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SUMMARY

Synaptic plasticity is a biological mechanism, integrating neuronal activity in the evo-
lution of recurrent connections between neurons. Several studies from biology and
computational neuroscience have explored the influence of spike-timing dependent
plasticity (STDP) on learning and memory. This PhD work is based on experimental
data about STDP in the striatum, and studies its implications, first in mathematical
models of neuronal networks seen as stochastic processes, and then in a learning task
based on the functional role of the striatum.

We have developed a general class of models to reproduce different STDP rules
in a stochastic setting, modeling spike trains as point processes. Synaptic plasticity is
a slow process, compared to neuronal activity, supporting an analysis of this system
using slow-fast theory. After having characterized the dynamics of complex shot-noise
processes, and introduced several auxiliary models, we prove that the scaled system
wis tight, and that stochastic averaging principles are verified. Adding regularity
hypotheses, we prove a convergence theorem in the slow-fast limit, and apply it to
different sets of STDP rules. The simplest STDP rule consists in updating the synaptic
weights as a function of the time between pre- and postsynaptic spikes. These models
also depend a lot on the choice of which spikes to consider when updating the synaptic
weight. Using the previously proven averaging principle, we study the influence of
different models of synaptic dynamics. A theoretical and numerical analysis of the
synaptic weight asymptotic behavior is performed and has led us to conclude on the
potential impact of each STDP rule on a simple network.

Neuronal dynamics can be represented using auto-exciting stochastic processes,
called Hawkes processes. We develop a new formalism to study these objects, by
representing them as Markov processes in the space of non-negative real sequences.
Using a Markovian approach, we prove results on the existence of stationary Hawkes
processes for a simple subclass of Hawkes processes.

At the same time, we also study the influence of anti-Hebbian STDP in networks
inspired from the striatum, a subcortical nucleus involved in procedural learning.
Anti-Hebbian STDP is specific to the striatum, and we investigated its implication
when learning sequences of cortical spikes. We found that the striatal network with
anti-Hebbian STDP is able to discriminate rewarded and non-rewarded patterns. Other
properties of striatal neurons are subsequently added to the model and improve the
network performance. In particular, with collateral inhibition, which is displayed
between striatal neurons, the system learns more patterns than classical algorithms. Fi-
nally, experimental results have recently shown that two regions of the dorsal striatum,
the dorsolateral (DLS) and the dorsomedial (DMS) striatum display different kinds of
STDP. Using a simple model accounting for these region-specific STDPs, we study the
influence of STDP rules on learning in a complex task, composed by a learning phase,
a maintenance phase where the network is subject to random activity, and a relearning
phase. We show that STDP present at DMS synapses leads to a quicker forgetting of
learned patterns and consequently to higher flexibility, while STDP at DLS synapses
helps maintaining these patterns in memory.

v



RESUME

La plasticité synaptique est un mécanisme biologique intégrant 1’activité neuronale
dans l’évolution des connections récurrentes entre différents neurones. De nombreuses
études de biologie et de neurosciences computationelles ont exploré I'influence de la
spike-timing dependent plasticity (STDP, plasticité fonction du temps d’occurrence des
impulsions) sur 1'apprentissage et la consolidation de la mémoire. Ces travaux de
thése s’appuient sur des données expérimentales de STDP dans le striatum, et étudie la
dynamique associée dans des réseaux de neurones vue comme des processus stochas-
tiques, puis dans une tache d’apprentissage inspirée du role du striatum.

Nous avons développé une classe générale de modeéles, pour reproduire différentes
régles de STDP dans un cadre stochastique, en modélisant notamment les ensembles
de potentiels d’action par des processus ponctuels. La plasticité synaptique est un
processus lent comparé a l'activité neuronale, justifiant une analyse de ce systéme
avec des arguments de la théorie lent-rapide. Apreés avoir caractérisé le comporte-
ment de processus de type shot-noise et introduit différents systémes auxiliaires, il a
été possible de démontrer que le systeme dimensionné était relativement compact et
par conséquent, que la propriété d’homogénéisation était vérifiée. En ajoutant des
hypothéses de régularité, un théoreme de convergence dans la limite lent-rapide est
énoncé et appliqué a différentes regles de STDP. La plus simple des régles de STDP
consiste a mettre a jour les poids synaptiques en fonction de l'intervalle de temps entre
les potentiels d’action présynaptique et postsynaptique. Le choix du modele implique
aussi de choisir quels potentiels d’action prendre en compte dans 1'évolution du poids
synaptique. En utilisant le théoréme d’homogénéisation prouvé précédemment, nous
avons étudié 'influence de ces différentes modélisations sur la dynamique des poids
synaptiques. Une analyse théorique et numérique de 1’évolution des poids synaptiques
nous a amené a conclure sur I'impact des différents types de STDP sur un systeme neu-
ronal simple.

Les neurones peuvent étre modélisés par des processus stochastiques auto-
excitants, appelés processus de Hawkes. Nous avons développé un formalisme nou-
veau pour étudier ces objets en les représentant comme des processus de Markov dans
I'espace des suites réelles positives. En utilisant des arguments de théorie markovi-
enne, nous avons pu montrer I'existence de versions stationnaires d'une sous-classe
des processus de Hawkes.

En paralléle de ces travaux d’essence mathématique, nous avons étudié 1'influence
de la STDP de type anti-Hebienne dans des réseaux reproduisant certaines propriétés
du striatum, un noyau sous-cortical impliqué dans l'apprentissage procédural. La
plasticité anti-Hebbienne est une spécificité du striatum, et nous avons donc analysé son
implication dans I’apprentissage de séquences de motifs corticaux. Nous avons montré
que seul ce type de plasticité permet de discriminer les motifs associés a une récompense
et ceux sans. D’autres propriétés des neurones striataux ont ensuite été ajoutées au
modeéle et ont amélioré la performance du réseau. En particulier, 'inhibition collatérale
présente entre les neurones striataux permet d’atteindre des performances supérieures
a certains algorithmes classiques d’apprentissage. Enfin, des résultats expérimentaux
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ont récemment démontré que deux régions du striatum dorsal, le striatum dorsolatéral
(DLS) et le striatum dorsomédial (DMS) sont caractérisées par deux types de STDP de
polarités différentes. En utilisant un modeéle simple prenant en compte ces spécificités,
nous avons étudié 1'influence des régles de STDP sur la dynamique d’apprentissage
dans une tiche complexe, combinant une phase d’apprentissage, suivie d'une phase
d’activité aléatoire pour mesurer la maintenance des motifs dansla mémoire du systéme
et d'une phase de ré-apprentissage. Les conclusions de cette étude mettent en avant
que la plasticité présente dans le DMS permet au réseau d’oublier rapidement tous
motifs précédemment acquis, alors que la STDP du DLS participe a la maintenance de
ces mémes motifs.
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Introduction

Coronal slice of mouse brain with cortex (C) and striatum (S). [C. Piette].



Evolution, development, learning ... everything changes along generations,
through life, during experiments as a result of complex processes that are direct con-
sequences of interactions between the subject and its environment. All species have
been shown to evolve on long timescales following Darwinism and other intricate laws,
that still motivate many studies in both ecology and evolution. Similarly, all animals
adapt their behavior throughout their life thanks to numerous mechanisms, most of
them implicating the nervous system. Biology, and more specifically neuroscience
have studied such long-term changes, and the processes from which those transfor-
mations originate. Directly at the cellular level, experimental studies have shown that
activity-induced adjustments in neuronal connectivity are correlated with behavioral
changes and learning. In particular, spike-timing dependent plasticity (STDP) is de-
tfined as plasticity mechanisms that are based on the spike timings of the neighboring
neurons. It has been the focus of a wide range of studies starting from neurophysiology
to computational neuroscience, and even having implications in computer science.

In Chapter1, I present synaptic plasticity, as a mechanism for shaping brain activity
during learning. I detail how STDP was defined, first as a timing-based learning rule
in computational neuroscience, and then how experimental works have proven its
existence in brain slices, and then in awake animals. Several models of STDP are
then described ranging from phenomenological pair-based rules and their extensions,
to biophysical calcium-based models. I conclude by exploring different theoretical
assumptions that have been made by physicists when investigating the influence of
STDP on neuronal network dynamics.

Then, in Chapter 2, I develop a general stochastic setting, that will prove necessary
to investigate the influence of STDP on stochastic networks. Using a simple network
with two neurons connected by one synapse, I will introduce integrate-and-fire models,
and different mechanisms for random spike generation. Considering that spikes trains
are the principal object of interest when studying simple neuronal networks, I introduce
the notions of point processes, and detail how random spiking can be modeled using
non-homogeneous Poisson processes. Finally, since STDP happens at longer timescales
than neuronal activity, a simple slow-fast approximation is established, based on the
proofs of stochastic averaging principles.

Finally, in Chapter 3, I shortly introduce a neuronal system, the striatum, where
STDP has been proven to exist, and which has an important role in procedural learning.
In particular, the striatum is characterized by its principal neurons, the medium-sized
spiny neurons (MSNs), whose connections with cortex exhibit a quite distinctive prop-
erty known as anti-Hebbian STDP. I briefly present how heterogeneities in MSNs and
synaptic plasticity are necessary for the implementation of action selection and pro-
cedural learning in a more global system called the basal ganglia. The influence of
different types of STDP, presented in Chapter 1, in such networks is detailed, both from
an experimental and a computational point of view.



CHAPTER 1

LEARNING IN NEURONAL NETWORKS WITH SPIKE-TIMING
DEPENDENT PLASTICITY

1.1 Synaptic plasticity as a primary substrate for learning
and memory

Complex mechanisms account for the establishment of memory

Interacting with others and the environment lead to the accumulation of knowledge,
the development of memory and of characteristic skills. This process is commonly
referred to as learning, and is crucial to many aspects of life. How do we learn?

This simple question has led to more than a century of research, honoured by
several Nobel Prizes in a large array of different fields. It has long been hypothesized
that learning occurs, partly at least, through the adaptation of neuronal maps in the
brain. A crude simplification of the brain system would be to model it as a combination
of several areas, involved in specific tasks, ranging from the integration of sensory
inputs to motor skill implementation. Sensations, context, feelings are all integrated
during brain processing, through the involvement of different circuits. Each of these
areas is composed by numerous cells, critical to all nervous mechanisms and called
neurons. They can convey information through electrical and chemical signaling.
These large networks of neurons, recurrently connected at synaptic junctions, are the
basis of brain activity, and as such have been the focus of the neuroscientific community
since its beginning.

Coming back to learning, it is now accepted that most learning processes result
from modifications of neuronal activity [Ath+18]. The development of the engram
(physical means by which memories are stored) at the neuronal level, and its stor-
age over time is complex and rests on several mechanisms that still motivate many
experimental and computational works.

Memory can be characterized by several assertions from a computational point of
view [CF16]. First, learning needs to create persistence from memory-less components,
through positive/negative feedbacks or biological multistable systems. Second, these
changes must be robust to noise, considering the fact the brain always exhibits spon-
taneous random activity. Using these two assertions, it is then possible to define the
network capacity, as the quantity of information that can be stored in the system during
learning and recollected later.

Computers now challenge humans in many tasks, and part of this success results
from hypotheses based on biological learning. Deep learning in particular has been
influenced by several properties of neuronal networks. Would it then be possible to see
the brain as a gigantic computer, where learning is the result of supervised algorithms,
as defined by classical machine learning [Hen+21]? We dare say here that this restrictive
view may be of interest, to analyze brain behavior, but will not enable us to understand
the brain and its mechanisms in their full extent.
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Pre-synaptic spike train
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Post-synaptic membrane potential X

Post-synaptic spike train
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Synaptic weight W

Post-synaptic neuron

Spike-timing dependent
plasticity (STDP)

Figure 1.1: A simple neural network with two neurons.

The critical role of neuronal maps does not end once memory is stored. In fact,
accumulating evidence and patterns along life is not the sole purpose of the brain. Each
action taken during life is the result of a complex decision process that happens in the
brain using previously stored information, and the current context. Each decision will
lead to consequences, and to a subsequent remodeling of neuronal circuits. Learning
is therefore an ongoing and online process, which makes it complex to grasp and to
model [Gar19].

Synaptic plasticity or how the brain shapes itself to encode memory

Different mechanisms may modify neuronal activity in order to store memory as part
of learning. As defined before, neuronal cells transmit chemical/electrical signals at
synapses, mainly in a unidirectional way.

In the following, I will consider a simple neuronal network, only composed of
two neurons: the presynaptic neuron and the postsynaptic neuron located on either side
of the synapse, see Figure 1.1. The presynaptic neuron conveys large depolarizations
of its membrane potential, called spikes (and represented by the presynaptic spike
train), towards the synapse where neurotransmitters are released and cross the synaptic
cleft. On the other side of the synapse, they induce local changes in the postsynaptic
membrane potential X. The intensity W of this connection, rendering the amplitude
of the changes, is determinant for the triggering of postsynaptic spikes and more
generally for neuronal network dynamics. More complex neuronal systems are just
multidimensional versions of this simple model, where the synaptic weight is described
by the connectivity matrix (W; ;) where (i, j) represents a pair of two neurons.

It has been postulated and proven that information can be stored following the
modifications of these synaptic weights. All processes related to this are gathered
under the name synaptic plasticity [Nab+14]. Activity-dependent changes in synaptic
weight is therefore a crucial part of learning and encoding memory.
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Different types of synaptic plasticity have been discovered and studied experimen-
tally, in many species, in various environments [SBD18]. It is common to distinguish
plasticity mechanisms based on the timescale on which they modify neuronal dynam-
ics. Short-term synaptic plasticity leads to modulation of the synaptic weight on the
neuronal timescale, usually around several milliseconds up to seconds [ZR02]. Con-
versely, long-term synaptic plasticity relates to changes that lasts for hours, days and
even longer. Another distinction is made between synaptic changes that results in a
reinforced connection (synaptic potentiation) or its reverse (synaptic depression)

Although synaptic plasticity results from complex processes, general principles
have been inferred from experimental data and previous modeling studies. In 1949,
Donald Hebb postulated that synaptic changes should result from correlated activity
from presynaptic and postsynaptic neurons, or in Carla Shatz’s words [Sha92] as,
“Cells that fire together wire together”. This hypothesis was later on confirmed by many
experimental studies, and is still today a widely accepted fact in neuroscience [Seu00].

Of course, this simple postulate does not account for all brain dynamics and is
therefore regularly questioned. In particular, supposing that only pre- and postsynaptic
activity are actors in synaptic plasticity leads to the neglect of other resources that the
brain uses to develop memory maps. Neuromodulators (e.g. dopamine, serotonin or
acetylcholine) are known to influence, not only neuronal dynamics but most definitely
also synaptic weights changes [Fon+18; BMP19; MG20]. The greatest example of
neuromodulation is the control of goal-directed behavior and reward signaling by
dopamine. Indeed, it has been shown that dopamine shapes also synaptic plasticity,
and is one of its necessary components.

Spike-timing dependent plasticity, an insight in complex
mechanisms of synaptic plasticity

Following Hebbian theory, many experimental studies have shown that synaptic weight
changes were correlated to pre- and postsynaptic neuronal activity, usually quantified
through the firing rate of each neuron. If both neurons exhibit high firing rates and are
recurrently activated together, synaptic transmission between both neurons should be
enhanced, or in other words going through long-term potentiation.

Some computational studies went even further and hypothesized that spikes tim-
ing should also play a role in improving learning capacities [Ger+96]. It is quite logical
to consider that individual spikes, at the order of their apparition and the duration
between spiking events is a lot more resourceful than only looking at averaged spiking
activity.

This computational hypothesis was later experimentally demonstrated, in several
experimental studies, in different brain areas [Fel12] and has been characterized ever
since as STDP. Under this name are gathered all plasticity processes that depend on the
timing of pre- and postsynaptic spikes, see Figure 1.1.

Numerous experimental protocols have been developed to study STDP since its
discovery. Most study the evolution of synaptic transmission, usually through the size
of the excitatory post-synaptic currents (EPSCs), after a protocol composed of sequences
of paired spikes from either side of a specific synapse, at a certain frequency and with
a certain delay [Fel12]. The delay At between the pre- and postsynaptic spikes is the
quantity of interest in such studies, with At=t,qst—pre, tpre (r€SP., tpost) the timing of the
presynaptic spike (resp., the postsynaptic one).
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Studies have shown that the synaptic weight changes depend on At, and have led
to a reformulation of Hebb’s postulate in terms of STDP. Hebbian STDP plasticity is the
result of a pre-post pairing, i.e. tpre<tpost leads to potentiation; and a post-pre pairing,
i.e. tpost<tpre, leads to depression. An example of Hebbian STDP taken from [BP98]
is given in Figure 1.2a. Experiments have shown that this type of plasticity occurs
at several synapses [BP’98; BPO1]. Plasticity protocols following this principle are
characterized as “Hebbian” because they follow some parts of Hebb’s postulate: (i)
when a presynaptic neuron actively participate, through its spiking activity to the
initiation of a spike in the postsynaptic neuron, the synaptic weight should be enhanced
(if) when the postsynaptic neuron spikes before correlated activity from the presynaptic
neuron, it should lead to depression.

Other forms of STDP have been discovered experimentally see [Fell2]. Anti-
Hebbian STDP follows the opposite sequence: pre-post pairings lead to depression, and
post-pre pairings lead to potentiation. This has been observed experimentally in the
striatum, see [FGV05] for example, see Figure 1.2b.

The protocols used to induce STDP are of a great importance in the final form of
plasticity that is observed experimentally. Changes in the number of spike pairings or
their frequency usually lead to different results. The first studies were performed in
vitro using brain slices, and electrophysiological recordings [Fel12]. The use of different
slice preparations techniques as well as the presentation of different neuromodulators
such as dopamine or GABA, have also highlighted that STDP depends on numerous
parameters [Pai+13]. Later on, STDP protocols were also realized in vivo, in anesthetized
and awake animals [ ], showing that STDP is a mechanism that needs to be taken
into account when building models for learning.

1.2 Models of spike-timing dependent plasticity

STDP was first studied as a model before being discovered experimentally [Ger+96].
Experimental confirmations of this synaptic plasticity rule have considerably increased
the interest of the computational neuroscience community. Indeed, a large literature
of computational models of STDP emerged at the beginning of the 21st century. This
introduction will not be an exhaustive review of all existing works on STDP, but will
instead detail how STDP models have emerged and why they currently represent a
pool of interesting update rules for learning systems.

STDP models developed in computational neurosciences range from detailed bio-
physical descriptions of the synaptic plasticity mechanisms [GB10] to simple phe-
nomenological models directly based on experimental data [MDGOS].

From experiments to models: pair-based rules of STDP

Most experimental studies about STDP are based on pairing protocols, where pre-
and postsynaptic spikes are repeated at a certain frequency for a given number of
repetitions. This gives in fact a map ®(At) of the synaptic weight changes as a function
of At, two examples of such STDP curves are given in Figure 1.2.

Accordingly, a large class of models has been developed on the principle that the
synaptic weight change due to a pair (fpre, tpost) Of instants of pre- and post-synaptic
spikes, only depends on At=t,.—tpre through some generic function ®(At), inferred

from experimental data.
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In most models, the plasticity curve is taken as an exponential one, see Figure 1.2c:

(I)(At) _ {Apost—pre eXp(At/Tpost—pre)> At<07

Apre-post eXp<_At/ 7—pre-post)a At>07
where Apost-pre (r€Sp., Apre-post) represent the maximum amplitude of the synaptic weight
update after a post-pre (resp., pre-post) pairing. Both constants can be taken as negative
or positive. Tpost-pre (T€SP., Tpre-post) represents the STDP temporal window for post-pre
(resp., pre-post) pairings.

Exponential STDP curves are quite close to experimental data and are widely used
in computational neuroscience because, they are convenient to simulate in computa-
tional models [MDGO08] and can lead to analytical studies.

Another study [GK02a] propose, starting from classical Hebbian rate-based rules,
to extend synaptic plasticity by taking into account the neuronal membrane potential
instead of the firing rate. Using this hypothesis, and approximating the membrane
potential by spiking activity, they derive synaptic plasticity rules that are similar to
pair-based STDP as defined above.

An important part of modeling STDP in pair-based rules focuses on the choice
of which pairings to consider when updating the synaptic weight. Indeed, when the
postsynaptic neuron spikes, it is possible to devise several schemes to define the associ-
ated synaptic weight update AV as the sum over a certain set of previous presynaptic
spikes of the plasticity curve ®(At). A similar choice needs to be made about the other
types of updates, happening at presynaptic spikes. Many pair-based models have
been developed over the years [MDGO08], but three schemes are used in the majority of
theoretical works.

We start with the simplest rule, the all-to-all version (following [MDGO08] termi-
nology), where all pairs of spikes give an update of the synaptic weight. The all-to-all
scheme leads the synaptic weight being updated at each postsynaptic spike, occurring
at time ?,5 by the sum over all previous presynaptic spikes occurring at time #pre <tpost
of the quantity ®(tpost — tpre). Switching the role of pre- and postsynaptic spikes, the
synaptic weight is updated in the same way at presynaptic spikes. An example of
which pairings to consider for the all-to-all case is given in Figure 1.2¢ (bottom left).

A second intuitive scheme is the nearest neighbor symmetric model: whenever one
neuron spikes, the synaptic weight is updated by only considering the last (and thus
closest) spike of the other neuron. If the postsynaptic neuron fires at time #, the
contribution to the synaptic update is reduced to ®(t,0st — tpre) , Where y is the last
presynaptic spike before t,.s. See Figure 1.2c (top right), for an example of the nearest
neighbor symmetric model.

Finally, the nearest neighbor reduced symmetric model has also some important prop-
erties and is defined as a restriction of the nearest neighbor symmetric model to consecu-
tive pairings. A postsynaptic spike at ¢, is paired with the last presynaptic spike at
tore<tpost, ONly if there are no other postsynaptic spikes in the time interval (Zpre; tpost)-
See Figure 1.2¢ (bottom right), for an example of the nearest neighbor reduced sym-
metric model.

Several studies have investigated the role of these different pairing interac-
tions [ID03; MADO07; MDGO8], but its influence on the synaptic weight dynamics
has not been discussed in theoretical works, except in [BMGO4].
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Extensions of pair-based models: how to fit to biology by adding new
components to a simple model

Pair-based STDP relies on very few assumptions, mainly the shape of the STDP curve
and the pairing scheme, and would therefore have some difficulty to match experi-
mental data produced when studying STDP. In particular, more complex protocols of
pairings have been tested, including triplets of spikes or changes in frequency where
pair-based STDP does not account for the diversity of behaviors observed experimen-
tally. These limitations have led computational neuroscientists to develop more com-
plex STDP rules, that better fit experimental data. A large literature has been built on
these variations of canonical pair-based models, and it is sometimes quite difficult to
find one’s way in the variety of new hypotheses that have emerged from this process.

The first variation of pair-based STDP models occurred when neuroscientists
started to investigate the influence of the current value of the synaptic weight IV on the
synaptic update AWW. Indeed, it seemed logical to suppose that synaptic weights that
were almost null, would undergo a smaller synaptic depression than stronger synaptic
weights. Early experimental data from [BP98] highlighted that long-term depression
scaled with the synaptic weight value, whereas long-term potentiation did not. In order
to take this fact into account, several studies introduced multiplicative STDP,

AW = F(W)®(At)

where F' (W) represent the multiplicative influence of the current synaptic weight value.
Several papers have studied the influence of multiplicative rules, compared to additive
ones [RLS01], and the influence of the exponent of F'(IW) was studied in more details
by [Giit+03].

