verront leur sensibilité
s’améliorer au cours des prochaines années, augmentant ainsi le nombre de détections et la
précision avec laquelle nous mesurerons les paramètres des sources. Par ailleurs, la prochaine
génération de détecteurs est déjà en préparation. Parmi eux, l’interféromètre spatial LISA
viendra complémenter les détecteurs terrestres et nous permettra d’observer une nouvelle
population d’objets compacts. Dans cette thèse, nous développons des outils qui nous per-
mettront d’exploiter au maximum le potentiel des futures observations d’ondes gravitation-
nelles, et explorons ce qu’elles pourraient nous enseigner sur l’astrophysique et la physique
fondamentale, avec un focus sur LISA.

Nous effectuons pour la première fois une analyse bayésienne complète sur des signaux
simulés de binaires de trous noirs de masse stellaire dans LISA. Notre travail nous a menés
à déterminer la précision avec laquelle les paramètres de la source pourront être mesurés et
à expliquer les corrélations entre eux. Nous montrons également que de telles observations
pourront être utilisées pour sonder les modifications à basse fréquence de la phase des ondes
gravitationnelles dues à des écarts par rapport à la relativité générale ou à des effets envi-
ronnementaux. Ainsi, elles nous permettront de contraindre les théories de gravité modifiée
et nous renseigneront sur l’environnement astrophysique des sources.

Par ailleurs, nous proposons un modèle phénoménologique pour le signal d’ondes gravi-
tationnelles émis par des binaires constituées d’objets compacts exotiques. Nous l’utilisons
pour montrer que les futurs détecteurs pourraient observer pratiquement toutes les binaires
de ce genre dans l’Univers, mais que leur détection serait difficile avec les méthodes de
recherche de signaux actuellement utilisées.

En astrophysique, nous proposons un modèle semi-analytique pour l’évolution de binaires
constituées d’un trou noir accrètant la matière d’une naine blanche, et nous montrons que
son association avec les observations de LISA permettra de mesurer les masses des deux
composants de la binaire ainsi que la distance à la source. Ces informations, qui ne sont
généralement pas accessibles à partir d’observations d’ondes gravitationnelles de binaires
galactiques, nous permettraient d’identifier les deux composants. Ainsi, LISA pourrait être
le premier instrument à apporter la preuve de l’existence de telles binaires.

Enfin, nous proposons une méthode pour inférer la population de binaires de trous noirs
massifs à partir des observations de LISA, nous permettant ainsi de distinguer parmis dif-
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férents scénarios pour la formation et l’évolution de trous noirs massifs. Notre méthode
s’appuie sur l’analyse bayésienne hiérarchique afin de mesurer les hyperparamètres contrôlant
la population de binaires de trous noirs massifs, en confrontant la population observée aux
prévisions théoriques. Notre méthode permettrait de déduire correctement la population de
binaires de trous noirs massifs, mais seulement si les observations sont sufisamment similaires
aux prédictions du modèle auquel nous les confrontons. Nous mettons en évidence des défis
importants à relever dans les prochaines années, tant du côté de l’analyse de données que
du côté de la modélisation astrophysique.

Mots-clés: Ondes gravitationnelles, relativité générale, astronomie gravitationnelle, trous
noirs, astrophysique, tests de la relativité générale, analyse de données
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Résumé étendu

En à peine six ans, les ondes gravitationnelles nous ont déjà beaucoup appris sur l’Univers.
Elles nous ont offert de nouveaux tests de la relativité générale, et nous ont permis d’inférer
pour la première fois la population de binaires compactes dans l’Univers. Ces détections
ont aussi amené leur lot de nouvelles questions, et le futur de l’astronomie gravitation-
nelle s’annonce prometteur. Les détecteurs actuellement en marche verront leur sensibilité
s’améliorer au cours des prochaines années, augmentant ainsi le nombre de détections et la
précision avec laquelle nous mesurerons les paramètres des sources. Par ailleurs, la prochaine
génération de détecteurs est déjà en préparation. Parmi eux, l’interféromètre spatial LISA
viendra complémenter les détecteurs terrestres et nous permettra d’observer une nouvelle
population d’objets compacts. Dans cette thèse, nous développons des outils qui nous per-
mettront d’exploiter au maximum le potentiel des futures observations d’ondes gravitation-
nelles, et explorons ce qu’elles pourraient nous enseigner sur l’astrophysique et la physique
fondamentale, avec un focus sur LISA.

Les ondes gravitationnelles sont une prédiction fondamentale de la théorie de la relativité
générale. Mathématiquement, elles sont obtenues en développant la métrique autour d’une
géométrie Minkowskienne, gµν = ηµν + hµν , et en gardant uniquement les termes d’ordre
linéaire en hµν dans l’équation d’Einstein pour le champ gravitationnel, ce qui nous donne

�ηh̄µν = −16πTµν , (1)

où h̄µν = hµν − 1
2
ηµνh et Tµν est le tenseur énergie-moment. Einstein dériva cette équation

l’année suivant sa formulation de la théorie de la relativité générale, mais il fallut attendre
près de 40 ans pour donner une interprétation physique aux ondes gravitationnelles. On sait
depuis que les ondes gravitationnelles sont véritablement l’analogue des ondes électromag-
nétiques pour l’interaction gravitationnelle, et peuvent extraire de l’énergie et du moment
angulaire d’un système. Tout comme en électromagnétisme, il existe deux polarisations pour
les ondes gravitationnelles, notées h+ et h×, et il est possible d’écrire le flux d’ondes grav-
itationnelles sous la forme d’une décomposition en harmoniques sphériques, à la différence
près que cette expansion commence à l’ordre quadripolaire dû à la conservation de la quan-
tité de mouvement. Les ondes gravitationnelles ne sont émises que par des systèmes non
stationnaires, tel qu’un système de deux corps orbitant l’un autour de l’autre. Dans cette
thèse nous nous intéressons particulièrement aux binaires de trous noirs telles qu’illustré sur
la figure 1.

m1 et m2 sont les masses des trous noirs, M = m1 +m2 la masse totale, µred = m1m2/M
la masse réduite et q = m1/m2 ≥ 1 est la raison des masses. Deux autres combinaisons
s’avèrent particulièrement utiles: la raison symétrique des masses η = µred/M et la “chirp
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Figure 1: Représentation schématique d’une binaire de trous noirs. Nous adoptons la con-
vention m1 ≥ m2, et nous limitons au cas où les spins des trous noirs (χ1χ1χ1 et χ2χ2χ2) sont alignés
ou anti-alignés avec le moment cinétique orbital L.

mass” Mc = (m3
1m

3
2/(m1 +m2))

1/5
= Mη3/5. Nous nous limitons au cas de binaires sur des

orbites circulaires et où les spins des trous noirs (χ1χ1χ1 et χ2χ2χ2) sont alignés ou anti-alignés avec le
moment cinétique orbital L. Nous définissons les combinaisons de spins χ+,− = m1χ1±m2χ2

m1+m2
où

χ1,2 = χ1,2χ1,2χ1,2 ·L. L’émission d’ondes gravitationnelles entraîne le rapprochement des trous noirs
pendant la phase “inspiralante” et ceux-ci finissent par fusionner et former un unique trou
noir. Ce trou noir est initialement dans un état perturbé et atteint l’équilibre en émettant
des ondes gravitationnelles. Cette dernière étape est appelée le “ringdown”. En première
approximation, le signal lors de la phase inspiralante est donné par

h+ =
4Mc

R
(Mcωorb(t))2/3 1 + cos2(ι)

2
cos (2(φorb(t) + ϕ)) , (2)

h× =
4Mc

R
(Mcωorb(t))2/3 cos(ι) sin (2(φorb(t) + ϕ)) , (3)

où R est la distance entre l’observateur et la source, ι est l’angle entre le moment cinétique
orbital et la direction d’émission de l’onde, ωorb est la vitesse orbitale du système binaire,
φorb(t) = φc −

∫ tc
t
ωorb(t)dt, φc est la “phase de coalescence”, tc est le temps restant avant

la coalescence et ϕ est une constante. Le signal total est illustré sur la figure 2. Par la
suite, il sera particulièrement utile de travailler avec la transformée de Fourier du signal:
h̃(f) =

∫ +∞
−∞ h(t)e2iπftdt.

Il est malheureusement impossible de résoudre exactement les équations d’Einstein et il
est nécessaire de faire appel à différentes méthodes d’approximation. Lors de la phase inspi-
ralante, le développement post-Newtonien permet d’obtenir itérativement une solution sous
la forme d’une expansion en puissances de v/c, où v est la vitesse relative des trous noirs.
Près de la fusion, seules de coûteuses simulations numériques permettent de résoudre les
équations d’Einstein. Finalement lors du ringdown, la théorie de perturbations linéaires des
trous noirs permet d’obtenir le signal gravitationnel, qui peut s’écrire comme une superpo-
sition de sinus amortis dont les fréquences et temps caractéristiques dépendent uniquement
des propriétés du trou noir final. Le signal complet peut être obtenu en assemblant ces
trois méthodes. Une importante propriété des ondes gravitationnelles permet par ailleurs
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Figure 2: Représentation schématique du premier évenement détecté, GW150914. Sur le
panneau du haut figurent la prédiction théorique pour le signal gravitationnel et sa recon-
struction à partir des données, en rouge et gris respectivement. Sur le panneau du bas
figurent l’évolution de la séparation et la vitesse relative entre les trous noirs au cours de
l’évolution.

de simplifier le calcul: les signaux temporels h/M et fréquentiels h̃/M2 peuvent s’écrire
en fonction de t/M et Mf , respectivement, sans aucune autre dépendance en M . Ainsi,
l’échelle de masse du système n’intervient pas dans les calculs. Par ailleurs, cela implique
que plus un système est massif, plus il émet à des basses fréquences. Dans cette thèse nous
utilisons des formes d’onde phénoménologiques construites directement dans le domaine de
Fourier, PhenomD et PhenomHM. Cette dernière, inclut l’effet des harmoniques autres que
le quadrupôle, contrairement à PhenomD.

Les ondes gravitationnelles peuvent être détectées à travers leur effet sur la matière. En
effet, la distance propre entre deux objets immobiles varie selon ∆L/L = h/2 lors du passage
d’une onde gravitationnelle. Une des principales méthodes de détection est l’interférométrie
et consiste à mesurer le déphasage entre deux faisceaux lasers dont la longueur varie dû
au passage d’une onde gravitationnelle. Cette technique est actuellement utilisée par les
détecteurs LIGO et Virgo, dont les bras font 4 et 3 km de long respectivement, et sera
également exploitée par les futurs détecteurs terrestres (Einstein Telescope et Cosmic Ex-
plorer) et spatiaux, LISA. Ce dernier sera composé de trois navettes spatiales suivant la
Terre sur son orbite autour du Soleil, reliées par des lasers de 2.5 millions de kilomètres.
Tandis que les détecteurs terrestres sont sensibles à des systèmes binaires de masse totale de
l’ordre de 1-100 M�, tels que des binaires de trous noirs de masses stellaires ou des binaires
d’étoiles à neutrons, LISA cherchera à observer des binaires de trous noirs massifs, de masse
totale allant de ∼ 104 à 109 M�. LISA sera également capable de détecter le signal émis
par des binaires Galactiques. Ces systèmes, constitués essentiellement de naines blanches
mais aussi d’étoiles à neutrons et de trous noirs, formeront un signal stochastique dominant
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Figure 3: Principales sources de LISA comparées au niveau de bruit dans le détecteur.

sur le bruit de l’instrument. Par ailleurs, quelques dizaines de milliers de ces sources de-
vraient être détectables individuellement. Finalement, LISA pourra également observer des
binaires de trous noirs de masses stellaires lors de leur phase inspiralante, quelques semaines
avant que les détecteurs terrestres n’observent leur fusion. Sur la figure 3, nous représentons
l’amplitude des principales sources de LISA ainsi que le niveau de bruit dans le détecteur,
mesuré par la densité spectrale de puissance du bruit, Sn(f).

La présence de bruit dans les détecteurs peut grandement compromettre la détection de
signaux. La technique du “matched filtering” permet d’y remédier. Tout d’abord, définissons
le produit scalaire entre deux formes d’ondes:

(a|b) = 4Re
(∫ +∞

0

ã(f) b̃∗(f)

Sn(f)
df

)
. (4)

Notons θ l’ensemble des paramètres d’un système binaire. Le “matched filtering” consiste à
trouver un θ maximisant le ratio signal sur bruit (signal to noise ratio, SNR, en anglais),
défini comme

SNR[θ] =
(d|h(θ))√
(h(θ)|h(θ))

, (5)

où d est la série de données mesurée par le détecteur. On considère qu’un signal est détecté
lorsque le SNR dépasse un seuil prédéfini. Ce seuil est fixé de telle sorte que la probabilité que
le bruit du détecteur puisse produire un signal semblable à celui observé soit suffisamment
faible (typiquement de l’ordre de 10−3). Pour un seul détecteur, le seuil en SNR est alors de
l’ordre de 8. Une fois un signal détecté on procède à l’estimation des paramètres. Pour cela,
les paramètres du système sont traités comme une variable aléatoire dont la distribution de
probabilité est estimée à l’aide du théorème de Bayes:

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
. (6)

où H représente l’ensemble des hypothèses faites dans l’analyse, p(θ|d,H) est la ”posterior
distribution”, p(d|θ,H) la vraisemblance, p(θ|H) la ”prior distribution” et p(d|H) l’évidence.
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Ce dernier terme peut être utilisé pour comparer différents modèles (des H différents), mais
peut être considéré comme une simple constante de normalisation lors de l’estimation des
paramètres. Puisque nous n’effectuons pas de comparaison entre modèles, nous omettons
le terme H par la suite. Sous l’hypothèse que le bruit dans le détecteur est gaussien, la
vraisemblance s’écrit

p(d|θ) = exp

[
−1

2
(d− h(θ)|d− h(θ))

]
. (7)

La difficulté dans l’estimation des paramètres réside dans la haute dimensionnalité de θ,
11 dans notre cas (les masses, les spins, la distance à la source, l’inclinaison de la source, la
phase de polarisation, la latitude, la longitude, le temps de coalescence/la fréquence initiale,
la phase de coalescence/phase initiale). Cela requiert d’explorer l’espace des paramètres
efficacement. La technique la plus répandue est d’utiliser un algorithme “Markov chain
Monte-Carlo” (MCMC). Un des principaux buts de cette thèse a été de développer un algo-
rithme MCMC permettant d’effectuer des estimations de paramètres sur des signaux simulés
de binaires de trous noirs de masses stellaires dans LISA. Il s’agit plus spécifiquement d’un al-
gorithme Metropolis-Hastings MCMC (MHMCMC). Notre algorithme s’appuie sur le calcul
de la matrice de Fisher afin d’explorer efficacement l’espace des paramètres. Cette dernière
est définie à travers la relation

Fij(θ) = (∂ih|∂jh)|θ . (8)

et son inverse fournit une approximation (optimiste) de la matrice de covariance des paramètres.
Dans cette thèse nous ne traitons pas de la détectabilité des signaux, nous nous focalisons
sur des systèmes à suffisamment haut SNR et effectuons l’estimation des paramètres.

Nous avons utilisé notre algorithme pour effectuer une étude à large échelle de l’estimation
des paramètres de binaires de trous noirs de masses stellaires observées avec LISA. Jusque-là
toutes les études portant sur ce sujet avaient utilisé la matrice de Fisher pour l’estimation
des paramètres et ne prenaient pas en compte la réponse complète de LISA au signal gravi-
tationnel. Au contraire, nous effectuons des analyses bayésiennes complètes sur des signaux
réalistes de LISA. À partir d’un système compatible avec le premier événement observé,
GW150914, (dit système Fiducial) nous définissons d’autres systèmes en variant un ou deux
paramètres à la fois, afin de comprendre comment varient l’erreur sur les paramètres et
les corrélations entre eux à travers l’espace des paramètres. Nous explorons également
l’importance du temps d’observation et du choix de prior. Le principal résultat est que
l’estimation des paramètres intrinsèques (masses et spins) dépend énormément du stade de
l’évolution du système pendant lequel il est observé. Cela peut être vu sur la figure 4, où nous
montrons la posterior distribution pour le système Fiducial pour des durées de la mission
de 4 et 10 ans, sachant que l’observation du système démarre 8 ans avant sa coalescence.
Dans le cas où la mission ne dure que 4 ans, nous n’observons que la phase inspiralante et
seule la chirp mass peut être précisément mesurée, avec quand même une forte corrélation
avec la raison symétrique des masses. Nous montrons que la posterior des autres paramètres
intrinsèques est dominée par le choix de prior. Dans le deuxième cas, nous observons le
début du “chirp”, la corrélation entre Mc et η est partiellement brisée et il est possible de
mesurer le spin effectif χ+. Par ailleurs, nous montrons que la position dans le ciel est
toujours bien estimée, typiquement au-dessous de 1 deg2, ce qui permettrait à des futurs
observatoires électromagnétiques tels qu’Athena et SKA de chercher une contrepartie élec-
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Figure 4: Distributions des paramètres inférées pour le système Fiducial dans le cas où la
mission dure 4 ans (bleu) et 10 ans (orange). Les valeurs des paramètres du signal injectées
sont indiquées par des lignes noires. Les masses sont dans le référentiel du détecteur.
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tromagnétique. Nous proposons également une amélioration de l’estimation des paramètres
basée sur la matrice de Fisher, produisant des résultats compatibles avec l’analyse bayési-
enne. L’amélioration consiste en l’ajout d’une matrice à la matrice de Fisher afin de prendre
en compte l’étendue finie du prior sur les spins et corriger la trop grande erreur prédite sur
la distance, due à la forte corrélation avec l’inclinaison. Finalement, nous comparons l’effet
de l’approximation “long wavelength” pour la réponse sur l’estimation des paramètres. Nous
concluons que celle-ci à peu d’impact si les données sont générées avec cette même approxi-
mation, mais qu’elle peut entraîner des biais dans le cas plus réaliste où la réponse complète
est prise en compte. En conclusion, notre travail sert de base à l’exploitation scientifique de
l’observation des binaires de trous noirs de masses stellaires avec LISA et pourra être utilisé
dans le futur afin de mettre en place des outils de recherche de tels signaux.

L’existence d’ondes gravitationnelles est également prédite par les théories de gravité
modifiée. Ces théories, visant à expliquer la matière noire, l’énergie noire et/ou concilier
la gravitation avec les phénomènes quantiques, modifient l’équation d’Einstein et donc les
solutions d’ondes gravitationnelles. Celles-ci sont émises dans un régime où le champ grav-
itationnel est fort et dynamique, où les écarts par rapport à la relativité générale sont po-
tentiellement plus grands. Ainsi, les observations d’ondes gravitationnelles constituent un
excellent moyen de tester les théories de gravité modifiée. Malheureusement, il est encore
plus difficile de résoudre les équations du champ gravitationnel dans ces théories, et peu de

Figure 5: Distribution de l’amplitude de la radiation dipolaire pour un système similaire
à GW150914 avec LISA (rouge) et LISA+détecteurs terrestres (vert). Sur le panneau de
gauche, la valeur injectée est nulle et les lignes en pointillées indiquent la borne supérieure
que l’on pourrait placer sur BBH (correspondant à l’intervalle de confiance de 90%). Dans les
deux scénarios, la contrainte est bien inférieure à celle actuelle (4× 10−2). Sur les panneaux
du milieu et de droite, la valeur injectée est 0.7× 10−8 et 1.0× 10−6 respectivement, comme
indiquée par la ligne bleue. Puisque zéro n’appartient pas au support de la posterior sur le
panneau de droite, il serait possible dans ce cas d’identifier avec certitude la présence d’une
modification de la relativité générale, contrairement au cas sur le panneau du milieu.
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résultats de formes d’ondes en gravité modifiée sont actuellement disponibles. Il est alors
utile de se tourner vers des tests agnostiques, ne ciblant pas des théories spécifiques. Par
exemple, une prédiction commune à plusieurs théories est la présence de radiation dipolaire
dans des binaires de trous noirs. Cet effet entraîne une modification de la phase de l’onde
gravitationnelle à basses fréquences, dont l’amplitude est proportionnelle à l’amplitude de la
radiation dipolaire BBH. On s’attend donc à ce que l’observation de binaires de trous noirs
de masses stellaires à basses fréquences avec LISA permette de contraindre cet effet. À l’aide
d’une analyse bayésienne, nous obtenons en effet que l’observation d’un système semblable
à GW150914 permettrait de contraindre BBH à moins de 10−8, et un ordre de magnitude
moins si le système est ensuite observé avec des détecteurs terrestres (voir figure 5), ce qui
représente une amélioration de 7 ordres de magnitude par rapport aux contraintes actuelles.
Nous considérons également la possibilité de contraindre la masse du graviton. Une masse
non nulle entraîne une modification de la relation de dispersion et ainsi une dépendance de la
vitesse des ondes gravitationnelles avec la fréquence. Cette dépendance crée un décalage en
phase apparaissant à plus hautes fréquences. Nous obtenons que LISA pourrait légèrement
améliorer les contraintes actuelles sur la masse du graviton mais nous nous attendons à ce
que LIGO et Virgo améliorent leur contrainte d’ici le lancement de LISA.

Ensuite, nous nous intéressons à des modifications survenant proche de la fusion lors de
la coalescence d’objets compacts exotiques. L’existence de ces objets est prédite par de nom-
breuses théories au-delà du modèle standard et de la relativité générale, l’exemple le mieux
étudié étant les étoiles à bosons. Ces objets ont une compacité (raison adimensionnelle entre
la masse et le rayon) allant de ∼ 0.1 à 0.5 et peuvent mimer le comportement gravitationnel
des trous noirs et des étoiles à neutrons, rendant leur identification difficile. En nous basant
sur des résultats analytiques et de simulations numériques, nous identifions les principales
différences qu’exhiberait le signal gravitationnel émis par de tels systèmes avec une binaire

Figure 6: Amplitude du signal dans le domaine de Fourier pour un type de binaires d’objets
compacts exotiques de masses 30 M�, pour différentes valeurs de la compacité. En noir nous
représentons le signal correspondant à une binaire de trous noirs de mêmes masses, sans
spins.
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de trous noirs. Nous identifions trois issues possibles à la fusion de ces objets: formation
prompte d’un trou noir, formation d’une étoile “supermassive” qui finit par collapser en un
trou noir ou qui finit par former un objet compact exotique de la même nature que les ob-
jets dans le système binaire. De plus, dans ce dernier cas la quantité de moment cinétique
angulaire retenue lors de la coalescence dépend fortement de la nature de l’objet. Nous nous
concentrons sur les cas où une étoile supermassive est formée et proposons un modèle simpli-
fié pour la dynamique du système suite à la fusion, dans le cas où les objets n’ont pas de spin,
ont la même masse et ont une compacité comprise entre 0.14 et 0.2. Nous calculons ensuite
les signaux gravitationnels émis dans chaque configuration, en incluant les effets de marée
lors la phase inspiralante et en utilisant notre modèle pour le signal fusion/post-fusion. Un
exemple de signal est donné sur la figure 6. Nous utilisons ces signaux dans le but d’étudier
la détectabilité et l’indiscernabilité de telles binaires. Nous obtenons que LIGO ne peut les
détecter que jusqu’à z ∼ 1 mais que LISA et Einstein Telescope pourront détecter pratique-
ment toutes les binaires de ce genre dans l’Univers et potentiellement les discerner de binaires
de trous noirs. De plus, nous montrons que des recherches de signaux basées sur le matched
filtering pourraient perdre jusqu’à 60% de SNR si seules des formes d’ondes de binaires de
trous noirs sont utilisées, ce qui compromettrait grandement nos chances de détecter ces
signaux. Finalement, nous estimons qu’il est peu vraisemblable que les signaux détectés par
LIGO et Virgo lors des deux premières périodes de prises de données soient issus de binaires
d’objets compacts exotiques telles que celles que nous considérons. Notre modèle pourrait
être amélioré afin d’inclure d’autres modifications au signal d’une binaire de trous noirs lors
de la phase inspiralante, dues par exemple à une structure multipolaire différente, et une
plus grande variété de comportements post-fusion. Il pourrait être utilisé afin de mettre en
place des outils d’analyse de données cherchant à identifier des modifications à la relativité
générale proche de la fusion.

L’environnement astrophysique dans lequel évolue un système binaire peut également
entraîner des modifications à basse fréquence de l’onde gravitationnelle. C’est par exemple
le cas si les trous noirs accrètent de la matière, se déplacent dans de la matière subissant une
force visqueuse ou orbitent un objet massif. De telles modifications seraient potentiellement
dégénérées avec des modifications dues à des écarts par rapport à la relativité générale,
difficultant les tests de la relativité générale, et doivent donc être soigneusement pris en
compte. Les circonstances décrites auparavant sont réunies dans le cas où le système se trouve
au centre d’une galaxie active, tel qu’il a été spéculé pour l’événement GW190521 détecté par
LIGO et Virgo. Ce système présente la particularité d’être très massif (M ∼ 150 M�), avec
au moins un des deux composants dans le “gap de masse” prédit par la théorie de l’évolution
stellaire. En effet, on s’attend à ce que des étoiles avec une masse de l’ordre de 120-260 M�
se désintègrent complètement, sans laisser de trou noir derrière elles. Ainsi, des trous noirs
de masse entre 60 et 130 M� ne devraient pas pouvoir êtres formés suite à l’effondrement
gravitationnel d’une étoile d’après les modèles d’évolution stellaire standard. Une alternative
serait que ces trous noirs (du moins le plus massif) soient de “seconde génération”, c’est-à-dire
des trous noirs formés suite à la fusion de deux trous noirs plus petits, formés eux suite à
l’effondrement gravitationnel d’étoiles. La formation de binaires où au moins l’un des trous
noirs est de seconde génération est favorisée dans des régions denses telles que le centre
d’une galaxie active. De plus, le télescope optique et infrarouge Zwicky Transient Facility
a détecté un candidat pour une contrepartie électromagnétique qui aurait été provoqué par
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Figure 7: Modulation Doppler du signal gravitationnel due au mouvement de la binaire au-
tour du trou noir massif central. Le panneau de gauche représente l’évolution de la fréquence
de l’onde au cours du temps pour des signaux avec (ligne continue) et sans (ligne pointil-
lée) modulation (la coalescence est à t = 0). Le panneau de droite représente le ratio des
amplitude du signal gravitationnel dans le domaine de Fourier avec et sans modulation. La
ligne horizontale est à 1. Dans les deux panneaux, les bandes grisées indiquent les bandes
de fréquence où la relation temps-fréquence n’est pas bijective.

le déplacement du trou noir final dans le disque d’accrétion autour de trou noir massif au
centre de la galaxie J124942.3+344929. Grâce à sa large masse totale, un tel système serait
potentiellement détectable par LISA. Ainsi, nous nous penchons sur ce que LISA pourrait
nous apprendre sur les effets environnementaux dans des binaires de trous noirs de masses
stellaires et des binaires de trous noirs de masses intermédiaires (M ∼ 102-103 M�). Nous
nous sommes d’abord intéressés à l’effet de l’accrétion. Nous considérons que chaque trou noir
accrète au même taux ṁ = fEddṁEdd où ṁEdd est le taux d’Eddington, une limite théorique
sur le taux d’accrétion d’un trou noir et fEdd est un paramètre libre. Nous montrons que
cela entraîne une modification à basses fréquences proportionnelle à fEdd et qu’il est possible
de détecter son effet pour des accrétions de niveau supra-Eddington (fEdd ∼ 10) dans des
binaires de trous noirs de masses stellaires et de niveau Eddington dans des binaires de
trous noirs de masses intermédiaires (fEdd ∼ 1). Dans ce dernier cas, nous estimons de
plus qu’il serait possible d’observer une contrepartie électromagnétique en rayons X avec
Athena et dans le domaine radio avec SKA. Nous nous concentrons ensuite sur des systèmes
semblables à GW190521, à cheval entre une binaire de trous noirs de masses stellaires et
une binaire de trous noirs de masses intermédiaires. Nous considérons les trois effets décrits
précédemment: accrétion, friction dynamique, accélération (constante) autour d’un trou
noir massif et évaluons dans quelles configurations ces effets sont détectables. Nous estimons
que l’effet de l’accrétion serait détectable pour fEdd & 6, celui de la friction dynamique
pour une densité du gaz dans le disque d’accrétion supérieure à 10−12g.cm−3 (soit 100 fois
moins que celle estimée par Zwicky Transient Facility) et celui de l’accélération pour un
rayon orbital inférieur à 0.4 pc pour un trou noir central ayant une masse de 108 M�.
Finalement, nous considérons l’effet du mouvement du système binaire autour du trou noir
dans le cas où le rayon orbital est trop petit pour que l’accélération puisse être considérée
constante. Dans ce cas, comme illustré sur la figure 7, la fréquence du signal gravitationnel
n’est plus une fonction croissante du temps, avec des modulations dues à l’effet Doppler. Cela
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Figure 8: Relations entre la fréquence du signal gravitationnel, sa dérivée et les masses du
trou noir et de la naine blanche obtenues à partir de simulations numériques

.

entraîne une modification non perturbative du signal comme il est possible de constater sur
le panneau droit de cette même figure. Nous sommes actuellement en train d’estimer dans
quelle mesure cet effet pourrait nous renseigner sur les propriétés de la galaxie où se trouve
le système binaire. Par ailleurs, la capacité de LISA à identifier précisément la position de la
source faciliterait la recherche de contreparties électromagnétiques telle que celle identifiée
par Zwicky Transient Facility.

Nous nous intéressons ensuite aux effets de l’accrétion au sein d’un système binaire, plus
particulièrement à des systèmes composés d’un trou noir accrétant la matière d’une naine
blanche. Les modèles de synthèse de population Galactique prédisent un taux au moins
100 fois moins élevé pour ces systèmes que pour des binaires de naines blanches et leur
existence n’a pas encore été confirmée malgré quelques candidats. De tels systèmes émettent
un signal quasi monochromatique dans la bande du mHz et seraient des sources potentielles
pour LISA. Nous proposons un modèle semi-analytique pour l’évolution de ces systèmes à
partir du moment où l’accrétion se met en place, quand le rayon de la naine blanche dépasse
celui de son lobe de Roche. Notre modèle repose sur la conservation du moment cinétique
angulaire et utilise des approximations analytiques pour le taux d’accrétion, le rayon d’une
naine blanche et le rayon du lobe de Roche. Nous considérons de plus que la naine blanche
est synchronisée avec la période orbitale du système (“tidal lock”) et que le trou noir ne
subit pas d’effets de marée. Nous montrons que, comme dans le cas de binaires de naines
blanches, il existe une étroite relation entre la fréquence de l’onde gravitationnelle (f) et
la masse de la naine blanche (MWD), indépendante des conditions initiales, comme illustré
sur le panneau gauche de la figure 8. Nous mettons en évidence pour la première fois une
relation entre la fréquence de l’onde gravitationnelle, sa dérivée (ḟ) et la masse du trou
noir (MBH), illustrée sur le panneau droit de la figure 8. L’observation de tels systèmes
avec LISA nous permettrait de mesurer f , ḟ et l’amplitude de l’onde, et ces relations nous
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permettraient d’inférer les masses du trou noir et de la naine blanche, ainsi que la distance
à la source. L’information des masses, qui n’est généralement pas accessible à travers des
observations d’ondes gravitationnelles de binaires Galactiques, nous permettrait d’identifier
sans ambigüité les deux composants du système binaire. Ainsi, LISA pourrait être le premier
instrument à confirmer l’existence de tels binaires. Dans notre modèle nous utilisons une
approximation pour le rayon de la naine blanche à température zéro. Or celle-ci peut être
chauffée par les radiations du trou noir. En estimant la température de la naine blanche à
l’aide de la formule de Stefan-Boltzmann pour les corps noirs et en utilisant des résultats de
simulations numériques pour la relation masse-rayon de naines blanches à température finie,
nous estimons que la naine blanche ne serait pas chauffée suffisamment pour que les effets
de température finie deviennent importants. Par ailleurs, nous prévoyons d’explorer dans
quelle mesure nos résultats sont robustes si une relation masse-rayon différente ou une autre
approximation pour le rayon de lobe de Roche sont utilisées.

(a) (b)

Figure 9: Inférence de la population de trous noirs massifs à partir d’observations de LISA.
Sur le panneau de gauche nous avons simulés des donnés en utilisant le même modèle astro-
physique que celui utilisé dans l’analyse hiérarchique. Sur le panneau de droite nous utilisons
des modèles différents et, contrairement au premier cas, notre inférence de la population de
trous noirs (PPD) est en désaccord avec la population sous-jacente. α0 est la valeur du
coefficient de mélange entre les deux variantes du modèle.

Après avoir exploré ce qui pourrait être appris à partir de détections individuelles, nous
nous intéressons à ce que les observations de LISA dans leur ensemble pourrait nous en-
seigner. Nous nous intéressons à la capacité de LISA d’inférer la population de binaires de
trous noirs massifs dans l’Univers. Celle-ci étant le résultat de la longue évolution des trous
noirs depuis z ∼ 20 jusqu’à aujourd’hui, mesurer la distribution de binaires de trous noirs
massifs nous informerait sur les processus régissant la formation et l’évolution des trous noirs
massifs. Nous utilisons les résultats de simulations semi-analytiques pour modéliser la popu-
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lation de binaires de trous noirs massifs. Les modèles que nous utilisons ont deux variantes:
l’une où les trous noirs sont formés à partir des étoiles “Pop III”, les premières étoiles de
l’Univers, et l’autre où ceux-ci sont formés par l’effondrement de disques protogalactiques.
Dans le premier cas les trous noirs sont originalement peu massifs (∼ 102 M�), contrairement
au deuxième cas (∼ 105 M�). Puisqu’il est peu vraisemblable que l’Univers puisse être décrit
par un seul modèle, nous introduisons un coefficient de mélange entre ces deux variantes que
nous traitons comme un hyperparamètre contrôlant la population de binaires de trous noirs
massifs. Nous étudions avec quelle précision ce coefficient de mélange pourrait être mesuré
à partir des observations de LISA, en effectuant une analyse bayésienne hiérarchique sur des
données simulées. Cette analyse cherche à déterminer la valeur du coefficient de mélange
pour laquelle les observations peuvent le mieux être décrites par notre modèle théorique.
Nous vérifions tout d’abord que notre analyse ne comporte pas de biais systématiques et
que la détermination du coefficient de mélange s’améliore avec le nombre d’observations.
Nous montrons ensuite que cette méthode permet de déterminer précisément la population
de binaires de trous noirs massifs, mais seulement dans le cas où les observations sont suff-
isamment proches du modèle théorique auquel elles sont comparées (voir figure 9). Afin de
pallier cela, nous sommes actuellement en train de travailler sur un modèle plus flexible pour
la population de binaires de trous noirs massifs, où celle-ci serait contrôlée par des hyper-
paramètres ayant une plus grande signification physique, tels que la distribution initiale de
masse ou les délais entre la fusion de galaxies et la fusion des trous noirs massifs centraux.
Par ailleurs, nous commentons sur l’importance d’avoir suffisamment de points fournis par
les simulations numériques, sous peine d’entraîner des biais systématiques dans l’analyse.
Finalement, nous nous penchons sur des systèmes pour lesquels nous avons effectué une
analyse bayésienne et la distribution des paramètres intrinsèques est multimodale lorsque
les harmoniques au-delà de l’harmonique dominant sont inclus. Nous montrons que cela est
dû au fait que ces harmoniques ont des SNRs suffisamment élevés pour réduire l’erreur sur
les paramètres par rapport au cas où seul l’harmonique dominant est pris en compte, mais
pas assez pour briser certaines dégénérescences. Étudier ces systèmes est pertinent du point
de vue astrophysique puisqu’ils proviennent de simulations numériques, mais la plupart des
cas où nous observons une multimodalité est pour des systèmes ayant de larges spins et des
raisons de masses bien au-dessus de 1. Cela renforce l’importance d’avoir des formes d’ondes
dans ce régime plus fiables que celles dont nous disposons actuellement.

Ainsi, dans cette thèse j’ai fait de mon mieux pour apporter des réponses à des questions
qui me semblaient importantes pour la communauté des ondes gravitationnelles. Ce proces-
sus a amené de nouvelles questions tout aussi pertinentes auxquelles j’espère être capable
d’apporter une réponse dans un futur proche.
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Table 1: Parameters used throughout the manuscript and their explicit expressions when
necessary.
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Introduction

In 2015, the Laser Interferometer Gravitational Wave Observatory (LIGO) [2] observed for
the first time the gravitational wave signal emitted by a coalescing binary [3]. The detection
of GW150914, named after its detection date, came forty years after the indirect observation
of gravitational waves in binary pulsars [4], and definitively confirmed Einstein’s 1916 finding
[5]. Since then, LIGO has been joined by Virgo [6] and the LIGO/Virgo collaboration (LVC)
has issued two catalogues of the gravitational wave sources identified during the first and
second observing runs [7] and during the first half of the third run [8], counting in total 50
events. These observations of gravitational waves in the 10–1000 Hz band have inaugurated
the era of gravitational wave astronomy and opened a new window to the Universe.

The latter expression is not a mere figure of style. For instance, gravitational waves offer
complementary means of observing neutron stars. A first multimessenger event occurred
during the second observing run, when LIGO and Virgo detected the coalescence of a bi-
nary neutron star (BNS) [9] and a coincident electromagnetic counterpart was observed [10].
Moreover, unlike electromagnetic telescopes, gravitational wave detectors can observe black
holes in binary systems without any need for matter surrounding them. All observations
so far being in good agreement with the prediction of general relativity for the gravita-
tional wave emission of binary black holes (BBHs) [11, 12, 13], they make a strong case
for the existence of black holes. As the observations accumulate, we become able to infer
the astrophysical properties of BBHs with total mass in the range ∼ 10− 100 M�, dubbed
stellar-mass black hole binaries (SBHBs) [14, 15]. In parallel, following Karl Popper’s theory
of falsification [16], one should always challenge the standard paradigm and try to prove
it wrong. Therefore, the possibility that in the near future we might observe some exotic
compact objects (ECOs) rather than black holes and/or that general relativity might fail
cannot be discarded. Gravitational waves probe the strong field dynamical regime, where
putative deviations from the general relativity BBH behaviour are stronger, offering exciting
perspectives.

The improvement of gravitational wave detectors in the next years will increase our reach
and allow us to perform more and more precise tests. LIGO and Virgo should reach their
design sensitivity by 2024, they will be joined by KAGRA [17, 18] and shortly after by LIGO
India [19]. In the next decade, the Einstein Telescope (ET) [20, 21, 22] and Cosmic Explorer
(CE) [23] will improve our sensitivity in the Hz band and observe all coalescing SBHBs
and BNSs in the Universe. On the other end of the frequency spectrum, pulsar timing
arrays [24, 25] are currently looking for the signal emitted by inspiralling massive black
hole binaries (MBHBs) in the nHz band [26], and a promising candidate signal has recently
been reported [27]. In the late 2020s, the Square Kilometer Array (SKA) [28] will improve
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our sensitivity in the nHz band by a factor 10. Finally, the Laser Antenna Space Antenna
(LISA) [29], scheduled for launch in 2034, will observe gravitational waves in a different
frequency band (the mHz band) and, therefore, complement ground-based detectors and
pulsar timing arrays. The strongest anticipated gravitational wave sources in the LISA data
will be merging MBHBs, with total mass in the range 104–109 M� [30], and galactic binaries
(GBs) comprising mostly white dwarves, but also neutron stars and black holes [31]. SBHBs
with a total mass as large as those observed by LIGO and Virgo could also be detected by
LISA during their early inspiral phase, long before entering the frequency band of ground-
based detectors and merging [32]. This great variety of sources make LISA a science rich
instrument.

The goal of this thesis is to assess what could be learned from gravitational waves observa-
tions with next generation detectors, and more specifically with LISA, from the fundamental
physics and astrophysical point of view. This manuscript is organised as follows.

In chapter 1, we give a brief overview of the history of general relativity, gravitational
waves and black holes. We then give a short introduction to the theory of gravitational waves
within general relativity and modified gravity theories, the main sources of gravitational
waves and the detection methods. In that chapter, we introduce some key notions that we
use in this work.

Chapter 2 introduces the main aspects of data analysis used in this manuscript. First,
we describe how the presence of a signal can be identified in the data stream of gravitational
wave detectors, and then how the parameters of the source are estimated from the detected
signal.

In chapter 3, we focus on the parameter estimation of SBHBs. We introduce the Markov
chain Monte Carlo algorithm we developed for this purpose, and apply it to simulated LISA
data. We scan the parameter space of SBHBs and describe how does the parameter estima-
tion evolve across it. This chapter is based on the results published in [33].

Chapter 4 is dedicated to tests of general relativity. Using our Markov chain Monte Carlo
algorithm, we show that LISA will be able to improve current constraints on deviations from
general relativity by observing SBHBs. These results were published in [34]. We also propose
a phenomenological model of ECOs, and use it to show that such exotic signals could be
missed with current data analysis pipelines, as was published in [35].

In chapter 5, we move to the use of gravitational waves for astrophysical purposes. We
present the results published in [36, 37], where using our Markov chain Monte Carlo algo-
rithm, we show that LISA will be able to provide information on the astrophysical envi-
ronment of SBHBs, e.g. if the binary is orbiting a massive black hole, if it is accreting etc.
Echoing the last point, we present a semi-analytical model for the evolution of binaries made
of a black hole accreting from a white dwarf companion, and show that LISA could be the
first instrument to unambiguously identify them. There, we reproduce the results published
in [38].

Finally, chapter 6 is dedicated to the use of LISA to discriminate between different models
for the formation and evolution of massive black holes. We propose a pipeline based on the
hierarchical Bayesian framework and using results from astrophysical simulations to infer
the population of massive black holes from LISA observations, and discriminate between
different scenarios. This chapter is based on a submitted work [39].
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Chapter 1

Introduction to gravitational waves

1.1 A short history of general relativity, gravitational
waves and black holes

By the beginning of the 20th century, Newton’s law of gravitation had passed several tests,
and was seen as a solid theoretical basis for mechanics. It provided a unified framework
to explain from Earth-based experiments to the motion of planets in the Solar System.
Nevertheless, a few observational and theoretical discrepancies motivated the search for a
gravitational theory beyond Newton’s one.

Since the mid 19th century, the orbit of Mercury was known to deviate from the Newto-
nian prediction. Its orbit around the Sun precesses, causing the perihelion to “advance” by
43 arc-seconds per century. This is (exaggeratedly) illustrated in figure 1.1. Astronomers
initially followed Adams and Le Verrier’s successful approach in explaining the irregularities
in the motion of Uranus, which led to the discovery of Neptune, and postulated the existence
of unobserved celestial bodies that perturbed Mercury’s orbit. Le Verrier himself suggested
the existence of a planet named Vulcain. However, no observation over the years was able
to prove them right, and the possibility that Newton’s theory was failing became concrete,
leading physicists to work on a new theory of gravitation.

Figure 1.1: Exaggerated illustration of the advance of the perihelion (green star). Mer-
cury’s (blue) orbit around the Sun (yellow) precesses, causing its perihelion to shift between
succesive passages. Extracted from [40].

On a theoretical level, Newton’s theory predicts that the gravitational interaction between
two bodies at any distance is instantaneous. This is a major conceptual difference with
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1.1. A short history of general relativity, gravitational waves and black holes

Maxwell’s theory of electromagnetism, which was already considered one of the greatest
achievements of modern physics. Maxwell’s theory predicts a delay between an action and
its consequences due to finite speed of light. On a one hand, if we include an ad hoc finite
propagation speed to Newton’s theory, Solar System orbits are substantially modified, unless
the speed of gravity is orders of magnitude above the one of the light [41]. On the other
hand, given all the parallels between gravitation and electromagnetism, it seemed odd that
gravitation could propagate instantaneously. Moreover, in 1905 Einstein formulated his
theory of special relativity, of which one of the two postulates is that nothing propagates
faster than the speed of light in vacuum [42]. Special relativity progressively became a well
accepted theory, and efforts concentrated in proposing a relativistic theory of gravitation.

Thanks to collaborations with notable mathematicians and physicists of his time, Einstein
managed to formulate his theory of general relativity in 1915 [43]. The driving idea of general
relativity is well explained in the words of Wheeler “spacetime tells matter how to move;
matter tells spacetime how to curve.” [44], and is contained in Einstein’s field equations for
the metric gµν [45]:

Rµν −
1

2
R =

8πG

c4
Tµν , (1.1)

where Rµν = gαβRαµβν is the Ricci tensor, R = gµνRµν is its trace, Rαµβν is the Riemann
curvature tensor computed from the Christoffel symbols Γµαβ, and Tµν is the stress-energy
tensor. The explicit expressions of these quantities as functions of the metric can be found
in classical textbooks [46, 47, 48]. The Riemann tensor encodes the geometry of spacetime,
and vanishes only for a flat spacetime. It is clear from equation (1.1) that the curvature
of spacetime is sourced by matter/energy (Tµν). The conservation of energy and momen-
tum reads ∇µT

µν = 0, where ∇µ is the covariant derivative, and leads to the relativistic
generalisation of Newton’s second law, the geodesic equation [49]:

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0, (1.2)

where τ is the proper time. The geodesic equation describes how free-falling test masses
move in spacetime, the effect of curvature being imprinted in the Christoffel symbols. An
immediate success of general relativity was to correctly account for the precession of the
perihelion of Mercury’s orbit [50]. The theory also provided a framework for computing the
motion of massless particles in a gravitational field, an ill-defined limit in Newtonian gravi-
tation. Einstein computed the deflection of light by the Sun, twice as large as the Newtonian
result, and in 1919 a team led by Eddington experimentally confirmed his prediction [51].
These successes established general relativity as the new theory of gravitation physicists had
been looking for.

Since then, general relativity has passed many tests from Solar System to cosmological
scales with flying colours [52, 53, 54]. Nevertheless, we face today a situation similar to the
one a hundred years ago. In order to explain cosmological observations, dark matter and
dark energy need to be introduced in the standard model of cosmology [55, 56, 1]. Those
could be a new form of matter/energy, or perhaps the manifestation that general relativity
fails at large scales. Moreover, from a theoretical perspective, we need a theory of gravity
that accounts for quantum effects in order to be able to describe the very early Universe
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1.1. A short history of general relativity, gravitational waves and black holes

and solve the information paradox [57, 58]. As a fundamental prediction of gravity theories,
gravitational waves provide us with new means to explore beyond general relativity.

As soon as 1916, Einstein “discovered” gravitational waves when looking for an approxi-
mate solution to his field equations [5], and two years later he derived the quadrupole formula
for the generation of gravitational waves [59]. Some contemporary physicists saw them as a
coordinates’ artefact, Einstein himself changed his mind many times, and the physical real-
ity of these waves was the object of a controversy that lasted until the late 1950’s, when it
was shown that they carry energy and angular momentum and do have a physical meaning
[60, 61, 62]. Crucially, a few years later, Hulse and Taylor observed for the first time a pulsar
in a binary system [63]. Evolving in the strong field regime, this system allowed us to perform
unprecedented tests of general relativity. By following its evolution over many years it was
possible to measure the predicted decay of the orbital period due to gravitational radiation
[4], and additional binary pulsar systems complemented this remarkable observation along
the years [64, 65]. The final proof for the existence of gravitational waves came with their
direct detection by the LVC in 2015 [3], which was awarded with the Nobel prize in 2017.

Figure 1.2: Shadow of M87*, the massive black hole at the centre of the M87 galaxy. The
dark central part corresponds to the region where photons cannot escape the gravitational
attraction of the black hole and are absorbed. Thus, no light can be emitted from this
region. This fist “image” of a black hole is in very good agreement with the general relativity
prediction for the shadow of a black hole. Credits: Event Horizon Telescope collaboration.

GW150914 has also been considered to be the first direct observation of black holes,
almost one century after Schwarzschild derived its famous solution to Einstein’s equations
[66]. This solution, obtained for the exterior metric of a spherical symmetric star of mass
m in vacuum, predicted the existence of a “horizon” beyond which the escape velocity is
higher than the speed of light. Remarkably, the same result can be obtained in Newtonian
mechanics, and astronomer Michell had already postulated the existence of “dark stars” in
1783 [67]. For a horizon to exist, the star’s radius must be smaller than the Schwarzschild
radius, 2Gm/c2. For a star of same mass as the Sun, this is equal to ∼ 3 km, less than
the radius of Paris! Therefore, it was thought that no such object could exist, and that the
horizon was nothing but a mathematical curiosity. In the 1930’s, work by Chandrasekhar
[68], Tolman, Oppenheimer and Volkoff [69, 70] suggested that such objects could form from
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1.2. Theory of gravitational waves

the gravitational collapse of stars too massive to end as white dwarves or neutron stars. The
first observational evidence came in the 1960’s, with the first observation of a quasar [71] and
the understanding that an accreting “black hole”, a denomination popularised by Wheeler
in that same decade, provided the best explanation [72]. By the same time, Kerr derived
his metric for axisymmetric spacetime [73], and work by Hawking and Penrose provided
theoretical motivation for the existence of black holes [74]. The latter was awarded with
the Nobel prize in 2020 for his work on black holes. The prize was shared with Ghez and
Genzel whose observations of the motion of stars at the centre of the Milky Way allowed
us to infer the existence of a massive black hole of ∼ 4 × 106 M� at the centre of our
galaxy, Sagittarius A* [75, 76]. These observations helped unveil the mystery on the nature
of the massive objects at the centre of galaxies, and were complemented by the GRAVITY
collaboration in the past few years [77]. Soon after the first LIGO/Virgo detection, the Event
Horizon Telescope collaboration published the first “image” of a black hole, shown in figure
1.2, by reconstructing the shadow of the massive object at the centre of the M87 galaxy [78].
They obtained a very good agreement with the general relativity prediction for the shadow
of a black hole.

The electromagnetic observation of black holes is very challenging because it requires the
presence of some sort of matter (stars, gas) around them, unlike gravitational wave obser-
vations. Thus, black holes are finally starting to show themselves to us, and gravitational
wave astronomy provides us powerful means to better understand the properties of these
still very mysterious objects and of the underlying theory of gravity, as we will argue in this
manuscript.

Following this brief historical review, we give a short introduction to gravitational waves:
their theoretical description, within general relativity and then in modified gravity theories,
the main sources of gravitational waves and the detection principle. In the remaining of this
manuscript, Greek indices run from 0 to 3 and Latin indices from 1 to 3. The notation ∂µ
(∂µ) denotes partial derivation of a quantity with respect to xµ (xµ). We work in units of
G = c = 1. The detailed steps for the derivation of the results presented in the next section
can be found in classical textbooks [46, 47, 48].

1.2 Theory of gravitational waves
Gravitational waves are often called “ripples of spacetime ” because they appear as a pertur-
bation propagating on top of a background geometry. Let us start from a flat background,
described by a Minkowskian metric ηµν = (−1, 1, 1, 1), and add a perturbation hµν such that
the total metric is given by

gµν = ηµν + hµν . (1.3)

We will work to linear order in hµν . The covariance principle ensures that the laws of physics
are the same in any coordinate system, therefore we can choose a specific one where Ein-
stein’s field equations take a simpler form. When transforming from a coordinate system
xµ to x′µ, the metric transforms as g′µν = ∂µx

′α∂νx
′βgαβ. Applying this to the metric given

by equation (1.3) for an infinitesimal transformation xµ′ = xµ + ζµ, and keeping only terms
linear in ζ, we get h′µν = hµν − (∂µζν + ∂νζµ). Therefore, by choosing the appropriate trans-
formations, we can work in a harmonic gauge, where hµν is divergenceless (to linear order in
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1.2. Theory of gravitational waves

the perturbations the covariant derivative is simply the partial derivative):

∂νh
µν = 0. (1.4)

Then, by computing the Christoffel symbols and the Ricci tensor for this metric, keeping
only terms linear in hµν , we obtain the linearised Einstein’s equations

�ηh̄µν = −16πTµν , (1.5)

where h̄µν = hµν − 1
2
ηµνh, h = ηµνhµν and �η = ηµν∂µ∂ν is the flat d’Alembert operator.

Thus, we find that h̄µν follows the equation for a wave propagating at the speed of light,
sourced by the stress-energy field.

1.2.1 Propagation in vacuum

Transverse-traceless gauge

Let us consider a wave propagating in vacuum (Tµν = 0). After imposing the harmonic
gauge condition, we still have the freedom to impose four constraints on hµν by considering
infinitesimal coordinates transformations xµ′ = xµ + ζµ such that �ηζµ = 0. In vacuum,
we can impose h0,i = hµµ = 0. Imposing these conditions defines the transverse-traceless
gauge (denoted by TT). Together with equation (1.4), this implies ∂0h

00 = 0, and we can
set h00 = 0, since time independent terms do not affect the propagation of a wave. In the
transverse-traceless frame, a gravitational wave propagating along the ẑ-axis can be written
as

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


µν

cos(ω(t− z)), (1.6)

where ω/2π is the frequency of the wave. Similarly to electromagnetic waves, gravitational
waves can have two polarisation states, usually denoted by h+ and h×. In the more general
case of a wave travelling in a direction n̂, expressed in some coordinate system, we can
transform it into the transverse-traceless gauge by use of projection operators:

hTT
ij = Λij,klhkl, (1.7)

Λij,kl = PikPjl −
1

2
PijPkl, (1.8)

Pij = δij − ninj. (1.9)

Physical effect of gravitational waves

Let us now describe the effect of gravitational waves on test particles. For definiteness, we
consider a wave propagating in the ẑ direction. For a particle initially at rest, dxµ

dτ

∣∣
τ=0

= δµ0,
and the geodesic equation reads

d2xµ

dτ 2

∣∣∣∣
τ=0

= −Γµ00. (1.10)

(1.11)
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1.2. Theory of gravitational waves

At linear order in hµν , Γµ00 = 1
2
(2∂0h

µ
0 − ∂µh00). In the transverse-traceless frame, all the

terms inside the parenthesis are zero, so Γµ00 = 0. Therefore, particles initially at rest will still
be at rest a moment later, and the same argument applies later on. Thus, the transverse-
traceless frame is “comoving” with the wave.

Now, let us consider a gauge invariant quantity: the proper distance. Consider two
particles at a distance L0 in the absence of any gravitational wave. For simplicity, we take
them to be along the x̂-axis in the transverse-traceless frame, at z = 0, and suppose that L0

is much smaller than the length scale on which the gravitational wave varies. The distance
L between the two test particles when the gravitational wave passes can be computed as

L = [gµν∆x
µ∆xν ]1/2

=
[
(η11 + h11)∆x1∆x1

]1/2
= L0

[
1 +

h+ cos(ωt)

2

]
, (1.12)

where in the last line we performed a Taylor expansion. Thus, we see that the gravitational
wave makes the distance between the test particles vary as

∆L

L
=
h+ cos(ωt)

2
. (1.13)

It is this variation in distance, induced by their passage, that allows us to detect gravitational
waves, as we will see in section 1.5.

Effect on a ring of test particles

Finally, in order to understand the meaning of the two different polarisation states, let us
consider the effect of this same gravitational wave on a ring of test particles initially lying
in the z = 0 plane. We call O the centre of the ring, and assume that the ring of particles
is small enough so that we can work in an inertial frame attached to O (i.e. smaller than
the length scale on which the gravitational wave varies), defining t = 0 as the moment
the gravitational wave reaches O. We parametrise the test particles on the ring by their
spatial coordinates relative to O in that frame, ξi. Given an initial condition ξi0 at t = 0,
the evolution of ξi as the gravitational wave passes by is driven by the equation of geodesic
deviation:

D2ξi

Dτ 2
= −Ri

νρσξ
ρdxν

dτ

dxσ

dτ
, (1.14)

where Dξi

Dτ
is the covariant derivative of ξi along the worldline of the particle. In this local

inertial frame, all Christoffel symbols vanish, so the covariant derivative is the regular partial
derivative with respect to proper time. Moreover, working at linear order in the perturbations
hµν to flat spacetime, the Riemann tensor is a gauge invariant quantity, so we can use its
expression in any frame to evaluate equation (1.14), in particular in the transverse-traceless
frame, where it takes a simple form. Last, for test particles initially at rest we have dxν

dτ
= δν0.

We then get

ξ̈i =
1

2
ḧTT
ij ξ

j. (1.15)
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1.2. Theory of gravitational waves

Figure 1.3: Effect of a monochromatic gravitational wave on a ring of test particles lying in
a plane transverse to its direction of propagation. T = 2π/ω is the period of the wave. The
effect of each polarisation state is shown separately. Extracted from [79].

For weak displacements, a solution to equation (1.15) at linear order in hµν is given by

ξx = ξx0 +
1

2
h+ cos(ωt)ξx0 +

1

2
h× cos(ωt)ξy0 , (1.16)

ξy = ξy0 +
1

2
h× cos(ωt)ξx0 −

1

2
h+ cos(ωt)ξy0 , (1.17)

ξz = 0. (1.18)

Note that in this locally inertial frame gµν = ηµν + O(xµxν), so coordinate distances do
correspond to proper distances, and equation (1.16) yields the same result as equation (1.13).
Moreover, these equations show that gravitational waves induce a displacement only in the
plane transverse to their direction of propagation.

Let us now consider the effect of each polarisation individually. First, consider the case
h+ 6= 0 and h× = 0. The displacement is then given by

ξx = ξx0

(
1 +

1

2
h+ cos(ωt)

)
, (1.19)

ξy = ξy0

(
1− 1

2
h+ cos(ωt)

)
. (1.20)

(1.21)

We see that first ξx increases while ξy decreases, and then the opposite. Therefore, as the
gravitational wave travels through it, the ring of test particles will successively be stretched
in the x̂ and ŷ direction, as illustrated in figure 1.3. Next, consider the case h× 6= 0 and
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1.2. Theory of gravitational waves

h+ = 0. It is helpful to define ξ′x,y = 1√
2
(ξx ± ξy). These new coordinates verify

ξ′x = ξ′x0 +
1

2
h× cos(ωt)ξ′x, (1.22)

ξ′y = ξ′y0 −
1

2
h× cos(ωt)ξ′x, (1.23)

(1.24)

which are similar to equations (1.19) and (1.20). Since the primed coordinates are related to
the original ones by a simple rotation of π/4 around the ẑ-axis, we see that the effect of the
× polarisation is to stretch the ring of test particles along axes rotated by π/4 with respect
to the original x̂ and ŷ-axis, as illustrated in figure 1.3.

It is now easy to understand that the names of the individual polarisations come from
the deformation patterns each of them induces. In the general case, gravitational waves are
a superposition of these two polarisation states. When writing equation (1.6), we implicitly
choose a basis in the plane orthogonal to the direction of propagation. If we rotate this basis
by an angle ψ around the direction of propagation, the polarisations transform as

h′+ = h+ cos(2ψ)− h× sin(2ψ) (1.25)
h′× = h+ sin(2ψ) + h× cos(2ψ) (1.26)

The relative angle between the basis in which the polarisations of a gravitational wave are
computed (the so called “radiative frame”) and the one used to measure the wave is called
the polarisation angle.

1.2.2 Generation

Quadrupole formula

Figure 1.4: Graphical illustration of the gravitational wave source. Adapted from [48].

Let us now turn to the generation of gravitational waves. Consider some matter distri-
bution, described by a stress-energy tensor Tµν , and attach a coordinate system xµ to an
observer far from the source (i.e. at a distance much larger than the typical length scale of
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the source), as illustrated in figure 1.4. We can solve equation (1.5) using the method of
Green’s function, and get

h̄µν(t,x) = 4

∫
d3x′

1

|x− x′|Tµν(t− |x− x′|,x′). (1.27)

The integral is performed over the whole space, but Tµν is assumed to be nonzero only in a
limited region. Since the observer is far from the source, |x− x′| ∼ |x| − x′ · n̂ = R − x′ · n̂
where R is the distance to the source and n̂ is a unit vector pointing in its direction. Then, as
in electromagnetism, we can perform an expansion of the source term around t−R, leading
to a multipolar expansion with mass and current moments. To the lowest order, using the
conservation of the stress-energy tensor (∇µT

µν = 0), we obtain the quadrupole formula

hTT
ij =

2

R
Q̈TT
ij (t−R/c), (1.28)

where Qij is the quadrupole moment defined as

Qij =

∫
d3x T 00(t,x)(xixj − 1

3
δijx2), (1.29)

and QTT
ij is the transverse-traceless part of it, obtained by using the projection operator

defined in equation (1.8). In the full multipolar expansion, factors of v2 establish a hierarchy
between the successive terms, v being the characteristic velocity within the source (in units
of c).