A second important fact that was added to pair-based STDP models was the exis-
tence of delays in cellular signaling pathways that could lead to shifts in the plasticity
curves ®(At). In particular, the backpropagating action potentials need some time,
after being elicited at the cell soma, to retropropagate and ultimately influence distal
synapses. Similarly, when the presynaptic neuron spikes, there is a delay due to chemi-
cal transmission and channel dynamics before seeing a quantitative effect at the level of
the synapse. For all these reasons, translated plasticity curves were the focus of several
works [L.S08; BA10].

Pair-based rules have been shown to poorly fit with experimental data when more
complex protocols are used. This is the case for example in protocols repeating se-
quences of three spikes (called triplets) from the presynaptic and postsynaptic neu-
rons [FD02; PGO06a] where protocols repeating sequences of three spikes from the
presynaptic and postsynaptic neurons are presented to the synapse. For this reason,
more detailed models that take into account the influence of several pre- and post-
synaptic spikes have been proposed. These models vary a lot in their hypotheses,
mainly because they are based on different experimental data.

First, it was observed, using triplet-based protocols, that previous pre- and post-
synaptic spikes have a “suppressive” effect on the induction of Hebbian STDP ob-
served [FD02]. A new model of STDP integrating this suppression effect was proposed
in the same study [FD02]. A few years later, [PG06a] showed that previous pre-synaptic
spikes enhance the depression obtained for a post-pre pairing, whereas previous post-
synaptic spikes lead to a bigger potentiation than in a classical pre-post pairing. This
led to the formulation of the triplets model [PG06a].

ANMMW
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It is interesting to note that these two models are derived from opposite experimen-
tal conclusions. Indeed, they are based on data obtained from different brain regions:
visual cortex in [FD02], and hippocampus in [PGO6a]. A global model considering both
mechanisms, the NMDA-model, is defined in [BA16].

More recently the influence of neuromodulators has been shown to radically
change STDP curves. Three-factor learning rules have been developed to take this
new experimental data into account, leading to a great variety of new models. A large
literature focuses on multiplicative influence of neuromodulators on STDP synaptic
updates [FG16; KIT17; Ger+18], mainly by supposing that,

AW = F(d)B(At)

where F'(d) represents the influence of the neuromodulator d. More complex models
directly add the dependence of the STDP rules on neuromodulators inside the plasticity
function [GHR15], i.e., taking

AW = ®y(At).

All those models require a large amount of experimental data when fitting
biologically-relevant parameters. A last, simpler, approach consists in including the
influence of neuromodulators as an additive process,

AW = ®(At) + F(d).

Over the years a large diversity of STDP pair-based rules were developed in order
to reproduce new experimental protocols and results, leading to a profusion of such
models.

From models to experiments: biophysical models of STDP

Pair-based models can be characterized as phenomenological models of STDP in the
sense that experimental STDP curves are taken as a core parameter of the models.
Another important class of plasticity models is derived from biological phenomena
and aims at reproducing experimental STDP curves using biological mechanisms.

Biophysical models gather all the current knowledge on how synaptic plasticity
is implemented at the synaptic level and integrate all biological mechanisms that are
relevant in plasticity modelling. In particular, chemical reactions and protein interac-
tions are described in details leading to gigantic systems with numerous parameters,
most of them chosen from experimental data. The general idea in using such models
is to explain using such models, how STDP as observed, in pairings protocols, can
be elicited and to identify the underlying mechanisms. For STDP, most biophysical
models are based on the CamKII protein system, or the endocannabinoid network,
see [GB07; Cui+16]. These models, as biologically grounded as they can be, are hard
to simulate and even more complex to integrate in large neuronal networks. However,
their conclusions are useful when building simpler models which can then be used in
more complex systems.

Many experimental studies have pointed out the crucial role of calcium transients
in the establishment of plasticity. At the same time, biophysical models have studied
the importance of calcium concentration in the dynamics of plasticity. All these works
have led to the development of many STDP models based on the postsynaptic calcium
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concentration [GB10; ID21]. These models are able to reproduce experimental results
from pair-based protocols but also more complex ones, such as triplets. The general de-
pendency on postsynaptic calcium concentration can be integrated in plasticity updates
using

AW = F(C)

where C'is the postsynaptic calcium concentration.

A simple phenomenological calcium-based model [GB12] was able to reproduce
most of the experimental STDP curves with only a few parameters which made it ideal
to fit with electrophysiological data. Recent works have extended this model by adding
the influence of the number of pairings, and of different signaling pathways [ ] or
by modeling heterosynaptic plasticity thanks to local calcium diffusion at the synaptic
level [ ]. The influence of neurotransmitters such as GABA has also been taken
into account in calcium-based models [HF17].

Instead of supposing that STDP rules are dependent on the postsynaptic calcium
concentration, another class of models are based on the hypothesis that the postsynaptic
membrane potential X is the quantity of interest. These models were shown to also
reproduce the results of STDP protocols [GK02a; CG10], with

AW = F(X).

Numerous models were developed over the years to reproduce STDD, a significant
part of which are simple enough to be implemented in large neuronal networks and
can be studied using tools from statistical physics and mathematics.

1.3 Theoretical study of STDP

Pair-based models of STDP have attracted quite early the interest of physicists, because
of their simplicity. They can be studied theoretically, using either dynamical systems
theory, stochastic processes or statistical physics.

Three main approaches have been developed in order to gain theoretical insights
on the role of STDP in neuronal networks. Most studies consider a feedforward network
of neurons, with a (sometimes large) collection of presynaptic neurons, and a single
postsynaptic cell that integrates all these inputs. Pair-based STDP, most of the time
with the all-to-all formulation, is then applied to the synaptic weights between the
pre- and the postsynaptic cells. The asymptotic behavior of the neuronal network is
often studied, with most works mostly aiming at characterizing the distribution of the
synaptic weights for large windows of time.

Slow-fast analysis

An important feature of long-term synaptic plasticity, as STDD, is that there are essen-
tially two different timescales in action.

On the one hand, the decay time of the membrane potential, and the mean duration
between two presynaptic spikes or two postsynaptic spikes are of the order of several
milliseconds. Consequently, interacting pairs of spikes are on the same timescale.
Accordingly, pair-based models also integrate this fast timescale with an exponential
decay time around 50 milliseconds, see [BP98; FGVO05]. Similarly, in calcium-based
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models, the interaction between pre- and postsynaptic spikes is integrated at the cal-
cium level, and its concentration decays with a time constant of about 20 milliseconds,
see [GB12]. On the other hand, the effect of STDP on synaptic weights takes place on
a slower timescale, where it can take seconds and even minutes for changes to occur
see [BPP98; FGV05]

Most computational models of synaptic plasticity incorporate this timescale dif-
ference by implementing small updates of the synaptic weights. A first example
is [KGH99], who “introduced a small parameter 7 [..] with the idea in mind that
the learning process is performed on a much slower time scale than the neuronal dy-
namics.” Similarly, [Rob99] defines two timescales (¢, z) such that “the measurable
changes in behavior occur during the course of several training cycles (t), whereas the
neuronal activity modulation that is responsible for synaptic change is greatest within
each cycle (x).”, with ¢ representing the long timescales of synaptic plasticity, and x
neuronal activity. Other models also make this assumption, sometimes mixing it with
a mean-field approximation leading to a Fokker-Plank equation [RL.S01; RBT00a].

It should be noted that models using this assumption do not seem to agree with ob-
servations from numerous experimental studies, see [BP98; FGV05; Fel12]. Classically
(in experimental works), the protocol to induce plasticity consists in stimulating both
neurons at a certain frequency a fixed number of times with a fixed delay At, over a pe-
riod of one or two minutes (60-150 pairings at 1 Hz for example). This part is designed
to reproduce conditions of correlations between the two neurons, when mechanisms
of plasticity are known to be triggered. However, measurements of the synaptic weight
show that changes take place on a different timescale: after the protocol, it is observed
that at least several minutes are necessary to have a significant and stable effect on the
synaptic weight. In other words, the change in synaptic weights happens long after the
end of the plasticity induction.

To tackle this added complexity, an approach consists in updating the synaptic
weights with a fixed, or random, delay. This is not completely satisfactory since the
evolution of the synaptic weight is generally believed to be an integrative process of
past events rather than a delayed action. Another approach which I will use consists
in implementing this delay through an exponentially filtered process to represent the
accumulation of past information. A recent article [RBS16] also takes this fact into
account by adding an “induction” function to canonical models of STDP.

Separating the timescales into two components leads to a simplification of the dy-
namical system. Indeed, it is then possible to find theoretical estimates by studying
the fast system, in our case plasticity induction, by supposing that the slow variables,
the synaptic weights, are constant. Once the behavior for fixed slow variables has
been studied, it is possible to solve the slow dynamics using the estimates of the fast
processes. In particular, one can consider that the fast system is only present in the
slower dynamics through averaged functionals. Similar principles are used in theo-
retical studies of STDP leading to simpler dynamics that are then studied analytically
see [KGH99; KH00; KGHO1].

A story of correlations

The first thorough study of pair-based STDP was developed in [KGH99], and used the
previously defined slow-fast approximation. Their analysis led to the conclusion that a
fundamental quantity in the study of STDP was the cross-correlation between the pre-
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and postsynaptic neurons. The asymptotic behavior of the synaptic weight dynamics,
Relation (4) of [KGH99] is given by,

dw o
TO-| et
where,

— ®(-) represents the STDP curve;

— u(-,t)=(S*(t+5s)S2(t)), the correlation between the spike trains at time ¢.

The quantity (---) is defined in terms of temporal and ensemble averages, (---) is
the ensemble average and -~ the temporal average over the spike trains. Therefore,
p(s, t)=(S*(t+s)S?(t)) represents the cross-correlogram of the pre- and postsynaptic
neurons, i.e the distribution of presynaptic spikes relative to postsynaptic ones.

It is quite striking to see that in the slow-fast approximation, the synaptic weight
update is solely determined by the convolution of the plasticity curve ® and the cor-
relation function. This quantity can either be directly taken from electrophysiological
data, where cross-correlograms are commonly drawn, or can be computed based on
neuronal models used in the system. Many studies have tried to analytically compute
this quantity, and only succeed using some approximations. In [KHO00] for example,
the authors use the integrate-and-fire model and employ themselves to compute this
correlation function under some assumptions.

One interesting fact about this equation is that one can study the influence of highly
correlated inputs in this framework [KGH99; KGHO01; GK02a], leading to estimations
of the synaptic weight dynamics with biologically inspired inputs.

It is however important to stress here, that this framework supposes that all pre-
and postsynaptic spikes are taken into account at each pairing, therefore restricting its
use only to the all-to-all pairing scheme.

Mean-field analysis

Another approximation is sometimes made, usually in addition to the timescale sep-
aration, and relates to having a large number of independent presynaptic neurons N
in a stochastic context. Under the approximation of IV being large, and therefore after
scaling each single synaptic weight by a factor 1/N, it is possible to obtain a Fokker-
Plank equation for the weight distribution [RBT00a; RLS01; BMGO4]. In this case, the
temporal evolution of each synaptic strength is assumed to follow a diffusion process
and, consequently, verifies the Markovian property. The analysis is done with the asso-
ciated Fokker-Planck equations, and the corresponding equilibrium distribution when
it exists, see [RL.SO1; RBT00a].

This approach can also be compared with mean-field analysis, in the sense that
usually, limit equations lead to dynamics that depends on the mean synaptic weight,
see [RBT00a]. This approximation leads to the characterization of asymptotic synaptic
weight distribution, in simple cases, usually with independent presynaptic inputs, and
as such, is a great tool to study STDP in a theoretical setting.

However, the scaling of each synaptic weight by the factor 1/N is not biologically
plausible. Indeed, in that case, the importance of a single pairing is diluted over the
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large number of inputs in the mean-field limit, whereas by definition STDP relies on
the repetition of such correlated pairings. Furthermore, for the postsynaptic neurons
to spike, one may expect it to receive highly correlated inputs. The Fokker-Planck
approach would not be able to take into account these types of inputs, and it therefore
greatly limits its potential application to more biologically-plausible neuronal networks.
An extension of this formalism to higher orders, the Kramers-Moyal expansion, is also
used in this context for some non-Markovian models, see [LF12].



CHAPTER 2

A PROBABILISTIC APPROACH TO NEURONAL NETWORKS

2.1 Stochastic models for neuronal activity

Neurons are complex cells that integrate many different biological processes in order to
emit action potentials and transmit them to other neuronal cells. Modeling neurons has
been an active topic of research for the past century, and many books have reviewed
large classes of models. We refer to them for a general presentation of neuronal
dynamics in computational neuroscience [1zh07; ET10; Ger+14].

The following sections will be devoted to building a stochastic model for neuronal
activity, using different mathematical tools, starting with point processes and then
slow-fast analysis.

Neuronal dynamics

Neurons can be modeled through complex systems, where different compartments in-
teract to reproduce neuronal dynamics. These compartments are related to functionally
diverse parts of the neuron, and are of interest when studying in details how action
potentials are generated and how they travel along the axons to convey information to
other neurons.

When modeling neuronal networks with numerous neurons, those complex mod-
els do not scale well in numerical complexity and are hard to study using theoretical
tools. Most of the research therefore focuses on reducing neuronal dynamics to a
system with only one scalar variable to represent cell activity and usually define it as
the membrane potential X of the neuron. The equivalence between the membrane
potential used in models and the actual membrane potential in biological experiments
is not straightforward, as this potential greatly depends on where it is measured along
the neuron’s membrane. However, its repetitive use in computational neuroscience has
proved that, even if it is not directly related to a specific biological quantity, it still en-
ables neuroscientists to reproduce complex dynamics with a simple model of neuronal
activity.

The membrane potential is subject to different ionics flows and depends on the
dynamics of numerous channels, that open or close depending on the neuron’s state
and the signals it receives. A first simple hypothesis is to suppose that there exists a
resting potential X.,, to which the membrane potential decays when it is not stimulated,
and that the membrane acts as a resistance-capacitance system. These leaky-integrate
dynamics lead to the following equation for X,

7dX/dt = —(X(t) — Xu) + RI

where 7 represents a time constant, R the resistance of the neuron and I external input
currents.

Regarding neuronal models, an important topic is spike generation, in particular
in simple models as the leaky-integrate neuron, where all biological mechanisms that
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trigger action potentials are not taken into account. It has been known for a long time
that a neuron spikes when it depolarizes, i.e when its membrane potential is high.
Most models in computational neuroscience [[zh07; ET10; Ger+14] use integrate-and-fire
models, where a spike is emitted as soon as the membrane potential X reaches a specific
value Xj;,. After the spike, the neuron resets to another value X, that is often taken
as the resting potential X.,. In mathematical terms, this translates to:

7dX/dt = —(X(t) — Xu) + RIIf X < Xy
X(t) —> Avreset when X(t—) = Xth~

This model leads to membrane potentials that are not continuous functions of time.
In a mathematical setting, cddlag functions model this type of dynamics?.

The dynamics of X in the absence of spikes are said to be linear, in the sense that, for
any type of inputs /=1, + I, it is possible to compute X through a linear combination
of X; and X, i.e the membrane potentials with / = I; and I = I,. Experimental
neurons follow the same principles when their membrane potential is below the spike
threshold, and as such, linear integrate-and-fire neurons are known to correctly model
subthreshold dynamics.

However, upon neuronal depolarization (i.e membrane potential rise), linear ap-
proximations do not satisfyingly reproduce biological data. Indeed, spikes result from
auto-exciting processes that take place in the soma and more complex models are
needed to reproduce similar dynamics. The introduction of nonlinear models has
solved this issue, by replacing the leaky term by more complex, nonlinear functionals
of the membrane potential, leading to,

r7dX/dt = f(X(t)) + RIif X < Xy,
X(t) = Xieset When X (t—) = Xyy,.

where f(X) is the nonlinear model. Two nonlinear models have emerged and estab-
lished themselves as good approximations for neuronal dynamics, the first of them
known as the quadratic model with f(X)ocX?, and the second one called the exponential-
integrate-and-fire neuron with f(X)ocexp(X).

These models are not sufficient to reproduce other neuronal patterns of activity,
that are sometimes of interest in neuronal networks. Bursting for example, i.e the
capacity of a neuron to fire discrete groups (i.e bursts) of spikes, cannot intrinsically
be modeled under these simple assumptions (without any additional input). The same
problem emerges when modelling adaptation: the fact that under constant input, a
neuron is able to raise or decrease its firing rate over time.

A second variable needs to be added to the model to properly reproduce these
behaviors. The adaptation variable U usually follows slower dynamics than X and
represents many underlying ionic currents that are responsible for complex neuronal
behaviors. Adaptive nonlinear integrate-and-fire models have therefore been intro-
duced [Izh07; ET10; Ger+14] and their dynamics follow,

rdX/dt = f(X(t)) + RTif X < Xu
o dU/dt = g(U(1), X (1) if X < X
X(t) i Xreset7 U(t) i U(t_) + Ureset When X(t—) = Xth‘

la function f is said to be cadlag if, it is right continuous and has a left limit at every point ¢, f(t—)

denotes the left limit of f at ¢.
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where ¢(U, X)) models the dynamics of the slow adaptation variable and 7;; the adapta-
tion timescale. When the neuron spikes, the adaptation variable U can also be updated
by ULeser OF not, depending on the model.

When building a computational neuronal network, different arguments need to
be considered to choose which neuronal models to use. Theoretical models, which
aim at investigating neuronal dynamics using mathematical tools, need the simplest
model that reproduces the studied phenomenon, in order to manipulate analytical ex-
pressions. Computational models, designed for computer experiments and therefore
limited by computer capacity and complexity, are able to manipulate more complex
descriptions. Overall, choosing the right model results from a complex balance be-
tween keeping a contiguous proximity to biological reality and using the best adapted
technique to investigate neuronal dynamics.

Random generation of spikes

In the natural brain, spontaneous neuronal activity is abundant, which causes noisy
spiking dynamics. It is important to distinguish extrinsic noisy activity, that is related
to random spikes coming from external neurons, from intrinsic noise. Most models
introduce noise using an extrinsic random current, sometimes in the form of random
spikes and more often as a diffusive random noise, usually taken as a Gaussian process,
to integrate the effect of large populations of neurons [Ger+14]. In integrate-and-fire
models, where the firing mechanisms is deterministic, it is necessary to introduce such
external noise in order to trigger spikes in a random fashion. In particular, when the
external noise is taken as a diffusive process, spiking times are defined as the first time
when the stochastic process X reaches a particular value, i.e its threshold potential
Xin. There is an extensive on first passage times exists; which has investigated the
distribution of spike timings in diffusive neuronal models.

However, neurons cut out from their networks also display randomness in their
spiking mechanisms, highlighting the existence of noise inside the neuronal cell. Exper-
imental data suggest that the firing process itself has a significant random component,
which can lead to randomness in the spike trains even in the presence of deterministic
input.

A first approach to model this intrinsic randomness was developed in Wilson-
Cohan neuronal networks: neurons [Cow68] switch between different states: quiescent
(corresponding to subthreshold dynamics), activated (to spikes) and refractory (the
refractory period, i.e is caused by mechanisms that unable a neuron to generate another
spike). Later on, in order to study neuronal dynamics, a stochastic version of this model
was developed, in which neurons switch between states at a rate that depends on the
membrane potential [Cow91]. Even if spikes in this model where modeled indirectly
as a switch between two neuronal states, it is, to our knowledge the first introduction of
a stochastic mechanism for spiking. Since then, several models have been built on this
hypothesis, some of them keeping the Wilson-Cohan formalism of different neuronal
states [BC07; Hel18].

Later on, some works have added variability in the threshold mechanisms, by
adding a random component when generating spikes [GH92]. Extending this idea,
spike generation can be modeled through arandom variable that depends on the current
value of the membrane potential, leading to the development of Poisson neurons. These
neurons are characterized by their membrane potential X, usually defined as a simple
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leaky-integrate process, but spike triggering results from a Poisson process. In other
words, if the neuron state at time ¢ is X (t—), it is natural to assume that the probability
that the neuron spikes between times ¢ and ¢+ dt is equal to (X (t—)) dt, where
represents the activation function. This function is often taken as nondecreasing, because
neurons tend to spike as their membrane potential rises. Under this hypothesis, spikes
are generated through a random process, even in the presence of a constant input.
Several models have used this approximation either with /3 as a linear function of the
membrane potential [KGH99] or more complex nonlinear activation functions [Chi01].
The Poisson neuron model is able to reproduce intrinsic spike emissions and is a
powerful tool for theoretical studies of stochastic neuronal networks [RT16].

2.2 Spiking trains as point processes

Spikes represent good estimates for neuronal activity, even if it would be overly simplis-
tic to reduce neuronal dynamics to these events. Once a spiking mechanism is defined,
either by using integrate-and-fire neurons or Poisson neurons, neuronal activity can be
represented, under this approximation, by the sets of spiking events (¢ )ien. This can
be completed by the definition of the neuron spike train )V, i.e the measure,

N(dt) = > 6, (dt),

keN

where ¢, is the Dirac measure at t=x.

N is a classical object in probability theory, and can be seen, under some supple-
mentary assumptions as a point measure. A point measure on R, is an integer-valued
Borelian positive measure on R, which is Radon (which has finite values on any com-
pact set in R, ). In particular, a point measure is carried by a subset of R, which is at
most countable and without any finite limiting point. It is however quite realistic to use
these objects when considering biological neuronal dynamics such as refractoriness to
suppose that explosion events do not occur.

As explained in the previous section, spike generation is a stochastic process and
accordingly the measure N is also a random object. Indeed, simulating the same
neuronal dynamics several times would result in distinct realizations of the spike train.
It is possible to define a probability measure (P, €2) on the point measures N. Each
realization NV (w) would then be characterized by stochastic spikes timings (tx(w))xen-
The stochastic process N (dw) is called a point process, and has led to many works in
the probability community [Ver70; DVO08]. Such processes have been used to model
earthquake events, population dynamics, finance and of course, neuroscience.

In the following, the point process formalism is used for a simple system, composed
by two neurons connected at one synapse. We only choose to model each spike train
by a point process, with N, for the presynaptic neuron and N, for the postsynaptic
cell. We suppose that the postsynaptic cell follow leaky-integrate dynamics, and that
its input is only defined by the presynaptic neuron spikes. In other words, at each
presynaptic spike, the membrane potential X of the postsynaptic neuron is updated by
a quantity W which represents the synaptic weight. This process can be formulated,
setting aside the reset of the neuron after a spike and taking X.,=0, using a stochastic
differential equation,

dX (1) = —iX(t) At + WN,e(d).
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Poisson processes

In order to model the postsynaptic neuron spikes, Poisson processes need to be intro-
duced. They represent a significant subset of point processes [Kin92] and are character-
ized by their intensity measure i on R, which appears when computing the number
of points of the Poisson process in a measurable set A4, i.e

N (A) = Poisson(u(A)),

where Poisson () is a Poisson law with parameter ), i.e

k!

They also need to display an independence property, i.e for any disjoint subsets A and
B, N(A) and N (B) must be independent random variables.

These processes are commonly used in stochastic theory because thanks to the
independence property they share, they lead to simpler proofs and can then be used to
build more complex objects.

Going back to our simple model of neuronal dynamics, I will assume that the
presynaptic neuron spikes according to a homogeneous Poisson process, i.e their inter-
spike times are taken as identically independent exponential variable of parameters .
It corresponds to taking a Poisson process with an intensity measure proportional to
the Lebesgue measure, ;(dt) = A dt. In particular, the following property is verified,

P(Noro([t, ¢ + dt])=1) = Adt + o(dt).

For the postsynaptic neuron, following the hypothesis developed in the previous
section, I would need to build a nonhomogeneous Poisson process that verifies,

P(Nyout ([t £+ dt])=1) = B(X (t—)) dt + o(dt).

where () is the activation function and represents the influence of the postsynaptic
membrane potential on spiking.

In order to reproduce this property using homogenous Poisson processes, I need
to introduce a Poisson point process P on R? with rate 1 and define the firing instants
of the output neuron (¢, %) as the jumps of the point process N, defined by

)N () | )P (050X (w-))] )

= f(u)1{56(075(X(u_))]}7)(d8, du), (2.1)
R2

+

for any non-negative Borelian function f on R, .
Classical properties of Poisson processes give that, for ¢>0 and z€R,

P (Npost (£, £+ dt)=1| X (t—) =) =B(z) dt+o(dt),

as expected, N, is a Poisson process with intensity (8(X (t))).
Poisson processes are natural objects to represent neuronal spike trains and their
use in theoretical studies of neuronal networks benefit from the large amount of existing

works on the subject.
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Hawkes processes, a natural formulation for an auto-exciting process

The influence of postsynaptic spikes on the membrane potential results in its resetting
to a constant value F,, the reset potential. This property can be integrated easily in the
stochastic differential equations developed in the last section,

dX (1) — —iX(t) At + W (dt) + (X — X (=) Nopoue (dlE).

This dynamic is of real interest in probability because it produces a Poisson process
whose intensity §(X(t)) depends on previous jumps. It could also be postulated
that instead of being reset to a specific value, a postsynaptic spike just decreases (or
increases) the membrane potential by a fixed value AX, leading to

dX (1) = —iX(t) Al + WA (dt) + AX N (d0).

For most neurons, AX, would be taken as negative modeling the inhibitory influence
of a postsynaptic spike on the postsynaptic membrane potential. However, for bursting
neurons one could imagine that AX, may be taken as positive, in order to model the
fact that after a first spike, a bursting neuron is more prone to spike again. These
assumptions are of course only possible when using Poisson neurons, because of the
absence of fixed spike threshold. In particular, the spiking rate of a neuron following
this dynamic is equal to,

Apost () = B(X(t=)) = 3 ( J( W exp(—(t=s)/7) Npre(ds)

—00,t)
N f( |, Aol /T)Npost(ds)> :

This formulation is close to the SRM (spike response model), see [Ger+14] for a
review, where the impact of each spiking event (from the presynaptic and the postsy-
naptic neurons) are modeled by response kernels (here exponentials).

Such auto-exciting (or auto-inhibiting) processes have been studied in probability
since their discovery by Hawkes in 1974 [[HO74], and applied to various domains as
finance, genetics or neuroscience.

A Hawkes process is a point process Niawkes Whose intensity is a function of previous
jumps, i.e

Atavkes(t) = ( f( » h(t—s)NHawkesms)) .

It is quite evident from the previous expression that neuronal dynamics can fit, after
small adaptations, under this formalism with h being an exponential function. These
processes exhibit complex dynamics, and the existence of stationary processes verifying
this definition has led to several works in stochastic process theory.

The first formulation of the Hawkes process dates back to [Haw71; HO74], and
chose to focus on linear activation function 5. This enabled the authors to study the
existence of stationary Hawkes processes using cluster branching processes theory.
Later on, the latter analysis was extended to nonlinear Hawkes processes, i.e with
nonlinear activation function /3, primarily in [BM96]. Hawkes processes can also be
extended to study multidimensional recurrent systems. This approach has already
been applied to the analysis of neuronal networks dynamics in [RRT13] for example.
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2.3 Synaptic plasticity and neuronal activity, a slow-fast
system

Up until now, neuronal networks have been considered with fixed connections and
therefore lacking any synaptic plasticity. In particular, the synaptic weight W is taken
as a constant of the model. This is a simplistic model of neuronal activity, and to explain
the influence of synaptic plasticity a more accurate version needs to be developed. We
have introduce in the first chapter the notion of synaptic plasticity, the evolution of
the synaptic strength as a function of neuronal activity, and would lead to stochastic
differential equations of the following form,

dX(t) = —1X(t)dt + W(t—)Npe(dt), 2.2)
dW(t) = F(X(t))dt. ’

where F' represents synaptic plasticity mechanisms and is responsible for the fact that
W = (W(t),t>0) is now a function of time. We chose in this example to use synaptic
plasticity that only depends on the value of the postsynaptic potential X.

When focusing on long-term synaptic plasticity, i.e synaptic changes that operate
on longer timescales than neuronal dynamics, it is interesting to apply a slow-fast
decomposition to this system.

Scaling of the neuronal and synaptic weight dynamics

In order to represent this timescale separation, most studies introduce a small scaling
parameter .

Neuronal processes, associated to the point processes Ny and N, occur on a
timescale which is much faster than the timescale of the evolution of (W (¢),¢>0). For
our simple model, after scaling, the SDE (2.2) becomes, for >0,

dX.(t) = —1X ()L + W.(t—)Npree(dt), 2.3)
dW.(t) = F(X.)dt. '

where N, . corresponds to the Poisson process N, with the timescale change t—t/e,
Using this formulation, X, is the fast variable, in the sense that when ¢ goes to 0, it
is sped up. The increments of the variable W are of order O(1) and for this reason,
(We(t),t>0) is described as a slow process. The corresponding scaling results, known as
separation of timescales, are routinely used in mathematical models of computational
neuroscience see, for example [KGH99].

Stochastic averaging

In a mathematical context, these types of results are referred to as averaging principles.
See [PSV77] and Chapter 7 of [FW98] for general presentation. They aim at establishing
a limit result, or averaging principle, for (W.(¢),t>0) when ¢ goes to 0 for certain types
of dynamics.

In particular, in most formalisms, the stochastic systems studied verifies some
Markovian property, in particular the system (2.3), can be formulated using martingale
problems.
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We denote by (X"(t),t>0) the solution of Relation (2.2) when the process
(W (t),t>0) is constant and equal to w. Under appropriate conditions, it has a unique
equilibrium distribution II,,. The averaging principle for the simple model can be ex-
pressed as follows. Under some conditions, the processes (IW.(t),¢>0) is tight for the
convergence in distribution when ¢ goes to 0, and any limiting point (w(t), ¢>0) satisfies
the following integral equation,

w(t) = w(O)+J;) fR F(2)ys)(dz) ds,  t=0. (2.4)

See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and
convergence in distribution.

An important part of the proof using stochastic averaging principles is dedicated
to the tightness of the slow variable (., t>0) viewed as cadlag processes. In particular,

using that,
t

W.(t) = Wa(0)+ f F(X.(s)) ds,

0
the tightness of the family of processes (IV.(t)) is equivalent to the tightness of

(LtF(XE(s))ds,bO) .

A general approach to prove averaging principles is presented in [Kur92] for jump
processes.

An elegant idea first developed in [PSV77] is to introduce the notion of occupation
measure, it computes a local average of the fast variable value, as a measure defined by,
for all ¢>0 and Borelian set B,

(AL0.0) = [ 1Y) ds,

where 1p) is the indicator function of a Borelian B.
Indeed, it is then possible to rewrite the previous expression as,

(fot JR F(z)ve(dz, ds), t>o> .

As expressed in [Kur92], an important hypothesis is that the process (X.(¢),t>0)
verifies the compact containment condition, i.e that the set,

{X.(t), t >0, e >0}

is relatively compact, which directly leads to the fact that the occupation measure v, is
also tight. If the function F'is bounded, the resulting tightness of W is straightforward.
Most applications of slow-fast analysis need these two conditions to prove the stochastic
averaging principles [KK+13]. Thisis also the case of [[Hel18] for the time-elapsed model
of plasticity for which this representation holds. Note that this is one of the few rigorous
proofs I know of an averaging principle for a stochastic model of plasticity.

However, in a real biological system, the compact containment condition, and the
boundedness of the slow variable dynamics may not be verified as easily, and would
lead to more complex proofs.
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Once tightness is proven, one last step is still needed to prove convergence of the
scaled system to the averaged version described by equation (2.4). If Relation (2.4) has
a unique solution for a given initial state, a result for the convergence in distribution of
(We(t),t>0) when ¢ goes to 0 is therefore obtained. Uniqueness holds if the integrand,
with respect to s, of the right-hand side of Relation (2.4) is locally Lipschitz as a function
of w(s). Regularity properties of the invariant distribution II,, as a function of w need
to be verified.

Stochastic averaging principles gather a set of tools that have been used to study
slow-fast systems. However, several assumptions classically used on this subject are
equivalent to the boundedness of the dynamics. In biological systems, such condi-
tions may not be always verified and therefore applying slow-fast analysis is not as
straightforward as it seems in a first approach.






CHAPTER 3

PROCEDURAL LEARNING IN THE STRIATUM

During my PhD, I was also part of the “Dynamic and Pathophysiology of Neuronal
Networks” team at College de France, led by Dr. Laurent Venance. The experimentalists
there are working on electrophysiological and behavioral approaches to examine the
role of the dorsal striatum in procedural learning. Here, I will be referring to the dorsal
striatum as the striatum, for simplification, leaving aside its ventral part, the nucleus
accumbens. Most of the work I report here is focused on the striatal system, using
mathematical tools and computational neuroscience to understand its dynamics and
properties. In particular, the striatum displays a specific type of synaptic plasticity,
anti-Hebbian STDP and I will develop several properties of anti-Hebbian STDP either
in stochastic neuronal networks or in computational models of the striatum. In the
following section, I will introduce the striatum as a core subcortical nucleus, that is
part of a larger system, the basal ganglia, involved in action selection and procedural
learning. Then, I will describe the different properties of the striatal neuronal network,
in particular by defining its main constituents, the medium-spiny neurons (MSNs), that
will be the basis of all the computational work in this report. Finally, I will detail how
anti-Hebbian STDP has been discovered at corticostriatal synapses and what are the
current views on the implication of anti-Hebbian STDP in models. Most information
from this introduction has been taken from [Mil07; ST16] for the biological system
and [PS95] for the computational part.

3.1 The striatum, a subcortical structure involved in
procedural learning

The input nuclei of the basal ganglia

The striatum represents the entry system of the basal ganglia, a large group of subcor-
tical nuclei involved in action selection, goal-directed behavior and procedural learn-
ing [ST16].

As the main input to the basal ganglia, the striatum is characterized by a conver-
gence of a large array of excitatory neurons descending from the cortex or the thalamic
nuclei. Cortical and thalamic glutamatergic (excitatory) axons converge at the level of
the striatal neurons, and represent the main cause of neuronal activity in the striatum.

The striatum is of particular interest because of its capacity to integrate cortical
inputs from all cortices, starting from the sensorimotor cortex (responsible for sen-
sory integration and motor commands) to the limbic cortex (which supports diverse
functions including emotion, behavior, long-term memory). The striatum uses this con-
vergence of different sources of information to select correct associations and determine
future actions based on this large collection of signals.

The striatum is primarily composed by projections neurons, called the medium-
sized spiny neurons (MSNs) because of the size and shape of their dendritic tree.
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Figure 3.1: Schematic representation of the striatal heterogeneity and the anatomo-
functional compartments of the dorsal striatum, adapted from [PV19].

Schematic representation of the direct and indirect trans-striatal pathways of the basal
ganglia. Striosomes are shown with black dots distributed between the dorsolateral
striatum (blue) and the dorsomedial striatum (orange). Grouped black dots represent
striosomes surrounded by the annular compartment (red line, [BC15]), whereas iso-
lated black dots illustrate the exo-patch [Smi+16]. Striosomal SPNs mainly project to
SNc whereas SPNss from the matrix belong to the direct or indirect pathway. The direct
and indirect pathways are represented, respectively, in green and purple.

GPe, external segment of the globus pallidus; EP, entopeduncular nucleus; STN: sub-
thalamic nucleus; SNr, substantia nigra pars reticulata; SNc, substantia nigra pars
compacta.
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Because of their roles as the only neurons projecting outside of the striatum, they are
also referred to as striatal projection neurons (SPNs). Accordingly, MSNs project to
other parts of the basal ganglia, and two main pathways have been characterized in the
past decade. For a simplified picture of the basal ganglia organization see Figure 3.1
(right). It has been shown that two subtypes of MSN differ in their target nuclei. Direct-
pathway neurons, dMSNs, directly extend their axons into the EP (entopeduncular
nucleus) and the SNr (substantia nigra pars reticulata), which represent the output
nuclei of the basal ganglia. Conversely, indirect-pathway neurons, iMSNs, project to the
GPe (external globus pallidum), whose neurons then project to the STN (subthalamic
nucleus) as a final step before being received at the EP and SNr. Information traveling
through this pathway goes to several intermediate steps before arriving at the output
neurons of the basal ganglia. This simplistic view of the basal ganglia system is
presented and discussed in [Mil07].

The basal ganglia are composed of nuclei whose projecting neurons share a quite
uncommon property when comparing to the rest of the brain: all neurons are in-
hibitory and transmit information at synapses using the GABA (gamma-aminobutyric
acid) neurotransmitter. An exception must be made for neurons from the STN which
are excitatory. When comparing with the cortex, where the majority of the cells are
excitatory, and inhibition is only present through local interneurons, it highlights the
fact that the basal ganglia has its own dynamics, quite distinct from cortical ones. In
particular, the MSNs have inhibitory projections to their target neurons, which exhibit
tonic (spontaneous) firing activity, and modulate these rates through the intensity of
inhibition.

The striatum, and more generally the basal ganglia, are linked to several neuro-
logical disorders, such as Parkinson’s disease or Huntington’s disease. The continuous
effort of experimentalists and neuroscientists working on the basal ganglia, has mainly
been driven by the understanding of these diseases and by the prospect to heal them.

Functional role of the striatum

The basal ganglia are a key structure for action selection, and the control of voluntary
motor movements. The striatum, as the main input structure of this system, has distinct
functional roles which can be linked to three of its main properties.

The striatum integrates numerous cortical inputs at each MSN, and a large num-
ber of those excitatory neurons need to be activated at the same time to trigger a spike
at the MSN. Indeed, MSN are known to exhibit low rest potentials (X., = —80mV)
and only spike when receiving enough excitatory currents concurrently to reach the
spike potential (X, = —50mV’). Therefore, MSNs play a great part in filtering ran-
dom cortical activity, and extracting from noise, relevant information, characterized by
correlated cortical spiking. It is particularly interesting to notice that MSNs integrate
excitatory inputs from variate cortical structures, which then “share” information at the
level of the striatum to decide on which action to perpetrate in response to a particular
situation. From the machine learning point of view, the striatal layer mimics the role
of a perceptron, whose input layer would be represented by cortical neurons, and the
output layer would be modeled by the MSNs [Wic93; PS95]. MSNs are then able to send
this filtered information to the following stages of the circuit, leading to action selection
and motor processing. This detection of coincidence is enhanced by the presence of
collateral inhibition between MSNSs, i.e they also project to neighboring MSNs, and
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therefore inhibit them while spiking. This competition between inhibitory cells lead to
winner-take-all dynamics, where a single active neuron shuts down the other MSNs, en-
hancing signal-to-noise ratio. This hypothesis, based on strong collateral inhibition has
been tempered in recent works, where MSN inhibition has been shown to be weaker,
leading to winner-share-all dynamics [WASO7].

A second important fact about the striatum is that its synaptic connections are
highly plastic. In particular, corticostriatal synapses are modified following corre-
lated activity from cortical and striatal neurons [PS95] and also display STDP [FV10].
Accordingly, the ability of MSNs to select important information from spontaneous
cortical activity is shaped by synaptic plasticity. Indeed, corticostriatal synapses learn
to modulate MSN activity to the right intensity to participate in the pattern detection
task. Many synaptic mechanisms have been proven to be involved in different types
of learning, and in particular for the striatum, in procedural learning. This particular
type of learning refers to the process of acquiring skills in a motor task that is even-
tually can be performed automatically, without having to consciously remember the
information. Learning to ride a bike is an example of procedural learning, in the sense
that, when cycling, people do not move their feet with explicit, conscious, orders, but
rather just replicate a sequence that they have learned to perform. It is usually op-
posed to declarative memory, where the subject is able to consciously recall particular
information.

Finally, for learning to occur in the striatum, striatal neurons need to be taught
through some mechanisms which cortical associations are contextually appropriate or
not. Reward mechanisms are usually associated to dopaminergic signaling [SDM97],
and the striatum is one of the brain areas where dopamine plays a major role. A
subset of MSNs, mainly located at striosomes (patches of chemical compartments in
the striatum, see Figure 3.1) are known to directly project to the SNc, one of the
main pools of dopaminergic neurons in the brain. Striatal activity therefore greatly
influences the release of dopamine in the rest of the brain, and in particular in the
striatum. Indeed, neurons from the SNc are known to project directly to the dorsal
striatum and therefore locally influence striatal activity, and even synaptic plasticity,
with signals based on reward. Goal-directed learning in particular has been shown
to rely on the influence of dopamine in the striatum [YKO06; BO10]. More precisely,
dopamine is a good candidate to represent reward or RPE (reward prediction error)
directly at the level of the striatum.

Dichotomies in the dorsal striatum

As explained in the previous sections, the striatum has to perform several different
tasks at the same time, keeping in mind that it only has a single type of projecting
neurons, the MSNs. Several heterogeneities have been observed at the level of the
striatum, both structurally and functionally that can explain its ability to “multitask”.

Direct vs indirect pathways

As explained in Section 3.1, MSNs can be discriminated based on their output targets,
and their belonging to the direct or indirect pathways. Furthermore, neurons from the
direct and indirect pathways are associated with different dopaminergic receptors (D1-
like for direct pathway neurons, and D2-like for indirect ones). Indirect pathway MSNs
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also have a greater excitability (they are more prone to spike) than MSNs belonging
to the direct pathway. Finally, [ ] have proven that in some regimes, MSNs
may exhibit different STDP rules at their corticostriatal synapses. These neurons also
have different functions, because direct and indirect pathways neurons tend to exert
an opposite influence on the basal ganglia output. The differential influence of the
direct, and the indirect pathways has been the focus of many studies. Excitatory inputs
received by the direct MSNis lead to a decrease of activity in the output neurons of the
basal ganglia, which in turn stop inhibiting key areas for motor processing, enabling
motor activity. The direct pathway is therefore involved in the release of inhibition,
necessary for the correct implementation of learned motor skills. The indirect pathway
goes through one more inhibitory connection, and as such has the opposite influence
on the output neurons of the basal ganglia. It has been shown that its role is to
prevent actions from being processed. The balance resulting from the activity of
both systems is key in order to perform action selection, and to correctly process
complex motor programs. These facts have been used when modeling the action
selection process [C]B10; Dun+19], or when studying the influence of the basal ganglia
in Parkinsonian models [Rub17; HOD18]

The dorsolateral (DMS) vs dorsomedial (DMS) striata

The second duality that is present in the (dorsal) striatum consists in the distinction
between the DLS and DMS regions of the striatum, see 3.1 (DLS in blue, DMS in orange).
These two parts are not clearly segregated when looking at the dorsal striatum, but they
integrate inputs from different cortical areas, sensorimotor cortices for the DLS and
associative ones for the DMS. Again, MSNs display different properties in these two
regions, in particular, at the level of their corticostriatal plasticity [ ]. Another
important variation between those two regions is that striatal interneurons (neurons
that only project inside the striatum) have different distributions [Fin+18]. It has been
shown that these two regions also exhibit clear functional differences [BO10]: the DLS
is involved in habit formation, i.e learning to associate stimulus to a succession of
actions without taking into any rewards, whereas DMS participate in goal-directed
learning (learning based on rewards). They are both involved when learning a new
task, and their complementary action seems necessary for procedural learning. For a
more detailed presentation on this topic, see Section IV.2.2.1.

Patch vs matrix compartments

Finally, the striatum can be subdivided in two types of chemically-distinct patterns.
Striosomes are patches of MSNs which project to the SNc, and the matrix which forms
the rest of the MSNs [BC15; Smi+16]. In the first models of the striatum, these two parts
where supposed to represent the two systems in actor-critic model [PS95], where the
matrix would be responsible for choosing an action based on current information (the
actor) and the striosomes, thanks to their association with dopaminergic neurons of the
SNc, would predict, using an internal model of the world, the reward that would result
from doing a particular move (the critic). Dopamine would then be used to correctly
update both systems (as is expected in the actor-critic model) because dopaminergic
neurons project back to the whole striatum.

Even if at first view, the striatum seems to be quite restricted in its actions, due
to the fact that its only influence is exerted through a single type of cells, the MSNs,
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differentlocal variations of the striatal network explain its ability to multitask efficiently,
while sharing relevant information.

3.2 Corticostriatal STDP and importance of anti-Hebbian
plasticity

STDP at corticostriatal synapses

The striatum, while integrating inputs from all cortical areas (from motor to limbic
parts) and from some thalamic nuclei, is involved in both action selection and proce-
dural learning. [Yin+09] proved that procedural learning depends on corticostriatal
plasticity, leading to various studies to characterize the shape and role of corticos-
triatal plasticity [Kor+12; PV19]. Plasticity observed in vitro (using brain slices) and
in vivo (in anesthetized or awake rodents) depend on several conditions, first of all
the induction protocols (rate-based, STDP), then striatal heterogeneity, and finally the
presence/absence of neuromodulators [PV19].

For a long time, corticostriatal plasticity was known to be depression-based, i.e
leading to a decrease in the synaptic weight value. However, after applying STDP pro-
tocols at corticostriatal synapses, [FGV05] described that they displayed anti-Hebbian
STDP. In short, pre-post pairings (a presynaptic spike followed by a postsynaptic spike)
lead to long-term depression while reversed pairings trigger long-term potentiation.
It is important to stress here that, anti-Hebbian STDP has not been as extensively
studied as Hebbian one, even if it was discovered at the same time [Bel+97]. Several
studies have later on confirmed the presence of anti-Hebbian STDP at corticostriatal
synaspes [Pai+13; Val+17], and have studied the influence of the induction protocol on
synaptic plasticity. Changes in frequency [ |, number of pairings [Cui+16], age of
the rodents [Val+17] have shown that STDP is highly dependent on these parameters,
leading to legitimate questions about its active role in in vivo synaptic plasticity, and of
course in behavior. In vivo studies have confirmed that corticostriatal STDP could be
elicited, while maintaining a biological level of activity [ I

It is to be noted that some works have reported Hebbian STDP at corticostriatal
synapses. These conflicting observations have been explained by the use (or lack of
use) of ionotropic GABA antagonists [Pai+13]. Moreover, the influence of dopamine
on the shape of STDP is also of great importance [She+08], when starting to consider
models of goal-directed learning [GHR15], or the influence of three-factor learning
rules [KIT17; Ger+18; PV19].

I would like to stress here, that when talking about corticostriatal synapses, I am
referring to synapses onto MSNs. However, several studies have also demonstrated that
STDP could also be elicited at corticostriatal synapses located on the different types
of interneurons present in the striatum. In particular, fast-spiking inhibitory interneu-
rons (FS), cholinergic interneurons and low threshold-spiking interneurons (LTS) also
exhibit different types of STDP [FV10]. Similarly, plasticity was also induced at thala-
mocortical synapses, i.e where thalamic afferents connect to striatal neurons [ I

In conclusion, striatal neurons have highly plastic synapses, and various works
have proven that anti-Hebbian plasticity has an important role to play in learning.
However, few models have tried to study how anti-Hebbian STDP impacts neuronal
dynamics, and this work aims at reporting some new principles for anti-Hebbian STDP.
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Functions of anti-Hebbian STDP

In order to understand the role of anti-Hebbian STDP, modeling studies are often
necessary and it is quite appalling to see that most computational works on synaptic
plasticity only focus on Hebbian STDP. Theoretical studies analyzing different types of
STDPs, even if scarce in numbers, exist [Rob00; CF03; RA04; ZD07; RL10; BK12].