Just like electromagnetic waves, gravitational ones carry energy and angular momentum,
which are extracted from the source. Within the quadrupole approximation, the radiated
power and angular momentum are given by

PGW =
1

5
<

...
Qij

...
Qij >, (1.30)

J̇ iGW =
2

5
εikl < Q̈ka

...
Qla >, (1.31)

where εikl is the fully antisymmetric Levi-Civita tensor and <> denotes average over one
characteristic time scale of the source. An important property that can be read from these
equations is that stationary distributions do not emit gravitational waves.

Let us comment on the absence of dipole radiation in general relativity. The dipole
moment reads

Di =

∫
d3x T 00(t,x)xi. (1.32)

In the Newtonian limit, for a set of point-like masses ma, T 00(t,x) =
∑

amaδ
(3)(x − xa(t))

and the dipole moment becomes

Di =
∑
a

max
i
a(t). (1.33)

We have seen that the gravitational wave emission is related to the second derivative of
moments, and from Newton’s second law: D̈i =

∑
amaẍ

i
a(t) = 0 for an isolated system. A

similar calculation shows that mass conservation implies that there is no monopole radiation
neither, just as it is forbidden in electromagnetism because Maxwell’s equations imply the
conservation of the electric charge.
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1.2. Theory of gravitational waves

Figure 1.5: Schematic representation of a BBH on a quasicircular orbit. We adopt the
convention m1 ≥ m2, and focus on the case where the spins of the black holes (χ1χ1χ1 and χ2χ2χ2)
are aligned or anti-aligned with the orbital angular momentum L.

Black hole binaries

To give a concrete example, let us consider one of the main sources of gravitational waves, of
particular importance in the context of this thesis: a coalescing BBH. The specific configu-
ration we are interested in is illustrated in figure 1.5. m1 and m2 are the masses of the black
holes,M = m1+m2 is the total mass, µred = m1m2/M the reduced mass and q = m1/m2 ≥ 1
the mass ratio. We will need two additional mass combinations: the symmetric mass ratio
η = µred/M and the chirp massMc = (m3

1m
3
2/(m1 +m2))

1/5
= Mη3/5. For easier reference,

in table 1 we list the parameters used throughout this manuscript, together with their ex-
plicit expressions. Some of these combinations will be introduced later in the manuscript.
We focus on a circular binary, and attach an orthonormal basis to it, taking the axis around
which the binary rotates to be the third component of the basis. The dimensionless black
hole spins (χ1χ1χ1 and χ2χ2χ2) do not enter at the first order approximation considered in this section.

In the Newtonian description, noting a the relative separation of the bodies, the total
energy of the system is

Etot = −m1m2

2a
. (1.34)

Moreover, Kepler’s third law tells us that

ωorb =
√
M/a3, (1.35)

where ωorb is the orbital angular velocity. Let us now compute the gravitational waves
emitted in a direction n̂ by this system. We note ι and ϕ the polar and azimuthal angles of
n̂ in the basis attached to the binary. The angle ι is called the inclination of the source. The
geodesic equation is used to obtain the trajectory of the black holes, which at first order is
Keplerian. Using the point-particle approximation, as for the dipole moment in the previous
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section, the quadrupole formula (equation (1.28)) yields

h+ =
4Mc

R
(Mcωorb)2/3 1 + cos2(ι)

2
cos(2(ωorbt+ ϕ)), (1.36)

h× =
4Mc

R
(Mcωorb)2/3 cos(ι) sin(2(ωorbt+ ϕ)), (1.37)

where we used our freedom in the definition of initial time and phase to cancel the R term in
the argument of sin and cos. Hence, at zeroth order, a binary system emits monochromatic
gravitational waves at twice its orbital frequency, i.e. f = ωorb/π.

It is necessary to account for the backreaction of gravitational waves, which extract energy
of the system. From equations (1.29) and (1.30), the radiated power is PGW = 32

5
ω6

orbµreda
2.

Here, the relevant time scale for averaging is the orbital period of the binary. Together with
Kepler’s third law, the energy balance equation Ėtot = −PGW gives a differential equation
for ωorb,

ω̇orb =
96

5
ω11/3M5/3

c . (1.38)

Using the angular momentum balance equation yields the same equation. The solution can
be written as

Mcωorb(t) =

(
5Mc

256(tc − t)

)3/8

, (1.39)

where tc is a (finite) time, which measures the time remaining to coalescence for given initial
conditions, and at which the orbital angular velocity diverges (at the first order approxima-
tion we work in). From Kepler’s third law, we see that the separation of the binary decreases
due to emission of gravitational waves, and according to these results it would go to zero in
a finite time. The binary is then said to be “quasicircular”. The gravitational waves emitted
by the system become

h+ =
4Mc

R
(Mcωorb(t))2/3 1 + cos2(ι)

2
cos (2(φorb(t) + ϕ)) , (1.40)

h× =
4Mc

R
(Mcωorb(t))2/3 cos(ι) sin (2(φorb(t) + ϕ)) , (1.41)

where φorb(t) = φc −
∫ tc
t
ωorb(t)dt and φc is the phase at coalescence. Hence, the amplitude

of gravitational waves increases as the orbit tightens.
Although our results do predict the qualitative behaviour of the binary correctly, they

are valid only when the black holes are far apart, and cannot be used to describe the whole
evolution of the binary. In reality, the orbit tightens during the so called inspiral regime, but
the black holes merge and form a perturbed black hole before reaching a zero separation.
The latter relaxes to a steady Kerr black hole by emitting gravitational waves, during the
ringdown stage. The evolution of the binary and the gravitational wave signal are illustrated
in figure 1.6. Although three different regimes are clearly distinguishable, there is no sharp
transition between them. Inspired by the motion of test masses around black holes, one
possibility is to define the inspiral-merger transition as the moment the binary reaches the
innermost stable circular orbit (ISCO). Following the effective-one-body (EOB) approach
(see section 1.2.3 below), we can map the spacetime of the binary when it is about to merge
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Figure 1.6: Schematic representation of the first gravitational wave event, GW150914. The
upper panel shows the theoretical and the reconstructed gravitational wave signal, in red and
gray respectively. The lower panel shows the evolution of the separation and the velocity as
the evolution proceeds. Extracted from [3].

to the one of the final black hole, with mass ∼ M (part of the mass is emitted in the form
of gravitational waves). The ISCO is the closest distance at which a massive test particle
can orbit a black hole, and below it the plunge ensues. As an approximation, we can use its
value for the Schwarzschild metric (6M) and from Kepler’s law, we get an estimate of the
merger frequency

fmerger ∼
1√

6πM
. (1.42)

Interestingly, the start of the ringdown phase has been the subject of much debate recently.
It is usually measured with respect to the peak in the amplitude of the gravitational wave
signal, but authors disagree on how long after the peak (from 0 to 15M) and how to perform
the matching to the inspiral-merger signal [80, 81, 82, 83].

Before moving to the next section, let us define the number of cycles in the gravitational
wave signal, N . Over a small amount of time, the fraction of cycle in the signal is dN = fdt.
Thus, the total number of cycles in the gravitational wave signal when evolving from fmin to
fmax is

N =

∫ fmax

fmin

f

ḟ
df. (1.43)

As an approximation, we use can use equation (1.39), and get

N =
1

32π

[
(πMcfmin)−5/3 − (πMcfmax)−5/3

]
. (1.44)
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1.2.3 Waveform approximants

In order to extract the maximum information from gravitational wave observations, it is
necessary to have accurate theoretical models that we can compare with. We will now discuss
how realistic signals (waveforms) for BBHs are computed, focusing on quasicircular binaries
with moderate mass ratio (q . 20) and component spins aligned (or anti-aligned) with the
orbital angular momentum (without precession). A gravitational wave signal emitted in the
direction n̂ can be decomposed in spin-weighted spherical harmonics as

h+ − ih× =
∑
l≤2

l∑
m=−l

−2Ylm(ι, ϕ)hlm. (1.45)

The expression of the −2Ylm(ι, ϕ) can be found in [84]. The (l,m) harmonic is emitted at
m times the orbital frequency of the binary. For nonprecessing binaries, we have hl,−m =
(−1)lh∗lm. There is a hierarchy between the harmonics: the dominant term is the (2,±2)
harmonic, which corresponds to the quadrupole term, and higher harmonics are suppressed
by factors of v and δm = (m1 −m2)/M . However, higher harmonics can be important, in
particular near the merger and for highly asymmetric systems (asymmetric in masses and/or
spins).

In the following, it will be convenient to work with the Fourier-transform of the signal

h̃lm(f) =

∫ +∞

−∞
hlm(t)e2iπftdt (1.46)

= Alm(f)e−iΨlm(f). (1.47)

The Fourier-transform can be approximated using the stationary phase approximation [85,
86, 87]. Writing hlm(t) = Âlm(t)e−imφorb(t), where the hat serves to indicate that it is the
time domain amplitude, we have

h̃lm(f) =

∫ +∞

−∞
Âlm(t)e2iπft−imφorbdt. (1.48)

The main contribution to the integral comes from the stationary points, i.e. where the
derivative of the phase of the integrand vanishes: φ̇orb(t) = 2πf/m. This defines an equation
on t, of which we note tf the solution (the solution exists only for positive f , since φ̇orb =
ωorb > 0). By expanding the phase of the integrand around the stationary point up to second
order, and taking the amplitude to be a slowly varying function of time, we get

h̃lm(f) = Âlm(tf )e
2iπftf−imφorb(tf )

∫ +∞

−∞
e−i

m
2
φ̈orb(tf )(t−tf )2

dt (1.49)

=

√
2π

mφ̈orb(tf )
Âlm(tf )e

2iπftf−imφorb(tf )−iπ
4 . (1.50)
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Finally, we can write

tf = tc −
∫ +∞

f

1

ḟ ′
df ′, (1.51)

φorb = φc −
2π

m

∫ +∞

f

f ′

ḟ ′
df ′, (1.52)

f =
mωorb

2π
. (1.53)

Once we solve for the dynamics of the binary, we can plug-in the expressions for the time
domain phase and amplitude in the above equations to get the Fourier domain signal.

As the black holes get closer, non-linear terms in hµν become important, and need to
be properly accounted for in Einstein’s equations. Moreover, corrections to the Newtonian
equations of motion need to be taken into account [88, 89]. This is done through the post-
Newtonian (PN) formalism [84], where the solution is computed iteratively as an expansion
in powers of v, the latter being the velocity of the binary. This approach is valid as long as v
is “small” (in units of c). Terms at nPN order are suppressed by a factor v2n relative to the
leading order solutions, equations (1.35), (1.39), (1.41) and (1.40). Using the stationary phase
approximation, we obtain a Fourier-domain post-Newtonian expansion of the gravitational
wave signal. For the (2,2) harmonic, it reads

Ψ22(f) =−
[
2πftc − 2φc −

π

4

+
3

128
(πMcf)−5/3

∑
i

Ψ22
i (πMcf)i/3 + Ψ22

L,i(πMcf)i/3 ln(πMcf)

]
, (1.54)

A22(f) =

√
2

3

M2
c

R

∑
i

A22
i (πMcf)i/3, (1.55)

Terms with a power (πMcf)2n/3 relative to the leading order term correspond to the nth-PN
order. The coefficients Ψ22

i , Ψ22
L,i and A22

i are functions of the black holes spins and the mass
ratio (see, e.g., [84]), and we have Ψ22

0 = 1, Ψ22
L,0 = 0. These expressions put in evidence a very

important property: h/Mc and h̃/M2
c are, respectively, functions of t/Mc and Mcf only.

This is a consequence of general relativity not having any preferred mass scale, and allows
us to factor out the mass when doing analytical and numerical computations. Moreover,
this implies that the frequencies of the gravitational waves emitted by a system decrease
with the chirp mass. The post-Newtonian formalism provides an accurate description of the
inspiral, but breaks down when the black holes are about to merge, using Kepler’s law we
can estimate that v ∼ 0.4 at the ISCO.

The last stage of the evolution, the ringdown, can be described by linear perturbation
theory [90, 91]. The signal is well approached by a sum of damped sinusoids, with frequency
and damping times given by the quasinormal modes of the final black hole [92]. As for
the merger, numerical simulations are needed to solve Einstein’s equations [93]. Due to the
extraordinary mathematical complexity of this problem, it is only since 2005 that we are
able to solve the full Einstein’s equations [94, 95, 96]. In principle numerical simulations
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could be used to obtain the full gravitational wave signal for any binary, but, so far, they
are too computationally expensive to be extended to the early inspiral, and to be used in
data analysis pipelines. The longest numerical waveform to date has 350 cycles and took
8 months to run [97]. Using equations (1.44) and (1.42) we can estimate that a MBHB of
individual masses 105 M� entering the LISA frequency band at 10−4 Hz will spend ∼ 104

cycles in band before merging. Moreover, millions of waveform evaluations are needed for
data analysis. Thus, we need to resort to waveform approximants.

Time domain approximants

The EOB approach is a relativistic extension of the Newtonian treatment of the two bodies
problem [98]. The Hamiltonian of the binary, which is expanded in a post-Newtonian series,
is mapped to an effective Hamiltonian, describing a perturbed black hole and a test mass
of mass µred orbiting it through a canonical transformation. The same mapping is applied
to the post-Newtonian expanded gravitational wave flux, in order to obtain the dissipative
Hamilton’s equations for the effective problem. We then solve for the dynamics of the test
particle, which allows us to compute the gravitational wave signal emitted by the system.
Remarkably, it allows us to solve for the waveform up to the merger [99], and quasinormal
modes can then be attached to obtain the full signal [100, 101]. We can improve the accuracy
of the model by including corrections due to the non-circularity of the orbit and calibrating
unknown post-Newtonian terms in the expansion of the gravitational wave flux to numerical
simulations [102, 103, 104].

A more recent class of approximants, surrogate models follow a different approach and
interpolate between numerical relativity waveforms [105, 106]. The interpolants are extended
to the early inspiral by hybridising with EOB waveforms [107]. Currently, these waveforms
are available only up to mass ratio 8. Up to date, these are the most accurate waveforms.

Frequency domain approximants

The Phenom family of templates [108, 109, 110] follows a phenomenological approach to
compute the frequency domain signal of BBHs. Of particular importance for this thesis,
PhenomD [111, 112] provides the (2,±2) harmonic for quasicircular binaries with spins
aligned (or anti-aligned) with the orbital angular momentum. The inspiral signal is given by
equations (1.54) and (1.55) up to 3.5PN, with additional terms calibrated against Fourier-
transformed EOB-extended numerical relativity waveforms. Phenomenological fits to these
waveforms are used for the merger and the ringdown. PhenomHM [113] builds on PhenomD
and uses the relative phases and amplitudes between the different harmonics and the (2,±2)
one, obtained with post-Newtonian expansions and computations of quasinormal modes, to
include the (2,±1), (3,±2), (3,±3), (4,±3) and (4,±4) harmonics for quasicircular binaries
with aligned or anti-aligned spins. Although not derived from first principles, the Phenom
templates have the advantage of being fast to compute, and thus they can be used to speed-up
the data analysis.

Finally, to account for the expansion of the Universe, R has to be replaced by the lumi-
nosity distance DL. An additional subtlety, is that the time and the frequency measured by
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Figure 1.7: Diagram of the curvature-potential phase space, and the regime probed by
different gravitational experiments. Gravitational waves probe a regime where both the
curvature and the potential are strong, but also dynamical, as indicated by the finite range
the lines of GW150914 and GW151226 (the second event [117]) swap. Extracted from [118].

an observer (obs) are related to the ones at the source (src) through the cosmological red-
shift: ∆tobs = (1 + z)∆tsrc and fobs = fsrc/(1 + z). Since waveforms depend on t and f only
through the combinations t/Mc andMcf , the cosmological redshift can be reabsorbed by
defining redshifted (or detector-frame) masses md = (1+z)ms, where ms is the source-frame
mass. The expression for the gravitational wave signal remains the same, but with redshifted
time/frequency and masses. In the remaining of this paper, unless stated otherwise, m will
be the detector frame mass, and we adopt the cosmology reported by the Planck mission
(2018) [1].

So far we have discussed only the case of binaries made of black holes, which are objects
with no internal structure. For binaries containing other objects, such as white dwarves or
neutron stars, the same framework can be used to describe the inspiral, although additional
energy loss channels could be present. For instance, in the case of BNSs and neutron star-
black hole binaries, tidal effects lead to a correction starting at 5PN [114, 115, 116], which
accelerates the evolution. When the bodies can no longer be treated as point particles,
astrophysical mechanisms can radically modify the dynamics, and therefore the gravitational
wave emission, as we will see in the case of mass-transferring binaries in chapter 5.

1.3 Gravitational waves in modified gravity theories
Although general relativity has been very successfully tested from Solar System to cosmo-
logical scales [52, 53, 54], the need to explain dark matter/dark energy and to have a unified
theory of quantum gravity provide motivations to go beyond general relativity. As illus-
trated in figure 1.7, gravitational waves offer us the first opportunity to probe the strong
field dynamical regime, where putative deviations from general relativity are expected to be
stronger.

A standard path for building beyond general relativity theories is to modify the Einstein-
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Hilbert action. Because of Lovelock’s theorem [119, 120], general relativity is the only theory
that can be derived from a local action containing up to second derivatives of the metric
field in four dimensions. Therefore, any modified gravity theory built from an action must
break one of these assumptions. We will briefly illustrate how gravitational waves differ
in the Fierz-Jordan-Brans-Dicke theory [121, 122, 123], where an additional scalar field is
introduced in the action. Although this theory is strongly constrained by Solar System
experiments [124], it will provide us with a base to discuss beyond general relativity effects.
The following results are extracted from [125] and [126], to which we refer for more details.

1.3.1 Fierz-Jordan-Brans-Dicke theory

The action for a generic scalar-tensor theory reads

S =
1

16π

∫
d4x
√−g [(ΦR− ω(Φ)∂µΦ∂µΦ] + Smatter(gµν ,Υmatter), (1.56)

where R is the Ricci scalar, Φ is a scalar field, ω(Φ) is a scalar coupling and Υmatter stands for
the matter fields. The Fierz-Jordan-Brans-Dicke theory is realised in the special case where
the scalar coupling is constant, noted ωBD. Within the Fierz-Jordan-Brans-Dicke theory, G
is no longer a constant, it is given by G = Φ−1(4 + 2ωBD)/(3 + 2ωBD). General relativity is
recovered in the limit Φ→ cst, ωBD → +∞. Note that Φ does not enter the matter action so
that the weak equivalence principle holds, i.e. the universality of free-fall is preserved [127].
Φ is said to be minimally coupled to matter. By varying the action with respect to the
metric and the scalar field, we obtain the field equations for the Fierz-Jordan-Brans-Dicke
theory:

Rµν −
1

2
R = 8πΦ−1Tµν + ωBDΦ−2(∂µΦ∂ν −

1

2
gµν∂λΦ∂λ) + Φ−1(∇µ∇νΦ− gµν�Φ), (1.57)

�Φ =
8π

3 + 2ωBD

(
T − 2Φ

∂T

∂Φ

)
, (1.58)

where Tµν = −2√
−g

∂
√
−gSmatter

∂gµν
and T = gµνTµν .

For a system of gravitating point-like masses ma, the matter action reads Smatter =∑
a

∫
dτama. If we now consider bodies of finite size, such as stars, the interior solution

will depend on Φ. Since the equations for Φ are of second order, by imposing continuity
the interior solution will depend on the value of the scalar field and its gradient outside the
body. Thus, within the Fierz-Jordan-Brans-Dicke theory, the universality of free-fall does
not apply to objects of finite size, and the strong equivalence principle is violated. It is the
so called “Nordtvedt effect” [128, 129, 130]. This can be accounted for in the matter action
by doing the replacement ma → ma(Φ) [128]. The dependence of the mass on the scalar
field is parametrised by the sensitivity sa = −∂ ln(ma)

∂ ln(Φ)
|Φ0 , where Φ0 is the asymptotic value

of the scalar field. A different way of understanding that the strong equivalence principle is
violated is through the modified geodesic equation

∇νT
µν =

∂T

∂Φ
∂µΦ. (1.59)
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The term on the left hand is actually the same as in general relativity, but the dependence
of the stress-energy tensor of finite bodies on the scalar field leads to a (system dependent)
“fifth force” that affects their trajectory.

For small perturbations, we can write gµν = ηµν + hµν , Φ = Φ0 + Φ. Defining τµν =
hµν − 1

2
hηµν − (Φ/Φ0)ηµν , and imposing the gauge condition ∇µτ

µν = 0, the field equations
read:

�ητ
µν = −16π

Φ0

(T µν + tµν) , (1.60)

�ηΦ =
16π

6 + 4ωBD

(
T − 2Φ

∂T

∂Φ

)(
1− 1

2
τ − Φ

Φ0

)
+

(
∂µ∂νΦτ

µν +
1

Φ0

∂µΦ∂
µΦ

)
+O(τ 3, τ 2Φ, τΦ2, Φ3), (1.61)

where tµν if a function of quadratic and higher-order in τµν . Thus, we recover wave equations
for τµν and Φ. To solve for the perturbations, the machinery described in the previous section
can be applied, i.e. use the method of the Green function, and then perform a multipolar
expansion, accounting for the modified geodesic equation. As expected, changes in the field
equations lead to a different gravitational wave signal. In particular, from equation (1.59)
it is clear that the stress-energy tensor of the point particles system is no longer conserved,
and therefore, dipole radiation is allowed in the Fierz-Jordan-Brans-Dicke theory. For a
binary system, its amplitude is proportional to (s1 − s2)2, where si are the sensitivities of
the objects. This distinctive prediction has been tested in binary pulsars, and failing to
detect it has allowed us to place lower bounds on ωBD [128, 125, 131, 132, 133, 134] com-
petitive with Solar System constraints obtained with the Cassini spacecraft [124]. On the
other hand, owing to the “no-hair” theorem [135], all black holes have the same sensitivity
(1

2
), and dipole radiation is cancelled in BBHs. This powerful theorem states that black

hole solutions (obtained by setting T µν = 0) in the Fierz-Jordan-Brans-Dicke theory are
identical to the ones in general relativity, and therefore, any stationary black hole is de-
scribed by three quantities: its mass, angular momentum and electrical charge (the latter
is believed to be zero for astrophysical black holes). The no-hair theorem has been demon-
strated for the broader class of scalar-tensor theories [136], but recently it has been found
that it could be circumvented in more involved theories (e.g. Einstein-dilaton-Gauss-Bonnet
theories, Einstein-Maxwell-dilaton theories etc) [137, 138, 139, 140, 141, 142, 143], where
they can even become significantly large (“nonperturbative”) in specific situations [140, 141],
and even in the Fierz-Jordan-Brans-Dicke theory if the assumption of asymptotic flatness
is relaxed (e.g. due to cosmological boundary conditions or the presence of nearby matter)
[144, 145, 146]. Binaries of “hairy” black holes emit a different gravitational wave signal with
respect to the general relativity prediction, e.g. dipole emission is expected. Therefore, grav-
itational waves offer a unique possibility of identifying these extra hairs, and more broadly
to discriminate between different theories of gravity, as we will see in chapter 4.

1.3.2 State of the art

In principle, the way of computing waveforms described in the previous section (post-
Newtonian expansions for the inspiral, numerical simulations for the merger, quasinormal

54



1.4. Gravitational wave sources

modes for the ringdown) could be applied to any theory. However, even in the Fierz-Jordan-
Brans-Dicke theory, the simplest extension to general relativity, the field equations are much
more complicated, and so are gravitational wave computations, even for the inspiral. More-
over, the large number of candidate theories with no clear preference from data dilutes the
efforts. Thus, only recently full numerical simulations of BBHs in modified gravity theo-
ries have become available, in scalar-tensor [144, 146], f(R) [147], Einstein-Maxwell-dilaton
[148], Einstein-dilaton-Gauss-Bonnet [149, 150], and dynamical Chern-Simons [151] theories.
Similarly, quasinormal modes for gravitational perturbations have been computed only in
Einstein-dilaton-Gauss-Bonnet [152, 153] and dynamical Chern-Simons [154, 155] theories.
As for the inspiral, waveforms have been obtained up to 2PN for scalar tensor theories
[156, 157], in the case of binaries where the components have no spin. We have provided
the examples we are aware of, and the previous list might not be exhaustive. Nonetheless,
it illustrates that very few results are available for waveforms beyond general relativity. An
alternative is to consider phenomenological modifications to general relativity, which could
be present in several theories, e.g. dipole radiation, and compute how the gravitational wave
signal is modified. This will be further discussed in chapter 4.

Modified gravity theories also predict additional polarisation states, up to six states could
exist. Intuitively, this corresponds to the dimensionality of the vectorial space formed by
3×3 symmetric matrices, to which the gravitational wave tensor belongs. For a discussion of
the physical effect of the different polarisation states, see, e.g. [89]. Finally, compact objects
other than black holes and neutron stars can also arise in modified gravity theories, we will
say more on that in the next section.

1.4 Gravitational wave sources
Gravitational waves interact very weakly with matter, the gravitational fine-structure con-
stant (m2

e/~, where me is the electron mass) is 33 orders of magnitude smaller than the weak
interaction one. Therefore, they travel almost unaffected from the source to the observer, and
constitute very clean messengers that can be used to infer the properties of the source. As
mentioned in section 1.2, BBHs are one of the main sources of gravitational waves. Although
from the general relativity point of view BBHs at all mass scales are described identically,
astrophysically speaking a distinction exists, and gravitational wave detections can inform us
on astrophysics happening at different scales. Moreover, gravitational wave observations are
not all about black holes, and a variety of sources (not only binary systems) are predicted.
Let us now review the main expected sources, and the physics that could be done with such
observations. The characteristic strain (f |h̃(f)|) of some of these sources, together with the
level (root-mean-square) of noise in different detectors is shown in figure 1.8.

1.4.1 Stochastic background and cosmological sources

Several sources, of cosmological or astrophysical origin, generate gravitational waves that
are too weak to be detected individually, but their superposition forms a stochastic back-
ground that could be loud enough to be detected. Astrophysical sources contributing to the
stochastic background will be mentioned in the following. An example of cosmological source
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Figure 1.8: Noise level of current and future gravitational wave detectors (
√
fSn(f), where

Sn(f) is formally defined in section 1.5), together with the characteristic strain (f |h̃(f)|) of
some of the main expected sources, as a function of frequency [169, 170].

is topological defects, such as cosmic strings [158, 159, 160]. Moreover, stochastic cosmo-
logical processes occurring during the early Universe, such as inflation/reheating and phase
transitions that occurred as the Universe cooled down (e.g. the electroweak phase transition)
[160], form a relic signal. It can be seen as the analogue of the cosmic microwave background
for gravitational waves, and contributes to the stochastic background. By measuring the
properties of the stochastic background, i.e. its amplitude and its frequency dependence, we
can reverse engineer the problem and obtain information on these sources. The separation
between astrophysical and cosmological sources is difficult and requires the use of dedicated
methods [161]. No stochastic background has been detected by the LVC nor pulsar timing
arrays so far, putting constraints on these processes [162, 163, 164, 165]. However, it has
been argued that the candidate signal reported by pulsar timing arrays [27] could be a first
piece of evidence for cosmic strings [166, 167, 168]. By probing a different frequency range,
LISA will provide yet another opportunity to detect the stochastic cosmological background
[160].

1.4.2 Continuous waves

Stars with a bumpy surface have a time varying quadrupole momentum, and therefore emit
gravitational waves. Because these signals are fairly constant and monochromatic (domi-
nantly at twice the rotation frequency of the star), they are called continuous waves. Ground-
based detectors aim at detecting rapidly spinning neutron stars (pulsars) [171], but no signal
has been detected so far [172, 173]. By targetting known pulsars, the lack of detection allows
us to place an upper limit on the amount of spin-down due to gravitational radiation. These
deformed pulsars contribute to the stochastic background.
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1.4.3 Galactic binaries

According to population synthesis models, the Milky Way contains a multitude of compact
binaries emitting monochromatic gravitational waves in the mHz band [174]. These are the
end product of the evolution of stellar binaries. They are so numerous that they will form a
stochastic foreground signal (confusion noise) dominating over the LISA instrumental noise,
and a fraction of them (∼ 104) will be individually resolvable [31]. In particular, a few tens
of verification binaries that have already been observed with electromagnetic instruments
are expected to be detected by LISA [175] and will serve to ensure that LISA is operating
correctly. Most GBs are formed of white dwarves, but they could also comprise neutron
stars and stellar-mass black holes [174].

These binaries will be observed both in the mass-accreting and in the detached phase
and could be targeted by other surveys in the electromagnetic band, such as Gaia [176]. The
detection of such a large number and wide range of GBs will allow the Milky Way to be
mapped [177, 178, 179], to explore Milky Way satellites [180, 181], measure the influence of
tidal couplings [182, 183], test binary population models [184] and even test general relativity
[185]. We will discuss one specific kind of GBs, white dwarf-black hole binaries, in chapter
5.

1.4.4 Stellar-mass black hole binaries

Massive stars end their lives as black holes, but due to pair instability, a mass gap for black
holes is thought to exist between ∼ 60−120 M� [186, 187, 188, 189]. We refer to black holes
below this gap as stellar-mass black holes. Pair instability consists in the total disintegration
of the star through a supernova explosion, with no remnant left to form a black hole. In
short, it is due to the annihilation of photons into electron/positron pairs, which reduces
the radiative pressure, gravitational pressure then compresses the star, and accelerates the
burning, causing a runaway explosion. The spontaneous production of electron/positron
pairs from photons requires very hot temperatures (∼ 109K) that can be reached when the
helium core is massive enough ∼ 40 − 60 M�. Pair instability is not expected to occur for
high metallicity stars, but such stars tend to form lighter black holes (. 40 M�) because they
loose a larger amount of mass through stellar winds. Note that the gap could be filled by the
remnants of previous mergers, but, according to standard theories, not by the end product
of stellar evolution. For this reason, the recent detection of a binary with (at least) one
component in the mass gap, GW190521, has received a lot of attention [190]. Furthermore,
observations suggest that a lower mass-gap between ∼ 3−5 M� could exist between neutron
stars and stellar-mass black holes [191, 192, 193]. Unlike the higher mass gap, there is no
a priori theoretical motivation for a dearth of black holes in this range, and it could be the
effect of observational bias.

SBHBs are the most numerous sources for Earth-based detectors. The loudest of them
could also be detected by LISA years before they merge in ground-based detectors band,
offering the opportunity to perform multiband detections [32]. The remaining of them will
contribute to the astrophysical stochastic background [32], as illustrated in figure 1.9. Sev-
eral scenarios have been suggested for the formation of SBHBs, such as stellar evolution
of field binaries or dynamical formation channels [194, 195]. As an alternative, the pos-
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Figure 1.9: Illustration of multiband gravitational wave astronomy. The orange and purple
curves indicate the level of noise in LIGO and LISA respectively, and the blue lines the char-
acteristic strain of SBHBs. Dark blue ones correspond to binaries that could be individually
resolved by LISA and that would merge within ten years in ground-based detectors band.
Light blue lines correspond to unresolved binaries contributing to the stochastic background.
Extracted from [32]. The black line is the characteristic strain of GW150914.

sibility that some stellar-mass black holes are of primordial origin [196, 197] cannot be
completely discarded. The various possible formation channels typically predict different
distributions for the parameters of SBHBs, especially spin orientation/magnitude and ec-
centricity [198, 199, 200, 201], providing discriminating power in astrophysical model se-
lection. With the accumulation of observations in the last few years, we are starting to
discriminate between these scenarios [202, 203, 204, 205]. However, ground-based detectors
can hardly measure the eccentricity of SBHBs, since by the time they reach the frequency
band of ground-based detectors they have circularised. Thus, LISA could help discriminate
between the different formation scenarios [206, 207, 208, 209, 210]. In chapters 3, 4 and 5
we will discuss of how accurately could LISA infer the parameters of SBHBs, and how their
observation with LISA could be used to constraint modified theories of gravity and inform
us on astrophysical effects.

1.4.5 Intermediate-mass black hole binaries

Intermediate-mass black holes have masses in the range 102 − 104 M�, and are also good
candidates for multiband detections [211, 212]. The existence and the formation mecha-
nisms for these black holes are still unclear due to the small number of observations. Several
candidates have been observed electromagnetically [213], and they have been proposed as
an explanation for ultra-luminous X-ray sources [214]. The end product of GW190521 has
proven that a young population of intermediate-mass black holes could form through succes-
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sive mergers [215]. Finally, they are thought to provide seeds for the growth of the massive
black holes that are ubiquitously observed in the local Universe [213, 216]. We will discuss of
how LISA observations can inform us on the astrophysical environment of intermediate-mass
black hole binaries (IMBHBs) in chapter 5.

1.4.6 Massive black hole binaries

Figure 1.10: Numerical simulation of the merger of two massive black holes surrounded by
accretion disks. Credits: NASA’s Goddard Space Flight Center.

Black holes in the mass range 107− 109 M� (the ones originally observed in quasars) are
sometimes called supermassive black holes, but since they come from the same evolutionary
path as black holes in the mass range 104 − 107 M�, we will use the denomination massive
black holes for the whole mass range 104 − 109 M�. The seeds for massive black holes are
thought to form at z ∼ 15 − 20 and grow through mergers and accretion of matter [217],
and their evolution has been found to be correlated with the one of their host galaxies [218].
Over the last 60 years, electromagnetic observations have provided strong evidence for the
existence of massive black holes in the centre of galaxies. Massive black holes accreting
from matter surrounding them are thought to power the active galactic nuclei (AGNs) [219],
observed up to z ∼ 7 [220]. Binaries of massive black holes form following the merger of
their host galaxies [221]. The merger of massive black holes surrounded by matter, illus-
trated in figure 1.10, is likely to produce an electromagnetic counterpart [222], making them
strong candidates for multimessenger observations [223]. The events for which we observe a
counterpart will have independent redshift and luminosity distance measurements, and thus
could be used as “standard sirens” (in analogy to standard candles). Detecting standard
sirens up to high redshift (z ∼ 7), would allow us to measure the expansion of the Universe
[224]. MBHBs constitute the main target of the LISA mission, and we expect to detect a
few tens per year, up to z ∼ 20 [225]. The observation of many MBHBs with LISA will
allow us to infer the population of massive black holes in the Universe. In chapter 6, we
will discuss how this can be used to discriminate between different formation and evolution
scenarios. Finally, while LISA will observe MBHBs when they are about to merge, pulsar
timing arrays look for the signal in the nHz band formed by the superposition of the inspiral
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emission of MBHBs with total mass ≥ 108 M� [26]. Similarly to GBs in the LISA band, we
expect to detect a stochastic signal on top of which the loudest inspiralling MBHBs could
be resolved. Both the stochastic and resolved signals could be used to inform us on the pop-
ulation of massive black holes, complementing LISA observations. This stochastic signal is
the favoured hypothesis for explaining the candidate signal reported by pulsar timing arrays
[27].

1.4.7 Extreme mass ratio inspirals

Extreme mass ratio inspirals form as the result of N-body interactions in stellar cusps sur-
rounding massive black holes leading to the capture of compact objects, typically neutron
stars or stellar-mass black holes, by the massive black hole [226]. For massive black holes
with 105 − 106 M�, these systems emit in the mHz band, and LISA is expected to resolve
from a few to a few thousands of such sources, while others will contribute to the stochastic
background [227, 228]. Due to the large asymmetry of the system, the compact object can
spend a long time close to the massive black hole, typically ∼ 105 orbits, before plunging
[229]. Thus, the modelling of these sources is very challenging, since numerical relativity
cannot be used to compute all the inspiral signal and post-Newtonian computations are not
accurate at such short separations. We need to resort to perturbation theory to compute
their waveforms, using the mass ratio as an expansion parameter [230]. On the other hand,
by orbiting the massive black hole for so many orbits, the compact object will map its space-
time to high precision, allowing us to extract the parameters of the source accurately [228],
and to perform exquisite tests of general relativity [231, 228].

1.4.8 Binary neutron stars

Similarly to SBHBs, binaries of neutron stars can form either through the evolution of
isolated stellar binaries in galactic fields or dynamical encounters in globular/nuclear clusters
[232, 233]. Coalescing BNSs are one of the main targets for ground-based detectors. The
internal structure of neutron stars plays a role in the final stages of the evolution (late
inspiral/merger), thus gravitational waves from BNSs can be used to probe the equation of
state of nuclear matter [114, 234, 235]. Alternatively, the accumulation of observations will
inform us on the maximum mass of neutron stars, providing a constraint on the equation of
state [236]. The coalescence of BNSs is expected to be associated with electromagnetic and
neutrino counterparts [237, 238, 239, 240], allowing us to perform multimessenger astronomy,
as with GW170817 [10]. A single candidate BNS was reported during the first half of the
third observing run, but no electromagnetic counterpart to it was detected [241]. With third
generation detectors, we expect to detect more BNSs as well as more counterparts, thanks
to an improved sky localisation [242]. BNSs are therefore excellent candidates for standard
sirens [243].

1.4.9 Neutron star-black hole binaries

Similarly to SBHBs and BNSs, neutron star-black hole binaries can form as the end product
of stellar evolution or through dynamical encounters [244, 245, 246, 247]. A candidate was
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reported by the LVC during the third observing run [248]. Due to its intermediate mass,
2.6 M�, the nature of the secondary is uncertain, making it either the heaviest neutron star
or the lightest black hole ever observed. The non-detection of an electromagnetic counterpart
does not dismiss the possibility of the secondary being a neutron star. First, we might have
missed it given the large uncertainty on the sky location measured by the LVC. Second,
depending on the black hole’s mass and spin, the neutron star could be tidally disrupted or
swallowed by the black hole, and we expect an electromagnetic counterpart only in the latter
case [249, 250]. Pictorially, the neutron star is disrupted if the tidal disruption radius lies
outside the ISCO of the black hole, therefore it is more likely to occur for light and rapidly
spinning black holes [249, 250]. Neutron star-black hole binaries remain valuable candidates
for standard sirens, since thanks to the higher mass of black holes, they could be observed
up to higher redshift than BNSs.

1.4.10 Exotic compact objects

In the standard astrophysical paradigm, the only compact objects (with compactness C =
m/r & 0.1 where m is the mass of the object and r its radius) are black holes (C ≥ 0.5) and
neutron stars (C ∼ 0.14 − 0.2). Among these, black holes are the only ones that can have
mass above 3 M�. However, extensions of general relativity and/or of the standard model
can give rise to ECOs. Examples of such objects are boson stars, see [251] and references
therein, gravastars [252, 253], wormholes [254], fuzzballs [255] and firewalls [256]; see also
[257, 258, 259, 260] for further possibilities and [261] for a review. ECOs can have masses
ranging from O(1 M�) to O(109 M�) and compactnesses ranging from 0.1 to 0.5, thus
mimicking the gravitational behaviour of black holes and neutron stars to various degrees.
ECOs have not been detected yet, but if binaries of such objects can form, their gravitational
wave signal would offer a unique opportunity to identify them, as we will discuss in chapter
4. Due to the wide mass range allowed, these exotic binaries are potential sources for both
space-based and ground-based detectors.

1.4.11 Bursts

Bursts are short signals leading to an excess of power in detectors. Coalescing binaries are
an example of bursts, but many other candidates have been proposed. For instance, galactic
supernovae explosions emit gravitational waves in the Hz band that could be detected by
ground-based detectors [262, 263, 264, 265]. However, the intrinsically low rate of supernovae
in the Milky Way (1 to 3 per century [266]), our lack of knowledge on the fraction of energy
liberated in the form of gravitational waves and the difficulty in detecting poorly modelled
signals makes their detection very challenging [267]. Besides contributing to the stochastic
background, cosmic strings are potential burst sources for both LISA and ground-based
detectors [268], but have not been detected yet [163]. Furthermore, compact objects on
eccentric orbits around a massive black hole emit significant gravitational waves only close
to the periapsis, resulting in a succession of burst-like signals for LISA [269]. We expect
LISA to detect one of these extreme mass ratio bursts per year [269]. Finally, bursts could
also be generated by yet unknown sources.
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1.5 Gravitational wave detectors

Figure 1.11: Aerial view of the Virgo detector. Credits: the Virgo collaboration.

The first attempt to detect gravitational waves was made by Weber in the 1960s, using
resonant bars [270]. His idea was to observe gravitational waves through the vibrations
they would induce in the bars. By the end of that decade, he claimed having detected a
coincident signal from the Milky Way with two independent detectors [271]. His claim pushed
many groups around the world to build their own resonant detectors, but no other group
confirmed the detection. By the same time, it was argued [272] that, given the sensitivity of
its detector, in order for Weber to observe such a galactic signal, a lot of stellar-mass had
to be converted into gravitational waves, and that at this rate the Milky Way would already
have dispersed long ago! Despite its apparent failure, Weber’s attempt made the idea of
observing gravitational waves concrete.

In the meantime, Russian theorists Gertsenshtein and Pustovoit proposed to use laser
interferometry for detecting gravitational waves [273]. The idea was independently proposed
a few years later by Weber and Weiss [274] and after more than two decades the construction
of the two LIGO instruments started near Hanford and Livingston. The two detectors ran
from 2002 to 2010 but no signal was observed. From 2010 to 2015, the detectors were
upgraded, and advanced LIGO was able to directly detect gravitational waves for the first
time in 2015 [3]. In Europe, the laser interferometer Virgo, shown in figure 1.11, started being
built in 1996 and took data from 2007 to 2011. It was then upgraded, and the advanced
Virgo detector was operational in 2017, playing an important role in the first multimessenger
observation of a BNS [9].

In the 1990s appeared the idea of a space-based gravitational waves detector, LISA.
Thanks to the absence of seismic noise, it would be sensitive to low-frequency gravitational
waves, allowing us to observe the merger of massive black holes. Following the first observa-
tion of gravitational waves, and the success of the test mission LISA Pathfinder [275, 276] in
2015, the LISA mission was adopted and is scheduled for launch in 2034. Although it also
uses laser interferometry, LISA is a very different instrument, not “LIGO in space”.
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Figure 1.12: Scheme of a LIGO detector. Gravitational waves induce an unequal length shift
in each arm, leading to a measurable phase offset between the lasers. Extracted from [277].

Following this historical review, we will now present the operational principle of ground-
based detectors, taking the opportunity to introduce some general notions about gravita-
tional wave detectors, and then of LISA. Finally, we will briefly comment on pulsar timing
arrays, which use a different detection principle.

1.5.1 Ground-based detectors

The principle of laser interferometry is to measure the variation of length induced by a gravi-
tational wave. Figure 1.12 shows a simplified scheme of a LIGO detector. The beam splitter
divides the emitted beam in equal fractions, which are transmitted in two arms of equal
length. The beams are then reflected by the test masses and recombined. When a gravita-
tional wave passes, the length travelled by light in each arm is not equal anymore, resulting
in a measurable phase offset. The response of a detector to an incoming gravitational wave
is [278, 279]

h = F+(λ, β, ψ)h+ + F×(λ, β, ψ)h×, (1.62)

where F+ and F× are the antenna pattern functions

F+ =
1

2

(
1 + sin2(β)

)
cos(2λ) cos(2ψ)− sin(β) sin(2λ) sin(2ψ), (1.63)

F× =
1

2

(
1 + sin2(β)

)
cos(2λ) sin(2ψ) + sin(β) sin(2λ) cos(2ψ), (1.64)

which vary between -1 and 1. The angles λ and β are the longitude and latitude of the
source, and ψ is the polarisation angle of the gravitational wave. LIGO’s arms are 4 km long
and Virgo’s 3 km. As an example, GW150914 had masses m1 ' 40 M� and m2 ' 32 M�,
and was at a distance DL = 400Mpc [3], from equation (1.13), we compute that h ∼ 10−21.
Thus, it was necessary to measure variations in distance of the order of 10−18m to detect it,
much below the radius of the nucleus of an atom!

The level of noise in a detector is measured by the power spectral density Sn(f). We
denote by n(t) the noise time series in a detector, and ñ(f) its Fourier transform. Assuming
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noise to be stationary, noise in different frequency bins is uncorrelated, and we get

< n(f)n∗(f ′) >= δ(f − f ′)Sn(f)

2
, (1.65)

where <> denotes the average over different realisations. By virtue of the ergodic theorem,
this amounts in averaging over successive periods of time. As a first approximation, noise
is usually considered to be Gaussian (i.e. at each moment it is generated by a stochastic
process following a normal distribution) with zero mean:

< n(t) >=< ñ(f) >= 0. (1.66)

The main sources of noise in LIGO and Virgo are seismic noise at lower frequencies, thermal
noise (due to motion of the test masses and mirror coating) at intermediate frequencies and
photon shot noise (due to quantum fluctuations in the number of emitted laser photon)
at high frequencies [280]. The Japanese detector KAGRA is experimenting with cryogenic
technologies and is built underground to reduce thermal and seismic noise [17, 18]. Third
generation detectors will also implement cryogeny, and will explore quantum technologies to
reduce the high frequency noise. CE will keep the L-shape of LIGO detectors, but with 40
km long arms [23], while ET will be an equilateral triangle of 10 km long arms, amounting to
three detectors [20, 21, 22]. Figure 1.8 shows the noise amplitude (

√
fSn(f)) for current and

future detectors. Besides increasing the overall sensitivity of the detector network, having
more detectors allows us to resolve the polarisation of gravitational waves, and to test for
additional polarisation states that are predicted in modified gravity theories [89, 281]. The
issue of extracting a gravitational wave signal from noise and interpreting it will be discussed
in chapter 2.

1.5.2 Space-based detector: LISA

LISA is composed of three spacecraft forming an equilateral triangle with 2.5 Gm long
arms, following the Earth on its orbit around the Sun, as illustrated in figure 1.13. Each
pair of spacecraft is connected by two lasers, and each spacecraft contains a test mass in
free fall that drives its motion. The gigantic dimensions of LISA prevent from using one
single laser that would go back and forth between two spacecraft due to power loss. The
passage of a gravitational wave will make the spacecraft deviate, inducing a frequency shift.
If not removed properly, the intrinsic laser frequency noise will dominate the measurement.
Moreover, an important difference of LISA with respect to ground-based detectors is that the
arms’ lengths are not constant, because the spacecraft revolve in a central potential. These
issues are dealt with by taking time-delayed linear combinations of the measurements to form
the time delay interferometry (TDI) observables A, E and T (see, e.g., [282]), which play
the role of the strain h for ground-based detectors. This laser frequency noise is naturally
cancelled in ground-based detectors because the arms’ lengths (in the absence of signal) are
fixed and the lasers in both arms come from the same source and are recombined (the lasers
are said to be “phase locked”). After subtraction of the laser frequency noise, the LISA noise
budget is dominated by acceleration noise (due to deviations from geodesic motion of the
test masses) below 3 mHz, and photon shot noise above [29]. We now give a short review of
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Figure 1.13: Scheme of LISA. The three spacecraft forming LISA will follow the Earth on its
orbit around the Sun. Gravitational waves will be measured thanks to the frequency shift
they induce by modifying the geodesic motion of the spacecraft in free fall. Extracted from
[29].

how the LISA response to an incoming gravitational wave is computed, considering only the
(2,±2) harmonics, and refer to [283, 284] for a more extensive discussion.

Let yslr be the single-link observables that measure the laser frequency shift due to an
incoming gravitational wave across link l between the sender spacecraft s and the receiver
spacecraft r. Exploiting the mode symmetry hl,−m = (−1)lh∗lm (valid only for nonprecessing
systems), the signal can be expressed in terms of h22 only. Working in Fourier domain, the
single-link observables can be written with a transfer function

ỹslr = T 22
slr h̃22. (1.67)

Working under the hypothesis that the radiation-reaction timescale (∼
√

1/ḟ) is short with
respect to LISA’s orbital motion timescale (i.e. at leading order in separation of timescales
in the formalism of [283]), the transfer function is given by:

T 22
slr = G22

slr(f, t
22
f ), (1.68)

G22
slr(f, t) =

iπfL

2
sinc [πfL(1− n̂ · nl)]

× exp
[
iπf

(
L+ n̂ · (pLr + pLs )

)]
× exp(2iπf n̂ · p0) nl ·P22 · nl, (1.69)

t22
f = − 1

2π

dΨ22

df
, (1.70)
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where n̂ is the unit gravitational wave propagation vector, nl(t) is the link unit vector
pointing from the spacecraft s to r, p0(t) is the position vector of the centre of the LISA
constellation in the Solar System barycentre (SSB) frame, pLr (t) is the position of spacecraft
r measured from the centre of the LISA constellation, P22 is the polarisation tensor defined
in [284] and the convention sinc(x) = sin(x)/x is adopted. We dropped the t dependence in
equation (1.69) for more clarity. The global factor exp(2iπf n̂ ·p0) is the Doppler modulation
in gravitational wave phase and the nl · P22 · nl term is the projection of the gravitational
wave tensor on the interferometer links. Note that both terms are time dependent due to
LISA’s motion. Moreover, they depend on the sky position of the source, so that the annual
variation in the phase and amplitude allows us to localise the source. The transfer function is
evaluated at the time t22

f , which is defined by the time-frequency mapping of the stationary
phase approximation. The TDI observables A, E and T are then obtained as time-delayed
linear combinations of the ỹslr. They constitute noise-uncorrelated datasets.

1.5.3 Pulsar timing arrays

Pulsars are rapidly rotating neutron stars of high regularity, emitting a beam of electromag-
netic radiation along their magnetic axis. We receive their light when their beam points
towards us, with a regularity (on long timescales) comparable to atomic clocks. Thus, the
time delay in the time of arrival induced by a gravitational wave can be used to detect it. The
confirmation of the recently reported candidate signal [27] would be a major breakthrough
and offer bright perspectives for pulsar timing arrays, especially with the advent of SKA in
the late 2020s [28], which will have an improved sensitivity by a factor 10, as shown in figure
1.8.
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Chapter 2

Data analysis

In this short chapter, we start by describing techniques used to search for gravitational waves.
Since this is not the topic of this thesis, we will only introduce some basic notions that will
be useful later. Then, we lay down the basics of the Bayesian framework that we will use for
parameter estimation, i.e. the reconstruction of the properties of the source from observed
data.

2.1 Signal detection
Data measured by gravitational wave detectors (d) consists in a superposition of gravitational
wave signals (s) and noise: d = s + n. The instantaneous amplitude of gravitational wave
signals is often much lower than noise, making their detection very challenging1. For signals
of known shape, we can dig them out from noise by searching for a specific pattern in the
data series. This is the process of matched filtering, a technique initially developed for the
analysis of time series in engineering [285, 286], later applied to gravitational wave data
analysis [287].

Define an inner product between two frequency series as

(a|b) = 4Re
(∫ +∞

0

ã(f) b̃∗(f)

Sn(f)
df

)
, (2.1)

where Sn(f) is the power spectral density, defined through equation (1.65). The idea of
matched filtering is to find the signal s that maximises the matched filter signal-to-noise
ratio (SNR)

SNR[s] =
(d|s)√
(s|s)

. (2.2)

In practice we do not know the signal s itself, but rather an approximation to it: a template
h. For instance, in the case of BBHs, h could be one of the waveform approximants discussed
in section 1.2.3. Therefore, s is replaced by h when computing matched filter SNRs. We
define the optimal SNR as

√
(h|h). Averaging over noise realisations, it would be equal to

1With the important exception of MBHB and GB signals in the LISA band, which will typically be far
above the instrumental noise.
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Figure 2.1: Illustration of matched filtering. The matched filter SNR is computed for different
chunks of data and for different templates. A detection is claimed when it exceeds a threshold.
The time series shown in this figure is the data measured by LIGO Hanford at the time of
GW151226 [117].

the matched filter SNR if our template could perfectly reproduce the signal (which is usually
not the case due to mismodelling). As illustrated in figure 2.1, the search for a signal is done
by computing the matched filter SNR for different chunks of data and for different templates,
and a detection is claimed when it exceeds a predetermined threshold ρ∗. Note from equation
(2.2) that the overall amplitude of the template cancels when computing the matched filter
SNR, it is really the coherence in phase between data and template that maximises it.

In order to speed up computation, the templates used to perform the search are prede-
termined, forming a template bank. They are chosen in order to ensure a good coverage of
the parameter space. This can be quantified by the overlap between two templates:

O(h1, h2) =
(h1|h2)√

(h1|h1)(h2|h2)
. (2.3)

(2.4)

Template banks are built using stochastic placement algorithms [288, 289, 290] so that the
overlap between neighbouring templates is no less than 0.97 [291, 292]. As an example, we
show the template bank used for the detection of GW150914 in figure 2.2.

The SNR threshold is set by the requirement that the probability of noise fluctuations
by themselves (i.e. in the absence of a gravitational wave signal) leading to a value of the
matched filter SNR higher than ρ∗ is small. This is called the false-alarm probability, and we
typically require it to be below 10−3. For a given false-alarm probability F , the corresponding
SNR threshold can be approximated as [293]

ρ∗ =
√

2(ln(Nt)− ln(F)), (2.5)

where Nt is the size of the template bank. It is clear that decreasing the false-alarm proba-
bility requires a higher threshold. The size of the template bank depends on the “coarseness”
of the grid (i.e. the overlap between neighbouring templates) and the dimensionality of the
parameter space [293]. In practice, the dimensionality can be reduced by maximising over
the phase, the time to coalescence and the amplitude. Moreover, the goal of the search is
not to faithfully estimate the parameters of the source, but rather to detect the presence
of a signal. Therefore, not all the parameters of a targeted signal need to be used in the
search, only the ones the waveform is the most sensitive to. This allows us to further reduce
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Figure 2.2: Template bank used for the detection of GW150914. A minimum overlap of
0.97 between neighbouring templates is required. The grid seems sparser at higher masses
because larger difference in masses lead to a smaller dephasing between templates as the
mass increases. The circle marks the template that triggered the detection of GW150914.
Extracted from [295].

the dimensionality, and therefore the computational cost. As an example, for typical values
Nt = 1015 and Ftot = 10−3 [293, 294], we get ρ∗ = 9.1.

In general, additional statistics are computed in order to assess the significance of a
candidate detection [296, 297, 298, 299, 300], in particular to account for non-stationarity
and non-Gaussianity of noise. Furthermore, model independent search algorithms are also
used [301]. They look for an excess of power in time-frequency bins relative to the detector
noise. Although the SNR with these methods is smaller than the matched filter SNR, the
threshold for detection is usually lower (for a given false-alarm probability), thus they can
be more efficient in detecting short burst-like signals. Moreover, they allow us to prospect
for unknown signals. On the other hand, they are less sensitive to longer and quieter sig-
nals, which require tracking coherently the phase over many cycles. Finally, when several
noise-independent measurements are performed, the total SNR is the quadratic sum of the
individual SNRs

ρtot =

√∑
o

ρ2
o, (2.6)

where o runs over the different (noise-independent) measurements such as LIGO Hanford,
LIGO Livingston and Virgo or the three TDI channels A, E and T for LISA. In the remaining
of this manuscript, we will use the SNR to decide of the detectability of an event and consider
that the search has already been performed when running parameter estimation.

2.2 Parameter estimation
The parameter estimation is performed within a Bayesian framework, treating the set of
parameters of the source, θ, as random variables. Bayes’ theorem states that given the
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observed data d, the posterior distribution p(θ|d) is given by

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
. (2.7)

On the right-hand side of this equation, p(d|θ) is the likelihood, p(θ) is the prior distribution
and p(d) is the evidence. H stands for all the underlying hypothesis in the analysis, e.g. that
noise is Gaussian and stationary, that general relativity is correct (or not), the template fam-
ily used in the analysis etc. The evidence allows us to compare between different hypothesis
and decide which one is favoured by data. As we will not be performing model selection
based on individual measurements, the evidence can be seen as a normalisation constant
that does not need an explicit calculation, and we will drop H in the following expressions.
Under the assumption that noise is stationary and Gaussian, the likelihood is given by

L = p(d|θ) =
∏
o

exp

[
−1

2
(do − ho(θ)|do − ho(θ))

]
, (2.8)

where o runs over all noise-independent observation sets (e.g. the TDI observables A, E and
T ). The templates depend on o because of the response of the detector.

In order to speed up the computation, we will work in the zero-noise approximation:
n = 0, so that d = s. Moreover, we will consider only one source at a time and neglect all
possible systematic errors due to signal mismodelling: s = h(θ0), with θ0 the parameters
of the gravitational wave source. In this approximation, the matched filter SNR is equal to
the optimal SNR. The addition of noise to the gravitational wave signal is not expected to
drastically affect the parameter estimation, leading at most to a displacement of the centroid
of the posterior distribution within the confidence intervals (with the probability defined by
the confidence interval). Moreover, by virtue of equation (1.66), this can be seen as an
averaging over noise realisations [302]. Note that we still account for the finite sensitivity of
the detector through the power spectral density, which appears in the inner product (equation
(2.1)). Thus, the analysis of the posterior distribution itself should remain representative
in the presence of noise (still assuming Gaussianity). Under these simplifications, the log-
likelihood is given by

lnL = −1

2

∑
o

(ho(θ0)− ho(θ)|ho(θ0)− ho(θ)) . (2.9)

The goal of parameter estimation is to compute the posterior distribution. The difficulty
resides in the high dimensionality of the parameter space, an efficient way to explore the
parameter space is needed. This can be done by means of a Markov chain Monte Carlo
(MCMC) algorithm [303]. As an example, in the next chapter we will describe the code
we developed to perform parameter estimation on simulated LISA data of SBHBs. A less
costly alternative for forecast studies is to use the parameter estimation based on the Fisher
information matrix.
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2.2.1 Fisher information matrix

In the Fisher matrix approach, the likelihood is approximated by a multivariate Gaussian
distribution [304]:

p(d|θ) ∝ e−
1
2
Fij(θ0)∆θi∆θj , (2.10)

where ∆θ = θ − θ0 and F is the Fisher information matrix given by:

Fij(θ) = (∂ih|∂jh)|θ . (2.11)

The inverse of F is the Gaussian covariance matrix of the parameters, which gives an estimate
of the error on each parameter. The Fisher approach is often used in forecast studies thanks
to its simplicity. However, for systems with low SNR, the Fisher approximation might not
be valid [304] and a full Bayesian analysis is needed. Fisher matrices are often prone to
numerical instabilities. In order to mitigate this, we split between the phase and amplitude
contribution to the waveform derivative:

Fij(θ) = 4Re
(∫ +∞

0

(∂iA+ iA∂iΨ)(∂jA− iA∂jΨ)

Sn(f)
df

)∣∣∣∣
θ

. (2.12)

The Fisher matrix has an alternative interpretation: it can be seen as a metric on the
parameter space associated with the distance between two nearby templates defined by the
inner product (2.1):

||h(θ + δθ)− h(θ)||2 =(h(θ + δθ)− h(θ)|h(θ + δθ)− h(θ))

' (∂ih δθ
i|∂jh δθj)

∣∣
θ

=Fij(θ)δθ
iδθj. (2.13)

We exploit this property in our MCMC sampler.
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Chapter 3

Observations of stellar-mass black hole
binaries with LISA

SBHBs with a total mass as large as those observed by LIGO and Virgo could also be
detected by LISA during their early inspiral phase, long before entering the frequency band
of ground-based detectors and merging [32]. Although SBHBs are not LISA’s main target,
the scientific potential of multiband observations with LISA and ground-based detectors is
considerable, as argued in this chapter and chapters 4 and 5. In this chapter, we focus on
the parameter estimation of resolvable SBHBs, one of the best candidates for multiband
observations [32]. We reproduce the analysis published in [33]1.