An exception must be made for a sequence of publications on the role of anti-
Hebbian STDP in electrosensory systems, in the mormyrid electric fish. These fish
are known to have an electric organ located in their tail that generates a weak electric
field. A motor command causes the electric organ to discharge in pulses and the
animals can then navigate by detecting small distortions in the electrical field caused
by external objects. Moreover, it has been shown that anti-Hebbian STDP was present
at parallel fiber synapses [Bel+97] and several computational models have been built
on this hypothesis [RL10]. They explain that anti-Hebbian STDP helps the system to
create a negative image of the electrical field generated by a motor command. When
this negative image is subtracted to the actual electric field sensed by the fish, small
distortions are easily detected, helping the fish to navigate. Anti-Hebbian plasticity
has been shown to be perfect in order to reproduce this phenomenon [RBO0; WRL03]
and this cancellation mechanisms has been studied both with computer simulations
and theoretical studies [RL10]. An important point raised by several articles, is that
anti-Hebbian STDP alone, is not able to generate sustained spiking activity. Indeed,
as a causal pre-post pairing leads to depression, the synaptic weights will eventually
converge to a situation where they are not large enough to trigger spiking activity.
In order to counteract this phenomenon, and to reproduce experimental data, non-
associative potentiation (only triggered by presynaptic activity) is often added to the
associative anti-Hebbian STDP rule [RB00; WRL03; RA04].

Hebbian STDP is known to act as a correlation tool, in the sense that neurons
whose firing are correlated, will be even more correlated after the action of synaptic
plasticity. This auto-exciting process has been shown to be of great importance in the
formation of neuronal assemblies and syncfire chains [GBV10], mainly in the cortex.
Anti-Hebbian STDP follows the opposite principles, in the sense that as soon as the
postsynaptic neuron spikes, it immediately reduces the value of the synaptic weights
that have led to its spiking. Anti-Hebbian STDP therefore acts as a homeostatic mecha-
nisms, that can limit the growth of the synaptic weights to a value sufficient to trigger
spikes [RA04]. This view has also emerged in studies on learning temporal spiking
sequences, where the goal is not only to spike in response to a pattern, but to spike at the
right time. Theoretical studies have shown that algorithms needed to solve this task,
as the Chronotron [Flo12] or ReSuMe [PK10] have dynamics similar to anti-Hebbian
rules [Giit14]. For a more specific introduction on this topic see, Section IV.1.1.1.
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This PhD is the result of an interdisciplinary collaboration between mathematics
and neuroscience, where I have been working under the supervision of

— Dr Philippe Robert, in the MAMBA (Modelling and Analysis for Medical and
Biological Applications) team from INRIA Paris;

— Dr Laurent Venance, in the DPRN (Dynamic and Pathophysiology of Neuronal
Networks) team, in the CIRB (Center for Interdisciplinary Research in Biology) at
College de France, Paris.

This work is built on experimental results, mainly the expression of anti-Hebbian STDP
at corticostriatal synapses, observed in Laurent Venance’s team. During my PhD, I have
developed two main applications of this synaptic plasticity rule in neuronal networks
models.

This report is divided in two parts, in order to present the different paths that I
have pursued:

— Part A starts by studying STDP in stochastic neuronal networks, detailing a rigor-
ous framework in which we have applied stochastic theory to synaptic plasticity.
This line of research led to five articles: three published [ ; ; 1,
one submitted [ ] and one in last stages of redaction [ ]. In these five
papers, the work was equally distributed between myself and my PhD supervisor
Dr. Philippe Robert. In more details,

— Chapter 1: P. Robert and G. Vignoud. Stochastic Models of Neural Plasticity.
SIAM Journal on Applied Mathematics 81.5 (Sept. 2021), 1821-1846 (reproduced
tully in its published version, with minor orthographic and typographic
corrections).

— Chapter 2: P. Robert and G. Vignoud. Stochastic Models of Neural Synaptic
Plasticity: A Scaling Approach. SIAM Journal on Applied Mathematics 81.6
(2021), 2362-2386 (reproduced fully in its published version, with minor
orthographic and typographic corrections).

— Chapter 3: P. Robert and G. Vignoud. Averaging Principles for Markovian
Models of Plasticity. Journal of Statistical Physics 183.3 (June 2021), 47-90
(reproduced fully in its published version, with minor orthographic and
typographic corrections).

— Chapter 4: P. Robert and G. Vignoud. On the Spontaneous Dynamics of
Synaptic Weights in Stochastic STDP Models. revisions at Physical Review E
(2022) (reproduced in its current version, in review in PRE).

— Chapter 5: P. Robert and G. Vignoud. A Markovian approach to Hawkes
processes. In writing. 2022 (reproduced in its current version).

— Part B will implement anti-Hebbian STDP in simple models of the striatum, us-
ing computer simulations to study the influence of synaptic plasticity on different
learning tasks. For this part, I have been directed, from the computational neuro-
science side, by Pr. Jonathan Touboul (Brandeis University) and was partly funded
by a Fulbright grant to work at Brandeis University for a five months period. Two
articles emerged from these projects, the first has been accepted [ ] and the
second in last writing stages [ ]. Inboth papers, I have designed the model,
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the task, done the simulations, analyzed the results and written the paper under
the tight supervision of Pr. Jonathan Touboul and my second PhD advisor Dr.
Laurent Venance.

— Chapter 1: G. Vignoud et al. A synaptic theory for sequence learning in the
striatum. Preprint. 2022 (reproduced in its current version).

— Chapter 2: S. Perez et al. Striatum expresses region-specific plasticity consis-
tent with distinct memory abilities. Cell Reports 38.11 (2022), 110521 (repro-
duced partially, with a general presentation of the experimental results, and
my specific contribution in full). In this paper, the model is used to draw
conclusion on the respective roles of different types of plasticity, studied in
their full extent in the associated paper [ ], by my colleagues from Dir.
Laurent Venance team.

Both lines of works were based on the same experimental mechanisms, but the
collaboration between them did not end there. Indeed, the composition of a rigorous
setting for synaptic plasticity in stochastic neuronal networks was enriched by several
biologically plausible properties, after lengthy discussions with my advisors. Similarly,
the analysis of synaptic weights dynamics in computational models of the striatum
was greatly helped by theoretical results obtained in the stochastic framework. As a
conclusion, although, both projects have been built together, and have influenced each
other over the course of my PhD, I present them separately here, for clarity.

Stochastic neural networks and synaptic plasticity

If numerous models of neuronal cells have been proposed in the mathematical liter-
ature, few of them include a variable for the time-varying strength of the connection
between two neurons. We introduce a general, mathematical framework to study
synaptic plasticity. We develop and use this formalism in a serie of four articles, that I
will detail sequentially.

In Chapter A.1 [ ], we investigate a system composed of two neurons con-
nected by a single synapse, and a stochastic process describing its dynamical behavior
is presented and analyzed. The notion of plasticity kernel is introduced as a key com-
ponent of plastic neuronal networks models, generalizing a notion used for pair-based
models. We show that most STDP rules from computational neuroscience can be rep-
resented by this formalism. An important subclass of plasticity kernels, where cellular
processes such as the neuronal membrane potential and the concentrations of chemical
components have Markovian dynamics, is defined and investigated.

After having defined the general formalism needed to study STDP, we apply a
slow-fast analysis to the dynamics of the associated neuronal network. This work
is presented in Chapter A.2 | ]. In this chapter we develop and investigate a
scaling approach of these models based on several biological assumptions. Experiments
show that long-term synaptic plasticity evolves on a slower timescale than the cellular
mechanisms driving the activity of neuronal cells. For this reason, a scaled version of
the stochastic model is introduced, and an averaging principle is stated for a subclass
of Markovian plasticity kernels. These averaging principles are used to study two
important STDP models, pair-based rules and calcium-based rules, and are compared
with the approximations of STDP models from computational neuroscience. Discrete
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models of STDP rules are also investigated for the analytical tractability of their limiting
dynamical system.

The proof of the averaging principle is developed in Chapter A.3 | ]. We
consider a stochastic system with two connected nodes, whose unidirectional connec-
tion is variable and depends on point processes associated to each node, that represent
the simple neuronal network defined before. We study the scaling regime when the
rate of both point processes is large compared to the evolution of the connection. The
central result of this chapter is the averaging principle for the connection dynamics.
Mathematically, the key variable is the point process, associated to the output node,
whose intensity depends on the past activity of the system. The proof rests on a de-
tailed analysis of several of its unbounded additive functionals in the slow-fast limit,
and technical results on interacting shot-noise processes.

In Chapter A.4| ], we apply the timescale separation (consequence of [ ;

]) to derive the long-time limits of a single synaptic weight subject to pair-based
STDP. We show, using theoretical arguments and computer simulations, that the pairing
scheme (choice of presynaptic and postsynaptic spikes to consider) controls the synaptic
weight dynamics for small external input on an excitatory synapse. This result implies
in particular that mean-field analysis of plasticity may miss some important properties
of STDP. Anti-Hebbian STDP favors the emergence of a stable connection. In the case
of an inhibitory synapse the pairing schemes matter less, and we observe convergence
of the synaptic weight to a stable value only for Hebbian STDP. We study different
asymptotic regimes for STDP rules, raising interesting questions for future works on
adaptative neural networks and, more generally, on adaptative systems.

All previous chapters have highlighted the importance of stationary distributions
of neuronal dynamics with constant synaptic weights. Considering that a neuron can
be modeled as an auto-exciting process, we have developed an interest in the study of
stationary Hawkes processes. In Chapter A.5 [ ], we develop a new formalism
for Hawkes process, where we prove that the sequence of jump timings can be seen as
a Markovian chain on the space of positive real sequences. In addition, we study the
transient behavior in details the case where each jump induces an exponential influence
on the Hawkes intensity. Under this hypothesis, the system is described by a simpler
Markov chain, and we prove several estimations on this type of Hawkes process, using
Markovian theory, either for stationary or transient processes.

STDP in the striatum: implications on learning and memory

One of the focuses of this PhD was to build a simplified model of the striatum, with anti-
Hebbian STDP and reward signaling, and thus investigate the impact of anti-hebbian
forms of STDP on learning and memory. In particular, I have developed a simple
numerical model of the striatum, integrating cortical spiking inputs to study the role
of anti-Hebbian STDP in learning. I have tested this network on two different tasks,
which I will present in this part.

In Chapter B.1 | ], we study the influence of anti-Hebbian STDP on a spe-
cific task, related to the striatum prominent role in procedural learning. Sequences
of cortical spikes are presented to the striatal output neurons (MSN) and combined
information from the output, reward and timing between the different spikes modify
the intensity of each connection, through two mechanisms: anti-Hebbian STDP and
reward signaling. The network learning capacity is measured by a score, based on



45

the prediction of rewarded and nonrewarded patterns. The learning dynamics and
efficiency are compared between different settings (number of neurons, intensity of
the plasticity, types of STDP, tolerance to random noise). Two important properties of
the striatal networks, spiking latency and collateral inhibition have subsequently been
added to the model and lead to an improvement of the global accuracy. In conclusion,
we show that anti-Hebbian STDP favors the learning of complete sequence of spikes,
such as is needed in the striatum, whereas, even if Hebbian STDP helps to correlate
the spiking of two connected neurons, it is not sufficient to integrate long sequences of
correlated input spikes.

Finally, in Chapter B.2 [ ], I present a project where I have directly collab-
orated with experimentalists. Electrophysiological and behavioral experiments were
performed to study the different properties of two regions of the striatum, who me-
diate different types of learning: goal-directed behavior in DMS and habits in DLS.
We show that symmetric and asymmetric anti-Hebbian STDP exist in DMS and DLS,
respectively, with opposite plasticity dominance upon increasing corticostriatal activ-
ity. In this chapter, I use the mathematical model, defined in Chapter B.1 to study the
computational properties of these STDP rules in procedural learning. We developed
a complex task, composed by a learning phase, followed by a period of random ac-
tivity, and finally a relearning phase in order to investigate the influence of STDP on
the maintenance of learned patterns. We found that symmetric anti-Hebbian STDP
favored memory flexibility by allowing a rapid forgetting of patterns, while asymmet-
ric anti-Hebbian STDP contributed to memory maintenance, consistent with memory
processes at play in procedural learning.

Other PhD works, not presented in this document

During the course of my PhD, I have also been involved in several projects of data
analysis, through local collaborations in Laurent Venance’s team. These projects, which
helped me to gain experience while closely working with experimentalists, are not
reported in the main document, as they are not directly linked with my PhD subject.
In the following section, I will shortly present four of those works to give a complete
overview of my PhD.

First, using experimental data from the lab, I have developed a tool to discriminate
between direct- and indirect-pathway MSNs using electrophysiological properties. I
have first developed an algorithm to compute all interesting properties from AP (action
potential) protocols, then I have trained several machine learning techniques to correctly
classify both types of neurons. In particular, I have shown that using the combination
of two algorithms leads to a good performance in the classification task. This work
was presented at an international conference [ ], and has been subsequently used
in the lab by experimentalists to identify neurons, without having to use genetically-
modified mouse lines.

In the second half of my PhD, I have also worked with Pr. Bertrand Degos (a
neurologist that works part-time in Laurent Venance’s team), and two of his interns
on quantitatively measuring parkinsonian symptoms from videos. Bradykinesia is
defined as a motor slowness and is associated with a decrease of the amplitude and
speed of movement. As a key parkinsonian feature, it is currently assessed by the
MDS-UPDRS score, a subjective protocol that lacks reproducibility and makes follow-
up challenging. Using deep learning, we developed a tool to compute an objective score
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of bradykinesia. A large database of videos showing parkinsonian patients performing
MDS-UPDRS protocols has been acquired in a Movement Disorder unit, and several
deep learning algorithms, including DeepLabCut [Mat+18], were applied to detect a 2D
skeleton of the hand composed of 21 points, and transpose it into a 3D representation.
A two- and three-dimensional semi-automated analysis tool was then developed to
study the evolution of several key parameters during the protocol repetitions. This tool
was presented at several medical conferences [ ], and a paper is currently being
written. Both interns that have worked on this project, C. Desjardins and Q. Salardaine
have received the APinnov 2021 Trophy.

Using the same deep learning network, DeepLabCut [Mat+18], I have developed,
in the lab, a process to follow different points of interest in videos where mice are subject
to behavioral experiments. In particular, I was involved in a project with S. Valverde
on the Engrailed-1 homoprotein [Pez+22]. Engrailed-1 is a homeoprotein transcrip-
tion factor able to transfer between cells and to regulate transcription, translation and
chromatin epigenetic status. The goal here is to develop Enl as a therapeutic homeo-
protein in a Parkinson’s Disease mouse model by virally addressing it to mesencephalic
dopaminergic neurons of the SNc and test if it exerts a long-lasting epigenetic protec-
tion and has pro-survival activity. By overexpressing Enl in the SNc following the
local and unilateral injection of an AAV virus, we wanted to test Enl’s ability to protect
dopaminergic neurons from degeneration by looking at rotational behavior amplified
by amphetamine sensitization. Using DeepLabCut, we were able to automatically
compute the number of turns, and the distance on which the mice had run.

Finally, I have supervised two interns, C. Richard and G. Yasmine-Degobert, who
have worked on the influence of feedforward inhibition in a computational model of the
striatal network. Results from both internships have highlighted the role of inhibition
in the striatum, and its differential influence in DMS and DLS. A general model of the
striatum, based on these works and on the results obtained during my PhD on the
influence of STDP, is currently in formation, and will tackle several interesting issues
about procedural learning in the basal ganglia.
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CHAPTER 1

STOCHASTIC MODELS OF NEURAL SYNAPTIC PLASTICITY

— ABSTRACT

In neuroscience, learning and memory are usually associated to long-term changes
of neuronal connectivity. In this context, synaptic plasticity refers to the set of mecha-
nisms driving the dynamics of neuronal connections, called synapses and represented
by a scalar value, the synaptic weight. Spike-Timing Dependent Plasticity (STDP) is a
biologically-based model representing the time evolution of the synaptic weight as
a functional of the past spiking activity of adjacent neurons.

If numerous models of neuronal cells have been proposed in the mathematical liter-
ature, few of them include a variable for the time-varying strength of the connection.
A new, general, mathematical framework is introduced to study synaptic plasticity
associated to different STDP rules. The system composed of two neurons connected
by a single synapse is investigated and a stochastic process describing its dynamical
behavior is presented and analyzed. The notion of plasticity kernel is introduced as
a key component of plastic neural networks models, generalizing a notion used for
pair-based models. We show that a large number of STDP rules from neuroscience
and physics can be represented by this formalism. Several aspects of these models
are discussed and compared to canonical models of computational neuroscience. An
important sub-class of plasticity kernels with a Markovian formulation is also de-
fined and investigated. In these models, the time evolution of cellular processes such
as the neuronal membrane potential and the concentrations of chemical components
created /suppressed by spiking activity has the Markov property.

1.1 Introduction

Central nervous systems, as the brain, are the main substrate for memory and learning,
two essential concepts in the understanding of behavior.

It is widely accepted that neurons constitute the main relay for information in
complex neural networks composing the brain. This multi-scale system, ranging from
single neuronal cells to complex brain areas, is known to be the basis of memory
consolidation, i.e. the transformation of a temporary information into a long-lasting
stable memory. The memory trace, or engram, is the focus of studies in neuroscience,
see [TMK18] for example. Biological, computational and mathematical models are
developed to understand mechanisms by which an engram emerges during learning,
maintains itself, and evolves with time.

Synapses are the key components for the transmission of information between
connected neurons, and accordingly, it is assumed that the encoding of memory is
integrated in the intensity of these connections. From a biological point of view, a
synapse is a structure, located at the junction of two neurons, where the transmission
of chemical/electrical signals is possible. A neuronal connection is unidirectional in
the sense that the signal goes from an input neuron, called the pre-synaptic neuron, to
the output one, the post-synaptic neuron. The intensity of the connection is referred to as
the synaptic efficacy/strength and is represented by a scalar variable, the synaptic weight

51



52 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

W. The impact of an input signal, a spike, from the pre-synaptic neuron is modeled as
a jump of the membrane potential X of the post-synaptic neuron. The amplitude of this
jump is used to quantify the synaptic weight.

A synaptic plasticity mechanism is defined as a collection of activity-dependent
cellular processes that modifies the synaptic connectivity. During learning, specific
patterns of neural activity may elicit short, from milliseconds to seconds, and/or long,
from minutes to hours, -term changes in the associated synaptic weights. In this context,
it is conjectured that memory is directly associated to synaptic plasticity, see [TDM14].

The state of a neuronal cell

In this paper we will investigate stochastic models of the dynamic of the synaptic weight
of a connection from a pre-synaptic neuron to a post-synaptic neuron.

The post-synaptic neuron is represented by its membrane potential X which is a
key parameter to describe its current activity. In neuroscience numerous models of an
individual neuronal cell and neuronal networks have been used to investigate learning
abilities and plasticity. See [Ger+14] for a review.

The leaky-integrate-and-fire model describes the time evolution of the membrane
potential as a resistor-capacitor circuit with a constant leaking mechanism. Due to dif-
ferent input currents, the membrane potential of a neuron may rise until it reaches some
threshold after which a spike is emitted and transferred to the synapses of neighboring
cells. A large class of neural models based on this hypothesis has been developed,
see [Ger+14] and references within.

To take into account the important fluctuations within cells, due to the spiking
activity and thermal noise in particular, a random component in the cell dynamics has
to be included in mathematical models describing the membrane potential evolution.
For several models this random component is represented as an independent additive
diffusion component, like Brownian motion, of the membrane potential.

In our approach, the random component is at the level of the generation of spikes.
When the value of the membrane potential of the output neuron is at X=z, a spike
occurs at rate $(x) where [ is the activation function. See [ChiO1] for a discussion. In
particular the instants when the output neuron spikes are represented by an inhomoge-
neous Poisson process. Considering a constant synaptic weight IV, the time evolution of
the post-synaptic membrane potential (X (¢)) is represented by the following stochastic
differential equation (SDE):

dX(t) = —iX(t) dt + WN,(dt) — g (X (t—)) N x(dt), (1.1)

where X (t—) is the left limit of X at ¢t>0:

— 7 is the exponential decay time constant of the membrane potential associated to
the leaking mechanism.

— The sequence of firing instants of the pre-synaptic neuron is represented by a
Poisson point process N, on R, with rate A\. At each pre-synaptic spike, the
membrane potential X is increased by the amount W'.

— The sequence of firing instants of the post-synaptic neuron is an inhomogeneous
Poisson point process NV x on R, whose rate function is given by (3(X (t—))).
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— The drop of potential due to a post-synaptic spike is represented by the func-
tion g, i.e. after a post-synaptic spike, the membrane potential is reset to

X(t=)=g(X(t=)).

Considering that the point process N x depends on (X (t)), Relation (1.1) can be seen
as a fixed point equation.

Synaptic plasticity

Synaptic plasticity refers to different mechanisms that leads to the modification of
the synaptic weight. Consequently, we need to consider a time varying version of
the synaptic strength W (t¢). Although synaptic plasticity is a complex mechanism,
general principles have been inferred from experimental data and previous modeling
studies. One of the founding principles is Hebb’s postulate (1949), later on summarized
by [Sha92] as, “Cells that fire together wire together”.

Synaptic potentiation, resp. depression, is associated to an increase, resp. a decrease,
of the synaptic strength. Plasticity is described as a set of mechanisms controlling the
potentiation and the depression of synapses. It usually depends on the pre-synaptic and
post-synaptic signaling, i.e. of past instants of pre-synaptic and post-synaptic spikes.
In the literature this class of mechanisms are referred to as Spike-Timing Dependent
Plasticity (STDP). Several experimental protocols have been developed to elicit STDP
at synapses: sequences of spikes pairing from either side of a specific synapse are
presented, at a certain frequency and with a certain delay. Occurrence, magnitude
and polarity of STDP have been shown to depend on protocols used in experiments:
frequency, number of pairings, types of synapses where it is applied, the neuronal
sub-population, brain area, just to cite a few key parameters, see [Fell12].

We now introduce two important classes of synaptic plasticity mechanisms. Most
models of the literature belong to, or are a variation of, one of these two classes.

a. Pair-based models.
Each pair t=(tpre, tpost) Of instants of pre-synaptic and post-synaptic spikes is
associated to an increment AW of the synaptic weight at time max(¢pye, tpost ),

AW = O(At), (1.2)
where Atdif'tpost—tpre and @ is the some function on R, the STDP curve. The
function @, usually taken from experimental data, is sharply decreasing to 0 as
At goes to infinity, so that distant spikes have a negligible contribution.

Many variants and extensions of pair-based models have been developed over
the years to fit with experimental results. Triplets-rules, described in Sections 1.A
and 1.A, add a dependency between spikes of the same neuronal cell. Additional
examples can be found in [BA16].

b. Calcium-based models.
Another class of models infers from explicit biological mechanisms the shape of
the STDP curve. Post-synaptic calcium traces have been found experimentally to
be critical in the establishment of plasticity, see [Fel12] and references therein. In
a classical model, when the calcium concentration C., in the post-synaptic neuron
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reaches some specific threshold, STDP is induced accordingly. The analogue of
Relation (1.2) for calcium-based STDP rules is,

AW (t) = F(Cu(t)) dt, (1.3)

for some function F. The dynamics of C,, is only driven by instants of pre- and
post-synaptic spikes. Consequently, the dependence of plasticity on the instants
of spikes is not expressed directly as in pair-based models, but through some
intermediate biological variable. Several biophysical models are based on this
calcium hypothesis, see [GB10] for a review.

It should be noted that there are other STDP models, such as the ones based on
exponential filtered traces of the membrane potential, see [CG10]. Pair-based and
calcium-based models are nevertheless the most widely used STDP rules in large-scale
plastic neural networks.

Models of plasticity in the literature

To understand how synaptic plasticity may shape the brain, the study of STDP in neural
networks has attracted a lot of interest in different domains:

a. Experiments, with measurements of a large variety of STDP rules.

b. Computational models, for numerical simulations of these protocols with several
populations of neuronal cells.

c. Mathematical models, to investigate the qualitative properties of STDP rules.

Many computational models have been developed to investigate STDP rules in
different contexts. See [KGH99] and [MADO07] and the references therein.

Mathematical studies of models of plasticity are quite scarce. Most models are
centered on evolution equations of neural networks with a fixed synaptic weight. See
Sections 1 and 2 of [RT16] for a review. [Hell8] investigates a Markovian model of a
Nearest Neighbor Symmetric Model STDP rule. See Section 1.2. This is one of the few
stochastic analyses in this domain.

Contributions

A mathematical model of plasticity describing a pre- and a post-synaptic neuron should
include the spiking mechanisms of the two neuronal cells. It is given by the time
evolution of the membrane potential X of the post-synaptic cell, as described by Equa-
tion (1.1). It must also include the dynamics of plasticity of the type (1.2) or (1.3) for
the time evolution of the synaptic weight IV/.

The difficulty lies in the complex dependence of the evolution of W with respect
to the instants of spikes of both cells, the processes N, and N; x of Equation (1.1).
For pair-based models for example, this is a functional of all pairs of instants of both
processes. In general, there does not exist a simple Markovian model to describe the
membrane potential dynamics and the evolution of the synaptic weight.

In Section 1.2, we introduce the notion of plasticity kernel which describes in a gen-
eral way how the spiking activity is taken into account in the synaptic weight dynamics
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as a functional of the point processes N, and N x. A differential system associated
to the dynamics of the variables X and W is presented. Under mild conditions, it is
proved that it has a unique solution for a given initial state. It is, to the best of our
knowledge, the first attempt to have a general mathematical framework that describes
most STDP rules of the literature. A large set of examples is presented in Section 1.2 and
Section 1.A: most STDP models of [MDGO08; GB10; Clo+10; BA16] can be represented
within this formalism. Section 1.C gives a graphical representation of several STDP
rules, see Figures 1.3 and 1.4.

Section 1.3 is devoted to an important sub-class of STDP rules, plasticity kernels of
class M. These kernels have a representation in terms of a finite dimensional process
whose coordinates can be interpreted as concentrations of chemical components cre-
ated/suppressed by spiking activity. If a classical Markovian analysis of the associated
stochastic processes is not really possible, their main advantage is that one can for-
mulate a tractable model with two timescales, when the cellular dynamics are “fast”.
This approach is developed in the follow-up paper [ ]. For these models, when
the synaptic weight is fixed, the fast stochastic processes have the Markov property.
Section 1.3 discusses these aspects and several examples are presented in Section 1.D.
Finally in Section 1.4, a discrete formulation of the stochastic system is defined and its
fast processes invariant distribution is analyzed. The case of a calcium-based model
is analyzed. Section 1.B discusses modeling issues on the incorporation of plasticity:
via a time-smoothing kernel, as we do in the paper, or directly with an instantaneous
information.

STDP in recurrent neural networks

In this paper, we consider only two neurons (the pre-synaptic neuron and the post-
synaptic) that are connected by a single synapse. As it will be seen, a large variety of
models have been used in the literature to describe the time evolution of a synaptic
weight. Our goal is to propose a general, basic, mathematical framework where most
of these models of plasticity can be investigated. The dynamics of the synaptic weight
(W (t)) depends in an intricate way on the point process N, for pre-synaptic spikes and
N3 x for post-synaptic spikes.

For a neural network whose nodes are the vertices of a graph G, an extension of
this model would be as follows: the membrane potential process (X;(t)) of node i€G
should satisfy the SDE,

AX(t)=— 2 Xi(1) i+ 3 Wy, (06) (X)), (),

=

where j—i indicates that there is a synapse (7, ), from node j to node 4, and (W ;(t)) is
the corresponding process for the synaptic weight. The associated differential quantity
W (t—)N,(dt) for instants of pre-synaptic of the synapse (j, ) is given by

W;i(t—)N3g x; (dt).

Each synaptic weight (7 ;(t)) will be subject to synaptic plasticity, with defined plas-
ticity kernels I',; and I';; that can be different. For synaptic weight (IW;;(¢)), we will
define N3 x, as the Poisson process representing the pre-synaptic neuron and similarly,
N x, for the post-synaptic neuron.
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The models and some results of our paper can be extended to the multidimensional
case, in particular the existence and uniqueness result, Theorem 4. For simplicity and
because of its importance as a generic model, we will restrict ourselves to the case of a
network with two-nodes.

1.2 Models of neural plasticity

We consider two neurons connected by one synapse. A synapse is a unidirectional
connection from the input neuron to the output neuron allowing the transmission of
‘information’. When the input, or pre-synaptic, neuron spikes, some neurotransmitters
are released at the level of the synapse, where they can interact with the output, or post-
synaptic, neuron. Following synaptic transmission, a pre-synaptic spike increments the
membrane potential X of the output neuron by a scalar value, the synaptic weight V.

The dynamics of neural plasticity is described in terms of the time evolution of
(X(t)) and (W (t)). For t=0,

a. X(t)eR is the membrane potential of the output neuron at time ¢. This is the
difference between the internal and the external electric potentials of the neuron.
The dynamics of the process (X (¢)) associated to the output neuron is a classical
model of neuroscience. See [Ger+14] for a survey.

b. W(t)eR represents the intensity of synaptic transmission at time, i.e. the increment
of the post-synaptic membrane potential X when the input neuron spikes at time
t. The evolution of (¥ (¢)) at time ¢>0 depends in general on the total sample path
of (X (s),W(s)),0<s<t), in an intricate way.

To take into account inhibitory mechanisms, these two variables are real-valued and,
consequently, may have negative values. Real synapses have a constant sign: they
can be either excitatory (with a non-negative synaptic weight) or inhibitory (with a
non-positive synaptic weight). In the following sections, other variables will be added
to formalize the evolution equations of (X (¢), W (t)).

Definitions and notations

Sequences of pre- and post-synaptic spikes play an important role in the study of spike-
timing dependent plasticity. Mathematically, it is convenient to describe them in terms
of point processes. See [Daw93] for general definitions and results on point processes.

We denote by M, (R%) the set of positive Radon measures on R%, i.e. with finite
values on any compact subset of RZ. A point measure on R?, d>1, is an integer-valued
Borelian positive measure on R? which is Radon. A point measure is carried by a
subset of R? which is at most countable and without any finite limiting point. The
set of point measures on RZ is denoted by M,,(R%)c M (R?), it is endowed with the
natural weak topology of M (R%) and its corresponding Borelian o-field.

If meM,(R%) and AeB(R?) is a Borelian subset of R?, then m(A) denotes the
number of points of m in 4, i.e.

m(A) = JR Ta(x)m(dx).

d
T
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A point process on R% is a probability distribution on M,(R%). Two independent
Poisson point processes are assumed to be defined on a filtered probability space
(Q, F, (F),P), see [Kin92]:

a. A point process N, on R, to represent the instants of pre-synaptic spikes is
assumed to be Poisson with rate A>0, (t,.,) is the increasing sequence of its
jumps, i.e.

N

NA= 3 Gtyrens With 0<tpre 1 Spre < -+ < fpron < -0+

n=1
where 4, is the Dirac measure at aeR, .

b. A Poisson point process P on R? with rate 1. It is used to define the inhomoge-
neous point process of post-synaptic spikes in Relation (1.5).

The variable ¢ of the point processes NV, (dt) and P(dz, dt) is interpreted as the time
variable. For ¢>0, the o-field F; of the filtration (F;) of the probability space is assumed
to contain all events before time ¢ for both point processes, i.e.

o (Pr(Ax(s,t]), Py (Ax(s,1]), AB(R,) , s<t) = Fy. (1.4)

A stochastic process (U(t)) is adapted if, for all =0, U(t) is F;-measurable. It is a
cadlag process if, almost surely, it is right continuous and has a left limit at every point
t>0, U(t—) denotes the left limit of (U(t)) at t. The Skorokhod space of cadlag functions
from [0,7] to Sis D([0,T],S). See [Bil99].

The set of real continuous bounded functions on the metric space ScR? is denoted
by Cy(S), and CF(S)=Cy(S) is the set of bounded, k-differentiable functions on S with
respect to each coordinate, with the respective derivatives bounded and continuous.

We conclude this preliminary section with an elementary but important lemma
concerning the filtering of a stochastic process with an exponential function.

Lemma 1 (Exponential filtering). If v is a non-negative Radon measure on R,, a>0 and
hoeR, then

H(t) = hoe_o‘t—kf e~ (ds)
(0,¢]

is the unique cadlag solution of the differential equation,
dH (t)=—aH (t) dt+p(dt),
such that H(0)=h,.

This type of process is a central object in mathematical models of neuroscience.
It is used to represent leaky-integrate phenomena of chemical components within cells.
See [Ger+14] for a general review.
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The dynamics of the post-synaptic membrane potential

It is represented as a cadlag stochastic process (X (t)) following leaky-integrate dynam-
ics illustrated in Figure 1.1a:

a. It decays exponentially to 0 with a fixed characteristic decay time 7, set without
loss of generality to 7=1.

b. Itis incremented by the current synaptic weight variable at each firing instant of
the input neuron, i.e. at each instant of the Poisson point process N,.

c. The firing mechanism of the output neuron is driven by a function 5 from R
to R, the activation function. When the membrane potential is x, the output
neuron fires at rate 3(x). This function is usually assumed to be non-decreasing,
in other words, the larger the membrane potential is, the more likely the neuron
is to spike.

d. After a post-synaptic spike, the neuronal membrane potential X is decreased
by the amount g(x), where g is some function on R. In general, the membrane
potential is reset to 0 after a spike, i.e. g(z)=z, see [RT16]. However, in some
cases, the reset potential may not depend on the membrane potential before the
spike, g can be constant for example.

Posr-synaptic spikes. If the instants of pre-synaptic spikes are represented by the
Poisson process N,, the firing instants of the output neuron ¢, ,, are expressed as the
jumps of the point process N x on R, defined by

F@Nx(@u) | f)P (0, 8(X (u-))], du)
R, R,
- . Fu) e px oy Pds, du), (1.5)

for any non-negative Borelian function f on R, .
Classical properties of Poisson processes give that, for ¢>0 and z€R,

P (NM (t,t+ dt);éO’ X(t—)=w> — () dt+o(dt),

as expected, Nj x is Poisson process with intensity (3(X (t))).

The following stochastic differential equation summarizes the description of the
time evolution of (X (¢)) given by a), b), c) and d),

AX () = —X(£) dt + W (E—)NA(dE) — g(X (t—))Ns.x (d1).

Time evolution of the synaptic weight

In this work, the synaptic weight 1V will stay in a defined real (not necessarily bounded)
interval Ky, . For several examples, the plasticity process leads to dynamics for which
the process (W (t)) stays in Ky for all time t.
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— Taking Ky =R leads to free dynamics of the synaptic weight, that can be either
negative or positive, change its sign because of the plasticity rules. This situation
occurs in models of neural networks where excitatory /inhibitory neurons are not
separated in distinct classes..

— If Kyw=R,, the synaptic weight is non-negative and plasticity processes cannot
change its sign. This is a model for excitatory neurons whose spikes lead to the
increase of the post-synaptic membrane potential.

— Conversely, if Ky=R_, the cell is an inhibitory neuron, which has the opposite
effect on the post-synaptic membrane potential.

— Finally, Ky can also be bounded in order to represent saturation mechanisms,
i.e. the synaptic weights needs to stay in a biological range of value. In that case,
potentiation refers to a diminution of the amplitude of the negative jump, whereas
depression indicates an augmentation. In experimental works, the denominations
are inverted, for the sake of clarity we chose to stay with the previous names.

We can now introduce the notion of plasticity kernels.

Definition 2 (Plasticity kernel). A plasticity kernel is a measurable function
I Mp(R+)2 — My (Ry),  (ma,mz) —> [(my,my),
M (R,) is the set of positive Radon measures on R and, for any t>0, the functional
(mq, mg) —> T'(my, m2)(du [0, t]) (1.6)

is Gi®G-measurable, where p(dun|0,t]) denotes the restriction of the Radon measure y to the
interval [0, t] and (G;) is the filtration on M (R ), such that for t=0, G, is the o-field generated
by the functionals m—m((0, s]), with s<t.

If I is a plasticity kernel and m;, moe M, (R, ), the measure I'(my, my)(dunl0,])
depends only on the variables m; ([0, s]), for ie{1, 2} and s<t.

In our model, the infinitesimal elements at time ¢ for the update of plasticity are
expressed as I'(NV,, N3 x)(dt) for some plasticity kernel I'. This quantifies how the
interaction between the instants of pre-synaptic and of post-synaptic spikes, N, and
Nj x leads to specific synaptic changes. For example, the order and timing between
instants of pre- and post-synaptic spikes may have an impact on plasticity.

In previous works [SWW10; FSG10; LS14; Fel12], the notion of STDP Temporal
Kernels referred to the curve of synaptic weight change AW as a function of At for
pair-based models. [PGO6a] introduced more complex kernels, with multi-spikes in-
teractions. The plasticity kernels defined above extend this notion to more general
interactions between pre- and post-synaptic spikes.

Plasticity is represented as a process, integrating, with some decay, the past inter-
actions of the spiking activity on either side of the synapse. Two non-negative process
are introduced: (€2,(¢)) and (€24(t)), the first one is associated to potentiation (increase
of W) and the other to depression (decrease of W). For ae{p, d},

Qa(t) = Qa(0)e™ + f e U=, (N, N x ) (ds), (1.7)

(0,¢]



60 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

where a>0 and the variables I', and I'; are plasticity kernels associated to potentiation
and depression respectively. The process (£2,(t)) can be seen as a exponential filtering
of the random measure I', (N, N3 x)(dt) in the sense of Lemma 1. In Section 1.B of
Supplementary Materials, another stochastic model of plasticity with no exponential
filtering of the plasticity kernels is introduced and discussed.

As explained in the introduction of this section, the function M need to be chosen
so that the synaptic weight W stays at all time in its definition interval Ky . The time
evolution of (W (t)) depends then on the past activity of the input and output neurons,
through (,(¢)) and (24(¢)) and is described by,

AW (t)
dt

=M (Qp(t>7 Qd(t)7 W(t>> ) (18)

with, M verifying, for any piecewise-continuous cadlag functions (w,(t)) and (wq4(?))
on R, a solution (w(t)) of the ODE

dw(t)

= M (), walt), w(),

with w(0)e Ky, is such that w(t)e Ky, for all t=0.

We now give some examples of functions M associated to different synaptic do-
mains Ky. For Ky =R, we can chose the additive implementation of STDP rules,
where,

M (wp, wa, w) = M (wp, wa) = wp — wa (1.9)

In that case, the dynamics are unbounded and we see the update only depends on the
potentiation/depression plasticity variables €2,.

If we want to model bounded synaptic weight in Ky =[A,4, A,]|, we can consider
the function M given by

M (wp, wa, w) def (A)—w)"wp—(w—Ag)"wg — p(w — A,),  we[Aq, Ap], (1.10)

where A;<A,<A,, and n>0. This corresponds to a multiplicative influence of .
See [Guit+03]. It is straightforward to see that in that case, the synaptic weight
stays bounded between A, and A, for any plasticity processes 2,. The expression
—u(W(t)—A,) is for the exponential decay of the synaptic weight W to A,, its rest-
ing value. This term represents homeostatic mechanisms, i.e. mechanisms that maintain
steady internal physical and chemical conditions to allow the functioning of the system.
See [TNO04].

Finally, an unbounded dynamics for an excitatory synapse, with Ky =R, can be
enforced by,

M (wp, wa, w) def Wp—WWg, (1.11)

Examples of plasticity kernels

We show that several important STDP rules of the literature can be expressed with
plasticity kernels I', and I';. Further extensions are presented in 1.A and Section 1.A
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Pair-based models

For pair-based mechanisms, the synaptic weight is modulated according to the respec-
tive timing of pre-synaptic and post-synaptic spikes, as illustrated in Figure 1.1b. This
follows the fact that most STDP experimental studies are based on pairing protocols,
where pre- and post-synaptic spikes are repeated at a certain frequency for a given
number of pairings.

Accordingly, a large class of models have been developed on the principle that the
synaptic weight change due to a pair (tpre, tpost) Of instants of pre- and post-synaptic
spikes, depends only on At=t,—t,r.. The synaptic update is then taken proportional
to ®(At), where @ is some function converging to 0 at infinity, that is referred to as the
STDP curve. An example of exponential STDP curves is given in Figure 1.1b (top left).
Many pair-based models have been developed over the years, varying mainly which
pairs of spikes are taken into account when updating the synaptic weight.

We start with the simplest rule, the all-to-all version (following [MDGO08] terminol-
ogy), where all pairs of spikes give an update of the synaptic weight.

All-to-all model

The all-to-all scheme consists in updating the synaptic weight at each post-synaptic
spike, occurring at time ¢ by the sum over all previous pre-synaptic spikes occurring at
time s<t of the quantity ®(t—s). Switching the role of pre- and post-synaptic spikes, the
synaptic weight is updated in the same way with other constants. See Figure 1.1b (bot-
tom left) for an example of all-to-all interactions.

The plasticity kernels are defined by, for m;, moe M, (R,) and ae{p, d},

P (i, o) (dt) (J(O,t) (I)a,2<t_s)m2<d$>> my (dt)
+( J( . <I>a,1(t—s)m1(ds)> ma(dt), ac{p,d). (1.12)

The functions @, ;, ac{p, d} and i€{1, 2} are non-negative and non-increasing functions
functions converging to 0 at infinity.
If f is a non-negative Borelian function on R, we have

i FOTE (N, N x) (dt)
= Z f(’LL) Z (I)a,2 (tpost_tpre)"i' Z f(u) Z (I)a,l(tpre_tpost)'

tpre tpost <tpre tpost tpre <tpost

Remarks.

a. The exponential STDP functions ®(s)=B exp(—7s), s=0, are often used in this con-
text. See [MDGO08]. Several studies also consider the case when @ is a translated
exponential kernel. See [LS08].

b. Hebbian STDP plasticity is said to occur when
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— a pre-post pairing, i.e. t,..<tpost leads to potentiation, AW >0;
— a post-pre pairing, t,os <tpre, leads to depression, AW <0.
Experiments have shown that this type of plasticity occurs for several populations

of neuronal cells [BP98]. Early models can be found in [RBT00a; RLS01; MDGO8]
for a review.

Following Hebb’s postulate, a ‘causal’ pre-post pairing (a post-synaptic spike
occurs after a pre-synaptic one) should lead to potentiation,

TPAH (1, o) (dt) = ( f( @p,l(t—s)m(ds)) ma(dt).

0,t)

Conversely, a post-pre pairing (anti-causal activation) leads to depression,

P o ) — j( Ba(t-9ma(ds) ) mi(dr).

0,t)

This corresponds to ¢, ;=0 and ®,;=0 in Equation (1.12).

. Other forms of STDP have been discovered experimentally see [Fell2]. Anti-

Hebbian STDP models follows the opposite principles: Pre-post pairings lead to
depression, and post-pre pairings lead to potentiation. It has also been observed
experimentally in the striatum, see [FGV05] for example.

It corresponds to the case where ¢, ;=0 and ®,,=0, and symmetric LTD rules to
®,1=®,.=0 and, finally, symmetric LTP by ®,,=®,,=0. This is the motivation
of the general setting defined in Equation (1.12).

. Pre/post-synaptic-only plasticity rules can also be expressed into this formalism.

These models include a component to express the direct influence of the pre- or
post-synaptic spikes on the plasticity without any interaction between the two
spike trains. In that case, the kernel I'*t would have the following expression,
for my, mee M, (R ) and ae{p, d},

TP (1, ) () % (f(

+ <J @a,l(t—s)ml (d8)> mg(dt) + Da71 m1<dt) + Da’g mg(dt), (113)
(0,t)

@ayg(t—s)mg(ds)) my (dt)

0,t)

where the constants D, ;, ac{p, d}, i€{1, 2}, are non-negative.

Nearest neighbor symmetric model

In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic
weight is updated by only taking into account the last spike of the other neuron, as
can be seen in Figure 1.1b (top right). If the pre-synaptic neuron fires at time ¢,,., the
contribution to the plasticity kernelis @, 2(tpre—tpost) , Where ¢, is the last post-synaptic
spike before t..
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(a) A simple stochastic model for a synaptic connection.
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(b) Synaptic plasticity kernels for pair-based rules.

(Top left) STDP curve: update of the potentiation (in red) and depression (in blue) kernels as
a function of At=tpost—tpre. Exponential STDP curves of the form @, ;(At)=B, ; exp(—7a,:At)
are used in this example.

(Bottom left) All-to-all pair-based rules: all pairings of pre-synaptic (in green) and post-synaptic
(in purple) spikes are taken into account for the synaptic updates. Grey arrows indicate the
interactions between the different spikes, see the associated updates as a function of the STDP
curve above (blue and red points in (Top left)).

(Top right) Nearest neighbor symmetric pair-based rules: for each pre-synaptic spike (in green), only
the interaction with the previous post-synaptic spike (in purple) is taken into account for the
synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions
between the different spikes.

(Bottom right) Nearest neighbor reduced symmetric pair-based rules: only consecutive pairings of
pre-synaptic (in green) and post-synaptic spikes (in purple) are taken into account for the
synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions
between the different spikes.

Figure 1.1: Stochastic models of STDP.

The corresponding kernels I'™® are defined by, for m;, mye M, (R, ) and ae{p, d},
Fzs(ml, mz) (dt) dif' ¢)Q72 (t() (mz, t)) mq (dt)-i—q)a,l (to(ml, t)) mg(dt), (114)
with the following definition, for me M,,(R.) and ¢>0,

to(m,t) =t — sup{s : s<t,m({s})#0}, (1.15)

[ N, NNV T NI AP, AP NPT Y
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with the convention that t5(m,0)= + oo. The quantity #,(m,t) is the delay between ¢
and the last point of m before ¢.

Nearest neighbor reduced symmetric model

For the nearest neighbor reduced symmetric, a pre-synaptic spike at ¢ is paired with the last

post-synaptic spike at s<t, only if there are no pre-synaptic spikes in the time interval

(s,t), and similarly for post-synaptic spikes. See Figure 1.1b (bottom right).
Accordingly, the kernels I'™® are defined, for m;, moe M, (R, ) and ae{p, d}, by

TR (my, my) (dt) & (®a2(to(ma2, t)) Litg(mat)<to(mi.e)p) ma(dt)
+ (a1 (to(ma, 1)) Lo (ma b <to (ma,yy) Ma(dt), (1.16)

with same notations as in (1.14). For ¢>0, the inequality to(m, t)<to(m1, t) is equivalent
to the relation m; ((to(ms, t), t))=0 so that there is a unique point of m; paired to to(mo, t)
as expected, and similarly by switching m; and m,. The updates of Relation (1.16) are
therefore done only for consecutive pre- and post-synaptic spikes.