LISA will observe MBHBs somewhere between a few days and few months before their
merger, i.e., in their final, rapidly evolving inspirals [30]. On the contrary, GBs are slowly
evolving, almost monochromatic sources, and they will remain in band during the whole
LISA mission [305]. Resolvable SBHB signals will fall in between these two behaviours:
they are long-lived sources but are not monochromatic and some SBHBs can chirp and
leave the LISA band. In addition, all resolvable SBHBs are clustered at the high end of
LISA’s sensitive band. Thus, SBHBs will produce very peculiar signals of great diversity.
In this work we do not address the question of how to detect those sources, although it has
been argued to be challenging [294]. Instead, we assume that we have at our disposal an
efficient detection method, and we focus on inferring the parameters of the detected signals.
The parameter estimation study presented here will serve as a basis for characterising the
scientific potential of LISA observations of SBHBs. It will also be valuable in building search
tools as we discuss at the end of the chapter.

Most previous studies of parameter estimation for SBHBs with LISA relied on the Fisher
approach, and used simple approximations to LISA’s response to gravitational wave signals.
While a quick and efficient method for forecasting studies, the Fisher approach might not be
suited for the systems with low SNR and non-Gaussian parameter distributions [304]. In ad-

1My part in this paper has been to develop the MCMC code for the Bayesian analysis, to run it for the
different systems considered here, and to interpret the results, under the supervision of my collaborators.
This task was eased by the fast LISA response generation and likelihood computation developed by Sylvain
Marsat, John Baker and Tito Dal Canton [283, 284] that I use in all Bayesian analyses of SBHBs and
MBHBs presented in this and the next chapters. Figure 3.3 is to be credited to Sylvain Marsat. I produced
the remaining figures.
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dition, SBHBs signals are long-lived and emit at wavelengths comparable to LISA’s size. As a
result, the commonly used long-wavelength approximation, also called low-frequency approx-
imation [306], might not hold and could seriously bias the parameter estimation [307, 308].
We simulate LISA data using the full LISA response as described in section 1.5.2, and per-
form a full Bayesian analysis in zero noise of all the systems we consider. We perform a
systematic scan of the parameter space by varying a few parameters at a time and investi-
gating their qualitative impacts on the parameter estimation. We also provide a comparison
to Fisher-matrix-based parameter estimation and briefly comment on the impact of using
the long-wavelength approximation. Here and in the next chapters, we consider quasicircular
binaries consisting of spinning black holes, with the spins aligned or anti-aligned with the
orbital angular momentum,

3.1 Data simulation
Since LISA will only observe the inspiral phase of these binaries, the dominant (2,±2) har-
monic is expected to be sufficient, and we neglect the contribution of all other subdominant
harmonics. We use PhenomD to generate h̃2±2, and compute the LISA response as described
in section 1.5.2 to generate the TDI observables A, E, and T . The sources are parametrised
by their initial frequency and phase at the start of the observation, instead of the time to
coalescence and phase at coalescence (more suitable in LIGO/Virgo data analysis or for
MBHBs with LISA). The initial time is defined as the moment LISA starts observing the
system. A system is characterised by (i) five intrinsic parameters: the masses (m1 and m2),
the gravitational wave frequency at which LISA starts observing the system (f0) and the
projections of spins on the orbital axis (χ1 and χ2); and (ii) six extrinsic parameters (those
depending on the relative orientation of the source to the observer): the position in the
sky defined in the SSB frame (λ and β), the polarisation angle (ψ), the azimuthal angle of
the observer in the source frame (ϕ), the inclination of the orbital angular momentum with
respect to the line of sight (ι) and the luminosity distance to the source (DL). Only two
out of the six general spin parameters are needed to describe the system because spins are
assumed to be aligned (or anti-aligned) with the orbital angular momentum.

The LISA sampling rate is assumed to be 1 Hz so the Nyquist frequency is fNy = 0.5 Hz.
When computing inner products given by equation (2.1), templates are generated from f0

up to fmax = min(fNy, fTobs
) where fTobs

is the frequency reached by the system after the
observation time Tobs. We consider two mission durations: Tobs = 4 yr and Tobs = 10 yr.
Details on fast LISA response generation and likelihood computation are given in [284]. The
parameter estimation is performed using the Metropolis-Hastings MCMC (MHMCMC) [309]
we have developed for this purpose.

3.2 Metropolis-Hastings MCMC
The target distribution p(θ|d) is sampled by means of a Markov chain, generated from a
transition function P (θ, θ′) satisfying the detailed balance condition:

p(θ|d)P (θ, θ′) = p(θ′|d)P (θ′, θ). (3.1)
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3.2. Metropolis-Hastings MCMC

The transition function is built from a proposal function π such that P (θ, θ′) = π(θ, θ′)racc(θ, θ
′)

where racc(θ, θ
′) is the acceptance ratio defined as

racc(θ, θ
′) =

{
min

(
1, p(θ

′|d)π(θ′,θ)
p(θ|d)π(θ,θ′)

)
if π(θ, θ′) 6= 0

0 otherwise.
(3.2)

It is easy to verify that P satisfies the detailed balance condition for any choice of π. In
practice, a jump from a point θ to θ′ is proposed using the function π(θ, θ′) and the new point
is accepted with probability racc(θ, θ

′). If the point is not accepted, the chain remains at θ. In
both cases, the current state of the chain is recorded. By repeating this procedure, we obtain
a sequence of samples of the target distribution. From the expression of the acceptance ratio
it is clear that points with higher posterior density are more likely to be accepted, thus the
chain will tend to move towards regions of higher posterior density, exploring all regions
of the parameter space compatible with the observed data. In theory, the chain should
converge regardless of the proposal function and starting point of the chain, but in practice
it may take an inconveniently large time to do so unless the proposal and starting points
are chosen wisely. Since we are interested in high posterior regions, we start the chain from
the true signal parameters, i.e. the maximum-likelihood point. The maximum-likelihood
point coincides with the maximum posterior point if all priors are flat, but this is not true
in general and the maximum posterior point can depend on the adopted prior distribution.
Even though the posterior does not depend on the proposal, the convergence, efficiency
and resolution of tails of the distribution do very strongly depend on the particular choice;
ideally, an efficient proposal should closely resemble the target posterior distribution. Thus,
most of the work goes into building an efficient proposal function. Note that for a symmetric
proposal (π(θ, θ′) = π(θ′, θ)), the acceptance ratio is simply given by the ratio of the posterior
distributions. This specific case is called Metropolis MCMC [310] and is the one we consider.

For building the proposal, we work with a set of sampling parameters for which the
posterior distribution is expected to be a simple function, i.e. close to either a uniform
or Gaussian distribution, based on the properties of post-Newtonian inspiral waveforms
[84, 311, 312]. These parameters are θ = (Mc, η, f0, χ+, χ−, λ, sin(β), ψ, ϕ, cos(ι), log10(DL)),
where χ+ = m1χ1+m2χ2

m1+m2
is the effective spin (often denoted χeff in the literature) and χ− =

m1χ1−m2χ2

m1+m2
is an antisymmetric mass-weighted spin combination. We remind that the list of

parameters used throughout this manuscript is listed in table 1.
The runs are done in two steps: first a short MCMC chain (' 105 points) is run to

explore the parameter space and then the covariance matrix of the points obtained from
this chain are used to build a multivariate Gaussian proposal that is used in a longer chain.
During the first stage, called burn-in, a block diagonal covariance matrix is used. The set of
parameters is split in three groups: intrinsic parameters (Mc, η, f0, χ+, χ−), angles except
the inclination (λ, sin(β), ψ, ϕ) and inclination distance (cos(ι), log10(DL)). Each block
is computed inverting the Fisher matrix of that group of parameters. This separation was
based on the intuition, well verified in practice, that the stronger correlations are within these
groups of parameters and is intended to avoid numerical instabilities that may arise when
dealing with full Fisher matrices. Note that by making this choice, possible correlations
between parameters of different groups are not discarded; they are simply not taken into
account when proposing points based on the Fisher matrix. If those correlations exist, they
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should appear in the resulting covariance matrix that is used to build a proposal for the main
chain. Failing to include existing correlations could reduce the efficiency of our sampler in
its exploratory, or burn-in, phase; however the splitting can easily be adapted if needed.

The current state vector θ is rotated to the basis of the covariance matrix’s eigenvectors.
In this basis, the covariance matrix is diagonal, formed by the eigenvalues of the covariance
matrix in the original basis. Because for some parameters the distribution is very flat,
the eigenvalues of the covariance matrix predicted by Fisher can be very large, reducing
the efficiency of the sampler. This is usually the case for poorly constrained but bounded
parameters like cos(ι) and spins. To avoid this issue, the eigenvalue of the (cos(ι),log10(DL))
matrices are truncated and we define an effective Fisher matrix accounting for the finite
extent of the prior on spins: Feff = F + F p. We take F p

χ+,χ+
= F p

χ−,χ− = 1
σ2 with σ = 0.5.

This choice will be motivated in section 3.4.3.
In order to improve the sampling efficiency in the event of complicated correlations be-

tween intrinsic parameters, the metric interpretation of Fisher matrix is exploited and occa-
sionally the covariance matrix for the first group of parameters is recomputed with a given
probability. By doing so, the balance equation might be violated, but this is only done
during the burn-in stage (exploration of the parameter space); the resulting points are then
discarded from the analysis.

The convergence of the chains is tested by running multiple chains with different random
number generator seeds, checking that they all give similar distributions and computing the
Gelman-Rubin diagnosis [313] for all the parameters. Potential scale reduction factors below
1.2, as the ones of these chains, indicate that the chains converged [313]. For each chain 103–
104 independent samples are accumulated (by thinning the full chain by the autocorrelation
length) which takes 4–7 hours on a single CPU thanks to the fast likelihood computation
and LISA response generation presented in [284].

3.3 Setups

3.3.1 Systems

Despite the ongoing effort to infer the astrophysical formation channel of the SBHBs ob-
served by LIGO/Virgo, a huge uncertainty still remains. Thus, instead of working with
a randomised catalogue of sources, we start from a fiducial system with masses and spins
compatible with GW150914, labelled Fiducial system, and perform a systematic scan of the
parameter space by varying a few parameters at a time. The parameters of the Fiducial
system are given in table 3.1 along with its SNR assuming LISA mission lifetimes Tobs = 4yr
and Tobs = 10yr. Note that Tobs is the mission duration, not the time spent by the system
in the LISA band. We assume an ideal 100% duty cycle. The initial frequency is derived
from the time to coalescence from the beginning of LISA observation (tc) that we fix to eight
years for the Fiducial system. Thus, with Tobs = 4 yr the Fiducial system is observed for a
fraction of its inspiral, while with Tobs = 10 yr the same system is observed for eight years
before exiting the LISA band and coalescing. The sky location is given in the SSB frame.
In the following, subscripts f refer to the Fiducial system.

We list all the systems we consider in the following subsections, specifying what are the
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m1 (M�) 40
m2 (M�) 30
m1,s (M�) 36.2
m2,s (M�) 27.2
tc (yrs) 8
f0 (mHz) 12.7215835397

χ1 0.6
χ2 0.4

λ (rad) 1.9
β (rad) π/3
ψ (rad) 1.2
ϕ (rad) 0.7
ι (rad) π/6

DL (Mpc) 250
z 0.054

Tobs (yrs) 4 10
SNR 13.5 21.5

Table 3.1: Parameters of a representative SBHB system labelled Fiducial. The masses and
spins of this system are compatible with GW150914 [319]. The initial frequency is computed
such that the system is merging in eight years from the start of LISA observations. We
consider two possible durations of the LISA mission: four and ten years (in the latter case,
the signal leaves the band after eight years, at coalescence). Subscripts s denote quantities
in the source frame, bare quantities are in the detector frame. The sky location is given in
the SSB frame.

changes with respect to the Fiducial system and the corresponding labels. For all systems we
consider the two possible mission durations quoted above, unless another choice is specified.
In table 3.2 we show the considered systems and their respective SNR. Note that we chose to
use the LISA proposal noise level [29], which does not include a 50% margin introduced to
form the “science requirements” SciRDv1 [314]. The SNRs would thus be significantly lower
with SciRDv1. From the point of view of the parameter estimation, using one or the other
noise model amounts to a constant rescaling of the noise power spectral density Sn, with the
same effect as rescaling the distance to the source. Although it has a minor impact on our
analysis, we include the confusion noise due to GBs [315]. Note that the detection of SBHBs
with LISA could be a challenge, at least for the traditional method of template banks [294],
and that some mergers might only be detectable retroactively after being discovered by third
generation ground based detectors [316, 317, 318]. We will not address this question, and
simply consider that systems with SNR above 8, as the ones here, could be detected.
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Intrinsic parameters

Unless specified we take tc = 8 years, the initial frequency is computed according to the
chosen tc. Changing tc (or equivalently f0) amounts in shifting the gravitational wave signal
in frequency and also defines its frequency bandwidth (within the chosen observation time).
We consider the following variations in the intrinsic parameters:

• Time left to coalescence at the beginning of LISA observations:

Earlier : tc = 20 yr,

Later : tc = 2 yr

• Chirp mass keeping the mass ratio unchanged:

Heavy : Mc = 1.5Mc,f , q = qf , DL = 445 Mpc

Light Mc =
Mc,f

1.5
, q = qf , DL = 150 Mpc

• Mass ratio, keeping the chirp mass unchanged:

q3 : q = m1

m2
= 3,Mc =Mc,f

q8 : q = m1

m2
= 8,Mc =Mc,f

• Spins:

SpinUp: χ1 = 0.95, χ2 = 0.95

SpinDown: χ1 = −0.95, χ2 = −0.95

SpinOp12 : χ1 = 0.95, χ2 = −0.95

SpinOp21 : χ1 = −0.95, χ2 = 0.95.

For the Heavy and Light systems we scaled the distance so that the SNR remains the
same as for the Fiducial system in the case Tobs = 10yr. Changing spins or mass ratio barely
affects the SNR, so we do not change the distance for those systems. Since the Earlier
system merges in two years, increasing the observation time from four to ten years has no
impact.

Extrinsic parameters

Changes in extrinsic parameters do not affect the time to coalescence, so all systems below
have the same initial frequency as the Fiducial system. We consider the following variations
in the extrinsic parameters:

• Sky location in the SSB frame:

Polar : β = π
2
− π

36
, λ = λf

Equatorial : β = π
36
, λ = λf

• Inclination:

Edgeon: ι = π
2
− π

36
, DL = 150 Mpc, Tobs = 10yr
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Tobs = 4yr Tobs = 10yr
Fiducial 13.5 21.1
Earlier 10.3 17.2
Later 11.8 /
Heavy 12.8 20.9
Light 14.1 21.1
q3 13.5 21.1
q8 13.5 21.1

SpinUp 13.5 21.1
SpinDown 13.5 21.1
SpinOp12 13.5 21.1
SpinOp21 13.5 21.1
Polar 12.8 20.1

Equatorial 14.9 23.1
Edgeon / 14.7
Close 17.8 /
Far / 15.1

Very Far / 10.6

Table 3.2: SNR of all systems considered, computed with the LISA proposal noise level given
in [29] and using the Full response. Different systems are derived from the Fiducial system,
varying a few parameters at once.

• Distance:

Close: DL = 190 Mpc, Tobs = 4yr

Far : DL = 350 Mpc, Tobs = 10yr

Very Far : DL = 500 Mpc, Tobs = 10yr

The drop in SNR being very large for an almost edge-on system, we decrease the distance
of the Edgeon system to maintain a reasonably high SNR. For the same reason, we use only
Tobs = 10yr in this case. The goal of the variation in distance is to assess the impact of the
SNR on the parameter estimation, all other things being equal. This also mimics the effect
of varying the noise level and the duty cycle. For the Close system we only consider the
Tobs = 4yr case and for the Far and Very Far systems we only consider the Tobs = 10yr case.

3.3.2 Prior

Regarding the Bayesian analysis, we take our fiducial prior to be flat in m1 and m2 with
m1 ≥ m2, flat in spin magnitude between −1 and 1, flat in initial frequency, volume uniform
for the source location and flat in the source orientation, its polarisation and its initial
phase. For phase and polarisation, since only 2ϕ (restraining to the (2,2) harmonic) and 2ψ
intervene, we restrict to an interval of π. The prior probability density function in terms of
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the sampling parameters is obtained by computing the Jacobian of the transformation from
(m1,m2, χ1, χ2, DL) to (Mc, η, χ+, χ−, log10(DL)), which gives

pf (θ) =

{
N
Mcη−11/5D3

L√
1−4η

if 0.05 ≤ η ≤ 0.25 ,

0 otherwise.
(3.3)

Just like the evidence in equation (2.7), N acts only as a normalisation constant and thus it
is of no importance in this study. The lower limit for η was set according to the maximum
mass ratio up to which PhenomD is calibrated (q = 16) [111, 112]. The range of chirp mass,
initial frequency and distance are orders of magnitude larger than the posterior support, so
they do not affect the posterior. We label this prior as Flatphys and use it by default unless
some other choice is specified. For example, we will consider two additional priors:

• Flatmag : uniform prior for the spins orientation and magnitude

• Flatsampl : flat prior inMc, η and log10(DL).

In the Flatmag case, we start from a full 3D spin prior, uniform in [0,1] for the spins
amplitude and uniform on the sphere for the spins’ orientation. We then consider only
the spin projections on the orbital momentum, thus ignoring the in-plane spin components.
The resulting prior is p(χi) = −1

2
ln(|χi|). The Flatmag probability density function is:

p(θ) = pf (θ)p(χ1)p(χ2) where pf (θ) is given in equation (3.3). This is the prior generally
used by the LVC [7, 8].

The Flatsampl probability density function is given by

pfs(θ) =

{
N 1

η
if 0.05 ≤ η ≤ 0.25 ,

0 otherwise.
(3.4)

This prior has no astrophysical motivation; we will use it to compare the Fisher-based
parameter estimation to the full Bayesian inference in section 3.4.3.

It is instructive to illustrate how the nontrivial priors look like. As we will show later
in section 3.4, the chirp mass can be constrained by a Bayesian analysis to a fractional
error of 10−4, so a narrow constraint on the prior can be imposed. The chirp mass is
nontrivially coupled to other parameters (as we will show in great details in the following
sections), and constraining it to the narrow interval introduces nonlinear slicing in other
parameters. Note that the imposed interval (10−3 in relative terms) is still much broader
than the typical measurement error. Figure 3.1 displays the Flatphys, Flatmag and Flatsampl
prior distributions for η, χ+, and χ− obtained by restraining the chirp mass to the specified
interval. The remarkable features of the fiducial prior, the Flatphys prior, are the double
peak at η = 0.25 and η = 0 and the bell-like shape for the χ+ and χ− priors with almost
zero support at extreme values. The Flatmag is singled out by the strong peak at χ+,− = 0.
As we will discuss in section 3.4, these non-trivial shapes of the priors can strongly affect
the resulting posterior distributions in some cases.
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Figure 3.1: Comparison between the Flatphys (blue), Flatmag (green) and Flatsampl (or-
ange) priors for η, χ+, and χ−.

3.3.3 LISA response

All our results are obtained using the full LISA response (see section 1.5.2), but we also
assess the impact of using the long-wavelength approximation, a simplified version of the
LISA response [306]. In this approximation, LISA is somewhat similar to two LIGO/Virgo-
type detectors rotated one with respect to the other by π/4, and with angles of π/3 between
the arms. It is obtained by taking the 2πfL� 1 limit in the LISA response so that

G22
slr(f, t) =

iπfL

2
exp(2iπfk · p0)nl ·P22 · nl. (3.5)

The sinc function appearing in equation (1.69) leads to a damping of the signal amplitude
at high frequencies. However, in the long-wavelength approximation, it is replaced by 1,
leading to unrealistically high SNRs. To compensate for this, inspired by the computation
of the sky-averaged sensitivity [320], we introduce a degradation function that multiplies the
gravitational wave amplitude

R(f) =
1

1 + 0.6(2πfL)2
. (3.6)

To explore the validity of this approximation for SBHBs, we will compare the parameter
estimation for the Fiducial, Polar and Equatorial systems using the full response and the
long-wavelength approximation, labelled Full and LW respectively.
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Figure 3.2: Inferred parameter distribution for the Fiducial system, both in the Tobs = 4yr
case (blue) and the Tobs = 10yr case (orange). The true parameters are indicated by black
lines and squares. Masses are in the detector frame.
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3.4 Parameter estimation of SBHBs
In order to test the performance of our MHMCMC sampler we compared it to the well tested
parallel tempering MCMC code PTMCMC 2. The similarity of two distributions p1 and p2 can
be quantified by computing their Kullback-Leibler (KL) divergence [321]:

DKL =
∑
θ

p1(θ) ln

(
p1(θ)

p2(θ)

)
. (3.7)

The KL divergence is zero if two distributions are identical. We computed DKL for the
marginalised distributions of each parameter obtained with two samplers using the Flatsampl
prior, and assuming four and ten years of observation. Apart from the polarisation and the
initial phase, all divergences were below 0.1 for four years of observation and below 0.01 for
ten years of observation, showing a very good agreement between samplers. For ψ and ϕ, less
well determined in general, we got slightly higher values (up to' 0.6) but still showing a good
agreement. The results presented in this section were obtained with our MHMCMC code,
and, unless otherwise specified, we use the Flatphys prior and the Full response. We give
the full “corner plot” [322] for the Fiducial system, comparing results for the two observation
times in figure 3.2, this plot shows pair-wise correlation between parameters and the fully
marginalised posterior for each parameter. The inset in the right top of the figure shows
posterior distributions for (m1,m2, χ1, χ2).

It would be difficult to represent the posterior distributions for all possible variations
(deviations from the Fiducial) discussed above. Instead, we will summarise the results by
underlining qualitative differences whenever we observe them and show comparative corner
plots only when necessary. We start by discussing the structure of correlation between
intrinsic parameters, move to extrinsic parameters, then compare the full Bayesian analysis
with predictions from the Fisher matrix, and finally show the effect of the LW approximation
to the response.

3.4.1 Intrinsic parameters

One of the main features appearing in figure 3.2 is the strong correlation between intrinsic
parameters, in particular the one betweenMc and η, which is especially pronounced for four
years of observation. The main reason for this degeneracy is the limited evolution of the
gravitational wave frequency: in four years of observation the Fiducial system spans a very
narrow range from f0 = 12.7 mHz to f4yr = 16.5 mHz.

First, it will be instructive to consider the magnitude of the different post-Newtonian
orders appearing in the phasing (see [84] for a review). The phase of the (2,2) harmonic can
be written as

Ψ22(f) =
3

128ηv5

∑
i

aiv
i, (3.8)

where v = (πMf)1/3 and where the ai are post-Newtonian coefficients (we scaled out the
leading term, so that a0 = 1) that depend on the mass ratio and on the spins, and can be

2https://github.com/JohnGBaker/ptmcmc
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separated between nonspinning terms (NS), spin-orbit terms (SO), and spin-square terms
(SS). It was argued in [323] that most SBHBs would require terms up to 2PN order (terms
going as v ln(v) are not considered in equation (3.8) because they enter at 2.5PN). Figure
3.3 shows the magnitude of the known post-Newtonian terms in the phasing for the Fiducial
system, noted ∆Ψn. In general, the magnitude of phase contributions is delicate to interpret
because of the alignment freedom, as part of the phasing error can typically be absorbed in
a time and phase shift. In figure 3.3 the contributions are individually aligned at f0 with
a zero phase and zero time according to equation (1.70). For Tobs = 4yr, post-Newtonian
orders beyond 1.5PN appear negligible due to the limited chirping in frequency, while more
terms become relevant for Tobs = 10yr, where much higher frequencies are reached. We also
grey out the area (f > 123 mHz) beyond which the signal contributes less than 1 in SNR2,
which we take as a somewhat conventional limit to indicate that ignoring the signal beyond
this point would not affect the log-likelihood (equation (2.9)) and therefore the parameter
estimation.

Figure 3.3: Individual post-Newtonian phase contributions ∆Ψn for the Fiducial system.
The linestyle indicates the nature of the term, nonspinning (NS), spin-orbit (SO) or spin-
spin (SS), while the colour indicates the post-Newtonian order. Note that these contributions
are individually aligned at f0, as explained in the text, and that interpreting the magnitude
of these terms is not easy due to the alignment freedom. The vertical line shows f4yr, and
the greyed area shows the frequency range contributing less than 1 in SNR2.

In order to provide an explanation for the strong correlation between chirp mass and
symmetric mass ratio, we consider a simplified problem by reducing the dimensionality:
we fix f0, χ+, χ− and all extrinsic parameters to the injected values and investigate the
correlation between the chirp mass and the symmetric mass ratio for the Fiducial system.
Keeping these parameters fixed will collapse some degeneracies seen in the full analysis,
but this exercise will serve as an illustration of the differences between a chirping and a
nonchirping system.

Since for Tobs = 4yr the gravitational wave frequency changes little from f0 to f4yr, the
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phase can be Taylor expanded around f0:

Ψ22(f) ' Ψ22(f0) +
dΨ22

df

∣∣∣∣
f0

(f − f0) +
1

2

d2Ψ22

df 2

∣∣∣∣
f0

(f − f0)2. (3.9)

Consider the inner product between the data d = Ad(f)eiΨd(f) and the template h =
Ah(f)eiΨh(f). With the adopted conventions, the initial phase at f0 is the same, Ψd(f0) =
Ψh(f0). The initial time is zero at f0, so the stationary phase approximation (equation
(1.70)) gives dΨ22

df
|f0 = 0. The inner product becomes

(d|h) = 4Re

∫ f4yr

f0

df
Ad(f)Ah(f)ei(Ψd(f)−Ψh(f))

Sn(f)
df

' Ad(f0)Ah(f0) 4Re

[∫ f4yr

f0

df

Sn(f)
e
i(

d2Ψd
df2 |f0−

d2Ψh
df2 |f0 )

(f−f0)2

2

]
, (3.10)

where we used the fact that the amplitude is a slowly varying function of the frequency. The
overlap is maximised when the template is in phase with the data, making the integrand
nonoscillating. In our quadratic approximation to the dephasing, this defines a curve in the
(Mc, η) plane according to

d2Ψ22

df 2

∣∣∣∣
f0

=
d2Ψ22(Mc,0, η0)

df 2

∣∣∣∣
f0

. (3.11)

In figure 3.4 we display in blue (orange) dots points from the sampling in the (Mc, η)
plane in the Tobs = 4yr (Tobs = 10yr) case and overplot (in orange dotted line) the curve
obtained by solving (3.11). The true (injection) value is indicated by black dashed lines. The
curve closely follows the shape obtained from parameter estimation in the Tobs = 4yr case.
The green dashed line is obtained by solving (3.11) truncating the phase to 1.5PN order. We
verified that adding higher post-Newtonian terms does not produce any noticeable changes,
which is in a good agreement with [323] and figure 3.3.

The degeneracy can even better be reproduced by minimising the phase difference be-
tween injection and template over the whole frequency range spanned by the injected signal.
More specifically, defining

δIΨ(Mc, η) = maxI |Ψ22(Mc,0, η0)(f)−Ψ22(Mc, η)(f)|, (3.12)

for each value of Mc we find η such that δIΨ is minimised. Note that all parameters are
kept fixed in the dephasing measure used here, in particular there is no optimisation over a
constant phase or time shift. The subscript I stands for the frequency interval and this curve
is plotted for I = [f0, f4 years] in figure 3.4. One can see that the shape of the correlation
between the chirp mass and the symmetric mass ratio in the Tobs = 4yr case is almost
perfectly reproduced. In the Tobs = 10yr case, the system evolves until it leaves the band
so it spans a broader frequency range. Figure 3.5 shows the value of the minimised δIΨ for
I = [f0, f4years] and for I = [f0, f

LISA
max ] with fLISA

max = 0.5 Hz taken at the conventional end
of the LISA frequency band. In practice, in the latter case the maximal dephasing occurs
typically around ∼ 0.1 Hz. For the observation span of four years, δIΨ can be found to be

84



3.4. Parameter estimation of SBHBs

Figure 3.4: Analysis of the degeneracy between Mc and η. The blue (orange) dots were
obtained running a parameter estimation on the Fiducial system in the Tobs = 4yr (Tobs =
10yr) case allowing only Mc and η to vary. The injection point is indicated by the black
dashed lines. The orange dotted and the green dashed curves are given by (3.11) using the
full PhenomD phase and the 1.5PN truncation of the phase respectively. The red solid line
was obtained by minimising the phase difference between the injected signal and templates
over the whole frequency range spanned over four years of observation.

Figure 3.5: Value of δIΨ along the curve in the (Mc, η) plane that minimises it for I =
[f0, f4 years] (blue) and I = [f0, fmax,LISA] (orange). When LISA observes the system at low
frequencies, the phase difference can be kept small over an extended region far from the
injection. When LISA observes the chirp of the system, the phase difference becomes very
large immediately at the vicinity of the injection point, reducing the extent of the degeneracy
betweenMc and η.
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quite small (< 0.5 rad) over a large range of η. As the bandwidth of the signal becomes
broader, changes in the chirp mass cannot be efficiently compensated by varying η, which
results in a significant reduction of the degeneracy and a great improvement in measuring
those two parameters, as seen by the narrower region covered by the orange dots in figure
3.4.

Let us now come back to the full Bayesian analysis and consider the estimation of the
black holes’ spins. Following [324, 112] we introduce the 1.5PN spin combination:

χPN =
1

113

(
94χ+ + 19

q − 1

q + 1
χ−

)
(3.13)

=
η

113

(
(113q + 75)χ1 + (

113

q
+ 75)χ2

)
. (3.14)

This term defines how the spins enter the gravitational wave phase at the leading (1.5PN)
order [84], and, therefore, should be the most precisely measured spin combination. We
found this to be indeed the case. As an illustration, we plot samples obtained for the q3, q8,
SpinUp, SpinDown, SpinOp12 and SpinOp21 systems in the Tobs = 10yr case in figure 3.6.
The points are the samples obtained in the Bayesian analyses and the lines show χPN = χPN,0

(fixing the mass ratio to its true value) for all those systems in the (χ1, χ2) plane. In all these
cases χPN is extremely well measured, within 10−2, but the combination of spins orthogonal
to χPN is constrained only by the prior boundaries.

For slowly evolving binaries, only terms up to 1.5PN in the gravitational wave phase are
found to be relevant. At this order a strong correlation between the 1.5PN spin combination
and the symmetric mass ratio is expected: any change in χPN can be efficiently compensated
by a change in η such that the 1.5PN term (−16π+1133χPN)η−3/5 is kept (almost) constant.
We have verified this by plotting the curve (−16π + 1133χPN)η−3/5 = const on top of the
samples obtained for the Fiducial system and reproducing the shape formed by the posterior
samples. Thus, we obtained and explained the three-way correlation between chirp mass,
mass ratio and spins for the mildly relativistic systems spanning a narrow frequency band
during the observation time. The increase in the observation time allows further chirping of
the system, making the contribution of the 1 and 1.5PN corrections in the phasing significant,
thus breaking strong correlations between intrinsic parameters. However, the effect of higher-
order post-Newtonian terms is weak, consistently with [323] and figure 3.3, which leads to
only the 1.5PN spin combination being measured. This study also suggests that χPN, being
the most relevant mass-weighted spin combination for parameter estimation, should be used
as sampling parameter. The component of χPN along χ+ is always much larger than the
one along χ− (at least by a factor 94

19
' 5), so χ+ is also measured reasonably well. The

effective spin χ+ is frequently used in the gravitational wave literature and has a clear
astrophysical interpretation, as opposed to the 1.5PN spin combination; therefore, we will
alternate between χPN and χ+ in the next discussions.

In order to further quantify the dependence of parameter estimation on the frequency
bandwidth spanned by the signal during the observation time, let us consider the Earlier,
Fiducial and Later systems, which differ in the initial frequency chosen so that the SB-
HBs merge in 20, 8 and 2 years respectively. We compute the KL divergence between the
marginalised posterior and the marginalised prior for each intrinsic parameter, and report
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Figure 3.6: Samples of χ1 and χ2 obtained for different systems (defined in Sec. 3.3) in the
Tobs = 10yr case. The black solid lines indicates the boundaries of the physically allowed
region −1 ≤ χ1,2 ≤ 1 and the χPN = χPN,0 lines. The samples follow the χPN = χPN,0 lines,
showing that this is the specific combination of spins that can be measured. The orthogonal
combination of spins is constrained only due to the boundaries of the physically allowed
region. Due to the orientation of the χPN = const lines, χ1 is better constrained than χ2.
High values of spins with same (opposite) sign are the better (worse) constrained.

the values in table 3.3. The larger values of DKL indicate that knowledge has been gained
from the gravitational wave observations as compared to the prior. The results show a strong
dependence on the observation time (therefore on the frequency bandwidth), especially for
spins, for which the DKL varies by an order of magnitude. For the Earlier system only
the chirp mass measurement is truly informative. Note that the longer frequency evolution
plays a bigger role than the SNR. For instance, Later, which leaves LISA after two years with
SNR = 11.8, is more informative than Earlier with Tobs = 10yr, which has an SNR = 17.2.
We repeated this analysis using the Flatmag and Flatsampl priors for the Fiducial system.
For all choices of prior, the KL divergences are similar, proving the η, χ+, χ− distributions
are prior dominated when observing slowly evolving systems. Notice that KL divergences
for spins are slightly smaller when using the Flatmag prior, meaning that the posterior is
even more dominated by the prior. This is because the Flatmag prior peaks strongly at
χ+ = χ− = 0 as discussed in section 3.3.2. Note that the values of DKL are always larger
for χPN than for the other spin combinations, reflecting the fact that it is the best measured
spin combination. Still, for systems evolving through a narrow frequency interval, the χPN

distribution is also prior dominated. The effect of the prior is especially well seen for the
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Fiducial Earlier Later

Mc η χ+ χ− χPN Mc η χ+ χ− χPN Mc η χ+ χ− χPN

Flatphys
Tobs = 4yr 3.6 0.4 0.2 0.1 0.3 2.7 0.04 0.04 0.03 0.04 6.1 1.7 3.1 0.4 3.6

Tobs = 10yr 7.6 2.5 3.7 0.5 4.3 4.5 0.7 0.5 0.2 0.6 / / / / /

Flatmag
Tobs = 4yr 3.4 0.6 0.07 0.04 0.08 / / / / / / / / / /

Tobs = 10yr 7.5 2.5 4.4 0.4 4.8 / / / / / / / / / /

Flatsampl
Tobs = 4yr 3.7 0.4 0.3 0.2 0.3 / / / / / / / / / /

Tobs = 10yr 7.3 3.2 3.7 0.5 4.4 / / / / / / / / / /

Table 3.3: KL divergences between the marginalised posterior and prior distribution of the
intrinsic parameters for different systems and choices of prior. When observing the system
at low frequencies, only Mc shows a sensible deviation from the prior. The likelihood is
informative on η and χ+ (and χPN) only for chirping systems. Different choices of prior give
similar results.

Fiducial system and Tobs = 4yr in figure 3.7: the strong peak of the symmetric mass ratio
at 0.25 is what is expected due to prior (see section 3.3.2). The same peak is also observed
for the Later system (predominantly due to low SNR) but η is much better constrained for
this system: the likelihood is informative enough to reduce the width of the distribution, but
not large enough to suppress the prior. Let us reiterate this important finding: for intrinsic
parameters beyond the chirp mass, the chirping (extent of the frequency evolution) of the
observed SBHB has stronger influence on parameter estimation than the SNR or observation
time per se.

We note that, although the frequency is slowly evolving, the signal is far from monochro-
matic, unlike most of galactic binaries (e.g. double white dwarf binaries). As an element of
comparison, using the quadrupole formula to compute the frequency derivative at f0, for the
Earlier system we find ḟ0 = 1.9× 10−11 Hz2, which is four orders of magnitude higher than
the fastest evolving galactic binaries [31]. Thus, despite the strong correlation between in-
trinsic parameters, the chirp mass is always well measured, with a relative error of order 10−4

for the Earlier system when observing for four years and below 10−6 for chirping systems.
The tight constraint onMc leads to the banana-like shape correlation between m1 and m2

seen in the top right part of figure 3.2. As a result, individual masses can be determined
(within 20–30%) only for chirping systems.

The 90% confidence intervals for the parameters of the Fiducial system are given in table
3.4. Whenever the marginalised distribution of a given parameter is leaning against the
upper (lower) boundary of the prior as for m1 (m2) we define the 90% confidence interval as
the value between the 0.1 and 1 quantile (0 and 0.9). Otherwise, in all other situations we
define the 90% confidence interval as the values between the 0.05 and 0.95 quantiles. In all
cases we report the median as a point estimate.

Systems with a higher mass ratio (q3 and q8, keeping the chirp mass the same as for
Fiducial) give an error on the chirp mass similar to the Fiducial system, but the mass ratio is
better determined. This is because, when keeping the chirp mass fixed, the post-Newtonian
expansion of the gravitational wave phase features negative powers of η, notably in the 1PN
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Figure 3.7: Distribution of η and χ+ for the Later system (tc = 2yr) and the Fiducial system
(tc = 8yr) for both observation times (Tobs = 4yr and Tobs = 10yr). Since LISA observes the
Later system chirping, the determination of η and χ+ is much better than for the Fiducial
system in the Tobs = 4yr case. But because of its low SNR (SNR = 11.8), the posterior
distribution still peaks at η = 0.25, as an effect of the prior. This is in contrast to the
Fiducial system in the Tobs = 10yr case (SNR = 21.1), which peaks at the injected value.

term. Moreover, what should matter is the derivative of the phase with respect to η, which
contains only negative powers (η−7/5, η−2/5), making it more sensitive to the small mass ratio
as compared to equal-mass systems. For an observation time of four years, the uncertainty
on individual masses is still of order of 100%, but for an observation time of ten years, it
reaches below 10% and 1% for the q3 and q8 system, respectively.

We now discuss the effect of priors on parameter estimation for high-spin systems. Con-
sider SpinUp system in the Tobs = 4yr case shown in figure 3.8. As discussed above, in this
case the spins, the mass ratio and the chirp mass are correlated. The posterior reflects the
interplay between the symmetric mass ratio and effective spin priors, which push samples
towards η = 0.25 and χ+ = 0, and the likelihood, which peaks at the true value of χ+

(0.95). This, together with the correlation between parameters, leads to the resulting poste-
rior distribution which has double peak in η and broad distribution for χ+ (the 2D histogram
is more informative). The distribution (overall) is shifted away from the true values (well
evident in the right panel of figure 3.8), though they are still contained within the 90% con-
fidence interval. In the case of Tobs = 10yr, the system chirps, so the information provided
by the likelihood dominates over the prior, therefore, this bias is corrected and most of the
degeneracies (at least partially) broken. In general, the posterior for the spins for weakly
chirping systems are badly constrained and closely resemble the priors. For chirping systems,
the determination of spins can be understood from figure 3.6. Because of the orientation of
lines χPN = const, χ1 is better constrained than χ2. As the mass ratio increases, the slope
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Figure 3.8: The left panel shows the inferred distribution on η and χ+ for the SpinUp system.
Because of a “competition” between the prior and the likelihood the distributions of η and
χ− peak away from the true value. TheMc distribution, not shown, is marginally affected.
Because of the bias in η, the inferred distribution of masses is significantly biased. However,
with the adopted definition of confidence interval, the true value is within the 90% confidence
interval.

of these lines changes, accentuating this difference. Spins of same (opposite) sign, are better
(worse) determined as their magnitude increase because of the narrowing (broadening) of
the allowed region. For the Fiducial system, the error on the spin of the primary black hole
is quite large, but we can infer that the spin is positive, with 0 (and negative values) being
outside the 90% confidence interval given in table 3.4. The effective spin is measured within
0.1 for chirping systems.

All results (for masses) so far were for redshifted masses. SinceMc,s =Mc/(1 + z),

∆Mc,s

Mc,s

=
∆z

1 + z
+

∆Mc

Mc

. (3.15)

As we will discuss in section 3.4.2, DL is typically measured within 40–60%, which implies
a measurement of the redshift z within ∼ 40–60% (at the low redshifts considered here, DL

and z are linearly related). Thus, the second term on the right-hand side of equation (3.15)
is clearly subdominant and the error on the source frame chirp mass is dominated by the
error on redshift, as a result

∆Mc,s

Mc,s

' 0.5z

1 + z
. (3.16)

This error is typically of the order of a few percent for systems detectable by LISA (up to
z ∼ O(10−1)), which is better than current LIGO/Virgo measurements [7, 8]. This estimate
is in good agreement with the results presented in table 3.4. The errors for individual masses
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Figure 3.9: Effect of the prior on the parameter estimation. The left (right) panel shows
the inferred distribution on η and χ+ (m2, χ1) for the Fiducial system using the Flatphys,
Flatmag and Flatsampl priors. Under the effect of the prior, the posterior distribution can
be significantly shifted away from the true value.

in the source frame are dominated by the error on the masses (like the second term on the
left-hand side of equation (3.15)) due to the poor constrain on the mass ratio.

The initial frequency is always extremely well determined, with relative errors below 10−5.
Its determination improves for chirping systems due to reduction of correlation with other
intrinsic parameters. The frequency of the system at the beginning of the LISA observations
is coincidental, as it is directly linked to the time that is left for the system to coalesce.
The time to coalescence is inferred by applying the stationary phase approximation (equa-
tion (1.70)) to the full gravitational wave phase. This transformation involves all intrinsic
parameters, so the error on tc is typically smaller for chirping systems. The error is of the
order of 1 day for systems far from merger, while for more strongly chirping systems tc can
be determined to within 30 s.

Increasing or decreasing the total mass of the system (while preserving the SNR) as in the
Heavy and Light systems has little consequence for the estimation of intrinsic parameters.
The error on spins and symmetric mass ratio are the same as in the Fiducial case. The
relative error on chirp mass and initial frequency is slightly smaller for lighter systems (factor
' 1.4 between the Heavy and Light systems) because of the larger number of cycles. However,
we do not find a simple scaling with the chirp mass of the system for a fixed level of SNR.
In particular, we do not find the error on the chirp mass to scale withM5/3

c as computed in
[325, 85]. This was to be expected, since as discussed in this section the error on intrinsic
parameters depends crucially on the frequency interval through which LISA observes the
binary.

Finally, the choice of prior only marginally affects the posterior distribution for chirping
systems. On the other hand, it can have a significant impact for nonchirping systems as can
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be seen in figure 3.9. For example, the Flatmag prior completely dominates the posterior
distribution of spins as the KL divergences suggested and shown in figure 3.9. Because of
the noted correlations, the prior on spins propagates into the determination of mass ratio
and individual masses.

Tobs = 4yr Tobs = 10yr

Mc/Mc,0 1+1×10−4

−4×10−5 1+2×10−6

−1×10−6

Mc,s/Mc.s,0 0.99+0.01
−0.01 1.00+0.01

−0.01

q 2.6+4.7
−1.6 1.3+0.1

−0.3

m1/m1,0 1.4+1.1
−0.6 0.99+0.04

−0.13

m2/m2,0 0.7+0.4
−0.3 1.06+0.14

−0.04

m1,s/m1,s,0 1.5+1.2
−0.6 0.99+0.04

−0.13

m2,s/m2,s,0 0.7+0.5
−0.3 1.06+0.15

−0.04

χ+ 0.2+0.5
−0.7 0.52+0.01

−0.02

χ− 0.03+0.7
−0.6 0.1+0.4

−0.4

χPN 0.2+0.4
−0.7 0.433+0.008

−0.009

χ1 0.2+0.8
−0.6 0.6+0.4

−0.3

χ2 0.2+0.7
−1.0 0.4+0.6

−0.5

∆tc (s) 104 20

∆Ω (deg2) 0.41 0.07
DL/DL,0 1.1+0.2

−0.3 1.0+0.2
−0.2

z 0.060+0.012
−0.014 0.055+0.009

−0.012

Table 3.4: 90% confidence intervals on the parameters of the Fiducial system, whose param-
eters are given in table 3.1, using the Flatphys prior. For masses and distance, the relative
errors are given. The redshifted chirp mass is extremely well determined for both mission
durations but individual masses can be measured only if the mission is long enough and
LISA can observe the system chirping. The measurement of the source frame chirp mass
is worse, being dominated by the error on the distance measurement and therefore the red-
shift in (3.15). The error on individual masses is dominated by their intrinsic degeneracy.
For chirping systems, χPN can also be measured, which translates into a good constraint on
the effective spin χ+. The error on individual spins remains large for the chirping system,
the spin of the primary BH can be mildly constrained (in this example, excluding negative
values). As a consequence of the overall improvement in the determination of the intrinsic
parameters, the inference of the time to coalescence improves drastically. The sky location
(given by equation (3.17)) is very well determined for both mission durations, within the
field of view of next generation electromagnetic instruments like Athena and SKA [326, 327].

3.4.2 Extrinsic parameters

Sky location

The sky location of the source is very well determined and, except for systems close to
the equator, its posterior distribution is very similar to a Gaussian unimodal distribution.
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Figure 3.10: Relative contribution to the determination of Mc and λ as a function of fre-
quency. As discussed in section 3.4.1, most of the information on intrinsic parameters comes
from the high end of the frequency band, whereas the contribution to sky parameters mainly
comes from the low frequencies.

Following [306], we define the p quantile for the solid angle as

∆Ω = −2 ln(1− p)π
√

(Σλ,λ)(Σsin(β),sin(β))− (Σλ,sin(β))2 , (3.17)

where Σ is the covariance matrix. The 90 % confidence interval is obtained for p = 0.9.
The error for the Fiducial system, reported in table 3.4, is below 0.4 deg2, which is within
the field of view of most planned electromagnetic instruments such as Athena and SKA
[326, 327]. Except for the Equatorial system, the sky position is constrained with a similar
precision for all systems considered in this work. The good localisation comes from the
complicated modulations imprinted in the signal by the orbital motion of LISA, according to
equation (1.69). To understand how the sky localisation evolves as a function of the frequency
band LISA observes a system, figure 3.10 shows f |∂λh̃|2/Sn (normalised with respect to its
maximum value) as a function of the frequency. The quantity f |∂ih̃|2/Sn is the integrand
entering the computation of the diagonal elements of the Fisher matrix (2.11) and indicates
(for each parameter) the most informative frequency range. Using a logarithmic scale for
frequencies, the factor f ensures that we can visualise the contributions to the integral as
the area under the curve (up to a normalisation factor). The corresponding values of the
time to coalescence tc are indicated in the upper x-axis. We indicate the initial (dashed
line) and end (solid line) frequencies of the Later (red), Fiducial (red) and Early (black)
systems for Tobs = 10yr. The behaviour for sin(β) is similar to λ. For comparison the same
quantity is shown for the chirp mass, the behaviour for other intrinsic parameters is similar.
As discussed in the previous section, most of the information on intrinsic parameters comes
from high frequencies. On the other hand, there is more information on the sky location
at low frequencies, where a given range of frequencies corresponds to more orbital cycles of
the LISA constellation. However, this is to be balanced with the narrower frequency range
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∆Ω (deg2)
Tobs = 4yr Tobs = 10yr

Fiducial 0.41 0.07
Earlier 1.6 0.46
Later 0.11 /
Polar 0.32 0.05

Equatorial 6.3 0.55

Table 3.5: Solid angle around the injection point corresponding to a 90 % confidence region,
computed with (3.17). The sky localisation is slightly better for the Polar sky position
(β ' ±π/2), but much worse for the Equatorial sky position (β ' 0). The sky localisation
is better for the Later system than for the Earlier system (despite a lower SNR in the
Tobs = 10yr case) due to the broader frequency range spanned during its observation.

spanned by systems evolving at lower frequencies, for a fixed observation time. For this
reason, the Later system gives a better localisation than the Earlier system even in the
Tobs = 10yr case as reported in table 3.5 (0.05 against 0.2 deg2).

There are two main effects in the LISA response (equation (1.69)) that give information
about the sky localisation: the time dependency (through tf , see equation (1.70)) of the
response reflects the orbital cycles of LISA, and the Doppler modulation exp(2iπfk · p0) of
the phase. The Doppler modulation shows this time dependency, but also scales with f ,
so this term is larger for chirping signals reaching high frequencies. The sky localisation is
better for lighter systems: ∆ΩLight < ∆ΩFiducial < ∆ΩHeavy (ranging from 0.23 to 0.69 deg2

in the Tobs = 4yr case and from 0.05 to 0.11 deg2 in the Tobs = 10yr case). This is a result of
keeping fixed the time to coalescence tc and the SNR (by adjusting the distance) for those
systems. The gravitational wave signal from the lighter and heavier systems is displaced at
higher and lower frequencies, since the evolution rate of the inspiral depends primarily on the
chirp mass. Namely, f0 = 9.9, 12.7, 16.4 mHz for Heavy, Fiducial, and Light, respectively.
Since the SNR is kept fixed in this comparison, this means that the lighter system has a
stronger sky-dependent Doppler modulation of the phase, helping with the localisation.

When comparing the Polar, Fiducial and Equatorial systems, a direct comparison of the
sky localisation could be quite misleading because the metric on a sphere depends on the
latitude, with a singularity at the pole. This issue can be evaded by defining a system of
coordinates on the sphere (µ, γ) such that the injection point is always on the equator. The
transformation from the ecliptic coordinates to this frame is source dependent. The spherical
coordinates at the equator are locally Cartesian and simplify the comparison of the results.
Results of the sky localisation are shown in figure 3.11 for the Polar, Equatorial and Fiducial
systems in the (µ, γ) frame and for Tobs = 4yr. All three systems recover µ (azimuthal angle)
similarly well but the determination of γ worsens as β → 0. Furthermore, for the Equatorial
system we find a tail extending all the way to a secondary sky position corresponding to
β → −β. This behaviour is due to the dominant Doppler phase in the frequency response,
which goes as cos(β): although the amplitude of the effect itself is maximised, its variation
with the latitude is minimal as cos(β) is flat for β = 0. For Tobs = 10yr, this partial
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Figure 3.11: Inferred distribution on the angles parametrising the position of the source for
the Polar, Fiducial and Equatorial systems, with Tobs = 4yr. As explained in the main text,
to avoid coordinate effects near the pole we do not compare the angles in the SSB frame
(λ, β) but transformed angles (µ, γ) defined by placing the injection point at the equator in
each case (note that the scale of the two axis is not the same). The injection corresponds to
µ = γ = 0 as indicated by the black solid lines and squares. µ is equally well recovered in
the three cases. For the Equatorial system, there is a tail extending to the position β → −β.

degeneracy is broken thanks to a combination of effects: there are more cycles of LISA’s
orbit contributing, the signal reaches high frequencies where the f dependent terms in the
response (see equation (1.69)) are larger, and the total SNR itself is larger. The solid angle
for the Equatorial system is larger than for the other systems (as reported in table 3.5),
but remains much tighter than the current sky localisation with ground-based observatories
[7, 8].

Other extrinsic parameters

Our results show strong correlations between inclination and distance, and between the
polarisation and the initial phase. These degeneracies are commonly seen in the analysis of
LIGO/Virgo sources when using only the dominant (2,±2) harmonic in the analysis. In this
case, the gravitational wave in the radiation frame is given as

h̃+(f) = Ã(f)
1 + cos2(ι)

2
e2iϕe−iΨ22(f) , (3.18a)

h̃×(f) = iÃ(f) cos(ι)e2iϕe−iΨ22(f) , (3.18b)

where h̃22(f) = A22(f) exp(−iΨ22(f)) is the frequency domain amplitude and phase decom-
position of the h22 harmonic, with Ã ≡

√
5/16πA(f) absorbing conventional factors. We
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refer to [284] for notation; in particular we exploit the symmetry between h22 and h2,−2 for
nonprecessing systems to write the waveform in terms of h22 only. Going to the SSB frame
we rotate by the polarisation angle ψ:

h̃SSB
+ = h̃+ cos(2ψ)− h̃× sin(2ψ) , (3.19a)

h̃SSB
× = h̃+ sin(2ψ) + h̃× cos(2ψ) . (3.19b)

For a face-on system, ι = 0 leading to

h̃SSB
+ (f) = Ã(f)e2i(ϕ−ψ)e−iΨ22(f) , (3.20a)

h̃SSB
× (f) = iÃ(f)e2i(ϕ−ψ)e−iΨ22(f) . (3.20b)

Thus, the initial phase and the polarisation appear only through the combination ψ − ϕ,
yielding a true degeneracy corresponding to ψ−ϕ = const. For systems close to face-on/face-
off, like the Fiducial system, this gives the strong correlation between ψ and ϕ well observed
in figure 3.2. For edge-on systems (ι = π/2) instead

h̃SSB
+ (f) = Ã(f) cos(2ψ)e2iϕe−iΨ22(f) , (3.21a)

h̃SSB
× (f) = Ã(f) sin(2ψ)e2iϕe−iΨ22(f) , (3.21b)

and the degeneracy between ψ and ϕ is then broken, as also shown in figure 3.12. This figure
compares the distributions of ψ, ϕ, ι and DL for the Edgeon system to the Far system (which
is almost face-on). Those systems have similar SNR. When the degeneracy between ψ and
ϕ is broken, we observe a correlation between the initial phase and the initial frequency.
This is an artificial correlation due to relating ϕ to the value of the phase at f0 for each
template. Using a fixed reference frequency, such as the initial frequency of the injected
signal for example, eliminates this correlation.

In figure 3.12 we also plot distance and inclination, which show a significant correlation
for the Far system that is absent for the Edgeon system. Distance and inclination are
purely extrinsic parameters, and the degeneracy features when subdominant (higher order)
harmonics are negligible appear in the same way for LIGO/Virgo and LISA. For LISA, see,
e.g., a discussion in the context of galactic binaries in [328]. In short, in the limit of face-
on/off systems the inclination acts as a scaling factor over a rather broad range of inclination
values, thus changes in cos(ι) can be compensated by changes in DL. For close to edge-on
systems, the × polarisation of the wave is suppressed (in the wave-frame, before transforming
to the SSB frame as in equation (3.19)). The important point is that this suppression of h×
depends itself quite rapidly on the inclination, so that reproducing the injected signal leads
to a rather tight constraint on ι, and, as a consequence, on DL. For MBHB observations
with LISA, higher harmonics play an important role and help break these degeneracies [284];
but SBHBs are observed by LISA far from coalescence and higher harmonics are negligible
for these signals.

Figure 3.13 shows the effect of the distance prior on the posterior distribution for cos(ι)
and DL using the Flatphys and Flatsampl priors for Tobs = 4yr. The former favours larger
distances and, to keep the correct overall signal amplitude, compensates by preferring the
face-on configuration. In the case of the Flatsampl prior, the posterior distribution of cos(ι)
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Figure 3.12: Comparison of the inferred distribution on ψ, ϕ, ι and DL for the Far and
Edgeon systems, both have similar SNR. The distance is normalised to the injection value.
Black lines and squares indicate the true values common for both systems and coloured
lines and squares the value of ι for each system. For the Edgeon system the degeneracies
between ϕ and ψ and between ι and DL are broken giving a better estimation of each of
these parameters. However, close to edge-on systems will usually have much lower SNR.
Indeed, in order to keep a comparable SNR the distance to the Edgeon is less than half the
distance to the Far system.

is flat because the likelihood itself is very flat around ι = 0, π (cos(ι) is a slowly varying
function around its extrema). Thus, the choice of prior shifts the peak of the posterior, but
the 90% confidence interval still contains the true value and its width is barely affected.

Among all the cases considered, DL can be at best determined within 40%, except for the
Edgeon system for which it can be determined within 20%. However, the edge-on systems
will have lower SNR for a fixed distance to the source, and, therefore there is an observational
selection effect where the face-on/off systems are preferred (that is what we observe with
LIGO/Virgo). Fixing all other parameters of the Fiducial system and setting ι = π/2−π/36,
the SNR drops from 21 to 9 for Tobs = 10yr. For the fixed inclination, time to coalescence
and source position, the error on intrinsic parameters, distance and sky position scale, in
first approximation, as 1/SNR.

3.4.3 Fisher matrix analysis

In this subsection we consider parameter estimation using a slightly improved version of
Fisher information matrix analysis, inspired by [304]. We have introduced the Fisher matrix
in section 2.2.1 and discussed its augmented version, the effective Fisher, in section 3.2 for
computing the covariance matrix. As we mentioned in section 3.2 and showed in section
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Figure 3.13: Distribution of cos(ι) and DL using the Flatphys and Flatsampl priors for
Tobs = 4yr. Although the distributions look rather different, the width of the 90% confidence
interval for DL is barely affected and the true point is well within the confidence interval.

3.4.2, the likelihood is very flat around ι = 0, π leading Fisher-based-parameter estimation
to overestimate the errors on cos(ι) and DL. To correct for this, we add a term (F t) to the
effective Fisher matrix: Feff = F + F p + F t where F is the “original” Fisher matrix given
by equation (2.11) and F p is introduced to account for the prior on spins. Empirically, we
found the choice F t

cos(ι),cos(ι) = 1
(0.2(20/SNR))2 and 0 elsewhere to give good results for cos(ι)

and log10(DL). The prior matrix F p does more than truncating the error on spins: it mimics
the nontrivial prior on χ+ and χ−. Indeed, requiring the spins to be in the physically allowed
range (−1 ≤ χ1,2 ≤ 1) leads to a parabola-shaped prior on χ+,− as seen in figure 3.1. We
treat this nontrivial prior by a Gaussian distribution centred at χ+,− = 0 with standard
deviation σ = 0.5. We invert the effective Fisher matrix to obtain the covariance matrix and
use it to draw points from a multivariate Gaussian distribution. To fully account for the
effect of the prior on spins, the point at which the Gaussian distribution is centred is shifted
to θeff = F−1

eff Fθ0. We only keep points within the boundaries given in equation (3.4). For
ψ and ϕ we draw points in an interval of width π around the central value. In figures 3.14
and 3.15 we compare our Fisher analysis to the inferred distribution for the Fiducial system
using the Flatsampl prior.

Despite the rather low SNR of this system, especially in the Tobs = 4yr case, there is
a good agreement between the two analysis. In particular, the sky localisation is the same
for the full parameter estimation and the effective Fisher analysis. Naturally, this method
cannot reproduce the secondary maximum we found for the Equatorial system, but it does
predict a higher error as the system approaches the equatorial plane. The good agreement
for χ+ and χ− and for Tobs = 4yr is because the effective Fisher and posterior distribution are
both prior dominated. ForMc and η, Fisher agrees with the full parameter estimation on a

98



3.4. Parameter estimation of SBHBs

Figure 3.14: Comparison between the inferred distribution for the Fiducial system using
the Flatsampl prior and our Fisher analysis with Tobs = 4yr. PE stands for parameter
estimation.

Figure 3.15: Similar to figure 3.14 but with Tobs = 10yr.

2-sigma level but cannot reproduce the banana-like correlation. In case of Tobs = 10yr, the
likelihood becomes more informative for the effective spin, reducing the error predicted by
the “original” Fisher while the χ− distribution is still prior dominated. Without adding F t to
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Figure 3.16: Evolution of the error as function of the time before merger LISA starts ob-
serving the system in the Tobs = 4yr and Tobs = 10yr cases. The SNR is given in the upper
panel. The errors onMc, η, and χ+ correspond to the width of the 90% confidence intervals,
and ∆Ω is defined in (3.17).

the effective Fisher, the direction for the correlation between cos(ι) and DL is predicted well
but the Fisher matrix severely overestimates the error for nearly face-on/face-off systems.
For the Edgeon system, the likelihood is not so flat, so the error predicted by the “original”
Fisher is already small (in agreement with the Bayesian analysis) and adding F t does not
affect the parameter estimation.