Calcium-based models

Pair-based models can be characterized as phenomenological models of STDP in the
sense that experimental STDP curves are taken as a core parameter of the models.
Another important class of synaptic models are derived from biological phenomenons
and aims at reproducing experimental STDP curves using simple biological models. A
common hypothesis is to use the calcium concentration in the post-synaptic neuron as
a key parameter to model STDP, see [SBC02] and [GB12]. Several biophysical models
have studied the link between calcium concentration, and its direct implication on
the dynamics of plasticity. A calcium-based model with saturation mechanisms has
investigated the dependency on the number of pairings and the existence of different
mechanisms for plasticity in [ I

For these models, synaptic plasticity is expressed as a functional of the post-
synaptic calcium concentration. For m;, mee M,,(R ), the points of m4, resp. my, elicit
calcium transfers of amplitudes (', resp. (5, followed by an exponential decay with
rate . If (C,,(t)) is the process of the calcium concentration associated to the couple
m=(my, my), it is therefore the solution of the differential equation

with some fixed initial condition. By Lemma 1, it can be expressed as

Cpu(t) & C(0)e " +C4 f

(0.¢]

0 [ e, )

(0,¢]

The mechanisms for potentiation, resp. depression, are triggered depending on the
calcium concentration. For ae{p, d}, the plasticity kernel I'S is defined by,

TS (ma, ma)(dt) © ha(Crn(t)) dt, (1.18)

for some non-negative function 2, on R, . The function A, is usually a threshold function
of the type

ha('r) i Ba]l{:r>9a}> $>Oa (119)

B T N IRV Y
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for some B,eR; and 0,>0, as done in [GB12]. In that case, the process (£2,(t)) associated
to I'C has therefore an impact on the synaptic weight as soon as the concentration of
calcium is above level 6,,.

Further examples of STDP rules are presented in Section 1.A.

The plasticity process

This section is devoted to the formal definition of the stochastic process describing the
time evolution of the synaptic weight.

Definition 3. The stochastic process (X(t),€,(t),Qq(t), W (t)) with the initial state
(20, wo p» Wo 4, Wo), 1S the solution in DR, RxR2 x Ky) of the SDEs, for t>0,

dX( ) = —X(t) dt + W(t—)Nx(dt) — g(X(t—))Ns x (dt),
(t) = —af) ( )dt + FQ(N)\,NQ,X)<dt), CLE{p, d}, (1.20)
dW(t) M (€,(t), Qa(t), W(2)) dt,

where, T, and Ty are plasticity kernels and N x is the point process defined by Relation (1.5)
and the function M is expressed by Relation (1.8).

The system (1.20) can be interpreted as fixed point equation for the process (X (t))
with an intricate dependence due to the point process N3 x as an argument of the
plasticity kernels. Theorem 4 gives an existence and uniqueness result for the solutions
of Equations (1.20). We now introduce the main assumptions on the parameters of our
model which will be used throughout this paper.

Examples of different dynamics are presented in Section 1.C, for pair-based in
Figure 1.3 and calcium-based in Figure 1.4.

Assumptions A

a. FIRING RATE FUNCTION.
(3 is a non-negative, continuous function on R and 5(z)=0 for z<—cz<0.

b. DROP OF POTENTIAL AFTER FIRING.
g is continuous on R and 0<g(z)< max(c,, ) holds for all z€R, for ¢,>0.

c. DYNAMIC OF PLASTICITY.
The function M is such that, for any we Ky and any cadlag piecewise-continuous
functions h; and hs on R, the ODE

dw(t
S M (0, o), (1) with w(0) =, .21)
for all points of continuity of h; and hy, has a unique continuous solution

(S[h1, ho](w, 1)) in Ky .

Theorem 4. Under Assumptions A, the system (1.20) has a unique cadlag adapted solution
with initial state (o, wop, Wa,0, Wo) i RxRE x Ky
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Proof. The construction is done on the successive intervals between two consecutive
instants of jump of the system. The non-decreasing sequence (s,,) of these instants is
defined by induction.

The first jump of (X (¢)) occurs at time s; and is defined as the minimum of the
first jumps of the processes

WM&ﬂDwd(L P (0.5 (o] ) ). 122)

0.¢]

With Relation (1.21), for 0<t<s;, we set X (t)=x¢e~" and W (t)=S[Q,, ] (wo, ), with
fmw@ww+j e 7IT,(0,0)(ds),  aefp,d},
(O7t)

and W (s;)=W/(s;—), where 0 is the null point process.
a. If s is the first point of V,, define

A% 4 and X(s1) = zoe '+ W (s1—).

b. If s; is the first point of the second point process of Relation (1.22), set
A —and X(s1) = zpe 1 —yg (zoe™™).

The mark f; indicates the nature of the jump occurring at time s, i.e. if the spike was
tired by the pre- or post-synaptic neuron.

The process (X (t), (1), Q;(t), W (t)) satisfies the equations (1.20) on the time in-
terval [0, s;] and, by Relation (1.4), s; is a stopping time with respect to (F;).

Assume by induction that, for n>0, the variables (s, fx, 1<k<n) and the adapted
cadlag process (X (t), W(t), t€[0, s,]) are defined, and s,, is a stopping time. For ae{p, d},
let

QZ+1(t) = Wo+ J;O : eia(tis)ra (Z 5Sk]l{fk:+}7 Z 6Sk]l{fk__}> (dS) (123)
it k=1 k=1

In Definition 2, the G,®G; measurability property, gives that for any n>1 and k<n,
the process (€ (t)) does not depend on the index je{k,...,n} on [0, s;]. The instant
Sn+1>5, is defined as the minimum of the first jumps of the two point processes,

(Na([Sn,t]), t>50), < J[ PL(0,8 (X (sn)e )], du] ,t>sn> . (1.24)

Sn,yt)

The fact that s, is a stopping time and the strong Markov property of the Poisson
processes N, and P give that s, is also a stopping time. For s, <t<s,1, set

W (1) =S[Q+L, QU (W (s,), t—s,) and X (1) % X (s,,)e =),

and W (s,+1)=W(sps1—), and
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a. If 5,1 is a point of NV, define f,.,;=+, and

X(Spa1) & X (5,) e Crt1750) LW (5,41 —).

b. Otherwise, we set f,1=—, and

X (541) 2 X (5,)e~ 41750 — g (X (5, )e~(ni1=50))

We have thus defined by induction a stochastic process (X (¢), W (¢)) on sequence of
time intervals (s,, sn+1), n=>1. We now prove that the process is defined on the whole
real half-line, i.e. that the sequence (s,,) is almost surely converging to infinity. This is
the object of the following lemma.

Lemma 5 (Non-explosive behavior). Under Assumptions A, the sequence of successive jump
instants (s,,) is almost surely converging to infinity.

Proof. Denote by & the event where the sequence (s,,) is bounded and assume that
it has a positive probability. On the event &, almost surely, only a finite number of
points of the Poisson process N, may be points of the sequence (s,). Therefore, there
exists some NyeN and a subset &; of & of positive probability such that for n>N,, one
has f,=—, i.e. the jumps are due to the second point process of Relation (1.24) after
time sy .

On the event &, for n>N; one has X (s,—)<|X (sn,)|, almost surely, because (| X (¢)|)
can only decrease when there are no pre-synaptic spikes. Consequently, as 3(x) is null
for x<—cp, we have that max(5(X(t)):t>sn,)< + . Therefore, the successive jump
instants (s,,, n=>Ny) cannot stay bounded on the event &;. This is a contradiction. The
sequence (s,,) is therefore converging to infinity almost surely. O

A direct consequence of this result is that, from the very definition of the sequence
(sn), for any t>0, there exists ny such that if n>n, then

D 01—y 0 [0, 8] = Nan [0, ¢]and ) 0y gs—y 0 [0,2] = Npx 0 [0,8],  as.,
k=1 k=1
recall that ;2 " [0, ¢] is the measure ue M (R ) restricted to the interval [0, ¢]. For ae{p, d},
again with the G,®G;-measurability property of plasticity kernels, the quantity

Q" (1) =2 (0)+ J eI (N3, N ) (ds)

(0,t)
is constant for n>ny, it is defined as 2, (¢). Furthermore, for s<t and n>n,,
dW (s) = M (02(t), Q(s), W(s)) ds = M (Q,(t), Qa(s), W(s)) ds.

We have thus the existence of a solution to Relation (1.20). The uniqueness is clear on
any time interval [0, s,,], n>1, and therefore almost surely on R, .
O
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1.3 Markovian plasticity kernels

In this section we introduce an important subclass (M) of plasticity kernels that leads
to a Markovian formulation of the whole plasticity process. In this context, it turns out
that the associated synaptic weight process (IV(¢)) can be investigated with a scaling
approach which is often used, sometimes implicitly, in the literature of physics in
neuroscience. As it will be seen, plasticity kernels of pair-based models of Section 1.2
and of calcium-based models of Section 1.2 are of class M. The follow-up paper [ ]
is devoted to the scaling analysis of these plasticity kernels.

Definition 6 (Kernels of class (M)). A plasticity kernel T is of class (M) if, for my,
maoeM, (R, ),
[(my, ma)(dt) = no(2(t)) dt + ny(2(t—))mq(dt) + na(2(t—))ma(dt), (1.25)
where
a. Fori=0,1, 2, n,; is a non-negative measurable function on R‘i, where eN,.
b. (2(t)) is a cadlag function with values in R, solution of the SDE
dz(t) = (—y © z(t)+ko) dt + k1 (2(t—))mq(dt) + ka(z(t—))ma(dt). (1.26)
— 7€eR’, a®b=(a; xb;) if a=(a;) and b=(b;) in RE.
— koeR". is a constant and k, and ky are measurable functions from R’ to R*. Fur-

thermore, the (k;) are such that the function (2(t)) has values in RY whenever
z(0)eR’.

It is important to note that the function (z(¢)) is a functional of the pair (m;, ms).
The fact that z(¢) stay non-negative is an important feature of class (M) kernels. For
example, we may have functions k; or £, of the form,

where B;eR, and b;€{0, 1}".
If T' is of class (M) and (z(t)) is its associated cadlag process, with Relation (1.26)
it is easily seen that, for any ¢>0, the functional

(Mp(R+)%,Gi®Gr)  —> (M ([0, ¢]), BIM([0,1])))
{ (m1,me) —>T(my, ma)(du n [0,¢])
is indeed G;-measurable, where (G;) is the filtration of Definition (2).
Proposition 7 (A Markovian formulation of plasticity). IfI',, ac{p, d}, are plasticity kernels
of class (M) associated to (n,;, k:),i€{0, 1,2}, ae{p, d} and veR:, and under Assumptions A,
the solution of Relations (1.20) of Theorem 4 is such that the stochastic process (U(t)) def.
(X(t), Z(t),Q,(t), Qa(t), W(t)) is a Markov process on Sy, (¥) def RxRE xR% x Ky, solution
of the SDE,
[ dX(t) =-X()dt+ W(ON(dL) — g (X(t-)) Nsx (dt),
dZ(t) =(—vOZ(t) + ko) dt
k1 (Z(t—))Na(dt) + ko(Z(t—))Np x (dt),

1 dQu(t) = —aQu(t) di+neo(Z(0)) dt (1.27)
+10,1 (Z(t=))NA(dt)+n42(Z(t—))Ns x (dt), ae{p,d},
L dW(t) — MO (+N O+ TN A+

R RO Y PV PR WV Y N N
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Proof. Theorem 4 shows the existence and uniqueness of such a process (U(t)). The
process (U(t)) is a piecewise deterministic Markov process in the sense of [Dav93] and
consequently has the Markov property. See Chapter 2 of [Dav93]. An expression of its
infinitesimal generator is given in Section 1.D of Supplementary Materials. O

It should be noted that, due to the dimension of the state space, the Markov
property of (U(t)) cannot be really used in practice in our analysis. The representation
in terms of SDEs in Relation (1.27) turns out to be useful in the scaling approach
presented in [ ].

Motivation for Markovian kernels

The processes (£2,(t)) and (€24(¢)) determining the synaptic plasticity depend on the pro-
cess (Z(t)) in anon-linear way. The coordinates of (Z(t))=(Z;(t)) may be interpreted as
the concentration of chemical components created /suppressed by pre-synaptic and/or
post-synaptic spikes, with some leaking mechanism. Calcium is such an example, see
Relation (1.17). A simple case is when each coordinate of (Z(t)) is associated either to
pre- or post-synaptic spikes, i.e. it satisfies

dZ;(t) = = Z;(t) dt + BiN\(dt) or dZ;(t) = —v; Z;(t) dt + B:Nj x(dt).

Moreover, if Z; needs to be reset to B; when one of the neurons spikes, we just need to
replace B; by B,—Z;(t—) in these equations.

We now show that calcium-based models and several pair-based models, can be
represented in such a setting, i.e. that their plasticity kernels are of class (M).

Examples
Calcium-based models

For this set of models, the class (M) property is fairly clear. Relations (1.17) and (1.18)
give that, for ae{p, d} and m;, mee M, (R,),

T (m1,ma)(dt) & hy(Cp(t)) dt,
where, if m=(my, ms), (Cy,(t)) is a cadlag solution of the differential equation
dC,,(t) = —yCyp(t) dt + Cymy(dt) + Coma(dt).

The process (Z(t)) is simply the one-dimensional process (Cw, w; «(t)). Markovian
dynamics of the calcium-based model are illustrated in Figure 1.4-(a).

Pair-based models

Several kernels associated to pair-based models defined by Relation (1.12) are also of
class (M). This type of Markov property has been mentioned in [MDGO08]. Markovian
models including STDP models described in Section 1.2 are presented in Section 1.D of
Supplementary Materials.
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All-to-all model

The class (M) holds when the STDP functions ¢ are exponential, i.e. when, for ae{p, d}
and i€{1, 2},
®,.i(t)=Baiexp(—7yait), t=0.

with B, ;eR; and v,,;>0. For m; and mye M, (R..), denoteby (z,(t)), the cadlag solution
of the differential equation

dza,i(t) = —Va,i%a,i(t) At + By m;(dt),

with z,;(0)=0. Lemma 1 gives the relation
Z04i(t) = Ba,if e_vaﬁi(t_s)mi(ds).
(0,]

The process (z(t)) is then defined as (z,1(t), 2,2(t), za1(t), za.2(t)). The plasticity kernel
of this model, see Relation (1.12), can be expressed as

TP (my, my) = Mg (2(t=))my (dt)+ng2(2(t—))ma(dt),

the functions (n,;) are defined by, for z=(z,,)€R%, ng1(2)=242 and ng 2(2)=z4,1-

An example of dynamics with plasticity kernels and associated Markov process
(Z,,i) is presented in Figure 1.3-(a). Similar models, using auxiliary processes (Z, ;)
can be devised for nearest STDP rules. See Section 1.D of Supplementary Materials,
Figure 1.3-(b) for the nearest neighbor symmetric STDP and Figure 1.3-(c) for the nearest
neighbor reduced symmetric STDP.

Nearest neighbor models

For me M, (R, ) and ¢>0, the variable t,(m, t) of Relation (1.15) used in the two models
presented in Section 1.2,

to(m,t) =t — sup{s : s<t,m({s})#0},
can be expressed as the solution (z,,(t)) of the differential equation,
dzp,(t) = dt—2z,(t—)m(dt),

with z,,(0)=0.

For m; and meeM, (R, ), we define (2(t))=(zm, (t), zm,(t)), Relation (1.26) holds
with v=(0,0), ko=(1,1) and, for z=(z1, 22), k1(2)=(—21,0) and ks(2)=(0, —2z2).

In this setting, both nearest models are of class M:

— The nearest neighbor symmetric model, I'*® of Relation (1.14),
with 1,,0(2)=0, 14,1 (2) =P 2(22) and ng2(2) =Py 1(21).

— The nearest neighbor reduced symmetric model, I''® of Relation (1.16),
with 7,0(2)=0, 141 (2)=Pg2(22) Liz,<z} and 1 2(2)=Po 1 (21) Lz, <20}
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Extensions

For all-to-all models, the exponential STDP function allows the representation of time
evolution of plastic synapticity with a finite-dimensional process (Z(t)) and, therefore,
the associated kernels are of class M.

For a general function ®, it is however possible to express the system as a Markovian
system, by taking the instants of all past instants of spikes

(Z1x(1)) & (te(Ny, 1), k=0) and (Zo,(t)) % (4, (Ns.x, 1), k=0)
with, for £=0, me M, (R ) and >0,
tr(m,t) = t—sup{s<t : m([s, t])>k}

tr(m, t) represent the time between ¢ and the kth last spike of m. In an analogous way
as for Definition (1.15), we have, for k>1,

dti(m,t) = dt+ (tg(m,t—) — tg_1(m,t—)) m(dt),

so that the processes (Z; (t), k=0), ie{1,2} would satisfy SDE as in Relation (1.27).
Keeping track of all instant previous spikes, we can express the plasticity kernels with
an infinite dimensional Markovian process. Unfortunately, there are fewer results,
concerning equilibrium distributions for example, in such a context. This is why we
restrict our study to finite-dimensional systems.

Markov processes associated to cellular processes

When the plasticity process (W (t)) is constant and equal to weRR, the associated solution
(X™(t), Z"(t)) of the first two SDEs of Relations (1.27) is clearly a Markov process
driven by the pre- and post-synaptic spikes. The invariant distribution of this Markov
process plays in important role in the scaling analysis of the process (W (t)) developed
in|[ ; ]. For reasons explained in the introduction of [ ], these processes
are referred to as fast processes.

It is easily seen that its infinitesimal generator is defined by, if feC}(RxRY) and
v=(z,2)eRxR’, then

BEOW % w4 (100 kL))

T ow

£ (flatw, 24k (2)=F(0)) + B(a) (Fla—g(@), z+ha(2))=f(0)) . (128)

O;‘z(x,z) (Sf(x 2),ie{l, . e}).

Examples of fast processes for classical STDP rules are presented in Section 1.D of
Supplementary Materials. The following proposition is proved in Section 5 of [ I

with

Proposition 8. Under the Assumptions A-a and A-b and if the functions k, and ko are
bounded and all coordinates of ~ are positive then the Markov process (X"(t), Z"(t)) has a
unique invariant distribution 11,,,.

The explicit expression of II,, is not known in general. For several STDP models,
like calcium-based models, this is a limitation for a detailed analysis of the plasticity

process (W(t)). See Section 4 of [ ]. The next section is devoted to a class of
discrete models of synaptic plasticity for which the corresponding II,, has an explicit
expression for the ane'~~~ ~f ~~lnivemn bnond nndals

[ SRV SO T WP NPT L WY S, N
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1.4 Discrete models of STDP rules

In this section, we introduce a discrete model of plasticity associated to Relation (1.27),
where the membrane potential X, the cellular processes Z and the synaptic weight
W are integer-valued variables. It amounts to represent these quantities as multiple
of a “quantum”, instead of a continuous variable. For example, pre-/post-synaptic
receptors (like the AMPA receptor for example) have a measurable influence on the
membrane potential, where one quantum would represent the influence of a single
receptor. Thisis a biologically plausible assumption for potential and cellular processes.
The leaking mechanism (—aU (t)dt in the continuous model, Ue{X, Z, W} and a>0, in
the SDEs) is represented by the fact that each quantum leaves the cell/synapse at rate
a.

AX(t) = =Nix(dt) + W(t—)Ny(dt) — N7 px(dt),
AZ;(t)  ==Ninz,(db) + kos(Z(t=)NF (dt)+h 5 (Z(6=))NA(d1)
ko (Z(t=))N7px(dt), j=1,...,¢,

AW(t) = =Niuw (dt)+ AN, (dt) = Aglgw -y 4,3 N1 0, (d1).

The processes (€2,(t)), ae{p, d} satisfy the same SDE as in Relation (1.27), the functions
na; and k;, i € {0, 1,2} are defined on N¢ with values in N¢. The variables A, and A, are
integers and y=(v;)eR’,.

For £>0, Ng, resp. (N{), is a Poisson process on R, with rate ¢, resp. independent
i.i.d. sequences of such point processes. As before, with Relation (1.5) and /(z)=x and
aprocess (U(t)), the notation N7 7 (dt) stands for P ((0, U(t—)), dt), where P is a Poisson
process in R? with rate 1. We have in particular

P(N7 o (dt)#0|U (t—))=U (t—) dt+o(dt).

All Poisson processes are assumed to be independent.

We have taken ¢(-) as the constant function equal to 1. As it can be seen, the firing
rate in the evolution of (X (t)) is the linear function z+—/z. The time evolution of the
discrete random variable (W (t)) is driven by two inhomogeneous Poisson processes,
one for potentiation and the other for depression.

As before we define (X"(t),Z"(t)) as the Markov process (X(t),Z(t)) when
(W(t)) is constant and equal to weN. If Q=(q((z,2),(z',2'))) is the jump matrix of
(X™(t), Z*“(t)), we have,

q((z, 2), (x=1,2))=z, q((z,2), (x,2+ko(2)))=1
q((z, 2), (x+w, z+k1( )))=\, q((z,z), (x—1, z4+ko(2)))=Pxz,
Q((xaz>7(xaz_€i>>—%2i, ZE{l,...,E},

(1.29)

where e; is the ith unit vector of N. If f is a function on NxN¢, with the notation
Viap () (0)=(f(v+(a,b))—f(v)), for v, (a,b)eZ*™!, Q can be expressed as

QU 2) = > a2, 2), (w,2)) (', )
(a',2")

y4
=2V (10 ()@, 2)+ D92V 0,-e)) () (@, 2)+ V(0o (21 () (. 2)
j=1

FAV (w0 () (@, 2)+ B2V (1 ko 2 (f) (2, 2).
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Proposition 9. Under Assumptions A-a and A-b and if the coordinates of functions ko, ky and
ko are bounded and all coordinates of y are positive then the Markov process (X ™ (t), Z*(t)) has
a unique invariant distribution on N'*¢,

Proof. Since the state space is at most countable, the proof is simpler than its continuous
counterpart, Proposition 9, where annoying technical intricacies hide the simplicity of
the result. Let Cy be an upper bound for the coordinates of k;, i=0, 1, 2. For (z, z)eN‘,
define, for >0, f(z, z)=z+n(z1+ - - - +2¢). We have

¢
Q(f)(x,2) < —x + Mw—px — 772 v;2; + nl(1+XN)Cy + lBCyx

7j=1

< —B(1—nlCy)x—min(1,~;) f(x, 2)+D,

with D a constant. If n is chosen so that n<1/¢C}, then there exists v>0 and K such that
Q(f)(z, z)<—vholds whenever f(z, z)>K. We can now use Proposition 8.14 of [Rob03]
to conclude the proof of the proposition. O

A Discrete Version of Calcium-Based Models

A comparison between continuous and discrete models of calcium-based STDP is pre-
sented in Section 1.C, and illustrated by Figure 1.4. The state of the system corresponds
to the case when (Z(t)) is a one-dimensional process (C(t)) solution of the SDE,

dC(t) = —N[ﬁc(dt) + 01./\/-)\<dt) + CQ./\/]ﬂ)((dt),
A0u(1) = (—aQu(O)+ha(C(1) dt,  aelp,d).

where C, C2eN and, for ae{p, d}, A,eN and h, is a non-negative function.
Definition 10. Fora fixed W =w, the Markov process (X" (t), C"(t)) is defined by its transition
rate matrix Qo= (qc((x, ¢), (2, '))) is given by, for (z, c)eN?,

{qc((aj, o), (z+w,c+C))=A,  qo((z,¢), (z—1,c))=x,
qc((z, ), (x,c—1))="c, qgo((z,c), (x—1,c+Cy))=px.

A—T—>» +w z IIII > _1 .
i +8

+Cs
< 1Hlj— -
> 4+C, WU NREE|

Figure 1.2: Stochastic queue for the associated fast process of the discrete calcium-
based model.