Based on the rather good agreement we found with Bayesian parameter estimation, we
can exploit the simplicity of the Fisher analysis to further explore how does the parameter
estimation evolve with the time (left) to coalescence. In figure 3.16, assuming Tobs = 4yr and
Tobs = 10yr, we plot the errors onMc, η, χ+ and ∆Ω as a function of the time to coalescence
tc, keeping all the parameters of the Fiducial system fixed but varying the initial frequency
in accordance with the chosen tc. The corresponding evolution of the SNR is shown in the
top panel, with the lowest SNR of 8 being reached for tc ' 1yr. Dashed lines mark tc = Tobs

in each case, which corresponds to the maximum achievable SNR given the observation time,
and it also corresponds to the best estimation of parameters. Note two different regimes on
the two sides of the dashed line: to the left, the parameter estimation is governed by the
decrease in the signal duration in LISA band and reduction in SNR, while to the right the
parameter estimation is determined mainly by the bandwidth of the signal spanned over
the observation time. As discussed in section 3.4.2 the sky localisation comes mainly from
modulations caused by the motion of LISA, therefore it worsens rapidly if the system spends
too little time in band (below 1 year).

As a conclusion to this subsection, let us mention that the code developed to perform this
improved Fisher analysis is currently being used in the computation of figures of merit for
LISA3. The goal of figures of merit is to characterise the performance of LISA for different

3https://gitlab.in2p3.fr/LISA/lisa-fom
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Tobs = 4yr Tobs = 10yr
Full LW Full LW

Fiducial 13.5 12.9 21.1 21.4
Polar 12.8 12.2 20.1 20.0

Equatorial 14.9 14.2 23.1 23.4

Table 3.6: Comparison between the SNRs for the Fiducial, Polar and Equatorial systems
using the Full and the LW response.

Figure 3.17: Comparison of inferred distributions of intrinsic parameters and sky location
using the Full and LW responses for the Fiducial system in the Tobs = 10yr case.

configurations, and quantify the science goals of the mission.

3.4.4 Long-wavelength approximation

Let us now assess the impact of using the long-wavelength approximation on the parameter
estimation. In table 3.6 we show the SNR for the Fiducial, Polar and Equatorial systems
using the Full and LW responses for two observation times. Accounting for the degradation
at high frequencies (equation (3.6)), the long-wavelength approximation has little impact
on the SNR and seems to barely affect the parameter estimation, as can be seen in figure
3.17. The behaviour is similar for the Polar and Equatorial systems. Some care is needed
in interpreting this result: this comparison shows that the high frequency terms neglected
in the long-wavelength approximation have little impact on the posterior of the sky position
if the likelihood is computed self-consistently (signal and template are produced using same
response, either LW or Full). However, when analysing real data these high frequency terms
cannot be neglected.
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Tobs = 4yr Tobs = 10yr
lnL(θ0) max(lnL) ρ̃ lnL(θ0) max (lnL) ρ̃

Fiducial −50 −2 0.99 −268 −38 0.91
Polar −45 −3 0.99 −234 −30 0.92

Equatorial −55 −2 0.99 −288 −34 0.94

Table 3.7: Loglikelihood at the true point, maximum likelihood and relative SNR (defined
in equation (3.22)) when using the LW response in the Bayesian analysis for data generated
with the Full response.

In other words, these effects in the full response can indeed be subdominant in the
parameter recovery, if more information comes from other effects like the LISA motion and
the main Doppler modulation, while not being negligible in the signal itself. To illustrate this,
we simulate data for the Fiducial, Polar and Equatorial systems using the full response and
perform a Bayesian analysis using the long-wavelength approximation to compute templates.
In table 3.7, we give the log-likelihood evaluated at the true point, the maximum likelihood
and the maximum overlap

ρ̃ = maxh

(
(d|h)√

(d|d)(h|h)

)
. (3.22)

In practice, we compute the maximum overlap by optimising over the samples. The quantity
1− ρ̃ indicates how much SNR would be lost if wrong templates were used for the detection
of signal. Up to ∼ 10% of the SNR could be lost, given the already low SNR of SBHBs
in LISA this would severely compromise our chances of detecting such sources. The very
small value of the likelihood at the true point by itself shows that using the long-wavelength
approximation will have an impact on the parameter estimation. Figure 3.18 compares the
posterior distributions obtained by using templates generated with the Full or LW response
while analysing the Fiducial system, with Tobs = 10yr and generated with the Full response.
This system has a significant bandwidth and the LW template cannot fit simultaneously the
low and high frequency content of the signal, causing severe biases in the parameter estima-
tion and loss of SNR. The same system but with Tobs = 4yr, shows different result, the LW
template is effectual enough to fit the signal rather well with the largest bias appearing only
in ψ−ϕ distribution as a compensation for terms neglected in the response and with a mild
drop in the SNR. However, those signals are quite weak, and we do not have the luxury to
lose even a small portion of SNR. Thus, these findings seem to validate the long-wavelength
approximation for prospective parameter estimation studies, if it is used consistently for
injecting and recovering the signal, while it would be inappropriate to analyse real data.
However, we should remember that we did not explore the full parameter space, while equa-
tion (3.6) is valid as an average over orientations, so a different choice of parameters could
yield worse results. We also note that the full response (equation (1.69)) is actually quite
simple and not more expensive computationally, while being unambiguous and eliminating
the need for the averaging entering equation (3.6).
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Figure 3.18: Comparison of the inferred distributions for the Fiducial system in the Tobs =
10yr case using the Full and the LW response in the Bayesian analysis. In both cases, data
was generated with the Full response.

3.5 Discussion
In this chapter we explained how the parameter estimation for the observation of SBHBs
with LISA evolves across the parameter space. To do so, we simulated LISA data and
performed a Bayesian analysis for many systems, starting from a GW150914-like system
and varying the parameters of the system in turn. The main finding is that parameter
estimation results are most sensitive to the frequency span of the gravitational wave and its

103



3.5. Discussion

extent within LISA sensitivity region given the observation duration, or in other words, how
much the signal chirps during the observation time. The chirp mass and the sky location
are always well recovered (typically within 10−4 relative and 1 deg2 respectively), but the
effective spin and the individual masses can only be measured for chirping systems. These
results are expected to extend to more massive systems such as “light” IMBHBs, i.e. with
component masses O(102M�) and systems similar to the massive binary recently announced
by the LIGO/Virgo collaboration [190, 37].

The knowledge and understanding obtained in the study of parameter estimation can be
utilised for the development of search tools: (i) the parameter estimation for these systems is
mainly unimodal, with secondary modes appearing either in special cases (like the Equatorial
system) or under the effect of priors where the likelihood is weakly informative (like the
symmetric mass ratio for nonchirping systems); (ii) the chirp mass and the sky coordinates
are the best measured parameters, so we can make a hierarchical search starting with those
parameters and taking into account the correlations, which are explored and understood in
section 3.4; (iii) the effective Fisher is an efficient proposal for a Bayes-based search once we
start to find indications for a candidate gravitational wave signal in the data. In addition,
we can perform an incremental analysis starting with a half-year-long data segment and
progressively increasing it. This works as a natural annealing scheme and should help in
detecting (especially) chirping systems.

A major improvement to this work would be the inclusion of orbital eccentricity. As-
trophysical formation models predict that binaries formed dynamically should have large
eccentricities [199, 200]. However, by the time these binaries reach the frequency band of
ground-based detectors, they have circularised. Thus, LISA could play an important role in
the discrimination between different formation channels [206, 207, 208, 209, 210]. Further-
more, neglecting eccentricity could affect the parameter estimation and detection efficiency.
We are currently limited by the lack of fast eccentric waveforms, but work is ongoing in
this direction [329, 330, 331, 332, 333]. Concerning spins, binaries formed dynamically are
expected to have misaligned spins [198], causing the binary’s orbit to precess. The system
might endure a sizeable number of precession cycles over the lifetime of LISA, albeit with
a small opening angle of the precession cone for a binary in its early inspiral. Precession
effects can become more important close to merger and therefore should be considered care-
fully when relating the signal in the LISA band with the signal in the ground-based detectors
band. The investigation of precession effects is left for future work.

Detection of even few SBHBs by LISA that merge somewhat later with a very high
SNR in the band of ground-based detectors [198] will constitute “golden events”. Beyond
all the benefits of multiband detections per se, the information provided by LISA itself will
be very valuable. The good estimate on the time to coalescence and the sky location could
be used for electromagnetic follow-up of the source as we will discuss in chapter 5. These
measurements could be used to tighten the constraints on the Hubble constant (H0) even if no
electromagnetic counterparts are detected, using galaxy catalogues [334, 335, 336]. Finally,
the observation of SBHBs during their early inspiral will allow us to probe low-frequency
modifications due to deviations from general relativity and/or environmental effects with
high precision, as we will discuss in the next two chapters.
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Chapter 4

Tests of general relativity with
gravitational waves

Gravitational wave observations provide an excellent opportunity to test general relativity
in the strong field dynamical regime, but due to the complexity of the task, few full results
derived from first principles are currently available (see section 1.3). As an alternative, we
can assess how theoretically-motivated phenomenological modifications to the generation
and/or propagation of gravitational waves affect the detected signal. In this chapter we
reproduce the results of [34] and [35]1.

First, we focus on modifications to the inspiral evolution of BBHs. Black holes are
purely gravitational objects, therefore BBHs are very “clean” systems (i.e. with no matter
effects as long as they are in vacuum) that can be used to probe deviations from general
relativity. Since LISA will observe SBHBs in the long low-frequency inspiral phase up to
several years, these observations will be very sensitive to any dephasing affecting the low-
frequency regime and will allow us to probe deviations from general relativity. Previous
works on this topic [337, 338, 339, 340, 341, 342] used Fisher matrices to perform parameter
estimation, and the long-wavelength approximation for the LISA response. We introduce
the parametrised post-Einsteinian formalism [343], which provides a unified framework to
capture deviations from general relativity during the inspiral, and use it to assess how LISA
observations will allow us to constrain the presence of dipole radiation in BBHs and the mass
of the graviton, using the full Bayesian analysis presented in the previous chapters. We also
estimate the improvement thanks to multiband observations.

Next, we consider a different kind of test of general relativity: probing the nature of
compact objects. For this purpose, we inspect the coalescence of binaries made of ECOs.
Detecting such objects would be a smoking gun for beyond general relativity/standard model
physics. As these objects have a gravitational behaviour very similar to neutron stars and
black holes, specific gravitational wave templates are needed to identify putative ECO bi-
naries. Unfortunately, the vast majority of models of ECOs are not yet complete enough to
construct their corresponding gravitational wave templates, especially in the binary merger
case, except for (some types of) binary boson stars (BBSs). Furthermore, even for BBSs,

1I derived all the results and, except for figure 4.4, I realised all the figures in this chapter, with the help
of my collaborators. Figure 4.4 is a courtesy of a friend of mine, Tallulah Frapier.
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full solutions are available only in few cases [344, 345, 346]. The lack of templates beyond
the standard paradigm could spoil our chances of observing these systems, because the SNR
is highest with matched filtering techniques (see section 2.1). In order to fully exploit the
potential of gravitational wave observations and ready the analysis required to discern ECOs
through the full inspiral, merger and post-merger phases, we propose a toy model aiming
to capture the main features of the full signal emitted by such binaries. We then use it to
assess the detectability of ECO binaries and our ability to distinguish them from standard
compact binaries with current and future gravitational wave detectors.

4.1 Theory-agnostic inspiral tests of general relativity
with LISA

4.1.1 Parameterised post-Einsteinian formalism

A theory-agnostic phenomenological framework to describe and classify deviations from gen-
eral relativity, at least during the low-frequency inspiral, is provided by the parametrised
post-Einsteinian formalism [343]. A similar formalism is applied in the TIGER pipeline
[347] used in LIGO/Virgo tests of general relativity [12, 13]. In these approaches the general
relativistic phase and amplitude are modified as

h̃(f) = h̃GR(1 + a1(πMcf)a2)e−ib1(πMcf)b2 , (4.1)

where h̃GR is the frequency domain waveform of general relativity, while the deviations from
general relativity are described by the dimensionless parameters a1, b1, a2 and b2. Since
interferometers are mostly sensitive to the phase of gravitational waves, we will neglect
the amplitude modifications and set a1 = 0. This approximation has been discussed and
justified in [348], to which we refer for further details. Different values of b1 and b2 correspond
to distinct physical effects (see, e.g., [340, 349, 138, 350, 351, 352, 353, 354, 355, 342] for
some specific modifications of general relativity and their mapping to the parametrised post-
Einsteinian parameters b1 and b2). Note that these physical effects could be common to
different theories, and measuring nonzero values of some of these parameters might not allow
to unambiguously identify the “correct” theory of gravity. However, this could be used as a
smoking gun to identify the presence of beyond general relativity effects. We will focus on two
specific examples: one affecting the generation of gravitational waves (dipolar gravitational
wave emission) and one affecting their propagation (nonzero mass for the graviton).

In section 1.3, we saw that the presence of dipole radiation is a generic prediction of
modified gravity theories, and that it is related with violations of the strong equivalence
principle. We will now compute how it affects the gravitational wave signal. Obeying the
relative ordering of terms in the multipolar expansion, the dipolar gravitational wave energy
flux must come with a factor v−2 (v being the relative velocity in the binary) relative to the
leading order quadrupolar term. Following [356] we write the total energy flux during the
early inspiral regime as

Ptot = PGR(1 +Bv−2), (4.2)
where PGR is the general relativity quadrupole flux (see equation (1.30)), and B (which
vanishes in general relativity) is a theory and system dependent parameter that characterises
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dipole emission. As discussed in section 1.3, B typically goes as the difference of sensitivities
(to additional fields in the action) squared. Using the energy balance equation and Kepler’s
law as in section 1.2.2, we get a modified equation for the orbital speed of the binary

ω̇orb =
96

5
M5/3

c ω
11/3
orb +

96

5
η2/5McBω

3
orb. (4.3)

Using the stationary phase approximations (equations (1.50), (1.51), (1.52), (1.53)), and
assuming B to be small (B(πMcf)−2/3 � 1), we get for the phase of the (2,2) harmonic

Ψ22(f) = −
[
2πftc − 2φc −

π

4
+

3

128
(πMcf)−5/3 − 3

224
Bη2/5(πMcf)−7/3

]
. (4.4)

Thus, comparing this equation with (1.54), we see that dipole radiation leads to a -1PN
modification that can be described within the parametrised post-Einsteinian framework with
[356]

b1 = − 3

224
η2/5B (4.5)

b2 = −7/3. (4.6)

Because of the violation of the strong equivalence principle, the value of B might depend
on the nature of the system. To make it explicit that we are considering dipole radiation in
black hole systems, we will use the symbol BBH for the rest of this manuscript.

The propagation of gravitational waves could be altered due to a modified dispersion
relation for the graviton [357, 355]:

E2 = p2c2 + Aαdp
αd , (4.7)

where E and p are the graviton’s energy and linear momentum, while A and αd are free
parameters. For example, Hořava gravity predicts the presence of terms with both αd = 4
and αd = 6 [358, 359], while the case αd = 0 corresponds to a massive graviton [121]. From
equation (4.7), at first order in A the graviton’s velocity reads

v2
g = 1− AEαd−2 . (4.8)

By measuring the time delay between the gravitational waves and light emitted by GW170817,
it is possible to bound the fractional difference between the speed of gravitational waves and
that of light to less than 10−15 [360]. A modified dispersion relation also deforms the shape
of the gravitational wave signal as it propagates, since each frequency travels at a different
(phase and group) speed [355]. This allows for testing modified dispersion relations even in
the absence of electromagnetic counterpart, as is expected to be the case for SBHBs. This is
the technique by which the LVC has obtained graviton mass bounds [12, 11, 13] competitive
with Solar System observations [361].

In more detail, it was shown in [355] that a modified dispersion relation like equation
(4.7) changes the phase of the gravitational wave signal, and this modification corresponds
to parametrised post-Einsteinian coefficients [355]

b1 = − π2−αd

1− αd
DαdM1−αd

c

(1 + z)1−αd

A
(hc)2

, (4.9)

b2 = αd − 1 , (4.10)
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where Dαd is a distance variable given by Dαd = (1+z)1−αd

H0

∫ z
0

(1+z′)αd−2√
Ωm(1+z′)3+ΩΛ

dz′. In this

expression, z is the cosmological redshift of the source, H0 is the Hubble constant and Ωm

and ΩΛ are the matter and dark energy density parameters respectively.
In this manuscript we will focus on the case of a massive graviton, αd = 0 and A = m2

gc
4,

where mg is the graviton’s mass. As can be seen in equations (4.9) and (4.10), a nonzero
graviton mass leads to a 1PN modification and the phase shift increases with chirp mass and
distance. Thus, we may expect the best gravitational wave constraints on this effect to come
not from GW170817, but from more massive and distant systems [362]. For a given source,
though, distance also reduces the SNR, so experimental bounds are defined by the interplay
of those two factors.

4.1.2 Method

We want to assess the sensitivity of LISA to modifications of general relativity. To that pur-
pose, we work in a full Bayesian framework and consider two different MCMC experiments.
The first one consists of simulating the signal predicted by general relativity, for a few as-
trophysical systems, and trying to recover it with templates where either dipole radiation
or a massive graviton is allowed. Our goal is to place upper bounds on BBH and mg, i.e. to
determine how well gravitational wave observations can constrain those deviations, account-
ing also for possible correlations between parameters. The second experiment consists of
simulating signals containing a modification to general relativity, for the same astrophysical
systems, and estimating how well can we detect this modification.

In order to obtain an estimate of how much multiband observations could improve our
ability to detect or constrain modifications to general relativity, we repeat each of the previ-
ous experiments, but placing a very tight prior constraint on the coalescence time. Indeed,
this parameter is extremely well constrained by ground based detectors, with a typical ac-
curacy of a few milliseconds. We refer to the analysis mimicking multiband observations as
LISA+Earth, and to the one using LISA alone as LISA-only. A proper multiband analysis
will yield an even more significant impact on the parameter estimation, by providing valu-
able constraints on intrinsic parameters such as the mass ratio and the spins, which could
be poorly constrained by observations with LISA only, as we saw in the previous chapter.
For this reason, our results in the LISA+Earth case can be considered as conservative. We
consider only one modification at the time (either dipole radiation or mass of graviton), and,
as mentioned above, we neglect modifications to the amplitude of gravitational waves.

Signal generation

We generate data and parametrise SBHBs as described in section 3.1. Recall that we consider
quasicircular binaries consisting of spinning black holes with aligned or anti-aligned spins
with respect to the orbital angular momentum, and generate only the (2,±2) harmonic (using
PhenomD). Modifications to general relativity are added to h̃2±2 as described in section 4.1.1.
We assume a four years mission duration, and an ideal 100% duty cycle. We use the LISA
proposal power spectral density [29], including the confusion noise due to GBs [315].

We consider three different astrophysical systems. System 1 one is similar to GW150914.
Systems 2 and 3 were chosen to be significantly different from GW150914 to evaluate the dis-
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Variable System 1 System 2 System 3
m1 (M�) 38 60 50
m2 (M�) 32 50 40
m1,s (M�) 35.2 53.1 45.8
m2,s (M�) 29.6 44.2 36.7
tc (yrs) 8.3 4 2.5 4 5.2
f0 (mHz) 12.4765 16.4265 19.5265 12.3826 12.783

χ1 0.05 0.10 0.78
χ2 0.02 0.33 0.22

λ (rad) 3.5064 0.2283 2.9966
β (rad) 0.1777 −0.431 −0.577
ψ (rad) 1.1 2.8 1.5
ϕ (rad) 5.4 6.0 0.88
ι (rad) 2.77 0.52 0.34

DL (Mpc) 380 640 420
z 0.08 0.13 0.09

Tobs (yrs) 4
SNR 10.5 13.2 10.9 13.1 15.0

Table 4.1: Systems for which we simulate data and that we use to constrain modifications
to general relativity.

persion of constraints/measurements of non-general relativity parameters between different
systems. Since low mass systems are less likely to be detected by LISA, we opted for heavier
systems. The distances were chosen to keep the SNR at a comparable level for all systems,
so that it does not bias our results. Notice that System 3 has quite high spins, and as we
will discuss in section 4.1.5 this can bias the measurement of deviations from general rela-
tivity. In addition, for System 1 we consider three different values of the initial frequency, so
that the time to coalescence (from the start of LISA observations) takes values of 8.3 years,
4 years and 2.5 years. The choice of the initial gravitational wave frequency strongly affects
the parameter estimation (as discussed in the previous chapter), and allows us to explore
constraints on general relativity modifications as a function of the signal’s “chirpiness”. The
parameters of the systems are given in table 4.1. We also provide the time to coalescence
and the SNR for each system.

4.1.3 Bayesian analysis

We deploy the full Bayesian framework described in the previous chapters to explore the
accuracy with which LISA can estimate the parameters of the source and put constraints
on modifications to general relativity. In the LISA-only scenario, we use the Fiducial prior
described in section 3.3.2 for general relativity parameters, and assume a flat prior for the
coefficients parametrising deviations from general relativity. We assume B ≥ 0 and mg ≥ 0,
corresponding to positive extra gravitational wave fluxes (besides the general relativity ones)
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and real positive masses respectively. In the LISA+Earth case we use a Gaussian prior with
standard deviation σtc = 1 ms centred around the true value of the coalescence time instead
of a flat prior on f0.

We sample the posterior distribution using our MHMCMC algorithm, described in section
3.2. In the LISA+Earth scenario we use tc as a sampling parameter rather than f0. Instead
of mg, we use D0mg

(1+z)DL
, in order to avoid the computation of D0 (see equation (4.9)) at

every point, thus saving computational time. Posteriors are reweighed at the end. From
equations (4.5) and (4.9), we expect non-general relativity parameters to correlate with
intrinsic parameters, therefore they are added to the first group of parameters (intrinsic
parameters) during the burn-in phase. Finally, it is noteworthy that when sampling the
posterior, we allow the chains to explore negative values of BBH and mg too and impose the
cut a posteriori. This procedure reduces the number of effective points that we obtain out
of a chain, but it allows for better sampling of the region close to the prior boundary. In
order to cross-check our results we also used the parallel tempering code PTMCMC [363]. We
obtained an excellent agreement between the two samplers, and especially for the BBH and
mg marginalised distributions.

4.1.4 Putting upper bounds on non-general relativity parameters

We assume that the gravitational wave signal follows general relativity (simulated data) and
we use non-general relativity templates as a search model for each system given in table
4.1. The aim here is to set an upper limit on the phenomenological deviations from general
relativity. In the left panel of figure 4.1 we show the marginalised distribution of BBH for
System 1 (tc = 4.0 years) both in the LISA and LISA+Earth scenario. The distribution peaks
at the true value of the dipolar amplitude (i.e. 0) and has a compact support extending up
to the maximum BBH compatible with observations.

For most of the cases/systems considered here (except for System 3, to which we will
come back when discussing the possibility of detecting modifications to general relativity
in 4.1.5), we obtain similar distributions for BBH and for mg, as displayed in the left panel
of figure 4.1. This allows us to place upper limits as 90% credible interval (0.9 quantile of
the corresponding marginalised distribution). We present the upper bounds on BBH and mg

obtained with each system and in each scenario in tables 4.2 and 4.3 respectively. We also
provide the currently available constraints for comparison. The best constraints on dipole
radiation in binary systems come from binary pulsars (see section 1.3). However, since the
value of the dipolar amplitude might depend on the nature of the system, as argued in
section 1.3, we only consider here current bounds for systems containing at least one black
hole. For those, the most stringent current bound comes from the observation of a low mass
X-ray binary [364]. This constraint is slightly better than the one obtained with current
gravitational wave detections [340]. For mg, we show the constraint obtained by the LVC
after the first half of the third observational run [13]. A somewhat better upper bound on
the mass of the graviton was obtained from Solar System observations [361], but it is unclear
that a constraint from such a static configuration should be the same as for highly dynamical
systems like BBHs.

The results presented in tables 4.2 and 4.3 show that the best constraints are given by
the systems which are observed during the whole four years mission duration before passing
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BBH

LISA-only LISA+Earth

System 1(tc = 8.3 years) < 1.1 10−7 < 1.1 10−7

System 1(tc = 4.0 years) < 9.2 10−9 < 3.2 10−9

System 1(tc = 2.5 years) < 6.8 10−8 < 7.2 10−9

System 2 < 1.5 10−8 < 4.6 10−9

System 3 < 1.9 10−7 < 2.5 10−8

Current constraints < 4× 10−2

Table 4.2: 90% confidence constraints on BBH obtained with each system, in both the LISA-
only and LISA+Earth scenario. Improvements by one of order of magnitude can be achieved
when restricting tc. Already in the LISA-only scenario, all the systems considered here would
allow us to improve current constraints for black hole systems.

mg (eV)

LISA-only LISA+Earth

System 1(tc = 8.3 years) < 9.3 10−23 < 2.5 10−23

System 1(tc = 4.0 years) < 2.0 10−23 < 1.5 10−23

System 1(tc = 2.5 years) < 3.1 10−23 < 2.5 10−23

System 2 < 1.2 10−23 < 1.2 10−23

System 3 < 3.5 10−23 < 2.0 10−23

Current constraints < 1.8× 10−23

Table 4.3: 90% confidence constraints on mg obtained with each system, in both the LISA-
only and LISA+Earth scenario. As explained in the main text, restricting tc thanks to a
multiband detection improves the bounds. System 1 (tc = 4.0 years) and System 2 would
allow to slightly improve on current bounds, but we expect that by the time LISA flies
ground-based detectors will have placed a more stringent constraint on mg.

out of band (System 2 and System 1 (tc = 4.0 years)). In addition, System 1 (tc = 2.5 years)
gives better constraints than System 3 and System 1 (tc = 8.3 years). Those results are in
very good agreement with the finding discussed in the previous chapter, i.e. that most of the
constraining power (on intrinsic parameters) comes from the chirp of the system. Although
this might seem counterintuitive for low-frequency modifications such as dipole radiation,
it can be explained by the correlation of non-general relativity parameters with intrinsic
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Figure 4.1: Distribution of the dipolar amplitude for System 1 (merging in 4 years), when
using LISA-only (red) and LISA+Earth (green). In the left panel, the injected value is zero
and the dashed lines indicate the upper bound that we can put on BBH (corresponding to
the 90% confidence interval). In both scenarios the upper bound is much below the current
constraint (4 × 10−2). In the middle and right panels the injected value is 0.7 × 10−8 and
1.0×10−6 respectively, indicated by the blue solid line. These values were chosen so that one
is far above the bound that we can put on BBH in the LISA+Earth scenario, and the other
is of the same order. Since zero is not in the support of the posterior in the right panel, in
this case we could safely claim the detection of a modification to general relativity, unlike
for the posterior in the middle panel.

parameters such as mass ratio and spins. Large uncertainties in the symmetric mass ratio
and in the effective spin lead to larger errors on parameters correlated to them, such as the
chirp mass and non-general relativity parameters.

Overall, restricting tc improves the constraints on non-general relativity parameters, but
it does not have the same impact for all systems. An interesting observation is that although
System 3 gives a slightly worse constraint on BBH than System 1 (tc = 8.3 years) in the
LISA-only scenario, that constraint improves by an order of magnitude in the LISA+Earth
scenario, whereas the constraint from System 1 (tc = 8.3 years) remains unchanged. To
understand this, we transformed the samples obtained in the LISA-only case to infer the
time to coalescence of the systems (using the stationary phase approximation, equation
(1.70)), and we found that for all systems except System 1 (tc = 8.3 years) there is a very
strong correlation between BBH,Mc and tc. This is why restricting tc helps to improve the
bound on BBH. Because we are observing System 1 (tc = 8.3 years) at lower frequencies,
the correlation between BBH andMc is dominant. Thus restricting tc does not have much
impact on the estimation of either parameter, and in particular the bound on BBH does
not improve. However, a real multiband detection would yield additional constraints on
the parameters of the source and most likely improve the constraint on BBH for System 1
(tc = 8.3 years). We see that the impact of restricting tc on the upper bound ofmg is opposite:
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we get the best improvement for the systems that start the farthest from merger (System
1 (tc = 8.3 years) and System 3). The reason is similar: LISA observes a gravitational
wave signal at quite low frequency, while the effects of mass ratio, spins and mg appear
beyond the leading post-Newtonian order terms, and therefore they are (relatively) poorly
constrained (as explicitly shown in the previous chapter). Restricting tc to be in a narrow
interval imposes an additional constraint on those parameters, which allows one to improve
the bound on mg. For systems closer to coalescence, the frequency evolution during LISA
observations is sufficient to set tight bounds, and the additional constraint coming from
restricting tc only moderately improves the results.

Our projected constraints on BBH are in good agreement with [340, 337] and should im-
prove current bounds for black hole systems by at most seven orders of magnitude. For mg,
we observe that multiband observations of System 1 (tc = 8.3 years) and System 2 should
slightly improve the current constraints. However, we expect that by the time LISA flies
ground-based detectors will have improved their constraint on mg. Our bounds are some-
what better than the ones obtained with GW150914-like systems in [341, 342]. One possible
explanation for this difference is the higher SNR of our systems. Finally, the reported upper
bounds are worse than the projected bounds obtained from the observation of supermassive
black holes binaries by LISA in [341], due to a significant difference in the SNR and in the
distance to those sources. We stress again that a real multiband analysis would not only
restrict tc, but also put additional constraints on all intrinsic parameters, improving param-
eter estimation as a whole. As a consequence, bounds on non-general relativity parameters
from SBHBs observed with LISA and ground detectors could be more stringent than those
presented here in the LISA+Earth scenario.

4.1.5 Detecting modifications to general relativity

We now turn to the case where the injected signal has a nonzero value of either BBH or
mg. Based on the results presented in tables 4.2 and 4.3, we choose BBH well above the
bounds presented there, but still below currents constraints (BBH,injected = 100 × 10−8),
as well as BBH and mg of the same order as those bounds (BBH,injected = 0.7 × 10−8 and
mg,injected = 1.0 × 10−23 eV). We choose a single value for mg because there is less room
between our projected bounds and the currents constraints.

In the middle and right panels of figure 4.1, we show the marginalised distribution of BBH

for System 1 (tc = 4.0 years) both in the LISA and LISA+Earth scenario, when the injected
value is BBH,injected = 0.7× 10−9 and BBH,injected = 100× 10−8 (respectively), denoted by the
blue solid line. For the higher BBH, the distribution peaks around the injected value and is
not compatible with zero, clearly indicating the presence of the effect. For the lower BBH,
the distribution is very flat in the LISA-only scenario and more peaked in the LISA+Earth
scenario. Similarly, in figure 4.2 we show the distribution of mg for System 2 and for an
injected value of 10−23 eV. For the reasons explained above, the impact of restricting tc is
milder, but it still slightly improves the sharpness of the posterior around the injected value.
Although the peak of the posterior distribution is away from zero (and centred on the true
value), as seen in figure 4.1 and figure 4.2 for the LISA+Earth scenario, we cannot still rule
out general relativity (a vanishing deviation from general relativity is compatible with the
data), and we cannot safely claim the detection of a deviation from general relativity.
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Figure 4.2: Distribution of the mass of the graviton for System 2, when using LISA-only
(red) and LISA+Earth (green). The injected value is 1 × 10−23 eV, indicated by the blue
solid line, below the current constraint 5 × 10−23. This value was chosen to be close to
the upper bound that we can put in the LISA+Earth scenario. Despite the peak around
the injected value, zero is in the support of the distribution, so we cannot safely claim the
detection of a non-general relativity effect.

Figure 4.3: Distribution of the dipolar amplitude for System 3, when using LISA-only (red)
and LISA+Earth (green). The injected value is 0 and dashed lines indicate the upper
bound that we can put on B (corresponding to the 90% confidence interval). Notice that
in the LISA-only case the distribution peaks away from 0, which would seem to indicate
the presence of a nonzero modification, but this feature disappears in the LISA+Earth case.
This is due to the poor determination of intrinsic parameters such as the spins, which leads
to a bias in correlated parameters such as BBH. When constraining tc, the determination of
the intrinsic parameters improves, suppressing this bias.

Detailed analysis reveals that while analysing the general relativity signal, the peak of
the distribution for BBH could be away from zero even in the noise-free approximation. The
corner plot presented in figure 4.3 shows the distributions of χ+ and BBH and the correlation
between them for System 3. Note that the true value of BBH here is zero, however, in the
LISA-only scenario the distribution peaks at a nonzero value, mimicking a deviation from
general relativity. Since we do not observe the chirp of this system, the likelihood is very
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108 ×BBH,injected = 0.7 108 ×BBH,injected = 100 1023 ×mg,injected = 1.0

LISA-only LISA+Earth LISA-only LISA+Earth LISA-only LISA+Earth

System 1(tc = 8.3 years) 5.1±+6.8
−5.1 5.1+6.8

−5.1 105.0+15.5
−12.1 102.8+12.8

−11.3 4.5±+5.3
−4.5 1.7+2.0

−1.7

System 1(tc = 4.0 years) 0.5+0.7
−0.5 0.54+0.3

−0.5 101.0+2.2
−1.4 100.3+1.1

−0.6 1.6+1.4
−1.6 1.1+1.0

−1.1

System 1(tc = 2.5 years) 1.6+4.8
−1.6 0.6+0.6

−0.6 101.5+6.7
−6.4 100.6+2.0

−1.0 2.9+2.4
−2.9 1.29+1.3

−1.3

System 2 0.7+1
−0.7 0.6+0.5

−0.6 101.1+2.8
−1.9 100.3+1.0

−0.6 1.1+0.9
−1.1 1.1+0.7

−1.1

System 3 8.8+11
−8.8 1.2+1.7

−1.2 109.3+15.8
−11.8 103.4+4.6

−4.2 2.1+2.3
−2.1 1.9+2.0

−1.9

Table 4.4: Recovered 90% confidence interval for non-general relativity parameters for dif-
ferent injected nonzero values. For a strong modification B = 100 × 108 the posterior
peaks around the injected value, and zero is not in the support of the distribution, as in
the right panel of figure 4.1. Thus, we could safely claim the detection of a modification
to general relativity. In the case of smaller modifications, e.g. BBH,injected = 0.7 × 108 or
mg,injected = 1.0 × 10−23 eV, the posterior is compatible with 0. Therefore, even in cases
where the distribution peaks around the true value, like in figure 4.2 and in the middle panel
of figure 4.1, we could not safely claim the detection of a non-general relativity effect.

shallow across the allowed range of χ+, and the prior, which peaks at χ+ = 0, dominates.
The high spins of the black holes entering System 3 produce a rather high value of χ+, for
which the prior has little support. Thus, we are biased in our estimate of χ+, and the strong
correlation between χ+ and BBH shifts the peak of the posterior distribution for BBH away
from zero. In other words, our prior beliefs are stronger than the information (likelihood)
provided by the data itself. This is a similar situation to the SpinUp system discussed in
the previous chapter (see discussion in section 3.4.1). Restricting tc puts some constraint on
χ+, suppressing the bias in BBH. This bias for the LISA-only scenario is much less obvious
if the black holes’ spins are low like in System 1.

The exercise above indicates the importance of multiband observations. At the same
time (especially in the presence of noise) we should be careful and claim the detection of a
modification to general relativity only if the distribution of non-general relativity parameters
is incompatible with zero. For that reason, whenever the posterior distribution is compatible
with zero, we define the 90% confidence interval of BBH and mg as the values between the 0
and the 0.9 quantiles. Otherwise, in situations as in the right panel of figure 4.1, we define
the confidence interval as the values between the 0.05 and 0.95 quantiles, and we report the
median as a point estimate. The 90% confidence interval on BBH and mg are given for each
case considered in table 4.4.

The errors on non-general relativity parameters in all systems and scenarios considered
are coherent with upper bounds: the cases giving the more stringent bounds are the ones
that could detect modifications with higher precision. For completeness, we add that, for
systems where the injected value is much lower than the calculated upper bound (e.g. when
BBH,injected = 0.7 × 10−8 for System 1 (tc = 8.3 years) or System 3), we cannot distinguish
a peak away from zero, and the distribution is very similar to the one in the left panel of
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figure 4.1.
In order to further investigate the presence of a modification to general relativity one could

compute Bayes factors given by the ratio of evidences of two models : BM1,M2 = p(d|M1)
p(d|M2)

. As
an example, Bayes factors much larger than 1 would suggest that model M1 describes data
better than model M2. In our case the difference between models would be the presence
(or absence) of some modification to general relativity in the gravitational wave templates.
To carry this study we would need to use different samplers, e.g. nested sampling [365].
Additionally, the evidences could be used to weigh the individual posteriors and combine
observations. Because the dipolar amplitude will in general be system dependent, stacking
events in order to improve the constraint on BBH may not be meaningful. On the other hand,
combined observations could definitely improve the constraint on the mass of the graviton
[11, 13]. We leave these investigations for future work.

Here, we have considered only perturbative deviations from the BBH signal predicted
by general relativity, but we might expect more extreme modifications near the merger, in
particular in the case of binaries made of ECOs as we will see next.

4.2 Modelling gravitational waves from exotic compact
objects

4.2.1 State of the art

In a sense, the current state of knowledge for the gravitational wave signal emitted by ECO
binaries, illustrated in figure 4.4, resembles the situation in the early 2000s for BBHs within
general relativity2. At that epoch, only the early inspiral and post-merger phases had been
reasonably modelled, while no numerical simulations for the merger phase were available
until [94, 95, 96] and the large body of work since then.

One expects that for ECO binaries a post-Newtonian description furnishes a fairly good
representation of the binary’s behaviour in the early inspiral. Gravitational wave signals
should be well described by the point-particle binary model until tidal effects become appar-
ent. After coalescence, it is natural to expect either an object of the same nature as the initial
bodies or a black hole. The gravitational waves emitted in this regime would be related to
fundamental properties of the corresponding object and/or the dynamics of the merger. How-
ever, the details of the coalescence phase, which contains precious information on the prop-
erties of the original bodies (see section 4.2.2), are unknown. Up to date, few full numerical
results are available, and only for some specific models of BBSs [344, 345, 346]. For these rea-
sons, studies on the possibility of distinguishing ECOs from standard compact objects with
gravitational waves have focused mainly on these two regimes, e.g. through perturbative mod-
ifications to the inspiral signal [367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379],
quasinormal modes of ECOs [380, 381, 382, 118, 383, 384] or echoes after the merger
[385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398]. We start by dis-
cussing known features of the merger of non-black hole compact objects, which we utilise to
construct our toy model for the full gravitational wave signal of ECO binaries.

2Figure 4.4 is largely inspired from figure 9 in [366].
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Figure 4.4: Schematic representation of our knowledge of the gravitational wave signal emit-
ted by an ECO binary: within general relativity we have a good idea of the qualitative
features of the inspiral and post-merger, but the connection between these two regimes is
still largely unknown. We expect that the merger leads to the formation of either a black hole
or an (excited) object of the same nature as the initial ECOs, possibly rotating. The rem-
nant relaxes through emission of gravitational waves, which are related to its fundamental
properties and/or the dynamics of the merger.

4.2.2 Coalescence of compact objects other than black holes

To construct our model, we will rely on our understanding of BBHs together with BNSs
and BBSs. In particular, the differences of the latter two systems with BBHs will inform
us how to implement in our model the particular phenomenology that general ECOs might
display. For simplicity, we focus on binaries consisting of (nonspinning) identical objects
(same nature and same mass) on quasicircular orbits. We denote by m0 and r0 the mass and
radius of the bodies, and their compactness in isolation by C0 = m0/r0.

During the inspiral phase of BNSs and BBSs, tidal effects lead to a correction in the
gravitational wave phase at 5PN order relative to BBHs [114, 115, 116] (in general relativity).
This correction is proportional to the dimensionless tidal polarisability: Λ = 2

3
k2C

−5
0 [115,

116], k2 being the tidal Love number. The compactness and the tidal Love number are
determined by the equation of state. Neutron stars typically have C0 in the range 0.14− 0.2
(see figure 7 of [65]). To date, proposed models for nonspinning boson stars give similar
values, but can reach higher compactness (so far, up to 0.3 [399, 400]). As for k2, it is
typically of the order of 0.1 for neutron stars and currently available models of boson stars
[401, 402, 403, 369, 367].

The post-Newtonian description fails when the stars come in contact. This approximately
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takes place at the “contact frequency”

fc =
C

3/2
0

m0

, (4.11)

which depends on the equation of state through the compactness. For low enough values of
C0 (. 0.29), this frequency is lower than that of the ISCO for a BBH of the same mass. For
this reason, we will employ the terminology “post-contact” rather than merger/post-merger
whenever appropriate. For ultracompact exotic objects, C0 ∼ 0.5 and the objects reach the
ISCO before touching. We thus expect the merger to proceed in a fashion more similar to
BBHs, with no post-contact stage. However, no numerical simulations in this regime are
available so far to confirm this expectation. Moreover, it is possible that such objects do not
exist in nature as they might be nonlinearly unstable [404]. After contact, a rather complex
behaviour is displayed by BNSs and BBSs (and thus potentially also by ECO binaries), while
the system’s evolution is comparatively simpler in the case of BBHs. This behaviour is only
explorable through numerical simulations.

After the stars touch, the least bound material might be disrupted (and a portion of
it might even be ejected), whereas the remaining part gives rise to an envelope containing
the inner cores of the original bodies [405, 344]. Gravitational interaction acts to bring the
cores together, but internal restoring forces (whose exact nature depends on the objects)
and angular momentum oppose it. As a result, collapse to a black hole can be prevented,
forming instead a hypermassive star [406, 344]. As these effects compete, the cores oscillate
[405, 344]. Eventually, collapse to a black hole or formation of a stable star ensues. The
exact outcome is determined by the total mass of the system, the equation of state and any
further relevant physics at play (e.g. microphysics, electromagnetic effects and gravitational
cooling) [407, 408, 409, 346].

These different scenarios leave distinct imprints in the waveform, as can be seen in figure
4.5. There, we display the gravitational wave signal produced by the merger of two neutron
stars with initial masses m0 = 1.35 M�, for different choices of the equation of state: 2B
[410], ALF2 [410] and DD2 [411]. The merger happens at t = 0. The waveforms that we
show were taken from the CoRe database 3 [412]. The system in the upper panel collapses
immediately to a black hole following contact, whereas the other two form a hypermassive
neutron star. The system in the middle panel collapses to a black hole after ∼ 7 ms, and
the one in the lower panel does not collapse for the simulation duration, seemingly forming
a stable neutron star. In the last two cases, the difference with a BBH signal is visible
with naked eye. Figure 4.6 shows the decomposition of the signal obtained with the ALF2
equation of state (middle panel of figure 4.5) into amplitude and frequency. We note that
the post-contact signal is characterised by oscillations in the gravitational wave amplitude
and frequency.

Remarkably, for some models of boson stars, if the outcome of the merger is a boson
star, angular momentum is entirely radiated immediately after contact, with very little
mass ejected [344, 345, 413, 414]. The hypermassive boson star radiates gravitational waves
primarily at the fundamental quasinormal frequency of the star [344]. On the other hand,

3http://www.computational-relativity.org/.
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Figure 4.5: Numerical simulations of BNS waveforms for different equations of state. For
the 2B equation of state, the system promptly collapses to a black hole after contact. For
the ALF2 and the DD2 equation of state, a hypermassive neutron star is formed following
contact. In the former case the hypermassive neutron star ends up collapsing to a black
hole after ' 7 ms, whereas in the latter case it does not collapse for the duration of the
simulation, seemingly relaxing to a stable neutron star.

Figure 4.6: Amplitude-frequency decomposition of the gravitational wave signal emitted by
a BNS following the ALF2 equation of state. The signal is characterised by the oscillations
in amplitude (blue) and frequency (red) in the post-contact stage.

for BNSs the main frequencies in the post-contact stage are determined by the dynamics of
the binary [415, 416, 417, 418].

With these observations in mind, we propose that the coalescence of ECO binaries should
consist of (i) an inspiral phase with tidal effects (ii) a post-contact evolution with three
possible scenarios:

• prompt collapse to a black hole,

• formation of a hypermassive ECO that ultimately collapses to a black hole,
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• formation of a hypermassive ECO that settles into a stable remnant of the same nature
as the original bodies.

Moreover, we expect the amount of angular momentum retained in the post-contact evolution
to depend on the nature of the original bodies. We introduce a parameter 0 ≤ κ ≤ 1 that
represents the fraction of angular momentum retained at the onset of the post-contact phase.
This parameter depends on the nature of the compact objects, and it is related to the ability
of a given compact object to sustain rotation. For instance, it would be ∼ 1 (∼ 0) in case
a stable remnant forms from the coalescence of a BNS (some models of BBS). This generic
classification allows for a model agnostic phenomenological description of the coalescence of
ECO binaries, irrespective of the exact nature of the involved bodies. We focus on the last
two scenarios, and consider only extremal values of κ: we take κ = 1 for the scenario where
a black hole is formed as the result of the collapse of a hypermassive ECO, and κ = 1 or
κ = 0 for the scenario where a stable remnant is formed. Thus, we consider three types of
behaviour in the post-contact stage:

• RBH : rotating systems that collapse to a black hole

• RS : rotating systems that form a stable remnant

• NRS : non-rotating systems that form a stable remnant

We focus on bodies with compactness in the range 0.14 . C0 . 0.2, which contains the
typical values of many models of stable compact objects other than black holes. For high
values of C0, the toy model that we present next predicts a prompt collapse to a black hole,
a scenario on which we do not focus. This is in agreement with the numerical simulations
available so far, which suggest that for C0 higher than ∼ 0.18, the coalescence of BBSs leads
to a black hole [344, 345, 346]. However, one should keep in mind that for equations of
state that have not been explored yet, or for different setups, it might be possible to form
more compact remnants. In particular, stable boson stars can reach compactnesses of ∼ 0.3
[399, 400], suggesting such end states might be viable. Objects with higher compactness,
however, might not be stable [404], in which case they would not be a possible coalescence
end product. Our framework could be modified to account for these cases, e.g. by attaching
a rotating bar instead of the toy model used here.

4.2.3 Toy model

Our starting point is the toy model introduced in [419] to describe the post-contact dynamics
of BNSs. We model the inner cores of the ECOs by point particles interacting gravitationally,
but also through an effective spring. The latter mimics the effect of the restoring forces,
making the cores bounce. The disrupted material is modelled by a disk containing the two
point particles, as shown in figure 4.7. For RBH and RS systems the disk and the cores
corotate, for NRS systems neither the disk nor the cores rotate.

The toy model is characterised by four free parameters: the radius of the disk (R), the
mass of the cores (m/2), the spring constant (k) and its length at rest 2ρ0. We assume mass
conservation (i.e. no ejection of mass following contact) and that the two point particles
have the same mass m/2. Therefore, the mass of the disk is M = 2m0 −m, and its radius
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Figure 4.7: Illustration of the setup we use to model the dynamics of the post-contact
stage, adapted from [419]. The hypermassive ECO is treated as a disk containing two point
particles that interact gravitationally, but also through an effective spring. The latter mimics
the effect of the restoring forces, making the cores bounce.

satisfies r0 ≤ R ≤ 2r0. We define the characteristic frequency of the spring as ω0 =
√
k/m.

These free parameters should be related to the equation of state of the ECOs in the binary,
e.g. higher values of k correspond to stiffer equations of state (see [420] for a discussion in
the case of BNSs). Within this toy model, the three types of post-contact evolution (RBH,
RS and NRS ) are distinguished by the choice of free parameters and the prescription for the
angular momentum.

The dynamics is governed by four variables: the distance of each core to the centre (ρ);
the orbital angle (φ), out of which we define the orbital angular velocity (ω = φ̇); the total
energy (E); and the total angular momentum along the rotation axis (J). Quantities labelled
by c refer to the time of first contact, and those labelled by i refer to the beginning of the
toy model. We assume that, due to the finite shock-propagation speed, after the two objects
touch, only their inner parts are compressed, whereas the outer layers keep their original
sizes. We can therefore write ρi = R − r0. We assume energy conservation and Ji = κJc,
where κ is 0 for NRS systems and 1 otherwise. The initial orbital phase plays no role in the
dynamics, and will be used later to match the post-contact stage to the inspiral.

We map the dynamics to that of an effective particle of mass given by the system’s reduced
mass, evolving in a potential well Veff = Vcentrifugal + Vspring + Vgravitational. The gravitational
term was not accounted for in [419], it includes the interaction between the cores, the one
between the cores and the disk and the rest energy of the disk:

Vgravitational = −m
2

8ρ
− mMρ

R2
− 2M2

3R
. (4.12)

. The centrifugal and spring terms are given by

Vcentrifugal =
1

2
Iω2 =

1

2

J2

MR2

2
+mρ2

, (4.13)

Vspring = 2k(ρ− ρ0)2. (4.14)
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The addition of the gravitational term allows for a wider variety of post-contact behaviours,
and helps provide a natural description of collapse to a black hole. Moreover, the treatment
of [419] can be seen as a particular case of ours, in the limit of high values of k (stiffer
objects), where the spring term dominates over the gravitational one. The shape of the ef-
fective potential is determined by the free parameters of the model. In figure 4.8 we display
by dark-red lines the effective potential and the energy (in rescaled dimensionless units) at
the start of the post-contact stage, for a given choice of the free parameters (corresponding
to an RS system). The effective particle is trapped between an inner and an outer turn-
ing point, reproducing the oscillatory behaviour described in section 4.2.2. As the system
evolves, energy and angular momentum are dissipated through radiation of gravitational
waves. Due to the dependence of the centrifugal potential on the angular momentum, the
effective potential changes during the evolution, as illustrated by the solid dark-blue line in
figure 4.8.

Figure 4.8: Evolution of the effective potential and the energy for an RS system. As the
evolution proceeds, the energy reaches the minimum of the potential, leading to a “circular-
isation” of the orbit.

The evolution of the effective particle is governed by

ϕ̇ = ω =
J

I
=

J
MR2

2
+mρ2

, (4.15)

ρ̇ = ±
√

2

m

√
E − Veff(ρ), (4.16)

Ė = −PGW, (4.17)

J̇ = −J̇GW. (4.18)

We compute the energy (PGW) and angular momentum (J̇GW) carried away by gravitational
waves consistently, using the adiabatic approximation and averaging over an entire period
of the radial motion. Details of the computation are given in appendix A.1. We integrate
the adiabatic equations of motion, equations (4.15), (4.16), (4.17) and (4.18), over successive
periods, see appendices A.2 and A.3 for details. The evolution proceeds differently for each
type of ECO binary:
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• For NRS systems, one has J = 0 and thus the potential is fixed. As the evolution
proceeds, the effective particle loses energy and sinks to the bottom of the potential.
Physically, this corresponds to the formation of a stable object of the same nature
as the binary’s ECOs, with zero angular momentum. We fix the parameters of the
toy model to match the frequency of the radial oscillations to numerical simulations of
BBSs [344] (in principle we could also use quasinormal modes of different ECO models,
although numerical simulations are needed in order to check that these are the relevant
frequencies in this regime, as was explicitly done in [344].)

• For RS systems, the effective particle sinks to the bottom of the potential and the
orbit “circularises” (see figure 4.8 and appendix A.3). The system keeps emitting grav-
itational waves as it settles into an equilibrium state, corresponding to the formation
of a stable object of the same nature as the original ECOs.

• For RBH systems, the energy eventually becomes larger than the potential height,
leading to a “plunge” and subsequent formation of a black hole. Following the hoop
conjecture [421], we assume that a black hole is formed when the compactness of the
system becomes larger than 0.5 (the minimum compactness of a black hole). The
compactness of the system is defined as

Cρ =
Mρ

ρ
, (4.19)

where Mρ = m+M(ρ/R)2 is the total mass within the radius ρ. The black hole thus
formed has mass Mf = Mρ and dimensionless spin parameter χf = Jρ/M

2
ρ , where

Jρ = (m + M(ρ/R)2)ρ2ω is the angular momentum of the collapsing matter out of
which the black hole forms.

We display examples of the post-contact dynamics of an RBH and an RS system in
appendix A.4. We found the results of this toy model to be more sensitive to the compactness
rather than to the exact values of the free parameters. We present results obtained with
choices of the free parameters that we consider to be representative of each type of ECO
binary.

4.2.4 Waveform

Time domain

We focus on the dominant (2,±2) harmonic of the gravitational wave signal emitted by
an ECO binary and match smoothly its amplitude and phase across the different stages of
the evolution. We recall that for a gravitational wave signal emitted along the direction
of the orbital angular momentum (ι = 0), one has h22 =

√
4π
5

(h+ − ih×). Writing h(t) =

Â22(t)e−iΨ̂22(t), the instantaneous gravitational wave frequency is given by f̂ = 1
2π

dΨ̂22

dt
.
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Inspiral

For the inspiral, we use the EOB waveform SEOBNRv4T, an extension of SEOBNRv4
[100] accounting for tidal effects4, and take k2 = 0.1. We stop the inspiral waveform at
contact, i.e. when f̂ = 2fc. We assume that the formation of the hypermassive star happens
over a time interval ∆t = 1/2fc, which corresponds to half a period after contact. For
m0 = 1.35 M�, this gives ∆t ' 0.7 ms, in good agreement with numerical simulations of
BNSs. The inspiral is matched to the post-contact waveform over this interval, using cubic
functions to ensure smoothness of the amplitude and the instantaneous gravitational wave
frequency.

Post-contact

During this stage the waveform is computed using the quadrupole formula, see appendix
A.1. For a wave propagating along the orbital angular momentum direction, it yields

h+ =
2

DL

(γ2 cos(2φ)− γ1 sin(2φ)), (4.20)

h× =
2

DL

(γ1 cos(2φ) + γ2 sin(2φ)), (4.21)

where

γ1 =
2mρρ̇ω(MR2 +mρ2)

MR2

2
+mρ2

, (4.22)

γ2 =m

(
ρ̇2 − ρ2ω2 − 4ω2

0ρ(ρ− ρ0)− m

8ρ
+
Mρ

R2

)
. (4.23)

The phase and amplitude of the (2,2) harmonic are given by

Â22(t) =

√
16π

5

1

DL

√
γ2

1 + γ2
2 , (4.24)

Ψ̂22(t) = 2φ− arctan(γ1/γ2). (4.25)

The initial orbital phase (φi) is fixed by matching to the inspiral. For NRS systems one has
γ1 = 0 and φ = φi; therefore, with our definition, the instantaneous frequency would vanish
in the post-contact phase. In this particular case, we define it instead as the frequency of
radial oscillations.

Ringdown

For RBH systems, we model the ringdown signal of the final black hole using the model
presented in [100, 101],

hRD
22 (t) = η Ǎ22(t) eiφ̌22(t) e−iσ220(t−t22

match), (4.26)
4This approximant is available in the LIGO Algorithm Library [422].
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where t22
match is the matching time and σ220 = −σI + iσR is the least damped quasinormal

frequency of a perturbed Kerr black hole, computed by [92]. The black hole mass and spin
are computed as described below equation (4.19). The functions Â22(t) and φ̂22(t) are defined
by

Ǎ22,RD(t) ≡ cc1 tanh
[
cf1(t− t22

match) + cf2

]
+ cc2, (4.27)

and

φ̌22(t) = φ1 − dc1 ln

[
1 + df2e

−df1 (t−t22
match)

1 + df2

]
. (4.28)

Coefficients with superscripts f are calibrated against numerical simulations (the expressions
are given in [100, 101]). Those with superscripts c are used to ensure continuity of the
amplitude, phase and their first derivatives at the matching time, while φ1 is the phase at
the start of the ringdown. With these matching prescriptions, the phase and the amplitude
are C1 functions.

Our model could also incorporate different behaviours for the final stage, such as resonant
modes of excited stars for RS systems, but we do not explore this possibility here.

Full waveform

Figure 4.9: Waveform for an RS system with m0 = 30 M� and C0 = 0.17. We show the real
part of the (2,2) harmonic and its decomposition into amplitude and frequency. The black
dashed lines indicate the start of the post-contact stage.

In figures 4.9 and 4.10 we display the real part of the (2,2) harmonic, together with its
decomposition in amplitude and frequency for an RS and an RBH system with m0 = 30 M�
and C0 = 0.17. For the sake of clarity, we display only the last instants of the inspiral. The
start of the post-contact signal is indicated with black dashed lines. Our model reproduces
qualitatively the oscillatory behaviour of the gravitational wave amplitude and frequency
in the post-contact stage. For the RBH system, f̂ increases up to the ringdown frequency,
whereas for the RS system it tends to zero as the system settles into a stable ECO. For
completeness, in figure 4.11 we show the real part of the (2,2) harmonic for an NRS system
with the same mass and compactness.
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Figure 4.10: The same as figure 4.9, but for an RBH system withm0 = 30 M� and C0 = 0.17
(C0 = 0.2) in blue (red). After contact, the collapse to a black hole happens faster for more
compact systems.

Figure 4.11: Real part of the (2,2) harmonic for an NRS system with m0 = 30 M� and
C0 = 0.17.

In figure 4.10 we overplot in red the evolution for a more compact system (C0 = 0.2).
This comparison has to be performed carefully: if we were to align the waveforms at the
same reference frequency, the signal of the less compact binary would be shorter, because less
compact objects touch earlier. Here, we aligned the waveforms at their respective contact
frequencies to highlight the post-contact evolution (the apparent alignment ∼ 0.25 s before
the merger is coincidental). After contact, the collapse to a black hole happens faster for
more compact objects. Moreover, more compact binaries emit gravitational waves in the
post-contact stage at higher frequencies, as expected since their contact frequency is higher.

Frequency domain

We obtain the frequency domain signal h̃22 by performing a discrete Fourier transform. In
figure 4.12 we display the amplitude of h̃22 for the three types of ECO binaries, taking
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m0 = 30 M�. Different colours correspond to different C0, and the dashed lines indicate the
corresponding gravitational wave frequency at contact. For comparison, we show the ampli-
tude for a general relativity BBH with the same component masses and zero spins, obtained
with PhenomD, in black dashed lines. Each type of ECO binary exhibits characteristic
features in its signal:

• For NRS systems (upper panel), |h̃22| presents one main peak at the frequency of radial
oscillations, and smaller peaks at the corresponding higher harmonics.

• For RBH systems (middle panel), we observe a main peak at the same frequency around
which f̂ oscillates in figure 4.10. Beatings between orbital and radial frequencies lead to
significant power being emitted at higher and lower frequencies too. As a consequence,
the inspiral and post-contact signal “interfere”, leading to wiggles around the transition
frequency 2fc. The beatings (and therefore the “interference”) and the amplitude of
the peak are reduced for more compact configurations, because the post-contact signal
is shorter. Moreover, as the compactness increases the signal becomes more and more
similar to a BBH signal.

• For RS systems (lower panel), f̂ tends to zero (see figure 4.9), thus spreading the peak
observed for RBH systems over lower frequencies. This leads to strong “interferences”
between the inspiral and the post-contact signal, and a highly oscillatory behaviour
ensues. We identify the repetition of an oscillatory pattern at different frequencies,
corresponding to “harmonics” of the signal.
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(a) In the post-contact stage, NRS systems emit almost exclu-
sively at the frequency of radial oscillations and the correspond-
ing higher harmonics.

(b) For RBH systems, we observe a main peak at the frequency
around which f̂ oscillates in figure 4.10. There is also consider-
able power emitted at lower and higher frequencies. Thus, the
inspiral and post-contact signals “interfere”, leading to wiggles
around 2fc.

(c) For RS systems, f̂ tends to zero (see figure 4.9), and the
peak observed in RBH systems is therefore spread over lower
frequencies, leading to significant “interference” with the inspiral
signal. The repetition of an oscillatory pattern can be observed
at higher frequencies.

Figure 4.12: Amplitude of the frequency-domain signal of the three types of ECO bina-
ries, for different values of the initial compactness. The vertical dashed lines indicate the
corresponding value of 2fc for each C0. 128
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4.2.5 Data analysis

We can now assess the detectability of ECO binaries and how well we could distinguish
them from BBHs with different gravitational wave detectors. We consider ECO binaries
with source-frame masses in the ranges [5M�, 104M�] and [103M�, 109M�], which could be
probed by ground-based detectors and by LISA, respectively. In the following, it will be
convenient to use both source-frame (subscript s) and detector-frame (subscript d) masses.
We start by reviewing a few notions of data analysis and describing the specifics of the
detectors.

Definitions

The strain measured by ground-based detectors can be written as

h = F+(λ, β, ψ, ι)h+ + F×(λ, β, ψ, ι)h×, (4.29)

where F+ and F× are the extended antenna pattern functions of the detector, including the
dependence on the inclination angle (ι) in addition to the longitude (λ), latitude (β) and
polarisation (ψ) angles. We define the averaged SNR over λ, β, ψ and ι as

< SNR2 >=

∫ fmax

fmin

(< F2
+ > + < F2

× >)|h̃+,×(f)|2
Sn(f)

df, (4.30)

where <> denotes averaging over the angles and the integration limits fmin and fmax depend
on the detector and the signal. Defining N as the number of noise-independent detectors
and % as the angle between the arms of a given detector, we have

< F2
+ > =

7

75
N sin2(%), (4.31)

< F2
× > =

1

15
N sin2(%). (4.32)

There is no contribution from polarisation mixing because < F+F× >= 0.

Detectors

We consider three ground-based detectors: LIGO Livingston at the time of GW170817 [9],
advanced LIGO (aLIGO) at its design sensitivity [2] and ET. We take respectively fmin =
23, 10, 5 Hz and fmax = 2000, 3000, 8000 Hz for the integration limits. LIGO Livingston and
aLIGO are single detectors with angle between the arms % = π/2, while ET is made of three
detectors with % = π/3.

For LISA, the expression given in equation (4.29) is valid only in the long-wavelength
approximation, to which we will stick. LISA can then be seen as consisting of two noise-
independent detectors with % = π/3. We use the LISA proposal noise level [29] including the
confusion noise due to GBs [315], for more details on the calculation of angle-averaged SNRs
in LISA, see [320]. We assume a mission duration of four years and adopt the frequency
range fmin = max(10−5 Hz, f−4yrs) and fmax = 0.1 Hz, where f−4yrs is the frequency of a
BBH of same component masses 4 years before merger. This is an optimistic choice, as it
allows for observing the inspiral during the whole mission duration, as well as the merger if
it happens in band.
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Detectability and distinguishability

Figure 4.13: Lower panel: total and post-contact SNR in LISA as a function of the detector-
frame mass, for the three types of ECO binaries. Upper panel: ratio of post-contact to total
SNR. We take C0 = 0.17 and place the sources at z = 10. As the total mass increases,
LISA becomes more sensitive to the post-contact stage and less sensitive to the inspiral, and
thence rpc approaches unity.

We start by assessing the fraction of SNR coming from the post-contact signal. We define
it as

rpc =

√
< (h̃pc|h̃pc) >

< (h̃tot|h̃tot) >
=
SNRpc

SNRtot

, (4.33)

where h̃tot is the Fourier transform of the whole signal, and h̃pc is that of the post-contact
signal only. In the lower panel of figure 4.13, we display the total (full line) and post-contact
(dashed line) SNR in LISA, for the three types of ECO binaries and as a function of the
total mass in the detector frame. For comparison, in black we plot the SNR for a binary of
nonspinning general relativity black holes, computed with PhenomD. We place the sources
at z = 10. In the upper panel we plot rpc, which is independent of the redshift. As the
total mass increases, LISA becomes more sensitive to the post-contact stage and less to the
inspiral, thus rpc approaches unity. The difference between the various types of systems
can be understood from figure 4.12. The post-contact evolution of RS systems starts early
(at lower frequencies), and the maximum of the SNR is shifted to lower masses than for
the other systems. NRS systems can reach higher SNRs, because the amplitude of their
frequency-domain signal is almost as high as for general relativity BBHs up to ' 2fc, thus
more SNR is accumulated in this frequency range as compared to RS and RBH systems,
and significant power is emitted at the harmonics of the radial oscillation frequency (more
than by BBHs at the same frequency). For lower masses, the total SNR of ECO binaries
can even be larger than for BBHs, but it is smaller for higher masses because of the lower
emitted power at high frequencies. The picture is similar for ECO binaries in the range
[5M�, 104M�] in ground-based detectors.

To gauge our ability to identify these signals, i.e. to detect them and potentially distin-
guish them from BBHs, we define two thresholds: one for the whole signal and another one

130



4.2. Modelling gravitational waves from exotic compact objects

for the post-contact signal. Based on studies of the detectability of post-merger signals from
BNS coalescence [423, 424, 425], we require a minimum SNR for the post-contact signal of
4. Whereas for the overall detectability, we assume a threshold of 8. We define the hori-
zon redshift for the identification of ECO binaries as the maximum redshift such that both
thresholds are exceeded. We expect that if both thresholds are exceeded, we should be able
to spot the presence of an ECO binary’s post-contact signal in the residuals left after sub-
tracting the best fit general relativity BBH template from data, and since it is very different
from the post-merger signal of BBHs, we should be able to identify the merging objects as
being ECOs. Figure 4.14 shows the horizon redshift for ECO binaries, as a function of the
total mass in the source frame. The upper panel shows results for aLIGO, the middle one
for ET and the lower for LISA. For comparison, we plot in black the horizon redshift for a
binary of nonspinning general relativity black holes, computed with PhenomD. The abrupt
cut for LISA is due to systems that accumulate a large SNR during their inspiral, but which
merge outside the LISA frequency band. Because they can reach higher SNRs, NRS systems
have the largest horizon among ECO binaries. The horizon distance typically increases with
C0, because the inspiral of more compact binaries lasts longer, allowing for the accumulation
of more SNR. Our results show that aLIGO could identify ECO binaries only up to z ' 1,
whereas ET and LISA could identify binaries with total mass O(102) M� and 104− 106 M�
respectively, throughout the observable Universe.

Next, we investigate whether the detection of an ECO binary may be mistaken for a
BBH. For a given ECO binary signal, we define its fitting factor (FF) [426] as the maximum
overlap (defined in equation (2.3)) over general relativity BBH templates. The FF measures
the effectualness [427] of a family of templates at reproducing a fiducial signal. The difference
1-FF yields the SNR fraction that would be lost as a result of the mismatch between the
signal and the (best) template. We recall that template banks are built so that the overlap
between neighbouring templates is no less than 0.97 (see section 2.1). For simplicity, we
neglect the dependence on the longitude, latitude, right ascension and polarisation angles
and work with the dominant (2,±2) harmonic. Moreover, we restrict ourselves to aligned
(or anti-aligned) spins, and maximise over the merger time and the phase at merger as in
[296]. Thus, we are left with four parameters over which to maximise: the masses and the
spins. For this last step, we use Multinest [428] to search for the highest FFs. We compute
BBH templates with PhenomD.
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4.2. Modelling gravitational waves from exotic compact objects

(a) aLIGO could detect ECO binaries up to z ' 1.

(b) ET could detect ECO binaries with total mass
O(102) M� throughout the observable Universe. The
double-peaked feature for the NRS system is due to the pres-
ence of two lines in the power spectral density, which damp
the contribution of the secondary peak of the frequency-
domain signal for masses in between the two maxima.

(c) LISA could detect ECO binaries with total mass 104 −
106 M� throughout the observable Universe. The abrupt
cut is due to systems that merge outside the LISA frequency
band, but which accrue a large SNR during their inspiral.

Figure 4.14: Maximum redshift up to which we could observe and potentially distinguish
different types of ECO binaries from BBHs, as a function of the total mass in the source
frame. The threshold for observation and distinguishability is set at a total SNR of 8 and
at a post-contact SNR of 4, respectively. The maximum redshift typically increases with C0

and, among ECO binaries, is largest for NRS systems.
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4.2. Modelling gravitational waves from exotic compact objects

(a) FFs for RBH systems.

(b) FFs for NRS systems.

(c) FFs for RS systems.

Figure 4.15: FF as a function of the total mass in the detector frame, for the different
types of ECO binaries (one in each panel) and different values of C0 (distinguished by the
colour) in aLIGO (full lines) and ET (dashed lines). Up to 60% of the SNR could be lost if
ECO binaries are detected with BBH templates, potentially jeopardising detection of weaker
signals.

Figure 4.15 shows FFs computed for each type of ECO binary. We use full (dashed) lines
for aLIGO (ET). The key information in this figure is given by the range of FFs and the
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Event Mc,s (M�) m0,s (M�) SNRobs

C0 = 0.14 C0 = 0.17 C0 = 0.2

RBH RS NRS RBH RS NRS RBH RS NRS

GW150914 28.6 33 24.4 22.1 21.7 21.9 20.5 21.1 20.2 17.1 20.1 18.2

GW150112 15.2 17 10.0 8.0 8.3 7.2 6.9 8.0 6.5 5.2 7.5 5.6

GW151226 8.9 10 13.1 7.4 9.4 6.0 5.9 8.6 5.2 4.0 7.8 4.3

GW170104 21.4 25 13.0 11.2 11.3 11.0 10.3 11.0 10.1 8.3 10.4 8.9

GW170608 7.9 9 14.9 7.6 10.1 6.0 5.9 9.2 5.1 4.0 8.3 4.2

GW170729 35.4 41 10.8 10.3 10.4 10.4 10.0 9.8 9.9 8.8 9.3 9.1

GW170809 24.9 29 12.4 11.1 11.0 11.0 10.3 10.6 10.2 8.5 10.2 9.1

GW170814 24.1 28 15.9 13.7 14.0 13.7 12.8 13.4 12.6 10.4 12.8 11.1

GW170818 26.5 30 11.3 10.3 10.1 10.2 9.6 9.8 9.4 8.0 9.3 8.5

GW170823 29.2 33 11.5 10.8 10.4 10.8 10.2 10.2 10.1 8.7 9.7 9.2

Table 4.5: SNR of the post-contact signal for the LVC events, under the hypothesis that
those were produced by ECO binaries. We assume equal masses and use the chirp mass and
redshift reported in [7] to compute the masses of the binaries components; we also fix the
total SNR to the network SNR reported by the LVC (SNRobs).

masses for which the FF is minimum. We find that up to 60% of the SNR could be lost if only
BBH templates were used in template-based searches, drastically decreasing our chances of
detecting these exotic signals. The FF closely resembles inverted SNR (or equivalently the
horizon redshift) as a function of the total mass (see figure 4.14), and is minimum for masses
that maximise the post-contact SNR. This is why the minimum FF for ET is displaced with
respect to aLIGO. The oscillations at higher masses are due to the most salient parts of
these exotic signals lying within the most sensitive frequency window of the detector. RS
and NRS systems have lower FFs in ET, whereas for RBH systems the minimum FF is
lower in aLIGO. This might seem counterintuitive, but it can be understood as follows: (i)
aLIGO observes only the very end of the inspiral, where tidal effects are more pronounced
and dephasing with BBH templates grows fast; (ii) the post-contact signal of RS and NRS
systems is “sufficiently different” from BBHs, unlike that of RBH systems; (iii) the noise level
in ET is approximately flat over a broad frequency band, thus ET is more sensitive to the
post-contact stage. Similarly, the FF is overall smaller for RS systems and higher for RBH
systems (in agreement with the visual impression from figure 4.12). Finally, the FF increases
with C0, because ECOs become more similar to black holes as their compactness increases.
Since the effectualness is always larger than the faithfulness [427], our results suggest that
the estimation of the parameters of these exotic sources (including masses, spins, etc) could
be significantly biased if only general relativity BBH templates are used.

Finally, we investigate the possibility that the detected BBH events in the first gravi-
tational wave catalogue released by the LVC [7] may actually be ECO binaries. Because
the chirp mass is one of the best constrained parameters, we make the assumption that its
measurement is not significantly biased, and use the values reported by the LVC. Moreover,
for each event we assume equal masses (all events in the catalogue are compatible with this
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assumption). We estimate the SNR of the post-contact signal by fixing the total SNR to the
value measured by the LIGO/Virgo network, and by using the sensitivity of LIGO Livingston
at the time of GW170817. Let us stress that the noise level was not the same for all the
events, and in particular, the power spectral density at the time of GW170817 corresponds
to the highest sensitivity reached during the first two observing runs of the LVC. Therefore,
our estimates serve as higher bounds on what the real post-contact SNR would have been.
The values are reported in table 4.5. The post-contact SNR decreases with C0, because
the SNR accumulated during the inspiral is larger for more compact binaries and we have
fixed the total SNR. Based on studies of the detectability of the post-contact signal of BNSs
[424], our results suggest that the post-contact SNR would be sufficient for detection with
wavelet-based pipelines, at least for the loudest sources. The compatibility of the residuals
left after subtracting the best fit general relativity BBH template from data with Gaussian
noise [11] makes it unlikely that these events were generated by ECO binaries as the ones we
consider (i.e. made of identical objects with C0 ≤ 0.2 and which do not collapse promptly
following contact). Our analysis could be extended to the second catalogue released by the
LVC [8], including the noteworthy event GW190521 [190], which has been suggested to be
compatible with a BBS signal [429].

4.3 Discussion
In this chapter we demonstrated the huge potential of gravitational wave observations in
detecting deviations from general relativity. Working in the parametrised post-Einsteinian
framework and performing a full Bayesian analysis, we assessed the ability of multiband
observations to constrain the dipolar amplitude in BBHs and the mass of the graviton. The
main result is that multiband observations of SBHBs could allow us to improve current
bounds on dipolar amplitude by seven orders of magnitude. Furthermore, we argued that
the merger of ECO binaries could be substantially different from the general relativity pre-
diction for BBHs, offering a unique opportunity to identify these exotic objects. To enhance
our chances of detecting exotic signals and properly extracting physical information from
the data, we have proposed a simple model that captures the main features of the full grav-
itational wave signal from binaries consisting of identical ECOs with compactness below 0.2
and which do not collapse promptly following contact. We used this model to assess the
detectability of these binaries with current and future detectors, and we showed that up to
60 % of the SNR could be lost when using BBH templates to search for these exotic signals,
thus affecting our chances of observing them. Finally, we estimated that events in the first
gravitational wave catalogue released by the LVC are unlikely to have been generated by
such exotic binaries. Our model could serve to test different data analysis strategies. It
could be particularly helpful for the design of algorithms looking for deviations from general
relativity BBHs around the merger.

Multiband observations will also allow us to perform consistency tests between the part
of the signal observed by LISA and the one observed by ground-detectors, probing the
coherency of the signal across disconnected frequency bands [430]. An inconsistency between
the signals would point to modifications appearing at either end of the signal. Moreover, the
measurement of the time to coalescence with LISA could be used to inform ground-based
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detectors and improve black hole spectroscopy [431]. Since general relativity predicts that the
quasinormal modes depend only on the mass and spin of the final black hole, measuring at
least two quasinormal modes allows us to perform very precise tests of the no-hair theorem
and general relativity [432, 433, 434, 435]. There again, parametrised approaches [13, 436]
offer a valuable alternative given that few computations of quasinormal modes in modified
gravity theories have been performed to date.

The binaries we considered so far were assumed to be in vacuum, however in some
circumstances their astrophysical environment could leave an imprint in the gravitational
wave signal they emit. If not properly taken into account, this could spoil the aforementioned
tests of general relativity. In the next chapter we will discuss of the signature of astrophysical
effects in gravitational wave signals.

136



Chapter 5

The imprints of astrophysical effects on
gravitational waves

The gravitational wave signal emitted by a binary system depends on its dynamics. The
latter can be substantially modified if matter effects come at play, or by the presence of a third
body. In this chapter we assess how can we use gravitational wave observations to obtain
information on astrophysical effects in binary systems. We first consider astrophysical effects
exterior to BBHs, called environmental effects, and then matter effects within a binary, more
specifically the accretion from a white dwarf companion onto a black hole. We reproduce
the analyses of [37, 36] and [38]1.

The detection of GW190521 [190] has been one of the highlights of the third observing
run of the LVC. Besides challenging current formation channels and the existence of an upper
mass gap, it might have provided the first multimessenger observation of a BBH. Indeed, the
Zwicky Transient Facility observed an optical flare, interpreted as coming from the kicked
GW190521 black hole merger remnant moving in an AGN disk [437]. The authors argue
that the binary is most likely located in a disk migration trap, where gas torques vanish and
binaries accumulate as they migrate inwards [438]. In fact, it had already been suggested
that SBHBs and IMBHBs could reside in AGN disks [438, 439, 440, 441, 442, 443], and it has
been argued since then that ∼ 25% of the BBHs detected by the LVC could have formed in
such an environment [444]. Binaries in AGN disks orbit the central massive black hole, and
are expected to feel a drag force (dynamical friction) exerted by the surrounding gas, which
could also be accreted onto the binary. Accretion onto binaries might also be possible for
SBHBs formed in isolation (in the field-formation scenario) if gas is left following the common
envelope phase [445]. Finally, accretion, in combination with mergers, is also thought to be
the main channel via which black hole seeds evolve into the supermassive black holes we
observe today [217]. To leading order, the effect of accretion, dynamical friction and the
binary’s peculiar acceleration on the waveform can be captured by a phase shift, similarly
to the parametrised post-Einsteinian formalism, causing possible confusion in interpreting

1Among the results presented in the first section, I performed the Bayesian analyses and helped in the
derivation of the effect of accretion from surrounding gas on the waveform. The computation of X-ray
and radio emissions were originally performed by Laura Sberna and Andrea Caputo. Figure 5.10 is to be
credited to Sylvain Marsat. Concerning the second section, the theoretical modelling was done jointly by
Laura Sberna and I, under the supervision of Cole Miller. I performed the data analysis presented there.
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data. As we will see in section 5.1.1, these effects lead to low-frequency modifications in
the gravitational phase, thus LISA observations of SBHBs and IMBHBs during their early
inspiral would be very sensitive to those. Working in a full Bayesian framework, we start by
assessing the perspectives for detecting the effect of accretion in SBHBs and IMBHBs, and
possible electromagnetic counterparts. Then, we focus on LISA and multiband observations
of binary systems similar to GW190521 residing in AGN disks. Thanks to their high mass,
these astrophysically motivated systems offer good perspectives for detection with LISA, and
measuring environmental effects in their gravitational wave signal would help shed light on
their origin and offer a unique probe of AGN properties. We do not rely on the association
of GW190521 with the observation of the Zwicky Transient Facility, which is still debated
[446], we only assume that GW190521-like binaries can be found in AGN disks.

In the second part of this chapter, we consider a specific example of GB: mass-transferring
white dwarf-black hole binaries (WDBH). Population studies predict that tens of thousand
of such binaries could form in the Milky Way (see, e.g., [447, 448]), but the rates are still
uncertain by more than an order of magnitude. The expectation is that binaries containing a
black hole will be subdominant in the range of frequencies relevant for LISA (see, e.g., [174]).
Although [449] suggests that LISA might not see any detached (nonaccreting) WDBH in the
Galaxy, [450] find that a few events could be possible if we account for binary interactions in
Galactic globular clusters. Overall, these sources are often discarded in black hole population
synthesis simulations (e.g. [451]) and further investigations are needed to predict the rate of
their mass-transferring phase. There are no confirmed observations of WDBH binaries from
electromagnetic surveys, although these binaries, like other mass-transferring systems, are
expected to emit across a broad spectrum and have even been suggested to produce gamma-
ray bursts [452]. The X-ray binary X-9, in the globular cluster 47 Tucanae, might host a
white dwarf and a black hole [453, 454, 455], but the system is also consistent with a neutron
star accretor. Other candidates include XMMU 122939.7 + 075333 in a globular cluster of
the Virgo Galaxy NGC 4472 [456]. We explore the ability of LISA to detect and characterise
this virtually unexplored binary population. Using a semi-analytical model to describe the
evolution of WDBH binaries, we derive two universal relations followed by these binaries
in their evolution. We simulate LISA observations on which we perform a full Bayesian
analysis, and using the universal relations we derived, we show that LISA could be the first
observatory to unambiguously identify WDBH binaries.

5.1 Environmental effects

5.1.1 Perturbative corrections to the waveform

In order to compute how gravitational waves are modified due to environmental effects, we
follow a similar path to section 4.1.1, i.e we compute the leading order correction to the
dynamics of BBHs and then use the stationary phase approximation to obtain the Fourier
domain deviation from vacuum BBHs. For sake of readability, we will not provide the
full derivation for all three effects, we will briefly sketch them and provide the appropriate
references. The effects are considered individually when deriving the modifications to the
waveform. Let us first consider the example of accretion. We assume that the components
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of a BBH embedded in a gaseous medium accrete at a same fraction of the Eddington ratio:

fEdd,i =
ṁi

ṁEdd

, (5.1)

where ṁEdd ' 2.2× 10−8
(
mi
M�

)
M� yr−1 is the Eddington accretion rate (obtained from the

Eddington luminosity assuming radiative efficiency 0.1). The mass of the black holes then
increases as

mi(t) = mi,0e
−fEddt/TEdd (5.2)

where TEdd = 4.5 × 107 yr is the Salpeter time, and mi,0 are the initial masses of the black
holes. Considering that accretion proceeds adiabatically (ṁi � miωorb), the orbital angular
momentum along the direction orthogonal to the orbital plane is invariant under accretion
and the orbit remains circular (see, e.g., section 49 of [457] on adiabatic invariants). Thus,
angular momentum is lost only through gravitational waves. Using Kepler’s law, we have
J =M5/3

c ω
−1/3
orb , and accounting for the time dependency of the chirp mass due to accretion,

the angular momentum balance equation yields

ω̇orb =
96

5
M5/3

c ω
11/3
orb + 5

Ṁc

Mc

ωorb. (5.3)

We then solve this equation and apply the stationary phase approximation, performing an
expansion up to linear order in fEdd [36]. To leading order, the phase shift for the (2,2)
harmonic due to accretion reads

∆Ψaccretion = −fEdd
1125Mc

851968(1 + z)τEdd

(πMcf)−13/3 . (5.4)

It will be implicit in the following that the masses appearing the waveform are the initial
masses mi,0. Accretion will in general be accompanied by a drag force due to the fact that
the accreted material carries some angular momentum. This drag force yields an additional
term in the angular momentum balance equation, and can either enhance or decrease the
effect of accretion on the waveform. In our analysis we discard the terms due to this drag
force, which would add a parameter in our waveform (strongly correlated to fEdd), and
require proper modelling of the dynamics of accretion. On the other hand, we include the
dynamical friction due to the displacement of the binary in a gaseous medium.

Assuming a binary’s centre of mass approximately comoving with the gas, dynamical
friction exerts a drag force on each black hole (opposite to the black holes’s velocity ~vi in
the centre of mass frame) given by

~FDF,i = −4πρgm
2
i I(ri, vi)

v3
i

~vi, (5.5)

where ρg is the gas density in the AGN disk, ri is the distance of the black hole from the
centre of mass, and we assume vi � cs (with cs the sound speed; note that vi is relativistic
for binaries in the LISA band). For the “Coulomb logarithm” I(r, v), we use the analytic
expression of [458], which was validated against simulations for vi/cs . 8, but which we
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extrapolate further (c.f. [459]). Following [458] (see also [460, 461, 462]), we only include the
effect of the wake created by each black hole on itself, and neglect the companion’s [463].
For f . 0.3 Hz this is a good approximation, since the orbital separation of SBHBs and
IMBHBs in the LISA band is larger than the wake’s size. For the sound speed, we assume
cs ≈ vg(Hd/ag) [464], where ag is the distance from the binary to the central massive black
hole (i.e. the galactocentric radius), vg is the galactocentric orbital velocity and Hd is the
disk’s height. The Zwicky Transient Facility measured a gas density surrounding the event
of ρg,0 = 10−10 g cm−3 and a disk aspect ratio Hd/ag ∼ 0.01 [437]. We will use the latter
value to compute the sound speed, and treat the gas density as a free parameter. In presence
of dynamical friction, the energy balance equation reads

Ė = PGW − FDF,1v1 − FDF,1v2. (5.6)

Solving for the orbital angular velocity and applying the stationary phase approximation
leads to a -5.5PN modification in the phase, which at linear order in ρg reads

∆ΨDF = −ρg
25π(3η − 1)M2

739328(1 + z)2η2
γDF (πMcf)−16/3 , (5.7)

with γDF = −247 ln (f/fDF)− 39 + 304 ln(20) + 38 ln (3125/8) and fDF = cs/[22π(m1 +m2)].
Finally, the binary’s centre of mass peculiar acceleration also modifies the waveform. It

leads to a time dependent redshift for the source, which for a constant acceleration can be
written to linear order as [465, 466]

1 + z(tobs) = (1 + zc)

(
1− v̇qg(tc,src)

1 + zc
(tc,obs − tobs)

)
, (5.8)

where zc is the redshift at coalescence (which is absorbed in the definition of the redshifted
mass), and v̇qg(tc,src) is the acceleration along the line of sight, computed at coalescence,
dominating over the cosmological acceleration (which we neglect). The peculiar motion of
the observer is accounted for in the response of the detector. The time dependency of the
redshift translates into a phase shift when relating source frame to detector frame quantities
in the stationary phase approximation, which reads [465, 467, 466]

∆Ψacceleration =
25Mc

65536
v̇qg(tc) (πMcf)−13/3 , (5.9)

In the case of a binary on a circular orbit around the AGN, v̇qg ≈ (3.2× 10−11m/s2) ε, where
[465]

ε =

(
vg

100 km/s

)2
10 kpc

ag
cos(ψg) , (5.10)

with ψg the angle between line of sight and acceleration. Note that ε could have either
sign, depending on whether the binary is moving towards or away from the observer. Since
cos(ψg) = cos ιg sin(Ωgt + φg,0) (with ιg the inclination angle of the line of sight relative
to the AGN disk, Ωg =

√
M/a

3/2
g , and φg,0 the initial phase), the assumption of constant

acceleration only holds at sufficiently large galactocentric distances ag (i.e. low Ωg). We will
verify this assumption a posteriori (and relax it) later.
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Equations (5.4) and (5.9) show that accretion and (constant) acceleration are degen-
erate, since they both appear at -4PN order [468, 469, 465, 36] (though accretion always
yields a negative phase contribution, while acceleration can give contributions of either sign).
Both effects can be included in the waveform via a phenomenological post-Newtonian term
∆Ψ−4PN = Ψ−4 (πMcf)−13/3, with Ψ−4 related to fEdd and ε for accretion and acceleration,
respectively.

We generate data and parametrise SBHBs as described in section 3.1. We consider only
the (2,±2) harmonic, and include the effect of constant acceleration, accretion and dynamical
friction by adding their respective phase shifts to PhenomD waveforms.

5.1.2 Accretion in SBHBs and IMBHBs

We start by evaluating the possibility of observing the effect of accretion in SBHBs and
IMBHBs, working in the Bayesian framework presented in the previous chapters. We perform
two different analyses: in the first one we generate data with a nonzero value for fEdd and
include it as a free parameter in the Bayesian analysis, in order to estimate with what
precision it can be recovered. In the second case, data is also generated with a nonzero
value of fEdd, but when doing the analysis we set fEdd = 0 in the templates, in order to
measure the bias in the parameter estimation. Then, we discuss of the possibility of detecting
electromagnetic counterparts to these accreting binaries. We consider the two same scenarios
as in section 4.1: LISA-only and LISA+Earth. We recall that in the latter case we set a
narrow prior on the time to coalescence in order to simulate a multiband detection. We
assume a ten years mission duration, a 100% duty cycle, and use the LISA proposal noise
level [29], including the confusion noise due to GBs [315]. The parameter estimation is
performed with our MHMCMC sampler, using fEdd/(1+z) as a sampling parameter that we
add to the first group of parameters (intrinsic parameters) during the burn-in phase. We take
a flat prior on fEdd, restricted to positive values, and the Fiducial prior for the remaining
parameters (see section 3.3.2). We have also performed these analyses with Multinest, a
public nested sampling algorithm [428, 365], for cross-validating our results .

In [36] we generated a synthetic astrophysical catalogue of SBHBs on which we performed
a Fisher analysis to estimate the detectability of these sources and our ability to measure
fEdd. We found that for a LISA mission of ten years, the Eddington ratio could be measured
with an error less than 100 % for a few systems. This computation was performed with
angle averaged waveforms (see section 4.2.5). When including the source location, different
realisations of the angles for the same astrophysical system yield different SNRs. This affects
the precision within which one can recover the parameters of the source, including the sky
position itself and fEdd. Moreover, even for a fixed SNR level, the sky localisation provided
by LISA depends on the position of the source. In order to cross-check results obtained with
our Fisher matrix analysis and to quantify this variability, we select from the catalogue an
astrophysical system for which the accretion parameter can be measured precisely through
the Fisher matrix approach, and draw three different realisations of (λ, β, ψ, ϕ ,ι) yielding
a low SNR (∼ 9), a medium SNR (∼ 15), and a high SNR (∼ 20), respectively.

We also choose two optimistic IMBHB systems on the basis of a Fisher matrix analysis
spanning the parameter space, i.e. the errors on fEdd provided by the chosen IMBHBs are
roughly the smallest throughout the parameter space. In more details, the systems that we
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consider are

• An SBHB with m1 = 42.1 M�, m2 = 39.8 M�, χ1 = 0.008, χ2 = 0.44, at a distance
dL = 416 Mpc;

• An IMBHB with m1,s = 315 M�, m2,s = 284 M�, χ1 = 0.9, χ2 = 0.85, referred to as
“light IMBHB”;

• Another IMBHB with m1,s = 1000 M�, m2,s = 900 M�, χ1 = 0.9, χ2 = 0.85, referred
to as “heavy IMBHB”.

Optimistically, we take the sources to be chirping and set the time to coalescence to the
mission’s duration. We study the IMBHB systems at two different redshifts, z = 0.1 and
z = 0.5, in order to estimate up to what distance the presence of accretion in the binary
would be detectable. Note that the masses of the IMBHBs are given in the source frame.
We use the same set of angles for the two IMBHBs, which were drawn randomly. The light
and heavy IMBHBs have respectively SNRs of 218 and 593 at z = 0.1, and 46 and 126 at
z = 0.5. We work only in the LISA-only scenario when considering IMBHBs.

Measuring accretion and sky localisation

Figure 5.1: Marginalised distributions of fEdd for the considered SBHB for various realisa-
tions of the angles, in the scenarios LISA+Earth (green) and LISA-only (red). Red lines
indicate the injected value of the accretion rate, fEdd = 1. In the LISA+Earth scenario
and for higher SNR the marginalised distribution is strongly peaked but still consistent with
fEdd = 0.

In figure 5.1 we show the marginalised distributions of fEdd for the chosen SBHB system,
for various SNRs and for an injected value of fEdd = 1. For the high and the medium SNR
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cases, already in the LISA-only scenario the posteriors indicate the presence of accretion. The
marginalised distribution for fEdd can be compared with those obtained when constraining
modifications of general relativity in the parametrised post-Einsteinian framework. There,
we saw that when generating data with no deviation from general relativity, the marginalised
distribution of the non-general relativity parameters was mostly flat up to a threshold (rep-
resenting the upper bound that can be placed on the parameters under scrutiny), and then
went to 0 (see section 4.1.4). In contrast, we see in figure 5.1 that for high and medium SNR
in the LISA-only scenario, the distribution peaks at some nonvanishing value, favouring the
presence of a nonzero modification to the vacuum waveform. However, as discussed in sec-
tion 4.1.5, correlations with intrinsic parameters could also make the posterior peak away
from zero in the absence of modifications, therefore the support of the posterior provides the
best argument for claiming a detection. In figure 5.2 we show the same as in figure 5.1, but
for an injected value of fEdd = 10. This high accretion rate can be clearly detected even in
the low SNR case and in the LISA-only scenario, since in this case fEdd = 0 is outside the
support of the distribution. Thus, for super-Eddington accreting binaries in the LISA band,
there is a concrete chance to detect the effect of high rates of accretion on the waveform for
most SBHB events.

Figure 5.2: Same as figure 5.1 but for an injected value of fEdd = 10. Accretion is detected
in all scenarios and for any angle realisation.

In table 5.1 we show the recovered 90% confidence intervals and median values for fEdd

and the sky localisation. In the fEdd = 1 case, since the distribution is leaning against the
boundary of the prior (see figure 5.1), we define the 90% confidence interval for fEdd by
taking the lower 90% values. Instead, in the fEdd = 10 case, the interval is centred around
the median values. We give the median value as point estimate. The 90% confidence sky
localisation is defined as in equation (3.17). We show the same quantities for our IMBHB
events in table 5.2. There, in the case fEdd = 1, we define the 90% confidence interval for
fEdd centred on the median, and in the case fEdd = 0.1 we define it by taking the lower
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90% values. Except for the low SNR system, the error on the sky location is smaller than
the nominal field of view of future X-ray and radio missions, potentially allowing for the
detection of electromagnetic counterparts. We will discuss this possibility next.

f injected
Edd = 1 f injected

Edd = 10

fEdd ∆Ω (deg2) fEdd ∆Ω (deg2)

High SNR 0.73+0.34
−0.73 0.32 9.81+0.29

−0.54 0.32

Medium SNR 0.69+0.43
−0.69 0.14 9.23+0.42

−0.76 0.14

Low SNR 0.75+0.66
−0.75 0.76 9.33+0.79

−1.61 0.76

Table 5.1: Recovered 90% confidence interval on the accretion parameter fEdd and on the
sky location ∆Ω for the considered SBHBs in the LISA+Earth scenario. The presence of
accretion should be detected for super-Eddington accreting systems. The error on the sky
position is within the field of view of Athena and SKA for the medium and high SNR systems,
allowing (potentially) for electromagnetic followup.

f injected
Edd = 0.1 f injected

Edd = 1

fEdd ∆Ω (deg2) fEdd ∆Ω (deg2)

Light IMBHB 0.14+0.12
−0.14 0.02 1.05+0.12

−0.92 0.02

Heavy IMBHB 0.17+0.17
−0.17 0.02 1.04+0.20

−0.72 0.01

Table 5.2: Recovered 90% confidence interval on the accretion parameter fEdd and on the sky
location ∆Ω for our two IMBHB systems, at redshift z = 0.1. The statistical error estimated
with our Fisher-matrix analysis is similar for the two IMBHBs. The presence of accretion
should be detected for Eddington accreting systems. The error on the sky position is always
within the field of view of Athena and SKA.

In figure 5.3 we compare how well can we recover fEdd for IMBHBs at different redshifts,
for injected fEdd = 1. If the system is too far, the distribution tends to be flat and the
effect of accretion is hardly noticeable. This is because of the lower SNR, but also because
the detector-frame mass becomes larger at higher redshift, speeding up the evolution of the
system and thus providing less information on negative post-Newtonian order modifications.
Finally, in figure 5.4 we show how well can we recover fEdd in IMBHBs for injected values
of fEdd = 0.1 at z = 0.1. As in the case of SBHBs commented above, the marginalised
distribution is compatible with fEdd = 0, but the presence of a clear peak at fEdd 6= 0
favours the presence of accretion.
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Figure 5.3: Marginalised distributions of fEdd for our two IMBHB systems at redshifts z = 0.1
(red) and z = 0.5 (green) for an injected value of fEdd = 1. Accretion can be measured in
both systems at z = 0.1, but not at higher redshift.

Figure 5.4: Marginalised distributions of fEdd for our two IMBHB sources for injected values
of fEdd = 0.1 and fEdd = 1 at z = 0.1. Accretion at this redshift needs to be approximately
Eddington-level or stronger to be measured.

Estimating biases

The above results indicate that if accretion is present it could lead to a measurable change
in the gravitational wave signal. Thus, if accretion is not taken into account, the estimation
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of other source parameters could be significantly biased. Since fEdd correlates mostly with
the intrinsic parameters of the source, the latter should be the most affected.

For SBHBs in the LISA-only scenario, we find that in the three cases (high, medium, and
low SNR), the signal can be recovered by an effectual template with fEdd = 0, i.e., we find a
maximum for the posterior distribution which, in the worst cases, can be incompatible with
the injected real value. The SNR of this effectual template is very similar to the injection’s
SNR (SNRinj−SNReff . 0.7), and could thus trigger a detection. The bias in the parameter
estimation and the relative drop in SNR is higher for higher SNR systems and for higher
injected accretion rates. The effectual template, in particular, has a higher chirp mass and
a higher mass ratio, while the initial frequency is shifted towards higher values. In figures
5.5 and 5.6 we show how this impacts the estimate of the masses and time to coalescence
for two representative values, fEdd = 1 and fEdd = 10. In both cases, we compare to the
recovered distribution of masses for vacuum general relativity. The mass of the primary
black hole is shifted towards higher values, whereas the secondary mass gets lower. As a
result, the time to coalescence is underestimated. For super-Eddington accretion, this shift
in time to coalescence is at the level of tens of seconds. A multiband observation could
then help identify a bias due to accretion in the parameter estimation, since ground-based
detectors would measure very precisely the time to coalescence when the signal enters in
their band [32].

Figure 5.5: Bias in the SBHB binary masses and time to coalescence induced by ignoring the
corrections due to accretion when fEdd = 1, for various angle realisations in the LISA-only
scenario (blue) compared to the displacement found in vacuum systems (red). Boxes and
whiskers delimit the 50% and 90% confidence intervals, respectively, and both are centred
around the median, indicated by lines inside the boxes. For this level of accretion bias is not
significant, even for the high SNR realisation.

In order to estimate this possibility, we repeat the above analysis in the LISA+Earth
scenario. In this case the time to coalescence is constrained to within 1 ms from its true
value, so no bias in tc is possible. Nevertheless, signals can still be recovered by an effectual
template, although with a larger mismatch from the true signal. In figure 5.7 we show the
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Figure 5.6: Same as in figure 5.5 but comparing fEdd = 0 with fEdd = 10. Bias here is
significant for all SNR realisations.

Figure 5.7: Same as in figure 5.5 but for the LISA+Earth scenario. We show M rather
of tc, the latter being fixed by the narrow prior in this scenario. Bias in the masses can
still be significant for medium and high SNR realisations, despite the constraint provided by
ground-based detectors.

difference between the recovered masses and total mass and the injected values. More in
general, ground-based detectors should be largely insensitive to these low-frequency terms,
as discussed in [342]. In this forecast study, the projected constraint on -4PN terms with the
planned third generation detector CE is ten orders of magnitude worse than the projected
constraint with LISA. We thus expect that observations with ground-based detectors should
not be biased by omitting -4PN terms. Therefore, for values of fEdd for which the LISA
parameter estimation is significantly biased, the posterior distributions obtained with LISA
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and with ground-based detectors might not even be compatible, which would hint at an
unmodelled effect.

It is noteworthy that for the SBHB events the sky localisation is barely affected by
accretion and remains excellent, as the distribution remains a Gaussian centred around the
injected values with errors similar to the ones shown in table 5.1. In the case of IMBHBs,
on the other hand, there is also a bias in the sky localisation, i.e. the injected value may lie
outside the 90% confidence interval. This is due to the very small errors in sky position, and
in fact the true localisation is very close to the recovered one, within 0.05 deg2. Therefore,
for most realistic purposes the sky localisation is satisfactorily recovered. Since we did not
consider any modification to the gravitational wave amplitude, when fixing fEdd = 0 as we
did here, there is no bias on the estimation of DL, contrary to the Fisher-matrix analysis in
[466]. They also used waveforms modifying general relativity at -4PN order in phase, but
included the leading-order modification to the amplitude too.

Prospects for electromagnetic counterparts

According to our MCMC analysis, both SBHBs and IMBHBs can typically be localised in
the sky to within the fields of view of X-ray and radio instruments such as Athena and SKA,
∆ΩAthena = 0.4 deg2, ∆ΩSKA = 0.5 deg2 [327, 326]. This will allow the relevant region of the
sky to be covered in a single viewing2, thus potentially allowing for the coincident detection of
an X-ray and/or radio counterpart to strongly-accreting BBHs. Even if the sky localisation
was biased, as might be the case for IMBHBs, we estimated that the true position would
still fall inside the field of view of the instruments. In the following, we compute the X-ray
and radio emission of the binaries, and estimate the necessary integration time for detection
by a single instrument viewing.

We start by estimating the X-ray flux. For this purpose, we assume that the accretion
process has radiative efficiency εrad = 0.1 (which is a good approximation at fEdd < 1), and
that only a fraction 0.1 of the electromagnetic radiation is emitted in X-rays (“bolometric
correction”). We find the X-ray flux from a single accreting black hole of mass m to be

FX ' 1× 10−13fEdd

( m

M�

)(Mpc

DL

)2

erg cm−2 s−1 . (5.11)

This should be compared with the flux sensitivity of Athena for a given integration time,
Tint. Following [470], Athena’s flux sensitivity for a 5σ detection is

FAthena
X = 1× 10−15

(
103 s

Tint

)1/2

erg cm−2 s−1 . (5.12)

If both black holes are accreting, the minimum integration time for a binary where only one
black hole is emitting is then given by

Tint ' 8× 10−2 f−2
Edd

(
DL

Mpc

)4 (
M�
M

)2

s . (5.13)

2In some cases, the correlation between the sky position angles can imprint an asymmetric shape to the
localised region, which might therefore partially fall outside the field of view. However, this would still only
require O(1) viewings.
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For the best-candidate SBHB event in our synthetic astrophysical catalogues, the required
exposure time is Tint & 4 × 105 f−2

Edd s. Thus, even if we were to assume fEdd ≈ 1, the
integration time would have to be of several days. Assuming super-Eddington accretion
fEdd > 1 is unlikely to help as the radiative efficiency is expected to be considerably lower
than our assumed 0.1, i.e. the bolometric luminosity is not expected to significantly exceed
the Eddington luminosity [471, 472, 473]. Moreover, high accretion rates in SBHBs likely
require environments with large gas densities, such as AGNs, whose optical thickness further
reduces the chances of an electromagnetic detection. For the considered IMBHB systems
at z = 0.1, the required integration time is between 0.3 and 3 hours for Eddington-level
accretion, for the heavy and light systems, respectively. This estimate suggests that detection
of X-ray counterparts will be possible for (nearby) highly-accreting IMBHBs.

A binary system in external magnetic fields may also launch dual radio jets, which get
amplified by the coalescence [474] relative to similar jets observed in isolated black holes
[475]. See also [476] for simulations that yield ∼100 times larger (though less collimated)
fluxes than [474]. Assuming a fiducial value εrad = 0.1 for the radiative efficiency of the
process and 0.1 for the fraction of emission in the radio band, the corresponding peak flux3

is [474, 224]

Fflare ' 2× 10−13 fEdd q
−2

(
DL

Mpc

)−2(
M

M�

)
× erg cm−2 s−1 . (5.14)

Note that our definition of q is the inverse of [474, 224]. The flare flux can then be com-
pared with the SKA sensitivity in the phase 1 implementation. The required sensitivity at
frequency νSKA for SKA,

FSKA = 5× 10−16

(
10−2 s

Tobs

)1/2 (νSKA

GHz

)
erg cm−2 s−1 , (5.15)

is reached for an observation time Tobs ∼ 10−2 s for our best SBHB event. The observation
time should be smaller than the duration of the merger (i.e., the duration of the flare) for
the system [475], Tflare ∼ 25 m

100M�
ms. This condition is not satisfied for SBHBs. There

is however the concrete possibility to detect a signal in the radio band for IMBHBs, for
which for the light and heavy systems Tobs ≈ 40 – 4 ms < Tflare. The performance of full
SKA should improve by an order of magnitude with respect to equation (5.15), reducing the
required integration time by a factor 100.

5.1.3 GW190521-like binaries

Finally, we turn to GW190521-like systems, i.e rather massive binaries, which could be
labelled both as an SBHB or an IMBHB, residing in an AGN disk. We note MMBH the
mass of the central massive black hole, which in AGN J124942.3+344929, the candidate
host for GW190521, is MMBH ∼ 108 − 109 M�. We assume a mission duration of six years,
and consider two scenarios: LISA-only and LISA+Ground. In the latter case, we mimic
a multiband detection by assuming that masses, spins, and merger time are measured by

3The peak sensitivity is reached when the orbital velocity is equal to that of the ISCO.
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ground-based detectors, thus removing them from the analysis. Note this is a more optimistic
assumption than in the LISA+Earth scenario previously considered. We assume a 100% duty
cycle, and, in order to be more conservative, we use the SciRDv1 noise curve [314], including
the confusion noise due to GBs [315].

In figure 5.8 we show the distribution of errors – produced with the augmented Fisher
formalism described in section 3.4.3 – for the Eddington rate fEdd, the acceleration parameter
ε, and the gas density ρg, (normalised to ρg,0 = 10−10 g cm−3), considering modifications one
by one. We use fEdd = ρg = ε = 0 as injections, i.e. the distributions represent optimistic
upper bounds on the parameters. We use the LVC masses, projections of spins on the orbital
angular momentum, distance and inclination samples for the NRSur7dq4 model [106] and, for
each sample, we set the time to coalescence to the mission’s duration and draw sky location
and polarisation randomly. We only perform the Fisher analysis for systems with SNR in
the LISA band above 8. We find that LISA alone can detect super-Eddington accretion rates

Figure 5.8: Distribution of Fisher-matrix errors on environmental effects for the LVC samples,
with LISA alone or jointly with ground-based detectors.

(fEdd & 6), which may be typical in dense environments [477], and acceleration parameters
ε & 3× 105, corresponding to ag . 1 pc for MMBH = 108M�. The dynamical friction effect
is even stronger, with ρg/ρg,0 constrained at percent level. All errors improve by about
an order of magnitude in the LISA+Ground scenario (e.g., sub-Eddington accretion rates
become measurable).

Next, we pick from the LVC posteriors the event with the highest SNR in the LISA band.
The intrinsic parameters of this system are m1,s = 123 M�, m2,s = 72 M�, χ1 = −0.40 and
χ2 = −0.05, it is at a distance DL = 1424 Mpc (z = 0.27), and has an SNR in the LISA
band of 9.6. We perform a full Bayesian analysis on this system, injecting nonzero values
(plausible for sources in AGNs) for all environmental effects (considered simultaneously):
fEdd = 5, ε = 3.2× 106 (corresponding to ag ≈ 0.4 pc for MMBH = 108 M�) and ρg = ρg,0 =
10−10 g cm−3. The effects of accretion and constant acceleration are accounted for by the
effective parameter Ψ−4. We assume a flat prior on Ψ−4 and ρg (we use ρg/(1 + z)2 as a
sampling parameter).
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Figure 5.9 shows the posterior distributions for the density (ρg/ρg,0) and the parameter
Ψ−4 accounting for acceleration/accretion. Both parameters can be measured well, since
they appear at different (negative) post-Newtonian orders. Note that the sign of Ψ−4 can
help distinguish accretion (Ψ−4 < 0) from acceleration (Ψ−4 of either sign). Since this system
is close to the LISA detection threshold (SNR ∼ 8), we conclude that even for near-threshold
events environmental effects are measurable, and their observation will only be limited by
the event detectability.

Figure 5.9: Posterior distribution of gas density and -4PN phase term (i.e. constant accelera-
tion/accretion), with 68%, 95% and 99% confidence contours for a best-case event consistent
with GW190521. Black lines indicate the injected values.

The assumption of constant acceleration breaks down if the systematic error produced
by the variation of ε over the observation time Tobs is no longer negligible relative to the
statistical error. Taylor-expanding ε in time, we compute its variation over the observation
time: ∆ε ∼M

3/2
MBHTobs/a

7/2
g . Requiring this variation to be smaller than the statistical error

we obtained with our Fisher analysis, we get that the acceleration can no longer be considered
constant for ag . 0.25 pc [MMBH/(108M�)]3/7[Tobs/(6yr)]2/7 (i.e. galactic orbital periods Tg .
1200 yr [MMBH/(108M�)]1/7[Tobs/(6yr)]3/7). This is the case, e.g., if GW190521 lies in a disk
migration trap. Reference [437] estimates the trap’s distance from the central black hole as
ag ∼ 700M , corresponding to Tg ∼ 1.8 yr, i.e. the acceleration cannot be assumed constant
over the observation time. In this situation, the Taylor-expansion leading to equation (5.9)
breaks down, and the gravitational wave signal can be estimated as s(t) = h(t+ dq(t)). The
delay dq(t) arises from the change in the source distance due to the orbital motion, and is
given by the orbit’s projection on the line of sight: dq(t) = ag cos ιg sin(Ωgt+φg,0). This time-
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Figure 5.10: Doppler modulations of the gravitational wave signal due to the motion around
the central black hole. The left panel shows the time-frequency track of the modulated
signal (solid line) compared to the non-modulated one (dashed) (coalescence is at t = 0).
The right panel shows the amplitude of the Fourier-domain transfer function (s̃/h̃)(f), with
a horizontal line at 1. In both panels, the shaded bands show the frequency bands where
the time-to-frequency map becomes multi-valued.

varying delay produces an oscillating Doppler modulation ΨDoppler ∼ 2πfdq of the observed
signal. The magnitude of this phase is approximately

2πfag ∼ 2× 104 rad

(
MMBH

108M�

)(
f

10 mHz

)( ag
700M

)
. (5.16)

This effect strongly impacts the signal, dominating over the Doppler modulation produced
by the LISA motion (≈ 30 rad), and happening on comparable timescales. The gravitational
wave frequency suffers redshifts/blueshifts as the binary’s centre of mass moves away/towards
LISA; see figure 5.10. These modulations dominate over the gravitational wave-driven chirp
rate, leading to a multi-valued time-to-frequency map in the shaded bands of figure 5.10,
where chirping and anti-chirping parts of the signal overlap. This strongly affects the Fourier
domain observed signal s̃(f), with the transfer function amplitude |T (f)| = |s̃(f)/h̃(f)|
showing interference patterns in the shaded bands. The impact on detection and parameter
estimation is currently under study [478].

Finally, following section 5.1.2, we computed the emission due to X-rays from accretion
onto the binary components and radio flares from jets. We find both effects difficult to
observe even with Athena and SKA. Moreover, these emissions could be hidden by the
intrinsic variability of the AGN. Emission by the merger remnant’s emission in optical, as
the Zwicky Transient Facility collaboration claims to have observed, is the best chance for
observing a counterpart. Let us stress that the candidate counterpart was observed 34 days
after the detection by the LVC, therefore even if we had to perform an archival search in
the LISA data following the observation with ground-based detectors, the tight constraint
on the sky localisation provided by LISA would still be helpful.

Let us now consider how accretion effects within a binary can affect the gravitational
wave signal.
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5.2 Accreting white dwarf-black hole binaries

5.2.1 Evolution of mass-transferring WDBH binaries

We consider WDBH binaries on a circular orbit with separation a. The binary’s separation
shrinks under the effect of gravitational waves, until the white dwarf gets close enough
from the black hole so that the latter starts accreting from its companion. We model the
evolution from the onset of mass transfer, when the white dwarf overfills its Roche lobe. Our
treatment follows that of [479], with appropriate adjustments for the black hole component.
In order to make notations more explicit, we note the mass of the black hole and the one
of the white dwarf MBH and MWD respectively. We keep the notations M = MBH + MWD

and q = MBH/MWD for the total mass and the mass ratio (note that our definition of the
mass ratio is the inverse of one used in [38]). We use Eggleton’s approximation for the
zero-temperature mass-radius relation [480] of the white dwarf4

RWD

R�
=0.0114

[(
MWD

MCh

)−2/3

−
(
MWD

MCh

)2/3
]1/2

(5.17)

×
[

1 + 3.5

(
MWD

Mp

)−2/3

+

(
MWD

Mp

)−1
]−2/3

,

where MCh = 1.44M� is the Chandrasekhar mass, and Mp = 0.00057M�.

Mass transfer

The overfill factor indicates by how much the donor overfills its Roche lobe, ∆ = RWD−RL.
Mass transfer occurs when ∆ > 0 and increases monotonically with the overfill. We use the
adiabatic approximation of [479] (see also [481])

ṀWD = −F (MBH,MWD, a, RWD)∆3 . (5.18)

See [479] for the definition of F . We assume an accretion disk forms around the black hole
and that matter is transferred from the ISCO at a radius RISCO [47]. We account for the
limited efficiency of the black hole to accrete by setting

ṀBH = min
(
−ṀWD εISCO, ṀEdd(MBH)

)
, (5.19)

where ṀEdd is the Eddington accretion rate (see section 5.1.1) and εISCO is the specific
mass-energy at the ISCO [47]. Therefore, mass is not necessarily conserved, accounting for
possible loss through winds.

4Note that the accretion disk surrounding the black hole can heat the white dwarf. We will discuss this
caveat in section 5.2.4.
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Orbital separation

We assume that the variation of total angular momentum is due to gravitational wave emis-
sion and loss of matter:

J̇orb + J̇BH + J̇WD = −J̇GW − J̇loss, (5.20)

with J̇GW = 32
5
MBHMWDM

a4 Jorb. Following [482], we assume isotropic re-emission and take
J̇loss = −q−1 Ṁ

M
Jorb. We neglect the angular momentum of the accretion disk surrounding the

black hole, assuming that Mdisk �MBH throughout the evolution.
We assume that the white dwarf is tidally locked. This is justified in high-mass-ratio sys-

tems such as WDBH binaries, since the synchronisation time-scale decreases as the inverted
mass ratio squared [483]. Moreover, disk accretion can also contribute to synchronising the
star rotation with the orbit [484]. The angular momentum of the donor can then be written
as JWD = IWDΩWD, ΩWD being the orbital angular frequency and IWD = kWDMWDR

2
WD

the momentum of inertia of the donor. The factor kWD is a function of the white dwarf
mass, for which we use the fit provided in [479]. Using Kepler’s law, the variation in angular
momentum of the donor is

J̇WD = IWDΩWD

(
ΛWD

ṀWD

MWD

− 3

2

ȧ

a
+
ṀBH + ṀWD

MWD

1

2 (1 + q)

)
, (5.21)

where ΛWD = 1+2 d lnRWD

d lnMWD
+ d ln kWD

d lnMWD
. Note that the variation of the donor angular momentum

was not included in the treatment of [479].
We assume no tidal torque acts on the black hole, so its angular momentum varies only

as a result of the matter accreted at RISCO,

J̇BH = jISCOṀBH, (5.22)

where jISCO is the specific angular momentum at the ISCO [47]. The equation for the orbital
separation of the binary can be derived from equations (5.20), (5.21) and (5.22) and reads

ȧ

2a
= − 1

1− 3
(

1 + 1
q

)
kWDr2

WD

[
J̇GW

Jorb

+

(
1− 1
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2
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2q
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(
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1

q

)
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2
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)
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1
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2
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2q
+
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√
M

a

)
ṀBH

MWD

]
,

(5.23)

where ri = Ri/a.

Overfill and black hole spin

We evolve the over-fill factor according to

∆̇ = RWD

[
(ζWD − ζrL)

ṀWD

MWD

− ȧ

a

]
, (5.24)
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where ζWD = d lnRWD

d lnMWD
and ζrL = d lnRL/a

d lnMWD
can be derived using Eggleton’s approximation for

the mass-radius relationship of cold white dwarves (equation (5.17)) and Eggleton’s Roche
lobe fitting formula [485], respectively. The latter reads:

RL =
0.49

0.6 + q−2/3 ln(1 + q1/3)
a. (5.25)

The angular momentum of the black hole can be written in terms of the dimensionless
spin χBH,

JBH = M2
BHχBH . (5.26)

The accreting black hole will spin up according to equation (5.22), from which we obtain

χ̇BH =

(
jISCO

MBH

− 2χBH

)
ṀBH

MBH

. (5.27)

The evolution of the black hole spin is not our main focus and has little effect on the overall
evolution of the binary. We therefore neglect for simplicity other factors affecting the spin
evolution, such as radiation emitted by the accretion disk and fix the initial black hole spin
to χBH = 0.1.
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Figure 5.11: Evolution of the mass accretion rate, white dwarf’s mass, gravitational wave
frequency and its first derivative. The system has masses MWD = 1M� and MBH = 7M�
at the time of first Roche lobe filling. The overlaid orange dashed line is the equilibrium
solution described in appendix B.1.
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Figure 5.12: Evolutionary tracks of 400 WDBH binaries and their polynomial fits (black
line). We focus on frequencies relevant to LISA.

5.2.2 Universal relations

We numerically integrate equations (5.18), (5.19), (5.20), (5.24) and (5.27), starting from the
onset of mass transfer. The long term evolution of a typical WDBH binary is shown in figure
5.11. The cap in the black hole accretion rate in the top panel is due to accretion reaching
the Eddington limit. As expected for mass-transfer dominated systems where the accretor is
much more massive than the donor, the binary outspirals, giving a negative ḟ . Mass transfer
proceeds rapidly at first, but quickly settles into an equilibrium rate. Equilibrium is attained
when the increase in the Roche lobe matches the one in the white dwarf radius. Thus, we
obtain the equilibrium mass transfer rate by setting the right-hand side of equation (5.24)
to 0, see appendix B.1.

Across parameter space, the mass of the white dwarf follows an evolutionary track as
a function of the gravitational wave frequency, which is approximately independent of the
accretor mass and the initial conditions, as displayed in the left panel of figure 5.12. We
span initial white dwarf masses between [0.2, 1.2]M�, initial black hole masses in the range
[3, 20]M� and only keep points from the equilibrium stage. These tracks can be compared
with the ones traced by white dwarf accreting binaries in [176]. Our WDBH tracks follow a
slightly different trajectory and show a more pronounced dependence on the accretor mass,
resulting in a larger spread in the tracks (and hence fit residuals).

The absence of tidal torques acting on the white dwarf and the black hole yields an
additional relation between ḟM

−2/3
BH and f . We show this relation in the right panel of

figure 5.12. Once again, the relation is roughly independent of the accretor mass and initial
conditions. In appendix B.1 we explain how this relation can be derived from the equilibrium
solution. We fit both evolutionary track relations with a quartic polynomial log10(y) =∑n

i=0 ai log10(f [Hz])i (figure 5.12). The fit coefficients are listed in appendix B.2.
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5.2.3 Parameter estimation with LISA

In the case of almost monochromatic sources such as WDBH and double white dwarf binaries,
the two gravitational wave polarisations can be obtained by using the quadrupole formula
and Taylor-expanding in time the phase of the expressions given in equations (1.40) and
(1.41), taking the simple form:

h+ = A0
1 + cos2(ι)

2
cos(φ0 + 2πft+ πḟt2), (5.28)

h× = A0 cos(ι) sin(φ0 + 2πft+ πḟt2), (5.29)

where A0 = Mc

DL
(πMcf)2/3 is the amplitude of the signal, and φ0 is the initial gravitational

wave phase. Thus, gravitational wave observations provide us A0, f and ḟ , and we cannot
infer the individual masses and the distance without further assumptions. In order to as-
sess how the universal relations we derived can be combined with LISA measurements, we
consider an accreting WDBH system at two different stages of its evolution:

• “high frequency” (HF ): MBH = 7.02M�, MWD = 0.10 M�, f = 5 mHz, ḟ = −3.8 ×
10−16 Hz s−1;

• “low frequency” (LF ): MBH = 7.02M�, MWD = 0.06 M�, f = 3 mHz, ḟ = −3.2 ×
10−17 Hz s−1;

We compute LISA’s response following [486, 487] to generate mock data and perform a full
Bayesian analysis to infer the posterior distribution of the parameters of the source. For the
noise level, we use the SciRdv1 curve [314], including the confusion noise due to the galactic
foreground in addition to the instrument noise [315]. The parameter estimation is performed
with the nested sampling algorithm Multinest. We assume a mission duration of six years
and two values of the duty cycle: 100% and 75%. We set the distance to DL = 10 kpc
and simulate the effect of a reduced duty cycle by placing the source further. For almost
monochromatic sources, the angles essentially affect the SNR and have little impact on our
analysis. For a duty cycle of 100% (75%), the HF and LF systems have SNRs of 91 (68) and
26 (20) respectively. Systems at frequencies below 3 mHz, although more numerous, have
little chance of being detected due to the galactic foreground. With a duty cycle of 75%,
f and ḟ are measured within 5 × 10−7 Hz and 5 × 10−18 Hz.s−1 for the HF system and an
order of magnitude worse for the LF system.