This process can be seen as a network of two M /M /oo queues with simultaneous
arrivals, see Chapter 6 of [Rob03], as illustrated in Figure 1.2.
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Proposition 11 (Equilibrium of fast process). For weN, the Markov process on N* of
Definition 10 has a unique invariant distribution T1SQ, and the generating function of C is
given by, for ue(0, 1],

+00
E (u") =exp (—/\J (1-A(u, s, w)) ds) : (1.30)
0
with
o o b
A, s,w) = (1+u=1)pi(s)) (1+2<u—1>kp2<s, k>>
i=1
6 C2 —~k —(
— s vks _ o= (B+1)s
pi(s) = e 7 and ps(s, k) = ik Uk (e e ).
Due to its use in the scaling results of | ], only the distribution of the calcium

variable C'* is considered. The joint generating function of (X", C") could be obtained
with the same approach.

It might be tempting to try to solve the equilibrium equations for the transition
rates of Definition 10. It does not seem that there is a way to solve them with generating
functions methods. The proof below relies in fact on a convenient representation of
the Markov process with a Poisson marked point process, it then gives a satisfactory
representation of the equilibrium distribution.

Proof. To each arrival instant ¢ of the Poisson process NV, on R is associated a vector of
N2w+01 +wCsq

u=((;, 1<i<w), (¥, 1<i<w), (20,5, 1< <Ch), (215, 1<i<w, 1<) <Cy))

We take (U,)=((Xy.), (Yni), (Zn,ij)), where (X,.;), (Y,:) and (Z, ), sequences of i.i.d.
exponentially distributed random variables with respective parameters 1, 5 and v, and
independent of NV,. The interpretation of these variables are as follows, for 1<i<w, for
the nth instant of the Poisson process N,

a. X, is the lifetime of the ith quantum of potential generated at time ¢ (if any);

b. Y, ;, the duration of time after which this ith quantum of potential initiates a firing
of the neuron;

C. Zny,;, the lifetime of the jth quantum of calcium generated at ¢, for 1<;<Cy;

d. Z,,;;, the lifetime of the ith quantum of calcium created if the event described by
(c) occurs, for 1<5<C5.

Define
A(ds, du) Z O(tn,U,

neZ

it is well known that V) is a Poisson marked point process with intensity measure

,U(d37 dU) et )\dS ®z 1 El (d’xl) ®z 1 Eﬁ(dyl) ®] 1 E (dZO ]) ®z 1 ®02 E (dzi7j)7 (131)

where E¢(dz) is the exponential distribution with parameter {>0. See Chapter 5 of
[Kin92] for example.
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Assuming that X" (0)=C"(0)=0, with the interpretation of the coordinates of the
mark u, it is easy to get the representation, for >0,

f Z Listaist,sry=tpNa(ds, du),
0,t]

indeed, if there is an arrival at s<t, its ith quantum ie{1, ..., w} of this arrival with
lifetime x; with firing time y; is still present at ¢ if s+x,>t and s+y;>t. Similarly,

C
cv () = f S Tarzg N (ds, du)
(Ovt] 7j=1
w Ca
J Z Z 1{x1>y1 sty <t,s+y;+2z; ]>t}N/\(d5 du)
0,t]

11]1

Using invariance by time-translation of the Poisson process NV, we get that the random
variable (X" (t), C"(t)) has the same distribution as

(Yw@)aéw(t)) dif. <J § ll-{s+xi>0,s+yi>0};; )\(ds, dﬂ) 5
(*t 0] j=
w Co

f Z ]]'{5+Z0 ]>0}N)\(d8 du JrZZ 1 z1>y1 s+1y; <0, }N)\(dS du)) .
t,0]

i=1j=1 s+yz+z1 >0
The random variables (X (t), C* (t)) are non-decreasing and converging to
(yw(oo)7€w(oo)> dgf. (J Z 1{s+xi>0,s+yi>0}jv>\(d5; dﬂ) )
—0,0] ;
w Ca
J( ] [Z ]]'{5""30 >0} + Z Z ]l{l’z>yz s+y;<0,s+y;+2i ]>0}] N)‘(ds du)) : (132)
—00,0

i=17j=

The variable X (c0) and C',(c0) are almost surely finite since, with standard calculations
with Poisson processes, we obtain that

A — A Bw

Recall the formula for Laplace transform of Poisson point processes,

E [exp U_f(s,u)m(ds,du)ﬂ _ exp (J (1— e /6 u(ds, du)) |

Riw-i—C& +wCsq

E [X"(0)] =

for any non-negative Borelian function f on , where p is defined by Rela-
tion (1.31). See Proposition 1.5 of [Rob03] for example. For ug[0, 1], we therefore get
the relation

~E o) | -
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el w  Csy
)\J 1-E uzj:ll{E%w»} E U/Zizlzjzl]1{El’i>Eﬁ,i7Eﬁ,i<s<Eﬁ,i+E%i7j} ds —
Ry
c 1 ¥ 1 Y
)\Jv 1_ (1_6—’Ys+ue—’ys) 1 E U {E,371<5/\E171} J {S<Eﬁ,1+E’Y,1,j} dS,
Ry

where (E1,;), (Es;) and (£, ; ;) are independenti.i.d. exponentially distributed random
variables with respective parameters 1, 5 and v. We have

Co
a1
[uzﬂ—l {E1’1>E6’1,E5Y1<S<E5Y1+E%1,j}] =

1=p(s)+E [E [1—q(s, Es.1)+ug(s, Bs1)]™ H{Eﬁ,1<SAE1,1}]

with

p(S) = IP) (E/371<E171/\3> = Bf_l (1_6_(6+1)S) ’

and
q<57 Eﬁ,l) =P (S_EE,I<E%1,1‘E5,1> = G_W(S_EBJ)?

C
E []E [1_Q(87 Eﬁ,1)+UQ(S7 Eﬁ,l)] ’ :H'{E1$1>E511,E5Y1<8}:| =

Co C s Co
D (=1 [6( ,j)’“ f e—w“—”’”hdh] = D (u=1)"pa(s, )
k=0 0 k=0

with,
6 CQ —~k —
k) = vks _ _—(B+1)s
p2(87 ) ﬁ+1—’yk k (6 € )
Note that, ps(s,0)=p(s) the proposition is thus proved. O
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Appendix

1.A Additional examples of plasticity kernels

Suppression models

Computational models of pair-based rules of Section 1.2 are easy to implement in large
neural networks and they capture some essentials properties of STDP.

Nevertheless, they have been shown to fit poorly with experimental data when
more complex protocols are used. See [FD02; PG06a]. For this reason, more detailed
models taking into account the influence of several pre- and post-synaptic spikes have
been proposed. [BA16] is a review of these so-called ‘triplet-based” rules and their
influence on the stability of the synaptic weights distribution. The model of this section
is a variant of the pair-based model with an additional dependence on earlier instants
of post- and pre-synaptic spikes. Another variant is described in Section 1.A.

It was observed, using triplet-based protocols in [FD02], that preceding pre- and
post-synaptic spikes have a ‘suppression’ effect on the Hebbian STDP observed. Moti-
vated by these experiments, the following model, extending pair-based rules, has been
proposed.

If there is a pre-synaptic spike, resp. post-synaptic spike, at time ¢>0, we denote by
(1(t) [resp. (5(t)] the instant of the last pre-synaptic [resp. post-synaptic spike], before
t. For this model, when a pre-synaptic spike occurs at time ¢>0, the contribution to
I'5(.,-)(dt) is the sum over all post-synaptic spikes before time s<t of the quantities

(1=®s1 (t—=L1(1))) (1=Ps 2 (s—l2(s))) Pa2(t—s),

and similarly for post-synaptic spikes, where ®s; is a non-negative non decreasing
function verifying ®s,(0)<1 and lim;, ,, ®s;(t)=0, for ie{1,2}. In particular, if the
instants ¢; and ¢, of consecutive pre-synaptic spikes are too close, i.e. to—t;=to—¢;(t) is
small, the synaptic weight is not significantly changed at the instant ¢;. And similarly
for consecutive post-synaptic spikes.

The plasticity kernels I'S, ae{p, d}, are defined by, for m;, moeM,(R.),

% (my, ma)(dt) def.

[(1—¢S,1(t0(m1>t)) J

00 (1—@572(250(7’712, S))) (bag(t—s)mg(ds)] mi (dt)

+ [(1-@5’2(250(77712, t)) J (1—@571(150(7711, S))) @ml(t—s)ml (dS)] mg(dt)
(O’t)
with the ¢y(m, t) defined by Equation (1.15).

Triplet-based models

[PGO6a] shows that preceding pre-synaptic spikes enhance the depression obtained for
a post-pre pairing, whereas preceding post-synaptic spikes lead to a bigger potentiation
than in a classical pre-post pairing. The plasticity kernels I';, ae{p, d} of the associated
model are defined by, for m;, mse M, (R.),
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['Y(my, my)(dt) et

<1+ f( . (I)Ta,l(t—s)ml(ds)) ( f( . (I)ag(t—s)mg(ds)) ma(dt)
+ (1+ f( . @T,a,z(t—s)mz(ds)) ( f( . cpa,l(t—s)ml(ds)) ma(dt). (1.33)

where, for ac{p, d}, i€{1, 2}, 1, , is a non-negative non-decreasing function converging
to 0 at infinity.

It is interesting to note that this model is in contradiction with the suppression
model described just before. Both models are based on experimental data from different
neuronal cells: visual cortical in [FD02], and hippocampal in [PG06a]. A global model
taking into account both mechanisms, the NMDA-model, is defined in [BA16].

Voltage-based models

In [CG10], another class of plasticity rules, voltage-based models, has been used to
explain plasticity with biophysical mechanisms, similarly to calcium-based models.

In particular, filtered traces of the membrane potential X are used in the synaptic
update. Adapting notations from [CG10], we have for depression,

+
Ty(dt) = [Bd ( J e 2t=S) X (1 — g) ds—8d> ]NA(dt),
(07t)
and for potentiation,

+

I',(dt) = B, (J e wolt=8) X (1—5) ds—9p)
(0,¢)

+
X (J e r2(t=8) X (t—5) ds—9d>
(0,)

X <J e‘”ﬂ*l(t_s)/\/',\(ds)> dt.
(0,%)
See Relations (1) and (2) of [CG10].

In their model, an adaptive-exponential integrate-and-fire model (AdEx) is used
to represent the post-synaptic neuron, instead of a Poisson point process. They take
¢, above the threshold potential of the AdEx model, leading to a simple estimation in
terms of the post-synaptic spike train:

+
(J e_’YPvO(t_S)X(t _ 3) dS—ep) dt ~ N,&X (dt)
(0,%)

However, §, lies around the resting potential of the neuron, leading to synaptic update
that are functions of X directly and not only of the spike-trains. This feature justifies the
denomination voltage-based models and is not easily taken into account in the framework
presented here. To include such a STDP rule, one could extend the definition of a
plasticity kernel to I'(m,, ms, z) by adding a direct dependence on a cadlag adapted
process (z(t)).
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We present a variation of the voltage-based model using filtered functionals of pre-
and post-synaptic spike trains that fits in our formalism. Notice that both models are
not equivalent in the sense that in [CG10], sub-threshold-activity can lead to plasticity,
whereas our model needs post-synaptic spikes.

If there is a pre-synaptic spike at time ¢>0, the synaptic weight is depressed by the
quantity

+
B, (J €_Vd’2(t_S)N,8,X (ds)_9d> ;
(O’t)

where, for zeR, 7= max(x,0), and if some filtered variable is above some threshold 6,
at that time.

If there is a pre-synaptic spike at time ¢, the synaptic weight will be potentiated by
a quantity involving the product of two filtered variables,

+
Bp (f e_VP’Q(t‘S)Nﬁ,X(ds)—GO J e_'Yp,l(t—S)N)\(dS)’
(0,%) (0,t)

The plasticity kernels are thus defined by, for m,, moe M, (R, ),

+
Y (my, mo)(dt) % [Bd (J G_Vd’Q(t_s)mz(dS)—Qd) ] my(dt),
0,t)

Y (1m, mo) (dt)
+
Bp (J e’Yp,z(tS)mQ(dS)_ed) (J e*’Yp,l(th)ml (ds)) m2<dt)'
(0,t) (0,t)

1.B Plasticity models without exponential filtering

In the model of Section 1.2, with Relation (1.7) we defined a filtering procedure with
an exponential kernel of rate >0 for the function €2,, where Q,(¢) and €Q,(¢) are used
to quantify the past activity of input and output neurons leading to potentiation and
depression respectively. It is given by, for ae{p, d},

dQ,(t) = —aQd,(t) dt + To (N, Np x)(de),

where I, (N, N3 x)(dt) represents the plasticity kernels for potentiation, a=p, and, for
depression, a=d.

Therefore, the update of the synaptic weight at time ¢ depends on a functional
of the synaptic processes that happened before t. The dynamic of the synaptic weight
(W (t)) is defined by,

dW (t) = M (,(t), Qa(t), W (t)) dt,
Several studies of computational neuroscience have investigated the role of STDP in
a stochastic setting. See [KGH99; KHO0; Rob99; RLS01; MDGO08] for example. These
references use more “direct” dynamics for the synaptic weight. The update at time
t depends only on the current synaptic plastic processes I',(N), N3 x)(dt) at time ¢,
instead of a smoothed version over the past activity. The associated model can be

defined so that the corresponding synaptic weight process (1 (¢)) satisfies the relation

dW(t) = M (Tp(M, Ny x), TaWNoL N x), W (E-)) (dt),

for some functional M.
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Biological arguments for exponential filtering

It should be noted that the model associated to (W (¢)) does not seem to be in agreement
with observations of numerous experimental studies. See [BP98; FGV05; Fel12]. In
a classical experiment, the protocol to induce plasticity consists in stimulating both
neurons at a certain frequency a fixed number of times with a fixed delay At, over a
period of up to one or two minutes (60-100 pairings at 1 Hz for example). This part
is designed to reproduce conditions of correlations between the two neurons, when
mechanisms of plasticity are known to be triggered. However, measurements of the
synaptic weight show that changes take place on a different timescale. After the end
of the protocol, it is observed that at least several minutes are necessary to have a
significant and stable effect on the synaptic weight. In other words, the change in
synaptic weights happens long after the end of the plasticity induction.

For this reason we have chosen to use a filter, possibly with an exponential kernel,
on the past synaptic activity. Therefore it does not only depend on the instantaneous
synaptic variable I'y(N,, N3 x)(dt) at time ¢, but on the whole past I';(Ny, N5 x)(ds),
s<t, with a smoothing exponential kernel which gives the desired dynamical feature
for the synaptic weight. Another recent article [RBS16] also takes this fact into account
by adding an “induction” function to the classical models of STDP.

A toy example

We define
M (wp, wa, w) = wp—wg, (wp, wa, w)ER2 xR,
M(Fl,FQ,UJ) = Fl—rg, F17F26M+(R+),
,(df)~Ta(dt) = (F-IW (1)),

with F'>0. The equations for the time evolution of synaptic weights are given by

dVgt(t) = e (F-W(t)) and dIZt(t) — aQL e I (F—W(s)) ds,

with the initial condition W (0)=W (0)=w,>0. We get that
W(t) = F+(wo—F)e™", =0,

so that (W (t)) converges to ' as t gets large, as it can be expected. By differentiating
the relation for (W (t)) we obtain,

d2W (1) dW (t)
az
with W (0)=wy and W’(0)=0. If we take a=2¢ with e<1, we get that

W(t) = F + (wo—F)e™ <cos <t\/@> + \/Z sin (t@)) ;

in particular ((W(t)—W(t))e®/(wo—F)) is a periodic function with maximal value of
the order of 1/c. Both functions (W (t)) and (W (t)) converge to F as ¢ goes to infinity at
the same exponential rate but differ at the second order.

A comparison of both models is also done in Section 1.C of the Appendix and

illustrated for pair-based rules in Figure 1.3 and for calcium-based ones in Figure 1.4.

+ W(t) =F,

[ PP NPT A VY N NP N
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1.C  Graphical representation of models of plasticity

In this section, we will consider several examples of simple dynamics of the Markovian
system defined in Section 1.3.

We will start by comparing the effect of three different Hebbian pair-based rules,
both on model with, Section 1.3, and without, Section 1.B, exponential filtering. Then,
we will focus on calcium-based models and show that the discrete model of Section 1.4
can be a good approximation of the continuous model of Section 1.3.

We consider two different timescales to compare the induction of plasticity in the
model with/without exponential filtering:

— A fasttimescale, on the order of the membrane potential dynamics (see plain black
line under each row), where the input and output spike patterns are presented.

— A slow timescale (20 times slower in this example), on the order of the synaptic
weight modifications (see dotted black line), where no input is presented.

Input and output spikes patterns are fixed in both Figures (see first row).

Pair-based STDP rules (Figure 1.3)

In this section, we describe the dynamics of the different stochastic processes involved
in the pair-based STDP model.

In particular, we compare the various interpretation of the pair-based rules that
are described in Section 1.2 in Figure 1.3,

a. all-to-all model;
b. nearest neighbor symmetric model;
c. nearest neighbor reduced symmetric model.

The different interactions are represented by grey arrows (first row).

Exponential STDP curves are considered with their associated Markovian descrip-
tion, see Section 1.D.

Finally, we focus on Hebbian STDP rules with B,;;=0 and B, ,=0.

In the second row, the time evolution of the membrane potential,

dX (t) = =X (t)dt + W(t—)Ny(dt) — X (t—) N3 x(dt),

is presented. Two interesting facts are to be noted here, at each pre-synaptic spike
(green, first row), the current value of the synaptic weight W (¢t—) is added to the
membrane potential X (¢). It can be seen in this example that the size of the jump
varies across time. In addition, a complete reset of X occurs after a post-synaptic spike
(purple, first row), corresponding to g(z)=zx.

Then we focus on the instantaneous synaptic variables Z, ; (brown, third row) and
Zg.5 (brown, fourth row), that follows different dynamics depending on the rule chosen.
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a. For all-to-all pairings, each synaptic spike is paired with all previous post-synaptic
spikes, and conversely. They are already described in the main text, by the set of
equations, for ae{p, d},

de,l(t) = _VP,IZp,1<t> dt+Bp,1NA(dt)a
dZdQ(t) = _’YdVQZdVQ(t) dt+Bd72N37x(dt).

All pairs of pre-synaptic and post-synaptic spikes are taken into account.

b. For nearest neighbor symmetric scheme, each pre-synaptic spike is paired with the
last post-synaptic spike, and conversely, the system changes slightly:

AdZy1(t) = =1 Zpa(t) dt+(By1— 2,1 (t=))N(dD),
dZ42(t) = —va2Zao(t) dt+(Bao—Zaa(t—)) N x(dt).

The variable Z, ,, resp. Z;, is reset to B, 1, resp. B2, after a pre-synaptic spike,
resp. post-synaptic spike.

c. For nearest neighbor reduced symmetric scheme, where only immediate pairing
matters, we have:

dZ,1(t) = —p1Zp1 () dt+(Byp1—Zp 1 (t—))NA(dt) = Z, 1 (t— )N x (dt),
dZdQ(t) = _7d7QZd72(t) dt—f-(Bdg—Zd,g(t—))/\/@X(dt)—ZdQ(t—)N)\(dt),

The variable Z, , is reset to B, ;, after a pre-synaptic spike and to 0 after a post-
synaptic spike, and conversely for Z; ,.

This simple example shows how different pair-based rules shape the instantaneous
plasticity variables Z. This dependence is subsequently transferred to the potentiation
kernel I', (red, third row) and the depression kernel I'; (blue, fourth row). With
exponential pair-based models, we have n,o(2)=0, n41(z)=242, 1p1(2)=0, ng2(z)=0,
ny.2(2)=2,1, and therefore, they follow,

Ly(dt) = Z, 1 (t—)Np x (dt)
La(dt) = Zgo(t—)Ny(dt).

It is then not surprising to observe that for a same sequence of pre- and post-
synaptic spikes the plasticity kernels are different.

Consequently, it is the same for the slow plasticity variables (2, (red, fifth row) and
Qg (blue, fifth row), that follows,

dQ,(t) = —aQ,(t) dt + Z,1(t—)Njs x(dt)
dQq(t) = —aQu(t) dt + Zago(t—)Na(d),

We choose in this example a linear function A/, leading to the following time
evolution of the synaptic weight (sixth row),

dW(t) = (€2,(t) — Qa(?)) dt.
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This example shows that a simple change in the STDP rule can lead to very different
dynamics for the synaptic weight. All-to-all rules lead to global potentiation (the dotted
line represents the initial value) whereas nearest neighbor rules lead to depression.

Finally, as can be expected from the slow plasticity variables (2, that are still
positive long after the end of the stimulus (see in the dotted part), the synaptic weight
is modified long after the patterns of spikes.

On the contrary, considering the model without exponential filtering (seventh
row),

dW (t) = Tp(dt) — Ty(dt),

we see that in that case, the synaptic weight is only updated during the stimulus. We
notice that the polarity of the global plasticity is the same as with exponential filtering,
but the dynamics are completely different, as showed with the toy model in Section 1.B.

Calcium-based STDP rules (Figure 1.4)

In this section, we focus on the dynamics of the calcium-based models,
a. the continuous version, described in Section 1.3;
b. the discrete version from Section 1.4.

The continuous membrane potential (second row, left) follows,
dX(t) = =X (¢t) dt + W (t—)Ny(dt) — N x(dt).

We consider a different function g(z)=1 than in the previous case. Its discrete analogue
(second row, right) verifies,

X(t-)

X(t—
dX(t) = — > Ni(dt) + W(t—)Ny(dt) - Z

i=1

It is plainly clear that both processes are almost identical, except that the exponen-
tial decay in the continuous model is replaced by a M/ /M /oo queue in the discrete case.
In the case of large jumps, they lead to a similar dynamical evolution.

The same conclusions can be drawn for the calcium concentration, where the
continuous version (third row, left) follows,

dC(t) = —yC(t) dt+CiN, (dt)+CoNp x (dt),

and the discrete version (third row, right),

C(t-) X (t—)
dC(t) = = > Noa(dt) + CLNa(dE) + Cy Y Nya(dt).

=1 =1

In both cases, the plasticity kernels I',, (fourth row, red) and I'y (fourth row, blue)
verify,

[p(dt) = Tic—)=0, dt
Fd(d ) - ]]-{C(t— ng} dt

P N N . U, I N
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When the calcium reaches the thresholds 6, for potentiation (third row, red) and
6,4 (third row, blue), the plasticity kernels are “activated” and are equal to dt. We see
that both models leads to similar values of the kernels, even if some discrepancies start
to appear.

The slow plasticity variables (fifth row) are just obtained by integration of the
kernels with an exponential filtering,

dQ,(t) = —a,(t)dt + I',(dt) dt
dQq(t) = —ady(t) dt + Ty(dt) dt.
A second discretization is applied in the synaptic update, the continuous version (sixth

row, left) verifies,
AW (t) = (Ap(t) — Adlgw(-)=0yQ(t)) dt,

and the discrete one (sixth row, right),
dW(t) = ApNQp(t_)<dt) — Adﬂ{w(t_)>Ad}NQd(t—)(dt)-

We note here that we need to force W to stay non-negative in order to have a valid
description of the system. We observe that, even after two different discretizations,
both synaptic weights follow a similar evolution.

Using a model without exponential filtering (seventh row) leads to a different
dynamical evolution of the synaptic weight, for the continuous model,

dW(t) = Apl“p(dt) — Ad]l{w(t_)>0}Fd(dt),
and the discrete one,
AW () = ApLic(-)20, N7 (dt) — AdLiw )= as.c-)z09 N7 (d1).