In table 5.3 we report the estimates of the binary masses (normalised to the injected
values) directly using the fits to the evolutionary tracks of figure 5.12. We can use these
results to infer the chirp mass and, from the measurement of A0, the distance to the source.
We find a reasonable agreement with the injected values (within 5%). However, for the HF
system, the injected values lie outside the 90% confidence intervals. This is because the
systematics of the model dominate over the statistical uncertainty. In particular, the very
narrow range for MWD is due to the extremely good measurement of f . To correct for this,
we estimate numerically the values of α1 and α2 that best align the evolutionary tracks,
MWD M

−α1
BH and ḟWD M

−2/3−α2

BH as functions of f . The exponents α1 and α2 are frequency
dependent and are determined for each system in the frequency range of observation. We
then convolve LISA posteriors with the aligned tracks to infer MBH and MWD.
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HF LF

M̃BH M̃WD D̃L M̃BH M̃WD D̃L

100%
Fit 0.99+0.01

−0.01 0.99+5.7×10−8

−5.8×10−8 1.05+0.11
−0.14 1.04+0.40

−0.36 0.97+2.8×10−7

−2.8×10−7 0.98+0.35
−0.29

Full 1.01+0.08
−0.04 0.99+0.02

−0.04 1.06+0.11
−0.15 1.03+0.44−0.38 0.98+0.04

−0.05 0.98+0.35
−0.29

75%
Fit 0.99+0.01

−0.01 0.99+7.7×10−8

−7.8×10−8 1.39+0.16
−0.20 1.05+0.55

−0.47 0.97+3.8×10−7

−3.8×10−7 1.28+0.59
−0.47

Full 1.01+0.08
−0.04 0.99+0.02

−0.04 1.05+0.13
−0.16 1.03+0.61

−0.49 0.98+0.05
−0.05 0.96+0.44

−0.35

Table 5.3: Uncertainties on individual masses and distances normalised to the injected values,
obtained with the fit to the global evolutionary tracks relations (Fit) and with the full results
of numerical simulations (Full). The gravitational wave frequency f and ḟ are measured
within 5× 10−7 Hz and 5× 10−18 Hz s−1 for the HF system, assuming a duty cycle of 75%.
These measurements are an order of magnitude worse for the LF system.

Figure 5.13: Left panel: posterior distribution for the gravitational wave amplitude, the
gravitational wave frequency and its first derivative for the high and low frequency systems,
obtained from LISA measurements at 75% duty cycle. Right panel: inferred posterior distri-
butions for binary masses and luminosity distance, obtained applying the rescaled universal
relations to LISA measurements, as described in section 5.2.3. We normalise to the injected
values. The contours indicate the 50 and 90 % confidence intervals and the dashed lines
represent the true values (equal to 1 in our normalisation).

In figure 5.13, we show how the measurement of h0, f and ḟ together with this proce-
dure translates into a measurement of distance and the white dwarf and black hole masses
for the two systems assuming a 75% duty cycle. We used the ChainConsumer library to

158



5.2. Accreting white dwarf-black hole binaries

perform these plots [488]. Table 5.3 also shows the improvement as compared to fit-based
measurements and the very good agreement between the injected and the inferred values
obtained with this procedure. MBH is less well constrained than MWD because it relies on
the measurement of ḟ . The measurement is worse for the LF system due to the lower value
of ḟ which results in it being measured not as well during the six years mission. We note that
the results are less affected by a reduced duty cycle. Finally, even in the worst scenario the
uncertainty on MBH is sufficiently small to unambiguously identify the accretor as a black
hole.

WDBH binaries are potential sources of electromagnetic radiation, in particular X-
ray emission. The HF and LF systems would have respectively X-ray luminosity of 9 ×
1038 erg s−1 and 1 × 1038 erg s−1 for εrad = 0.1, well within the capabilities of current facili-
ties. The fact that we are yet to convincingly identify WDBH binaries among X-ray sources
could be explained by the lower rates of these systems, and the difficulty to classify the
binary components from electromagnetic emission alone. Gravitational wave observations,
on the other hand, could unequivocally identify the binary components. The very good
localisation of the source by LISA (∼ 1 deg2) could then provide the opportunity to observe
an electromagnetic counterpart.

5.2.4 Temperature effects

So far we have assumed the companion white dwarf to be cold, by using the zero temperature
mass-radius relation (5.17). However, hundreds of hot (effective surface temperature T >
5000K) white dwarves have been observed [489, 490], and their temperature should be taken
into account in describing their stellar structure. In particular, it could modify the mass-
radius relation [491, 492, 493]. Besides being hot because they have not had time to cool
after being formed, white dwarves in WDBH systems will be generically heated up by the
emission of the black hole accretion disk. Let us estimate this effect. Assuming the black
hole’s disk emits isotropically and using Stefan-Boltzmann’s law for the white dwarf, we get
a balance equation

4πσT 4
WDR

2
WD =

LBH

4πa2
πR2

WD(1− AWD), (5.30)

with AWD the white dwarf albedo, and TWD the temperature at the surface of the white
dwarf. The luminosity of the black hole can be written as LBH = εradṀBH. Thus, we get

TWD = 3× 105 (1− AWD)1/4

(
εrad

0.1

MBH

M�

ṀBH

ṀEdd

)1/4(
3R⊕
a

)1/2

K , (5.31)

where R⊕ is the radius of the Earth. From this equation, we estimate that emission from
the black hole disk could heat up the white dwarf to O(105) K. Relying on the efficient heat
conduction in degenerate stars, we extrapolate this estimate to the core temperature of the
white dwarf (Tc). Such low core temperatures, have little impact on the mass-radius relation,
as illustrated in figure 5.14. In the temperature range 105-106 K, the relative variation in the
white dwarf radius is less than 0.2%. A caveat is that these results were obtained for cooling
sequences of isolated white dwarves [493]. More simulations of heated white dwarves as in
[494] could provide further insight on the effect of illumination on the evolution of WDBH
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binaries. White dwarves with masses lower than the ones considered in this work might also
exhibit a stronger dependence on the temperature, see e.g. [491]. It would be interesting to
extend our model to lighter white dwarves, in a mass range where finite temperature effects
might become relevant.

Figure 5.14: Evolution of the mass of a hot white dwarf with temperature for different
masses. We use the cooling sequences of isolated white dwarves [493]. In the temperature
range accessible for a white dwarf heated by the accretion disk to the black hole (105-106

K), the mass-radius relation varies very little with temperature. We overplot in dotted
lines Eggleton’s approximation for the zero-temperature mass-radius relation. There is some
discrepancy between the two models and using an incorrect mass-radius relation could bias
the results.

In figure 5.14 we overplot in dotted lines Eggleton’s approximation for the zero-temperature
mass-radius relation (equation (5.17)). Although the agreement is reasonable at low tem-
peratures, there is some discrepancy between the models. The composition of the white
dwarf (hydrogen, helium, carbon/oxygen) is also expected to play a role. A mismodelling of
the mass-radius relation, together with the use of Eggleton’s approximation for the Roche
lobe radius, which was derived for stars made of incompressible fluids, could introduce a
bias in our result. It would be interesting to quantify this potential bias by testing different
relations. We leave this investigation for future work. Let us stress that our methodology
is robust to changes in the mass-radius and Roche lobe radius relations, and we expect our
main finding to hold, i.e., LISA could be the first observatory to unambiguously identify
WDBH binaries.

Finally, we checked that the presence of tidal torques would not affect our results signif-
icantly for small synchronisation timescales (. 100 yrs). This study could therefore apply
to broader classes of galactic binaries.
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5.3 Discussion
In this chapter we assessed the potential of gravitational wave observations to inform us on
astrophysical effects in binary systems. We showed that accretion from surrounding gas,
dynamical friction and constant peculiar acceleration lead to perturbative modifications to
vacuum BBH waveforms, and used this to infer to which accuracy can LISA and multiband
observations measure these effects. We found that super-Eddington accretion is needed to
have a measurable effect in SBHBs, while Eddington-level is enough in IMBHBs. In the later
case, we computed that the X-ray and radio emissions due to accretion would be measurable
by Athena and SKA. The detection of the counterpart would be eased by the precise sky
localisation of LISA. Focusing on GW190521-like systems in AGN disks, we found that
multiband observation would allow us to measure sub-Eddington accretion, gas densities
much below the typical value in AGNs and the peculiar acceleration of the binary for orbits
smaller than ∼ 1 pc. We also showed that accelerations varying on a timescale comparable
to the observation time cannot be treated perturbatively and have a strong impact on the
waveform. We are currently assessing the impact of this effect, as well as relativistic effects
such as lensing and Shapiro time delay, on parameter estimation and detection. Next, we
considered the effect of accretion within a binary on the gravitational wave emission, focusing
on systems made of black holes accreting from a companion white dwarf. We derived two
universal relations between the masses of the objects, the gravitational wave frequency and its
first derivative. We showed that combining LISA observations with these relations provides
an estimate of the masses of both binary components and the distance to the source, which
is information not usually accessible from gravitational wave observations of GBs. This
additional piece of information would then allow us to unambiguously identify the binary
components.

Astrophysical effects appear as a double-edged sword. On a one hand, they can manifest
themselves in various different manners, which makes it hard to model them exhaustively, and
could be mistaken for the manifestation of beyond general relativity physics. On the other
hand, they provide us precious information on the environment of the source, which could be
used to help us distinguish between different BBH formation scenarios, and the evolution of
binary systems. LISA will typically provide a sky localisation for SBHBs, IMBHBs and GBs
within 1 deg2. This will help localise potential electromagnetic counterparts (which would
in turn help identify the host galaxy among the thousands – of which just a few AGNs –
present within the LISA error-box). This is of great importance, because if deviations from
vacuum general relativity BBH waveforms are measured, an electromagnetic counterpart in
the LISA sky-position error-box would favour an environmental origin over a beyond general
relativity one. Moreover, we expect deviations from general relativity to affect (to a varying
degree) all systems, therefore they should be observed consistently across different events.

We saw how gravitational waves can be used to get astrophysical information from single
events. As we accumulate observations, we become able to infer the population of compact
objects in the Universe and constrain the astrophysical processes driving their formation
and evolution. This is currently being done with the SBHBs observed by the LVC [202, 203,
204, 205]. In the next chapter we will see what can be learned from LISA observations of
MBHBs.
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Chapter 6

Inferring the population of massive black
holes from LISA observations and
constraining formation and evolution
channels

Electromagnetic observations indicate that massive black holes are ubiquitously found in the
centre of galaxies [213, 216], and that their properties are correlated with the ones of their
host galaxies, suggesting a coeval growth [495, 496, 497, 498, 218]. Unfortunately, these
observations are sensitive only to active massive black holes up to z ∼ 7, or very nearby
ones for which we can observe the gas/stellar dynamics. Gravitational waves will allow us
to probe more distant and quieter massive black holes: LISA is expected to detect from a
few tens to hundreds MBHBs up to z ∼ 20 during the mission duration [30]. In this chapter
we address the question of how these observations can be used to constrain scenarios for the
formation and subsequent evolution of massive black holes. The results we present here are
based on [39]1.

The population of MBHBs that LISA will observe is the result of a complex evolutionary
path, of which the details are still largely unknown. Two open issues, of particular importance
for LISA, can be highlighted. First, which astrophysical mechanisms provided the seeds that
grew into massive black holes? Several scenarios have been proposed, suggesting seed masses
ranging from 102 to 105 M�, forming at z ∼ 15 − 20 [216]. Once these intermediate mass
black holes form, they are thought to grow via accretion of surrounding gas (and stars),
and through successive mergers. Pictorially, following the merger of two galaxies hosting
a black hole at their centre, dynamical friction makes the black holes sink to the centre
of the resulting galaxy, where they form a bound binary system. Loss of energy through
gravitational wave emission is not efficient enough to make the binary coalesce within a
Hubble time, and other processes that extract energy from the binary are needed to bring
the separation from parsec to milliparsec scales, where gravitational radiation takes over.
This second issue is known as the “last parsec problem” [499]. These two crucial stages in
the evolution of MBHBs affect the properties of the population of events that LISA will

1All the results presented here were obtained by me, with the help of my collaborators.
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observe, such as the binary component masses and spins, the redshift and the rates. Thus,
by accumulating observations with LISA, we can reverse engineer the problem, and shed
light on these mechanisms.

We focus on the ability of LISA to distinguish between different seeding scenarios. We
use the predictions of semi-analytical models for the evolution of galaxies and massive black
holes to simulate LISA data. Each of these models has a light seed (LS) and a heavy seed
(HS) variant, differing in the prescription for the initial masses of black holes. We consider
the possibility that the population of massive black holes is described by a mixture between
the LS and HS scenarios. We treat the mixing fraction between models as a hyperparameter
controlling the population, and estimate it from simulated data sets using a hierarchical
Bayesian framework. We test the robustness of our analysis by using the predictions of
different semi-analytical simulations to generate data.

6.1 Data generation and parameter estimation
LISA will observe the last stages of the coalescence of MBHBs, where higher harmonics can
be comparable in amplitude to the (2,±2) harmonics [500, 501, 502, 503, 284]. Therefore,
we use PhenomHM to generate the signal and perform the parameter estimation. Differently
from SBHBs, we parametrise MBHBs by their time to coalescence tc and phase at coalescence
ϕc. We use the SciRDv1 noise curve [314], including the confusion noise due to GBs [315].
We take 10−5 Hz as a lower limit for the LISA band. We assume a mission duration of four
to ten years, and an ideal 100% duty cycle.

MBHBs will enter the LISA band from a few weeks to ∼ 1 year before merging. For
this reason, the modulations of the signal due to LISA’s motion are less pronounced, and
the posterior distribution for extrinsic parameters can be very degenerate and multimodal
[284, 504]. This makes the posterior distribution much harder to sample. Therefore, we use
the parallel tempering code ptemcee [505, 506] to perform the parameter estimation on many
sources rather than our own MHMCMC. Let us stress that the focus of the study presented
here is not the parameter estimation of MBHBs, we are only interested in obtaining realistic
errors for the intrinsic parameters of the source and the distance. Thus, we do not perform a
systematic check of the convergence of the chains (in particular for the sky location) and do
not discuss the parameter estimation as extensively as for SBHBs in chapter 3.1. Moreover,
as can be seen in figure 6.1, astrophysical models predict some events with large mass ratios
and/or large spins, far outside the range of validity of current waveform models. Given the
lack of viable alternatives for now, we will stick to the results obtained with PhenomHM. By
running parameter estimation over the many systems needed to perform this study, we found
some interesting cases which present an unexpected multimodality in intrinsic parameters.
We discuss two examples of such in appendix C.

The chirp mass is the best measured parameter, and because we can observe the late
inspiral and the merger-ringdown with high SNR (up to thousands), we can measure the
mass ratio and the spins accurately. As for the distance measurement, the error due to weak
lensing dominates over the statistical error at high redshifts. We use the (pessimistic) model
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of [507], which estimates that the error due to lensing goes as

σDL,lensing/DL = 0.066

(
1− (1 + z)−0.25

0.25

)1.8

. (6.1)

We include this error by convolving the measured LISA posterior distribution with a Gaussian
of width σDL,lensing. The error due to weak lensing propagates into the determination of source
frame masses.

6.2 Massive black hole binaries population
Semi-analytical models provide a valuable tool for assessing the impact of different astro-
physical mechanisms on the population of MBHBs that LISA will detect. They follow the
coevolution of massive black holes and the baryonic structure in galaxies along dark matter
halo merger trees, using astrophysically motivated prescriptions. The predictions of these
models are compared with the observed evolution of galaxy morphology, star-formation rate
and luminosity functions to test their robustness. We take the Model-delayed model of
[508] (which builds on [509, 510, 511]) as our fiducial astrophysical model. It adopts the
extended Press-Schechter formalism of [512] to describe merger trees. The Press-Schechter
mass-function [513] predicts the number density of dark matter halos as a function of mass
and redshift. The extended Press-Schechter formalism uses this mass-function to compute
the merger history of a halo at present day by means of Monte-Carlo simulations [514].
In [512], the authors introduce phenomenological corrections to the Press-Schechter mass-
function in order to reproduce the results of N-body simulations. In short, to perform these
simulations we start by computing the merger tree of many halos distributed according to
the Press-Schechter mass-function, we seed the relevant halos with a black hole according
to some seeding model, compute the amount of hot gas initially present in halos (which will
later form all the baryonic structure of the galaxy: stars, interstellar medium etc), and then
follow the evolution of the black holes and the baryonic matter back to z = 0. During the
evolution, interactions between the massive black holes and the baryonic structure (accre-
tion, jets, tidal effects etc) are taken into account. These simulations yield a rate of merging
MBHBs per comoving volume that we transform into catalogues of annual events for LISA.

In the LS variant of the model, massive black holes form from the collapse of Pop III
stars at z ∼ 20 [515], the first stars in the Universe, yielding initial masses right above the
upper mass gap ∼ 150 M�. In the HS variant, they form from the collapse of proto-galactic
disks due to bar instabilities at redshift z ∼ 15− 20 [516], yielding initial masses ∼ 105 M�.
In both scenarios, the merger of massive black holes can be triggered by interaction either
with gas, stars, or a third/fourth massive black hole. We use the masses, spins and redshift
distribution of coalescing MBHBs predicted by the simulations. It is worth noting that the
eccentricity of a binary, as well as the degree of alignment of the component spins, depend on
the mechanism that triggers the merger. For instance, triple/quadruple interactions between
massive black holes can lead to large eccentricities due to Kozai-Lidov resonances [517, 518].
Binaries merging in a gas-rich environment tend to have aligned spins, due to the gravito-
magnetic torques exerted by the circumbinary disk (the so-called Bardeen-Petterson effect
[519]). Because PhenomHM covers only quasicircular binaries with component spins aligned
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or anti-aligned with the orbital angular momentum, we cannot fully exploit this valuable
information. We simply take the projection of spins along the orbital angular momentum
and neglect the eccentricity. Nevertheless, the information on the spins alignment is partially
contained in the effective spin of the binary. To complete the set of parameters θ needed
to describe LISA events, we draw the sky location uniformly on the sphere, the phase at
coalescence and the polarisation uniformly in [0, 2π] and cos(ι) uniformly in [−1, 1]. We
assume a time to coalescence of at most one year, and we do not consider the part of the
signal below 10−5 Hz.

When running the simulations, only one of the seeding prescriptions is used. However,
the population of massive black holes in the Universe is unlikely to be described by any of
these “pure” models, but rather by a mixture of models. Following [520], we introduce a
mixing fraction α between the LS and HS scenarios. In practice this is done by defining the
(unnormalised) MBHB population distribution to be

Npop(θ|α) = αNpop(θ|LS) + (1− α)Npop(θ|HS). (6.2)

In the following, we denote the normalised population distribution by ppop(θ|α) and the pre-
dicted rate by Nev (in yr−1), such that Npop(θ|α) = Nev(α)ppop(θ|α). The rate for a given
value of the mixing fraction is obtained through linear interpolation between the value pre-
dicted by the LS (α = 1) and HS (α = 0) scenarios. The normalised population distribution
is then given by

ppop(θ|α) =
αNev(LS)

αNev(LS) + (1− α)Nev(HS)
ppop(θ|LS)+

(1− α)Nev(HS)

αNev(LS) + (1− α)Nev(HS)
ppop(θ|HS).

(6.3)
For a given SNR threshold, we denote by Ndet(α, SNR) the number of events (per year)
above this threshold. In table 6.1 we provide the annual rates for the LS and HS scenarios2,
as well as the number of detectable events by LISA assuming an SNR threshold of 10 or
20. The LS scenario predicts many more events than the HS one because more dark matter
halos are initially seeded with a black hole in that scenario. However, many of these events
have low SNR and could not be detected with LISA. On the contrary, almost all events in
the HS scenario could be detected.

2Note that we use a different noise curve and SNR threshold than [508, 225], hence the difference in the
rates of detectable events.
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(a) Without SNR threshold.

(b) With an SNR threshold of 10.

Figure 6.1: Normalised population distribution for different values of the mixing fraction
between the LS and HS variants of our fiducial astrophysical model. The (source-frame) chirp
mass distribution is the most sensitive to α. After the SNR cut, the redshift distributions
look much more similar, unlike the effective spin distributions, as discussed in the main text.
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In figure 6.1 we show the normalised population distribution for different values of α.
In the lower panel we show only events that have an SNR above 10. We use “transformed”
parameters (e.g. log10(Mc,s), arcth(χ+)) to make the salient features of the distributions
more evident. As expected, the HS variant predicts binaries with higher masses than the
LS one. When mixing between them, we get a double-peaked distribution, whose relative
weights depend on the value of α. After imposing an SNR cut, lighter events are suppressed,
and the relative weights change due to the fact that many LS events are not detectable.
The effect of the SNR cut can be clearly seen in the redshift distribution: distant events
predicted in the LS scenario are highly suppressed, and as a consequence the LS and HS
redshift distributions after the cut look much more similar. On the contrary, after imposing
the SNR cut the effective spin distributions can be better distinguished. This is due to the
three-way correlation with redshift and chirp mass, which can be seen in the upper panel.
The physical explanation is that the events that survive the SNR cut in the LS scenario
tend to be closer and more massive (both because of the SNR threshold and because the
black holes had more time to grow via accretion and mergers). Accretion also leads to larger
spins for this subset of the population. Moreover, the presence of gas around binaries tends
to align the spins through the Bardeen-Petterson effect, which in turn translates into larger
values of the effective spin.

Figure 6.2: Comparison between the normalised population distributions predicted by our
fiducial model and the SN-delays models, both in the LS and HS scenario. The chirp mass
distributions are reasonably similar between the two models, but not the ones of redshift
and effective spin.

As will be further detailed in section 6.5, we are also interested in the compatibility
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LS HS

Fiducial

Nev (yr−1) 234.3 23.98

Ndet(10) (yr−1) 53.01 23.89

Ndet(20) (yr−1) 29.85 23.67

SN-delays

Nev (yr−1) 11.82 5.94

Ndet(10) (yr−1) 1.11 5.92

Ndet(20) (yr−1) 0.29 5.73

Table 6.1: Annual rate of events and number of detectable events with LISA per year. We
consider an SNR threshold of 10 or 20. The LS scenario predicts more events than the HS
one, but many of them could not be detected by LISA. The rate of events varies substantially
between our fiducial model and the SN-delays models.

between astrophysical models for LISA data analysis. For this reason, we also consider a
more recent class of models, more specifically the SN-delays model of [225]. This model uses
the same seeding prescriptions as our fiducial model, but includes supernovae feedback, which
can eject matter around the black holes and quench their growth, and implements additional
delays between when dark matter halos merge and MBHBs form in addition to the dynamical
friction timescale. In figure 6.2 we compare the normalised population distribution predicted
by the SN-delays model to our fiducial model, both in the LS and HS cases, without any SNR
threshold. Notice that the chirp mass distributions of the fiducial and SN-delays models are
reasonably similar, but the redshift and effective spin ones are very different. The glaring
difference in redshift distributions is due to the additional delays included in the SN-delays
model, whereas the one in spin distributions is due to supernova feedback, which expels the
gas surrounding the black holes in shallow potential wells, resulting in binaries with more
isotropic spin orientations and smaller component spin magnitudes. In table 6.1 we also
provide the rates predicted by the SN-delays model. Although the rates differ substantially
between the LS and HS scenarios, comparison between the fiducial and SN-delays models
shows that it is not a robust prediction of semi-analytical models, therefore we will not use
rate information when estimating the mixing fraction.

6.3 Hierarchical Bayesian analysis
Assuming that MBHB events are distributed following the mixing prescription of equation
(6.2), α can be treated as a hyperparameter controlling the population distribution. By
observing many events, we will learn how the parameters θ (masses, spins, redshifts etc) of
MBHBs are distributed, and therefore we will be able to infer the mixing fraction. Working
in a Bayesian framework, our goal is to estimate the posterior distribution of α from a set
of observed MBHB events d. To do so, we follow a similar approach to the “bottom-up”
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derivation of [521]. We assume that MBHB events are drawn from a population distribution
ppop(θ|α), and that their signals are statistically independent. This latter point is a highly
non-trivial assumption about the LISA data stream since we expect to receive many signals
at the same time (extreme mass ratio inspirals, GBs, MBHBs etc). Nevertheless, given the
predicted event rate for MBHBs (see table 6.1), it is unlikely that MBHB signals will be
overlapping in time-frequency bins. Moreover, their signal has a very different morphology
from the other LISA sources, as they will be merging and rapidly evolving. Therefore, it is
reasonable to assume the parameter estimation to be independent for each MBHB event.

The posterior distribution for α is given by Bayes’ theorem:

p(α|d) =
p(d|α)p(α)

p(d)
. (6.4)

For Nobs statistically-independent signals, the hyperlikelihood can be written as

p(d|α) =

Nobs∏
i=1

p(di|α). (6.5)

We must take into account that not all data will be detectable, due to the intrinsic loudness
of a given signal, but also to noise fluctuations in the detector. We use the SNR as a detection
statistic, and for each possible data d we define

I(d) =

{
1 if SNR[d] > SNRthreshold

0 otherwise.
(6.6)

The individual hyperlikelihood for an event can then be written as

p(d|α) =
1

Ξ(α)

∫
dθ p(d|θ)ppop(θ|α)I(d). (6.7)

The normalisation factor Ξ(α) (sometimes called selection function) is given by

Ξ(α) =

∫ ∫
dθ dd p(d|θ)ppop(θ|α)I(d) (6.8)

=

∫
dθ ppop(θ|α)

∫
d,detectable

dd p(d|θ) (6.9)

=

∫
dθ ppop(θ|α)pdet(θ), (6.10)

where pdet(θ) is the probability of detecting an event generated by an event with param-
eters θ. Since we work in the zero-noise approximation, we use the optimal SNR to de-
cide of the detectability of a source. The selection function can then be computed as
the fraction of events predicted by the population model that are above the threshold:
Ξ(α) = Ndet(α, SNR)/Nev(α). In our case, it is given by

Ξ(α) =
αNev(LS)

αNev(LS) + (1− α)Nev(HS)
Ξ(LS) +

(1− α)Nev(HS)

αNev(LS) + (1− α)Nev(HS)
Ξ(HS). (6.11)
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6.4. Estimating the probability density function

By definition, all observed events have I(di) = 1, thus

p(d|α) =

Nobs∏
i=1

∫
dθ p(di|θ)ppop(θ|α)

Ξ(α)
. (6.12)

Usually, when performing parameter estimation on an event, we collect samples from the
posterior distribution. We can use Bayes’ theorem to express the events’ likelihoods in terms
of the events’ posteriors, and use a Monte Carlo averaging to substitute the integral by a sum
over the Ni collected samples. Finally, we get for the posterior distribution of the mixing
fraction

p(α|d) = p(α)

∏Nobs

i=1 p(di)

p(d)

Nobs∏
i=1

[
1

Ni

Ni∑
j=1

ppop(θj|α)

pi(θj)Ξ(α)

]
θj∼p(θ|di)

. (6.13)

In the above equation, the pi(θ) are the priors used to perform parameter estimation on
each single event, and the p(di) are the events’ evidence. Since we do not perform model
selection, we discard the latter term, as well as the model evidence, p(d), from our analysis.
For the prior on α, we take a flat distribution in [0, 1]. Note that the population distribution
ppop(θ|α) is the intrinsic one, i.e. without applying any SNR cut, and that selection effects are
entirely contained in the selection function Ξ(α). The rates information could be included
in this formalism by assuming Nobs to follow a Poisson distribution of mean Ndet(α, SNR),
and including this term on the right-hand side of equation (6.13). Given the large disparity
in rates estimates between different models (see table 6.1), we will not use this information.

The measurement of α can be used to infer the population distribution by computing the
predictive posterior distribution

PPD(θ|d) =

∫
dα ppop(θ|α)p(α|d). (6.14)

It encodes our prediction on the distribution of population observables (θ) given an observed
data set. When performing simulations, comparing the posterior predictive distribution
with the population distribution used to generate data gives us a sense of the quality of our
inference.

6.4 Estimating the probability density function
From equation (6.13), we can see that the hierarchical Bayesian analysis requires being able to
evaluate the probability density function of the population distribution. But semi-analytical
models only provide samples from the population distribution, not the analytic probability
density function. In this work, we use a kernel density estimation (KDE) [522, 523] to
approximate the population probability density function from the samples. From a set of
ns samples drawn from the distribution ppop(θ|α), the KDE approximates its probability
density function as

p̂pop(θ|α) =
1

ns

ns∑
i=1

KH(θ − θi), (6.15)
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6.4. Estimating the probability density function

where KH is the kernel function. We choose to work with Gaussian KDEs, where, denoting
by nd the dimensionality of the parameter space,

KH(y) =
1

(2π)−nd/2
(det(H))−1/2e−

1
2
yTH−1y. (6.16)

We use the KDE implementation of scipy [524], where H is taken to be proportional to
the identity matrix. The proportionality constant is called the bandwidth of the KDE, and
is a very important parameter, since it defines the smoothing scale of the approximation
to the target probability density function. In figure 6.3 we show the approximations to the
population probability density function of log10(Mc,s) that we obtain using different values
of the bandwidth (noted bw). For too large values of the bandwidth we cannot resolve

Figure 6.3: Comparison between different KDE approximations to the population probability
density function of log10(Mc,s), using different values of the bandwidth. By taking too small
values of the bandwidth, the KDE is not smooth, and by taking too large values, we cannot
resolve the features of the distribution. For the case shown here, a bandwidth of 0.08 is
a good choice. This value was obtained by minimising the integrated squared error, as
described in the main text.

the features of the distribution, and for too small values the resulting probability density
function is not smooth. We deal with this issue by choosing the bandwidth that minimises
the integrated squared error

∫
dθ(ppop(θ|α) − p̂pop(θ|α))2. In practice, it is estimated using

a Monte Carlo averaging, and the quantity we seek to minimise is [525]∫
dθp̂pop(θ|α)2 − 2

ns

ns∑
i=1

p̂pop,−i(θi|α), (6.17)

where the sum runs over the ns samples drawn from ppop(θ|α) used to approximate the
integral, and p̂pop,−i(θ|α) is the KDE obtained using all ns samples but the ith one. The
value of 0.08 used in figure 6.3 was obtained with this method.

171



6.4. Estimating the probability density function

The required accuracy on the estimation of the probability density function increases
with the number of observed events. Unfortunately, the accuracy of the KDE is limited
by the number of simulation points at our disposal, in particular for the HS variant of
our fiducial astrophysical model (∼ 2500 points). This leads to a systematic error, which
dominates over statistical errors when increasing the number of observed events, and leads
to systematic biases in the hierarchical Bayesian analysis. Similarly, from equation (6.13)
it can be seen that the error on ln(p(α|d)) due to a misevaluation of the selection function
increases linearly with the number of observed events. In our case, the accuracy to which
the selection function is computed depends on the accuracy of the selection function for
the LS and HS models (see equation (6.11)). In appendix D, we show that using too few
points to compute these terms also leads to systematic biases. To mitigate these issues,
we will make an approximation: we will take the probability density function computed
from the KDE to be the “true” probability density function of our fiducial astrophysical
model, and use it to generate mock data. By doing this, the data generation process is fully
consistent with the probability density function used in the hierarchical Bayesian analysis,
avoiding systematic biases. We compute the selection function for the LS and HS variants
of our fiducial astrophysical model by generating many (∼ 106) events from the KDE and
computing the fraction of detectable events. We then use equation (6.11) to evaluate the
selection function for any value of α. This approximation should be seen as the limit where
we have enough simulation points to build very accurate KDEs and compute the selection
function to high precision. In figure 6.4 we compare the population distribution of the LS
and HS variants of the fiducial astrophysical model computed from numerical simulations
to the one obtained from the KDE. The bandwidth is chosen by minimising the integrated
squared error, as described above. Note that, when building the KDE that will serve as
our fiducial astrophysical model, we use arcth(χ1,2) and instead of arcth(χ+,−) in order to
ensure the spins are in the physically allowed range. The distributions are overall in very
good agreement, so we expect the results we will present here to be very similar to the ones
we would obtain without doing any approximation.
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6.5. Results

(a) LS variant. (b) HS variant.

Figure 6.4: Comparison between the population distributions obtained from numerical sim-
ulations and the KDE we build from it. We purposefully did not smooth the corner plot in
order to reflect the real level of agreement between the two distributions. When building
the KDE, we use arcth(χ1,2) instead of arcth(χ+,−) in order to ensure the spins are in the
physically allowed range. The bumpy histograms obtained from simulations of the HS vari-
ant (and in particular the spin ones) put in evidence that we lack points to build a KDE
accurate enough for our purposes. Nevertheless, the two distributions are overall in good
agreement, so using the KDE as our “true” fiducial astrophysical model should yield very
similar results to the ones we would obtain without doing such an approximation.

6.5 Results
We consider two kinds of experiments. In the first one, we generate mock observation sets
using the predictions of our fiducial astrophysical model (computed from the KDE), and
use this same model in the hierarchical Bayesian analysis (the ppop(θ|α) in equation (6.13)).
In the second experiment, we use the SN-delays model to generate mock observation sets,
but still use our fiducial astrophysical model in the hierarchical Bayesian analysis. The
goal of this second experiment is to test if we could still draw meaningful conclusions if
the population of MBHBs in the Universe is different from the one used in the data analysis
pipeline. The results we will present here were obtained using an SNR threshold for detection
of 10. Moreover, we do not take into account measurement errors, i.e. p(di|θ) = δ(θ − θi) in
equation (6.12).

6.5.1 Model-consistent inference

We start by investigating how the inference on α improves with the number of events.
Although we do not use information on the rates in the inference, we make sure that the
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6.5. Results

(a)

(b)

(c)

Figure 6.5: Posterior distribution on α for observation sets with an increasing number of
observed events, generated using different values of the mixing fraction. The posteriors peak
near the true value and become narrower as we increase the number of events.
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number of events in the data sets is realistic for a LISA mission duration of four to ten years
given the predicted rates (see table 6.1). In figure 6.5, we plot the log-posterior on α for
observation sets with an increasing number of events. In the upper panel, the data set was
generated with a mixing fraction α0 = 0.2 between the LS and HS variants of our fiducial
astrophysical model, in the middle panel with α0 = 0.5, and in the lower panel with α0 = 0.8.
The posteriors peak near the true value and become narrower as we increase the number
of events. We observe a sharp drop in the posterior close to the extremal values. This is
because as α approaches 0 (1) the resulting population is no longer compatible with the
lightest (heaviest) events. Moreover, due to our choice of mixing prescription (see equations
(6.2) and (6.3)) and to the higher rate of events of the LS variant, the shape of the population
distribution changes faster for small values of α, so the posterior is narrower for α0 close to 0
than for α0 close to 1. In order to have a more global view, we generate several observation

Figure 6.6: Evolution of the shift and the error on α (90% confidence interval) with the
number of observed events. The observation sets start with 50 events (crosses) and end with
200 events (dots). The colour scale indicates the value of α0. As expected, they tend do
decrease as we observe more events. The fact that the points are equally distributed on both
sides of the αmax = α0 line indicates that there is no systematic bias in our analysis.

sets with an increasing number of events, drawing the mixing fraction uniformly in [0, 1],
and plot the evolution of the shift and the error on α with the number of observed events in
figure 6.6. We estimate the shift as the difference between the maximum-posterior point and
the injection value, and the error on the mixing fraction (∆α) as the 90% confidence interval
centred around the median value. The colour scale indicates the value of the injected mixing
fraction for each observation set. As expected, both tend to decrease as we observe more
events. Also, note that the points are equally distributed on both sides of the αmax = α0

line, indicating that there is no systematic bias in our analysis. We find that the error on α
tends to be smaller for injected values close to 0 or 1 and for small values of α0, in agreement
with our discussion on the shape of the posterior above.

Next, we assess our ability to infer the population distribution from an observed data
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(a) 50 events. (b) 200 events.

Figure 6.7: Kullback-Leibler divergence between the posterior predictive distribution and
the population distribution for different observation sets generated with different values of
α0. In the left (right) panel the observation sets contain 50 (200) events. The smaller the KL
divergence, the better our inference of the population distribution. Increasing the number
of events tends to improve the inference, as expected.

set, using the posterior predictive distribution defined in equation (6.14). In figure 6.7, we
plot the KL divergence (see equation (3.7)) between the posterior predictive distribution and
the population distribution for data sets of 50 and 200 events. The KL divergence tends to
be smaller for larger data sets, meaning that our inference on the population distribution
improves. We observe that the largest values of the KL divergence are reached for α0 ∼ 0.
This is because the population distribution varies faster for small α, so even small (statisti-
cal) shifts in the estimation of the mixing fraction lead to larger discrepancies between the
posterior predictive distribution and the population distribution for α0 ∼ 0. Nevertheless, as
can be seen in the upper-left panel of figure 6.8, even in the worse case (the largest value of
the KL divergence among the cases shown in figure 6.7) we can reconstruct the population
distribution reasonably well. The other panels show the comparison between the posterior
predictive and the population distributions for data sets of 100 events yielding mid-range
values of the KL divergence and for the data set yielding the smallest one. Overall, this
pipeline allows us to infer the population distribution accurately when the model used to
generate data is the same as the one used in the pipeline. We will now test the robustness
of this pipeline by using different models in the two stages.

6.5.2 Robustness

We mix between the HS and LS variants of the SN-delays model as described in equation
(6.2), and generate data sets of 20 events for α0 = 0, α0 = 0.5 and α0 = 1. We run our
pipeline on these observation sets and compare the posterior predictive distribution to the
population distribution. The results are shown in figures 6.9, 6.10 and 6.11. In each case,
we show both the intrinsic distribution and the one after imposing an SNR threshold of 10.

For α0 = 0 (figure 6.9), we can reasonably well reproduce the chirp mass distribution of
the detectable population, but we overestimate the fraction of light events in the intrinsic
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(a) Worse case. (b) Mid-range case.

(c) Mid-range case. (d) Best case.

Figure 6.8: Comparison between the population distribution and the posterior predictive
distribution for four observation sets generated with different values of α0. Each observation
set contains 100 events. In the upper-left and lower-right panels we show the cases that yield
the larger and smaller values of the KL divergence among the cases shown in figure 6.7. The
other two panels show cases yielding mid-range values of the KL divergence.
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6.5. Results

(a) Detectable population. (b) Intrinsic population.

Figure 6.9: Comparison between the population distribution for the HS variant of the SN-
delays model and the posterior predictive distribution for an observation set containing 20
events from the HS SN-delays catalogue. In the left panel we show the distribution of
detectable events and in the right panel we show the intrinsic population.

population. This is because the HS variant of the SN-delays model has a tail extending to
lighter values than the HS variant of the fiducial model. Our pipeline compensates for this
by adding events from the LS variant, and since only ∼ 25% of LS events are detectable, the
fraction of light events in the intrinsic population is overestimated. Similarly, for α0 = 0.5
(figure 6.10) the posterior predictive distribution agrees reasonably well with the population
distribution of chirp mass for detectable events, but this time the fraction of light events in
the intrinsic population is underestimated. This is due to the difference in the fraction of
detectable events between the LS variants of our fiducial model and the SN-delays model
(see table 6.1). For a given number of detected light events, the latter predicts twice as many
light events in the intrinsic population as our fiducial model. Finally, for α0 = 1 (figure 6.11)
even the chirp mass distribution of detectable events is wrongly estimated. This is due to a
tail of heavy events predicted by the LS variant of the SN-delays model, which causes our
pipeline to estimate α0 to be different from 1. In all three cases, due to the differences in the
fiducial and SN-delays population, redshift and spins distributions are poorly reconstructed.

These results show that this pipeline would lead to erroneous predictions if the population
of MBHBs is too different from the one predicted by our astrophysical models. Note that in
the LS SN-delays model we do not expect to observe 20 events even for a ten years mission
duration, but this does not change our previous conclusion.
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(a) Detectable population. (b) Intrinsic population.

Figure 6.10: Same as figure 6.9 for a mixing fraction between the HS and LS variants of the
SN-delays model of 0.5.

(a) Detectable population. (b) Intrinsic population.

Figure 6.11: Same as figure 6.9 for the LS variant of the SN-delays model.
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6.6 Discussion
In this chapter we discussed of the ability of LISA to distinguish between different astrophys-
ical models for the formation and evolution of massive black holes by inferring the population
of MBHBs. We introduced a mixing fraction between astrophysical models to account for
the possibility that the population of MBHBs in the Universe cannot be described by one
single model. More specifically, we mixed between two variants of a same model: one that
predicts that massive black holes form from light seeds and another from heavy seeds. We
built a pipeline based on the hierarchical Bayesian framework to measure the mixing fraction
from LISA observations, and infer the population of massive black holes. We have shown
that this pipeline allows us to reconstruct accurately the population of MBHBs if it is similar
to the one used in the pipeline, but not if the populations are too different.

This problem could potentially be mitigated by introducing additional mixing fractions:
one could in principle mix between as many models as desired. Nevertheless, given the
large uncertainty surrounding astrophysical models, we believe a better alternative is to use
a theory-agnostic approach. We are currently working on a simplified astrophysical model
for the formation and evolution of massive black holes where the population of MBHBs
depends on physically-meaningful hyperparameters controlling the initial mass distribution,
the delay between dark matter halo mergers and MBHB mergers etc. We could then perform
a hierarchical Bayesian analysis to infer these hyperparameters from LISA observations, using
this same model to generate data, or more complex ones, such as the ones we used in this
work. In appendix D, we emphasise another important issue: we will need many more points
from numerical simulations in order to avoid systematic biases.

The results presented here did not take into account measurement errors. We are cur-
rently working on this point, but we do not expect our main conclusions to change. On a
longer timescale, it will also be necessary to use waveforms including eccentricity and preces-
sion effects, since those contain a fair amount of information on the mechanisms that trigger
the coalescence of MBHBs. We expect that including this information should help solve the
“last parsec problem”.
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Chapter 7

Conclusion and perspectives

In only six years, gravitational waves have already provided an incredible amount of infor-
mation on our Universe. For instance, they have allowed us to infer for the first time the
properties of the population of compact binaries and provided new tests of general relativity.
They have also triggered many questions, and the future of gravitational wave astronomy
promises to be very exciting. The sensitivity improvement of current detectors will increase
the detection rate and our ability to extract the source parameters. Moreover, the next
generation of detectors is already being planned. Among them, the space-based interferom-
eter LISA will complement ground-based detectors and allow us to observe a yet unexplored
population of compact binaries. In this thesis, we have proposed tools to exploit the full
potential of gravitational wave observations, and assessed what could be learned on astro-
physics and fundamental physics from these observations, with a special focus on the LISA
mission.

We have performed for the first time a full Bayesian analysis on simulated LISA data
of SBHBs, using an MCMC sampler that we designed for this purpose. Restraining our-
selves to quasicircular binaries with component spins aligned or anti-aligned with the orbital
angular momentum, we performed parameter estimation for several systems, exploring the
parameter space of these sources. We have determined the accuracy to which the source
parameters could be measured and explained the correlations between them. This study
will be very helpful in building tools to search for these sources in the LISA data stream,
a highly nontrivial task. Moreover, we have shown that such observations would allow us
to measure to high precision low-frequency modifications to the gravitational wave signal
arising due to modified gravity or environmental effects. For instance, constraints on dipolar
radiation, a generic prediction of beyond general relativity theories, could be improved by
six orders of magnitude with LISA, and seven with multiband observations. Inspired by
the detection of GW190521, we considered LISA observations of systems with total mass
∼ 150 M� residing in AGN disks. We have shown that these observations would allow us to
measure the effect of acceleration around the central massive black hole, accretion and dy-
namical friction, providing an unique probe of AGN properties. These environmental effects
are degenerate with modified gravity ones, potentially spoiling tests of general relativity. If
a low-frequency deviation from vacuum general relativity waveforms is detected, the very
precise sky localisation provided by LISA could help disentangle between these effects, since
the observation of an electromagnetic counterpart would favour the astrophysical origin. We
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also expect that modifications to general relativity should be observed consistently across
all detections, providing other means to identify them. These studies have confirmed the
scientific potential of LISA observations of SBHBs, but many important extensions to our
work are to be considered. First of all it is necessary to include precession and, more impor-
tantly, eccentricity effects. Indeed, we expect SBHBs to have a nonzero eccentricity when
in the LISA band, and measuring it would help discriminate between different formation
scenarios. Moreover, in our work we mimicked multiband observations by adding by hand
constraints on the intrinsic parameters of the source, to include the information provided
by ground-based detectors. We are now carrying a full study of multiband observations,
in order to better characterise its benefits and ready this analysis involving very different
detectors.

Next, we have shown that future gravitational wave observations could allow us to ob-
serve new classes of systems. On the fundamental physics side, we proposed a model for
the full gravitational wave signal of ECO binaries. This theory-agnostic model relies on
simple assumptions based on results obtained from theoretical computations and numerical
simulations. With this model in hand, we estimated that, together, ET and LISA will allow
us to observe virtually all ECO binaries in the Universe. However, their detection might be
almost impossible with current data analysis pipelines, and in particular if only BBH wave-
forms are used in template-based searches. Our model provides a theoretically-motivated
waveform on which we can test data analysis pipelines looking for nonperturbative devia-
tions to general relativity BBHs. It could easily be modified to account for other types of
behaviours in the merger/post-merger regime and for all relevant modifications to the in-
spiral part of the signal. On the astrophysics side, we showed that LISA could be the first
instrument to confirm the existence of binaries made of a black hole accreting from a white
dwarf. Indeed, by combining LISA measurements with the semi-analytical evolution model
for WDBH binaries that we proposed, we could infer the masses of both binary components
and the distance to the source. This important piece of information, which could usually not
be obtained with gravitational wave observations of GBs, would allow us to unambiguously
identify the binary components. Our model relies on a few analytic approximations, such as
the Eggleton’s mass-radius relation and Eggleton’s Roche lobe fitting formula. Although we
expect that these should not affect qualitatively our conclusions, we plan on assessing their
quantitative impact in the estimation of the parameters of the source.

Finally, we have built a pipeline for inferring the population of MBHBs from LISA ob-
servations, and discriminating between different scenarios for the formation and evolution
of massive black holes. Our pipeline uses the hierarchical Bayesian framework to measure
the hyperparameters controlling the population of MBHBs, comparing the observed popu-
lation to theoretical predictions. In our study we had a single hyperparameter: the mixing
fraction between two distinct models. It allows us to partially account for the large un-
certainty surrounding astrophysical models. We have found that our pipeline would allow
us to correctly infer the population of MBHBs, but only if the observed data set is similar
enough to the predictions of the model we compare it against. Given that this will most
likely not be true, we believe a theory-agnostic approach is necessary. Therefore, we are
currently working on a simplified model, where the population of MBHBs is governed by
astrophysically meaningful hyperparameters, such as the time delay between dark matter
halos and MBHBs mergers or the median mass of black hole seeds. We have also pointed
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at another important issue: population studies based on results from numerical simulations,
which require some approximation method for evaluating the probability density function of
the population distributions, need a large number of points. Otherwise, systematic biases
will appear due to the poor approximation to the probability density function and/or the
selection function. These biases could already be important for the few tens to hundreds
observations of MBHBs we expect with LISA, and even more for the thousands that we
expect with ground-based detectors. Last, motivated by our findings on the unexpected
multimodality between intrinsic parameters in Bayesian analysis of MBHBs, we are now
carrying an extensive study of the parameter estimation of MBHBs. We expect it to shed
light on the yet unexplained multimodalities, and help characterise the scientific potential
of MBHB observations with LISA. In the next few years, it will also be necessary to include
precession and eccentricity effects in order to solve the “final parsec problem”.

Thus, in this thesis I have done my best to provide an answer to a few questions I
believed were relevant to the gravitational waves community. In this process many additional,
interesting and challenging questions were raised that I hope to be able to address in the
near future.
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Appendix A

Modelling gravitational waves from
exotic compact objects

A.1 Gravitational waves feedback
The conservative equations of motions (for PGW = J̇GW = 0) are obtained by taking the
derivatives of (4.16) and (4.15) and making use of (4.17) and (4.18). They read

ρ̈ = ρω2 − 4ω2
0(ρ− ρ0)− m2

8ρ2
+
M

R2
, (A.1)

ω̇ = − 2mρρ̇ω
MR2

2
+mρ2

. (A.2)

The quadrupole moment of the system is given by Qij = Mij − 1
2
δijMkk, where

Mij =
mρ2

2

cos(2φ) sin(2φ) 0
sin(2φ) − cos(2φ) 0

0 0 0


+
mρ2

6

1 0 0
0 1 0
0 0 −2

 . (A.3)

Making use of the conservative equations of motion, (A.1) and (A.2), we compute the two
polarisations of a gravitational wave propagating along the orbital axis:

h+ =
Q̈11 − Q̈22

DL

=
2

DL

(γ2 cos(2φ)− γ1 sin(2φ)), (A.4)

h× =
2Q̈12

DL

=
2

DL

(γ1 cos(2φ) + γ2 sin(2φ)), (A.5)
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A.2. Quasi-eccentric orbit

where γ1 and γ2 have been defined in equations (4.22) and (4.23). We recall that the radiated
power and angular momentum (equations 1.30 and 1.31) are given by

PGW =
1

5
<

...
Qij

...
Qij >, (A.6)

J̇GW =
2

5
ε3kl <

...
Qka

...
Qla >, (A.7)

where the average is performed over one period of radial oscillation. Using the conservative
equations of motion and defining

g2 =γ̇1 + 2ωγ2

=−mρ̇
(

4MR2ω2ρ
MR2

2
+mρ2

+ 4ω2
0(4ρ− 3ρ0) +

m

8ρ2
− 3M

R2

)
,

g1 =γ̇2 − 2ωγ1 (A.8)

=
2m

MR2

2
+mρ2

[
−mρ

2ρ̇2ω(3MR2 + 2mρ2)
MR2

2
+mρ2

+ ω

((
ρ̇2 − 4ω2

0(ρ− ρ0)ρ+
Mρ

R2
− m

8ρ

)(
3MR2

2
+ 2mρ2

)
+ρ2ω2MR2

2

)]
, (A.9)

we get

PGW =
2

5
< g2

1 + g2
2 >, (A.10)

J̇GW =
4

5
< γ2g1 − γ1g2 > . (A.11)

The averaged energy and angular momentum loss are recomputed at the beginning of each
cycle.

A.2 Quasi-eccentric orbit
Inspired by the equations for eccentric motion, we introduce the phase angle υ such that

ρ =
p

1 + e cos(υ)
. (A.12)

The parameter p and the “eccentricity’ e of the orbit can be computed from the turning
points ρ+ and ρ−

p = 2
ρ+ρ−
ρ+ + ρ−

(A.13)

e =
ρ+ − ρ−
ρ+ + ρ−

. (A.14)
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A.3. Quasi-circular orbit

Assuming the adiabatic approximation for e and p holds, i.e.

ė

e
� 1

T
, (A.15)

ṗ

p
� 1

T
, (A.16)

the derivative of equation (A.12) gives

ρ̇ =
pe sin(υ)υ̇

(1 + e cos(υ))2
. (A.17)

The change of sign in ρ̇ is accounted for by sin(υ) and the evolution of υ is monotonic. The
sign of υ̇ is determined by the initial conditions. For instance, if υi > 0, equation (4.16)
becomes

υ̇ =
(1 + e cos(υ))2

pe| sin υ|

√
2

m

√
E − Veff (ρ). (A.18)

The term under the rightmost square root can be written

E − Veff =
−2km(ρ− ρ+)(ρ− ρ−)(ρ− ρ3)(ρ− ρ4)(ρ− ρ5)

ρ(MR2

2
+mρ2)

, (A.19)

where ρ3, ρ4 and ρ5 are the remaining (possibly complex) roots of E − Veff = 0. Noticing
that

ρ− ρ+ =
−pe(1 + cos(υ))

(1− e)(1 + e cos(υ))
,

ρ− ρ− =
pe(1− cos(υ))

(1− e)(1 + e cos(υ))
,

the equation for υ can be recast as

υ̇ =
2ω0(1 + e cos(υ))√

1− e2

√
(ρ− ρ3)(ρ− ρ4)(ρ− ρ5)

ρ(MR2

2m
+ ρ2)

. (A.20)

Thus, we evolve numerically equations (A.12) and (A.20) rather than equation (4.16).
For RBH systems, when the energy becomes larger than the effective potential height,

the inner turning point ceases to exist, so we cannot use equation (A.12) anymore, and
we turn back to equation (4.16) to describe the final moments of the evolution before the
collapse to a black hole.

A.3 Quasi-circular orbit
For RS systems, after reaching the bottom of the potential the evolution proceeds, unlike for
NRS systems. This is because the system still has angular momentum to radiate. However,
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A.4. Post-contact dynamics

the separation between the cores ceases to oscillate, and the orbit becomes ”quasicircular“.
Thus, e becomes very small and the adiabatic approximation (equation (A.15)) is no longer
valid. Mathematically, this regime corresponds to V ′eff(ρ) = 0. This condition allows us to
express ω as a function of ρ, and we get the new conservative equations of motion

ρ̇ =0, (A.21)

ω2 =
1

ρ

(
4ω2

0(ρ− ρ0) +
m

8ρ2
− M

R2

)
. (A.22)

These expressions are used in equations (A.10) and (A.11) to write PGW and J̇GW as functions
of ρ only. Accounting for the dissipation of energy and angular momentum, the equation for
ρ is given by

ρ̇ =
Ė
∂E
∂ρ

=
J̇
∂J
∂ρ

. (A.23)

As a sanity check, we verified that the expressions using the angular momentum and the one
using the energy give the same equation. Finally, the equations of motion become

ρ̇ = −32

5
m2ω2ρ2

(
4ω2

0ρ
2(ρ− ρ0) +

m

8
− Mρ2

R2

)2

×
[
2mω2

0ρ
2

(
4(ρ− ρ0)ρ2 + ρ0

(
ρ2 +

MR2

2m

))
+

M

2R2ρ2

(
MR2

2
− 3mρ2

)
− m

16

(
3MR2

2
−mρ2

)]−1

, (A.24)

ω =

√
1

ρ

(
4ω2

0(ρ− ρ0) +
m

8ρ2
− M

R2

)
, (A.25)

E = 2mω2
0

((
MR2

2m
+ ρ2

)(
1− ρ0

ρ

)
+ (ρ− ρ0)2

)
+

m

16ρ3

(
MR2

2
+mρ2

)
− M

2R2ρ

(
MR2

2
+ 3mρ2

)
− 2

3

M2

R
, (A.26)

J = (
MR2

2
+mρ2)ω. (A.27)

Note that taking the M,k → 0 limit we recover the equations for a quasicircular binary at
separation 2ρ. Once the orbit “circularises”, ρ tends to an equilibrium value corresponding
to one of the roots of equation (A.22), and ω goes to 0. To ensure numerical stability, we
switch to this description when e < 10−5.

A.4 Post-contact dynamics
Figure A.1 shows the post-contact evolution of an RBH (upper panel) and an RS (lower
panel) system with m0 = 30 M� and C0 = 0.17. In the left panel we display the distance
of the cores to the centre of mass, which is half the separation between the cores, and in
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A.4. Post-contact dynamics

(a) The distance to the centre of mass oscillates around
a decreasing mean value, untill it reaches a value such
that Cρ = 0.5, leading to the formation of a black hole.

(b) The orbital angular velocity oscillates around a
stable mean value and increases right before the for-
mation of the black hole.

(c) Initially, the distance to the centre of mass oscil-
lates around a decreasing mean value. Once the orbit
“circularises”, ρ decreases while tending to an equilib-
rium value, corresponding to the formation of a stable
ECO.

(d) The orbital angular velocity first oscillates around
a decreasing mean value and once the orbit “circu-
larises”, ω decreases while tending to 0 (not shown in
the figure).

Figure A.1: Evolution of the distance of the cores to the centre of mass (half the distance
between the cores) and the orbital angular velocity for an RBH (upper panel) and an RS
(lower panel) system.

the right panel the orbital angular velocity. Red solid lines indicate the threshold value of
ρ below which a black hole is formed, i.e. such that Cρ, defined in equations (4.19), is 0.5.
For the RBH system, ρ oscillates around a decreasing mean value and, eventually, reaches
the threshold value, leading to the formation of a black hole. ω oscillates around a stable
mean value and increases right before the formation of the black hole. This is related to the
increase in the gravitational wave frequency before the ringdown stage in figure 4.10. For
the system we show, the final black hole has total mass Mf = 58 M� and dimensionless spin
χf = 0.39. In the case of the RS system, ρ and ω initially oscillate around a decreasing mean
value. The orbit then “circularises”, from which point both decrease, while the system tends
to an equilibrium configuration. The equilibrium value of ρ, indicated by the green dashed
line, is higher than the threshold value for collapse. Therefore, a stable ECO is formed. The
equilibrium value of ω is 0, this cannot be seen from figure A.1 because we do not display
the long-term evolution for sake of clarity. The evolution of ρ for NRS systems is similar to
the one of the RS system.
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Appendix B

Accreting white dwarf-black hole binaries

B.1 Equilibrium solutions
After the initial phase of mass accretion, a very good approximation of the mass transfer
rate can be obtained by setting the right-hand side of equation (5.24) to 0 [479] and ṀBH =
−εISCOṀWD. We find for the equilibrium mass-transfer rate

ṀWD, eq

MWD

= − J̇GW/Jorb

Keq

, (B.1)

where

Keq =
ζWD − ζrL

2

(
1− 3

(
1 +

1

q

)
kWDr

2
WD

)
+

(
1 +

1

q

)
ΛWDkWDr

2
WD(1− εISCO)

(
1

2q
kWDr

2
WD −

1

2(1 + q)

)
+ 1− εISCO

(
1

q
+
jISCO

MBH

√
M

a

)
.

(B.2)

Using Kepler’s law, ḟ
2f

= −3ȧ
2a
, and replacing equation (B.1) in equation (5.23) gives, at

equilibrium,

ḟ

2f
=

3J̇GW/Jorb

Keq

(
1− 3

(
1 + 1

q

)
kWDr2

WD

)[1 +

(
1

q
− 1

2(1 + q)
+

1

2q
kWDr

2
WD +

jISCO

MBH

√
M

a

)
εISCO

−
(

1 +
1

2(1 + q)
+

1

2q
kWDr

2
WD +

(
1 +

1

q

)
ΛWDkWDr

2
WD

)]
.

(B.3)

Furthermore,

J̇GW

Jorb

=
32

5

MBHMWDM

a4
∝MBHMWDM

(
M

f 2

)−4/3

'M
2/3
BHMWDf

8/3, (B.4)
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B.2. Fits to the evolutionary tracks

where in the last step we used MWD � MBH, so that M ' MBH. Finally, the late time
evolution of the other terms in equation (B.3) happens to have a weak dependence on MBH,
so ḟM−2/3

BH is an almost MBH-independent quantity as verified in the right panel of figure
5.12.

B.2 Fits to the evolutionary tracks
The coefficients for the evolutionary tracks fits described in the main text are summarised
in table B.1.

a0 a1 a2 a3 a4

y = MWD[M�] 319.7593186 509.0101135 303.8011829 80.7077869 8.0347503
y = ḟM

−2/3
BH [HzM

−2/3
� s−1] 142.6384491 236.4026829 136.2183828 35.5719325 3.4778346

Table B.1: Coefficients for the fits in figure 5.12.
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Appendix C

Multimodal parameter estimation of
massive black hole binaries

While performing parameter estimation for the many systems used in the population study
of section 6, we found that in some cases the posterior distribution of intrinsic parameters
presents an unexpected multimodality. We have found this to happen for systems with near
equal masses, and for systems with low and unequal masses and large spins, when including
higher harmonics in the parameter estimation. We will discuss one example of each. The
results presented here were checked using our MHMCMC sampler, PTMCMC [363] and ptemcee
[505, 506]1.

C.1 Near equal mass system
We focus on a system with q close to 1 that we label Equalq. Its properties are listed in table
C.1, together with the SNR of the (2,2) and (2,1) harmonics, as well as the total SNR. When
including higher harmonics in the parameter estimation of this system, the χ− distribution
has a secondary maximum at χ− = −χ−,0, as illustrated in figure C.1, where we compare
the results obtained with PhenomD and PhenomHM (the same waveform model is used for
the injection and the parameter estimation). We do not show extrinsic parameters for more
clarity, since there is no correlation with intrinsic parameters for this system.

By performing parameter estimation using the dominant (2,2) harmonic and one ad-
ditional harmonic at a time, we find it is the (2,1) harmonic that is responsible for this
secondary maximum. In the other cases, the two maxima are enfolded within one single
mode. The reason for this is made clear in figure C.2, where we show the characteristic
strain of several harmonics (f |h̃|, without the LISA response) of the Equalq system and of
the same system but with χ− = −χ−,0. Only the (2,1) harmonic is substantially differ-
ent between the two systems, showing a “dip” for positive χ−. We have verified that when
keeping the total SNR fixed while increasing the SNR of the (2,1) harmonic (by varying
the inclination), the secondary is suppressed, whereas if we instead decrease the SNR in the

1These results are part of an ongoing project in collaboration with V. Baibhav, E. Berti, R. Cotesta, M.
Katz and S. Marsat. All the results presented here were obtained by me.
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C.1. Near equal mass system

(2,1) harmonic, the posterior is unimodal, enclosing the two maxima. The same happens if
instead we fix the relative contribution of the (2,1) mode and vary the total SNR.

This can be further understood by examining the post-Newtonian expansion of the (2,2)
and (2,1) harmonics [526]:

h̃`m(f) =
M2

DL

π

√
2η

3
V −7/2
m e−i(mΨSPA(Vm)+π/4) Ĥlm(Vm), (C.1a)
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2 ) , (C.1b)
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V 4

1

}
+O(V 5

2 ) , (C.1c)

where Vm = (2πMf/m)1/3, χs,a = (χ1±χ2)/2 and SPA stands for stationary phase approxi-
mation. Note that we corrected for a typo in the 2PN term of the (2,1) harmonic in [526]. In
the near equal mass case considered here, χs,a ∼ χ+,−. It is clear from these expressions that
in the equal mass case (δm = 0), the change χ− → −χ− leaves the (2,2) harmonic invariant
while the (2,1) harmonic is multiplied by -1. This multiplicative factor can be compensated
by a shift of π in the phase at coalescence. Therefore, we expect that the phase at coalescence
of the secondary mode should be shifted by π with respect to the injection, but we do not
find that.

In figure C.3 we plot the posterior distribution of χ−, ϕc for systems with the same mass
ratio as the Equalq system (q = 1.02, left panel) and with q = 1.0004 (right panel), for
different values of χ−. The secondary maximum is enhanced in the latter case, in agreement
with equation (C.1c), since in the exact q = 1 case we expect them to have the same weight
as the main mode. However, although ϕc is slightly shifted, we do not find the expected shift
by π. The very negative value of the log-likelihood at the point χ− = −χ−,0, ϕc = ϕc,0 + π
(lnL < −10) reinforces our belief that it is not a secondary maximum.

To investigate this behaviour, we perform some waveform comparisons. In figure C.4, we
plot the amplitudes of the (2,2) and (2,1) harmonics for systems with M = 106M�, q = 1
and χ− = ±0.05, and the difference in phase between the two systems for the (2,2) and (2,1)
harmonics, using PhenomHM (upper panel) and the NRHybSur3dq8 surrogate waveform
[107] (lower panel). In the latter case, we find the expected shift of π in the phase, whereas
for PhenomHM the phase difference is identically 0. These results suggest that the phase

193



C.1. Near equal mass system

(a) Distribution of sampling parameters. (b) Distribution of parameters entering the wave-
form computation.

Figure C.1: Comparison of inferred distributions for the Equalq system when using PhenomD
and PhenomHM. In the left panel we show the distribution of parameteters used in the
sampling, and in the right panel of the original waveform parameters. When including higher
harmonics, we find a secondary maximum at χ− = −χ−,0, which results in two maxima for
individual spins. Black lines indicate the injection.

Figure C.2: Characteristic strain of several harmonics for the Equalq system and for a system
with the opposite value of χ−. The LISA response is not taken into account. The dark line
shows the SciRDv1 noise strain. Only the (2,1) harmonic is substantially different between
the two systems, and allows one to partially distinguish between them.
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C.2. Low and unequal masses, large spins system

(a) q = 1.02. (b) q = 1.0004.

Figure C.3: Inferred distribution on χ− and ϕc for systems with the same mass ratio as
the Equalq system (q = 1.02, left panel) and with q = 1.0004 (right panel), for different
values of χ−. The weight of the secondary mode increases as q gets closer to 1. Against our
expectations, we do not find that ϕc is shifted by π in the secondary mode.

of the harmonics other than the (2,2) in PhenomHM might be ill-defined. However, the
bimodality in χ− should be physical, not simply a waveform artefact, as we argued above
based on the post-Newtonian expansions.

C.2 Low and unequal masses, large spins system
The majority of the cases where we found a multimodal distribution for intrinsic parameters
is for systems with moderately low masses, large mass ratio (∼ 2 − 10) and large spins
(& 0.95) or large mass ratio (& 10) and moderately large spins ∼ 0.7. Given that the validity
of PhenomHM is limited to q ≤ 18 and χ1,2 ≤ 0.85, some caution is needed in interpreting
these results. We will focus on a system with moderately high mass ratio (q = 5.3), which we
label Highq. We list its properties in table C.2. The results we will present here were obtained
using the LISA proposal noise curve [29]. Higher harmonics, especially the (3,3) harmonic,
have a relatively high SNR due to the moderately large mass ratio of the system. In figure
C.6, we show the parameter estimation using PhenomD and PhenomHM. In the latter case,
the distribution of intrinsic parameters shows three maxima, which are encompassed within
a single mode when considering only the (2,±2) harmonics.

Performing parameter estimation including only the (2,±2) harmonics and one additional
harmonic at a time, we find that the multimodality is due to the (3, 3) and (4, 4) harmonics.
As in the near equal mass case, we find that if we increase the SNR of these modes (by varying
the inclination or the total SNR), the multimodality disappears, whereas if we decrease it,
we obtain one single mode encompassing the three maxima. We observe the same behaviour
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C.2. Low and unequal masses, large spins system

(a) Amplitude with PhenomHM. (b) Phase difference with PhenomHM.

(c) Amplitude with NRHybSur3dq8. (d) Phase difference with NRHybSur3dq8.

Figure C.4: In the left panels we plot the amplitude of the (2,2) and (2,1) harmonics for
systems with M = 106M�, q = 1 and χa = ±0.05, and in the right panels we plot the
difference in phase between the two signals for both harmonics. In the upper panels we use
PhenomHM, whereas in the lower panels we use the NRHybSur3dq8 surrogate waveform.
Only in the latter case we find the expected shift of π in the phase, suggesting that the phase
of the harmonics other than the (2,2) in PhenomHM might be ill-defined.

if we vary the mass ratio (keeping the total SNR fixed): increasing q the SNR in higher
harmonics increases, and we obtain one single mode, whereas as we decrease q, the three
modes are “blurred”. Finally, notice that this system has a rather low chirp mass, so it is
merging in the high frequency end of LISA, as can be seen in figure C.6. If we increase the
chirp mass of the system (keeping the total SNR fixed), the secondary maxima disappear.
We have also checked that if we cut the signal before the merger (the cut is performed in
time domain), the parameter estimation is barely affected. These last two points show that
this multimodality is due to the inspiral portion of the signal and that it is resolved if we
have enough SNR in the merger.
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C.2. Low and unequal masses, large spins system

(a) Distribution of sampling parameters.

(b) Distribution of parameters entering the waveform com-
putation.

Figure C.5: Comparison of inferred distributions for the Highq system when using PhenomD
and PhenomHM. In the upper panel we show the distribution of parameteters used in the
sampling, and in the lower panel of the original waveform parameters. When including
higher harmonics, we find find two secondary maxima in intrinsic parameters in addition
to the main mode, which are strongly correlated with ϕc and ψ. Black lines indicate the
injection.
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C.2. Low and unequal masses, large spins system

Figure C.6: Characteristic strain of several harmonics for the Highq system predicted by
PhenomHM and the NRHybSur3dq8 surrogate waveform. The LISA response is not taken
into account. The dark line shows the Proposal noise strain. Except for the (3,2) harmonic,
the inspiral portion if the signal is in good agreement between the two waveforms.

We currently have no analytical explanation for this multimodality, but it seems to be
related to correlations of masses and spins with the time to coalescence, the phase at coa-
lescence and the polarisation. Indeed, if, as a test, we keep these three parameters fixed in
the Bayesian analysis, we find no multimodality. When we include the time to coalescence
and/or the phase at coalescence, the smaller mode (the leftmost in terms of χ+) appears in
addition to the true mode, and when we include any of these parameters together with the
polarisation the central mode also appears.

We have verified that the multimodality is not due to the LISA response, so in order to
check if this multimodality is not a waveform artefact, we intend to compute the faithfulness
between the injection and surrounding points using different families of templates (e.g. Phe-
nomXHM [527], EOB waveforms etc.), and check if that same multimodality is seen. The
comparison between PhenomHM and the NRHybSur3dq8 surrogate waveform in figure C.6
shows clear discrepancies between the two models around the merger, but a reasonable agree-
ment in the inspiral portion of the signal (except for the (3, 2) harmonic), which is where
the multimodality comes from. We cannot conclude how would the parameter estimation
change using the NRHybSur3dq8 surrogate waveform, and it is yet to be understood if this
multimodality is truly physical.

The two cases we have discussed are similar in the sense that the multimodality is due to
higher harmonics having enough SNR to improve the parameter estimation relative to when
using the (2,±2) harmonics only, but not enough to completely resolve partial degeneracies.
We expect that third generation ground-based detectors could observe a similar multimodal-
ity to the first one we discussed, since SBHBs tend to have q ∼ 1 and they will be observed
with SNR figures of hundreds, as in the case we discussed. The second example stresses the
importance of having trustable waveform models for binaries with large spins and unequal
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C.2. Low and unequal masses, large spins system

Equalq
m1 (M�) 6.4× 105

m2 (M�) 6.3× 105

Mc (M�) 5.5× 105

q 1.02
η 0.24998
χ1 0.81
χ2 0.91
χ+ 0.86
χ− −0.04

λ (rad) 5.5
β (rad) 0.6
ψ (rad) 2.1
ϕ (rad) 2.4
ι (rad) 2.5

DL (Gpc) 40
z 4.2

SNR 654
SNR(2,2 653
SNR(2,1) 3

Table C.1: Properties of the Equalq system, together with the total SNR and the SNR of
the (2,2) and (2,1) harmonics. Note that the total SNR is not the quadratic sum of the
individual harmonics’ SNRs due to nonzero inner products between different harmonics.

masses. Indeed, numerical simulations suggest that we might observe many such MBHBs
(see section 6.2), and it has to be determined if the second example of multimodality we found
is physical or a waveform artefact. Let us stress that performing parameter estimation for
∼ 450 MBHB systems predicted by numerical simulations, we found a similar multimodality
in ∼ 10 cases.
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C.2. Low and unequal masses, large spins system

Highq
m1 (M�) 1.5× 105

m2 (M�) 2.8× 104

Mc (M�) 5.3× 104

q 5.3
η 0.13
χ1 0.99797
χ2 0.99311
χ+ 0.9972
χ− 0.68

λ (rad) 5.0
β (rad) 0.007
ψ (rad) 1.95
ϕ (rad) 3.74
ι (rad) 1.755

DL (Gpc) 88
z 8.5

SNR 29
SNR(2,2 29
SNR(3,3) 7
SNR(4,4) 2

Table C.2: Properties of the Highq system, together with the total SNR and the SNR of the
(2,2) and (3,3) and (4,4) harmonics.
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Appendix D

Systematic biases due to a misevaluation
of the selection function

The selection function used to obtain the results of section 6 was computed with equation
(6.11). We generated 8×105 events for the LS and HS variants from the KDE and computed
the terms Ξ(LS) and Ξ(HS) individually. In figure D.1 we compare this selection function
with one obtained using only 2× 103 points to compute each term. There is a clear discrep-
ancy between the two functions, which reflects on the population inference, as can be seen in
figure D.2. There, we compare the bias versus error on α plots obtained using each of these
selection functions. Clearly, using too few points to compute the selection function leads to
systematic biases, as can be seen by the fact that many more point are below the αmax = α0

line than above. We do not expect to observe thousands of MBHBs with LISA, but we have
chosen this large number of events to emphasise this effect. Even for fewer events we could
be biased due to a misevaluation of the selection function, and a large number of points from
numerical simulations will be needed to mitigate this effect (see also [528]). Moreover, third
generation ground-based detectors are expected to detect thousands of events, and will face
this same issue.
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Figure D.1: Comparison between the selection functions obtained using different numbers
of points to compute Ξ(LS) and Ξ(HS).

(a) We use 8 × 105 points to evaluate the selection
function of the LS and HS variants.

(b) We use 2 × 103 points to evaluate the selection
function of the LS and HS variants.

Figure D.2: Evolution of the bias and the error on α using the selection function in blue
in figure D.1 (left panel) and the one in orange (right panel). We can clearly observe a
systematic bias in the latter case, due to a misevaluation of the selection function.

202



Bibliography

[1] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” 2018.

[2] J. Aasi et al., “Advanced LIGO,” Class. Quant. Grav., vol. 32, p. 074001, 2015.

[3] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole
Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.

[4] J. H. Taylor, L. A. Fowler, and P. M. McCulloch, “Measurements of general relativistic
effects in the binary pulsar PSR 1913+16,” Nature, vol. 277, pp. 437–440, 1979.

[5] A. Einstein, “Approximative Integration of the Field Equations of Gravitation,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), vol. 1916, pp. 688–696, 1916.

[6] F. Acernese et al., “Advanced Virgo: a second-generation interferometric gravitational
wave detector,” Class. Quant. Grav., vol. 32, no. 2, p. 024001, 2015.

[7] B. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during the First and Second Observing
Runs,” Phys. Rev. X, vol. 9, no. 3, p. 031040, 2019.

[8] R. Abbott et al., “GWTC-2: Compact Binary Coalescences Observed by LIGO and
Virgo During the First Half of the Third Observing Run,” 10 2020.

[9] B. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral,” Phys. Rev. Lett., vol. 119, no. 16, p. 161101, 2017.

[10] B. P. Abbott et al., “Multi-messenger Observations of a Binary Neutron Star Merger,”
Astrophys. J. Lett., vol. 848, no. 2, p. L12, 2017.

[11] B. Abbott et al., “Tests of General Relativity with the Binary Black Hole Signals from
the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D, vol. 100, no. 10, p. 104036, 2019.

[12] B. P. Abbott et al., “Tests of general relativity with GW150914,” Phys. Rev. Lett.,
vol. 116, no. 22, p. 221101, 2016. [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)].

[13] R. Abbott et al., “Tests of General Relativity with Binary Black Holes from the second
LIGO-Virgo Gravitational-Wave Transient Catalog,” 10 2020.

203



Bibliography

[14] B. P. Abbott et al., “Binary Black Hole Population Properties Inferred from the First
and Second Observing Runs of Advanced LIGO and Advanced Virgo,” Astrophys. J.
Lett., vol. 882, no. 2, p. L24, 2019.

[15] R. Abbott et al., “Population Properties of Compact Objects from the Second LIGO-
Virgo Gravitational-Wave Transient Catalog,” Astrophys. J. Lett., vol. 913, no. 1, p. L7,
2021.

[16] K. Popper, The Logic of Scientific Discovery. ISSR library, Routledge, 2002.

[17] K. Somiya, “Detector configuration of KAGRA: The Japanese cryogenic gravitational-
wave detector,” Class. Quant. Grav., vol. 29, p. 124007, 2012.

[18] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi,
and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,”
Phys. Rev. D, vol. 88, no. 4, p. 043007, 2013.

[19] C. S. Unnikrishnan, “IndIGO and LIGO-India: Scope and plans for gravitational wave
research and precision metrology in India,” Int. J. Mod. Phys. D, vol. 22, p. 1341010,
2013.

[20] S. Hild et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observa-
tories,” Class. Quant. Grav., vol. 28, p. 094013, 2011.

[21] M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave
observatory,” Class. Quant. Grav., vol. 27, p. 194002, 2010.

[22] S. Ballmer and V. Mandic, “New Technologies in Gravitational-Wave Detection,” Ann.
Rev. Nucl. Part. Sci., vol. 65, pp. 555–577, 2015.

[23] B. P. Abbott et al., “Exploring the Sensitivity of Next Generation Gravitational Wave
Detectors,” Class. Quant. Grav., vol. 34, no. 4, p. 044001, 2017.

[24] R. S. Foster and D. C. Backer, “Constructing a Pulsar Timing Array,” Astrophys. J.,
vol. 361, p. 300, 1990.

[25] G. Hobbs et al., “The international pulsar timing array project: using pulsars as a
gravitational wave detector,” Class. Quant. Grav., vol. 27, p. 084013, 2010.

[26] A. Sesana, A. Vecchio, and C. N. Colacino, “The stochastic gravitational-wave back-
ground from massive black hole binary systems: implications for observations with
Pulsar Timing Arrays,” Mon. Not. Roy. Astron. Soc., vol. 390, p. 192, 2008.

[27] Z. Arzoumanian et al., “The NANOGrav 12.5 yr Data Set: Search for an Isotropic
Stochastic Gravitational-wave Background,” Astrophys. J. Lett., vol. 905, no. 2, p. L34,
2020.

[28] G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS, vol. AASKA14,
p. 037, 2015.

204



Bibliography

[29] H. Audley et al., “Laser Interferometer Space Antenna,” 2017.

[30] A. Klein et al., “Science with the space-based interferometer eLISA: Supermassive
black hole binaries,” Phys. Rev., vol. D93, no. 2, p. 024003, 2016.

[31] V. Korol, E. M. Rossi, P. J. Groot, G. Nelemans, S. Toonen, and A. G. Brown,
“Prospects for detection of detached double white dwarf binaries with Gaia, LSST
and LISA,” Mon. Not. Roy. Astron. Soc., vol. 470, no. 2, pp. 1894–1910, 2017.

[32] A. Sesana, “Prospects for Multiband Gravitational-Wave Astronomy after GW150914,”
Phys. Rev. Lett., vol. 116, no. 23, p. 231102, 2016.

[33] A. Toubiana, S. Marsat, S. Babak, J. Baker, and T. Dal Canton, “Parameter estimation
of stellar-mass black hole binaries with LISA,” Phys. Rev. D, vol. 102, p. 124037, 2020.

[34] A. Toubiana, S. Marsat, S. Babak, E. Barausse, and J. Baker, “Tests of general rela-
tivity with stellar-mass black hole binaries observed by LISA,” Phys. Rev. D, vol. 101,
no. 10, p. 104038, 2020.

[35] A. Toubiana, S. Babak, E. Barausse, and L. Lehner, “Modeling gravitational waves
from exotic compact objects,” Phys. Rev. D, vol. 103, no. 6, p. 064042, 2021.

[36] A. Caputo, L. Sberna, A. Toubiana, S. Babak, E. Barausse, S. Marsat, and P. Pani,
“Gravitational-wave detection and parameter estimation for accreting black-hole bi-
naries and their electromagnetic counterpart,” Astrophys. J., vol. 892, no. 2, p. 90,
2020.

[37] A. Toubiana et al., “Detectable environmental effects in GW190521-like black-hole
binaries with LISA,” Phys. Rev. Lett., vol. 126, no. 10, p. 101105, 2021.

[38] L. Sberna, A. Toubiana, and M. C. Miller, “Golden galactic binaries for LISA: mass-
transferring white dwarf black hole binaries,” Astrophys. J., vol. 908, no. 1, p. 1, 2021.

[39] A. Toubiana, K. W. K. Wong, S. Babak, E. Barausse, E. Berti, J. R. Gair, S. Marsat,
and S. R. Taylor, “Discriminating between different scenarios for the formation and
evolution of massive black holes with LISA,” Phys. Rev. D, vol. 104, no. 8, p. 083027,
2021.

[40] Z. Carson, “Probing Fundamental Physics with Gravitational Waves,” other thesis, 10
2020.

[41] P. S. Laplace, A Treatise in Celestial Mechanics. 1822.

[42] A. Einstein, “On the electrodynamics of moving bodies,” Annalen Phys., vol. 17,
pp. 891–921, 1905.

[43] A. Einstein, “Grundgedanken der allgemeinen relativitätstheorie und anwendung dieser
theorie in astronomie.,” pp. 315–315, 1915.

205



Bibliography

[44] J. Wheeler and K. Ford, “Geons, black holes and quantum foam: A life in physics,”
American Journal of Physics, vol. 68, 06 2000.

[45] A. Einstein, “The Field Equations of Gravitation,” Sitzungsber. Preuss. Akad. Wiss.
Berlin (Math. Phys. ), vol. 1915, pp. 844–847, 1915.

[46] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. San Francisco: W. H.
Freeman, 1973.

[47] S. Chandrasekhar, The mathematical theory of black holes. 1985.

[48] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master
Series in Physics, Oxford University Press, 2007.

[49] A. Einstein, “The Foundation of the General Theory of Relativity,” Annalen Phys.,
vol. 49, no. 7, pp. 769–822, 1916.

[50] A. Einstein, “Explanation of the Perihelion Motion of Mercury from the General The-
ory of Relativity,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), vol. 1915,
pp. 831–839, 1915.

[51] F. W. Dyson, A. S. Eddington, and C. Davidson, “A Determination of the Deflection
of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse
of May 29, 1919,” Phil. Trans. Roy. Soc. Lond. A, vol. 220, pp. 291–333, 1920.

[52] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living
Rev. Rel., vol. 17, p. 4, 2014.

[53] E. Berti et al., “Testing General Relativity with Present and Future Astrophysical
Observations,” Class. Quant. Grav., vol. 32, p. 243001, 2015.

[54] K. Koyama, “Cosmological Tests of Modified Gravity,” Rept. Prog. Phys., vol. 79, no. 4,
p. 046902, 2016.

[55] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophys. J.,
vol. 86, pp. 217–246, 1937.

[56] A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe
and a cosmological constant,” Astron. J., vol. 116, pp. 1009–1038, 1998.

[57] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev.
D, vol. 14, pp. 2460–2473, 1976.

[58] D. Marolf, “The black hole information problem: past, present, and future,” Reports
on Progress in Physics, vol. 80, p. 092001, Jul 2017.

[59] A. Einstein, “Über Gravitationswellen,” Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys. ), vol. 1918, pp. 154–167, 1918.

206



Bibliography

[60] H. Bondi, “Plane gravitational waves in general relativity,” Nature, vol. 179, pp. 1072–
1073, 1957.

[61] H. Bondi, F. A. E. Pirani, and I. Robinson, “Gravitational waves in general relativity.
3. Exact plane waves,” Proc. Roy. Soc. Lond. A, vol. 251, pp. 519–533, 1959.

[62] F. A. E. Pirani, “Invariant formulation of gravitational radiation theory,” Phys. Rev.,
vol. 105, pp. 1089–1099, 1957.

[63] R. A. Hulse and J. H. Taylor, “Discovery of a pulsar in a binary system,” Astrophys.
J. Lett., vol. 195, pp. L51–L53, 1975.

[64] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, “The Australia Telescope
National Facility pulsar catalogue,” Astron. J., vol. 129, p. 1993, 2005.

[65] F. Özel and P. Freire, “Masses, Radii, and the Equation of State of Neutron Stars,”
Ann. Rev. Astron. Astrophys., vol. 54, pp. 401–440, 2016.

[66] K. Schwarzschild, “On the gravitational field of a mass point according to Einstein’s
theory,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), vol. 1916, pp. 189–
196, 1916.

[67] J. Michell, “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed
Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such
a Diminution Should be Found to Take Place in any of Them, and Such Other Data
Should be Procured from Observations, as Would be Farther Necessary for That Pur-
pose.,” Phil. Trans. Roy. Soc. Lond., vol. 74, pp. 35–57, 1784.

[68] S. Chandrasekhar, “The maximum mass of ideal white dwarfs,” Astrophys. J., vol. 74,
pp. 81–82, 1931.

[69] J. R. Oppenheimer and G. M. Volkoff, “On Massive neutron cores,” Phys. Rev., vol. 55,
pp. 374–381, 1939.

[70] R. C. Tolman, “Static solutions of Einstein’s field equations for spheres of fluid,” Phys.
Rev., vol. 55, pp. 364–373, 1939.

[71] M. Schmidt, “3C 273 : A Star-Like Object with Large Red-Shift,” Nature, vol. 197,
no. 4872, p. 1040, 1963.

[72] D. Lynden-Bell, “Galactic nuclei as collapsed old quasars,” Nature, vol. 223, p. 690,
1969.

[73] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special
metrics,” Phys. Rev. Lett., vol. 11, pp. 237–238, 1963.

[74] S. W. Hawking and R. Penrose, “The Singularities of gravitational collapse and cos-
mology,” Proc. Roy. Soc. Lond. A, vol. 314, pp. 529–548, 1970.

207



Bibliography

[75] A. Eckart and R. Genzel, “Observations of stellar proper motions near the Galactic
Centre,” Nature, vol. 383, pp. 415–417, 1996.

[76] A. M. Ghez, B. L. Klein, M. Morris, and E. E. Becklin, “High proper motion stars
in the vicinity of Sgr A*: Evidence for a supermassive black hole at the center of our
galaxy,” Astrophys. J., vol. 509, pp. 678–686, 1998.

[77] M. Bauböck et al., “Modeling the orbital motion of Sgr A*’s near-infrared flares,”
Astron. Astrophys., vol. 635, p. A143, 2020.

[78] K. Akiyama et al., “First M87 Event Horizon Telescope Results. IV. Imaging the
Central Supermassive Black Hole,” Astrophys. J. Lett., vol. 875, no. 1, p. L4, 2019.

[79] A. Le Tiec and J. Novak, Theory of Gravitational Waves, pp. 1–41. 2017.

[80] V. Baibhav, E. Berti, V. Cardoso, and G. Khanna, “Black Hole Spectroscopy: System-
atic Errors and Ringdown Energy Estimates,” Phys. Rev. D, vol. 97, no. 4, p. 044048,
2018.

[81] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, “Black Hole Ringdown: The Im-
portance of Overtones,” Phys. Rev. X, vol. 9, no. 4, p. 041060, 2019.

[82] X. Jiménez Forteza, S. Bhagwat, P. Pani, and V. Ferrari, “Spectroscopy of binary
black hole ringdown using overtones and angular modes,” Phys. Rev. D, vol. 102,
no. 4, p. 044053, 2020.

[83] S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown, M. Giesler, M. A. Scheel,
and S. A. Teukolsky, “On choosing the start time of binary black hole ringdowns,”
Phys. Rev. D, vol. 97, no. 10, p. 104065, 2018.

[84] L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling
Compact Binaries,” Living Rev. Rel., vol. 17, p. 2, 2014.

[85] C. Cutler and E. E. Flanagan, “Gravitational waves from merging compact binaries:
How accurately can one extract the binary’s parameters from the inspiral wave form?,”
Phys. Rev., vol. D49, pp. 2658–2697, 1994.

[86] A. Buonanno, “Gravitational waves,” in Les Houches Summer School - Session 86:
Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July
31-August 25, 2006, 2007.

[87] B. Mulgrew, “The Stationary Phase Approximation, Time-Frequency Decomposition
and Auditory Processing,” IEEE Transactions on Signal Processing, vol. 62, pp. 56–68,
Jan 2014.

[88] H. A. Lorentz and J. Droste, The Motion of a System of Bodies under the Influence
of their Mutual Attraction, According to Einstein’s Theory, pp. 330–355. Dordrecht:
Springer Netherlands, 1937.

208



Bibliography

[89] C. M. Will, Theory and Experiment in Gravitational Physics. Cambridge University
Press, 9 2018.

[90] S. A. Teukolsky, “Rotating black holes - separable wave equations for gravitational and
electromagnetic perturbations,” Phys. Rev. Lett., vol. 29, pp. 1114–1118, 1972.

[91] E. Seidel and S. Iyer, “BLACK HOLE NORMAL MODES: A WKB APPROACH. 4.
KERR BLACK HOLES,” Phys. Rev. D, vol. 41, pp. 374–382, 1990.

[92] E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and
black branes,” Class. Quant. Grav., vol. 26, p. 163001, 2009.

[93] V. Cardoso, L. Gualtieri, C. Herdeiro, and U. Sperhake, “Exploring New Physics Fron-
tiers Through Numerical Relativity,” Living Rev. Relativity, vol. 18, p. 1, 2015.

[94] F. Pretorius, “Evolution of binary black hole spacetimes,” Phys. Rev. Lett., vol. 95,
p. 121101, 2005.

[95] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, “Accurate evolutions
of orbiting black-hole binaries without excision,” Phys. Rev. Lett., vol. 96, p. 111101,
2006.

[96] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, “Gravitational
wave extraction from an inspiraling configuration of merging black holes,” Phys. Rev.
Lett., vol. 96, p. 111102, 2006.

[97] B. Szilágyi, J. Blackman, A. Buonanno, A. Taracchini, H. P. Pfeiffer, M. A. Scheel,
T. Chu, L. E. Kidder, and Y. Pan, “Approaching the Post-Newtonian Regime with Nu-
merical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-
Wave Cycles,” Phys. Rev. Lett., vol. 115, no. 3, p. 031102, 2015.

[98] A. Buonanno and T. Damour, “Effective one-body approach to general relativistic
two-body dynamics,” Phys. Rev. D, vol. 59, p. 084006, 1999.

[99] A. Buonanno and T. Damour, “Transition from inspiral to plunge in binary black hole
coalescences,” Phys. Rev. D, vol. 62, p. 064015, 2000.

[100] A. Bohé et al., “Improved effective-one-body model of spinning, nonprecessing binary
black holes for the era of gravitational-wave astrophysics with advanced detectors,”
Phys. Rev., vol. D95, no. 4, p. 044028, 2017.

[101] T. Damour and A. Nagar, “A new analytic representation of the ringdown waveform of
coalescing spinning black hole binaries,” Phys. Rev., vol. D90, no. 2, p. 024054, 2014.

[102] T. Damour, B. R. Iyer, P. Jaranowski, and B. S. Sathyaprakash, “Gravitational waves
from black hole binary inspiral and merger: The Span of third postNewtonian effective
one-body templates,” Phys. Rev. D, vol. 67, p. 064028, 2003.

209



Bibliography

[103] A. Buonanno, Y. Pan, J. G. Baker, J. Centrella, B. J. Kelly, S. T. McWilliams, and
J. R. van Meter, “Toward faithful templates for non-spinning binary black holes using
the effective-one-body approach,” Phys. Rev. D, vol. 76, p. 104049, 2007.

[104] S. Ossokine et al., “Multipolar Effective-One-Body Waveforms for Precessing Binary
Black Holes: Construction and Validation,” Phys. Rev. D, vol. 102, no. 4, p. 044055,
2020.

[105] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A. Scheel, M. Tiglio, and D. A.
Hemberger, “Fast and Accurate Prediction of Numerical Relativity Waveforms from
Binary Black Hole Coalescences Using Surrogate Models,” Phys. Rev. Lett., vol. 115,
no. 12, p. 121102, 2015.

[106] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder,
and H. P. Pfeiffer, “Surrogate models for precessing binary black hole simulations with
unequal masses,” Phys. Rev. Research., vol. 1, p. 033015, 2019.

[107] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E. Kidder, and H. P. Pfeiffer,
“Surrogate model of hybridized numerical relativity binary black hole waveforms,”
Phys. Rev. D, vol. 99, no. 6, p. 064045, 2019.

[108] P. Ajith et al., “A Template bank for gravitational waveforms from coalescing binary
black holes. I. Non-spinning binaries,” Phys. Rev. D, vol. 77, p. 104017, 2008. [Erratum:
Phys.Rev.D 79, 129901 (2009)].

[109] P. Ajith et al., “Inspiral-merger-ringdown waveforms for black-hole binaries with non-
precessing spins,” Phys. Rev. Lett., vol. 106, p. 241101, 2011.

[110] L. Santamaria et al., “Matching post-Newtonian and numerical relativity waveforms:
systematic errors and a new phenomenological model for non-precessing black hole
binaries,” Phys. Rev. D, vol. 82, p. 064016, 2010.

[111] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. Jiménez Forteza, and A. Bohé,
“Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New
numerical waveforms and anatomy of the signal,” Phys. Rev., vol. D93, no. 4, p. 044006,
2016.

[112] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, and A. Bohé,
“Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A
phenomenological model for the advanced detector era,” Phys. Rev., vol. D93, no. 4,
p. 044007, 2016.

[113] L. London, S. Khan, E. Fauchon-Jones, C. García, M. Hannam, S. Husa, X. Jiménez-
Forteza, C. Kalaghatgi, F. Ohme, and F. Pannarale, “First higher-multipole model of
gravitational waves from spinning and coalescing black-hole binaries,” Phys. Rev. Lett.,
vol. 120, no. 16, p. 161102, 2018.

[114] T. Damour, “The Motion of Compact Bodies and Gravitational Radiation,” Fundam.
Theor. Phys., vol. 9, pp. 89–106, 1984.

210



Bibliography

[115] E. E. Flanagan and T. Hinderer, “Constraining neutron star tidal Love numbers with
gravitational wave detectors,” Phys. Rev. D, vol. 77, p. 021502, 2008.

[116] L. Wade, J. D. Creighton, E. Ochsner, B. D. Lackey, B. F. Farr, T. B. Littenberg,
and V. Raymond, “Systematic and statistical errors in a bayesian approach to the
estimation of the neutron-star equation of state using advanced gravitational wave
detectors,” Phys. Rev. D, vol. 89, no. 10, p. 103012, 2014.

[117] B. P. Abbott et al., “GW151226: Observation of Gravitational Waves from a 22-Solar-
Mass Binary Black Hole Coalescence,” Phys. Rev. Lett., vol. 116, no. 24, p. 241103,
2016.

[118] N. Yunes, K. Yagi, and F. Pretorius, “Theoretical Physics Implications of the Binary
Black-Hole Mergers GW150914 and GW151226,” Phys. Rev., vol. D94, no. 8, p. 084002,
2016.

[119] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys., vol. 12,
pp. 498–501, 1971.

[120] D. Lovelock, “The four-dimensionality of space and the einstein tensor,” J. Math. Phys.,
vol. 13, pp. 874–876, 1972.

[121] M. Fierz, “On the physical interpretation of P.Jordan’s extended theory of gravitation,”
Helv. Phys. Acta, vol. 29, pp. 128–134, 1956.

[122] P. Jordan, “The present state of Dirac’s cosmological hypothesis,” Z. Phys., vol. 157,
pp. 112–121, 1959.

[123] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,”
Phys. Rev., vol. 124, pp. 925–935, 1961. [,142(1961)].

[124] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using radio links with
the Cassini spacecraft,” Nature, vol. 425, pp. 374–376, 2003.

[125] C. M. Will and H. W. Zaglauer, “Gravitational Radiation, Close Binary Systems, and
the Brans-dicke Theory of Gravity,” Astrophys. J., vol. 346, p. 366, 1989.

[126] T. Damour and G. Esposito-Farese, “Tensor multiscalar theories of gravitation,” Class.
Quant. Grav., vol. 9, pp. 2093–2176, 1992.

[127] Y. Fujii and K. Maeda, The scalar-tensor theory of gravitation. Cambridge Monographs
on Mathematical Physics, Cambridge University Press, 7 2007.

[128] D. M. Eardley, “Observable effects of a scalar gravitational field in a binary pulsar.,”
Astrophys. J. Lett., vol. 196, pp. L59–L62, 1975.

[129] K. Nordtvedt, “Equivalence Principle for Massive Bodies Including Rotational Energy
and Radiation Pressure,” Phys. Rev., vol. 180, pp. 1293–1298, 1969.

211



Bibliography

[130] P. G. Roll, R. Krotkov, and R. H. Dicke, “The Equivalence of inertial and passive
gravitational mass,” Annals Phys., vol. 26, pp. 442–517, 1964.

[131] T. Damour and G. Esposito-Farese, “Nonperturbative strong field effects in tensor -
scalar theories of gravitation,” Phys. Rev. Lett., vol. 70, pp. 2220–2223, 1993.

[132] T. Damour and G. Esposito-Farese, “Tensor - scalar gravity and binary pulsar experi-
ments,” Phys. Rev., vol. D54, pp. 1474–1491, 1996.

[133] P. C. C. Freire, N. Wex, G. Esposito-Farese, J. P. W. Verbiest, M. Bailes, B. A.
Jacoby, M. Kramer, I. H. Stairs, J. Antoniadis, and G. H. Janssen, “The relativistic
pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor
gravity,” Mon. Not. Roy. Astron. Soc., vol. 423, p. 3328, 2012.

[134] N. Wex, “Testing Relativistic Gravity with Radio Pulsars,” 2 2014.

[135] S. W. Hawking, “Black holes in the Brans-Dicke theory of gravitation,” Commun.
Math. Phys., vol. 25, pp. 167–171, 1972.

[136] J. D. Bekenstein, “Novel ‘‘no-scalar-hair’’ theorem for black holes,” Phys. Rev. D,
vol. 51, no. 12, p. 6608, 1995.

[137] T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,”
Phys. Rev. Lett., vol. 112, p. 251102, 2014.

[138] K. Yagi, L. C. Stein, and N. Yunes, “Challenging the Presence of Scalar Charge and
Dipolar Radiation in Binary Pulsars,” Phys. Rev., vol. D93, no. 2, p. 024010, 2016.

[139] E. Barausse and K. Yagi, “Gravitation-Wave Emission in Shift-Symmetric Horndeski
Theories,” Phys. Rev. Lett., vol. 115, no. 21, p. 211105, 2015.

[140] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, “Spontaneous
scalarization of black holes and compact stars from a Gauss-Bonnet coupling,” Phys.
Rev. Lett., vol. 120, no. 13, p. 131104, 2018.

[141] C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A. Font, “Spontaneous Scalariza-
tion of Charged Black Holes,” Phys. Rev. Lett., vol. 121, no. 10, p. 101102, 2018.

[142] F.-L. Julié, “Gravitational radiation from compact binary systems in Einstein-Maxwell-
dilaton theories,” JCAP, vol. 1810, p. 033, 2018.

[143] F.-L. Julié and E. Berti, “Post-Newtonian dynamics and black hole thermodynamics
in Einstein-scalar-Gauss-Bonnet gravity,” Phys. Rev. D, vol. 100, no. 10, p. 104061,
2019.

[144] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D. Shoemaker, and N. Yunes, “Late
Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity,” Class.
Quant. Grav., vol. 29, p. 232002, 2012.

212



Bibliography

[145] M. W. Horbatsch and C. P. Burgess, “Cosmic Black-Hole Hair Growth and Quasar
OJ287,” JCAP, vol. 1205, p. 010, 2012.

[146] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U. Sperhake, “Numerical sim-
ulations of single and binary black holes in scalar-tensor theories: circumventing the
no-hair theorem,” Phys. Rev., vol. D87, no. 12, p. 124020, 2013.

[147] Z. Cao, P. Galaviz, and L.-F. Li, “Binary black hole mergers in f(R) theory,” Phys.
Rev. D, vol. 87, no. 10, p. 104029, 2013.

[148] E. W. Hirschmann, L. Lehner, S. L. Liebling, and C. Palenzuela, “Black Hole Dynamics
in Einstein-Maxwell-Dilaton Theory,” Phys. Rev. D, vol. 97, no. 6, p. 064032, 2018.

[149] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, “Black holes and binary mergers
in scalar Gauss-Bonnet gravity: scalar field dynamics,” Phys. Rev. D, vol. 99, no. 6,
p. 064035, 2019.

[150] M. Okounkova, “Numerical relativity simulation of GW150914 in Einstein dilaton
Gauss-Bonnet gravity,” Phys. Rev. D, vol. 102, no. 8, p. 084046, 2020.

[151] M. Okounkova, L. C. Stein, J. Moxon, M. A. Scheel, and S. A. Teukolsky, “Numerical
relativity simulation of GW150914 beyond general relativity,” Phys. Rev. D, vol. 101,
no. 10, p. 104016, 2020.

[152] J. L. Blázquez-Salcedo, F. S. Khoo, and J. Kunz, “Quasinormal modes of Einstein-
Gauss-Bonnet-dilaton black holes,” Phys. Rev. D, vol. 96, no. 6, p. 064008, 2017.

[153] J. L. Blázquez-Salcedo, C. F. B. Macedo, V. Cardoso, V. Ferrari, L. Gualtieri, F. S.
Khoo, J. Kunz, and P. Pani, “Perturbed black holes in Einstein-dilaton-Gauss-Bonnet
gravity: Stability, ringdown, and gravitational-wave emission,” Phys. Rev. D, vol. 94,
no. 10, p. 104024, 2016.

[154] C. Molina, P. Pani, V. Cardoso, and L. Gualtieri, “Gravitational signature of
Schwarzschild black holes in dynamical Chern-Simons gravity,” Phys. Rev. D, vol. 81,
p. 124021, 2010.

[155] V. Cardoso and L. Gualtieri, “Perturbations of Schwarzschild black holes in Dynamical
Chern-Simons modified gravity,” Phys. Rev. D, vol. 80, p. 064008, 2009. [Erratum:
Phys.Rev.D 81, 089903 (2010)].

[156] R. N. Lang, “Compact binary systems in scalar-tensor gravity. II. Tensor gravitational
waves to second post-Newtonian order,” Phys. Rev. D, vol. 89, no. 8, p. 084014, 2014.

[157] N. Sennett, S. Marsat, and A. Buonanno, “Gravitational waveforms in scalar-tensor
gravity at 2PN relative order,” Phys. Rev. D, vol. 94, no. 8, p. 084003, 2016.

[158] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects. Cam-
bridge University Press, 7 2000.

213



Bibliography

[159] M. B. Hindmarsh and T. W. B. Kibble, “Cosmic strings,” Rept. Prog. Phys., vol. 58,
pp. 477–562, 1995.

[160] C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,”
Class. Quant. Grav., vol. 35, no. 16, p. 163001, 2018.

[161] G. Boileau, N. Christensen, R. Meyer, and N. J. Cornish, “Spectral separation of the
stochastic gravitational-wave background for LISA: observing both cosmological and
astrophysical backgrounds,” 11 2020.

[162] R. Abbott et al., “Upper Limits on the Isotropic Gravitational-Wave Background from
Advanced LIGO’s and Advanced Virgo’s Third Observing Run,” 1 2021.

[163] R. Abbott et al., “Constraints on cosmic strings using data from the third Advanced
LIGO-Virgo observing run,” 1 2021.

[164] B. P. Abbott et al., “Search for the isotropic stochastic background using data from
Advanced LIGO’s second observing run,” Phys. Rev. D, vol. 100, no. 6, p. 061101,
2019.

[165] Z. Arzoumanian et al., “The NANOGrav 11-year Data Set: Pulsar-timing Constraints
On The Stochastic Gravitational-wave Background,” Astrophys. J., vol. 859, no. 1,
p. 47, 2018.

[166] J. Ellis and M. Lewicki, “Cosmic String Interpretation of NANOGrav Pulsar Timing
Data,” Phys. Rev. Lett., vol. 126, no. 4, p. 041304, 2021.

[167] S. Blasi, V. Brdar, and K. Schmitz, “Has NANOGrav found first evidence for cosmic
strings?,” Phys. Rev. Lett., vol. 126, no. 4, p. 041305, 2021.

[168] W. Buchmuller, V. Domcke, and K. Schmitz, “From NANOGrav to LIGO with
metastable cosmic strings,” Phys. Lett. B, vol. 811, p. 135914, 2020.

[169] C. J. Moore, R. H. Cole, and C. P. L. Berry, “Gravitational-wave sensitivity curves,”
Class. Quant. Grav., vol. 32, no. 1, p. 015014, 2015.

[170] “Gwplotter.” http://gwplotter.com/.

[171] M. Sieniawska and M. Bejger, “Continuous gravitational waves from neutron stars:
current status and prospects,” Universe, vol. 5, no. 11, p. 217, 2019.

[172] R. Abbott et al., “All-sky search in early O3 LIGO data for continuous gravitational-
wave signals from unknown neutron stars in binary systems,” 12 2020.

[173] B. P. Abbott et al., “All-sky search for continuous gravitational waves from isolated
neutron stars using Advanced LIGO O2 data,” Phys. Rev. D, vol. 100, no. 2, p. 024004,
2019.

214

http://gwplotter.com/


Bibliography

[174] G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart, “The gravitational wave
signal from the galactic disk population of binaries containing two compact objects,”
Astron. Astrophys., vol. 375, pp. 890–898, 2001.

[175] T. Kupfer, V. Korol, S. Shah, G. Nelemans, T. R. Marsh, G. Ramsay, P. J. Groot,
D. T. H. Steeghs, and E. M. Rossi, “LISA verification binaries with updated distances
from Gaia Data Release 2,” Mon. Not. Roy. Astron. Soc., vol. 480, no. 1, pp. 302–309,
2018.

[176] K. Breivik, K. Kremer, M. Bueno, S. L. Larson, S. Coughlin, and V. Kalogera, “Char-
acterizing Accreting Double White Dwarf Binaries with the Laser Interferometer Space
Antenna and Gaia,” Astrophys. J. Lett., vol. 854, no. 1, p. L1, 2018.

[177] M. R. Adams, N. J. Cornish, and T. B. Littenberg, “Astrophysical Model Selection in
Gravitational Wave Astronomy,” Phys. Rev. D, vol. 86, p. 124032, 2012.

[178] V. Korol, E. M. Rossi, and E. Barausse, “A multimessenger study of the Milky Way’s
stellar disc and bulge with LISA, Gaia, and LSST,” Mon. Not. Roy. Astron. Soc.,
vol. 483, no. 4, pp. 5518–5533, 2019.

[179] K. Breivik, C. M. Mingarelli, and S. L. Larson, “Constraining Galactic Structure with
the LISA White Dwarf Foreground,” Astrophys. J., vol. 901, no. 1, p. 4, 2020.

[180] V. Korol et al., “Populations of double white dwarfs in Milky Way satellites and their
detectability with LISA,” Astron. Astrophys., vol. 638, p. A153, 2020.

[181] E. Roebber et al., “Milky Way Satellites Shining Bright in Gravitational Waves,” As-
trophys. J. Lett., vol. 894, no. 2, p. L15, 2020.

[182] J. Fuller and D. Lai, “Dynamical Tides in Compact White Dwarf Binaries: Influence
of Rotation,” Mon. Not. Roy. Astron. Soc., vol. 444, no. 4, pp. 3488–3500, 2014.

[183] S. Shah, S. L. Larson, and W. Brown, “Ultra-compact binaries as gravitational wave
sources,” J. Phys. Conf. Ser., vol. 610, no. 1, p. 012003, 2015.

[184] S. Toonen, J. S. W. Claeys, N. Mennekens, and A. J. Ruiter, “PopCORN: Hunting
down the differences between binary population synthesis codes,” Astron. Astrophys.,
vol. 562, p. A14, 2014.

[185] T. B. Littenberg and N. Yunes, “Binary White Dwarfs as Laboratories for Extreme
Gravity with LISA,” Class. Quant. Grav., vol. 36, no. 9, p. 095017, 2019.

[186] Z. Barkat, G. Rakavy, and N. Sack, “Dynamics of Supernova Explosion Resulting from
Pair Formation,” Phys. Rev. Lett., vol. 18, pp. 379–381, 1967.

[187] G. Rakavy and G. Shaviv, “Instabilities in Highly Evolved Stellar Models,” Astrophys.
J., vol. 148, p. 803, 1967.

[188] D. Kasen, S. E. Woosley, and A. Heger, “Pair Instability Supernovae: Light Curves,
Spectra, and Shock Breakout,” Astrophys. J., vol. 734, p. 102, 2011.

215



Bibliography

[189] M. Spera and M. Mapelli, “Very massive stars, pair-instability supernovae and
intermediate-mass black holes with the SEVN code,” Mon. Not. Roy. Astron. Soc.,
vol. 470, no. 4, pp. 4739–4749, 2017.

[190] R. Abbott et al., “GW190521: A Binary Black Hole Merger with a Total Mass of
150 M�,” Phys. Rev. Lett., vol. 125, p. 101102, 2020.

[191] C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, “The Mass distribution of stellar
black holes,” Astrophys. J., vol. 499, p. 367, 1998.

[192] F. Ozel, D. Psaltis, R. Narayan, and J. E. McClintock, “The Black Hole Mass Distri-
bution in the Galaxy,” Astrophys. J., vol. 725, pp. 1918–1927, 2010.

[193] W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and
V. Kalogera, “The Mass Distribution of Stellar-Mass Black Holes,” Astrophys. J.,
vol. 741, p. 103, 2011.

[194] K. A. Postnov and L. R. Yungelson, “The Evolution of Compact Binary Star Systems,”
Living Rev. Rel., vol. 17, p. 3, 2014.

[195] M. J. Benacquista and J. M. B. Downing, “Relativistic Binaries in Globular Clusters,”
Living Rev. Rel., vol. 16, p. 4, 2013.

[196] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz,
A. Raccanelli, and A. G. Riess, “Did LIGO detect dark matter?,” Phys. Rev. Lett.,
vol. 116, no. 20, p. 201301, 2016.

[197] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti,
P. Pani, A. Riotto, and S. Vitale, “Evidence for primordial black holes in LIGO/Virgo
gravitational-wave data,” 5 2021.

[198] D. Gerosa, E. Berti, R. O’Shaughnessy, K. Belczynski, M. Kesden, D. Wysocki, and
W. Gladysz, “Spin orientations of merging black holes formed from the evolution of
stellar binaries,” Phys. Rev., vol. D98, no. 8, p. 084036, 2018.

[199] F. Antonini and H. B. Perets, “Secular evolution of compact binaries near massive
black holes: Gravitational wave sources and other exotica,” Astrophys. J., vol. 757,
p. 27, 2012.

[200] J. Samsing, “Eccentric Black Hole Mergers Forming in Globular Clusters,” Phys. Rev.,
vol. D97, no. 10, p. 103014, 2018.

[201] V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, “The initial
spin probability distribution of primordial black holes,” JCAP, vol. 05, p. 018, 2019.

[202] K. W. K. Wong, K. Breivik, K. Kremer, and T. Callister, “Joint constraints on the
field-cluster mixing fraction, common envelope efficiency, and globular cluster radii
from a population of binary hole mergers via deep learning,” Phys. Rev. D, vol. 103,
no. 8, p. 083021, 2021.

216



Bibliography

[203] M. Zevin, S. S. Bavera, C. P. L. Berry, V. Kalogera, T. Fragos, P. Marchant, C. L.
Rodriguez, F. Antonini, D. E. Holz, and C. Pankow, “One Channel to Rule Them All?
Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways,”
Astrophys. J., vol. 910, no. 2, p. 152, 2021.

[204] Y. Bouffanais, M. Mapelli, F. Santoliquido, N. Giacobbo, U. N. Di Carlo, S. Rastello,
M. C. Artale, and G. Iorio, “New insights on binary black hole formation channels
after GWTC-2: young star clusters versus isolated binaries,” 2 2021.

[205] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “Bayesian Evidence for Both
Astrophysical and Primordial Black Holes: Mapping the GWTC-2 Catalog to Third-
Generation Detectors,” 2 2021.

[206] D. Gerosa, S. Ma, K. W. K. Wong, E. Berti, R. O’Shaughnessy, Y. Chen, and K. Bel-
czynski, “Multiband gravitational-wave event rates and stellar physics,” Phys. Rev.,
vol. D99, no. 10, p. 103004, 2019.

[207] J. Samsing and D. J. D’Orazio, “Black Hole Mergers From Globular Clusters Observ-
able by LISA I: Eccentric Sources Originating From Relativistic N -body Dynamics,”
Mon. Not. Roy. Astron. Soc., vol. 481, no. 4, pp. 5445–5450, 2018.

[208] A. Nishizawa, E. Berti, A. Klein, and A. Sesana, “eLISA eccentricity measurements as
tracers of binary black hole formation,” Phys. Rev., vol. D94, no. 6, p. 064020, 2016.

[209] A. Nishizawa, A. Sesana, E. Berti, and A. Klein, “Constraining stellar binary black hole
formation scenarios with eLISA eccentricity measurements,” Mon. Not. Roy. Astron.
Soc., vol. 465, no. 4, pp. 4375–4380, 2017.

[210] K. Breivik, C. L. Rodriguez, S. L. Larson, V. Kalogera, and F. A. Rasio, “Distinguish-
ing Between Formation Channels for Binary Black Holes with LISA,” Astrophys. J.,
vol. 830, no. 1, p. L18, 2016.

[211] P. Amaro-Seoane and L. Santamaria, “Detection of IMBHs with ground-based grav-
itational wave observatories: A biography of a binary of black holes, from birth to
death,” Astrophys. J., vol. 722, pp. 1197–1206, 2010.

[212] K. Jani, D. Shoemaker, and C. Cutler, “Detectability of Intermediate-Mass Black Holes
in Multiband Gravitational Wave Astronomy,” Nature Astron., vol. 4, no. 3, pp. 260–
265, 2019.

[213] M. Mezcua, “Observational evidence for intermediate-mass black holes,” Int. J. Mod.
Phys. D, vol. 26, no. 11, p. 1730021, 2017.

[214] J. M. Miller, A. C. Fabian, and M. C. Miller, “A Comparison of intermediate mass
black hole candidate ULXs and stellar-mass black holes,” Astrophys. J. Lett., vol. 614,
pp. L117–L120, 2004.

[215] R. Abbott et al., “Properties and Astrophysical Implications of the 150 M� Binary
Black Hole Merger GW190521,” Astrophys. J. Lett., vol. 900, no. 1, p. L13, 2020.

217



Bibliography

[216] M. A. Latif and A. Ferrara, “Formation of supermassive black hole seeds,” Publ. Astron.
Soc. Austral., vol. 33, p. e051, 2016.

[217] M. Volonteri, “The Formation and Evolution of Massive Black Holes,” Science, vol. 337,
p. 544, 2012.

[218] J. Kormendy and L. C. Ho, “Coevolution (Or Not) of Supermassive Black Holes and
Host Galaxies,” Ann. Rev. Astron. Astrophys., vol. 51, pp. 511–653, 2013.

[219] P. Padovani et al., “Active galactic nuclei: what’s in a name?,” Astron. Astrophys.
Rev., vol. 25, no. 1, p. 2, 2017.

[220] F. Wang, J. Yang, X. Fan, J. F. Hennawi, A. J. Barth, E. Banados, F. Bian, K. Boutsia,
T. Connor, F. B. Davies, and et al., “A luminous quasar at redshift 7.642,” Astrophys.
J., vol. 907, p. L1, Jan 2021.

[221] A. Sesana, F. Haardt, P. Madau, and M. Volonteri, “Low - frequency gravitational
radiation from coalescing massive black hole binaries in hierarchical cosmologies,” As-
trophys. J., vol. 611, pp. 623–632, 2004.

[222] P. J. Armitage and P. Natarajan, “Accretion during the merger of supermassive black
holes,” Astrophys. J. Lett., vol. 567, pp. L9–L12, 2002.

[223] A. De Rosa et al., “The quest for dual and binary supermassive black holes: A multi-
messenger view,” New Astron. Rev., vol. 86, p. 101525, 2019.

[224] N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein, and A. Petiteau, “Science
with the space-based interferometer eLISA. III: Probing the expansion of the Universe
using gravitational wave standard sirens,” JCAP, vol. 04, p. 002, 2016.

[225] E. Barausse, I. Dvorkin, M. Tremmel, M. Volonteri, and M. Bonetti, “Massive Black
Hole Merger Rates: The Effect of Kiloparsec Separation Wandering and Supernova
Feedback,” Astrophys. J., vol. 904, no. 1, p. 16, 2020.

[226] S. Sigurdsson and M. J. Rees, “Capture of stellar mass compact objects by massive
black holes in galactic cusps,” Mon. Not. Roy. Astron. Soc., vol. 284, p. 318, 1997.

[227] M. Bonetti and A. Sesana, “Gravitational wave background from extreme mass ratio
inspirals,” Phys. Rev. D, vol. 102, no. 10, p. 103023, 2020.

[228] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti,
P. Amaro-Seoane, A. Petiteau, and A. Klein, “Science with the space-based interferom-
eter LISA. V: Extreme mass-ratio inspirals,” Phys. Rev. D, vol. 95, no. 10, p. 103012,
2017.

[229] L. S. Finn and K. S. Thorne, “Gravitational waves from a compact star in a circular,
inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by
LISA,” Phys. Rev. D, vol. 62, p. 124021, 2000.

218



Bibliography

[230] E. Poisson, A. Pound, and I. Vega, “The Motion of point particles in curved spacetime,”
Living Rev. Rel., vol. 14, p. 7, 2011.

[231] J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker, “Testing General Relativity
with Low-Frequency, Space-Based Gravitational-Wave Detectors,” Living Rev. Rel.,
vol. 16, p. 7, 2013.

[232] V. Kalogera, K. Belczynski, C. Kim, R. W. O’Shaughnessy, and B. Willems, “Forma-
tion of Double Compact Objects,” Phys. Rept., vol. 442, pp. 75–108, 2007.

[233] C. S. Ye, W.-f. Fong, K. Kremer, C. L. Rodriguez, S. Chatterjee, G. Fragione, and
F. A. Rasio, “On the Rate of Neutron Star Binary Mergers from Globular Clusters,”
Astrophys. J. Lett., vol. 888, no. 1, p. L10, 2020.

[234] B. P. Abbott et al., “GW170817: Measurements of neutron star radii and equation of
state,” Phys. Rev. Lett., vol. 121, no. 16, p. 161101, 2018.

[235] T. Dietrich, T. Hinderer, and A. Samajdar, “Interpreting Binary Neutron Star Mergers:
Describing the Binary Neutron Star Dynamics, Modelling Gravitational Waveforms,
and Analyzing Detections,” 4 2020.

[236] K. Chatziioannou and W. M. Farr, “Inferring the maximum and minimum mass
of merging neutron stars with gravitational waves,” Phys. Rev. D, vol. 102, no. 6,
p. 064063, 2020.

[237] S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, “Exploding
neutron stars in close binaries,” 8 2018.

[238] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, “Nucleosynthesis, Neutrino Bursts
and Gamma-Rays from Coalescing Neutron Stars,” Nature, vol. 340, pp. 126–128, 1989.

[239] L.-X. Li and B. Paczynski, “Transient events from neutron star mergers,” Astrophys.
J. Lett., vol. 507, p. L59, 1998.

[240] B. D. Metzger and E. Berger, “What is the Most Promising Electromagnetic Counter-
part of a Neutron Star Binary Merger?,” Astrophys. J., vol. 746, p. 48, 2012.

[241] B. Abbott et al., “GW190425: Observation of a Compact Binary Coalescence with
Total Mass ∼ 3.4M�,” Astrophys. J. Lett., vol. 892, p. L3, 2020.

[242] M. L. Chan, C. Messenger, I. S. Heng, and M. Hendry, “Binary Neutron Star Mergers
and Third Generation Detectors: Localization and Early Warning,” Phys. Rev. D,
vol. 97, no. 12, p. 123014, 2018.

[243] E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore, and T. Regimbau, “Cos-
mology and dark energy from joint gravitational wave-GRB observations,” JCAP,
vol. 08, p. 015, 2019.

[244] M. Mapelli and N. Giacobbo, “The cosmic merger rate of neutron stars and black
holes,” Mon. Not. Roy. Astron. Soc., vol. 479, no. 4, pp. 4391–4398, 2018.

219



Bibliography

[245] K. Belczynski, S. Repetto, D. E. Holz, R. O’Shaughnessy, T. Bulik, E. Berti, C. Fryer,
and M. Dominik, “Compact Binary Merger Rates: Comparison with LIGO/Virgo Up-
per Limits,” Astrophys. J., vol. 819, no. 2, p. 108, 2016.

[246] D. Clausen, S. Sigurdsson, and D. F. Chernoff, “Black Hole-Neutron Star Mergers in
Globular Clusters,” Mon. Not. Roy. Astron. Soc., vol. 428, p. 3618, 2013.

[247] M. A. Sedda, “Dissecting the properties of neutron star - black hole mergers originating
in dense star clusters,” Commun. Phys., vol. 3, p. 43, 2020.

[248] R. Abbott et al., “GW190814: Gravitational Waves from the Coalescence of a 23 Solar
Mass Black Hole with a 2.6 Solar Mass Compact Object,” Astrophys. J. Lett., vol. 896,
no. 2, p. L44, 2020.

[249] C. Barbieri, O. S. Salafia, A. Perego, M. Colpi, and G. Ghirlanda, “Light-curve models
of black hole – neutron star mergers: steps towards a multi-messenger parameter
estimation,” Astron. Astrophys., vol. 625, p. A152, 2019.

[250] F. Foucart, “A brief overview of black hole-neutron star mergers,” Front. Astron. Space
Sci., vol. 7, p. 46, 2020.

[251] S. L. Liebling and C. Palenzuela, “Dynamical Boson Stars,” Living Rev. Rel., vol. 20,
no. 1, p. 5, 2017.

[252] P. O. Mazur and E. Mottola, “Gravitational condensate stars: An alternative to black
holes,” 9 2001.

[253] M. Visser and D. L. Wiltshire, “Stable gravastars: An Alternative to black holes?,”
Class. Quant. Grav., vol. 21, pp. 1135–1152, 2004.

[254] M. Visser, Lorentzian wormholes: From Einstein to Hawking. 1995.

[255] K. Skenderis and M. Taylor, “The fuzzball proposal for black holes,” Phys. Rept.,
vol. 467, pp. 117–171, 2008.

[256] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes: Complementarity or
Firewalls?,” JHEP, vol. 02, p. 062, 2013.

[257] M. Saravani, N. Afshordi, and R. B. Mann, “Empty black holes, firewalls, and the origin
of Bekenstein–Hawking entropy,” Int. J. Mod. Phys. D, vol. 23, no. 13, p. 1443007,
2015.

[258] B. Holdom and J. Ren, “Not quite a black hole,” Phys. Rev. D, vol. 95, no. 8, p. 084034,
2017.

[259] S. B. Giddings, “Possible observational windows for quantum effects from black holes,”
Phys. Rev. D, vol. 90, no. 12, p. 124033, 2014.

220



Bibliography

[260] J. Abedi, H. Dykaar, and N. Afshordi, “Echoes from the Abyss: Tentative evidence for
Planck-scale structure at black hole horizons,” Phys. Rev. D, vol. 96, no. 8, p. 082004,
2017.

[261] V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status report,”
Living Rev. Rel., vol. 22, no. 1, p. 4, 2019.

[262] C. Ott, “The Gravitational Wave Signature of Core-Collapse Supernovae,” Class.
Quant. Grav., vol. 26, p. 063001, 2009.

[263] S. E. Gossan, P. Sutton, A. Stuver, M. Zanolin, K. Gill, and C. D. Ott, “Observing
Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era,”
Phys. Rev. D, vol. 93, no. 4, p. 042002, 2016.

[264] C. Afle and D. A. Brown, “Inferring physical properties of stellar collapse by third-
generation gravitational-wave detectors,” Phys. Rev. D, vol. 103, no. 2, p. 023005,
2021.

[265] E. Abdikamalov, G. Pagliaroli, and D. Radice, “Gravitational Waves from Core-
Collapse Supernovae,” 10 2020.

[266] S. V. Bergh and G. A. Tammann, “Galactic and extragalactic supernova rates,” Ann.
Rev. Astron. Astrophys., vol. 29, pp. 363–407, 1991.

[267] B. P. Abbott et al., “Optically targeted search for gravitational waves emitted by core-
collapse supernovae during the first and second observing runs of advanced LIGO and
advanced Virgo,” Phys. Rev. D, vol. 101, no. 8, p. 084002, 2020.

[268] T. Damour and A. Vilenkin, “Gravitational wave bursts from cosmic strings,” Phys.
Rev. Lett., vol. 85, pp. 3761–3764, 2000.

[269] C. P. L. Berry and J. R. Gair, “Expectations for extreme-mass-ratio bursts from the
Galactic Centre,” Mon. Not. Roy. Astron. Soc., vol. 435, pp. 3521–3540, 2013.

[270] J. Weber, “Detection and Generation of Gravitational Waves,” Phys. Rev., vol. 117,
pp. 306–313, 1960.

[271] J. Weber, “Evidence for discovery of gravitational radiation,” Phys. Rev. Lett., vol. 22,
pp. 1320–1324, 1969.

[272] D. W. Sciama, G. B. Field, and M. J. Rees, “Upper Limit to Radiation of Mass Energy
Derived from Expansion of Galaxy,” Phys. Rev. Lett., vol. 23, pp. 1514–1515, 1969.

[273] M. Gertsenshtein and V. Pustovoit, “On the detection of low frequency gravitational
waves,” JETP, vol. 43, pp. 605–607, 1962.

[274] “A brief history of ligo.” https://www.ligo.caltech.edu/system/media_files/
binaries/386/original/LIGOHistory.pdf.

221

https://www.ligo.caltech.edu/system/media_files/binaries/386/original/LIGOHistory.pdf
https://www.ligo.caltech.edu/system/media_files/binaries/386/original/LIGOHistory.pdf


Bibliography

[275] M. Armano et al., “The LISA Pathfinder Mission,” J. Phys. Conf. Ser., vol. 610, no. 1,
p. 012005, 2015.

[276] M. Armano et al., “Sub-Femto- g Free Fall for Space-Based Gravitational Wave Ob-
servatories: LISA Pathfinder Results,” Phys. Rev. Lett., vol. 116, no. 23, p. 231101,
2016.

[277] B. Abbott et al., “Detector description and performance for the first coincidence ob-
servations between LIGO and GEO,” Nucl. Instrum. Meth. A, vol. 517, pp. 154–179,
2004.

[278] B. F. Schutz and M. Tinto, “Antenna patterns of interferometric detectors of gravi-
tational waves - I. Linearly polarized waves.,” Mon. Not. Roy. Astron. Soc., vol. 224,
pp. 131–154, Jan. 1987.

[279] M. Tinto, “Antenna patterns of interferometric detectors of gravitational waves - II.
Elliptically and randomly polarized waves.,” Mon. Not. Roy. Astron. Soc., vol. 226,
pp. 829–848, June 1987.

[280] B. P. Abbott et al., “A guide to LIGO–Virgo detector noise and extraction of transient
gravitational-wave signals,” Class. Quant. Grav., vol. 37, no. 5, p. 055002, 2020.

[281] A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, and M.-a. Sakagami, “Probing
non-tensorial polarizations of stochastic gravitational-wave backgrounds with ground-
based laser interferometers,” Phys. Rev. D, vol. 79, p. 082002, 2009.

[282] M. Tinto and S. V. Dhurandhar, “Time-delay interferometry,” Living Rev. Rel., vol. 8,
p. 4, 2005.

[283] S. Marsat and J. G. Baker, “Fourier-domain modulations and delays of gravitational-
wave signals,” 6 2018.

[284] S. Marsat, J. G. Baker, and T. Dal Canton, “Exploring the Bayesian parameter es-
timation of binary black holes with LISA,” Phys. Rev. D, vol. 103, no. 8, p. 083011,
2021.

[285] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series,
with Engineering Applications. 1949.

[286] L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise. 1970.

[287] M. H. A. Davis, “A REVIEW OF THE STATISTICAL THEORY OF SIGNAL DE-
TECTION,” 1987.

[288] S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer, and B. S. Sathyaprakash,
“A Template bank to search for gravitational waves from inspiralling compact binaries.
I. Physical models,” Class. Quant. Grav., vol. 23, pp. 5477–5504, 2006.

[289] I. W. Harry, B. Allen, and B. S. Sathyaprakash, “A Stochastic template placement
algorithm for gravitational wave data analysis,” Phys. Rev. D, vol. 80, p. 104014, 2009.

222



Bibliography

[290] S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos, M. A. Frei,
C. Hanna, A. J. Weinstein, and J. T. Whelan, “Improving the sensitivity of a search
for coalescing binary black holes with nonprecessing spins in gravitational wave data,”
Phys. Rev. D, vol. 89, no. 2, p. 024003, 2014.

[291] J. Abadie et al., “Search for Gravitational Waves from Low Mass Compact Binary
Coalescence in LIGO’s Sixth Science Run and Virgo’s Science Runs 2 and 3,” Phys.
Rev. D, vol. 85, p. 082002, 2012.

[292] J. Aasi et al., “Search for gravitational waves from binary black hole inspiral, merger,
and ringdown in LIGO-Virgo data from 2009–2010,” Phys. Rev. D, vol. 87, no. 2,
p. 022002, 2013.

[293] A. Buonanno, Y.-b. Chen, and M. Vallisneri, “Detection template families for gravi-
tational waves from the final stages of binary–black-hole inspirals: Nonspinning case,”
Phys. Rev. D, vol. 67, p. 024016, 2003. [Erratum: Phys.Rev.D 74, 029903 (2006)].

[294] C. J. Moore, D. Gerosa, and A. Klein, “Are stellar-mass black-hole binaries too quiet
for LISA?,” Mon. Not. Roy. Astron. Soc., vol. 488, no. 1, pp. L94–L98, 2019.

[295] B. P. Abbott et al., “GW150914: First results from the search for binary black hole
coalescence with Advanced LIGO,” Phys. Rev. D, vol. 93, no. 12, p. 122003, 2016.

[296] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, “FIND-
CHIRP: An Algorithm for detection of gravitational waves from inspiraling compact
binaries,” Phys. Rev., vol. D85, p. 122006, 2012.

[297] S. A. Usman et al., “The PyCBC search for gravitational waves from compact binary
coalescence,” Class. Quant. Grav., vol. 33, no. 21, p. 215004, 2016.

[298] S. Sachdev et al., “The GstLAL Search Analysis Methods for Compact Binary Mergers
in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs,” 1 2019.

[299] C. Messick et al., “Analysis Framework for the Prompt Discovery of Compact Binary
Mergers in Gravitational-wave Data,” Phys. Rev. D, vol. 95, no. 4, p. 042001, 2017.

[300] B. Zackay, L. Dai, T. Venumadhav, J. Roulet, and M. Zaldarriaga, “Detecting Grav-
itational Waves With Disparate Detector Responses: Two New Binary Black Hole
Mergers,” 10 2019.

[301] B. P. Abbott et al., “All-Sky Search for Short Gravitational-Wave Bursts in the Second
Advanced LIGO and Advanced Virgo Run,” Phys. Rev. D, vol. 100, no. 2, p. 024017,
2019.

[302] C. L. Rodriguez, B. Farr, V. Raymond, W. M. Farr, T. B. Littenberg, D. Fazi, and
V. Kalogera, “Basic Parameter Estimation of Binary Neutron Star Systems by the
Advanced LIGO/Virgo Network,” Astrophys. J., vol. 784, p. 119, 2014.

223



Bibliography

[303] R. L. Karandikar, “On the markov chain monte carlo (mcmc) method,” Sadhana,
vol. 31, pp. 81–104, Apr 2006.

[304] M. Vallisneri, “Use and abuse of the Fisher information matrix in the assessment of
gravitational-wave parameter-estimation prospects,” Phys. Rev., vol. D77, p. 042001,
2008.

[305] S. E. Timpano, L. J. Rubbo, and N. J. Cornish, “Characterizing the galactic gravita-
tional wave background with LISA,” Phys. Rev., vol. D73, p. 122001, 2006.

[306] C. Cutler, “Angular resolution of the LISA gravitational wave detector,” Phys. Rev.,
vol. D57, pp. 7089–7102, 1998.

[307] A. Vecchio and E. D. L. Wickham, “LISA response function and parameter estimation,”
Class. Quant. Grav., vol. 21, no. 5, pp. S661–S664, 2004.

[308] A. Vecchio and E. D. L. Wickham, “The Effect of the LISA response function on
observations of monochromatic sources,” Phys. Rev., vol. D70, p. 082002, 2004.

[309] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” The
American Statistician, vol. 49, no. 4, pp. 327–335, 1995.

[310] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of
state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087–1092,
1953.

[311] A. Buonanno, G. B. Cook, and F. Pretorius, “Inspiral, merger and ring-down of equal-
mass black-hole binaries,” Phys. Rev., vol. D75, p. 124018, 2007.

[312] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, “Comparison
of post-Newtonian templates for compact binary inspiral signals in gravitational-wave
detectors,” Phys. Rev., vol. D80, p. 084043, 2009.

[313] A. Gelman and D. B. Rubin, “Inference from Iterative Simulation Using Multiple
Sequences,” Statist. Sci., vol. 7, pp. 457–472, 1992.

[314] LISA Science Study Team, “LISA Science Requirements Document.”
https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf/
25831f6b-3c01-e215-5916-4ac6e4b306fb?t=1526479841000, 2018.

[315] A. Mangiagli, A. Klein, M. Bonetti, M. L. Katz, A. Sesana, M. Volonteri, M. Colpi,
S. Marsat, and S. Babak, “On the inspiral of coalescing massive black hole binaries with
LISA in the era of Multi-Messenger Astrophysics,” Phys. Rev. D, vol. 102, p. 084056,
2020.

[316] K. W. K. Wong, E. D. Kovetz, C. Cutler, and E. Berti, “Expanding the LISA Horizon
from the Ground,” Phys. Rev. Lett., vol. 121, no. 25, p. 251102, 2018.

224

https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf/25831f6b-3c01-e215-5916-4ac6e4b306fb?t=1526479841000
https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf/25831f6b-3c01-e215-5916-4ac6e4b306fb?t=1526479841000


Bibliography

[317] A. Gupta, S. Datta, S. Kastha, S. Borhanian, K. Arun, and B. Sathyaprakash, “Multi-
parameter tests of general relativity using multiband gravitational-wave observations,”
5 2020.

[318] B. Ewing, S. Sachdev, S. Borhanian, and B. Sathyaprakash, “Archival searches for
stellar-mass binary black holes in LISA,” 11 2020.

[319] T. D. Abbott et al., “Improved analysis of GW150914 using a fully spin-precessing
waveform Model,” Phys. Rev., vol. X6, no. 4, p. 041014, 2016.

[320] T. Robson, N. J. Cornish, and C. Liu, “The construction and use of LISA sensitivity
curves,” Class. Quant. Grav., vol. 36, no. 10, p. 105011, 2019.

[321] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Statist.,
vol. 22, pp. 79–86, 03 1951.

[322] D. Foreman-Mackey, “corner.py: Scatterplot matrices in python,” The Journal of Open
Source Software, vol. 24, 2016.

[323] A. Mangiagli, A. Klein, A. Sesana, E. Barausse, and M. Colpi, “Post-Newtonian phase
accuracy requirements for stellar black hole binaries with LISA,” Phys. Rev., vol. D99,
no. 6, p. 064056, 2019.

[324] E. Poisson and C. M. Will, “Gravitational waves from inspiraling compact binaries:
Parameter estimation using second postNewtonian wave forms,” Phys. Rev., vol. D52,
pp. 848–855, 1995.

[325] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation:
One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[326] N. Meidinger, “The Wide Field Imager instrument for Athena,” Contributions of the
Astronomical Observatory Skalnate Pleso, vol. 48, pp. 498–505, Jul 2018.

[327] P. Dewdney et al., “Square Kilometre Array White Paper.” https://www.
skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_
System_Baseline_v2_DescriptionRev01-part-1-signed.pdf, 2015.

[328] S. Shah, M. van der Sluys, and G. Nelemans, “Using electromagnetic observations to
aid gravitational-wave parameter estimation of compact binaries observed with LISA,”
Astron. Astrophys., vol. 544, p. A153, 2012.

[329] Z. Cao and W.-B. Han, “Waveform model for an eccentric binary black hole based on
the effective-one-body-numerical-relativity formalism,” Phys. Rev. D, vol. 96, no. 4,
p. 044028, 2017.

[330] B. Ireland, O. Birnholtz, H. Nakano, E. West, and M. Campanelli, “Eccentric Binary
Black Holes with Spin via the Direct Integration of the Post-Newtonian Equations of
Motion,” Phys. Rev. D, vol. 100, no. 2, p. 024015, 2019.

225

https://www.skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_System_Baseline_v2_DescriptionRev01-part-1-signed.pdf
https://www.skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_System_Baseline_v2_DescriptionRev01-part-1-signed.pdf
https://www.skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_System_Baseline_v2_DescriptionRev01-part-1-signed.pdf


Bibliography

[331] I. Hinder, L. E. Kidder, and H. P. Pfeiffer, “Eccentric binary black hole inspiral-merger-
ringdown gravitational waveform model from numerical relativity and post-Newtonian
theory,” Phys. Rev. D, vol. 98, no. 4, p. 044015, 2018.

[332] T. Hinderer and S. Babak, “Foundations of an effective-one-body model for coalescing
binaries on eccentric orbits,” Phys. Rev. D, vol. 96, no. 10, p. 104048, 2017.

[333] E. Huerta et al., “Eccentric, nonspinning, inspiral, Gaussian-process merger approx-
imant for the detection and characterization of eccentric binary black hole mergers,”
Phys. Rev. D, vol. 97, no. 2, p. 024031, 2018.

[334] B. F. Schutz, “Determining the Hubble Constant from Gravitational Wave Observa-
tions,” Nature, vol. 323, pp. 310–311, 1986.

[335] W. Del Pozzo, A. Sesana, and A. Klein, “Stellar binary black holes in the LISA band:
a new class of standard sirens,” Mon. Not. Roy. Astron. Soc., vol. 475, no. 3, pp. 3485–
3492, 2018.

[336] K. Kyutoku and N. Seto, “Gravitational-wave cosmography with LISA and the Hubble
tension,” Phys. Rev., vol. D95, no. 8, p. 083525, 2017.

[337] G. Gnocchi, A. Maselli, T. Abdelsalhin, N. Giacobbo, and M. Mapelli, “Bounding al-
ternative theories of gravity with multiband GW observations,” Phys. Rev. D, vol. 100,
no. 6, p. 064024, 2019.

[338] Z. Carson and K. Yagi, “Multi-band gravitational wave tests of general relativity,”
2019.

[339] S. Vitale, “Multiband Gravitational-Wave Astronomy: Parameter Estimation and
Tests of General Relativity with Space- and Ground-Based Detectors,” Phys. Rev.
Lett., vol. 117, no. 5, p. 051102, 2016.

[340] E. Barausse, N. Yunes, and K. Chamberlain, “Theory-Agnostic Constraints on Black-
Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics,” Phys. Rev.
Lett., vol. 116, no. 24, p. 241104, 2016.

[341] K. Chamberlain and N. Yunes, “Theoretical Physics Implications of Gravitational Wave
Observation with Future Detectors,” Phys. Rev., vol. D96, no. 8, p. 084039, 2017.

[342] Z. Carson and K. Yagi, “Parameterized and inspiral-merger-ringdown consistency tests
of gravity with multi-band gravitational wave observations,” Phys. Rev., vol. D101,
no. 4, p. 044047, 2020.

[343] N. Yunes and F. Pretorius, “Fundamental Theoretical Bias in Gravitational Wave As-
trophysics and the Parameterized Post-Einsteinian Framework,” Phys. Rev., vol. D80,
p. 122003, 2009.

[344] C. Palenzuela, P. Pani, M. Bezares, V. Cardoso, L. Lehner, and S. Liebling, “Gravita-
tional Wave Signatures of Highly Compact Boson Star Binaries,” Phys. Rev., vol. D96,
no. 10, p. 104058, 2017.

226



Bibliography

[345] M. Bezares, C. Palenzuela, and C. Bona, “Final fate of compact boson star mergers,”
Phys. Rev., vol. D95, no. 12, p. 124005, 2017.

[346] M. Bezares and C. Palenzuela, “Gravitational Waves from Dark Boson Star binary
mergers,” Class. Quant. Grav., vol. 35, no. 23, p. 234002, 2018.

[347] M. Agathos, W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, J. Veitch, and S. Vitale,
“TIGER: A data analysis pipeline for testing the strong-field dynamics of general
relativity with gravitational wave signals from coalescing compact binaries,” Phys.
Rev., vol. D89, no. 8, p. 082001, 2014.

[348] S. Tahura, K. Yagi, and Z. Carson, “Testing Gravity with Gravitational Waves from
Binary Black Hole Mergers: Contributions from Amplitude Corrections,” 2019.

[349] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, “Post-Newtonian, Quasi-Circular Bi-
nary Inspirals in Quadratic Modified Gravity,” Phys. Rev., vol. D85, p. 064022, 2012.
[Erratum: Phys. Rev.D93,no.2,029902(2016)].

[350] N. Yunes, F. Pretorius, and D. Spergel, “Constraining the evolutionary history of New-
ton’s constant with gravitational wave observations,” Phys. Rev., vol. D81, p. 064018,
2010.

[351] N. Yunes, R. O’Shaughnessy, B. J. Owen, and S. Alexander, “Testing gravitational
parity violation with coincident gravitational waves and short gamma-ray bursts,”
Phys. Rev., vol. D82, p. 064017, 2010.

[352] K. Yagi, N. Tanahashi, and T. Tanaka, “Probing the size of extra dimension with
gravitational wave astronomy,” Phys. Rev., vol. D83, p. 084036, 2011.

[353] N. Yunes and L. C. Stein, “Non-Spinning Black Holes in Alternative Theories of Grav-
ity,” Phys. Rev., vol. D83, p. 104002, 2011.

[354] S. Vigeland, N. Yunes, and L. Stein, “Bumpy Black Holes in Alternate Theories of
Gravity,” Phys. Rev., vol. D83, p. 104027, 2011.

[355] S. Mirshekari, N. Yunes, and C. M. Will, “Constraining Generic Lorentz Violation and
the Speed of the Graviton with Gravitational Waves,” Phys. Rev., vol. D85, p. 024041,
2012.

[356] K. Chatziioannou, N. Yunes, and N. Cornish, “Model-Independent Test of General Rel-
ativity: An Extended post-Einsteinian Framework with Complete Polarization Con-
tent,” Phys. Rev. D, vol. 86, p. 022004, 2012. [Erratum: Phys.Rev.D 95, 129901
(2017)].

[357] C. M. Will, “Bounding the mass of the graviton using gravitational wave observations
of inspiralling compact binaries,” Phys. Rev., vol. D57, pp. 2061–2068, 1998.

[358] P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev., vol. D79, p. 084008,
2009.

227



Bibliography

[359] M. Visser, “Lorentz symmetry breaking as a quantum field theory regulator,” Phys.
Rev., vol. D80, p. 025011, 2009.

[360] B. P. Abbott et al., “Gravitational Waves and Gamma-rays from a Binary Neutron
Star Merger: GW170817 and GRB 170817A,” Astrophys. J., vol. 848, no. 2, p. L13,
2017.

[361] C. M. Will, “Solar system versus gravitational-wave bounds on the graviton mass,”
Class. Quant. Grav., vol. 35, no. 17, p. 17LT01, 2018.

[362] B. P. Abbott et al., “Tests of General Relativity with GW170817,” Phys. Rev. Lett.,
vol. 123, no. 1, p. 011102, 2019.

[363] J. Ellis and R. van Haasteren, “jellis18/PTMCMCSampler: Official Release,” Oct.
2017.

[364] K. Yagi, “A New constraint on scalar Gauss-Bonnet gravity and a possible explana-
tion for the excess of the orbital decay rate in a low-mass X-ray binary,” Phys. Rev.,
vol. D86, p. 081504, 2012.

[365] J. Skilling, “Nested sampling for general bayesian computation,” Bayesian Anal., vol. 1,
pp. 833–859, 12 2006.

[366] K. Thorne, “Space-time warps and the quantum world: Speculations about the future,”
2002.

[367] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, and S. Ossokine, “Distinguishing
boson stars from black holes and neutron stars from tidal interactions in inspiraling
binary systems,” Physical Review D, vol. 96, Jul 2017.

[368] A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, and V. Ferrari, “Prob-
ing Planckian corrections at the horizon scale with LISA binaries,” Phys. Rev. Lett.,
vol. 120, no. 8, p. 081101, 2018.

[369] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo, “Testing strong-field grav-
ity with tidal Love numbers,” Phys. Rev. D, vol. 95, no. 8, p. 084014, 2017. [Addendum:
Phys.Rev.D 95, 089901 (2017)].

[370] G. F. Giudice, “Hunting for dark particles with gravitational waves,” EPJ Web Conf.,
vol. 164, p. 02004, 2017.

[371] N. Krishnendu, K. Arun, and C. K. Mishra, “Testing the binary black hole nature of
a compact binary coalescence,” Phys. Rev. Lett., vol. 119, no. 9, p. 091101, 2017.

[372] N. Krishnendu, C. K. Mishra, and K. Arun, “Spin-induced deformations and tests of
binary black hole nature using third-generation detectors,” Phys. Rev. D, vol. 99, no. 6,
p. 064008, 2019.

228



Bibliography

[373] N. K. Johnson-Mcdaniel, A. Mukherjee, R. Kashyap, P. Ajith, W. Del Pozzo, and
S. Vitale, “Constraining black hole mimickers with gravitational wave observations,” 4
2018.

[374] A. Addazi, A. Marciano, and N. Yunes, “Can we probe Planckian corrections at the
horizon scale with gravitational waves?,” Phys. Rev. Lett., vol. 122, no. 8, p. 081301,
2019.

[375] S. Datta, R. Brito, S. Bose, P. Pani, and S. A. Hughes, “Tidal heating as a discriminator
for horizons in extreme mass ratio inspirals,” Phys. Rev. D, vol. 101, no. 4, p. 044004,
2020.

[376] S. Datta, K. S. Phukon, and S. Bose, “Recognizing black holes in gravitational-wave
observations: Telling apart impostors in mass-gap binaries,” 4 2020.

[377] Y. Asali, P. T. Pang, A. Samajdar, and C. Van Den Broeck, “Probing resonant exci-
tations in exotic compact objects via gravitational waves,” 4 2020.

[378] C. Chirenti, C. Posada, and V. Guedes, “Where is Love? Tidal deformability in the
black hole compactness limit,” 5 2020.

[379] C. Pacilio, M. Vaglio, A. Maselli, and P. Pani, “Gravitational-wave detectors as
particle-physics laboratories: Constraining scalar interactions with boson-star bina-
ries,” 7 2020.

[380] C. F. Macedo, P. Pani, V. Cardoso, and L. C. B. Crispino, “Astrophysical signatures
of boson stars: quasinormal modes and inspiral resonances,” Phys. Rev. D, vol. 88,
no. 6, p. 064046, 2013.

[381] V. Cardoso, E. Franzin, and P. Pani, “Is the gravitational-wave ringdown a probe of
the event horizon?,” Phys. Rev. Lett., vol. 116, no. 17, p. 171101, 2016. [Erratum:
Phys.Rev.Lett. 117, 089902 (2016)].

[382] C. F. B. Macedo, V. Cardoso, L. C. B. Crispino, and P. Pani, “Quasinormal modes of
relativistic stars and interacting fields,” Phys. Rev. D, vol. 93, no. 6, p. 064053, 2016.

[383] C. Chirenti and L. Rezzolla, “Did GW150914 produce a rotating gravastar?,” Phys.
Rev. D, vol. 94, no. 8, p. 084016, 2016.

[384] E. Maggio, L. Buoninfante, A. Mazumdar, and P. Pani, “How does a dark compact
object ringdown?,” 6 2020.

[385] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela, and P. Pani, “Gravitational-
wave signatures of exotic compact objects and of quantum corrections at the horizon
scale,” Phys. Rev. D, vol. 94, no. 8, p. 084031, 2016.

[386] Z. Mark, A. Zimmerman, S. M. Du, and Y. Chen, “A recipe for echoes from exotic
compact objects,” Phys. Rev. D, vol. 96, no. 8, p. 084002, 2017.

229



Bibliography

[387] A. Maselli, S. H. Völkel, and K. D. Kokkotas, “Parameter estimation of gravitational
wave echoes from exotic compact objects,” Phys. Rev. D, vol. 96, no. 6, p. 064045,
2017.

[388] R. S. Conklin, B. Holdom, and J. Ren, “Gravitational wave echoes through new win-
dows,” Phys. Rev. D, vol. 98, no. 4, p. 044021, 2018.

[389] J. Westerweck, A. Nielsen, O. Fischer-Birnholtz, M. Cabero, C. Capano, T. Dent,
B. Krishnan, G. Meadors, and A. H. Nitz, “Low significance of evidence for black hole
echoes in gravitational wave data,” Phys. Rev. D, vol. 97, no. 12, p. 124037, 2018.

[390] Q. Wang and N. Afshordi, “Black hole echology: The observer’s manual,” Phys. Rev.
D, vol. 97, no. 12, p. 124044, 2018.

[391] A. Urbano and H. Veermäe, “On gravitational echoes from ultracompact exotic stars,”
JCAP, vol. 04, p. 011, 2019.

[392] R. Lo, T. Li, and A. Weinstein, “Template-based Gravitational-Wave Echoes Search
Using Bayesian Model Selection,” Phys. Rev. D, vol. 99, no. 8, p. 084052, 2019.

[393] A. B. Nielsen, C. D. Capano, O. Birnholtz, and J. Westerweck, “Parameter estimation
and statistical significance of echoes following black hole signals in the first Advanced
LIGO observing run,” Phys. Rev. D, vol. 99, no. 10, p. 104012, 2019.

[394] K. W. Tsang, A. Ghosh, A. Samajdar, K. Chatziioannou, S. Mastrogiovanni,
M. Agathos, and C. Van Den Broeck, “A morphology-independent search for grav-
itational wave echoes in data from the first and second observing runs of Advanced
LIGO and Advanced Virgo,” Phys. Rev. D, vol. 101, no. 6, p. 064012, 2020.

[395] E. Maggio, A. Testa, S. Bhagwat, and P. Pani, “Analytical model for gravitational-wave
echoes from spinning remnants,” Phys. Rev. D, vol. 100, no. 6, p. 064056, 2019.

[396] B. Chen, Y. Chen, Y. Ma, K.-L. R. Lo, and L. Sun, “Instability of Exotic Compact
Objects and Its Implications for Gravitational-Wave Echoes,” 2 2019.

[397] R. S. Conklin and B. Holdom, “Gravitational wave echo spectra,” Phys. Rev. D,
vol. 100, no. 12, p. 124030, 2019.

[398] L. F. L. Micchi, N. Afshordi, and C. Chirenti, “How loud are echoes from Exotic
Compact Objects?,” 10 2020.

[399] R. Friedberg, T. Lee, and Y. Pang, “Scalar Soliton Stars and Black Holes,” Phys. Rev.
D, vol. 35, p. 3658, 1987.

[400] M. Kesden, J. Gair, and M. Kamionkowski, “Gravitational-wave signature of an inspiral
into a supermassive horizonless object,” Phys. Rev. D, vol. 71, p. 044015, 2005.

[401] T. Damour and A. Nagar, “Relativistic tidal properties of neutron stars,” Phys. Rev.
D, vol. 80, p. 084035, 2009.

230



Bibliography

[402] T. Binnington and E. Poisson, “Relativistic theory of tidal Love numbers,” Phys. Rev.
D, vol. 80, p. 084018, 2009.

[403] T. Hinderer, “Tidal Love numbers of neutron stars,” Astrophys. J., vol. 677, pp. 1216–
1220, 2008.

[404] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa, and P. Pani, “Light rings as
observational evidence for event horizons: long-lived modes, ergoregions and nonlinear
instabilities of ultracompact objects,” Phys. Rev. D, vol. 90, no. 4, p. 044069, 2014.

[405] M. Shibata and K. Uryu, “Simulation of merging binary neutron stars in full general
relativity: Gamma = two case,” Phys. Rev. D, vol. 61, p. 064001, 2000.

[406] T. W. Baumgarte, S. L. Shapiro, and M. Shibata, “On the maximum mass of differen-
tially rotating neutron stars,” Astrophys. J., vol. 528, p. L29, 2000.

[407] S. Bernuzzi, “Neutron Stars Merger Remnants,” 4 2020.

[408] C. Palenzuela, I. Olabarrieta, L. Lehner, and S. L. Liebling, “Head-on collisions of
boson stars,” Phys. Rev. D, vol. 75, p. 064005, 2007.

[409] L. Lehner and F. Pretorius, “Numerical Relativity and Astrophysics,” Ann. Rev. As-
tron. Astrophys., vol. 52, pp. 661–694, 2014.

[410] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, “Constraints on a phe-
nomenologically parameterized neutron-star equation of state,” Phys. Rev. D, vol. 79,
p. 124032, 2009.

[411] S. Typel, G. Ropke, T. Klahn, D. Blaschke, and H. Wolter, “Composition and ther-
modynamics of nuclear matter with light clusters,” Phys. Rev. C, vol. 81, p. 015803,
2010.

[412] T. Dietrich, D. Radice, S. Bernuzzi, F. Zappa, A. Perego, B. Brügmann, S. V. Chaura-
sia, R. Dudi, W. Tichy, and M. Ujevic, “CoRe database of binary neutron star merger
waveforms,” Class. Quant. Grav., vol. 35, no. 24, p. 24LT01, 2018.

[413] N. Sanchis-Gual, F. Di Giovanni, M. Zilhão, C. Herdeiro, P. Cerdá-Durán, J. A. Font,
and E. Radu, “Non-linear dynamics of spinning bosonic stars: formation and stability,”
Phys. Rev. Lett., vol. 123, no. 22, p. 221101, 2019.

[414] F. Di Giovanni, N. Sanchis-Gual, P. Cerdá-Durán, M. Zilhão, C. Herdeiro, J. A. Font,
and E. Radu, “On the dynamical bar-mode instability in spinning bosonic stars,” 10
2020.

[415] A. Bauswein and H. T. Janka, “Measuring neutron-star properties via gravitational
waves from binary mergers,” Phys. Rev. Lett., vol. 108, p. 011101, 2012.

[416] A. Bauswein, H. T. Janka, K. Hebeler, and A. Schwenk, “Equation-of-state dependence
of the gravitational-wave signal from the ring-down phase of neutron-star mergers,”
Phys. Rev. D, vol. 86, p. 063001, 2012.

231



Bibliography

[417] A. Bauswein and N. Stergioulas, “Unified picture of the post-merger dynamics and
gravitational wave emission in neutron star mergers,” Phys. Rev. D, vol. 91, no. 12,
p. 124056, 2015.

[418] L. Lehner, S. L. Liebling, C. Palenzuela, O. L. Caballero, E. O’Connor, M. Ander-
son, and D. Neilsen, “Unequal mass binary neutron star mergers and multimessenger
signals,” Class. Quant. Grav., vol. 33, no. 18, p. 184002, 2016.

[419] K. Takami, L. Rezzolla, and L. Baiotti, “Spectral properties of the post-merger
gravitational-wave signal from binary neutron stars,” Phys. Rev., vol. D91, no. 6,
p. 064001, 2015.

[420] M. Lucca, L. Sagunski, F. Guercilena, and C. M. Fromm, “Shedding light on the
angular momentum evolution of binary neutron star merger remnants: a semi-analytic
model,” JHEAp, vol. 29, pp. 19–30, 2021.

[421] K. S. Thorne, Magic without Magic: John Archibald Wheeler. Oxford science publica-
tions, 1972.

[422] LIGO Scientific Collaboration, “LIGO Algorithm Library - LALSuite.” free software
(GPL), 2018.

[423] K. W. Tsang, T. Dietrich, and C. Van Den Broeck, “Modeling the postmerger gravi-
tational wave signal and extracting binary properties from future binary neutron star
detections,” Phys. Rev. D, vol. 100, no. 4, p. 044047, 2019.

[424] K. Chatziioannou, J. A. Clark, A. Bauswein, M. Millhouse, T. B. Littenberg, and
N. Cornish, “Inferring the post-merger gravitational wave emission from binary neutron
star coalescences,” Phys. Rev. D, vol. 96, no. 12, p. 124035, 2017.

[425] M. Breschi, S. Bernuzzi, F. Zappa, M. Agathos, A. Perego, D. Radice, and A. Nagar,
“kiloHertz gravitational waves from binary neutron star remnants: time-domain model
and constraints on extreme matter,” Phys. Rev. D, vol. 100, no. 10, p. 104029, 2019.

[426] T. Apostolatos, “Search templates for gravitational waves from precessing, inspiraling
binaries,” Phys. Rev. D, vol. 52, pp. 605–620, 1995.

[427] T. Damour, B. R. Iyer, and B. Sathyaprakash, “Improved filters for gravitational waves
from inspiralling compact binaries,” Phys. Rev. D, vol. 57, pp. 885–907, 1998.

[428] F. Feroz, M. Hobson, and M. Bridges, “MultiNest: an efficient and robust Bayesian in-
ference tool for cosmology and particle physics,” Mon. Not. Roy. Astron. Soc., vol. 398,
pp. 1601–1614, 2009.

[429] J. Calderón Bustillo, N. Sanchis-Gual, A. Torres-Forné, J. A. Font, A. Vajpeyi,
R. Smith, C. Herdeiro, E. Radu, and S. H. Leong, “The (ultra) light in the dark:
A potential vector boson of 8.7× 10−13 eV from GW190521,” 9 2020.

232



Bibliography

[430] A. Ghosh et al., “Testing general relativity using golden black-hole binaries,” Phys.
Rev. D, vol. 94, no. 2, p. 021101, 2016.

[431] R. Tso, D. Gerosa, and Y. Chen, “Optimizing LIGO with LISA forewarnings to improve
black-hole spectroscopy,” Phys. Rev., vol. D99, no. 12, p. 124043, 2019.

[432] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison, and R. Lopez-Aleman,
“Black hole spectroscopy: Testing general relativity through gravitational wave obser-
vations,” Class. Quant. Grav., vol. 21, pp. 787–804, 2004.

[433] E. Berti, V. Cardoso, and C. M. Will, “On gravitational-wave spectroscopy of massive
black holes with the space interferometer LISA,” Phys. Rev. D, vol. 73, p. 064030,
2006.

[434] E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglia, “Matched-filtering and parameter
estimation of ringdown waveforms,” Phys. Rev. D, vol. 76, p. 104044, 2007.

[435] E. Berti, K. Yagi, H. Yang, and N. Yunes, “Extreme Gravity Tests with Gravitational
Waves from Compact Binary Coalescences: (II) Ringdown,” Gen. Rel. Grav., vol. 50,
no. 5, p. 49, 2018.

[436] V. Cardoso, M. Kimura, A. Maselli, E. Berti, C. F. B. Macedo, and R. McManus,
“Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating
black holes,” Phys. Rev. D, vol. 99, no. 10, p. 104077, 2019.

[437] M. J. Graham et al., “Candidate Electromagnetic Counterpart to the Binary Black
Hole Merger Gravitational Wave Event S190521g,” Phys. Rev. Lett., vol. 124, no. 25,
p. 251102, 2020.

[438] J. M. Bellovary, M.-M. Mac Low, B. McKernan, and K. E. S. Ford, “Migration Traps
in Disks Around Supermassive Black Holes,” Astrophys. J. Lett., vol. 819, no. 2, p. L17,
2016.

[439] I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, “Rapid and Bright Stellar-mass Binary
Black Hole Mergers in Active Galactic Nuclei,” Astrophys. J., vol. 835, no. 2, p. 165,
2017.

[440] N. C. Stone, B. D. Metzger, and Z. Haiman, “Assisted inspirals of stellar mass black
holes embedded in AGN discs: solving the ‘final au problem’,” Mon. Not. Roy. Astron.
Soc., vol. 464, no. 1, pp. 946–954, 2017.

[441] A. Secunda, J. Bellovary, M.-M. Mac Low, K. E. Saavik Ford, B. McKernan, N. Leigh,
W. Lyra, and Z. Sándor, “Orbital Migration of Interacting Stellar Mass Black Holes in
Disks around Supermassive Black Holes,” Astrophys. J., vol. 878, no. 2, p. 85, 2019.

[442] B. McKernan, K. E. S. Ford, W. Lyra, and H. B. Perets, “Intermediate mass black
holes in AGN disks: I. Production \& Growth,” Mon. Not. Roy. Astron. Soc., vol. 425,
p. 460, 2012.

233



Bibliography

[443] B. McKernan, K. E. S. Ford, B. Kocsis, W. Lyra, and L. M. Winter, “Intermediate-
mass black holes in AGN discs – II. Model predictions and observational constraints,”
Mon. Not. Roy. Astron. Soc., vol. 441, no. 1, pp. 900–909, 2014.

[444] V. Gayathri, Y. Yang, H. Tagawa, Z. Haiman, and I. Bartos, “Black hole mergers of
AGN origin in LIGO/Virgo’s O1-O3a observing periods,” 4 2021.

[445] N. Ivanova et al., “Common Envelope Evolution: Where we stand and how we can
move forward,” Astron. Astrophys. Rev., vol. 21, p. 59, 2013.

[446] G. Ashton, K. Ackley, I. M. n. Hernandez, and B. Piotrzkowski, “Current observations
are insufficient to confidently associate the binary black hole merger GW190521 with
AGN J124942.3+344929,” 10 2020.

[447] J. R. Hurley, C. A. Tout, and O. R. Pols, “Evolution of binary stars and the effect of
tides on binary populations,” Mon. Not. Roy. Astron. Soc., vol. 329, p. 897, 2002.

[448] L. R. Yungelson, J. P. Lasota, G. Nelemans, G. Dubus, E. P. J. van den Heuvel,
J. Dewi, and S. Portegies Zwart, “The origin and fate of short-period low-mass black-
hole binaries,” Astron. Astrophys., vol. 454, p. 559, 2006.

[449] K. Breivik et al., “COSMIC Variance in Binary Population Synthesis,” Astrophys. J.,
vol. 898, no. 1, p. 71, 2020.

[450] K. Kremer, S. Chatterjee, K. Breivik, C. L. Rodriguez, S. L. Larson, and F. A. Rasio,
“LISA Sources in Milky Way Globular Clusters,” Phys. Rev. Lett., vol. 120, no. 19,
p. 191103, 2018.

[451] A. Lamberts, S. Garrison-Kimmel, P. Hopkins, E. Quataert, J. Bullock, C.-A. Faucher-
Giguère, A. Wetzel, D. Keres, K. Drango, and R. Sanderson, “Predicting the binary
black hole population of the Milky Way with cosmological simulations,” Mon. Not.
Roy. Astron. Soc., vol. 480, no. 2, pp. 2704–2718, 2018.

[452] Y.-Z. Dong, W.-M. Gu, T. Liu, and J. Wang, “A black hole–white dwarf compact
binary model for long gamma-ray bursts without supernova association,” Mon. Not.
Roy. Astron. Soc., vol. 475, no. 1, pp. L101–L105, 2018.

[453] J. C. A. Miller-Jones et al., “Deep radio imaging of 47 Tuc identifies the peculiar X-ray
source X9 as a new black hole candidate,” Mon. Not. Roy. Astron. Soc., vol. 453, no. 4,
pp. 3918–3931, 2015.

[454] V. Tudor et al., “HST spectrum and timing of the ultracompact X-ray binary candidate
47 Tuc X9,” Mon. Not. Roy. Astron. Soc., vol. 476, no. 2, pp. 1889–1908, 2018.

[455] R. P. Church, J. Strader, M. B. Davies, and A. Bobrick, “Formation constraints indicate
a black-hole accretor in 47 Tuc X9,” Astrophys. J. Lett., vol. 851, p. L4, 2017.

[456] T. J. Maccarone, A. Kundu, S. E. Zepf, and K. L. Rhode, “A black hole in a globular
cluster,” Nature, vol. 445, pp. 183–185, 2007.

234



Bibliography

[457] L. D. Landau and E. M. Lifshitz, Course on theoretical physics: Mechanics. Wiley,
1960.

[458] H. Kim and W.-T. Kim, “Dynamical Friction of a Circular-Orbit Perturber in a
Gaseous Medium,” Astrophys. J., vol. 665, pp. 432–444, 2007.

[459] B. Kocsis, N. Yunes, and A. Loeb, “Observable Signatures of EMRI Black Hole Binaries
Embedded in Thin Accretion Disks,” Phys. Rev. D, vol. 84, p. 024032, 2011.

[460] E. C. Ostriker, “Dynamical friction in a gaseous medium,” Astrophys. J., vol. 513,
p. 252, 1999.

[461] E. Barausse, “Relativistic dynamical friction in a collisional fluid,” Mon. Not. Roy.
Astron. Soc., vol. 382, pp. 826–834, 2007.

[462] C. F. Macedo, P. Pani, V. Cardoso, and L. C. Crispino, “Into the lair: gravitational-
wave signatures of dark matter,” Astrophys. J., vol. 774, p. 48, 2013.

[463] H. Kim, W.-T. Kim, and F. J. Sanchez-Salcedo, “Dynamical Friction of Double Per-
turbers in a Gaseous Medium,” Astrophys. J., vol. 679, p. L33, 2008.

[464] J. Frank, A. King, and D. J. Raine, Accretion Power in Astrophysics: Third Edition.
Jan. 2002.

[465] C. Bonvin, C. Caprini, R. Sturani, and N. Tamanini, “Effect of matter structure on
the gravitational waveform,” Phys. Rev. D, vol. 95, no. 4, p. 044029, 2017.

[466] N. Tamanini, A. Klein, C. Bonvin, E. Barausse, and C. Caprini, “Peculiar acceleration
of stellar-origin black hole binaries: Measurement and biases with LISA,” Phys. Rev.
D, vol. 101, no. 6, p. 063002, 2020.

[467] K. Inayoshi, N. Tamanini, C. Caprini, and Z. Haiman, “Probing stellar binary black
hole formation in galactic nuclei via the imprint of their center of mass acceleration on
their gravitational wave signal,” Phys. Rev. D, vol. 96, no. 6, p. 063014, 2017.

[468] E. Barausse, V. Cardoso, and P. Pani, “Can environmental effects spoil precision
gravitational-wave astrophysics?,” Phys. Rev., vol. D89, no. 10, p. 104059, 2014.

[469] V. Cardoso and A. Maselli, “Constraints on the astrophysical environment of binaries
with gravitational-wave observations,” 2019.

[470] S. McGee, A. Sesana, and A. Vecchio, “The assembly of cosmic structure from baryons
to black holes with joint gravitational-wave and X-ray observations,” 2018.

[471] N. I. Shakura and R. A. Sunyaev, “Black holes in binary systems. Observational ap-
pearance,” Astron. Astrophys., vol. 24, pp. 337–355, 1973.

[472] J. Poutanen, S. Fabrika, A. G. Butkevich, and P. Abolmasov, “Supercritically accreting
stellar mass black holes as ultraluminous X-ray sources,” Mon. Not. Roy. Astron. Soc.,
vol. 377, pp. 1187–1194, 2007.

235



Bibliography

[473] A. Sadowski, “Slim accretion disks around black holes,” other thesis, 8 2011.

[474] C. Palenzuela, L. Lehner, and S. L. Liebling, “Dual Jets from Binary Black Holes,”
Science, vol. 329, p. 927, 2010.

[475] J. F. Steiner, J. E. McClintock, and R. Narayan, “Jet Power and Black Hole Spin:
Testing an Empirical Relationship and Using it to Predict the Spins of Six Black
Holes,” Astrophys. J., vol. 762, p. 104, 2013.

[476] P. Moesta, D. Alic, L. Rezzolla, O. Zanotti, and C. Palenzuela, “On the detectability
of dual jets from binary black holes,” Astrophys. J. Lett., vol. 749, p. L32, 2012.

[477] X. Li, P. Chang, Y. Levin, C. D. Matzner, and P. J. Armitage, “Simulation of a
Compact Object with Outflows Moving Through a Gaseous Background,” Mon. Not.
Roy. Astron. Soc., vol. 494, no. 2, pp. 2327–2336, 2020.

[478] A. Toubiana et al. In preparation.

[479] T. R. Marsh, G. Nelemans, and D. Steeghs, “Mass transfer between double white
dwarfs,” Mon. Not. Roy. Astron. Soc., vol. 350, p. 113, 2004.

[480] F. Verbunt and S. Rappaport, “Mass Transfer Instabilities Due to Angular Momentum
Flows in Close Binaries,” Astrophys. J., vol. 332, p. 193, 1988.

[481] R. F. Webbink, “Double white dwarfs as progenitors of R Coronae Borealis stars and
Type I supernovae,” Astrophys. J., vol. 277, pp. 355–360, 1984.

[482] L. M. van Haaften, G. Nelemans, R. Voss, M. A. Wood, and J. Kuijpers, “The evolution
of ultracompact X-ray binaries,” Astron. Astrophys., vol. 537, p. A104, 2012.

[483] C. G. Campbell, “Tidal effects in twin-degenerate binaries,” Monthly Notices of the
Royal Astronomical Society, vol. 207, pp. 433–443, 04 1984.

[484] J. P. Zahn, “Tidal friction in close binary stars,” Astron. Astrophys., vol. 57, pp. 383–
394, 1977.

[485] P. P. Eggleton, “Aproximations to the radii of Roche lobes.,” Astrophys. J., vol. 268,
pp. 368–369, 1983.

[486] N. J. Cornish and T. B. Littenberg, “Tests of Bayesian Model Selection Techniques for
Gravitational Wave Astronomy,” Phys. Rev. D, vol. 76, p. 083006, 2007.

[487] T. Robson and N. Cornish, “Impact of galactic foreground characterization on a global
analysis for the LISA gravitational wave observatory,” Class. Quant. Grav., vol. 34,
no. 24, p. 244002, 2017.

[488] S. R. Hinton, “ChainConsumer,” The Journal of Open Source Software, p. 00045, 2016.

[489] W. B. Hubbard and R. L. Wagner, “Hot White Dwarfs,” Astrophys. J., vol. 159, p. 93,
1970.

236



Bibliography

[490] D. J. Eisenstein et al., “A Catalog of Spectroscopically Confirmed White Dwarfs from
the Sloan Digital Sky Survey Data Release 4,” Astrophys. J. Suppl., vol. 167, pp. 40–58,
2006.

[491] C. J. Deloye and L. Bildsten, “White dwarf donors in ultracompact binaries: The
Stellar structure of finite entropy objects,” Astrophys. J., vol. 598, pp. 1217–1228,
2003.

[492] E. do A. Soares, “Constraining Effective Temperature, Mass and Radius of Hot White
Dwarfs,” 2017.

[493] A. Bédard, P. Bergeron, P. Brassard, and G. Fontaine, “On the Spectral Evolution
of Hot White Dwarf Stars. I. A Detailed Model Atmosphere Analysis of Hot White
Dwarfs from SDSS DR12,” Astrophys. J., vol. 901, p. 93, 2020.

[494] A. L. Piro, P. Arras, and L. Bildsten, “White dwarf heating and subsequent cooling in
dwarf nova outbursts,” Astrophys. J., vol. 628, pp. 401–410, 2005.

[495] J. Kormendy and D. Richstone, “Inward bound: The Search for supermassive black
holes in galactic nuclei,” Ann. Rev. Astron. Astrophys., vol. 33, p. 581, 1995.

[496] L. Ferrarese and D. Merritt, “A Fundamental relation between supermassive black
holes and their host galaxies,” Astrophys. J. Lett., vol. 539, p. L9, 2000.

[497] N. J. McConnell and C.-P. Ma, “Revisiting the Scaling Relations of Black Hole Masses
and Host Galaxy Properties,” Astrophys. J., vol. 764, p. 184, 2013.

[498] M. Schramm and J. D. Silverman, “The black hole - bulge mass relation of Active
Galactic Nuclei in the Extended Chandra Deep Field - South Survey,” Astrophys. J.,
vol. 767, p. 13, 2013.

[499] M. Milosavljevic and D. Merritt, “The Final parsec problem,” AIP Conf. Proc.,
vol. 686, no. 1, pp. 201–210, 2003.

[500] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, S. Sinha, and C. Van Den Broeck, “Higher
signal harmonics, LISA’s angular resolution and dark energy,” Phys. Rev. D, vol. 76,
p. 104016, 2007. [Erratum: Phys.Rev.D 76, 129903 (2007)].

[501] M. Trias and A. M. Sintes, “LISA observations of supermassive black holes: Param-
eter estimation using full post-Newtonian inspiral waveforms,” Phys. Rev. D, vol. 77,
p. 024030, 2008.

[502] E. K. Porter and N. J. Cornish, “The Effect of Higher Harmonic Corrections on the
Detection of massive black hole binaries with LISA,” Phys. Rev. D, vol. 78, p. 064005,
2008.

[503] S. T. McWilliams, J. I. Thorpe, J. G. Baker, and B. J. Kelly, “Impact of mergers on
LISA parameter estimation for nonspinning black hole binaries,” Phys. Rev. D, vol. 81,
p. 064014, 2010.

237



Bibliography

[504] M. L. Katz, S. Marsat, A. J. K. Chua, S. Babak, and S. L. Larson, “GPU-accelerated
massive black hole binary parameter estimation with LISA,” Phys. Rev. D, vol. 102,
no. 2, p. 023033, 2020.

[505] W. D. Vousden, W. M. Farr, and I. Mandel, “Dynamic temperature selection for paral-
lel tempering in Markov chain Monte Carlo simulations,” Monthly Notices of the Royal
Astronomical Society, vol. 455, p. 1919–1937, Nov 2015.

[506] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC
Hammer,” Publications of the Astronomical Society of the Pacific, vol. 125, no. 925,
p. 306–312, 2013.

[507] C. M. Hirata, D. E. Holz, and C. Cutler, “Reducing the weak lensing noise for the
gravitational wave Hubble diagram using the non-Gaussianity of the magnification
distribution,” Phys. Rev. D, vol. 81, p. 124046, 2010.

[508] M. Bonetti, A. Sesana, F. Haardt, E. Barausse, and M. Colpi, “Post-Newtonian evolu-
tion of massive black hole triplets in galactic nuclei – IV. Implications for LISA,” Mon.
Not. Roy. Astron. Soc., vol. 486, no. 3, pp. 4044–4060, 2019.

[509] E. Barausse, “The evolution of massive black holes and their spins in their galactic
hosts,” Mon. Not. Roy. Astron. Soc., vol. 423, pp. 2533–2557, 2012.

[510] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi, “Linking the spin evolution of
massive black holes to galaxy kinematics,” Astrophys. J., vol. 794, p. 104, 2014.

[511] F. Antonini, E. Barausse, and J. Silk, “The Coevolution of Nuclear Star Clusters,
Massive Black Holes, and their Host Galaxies,” Astrophys. J., vol. 812, no. 1, p. 72,
2015.

[512] H. Parkinson, S. Cole, and J. Helly, “Generating Dark Matter Halo Merger Trees,”
Mon. Not. Roy. Astron. Soc., vol. 383, p. 557, 2008.

[513] W. H. Press and P. Schechter, “Formation of galaxies and clusters of galaxies by self-
similar gravitational condensation,” Astrophys. J., vol. 187, pp. 425–438, 1974.

[514] S. Cole, C. G. Lacey, C. M. Baugh, and C. S. Frenk, “Hierarchical galaxy formation,”
Mon. Not. Roy. Astron. Soc., vol. 319, p. 168, 2000.

[515] P. Madau and M. J. Rees, “Massive black holes as Population III remnants,” Astrophys.
J. Lett., vol. 551, pp. L27–L30, 2001.

[516] M. Volonteri, G. Lodato, and P. Natarajan, “The evolution of massive black hole seeds,”
Mon. Not. Roy. Astron. Soc., vol. 383, p. 1079, 2008.

[517] Y. Kozai, “Secular perturbations of asteroids with high inclination and eccentricity,”
Astron. J., vol. 67, pp. 591–598, 1962.

238



Bibliography

[518] M. L. Lidov, “The evolution of orbits of artificial satellites of planets under the action
of gravitational perturbations of external bodies,” Planet. Space Sci., vol. 9, no. 10,
pp. 719–759, 1962.

[519] J. M. Bardeen and J. A. Petterson, “The Lense-Thirring Effect and Accretion Disks
around Kerr Black Holes,” Astrophys. J. Lett., vol. 195, p. L65, 1975.

[520] A. Sesana, J. Gair, E. Berti, and M. Volonteri, “Reconstructing the massive black hole
cosmic history through gravitational waves,” Phys. Rev. D, vol. 83, p. 044036, 2011.

[521] I. Mandel, W. M. Farr, and J. R. Gair, “Extracting distribution parameters from
multiple uncertain observations with selection biases,” Mon. Not. Roy. Astron. Soc.,
vol. 486, no. 1, pp. 1086–1093, 2019.

[522] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals
of Mathematical Statistics, vol. 33, no. 3, pp. 1065 – 1076, 1962.

[523] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,”
The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832 – 837, 1956.

[524] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[525] S.-T. Chiu, “Bandwidth Selection for Kernel Density Estimation,” The Annals of
Statistics, vol. 19, no. 4, pp. 1883 – 1905, 1991.

[526] C. K. Mishra, A. Kela, K. Arun, and G. Faye, “Ready-to-use post-Newtonian gravita-
tional waveforms for binary black holes with nonprecessing spins: An update,” Phys.
Rev. D, vol. 93, no. 8, p. 084054, 2016.

[527] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G. Pratten, A. Ramos-Buades,
M. Mateu-Lucena, and R. Jaume, “Multimode frequency-domain model for the grav-
itational wave signal from nonprecessing black-hole binaries,” Phys. Rev. D, vol. 102,
no. 6, p. 064002, 2020.

[528] W. M. Farr, “Accuracy Requirements for Empirically Measured Selection Functions,”
Research Notes of the AAS, p. 66, May 2019.

239


	Introduction to gravitational waves
	A short history of general relativity, gravitational waves and black holes
	Theory of gravitational waves
	Propagation in vacuum
	Generation
	Waveform approximants

	Gravitational waves in modified gravity theories
	Fierz-Jordan-Brans-Dicke theory
	State of the art

	Gravitational wave sources
	Stochastic background and cosmological sources
	Continuous waves
	Galactic binaries
	Stellar-mass black hole binaries
	Intermediate-mass black hole binaries
	Massive black hole binaries
	Extreme mass ratio inspirals
	Binary neutron stars
	Neutron star-black hole binaries
	Exotic compact objects
	Bursts

	Gravitational wave detectors
	Ground-based detectors
	Space-based detector: LISA
	Pulsar timing arrays


	Data analysis
	Signal detection
	Parameter estimation
	Fisher information matrix


	Observations of stellar-mass black hole binaries with LISA
	Data simulation
	Metropolis-Hastings MCMC
	Setups
	Systems
	Prior
	LISA response

	Parameter estimation of SBHBs
	Intrinsic parameters
	Extrinsic parameters
	Fisher matrix analysis
	Long-wavelength approximation

	Discussion

	Tests of general relativity with gravitational waves
	Theory-agnostic inspiral tests of general relativity with LISA
	Parameterised post-Einsteinian formalism
	Method
	Bayesian analysis
	Putting upper bounds on non-general relativity parameters
	Detecting modifications to general relativity

	Modelling gravitational waves from exotic compact objects
	State of the art
	Coalescence of compact objects other than black holes
	Toy model
	Waveform
	Data analysis

	Discussion

	The imprints of astrophysical effects on gravitational waves
	Environmental effects
	Perturbative corrections to the waveform
	Accretion in SBHBs and IMBHBs
	GW190521-like binaries

	Accreting white dwarf-black hole binaries
	Evolution of mass-transferring WDBH binaries
	Universal relations
	Parameter estimation with LISA
	Temperature effects

	Discussion

	Inferring the population of massive black holes from LISA observations and constraining formation and evolution channels
	Data generation and parameter estimation
	Massive black hole binaries population
	Hierarchical Bayesian analysis
	Estimating the probability density function
	Results
	Model-consistent inference
	Robustness

	Discussion

	Conclusion and perspectives
	Appendices
	Modelling gravitational waves from exotic compact objects
	Gravitational waves feedback
	Quasi-eccentric orbit
	Quasi-circular orbit
	Post-contact dynamics

	Accreting white dwarf-black hole binaries
	Equilibrium solutions
	Fits to the evolutionary tracks

	Multimodal parameter estimation of massive black hole binaries
	Near equal mass system
	Low and unequal masses, large spins system

	Systematic biases due to a misevaluation of the selection function