As a conclusion, the discrete models approximate well the continuous one and
therefore, using the exact expressions of the discrete model can give an interesting
insight on the dynamics of the continuous model.

1.D Fast systems of STDP models

We first start with the generator of a general STDP of class M as in Definition 6. For
u=(z, z,wp, wq, W)eSM(£) and feC} (Sm()), ie. f is a bounded C'-function, and all its
respective derivatives are bounded, by using Equations (1.27), it is not difficult to show
that the extended infinitesimal generator A of (U(t)) can be expressed as,

AU = (=0 enp0(2) £ )+ (—oenan () £2- (0

_xgi(u)—k <—7®z+k0, Z(u)> + M (wp, wa, w);jl;(u)

+A [f <u+w€1+k’1(Z)@€2+np’1(2)€g+2+nd’1(Z)6g+3> —f (u)]
+5(2) [ (u=g(@)er (=)0t (2)ecstnan(2)erss ) —f (w)]
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with the following notations, e; is the unit vectors for the coordinates with index ¢. The

notation of of
def. .
<8z(u>> = (a%(u),2<2<€+1)

is for the gradient vector with respect to the coordinates associated to z, i.e. from index
2 toindex ¢/+1. Finally e; is the vector whose coordinates are 1 for the indices associated
to z and 0 elsewhere and, for acR’,, the quantity a®e, is the vector whose ith coordinate
is a;_1, for 2<i</+1, and 0 otherwise.

For sake of completeness, we detail the processes of fast variables for the classical
STDP rules described in Section 1.2.

Pair-based models with exponential kernels ¢
For pair-based mechanisms, we follow the classification discussed in [MDGOS]:

— For all-to-all pairings, each synaptic spike is paired with all previous post-synaptic
spikes, and conversely. They are already described in the main text, by the set of
equations, for ae{p, d},

AX () = — X (t) dt+wN(dt)—g (X (t—)) Nax (dt) |
dZa’l(t) = _Va,IZaJ(t) dt—f'Ba’lN)\(dt),
dZa’Q(t) = _7a72za72<t) dt—f'Ba,QNﬁ’X (dt)

— In the nearest neighbor symmetric scheme each pre-synaptic spike is paired with
the last post-synaptic spike, and conversely. The system changes slightly:

dX (t) = =X (¢t) dt+wN,(dt)—g (X (t—)) Ns x (dt),
dZa1(t) = =Ya1Zan(t) dt+(Ba,1—Za, (t=))Na(d2),
dZa,g(t) = —’ya72Za,2(Zf) dt"i’(Ba,Q—Za’Q(t_))Nﬁ’X (dt).

The variable Z, ;, resp. Z,, is reset to B, 1, resp. B, s, after a pre-synaptic spike,
resp. post-synaptic spike.

— For nearest neighbor symmetric reduced scheme, where only immediate pairing
matters, we have:

dX (t) = —X(t) dt+wNy(dt)—g (X (t—)) Ns x (dt),
dZ,1(t) = —Ya1Za (t) dt+(Bag—Za (t—))Na(dt) = Z, 1 (t—)Np x (dt),
dZa’Q(t) = _fya722a72(t) dt+(BG’Q—ZG’Q(t—))./\/'g’)((dt)—Za72<t—>./\[)\<dt),

for exponential pair-based models, with n,0(2)=0, n41(2)=2,2 and ng 2(2)=241.

Nearest pair-based models with general kernels ¢

In the case of nearest pair-based models, we have a simple description of the sys-
tem, based on the time since the last spike as detailed in Section 1.3. We define
(Z(t))=(Z1(t), Zs(t)), such that,

dZ,(t) = dt—Z,(t—) Na(dt),
ng(t) = dt—Zg(t—)./V‘@)((dt).

In this setting, both nearest models are of class M:

B NG N P N N o
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— The nearest neighbor symmetric model of Relation (1.14), with
Na,0(2)=0, Nng1(2)=Pu2(22), na2(2)=Pg1(21).
— The nearest neighbor symmetric reduced model of Relation (1.16), with
Na0(2)=0, Nng1(2)=Pe2(22)Lizs<ar},  Ma2(2)=Pa1(21) Lz <20}

In fact, we have here two different Markovian systems that represents the same
dynamics for nearest exponential STDP rules.

Triplet-based models

Generator for triplet-based mechanisms can also be defined in a similar way, see [BA16]
for a list of different implementations.

— The suppression model of Section 1.A from [FD02], where the Markovian system
is given by:

X(t) = =X () dt+wNy(dt)—g (X (t—)) Np x (dt),
dZa1(t) = —Va1Za1 (1) dt+(1=Zs1(t—)) Ba g Na(dt),
{ Zu2(t) = —Ya2Za2(t) dt+(1=Z; 2(t=)) Ba 2 Np x (dt),
Zsa(t) = =01 Zs1(t) dt+(1—Zs 1 (t—))Nx(dt),
(t) ) dt+(1=Zs 2(t—))Np x (dt),

(o

dZso(t) = =022, (¢

\
with n,0(2)=0, ng1(2)=(1—251)2a2 and n,2(2)=(1—252) za 1.

— The triplet-based model, see [PG06a], we have:

-

AX(t) = —X(t) dt+wNy(d)—g (X (t—)) Nax (dt),
dZa1(t) = Va1 Za,1 () dt+Ba Na(dt),

1 4Za Q(t) _fYa,QZa,Q (t) dt‘f'Ba,zNg’X (dt),
AZ40,1(t) = =001 Zs,a,1(t) dt+ Do Ny (dt),
AZ, 02(t) = =025 .02(t) dt+Dy o N5 x(dt),

\

with n,0(2)=0, n41(2)=(1 + 25.4.1)%a2 and 1ng2(2)=(1 + 254.2) %0 1-

Calcium-based models

For models of calcium-based plasticity, we have:

— Calcium transients as exponential traces in [GB12], which is the dynamics used
as an example in this paper. The system is,

dX (t) = =X (¢) dt+wNy(dt)—g(X (t—)) N x (dt),
dC(t) = —C(t) dt+CiN,\(dt)+CoNjs x (dt).
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— Calcium transients modeled in a discrete setting as for the example in Section 1.4.
The associated Markov process has the following transitions transition rates, for
(z,c)eN?,

(2.¢) — (z4w,c+CY) A, R (z,c—1) e,
’ (x—1,¢) x, (x—1,c+Cy)  Pa.

The functions of calcium-based models are given by, for ae{p,d}, ngo(c)=ha(c),
Na1 (2, ¢)=0 and n, 2 (c)=0.

Voltage-based models

Models of Section 1.A, which are adaptations of [CG10] by replacing the direct depen-
dence on filtered traces of X, can also be analyzed with this formalism. The dynamics
are given by

dX (t) = =X (¢t) dt+wN,(dt)—g (X (t—)) Ns x (dt),
dZ,1(t) = —p 12,1 () dt+Ny(dt),
dZ,2(t) = —Va2Za2(t) dt+Njs x(dt),

with ngo(2)=n,1(2)=n42(2)=0, ny2(2)=Bpzp1(2p2—0a) ", na1(2)=Ba(za2—0a)".
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CHAPTER 2

STOCHASTIC MODELS OF NEURAL PLASTICITY: A SCALING
APPROACH

— ABSTRACT

In neuroscience, synaptic plasticity refers to the set of mechanisms driving the
dynamics of neuronal connections, called synapses and represented by a scalar value,
the synaptic weight. A Spike-Timing Dependent Plasticity (STDP) rule is a biologically-
based model representing the time evolution of the synaptic weight as a functional
of the past spiking activity of adjacent neurons. A general mathematical framework
has been introduced in | 1.

In this paper we develop and investigate a scaling approach of these models based
on several biological assumptions. Experiments show that long-term synaptic plas-
ticity evolves on a much slower timescale than the cellular mechanisms driving the
activity of neuronal cells, like their spiking activity or the concentration of various
chemical components created /suppressed by this spiking activity. For this reason, a
scaled version of the stochastic model of [ ] is introduced and a limit theorem,
an averaging principle, is stated for a large class of plasticity kernels. A companion
paper [ ] is entirely devoted to the tightness properties used to prove these
convergence results.

These averaging principles are used to study two important STDP models: pair-based
rules and calcium-based rules. Our results are compared with the approximations
of neuroscience STDP models. A class of discrete models of STDP rules is also
investigated for the analytical tractability of its limiting dynamical system.

2.1 Introduction

In [ ] we have introduced a general class of mathematical models to represent
and study synaptic plasticity mechanisms. Their purpose is to investigate the synaptic
weight dynamics, i.e. the evolution of the unilateral connection between two neurons.
These models rely on two clearly stated hypotheses: the effect of plasticity is seen on
the synaptic strength on long timescales and it only depends on the relative timing of the
spikes. This type of plasticity, known as Spike-Timing-Dependent Plasticity (STDP), has
been extensively studied in experimental and computational neuroscience, see [Fell2;
MDGO8] for references.

This paper is devoted to a scaling analysis of an important subclass of STDP
rules, Markovian plasticity kernels. These kernels have a representation in terms of
finite dimensional vectors whose coordinates are shot-noise processes. See Section 3
of [ ] and Section 2.2 below.

We start with a simple example of the models investigated in this paper. See
Section 2.2 for a detailed presentation. The stochastic process can be represented by
the following variables,

a. the membrane potential X of the output cell;
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96 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

b. the synaptic weight W, modeling the strength of the connection from the input
neuron to the output neuron.

When the input neuron is spiking (a presynaptic spike), a chemical/electrical signal is
transmitted to the output neuron through the synapse. If the couple of variables (X, W)
is (z, w) just before this event, it is then updated to (z+w, w).

In state X =z, the output neuron emits a spike at rate §(x), where (3 is the activation
function. This is a postsynaptic spike. It is usually assumed that 3 is a nondecreasing
function of the membrane potential X.

Consequently, after a presynaptic spike and the associated rise in membrane poten-
tial X, the probability that a postsynaptic spike occurs is increased. As seen in [ 1
STDP synaptic mechanisms depend, in a complex way, on past spiking times of both
adjacent neurons.

More formally, in our simple example, the time evolution is described by the
following set of stochastic differential equations (SDEs),

dX(t) = —X(t)dt + W(t)Ny(dt),
dZ(t) = —Z(t)dt + BiNA(dt) + BaN x (dt), (2.1)
dW(t) = Z(t—)Nzx(dt),

where h(t—) is the left-limit of the function h at >0 and, for i={1, 2}, B;eR,. Through-
out the paper, the notation (Y'(¢)) is used to represent the stochastic process t—Y (¢) on
R,.

We discuss briefly the random variables involved.

a. The point processes N, and Nj x.
These random variables are point processes representing the sequences of spike
times of the pre- and postsynaptic neurons.

In the present work, N, is assumed to be a Poisson process with rate A. It can be
represented either as a nondecreasing sequence of points (t,,n>1) of R., or as
nonincreasing function, the counting measure

o NA((0,8]) = D Tj<n

n=1

with jumps of size 1, or, finally as a random measure, the sum of Dirac measures
at the points (¢,),
Ni(dz) = > 6,
n=1
Each point ¢, of N,(dt) is associated to a presynaptic spike and the consequent
increment of the postsynaptic membrane potential X (t—) by W ().

The point process N3 x accounts for the instants of the postsynaptic spikes.

It is a nonhomogeneous Poisson process with (random) intensity function
(B(X(t—))). See Relation (2.3) for a formal definition. See [Kin92] for an ex-
tensive introduction to Poisson processes and [Daw93] for theoretical aspects of
random measures.
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b. The process (Z(t)).
(Z(t)) encodes the past spiking activity of both neurons through an additive
functional of NV, and NV x with an exponential decay factor v>0. It is not difficult
to see that, for ¢>0,

t t

e IN (ds)+ By J e_V(t_S)N@X (ds).

2(8) = Z(0)+ By f

0
See Lemma 2.1 of [ ]. In our general model, (Z(t)) is a multidimensional
process which can be thought as a vector of cellular processes associated to the
concentration of chemical components created /suppressed by the spiking activity
of both neurons. See also [AK15] for a general presentation of stochastic processes
in the context of biochemical systems.

c. The processes (W (t)). The synaptic weight W is increased at each jump of N3 x
by the value of (Z(t)).

From a biological point of view, the relevant process is (1¥/(¢)), because it describes the
synaptic strength, i.e. the intensity of transmission between two connected neurons.
This value can be measured through electrophysiological experiments for example.
Many computational models have been developed to investigate synaptic plasticity
in different contexts. See [MDG08; GB10; Clo+10; BA16; KGH99] and the references
therein.

From a mathematical perspective, the variables (X (t), Z(t), W(t)), solutions of
SDE (2.1) are central to the model. However, as will be seen in this article, the point
process of instants of postsynaptic spikes Nj x is the key component of the system since
it drives the time evolution of (Z(t)) and (W (¢)) and, consequently, of (X (¢)).

Mathematical models of plasticity in the literature

Numerous works in physics have investigated mathematical models of plasticity. We
quickly review some of them. Most studies focus on the dynamics of a collection of
synaptic weights projecting to a single postsynaptic cell. There are basically two types
of approximations used.

a. Separation of timescales.
The cellular processes are averaged to give a simpler dynamical system for the
evolution of the synaptic weight. This is a classical approach in the literature.
See [KGH99; RKO18; Eur+99; Rob00]. [AR]J20] uses an analogous description of
the evolution of synaptic weights in the context of a mean-field approximation of
several populations of neurons. This is the approach of the paper, see Section 2.1
below.

b. Fokker-Planck approach.

In this case, the time evolution of the synaptic strength alone is assumed to follow
a diffusion process and, consequently, has the Markovian property. The analy-
sis is done with the associated Fokker-Planck equations and the corresponding
equilibrium distribution when it exists. See [RLS01; Hor+00; KHO00; RBT00a]. An
extension, the Kramers-Moyal expansion is also used in this context for some non-
Markovian models, see [LF12]. We refer to [Paw67; Gar10] for general properties
of the Kramers-Moyal expansion.

N S, A Ny, ¥ W
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Mathematical studies of models of plasticity are quite scarce. Most models are centered
on evolution equations of neural networks with a fixed synaptic weight. See Sections 1
and 2 of [RT16] for a review. In [AFH12] and [PSW17], an ODE/PDE approach for
a population of leaky integrate-and-fire neurons is presented for a specific pair-based
STDP rule. See [Che+15] for the connection between stochastic models and PDE models.
[Hel18] investigates a Markovian model of a pair-based STDP rule. This is one of the
few stochastic analyses in this domain.

Multiple timescales

An important feature of long-term neural plasticity explored in this paper is that there
are essentially two different timescales in action.

On the one hand, the decay time of the membrane potential and the mean duration
between two presynaptic spikes or two postsynaptic spikes are of the order of several
milliseconds. See [GK02b]. Consequently, interacting pairs of spikes are on the same
timescale. For example, pair-based models have an exponential decay whose inverse
is around 50 milliseconds. See [BP98; FGV05]. Similarly, for calcium-based models,
the calcium concentration decays with a time constant of the order of 20 milliseconds.
See [GB12]. The stochastic process (Z(t)) represents fast cellular mechanisms associated
to STDP and accordingly, its timescale is also of the same order.

On the other hand, the synaptic weight process (¥ (¢)) changes on a much slower
timescale. It can take seconds and even minutes to observe an effect of an STDP rule
on the synaptic weight. See [BP98]. Computational models of synaptic plasticity have
used similar scaling principles. Kempter et al. [KGH99] for the equation (1) of this
reference for plasticity updates and with different neuronal dynamics, but built in the
same framework, [KHO00]. We can mention also [RBT00a], [Rob99; Rob00] where a
separation of the timescales is also assumed. A final example is [RLS01] where the
parameter \ speeds up the rate of pre- and postsynaptic spikes in the equation for
plasticity updates.

Computational models of plasticity incorporate this timescale difference by only
implementing small updates of the synaptic weights. However, it does not really take
into account the fact that significant changes occur after the end of the experiment.
To take into account this phenomenon, a possible approach consists in updating the
synaptic weights with a fixed, or random, delay. This is not completely satisfactory since
the evolution of the synaptic weight is generally believed to be an integrative process of
past events rather than a delayed action. A more thorough analysis is done in Section
SM2 of [ ]. Another approach which we will use consists in implementing this
delay through an exponentially filtered process to represent the accumulation of past
information.

It is important to stress here, that even if synaptic plasticity depends on the imme-
diate timing of individual spikes, which happens on a fast timescale, it has a slow and
delayed impact on the synaptic weight. This justifies the term of long-term plasticity
and the fact that we can consider a separation of the timescales. Fast synaptic plasticity
processes also exist, in the sense that they modulate the synaptic weight on the same
timescale as the fast neuronal processes (spikes, membrane potential). This is referred
to as short-term synaptic plasticity. See [ZR02]. For this type of dynamics, the timescale
is of the order of milliseconds, much faster than the plasticity considered in this paper
which can last several hours. This is not investigated in this paper. [Gal+19] analyzes
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such models; in this case, separation of the timescales does not occur, and a mean-field
approximation is developed.

The scaling approach of this paper represents the model as a slow-fast system.
Neuronal processes, associated to the point processes NV, and N x, occur on a timescale
which is much faster than the timescale of the evolution of (W (t)). For our simple
model, with the scaling, the SDE (2.1) becomes, for >0,

dX.(t) = —X.(t)dt/e + W.(t)N,/:(dt),
dZE(t) = —’}/Z5<t) dt/e’f + Bl./\/-)\/s(dt) + B2NB/€,XE (dt),

dW.(t) = Z.(s—)eNse x.(dt).

As can be seen, the variables (X.(¢)) and (Z.(t)) evolve on the timescale t—t/e, with
e small; they are fast variables. The increments of the variable IV are scaled with the
parameter ¢, and the integration of the differential element eNg). x_(ds) on a bounded
time-interval is O(1). For this reason, (W.(t)) is described as a slow process. This is a
classical assumption in the corresponding models of statistical physics. Approxima-
tions of (W.(t)) when ¢ is small are discussed and investigated with ad hoc methods.
The corresponding scaling results, known as separation of timescales, are routinely
used in approximations in mathematical models of computational neuroscience; see,
for example, [KGH99].

Mathematical proofs of averaging principles

In a mathematical context, these types of results are referred to as averaging principles.
See [PSV77] and Chapter 7 of [FW98] for general presentation. They have been used
to study various biochemical systems, see for example [Bal+06] and [KK+13]. See
also the general presentation [BGO6] in the context of dynamical systems and recent
developments in [KP’17]. We discuss the specific difficulties to prove such convergence
results in our stochastic models of STDP rules:

a. TIGHTNESS OF FUNCTIONALS OF OCCUPATION MEASURES.
Recall that the fast process is (X.(t), Z.(t)). Part of the technical problems of
the proof of an averaging principle is related to the tightness properties of linear
functionals of the fast process occupation measures.

The main difficulty originates, as could be expected, from the scaled point pro-
cess eNj/. x_(ds) associated to postsynaptic spikes and, more precisely, from the
tightness of families of processes of the form

(] 25N, @)). 22)

This is done in the paper by [ ]. If the model was expressed in terms of
functionals of the occupation measure of type

([ e zonas).

where s—F(X.(s), Z.(s)) is abounded continuous function on R, as it is usually
the case, the proof of this tightness property would be quite simple. From this
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point of view, this is the case of [Bal+06], Kang and Kurtz [KK+13]. In these papers
the proof of the tightness results associated to occupation measures is essentially
achieved through a quite direct use of [Kur92]. There are technical difficulties, of
course, but they are not related to these functionals of occupation measures. The
only (unpublished) paper we know that establishes an averaging principle for a
specific pair-based rule of Wilson-Cowan models of neural networks is [Hell8]
and here too, this is a quite direct application of [Kur92].

Due to our quite general framework it does not seem to be possible to han-
dle functionals of the form (2.2) with this approach. The process (Z.(s)) is not
bounded, and neither is the differential element Ny, x. (ds) since (3(X.(s)) is also
not bounded. The proof of this tightness result motivates a large part of the most
technical estimates of [ 1.

For our general models of [ ] the tightness properties are stated on an a
priori, bounded time interval [0, Sy) only. More specifically, it is shown that it may
happen that the limit in distribution of (W.(t;)) as € goes to 0 blows up, i.e., hits
infinity in finite time ¢,. Contrary to all slow-fast results mentioned above where
this phenomenon does not occur, convergence is proved on the real half-line.
This is an indication perhaps that some stochastic processes have to be controlled
carefully and that the difficulty of the tightness results mentioned above is not an
artifact of the method used.

b. REGULARITY PROPERTIES.
The results of the paper by [ ] do not provide convergence results as such.
This is the purpose of the present paper of having convergence results and explicit
expressions of the asymptotic dynamical system. To have a convergence result
as in this paper, regularity properties of the invariant distribution II,, of the fast
process (X.(t), Z-(t)) when the synaptic weight is fixed at w have to be established.
A typical property is that

w—> G(x,z)my(dx,dz)

£+1
L

is locally Lipschitz for some function G on R¢!. This is a delicate question in
general, and there are very few cases where an explicit expression of I, is known.
This type of result can be proved if there exists a “uniform” Lyapunov function
on a neighborhood of w, see [Has80]. Sections 3 and 4 of our paper are devoted
to the proof of these type of results. Different arguments are used.

Contributions

A scaled version of Markovian plasticity kernels as introduced in [ ]is presented in
Section 2.2. The difficulty is to take into account the two different timescales mentioned
above. This is done by assuming that the membrane potential X is a “fast” variable,
i.e. that it evolves on a fast timescale. An averaging principle for the synaptic weight
process has to be established in this context.

Under convenient assumptions, an averaging principle, Theorem 12, shows that the
evolution equation of the synaptic weight (W (t)) converges to a deterministic dynamical
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system as ¢ goes to 0. The proof of this quite technical result uses tightness results
proved in the companion paper by [ I

Sections 2.3 and 2.4 investigate the implications of averaging principles for classical
models of pair-based and calcium-based STDP rules. In particular, we work out explicit
results for the time evolution of the synaptic weight for several pair-based rules. Related
results of the literature in physics are discussed in Section 2.3.

For calcium-based STDP models, the situation is more complicated since an ex-
plicit representation of invariant distributions of a class of Markov processes is required
to express the asymptotic time evolution of the synaptic weight. Section 2.5 consid-
ers an analytically tractable discrete model of calcium-based STDP rules introduced
in [ ]. With a scaling approach similar to that of Section 2.2, the dynamical
system verified by the asymptotic synaptic weight can be investigated and an explicit
representation of the invariant distributions of the corresponding Markov processes
has been obtained in [ I

2.2 A scaling approach

We begin with some formal definitions. Two independent point processes are defined
on the probability space,

a. N, is the Poisson process with rate A>0;
b. P is an homogeneous Poisson point process on R? with rate 1.

If h is a cadlag function and (V'(¢)) a cadlag process, we define N, v the point process
on R, by

f(w)Nyy(du) = f () Lseo,nv—ypP(ds, du), (2.3)
R4 Ri

for any nonnegative Borelian function f onR,, where P isa homogeneous Poisson point
process on R? with rate 1. The filtration of the space contains the natural filtrations of

N, and P. See [ 1.

Markovian plasticity kernels

We go back to the general Markovian formulation of STDP developed in [ I
Important features are added to the simple model described in the introduction:

— The dynamics of the membrane potential X is unchanged, except for the influ-
ence of a postsynaptic spike on X, which is now modeled by a general decrease
x—g(x)=0.

— We consider a multidimensional fast plasticity process (Z(t)) in R%, that can
encode the activity of several chemical components. They can be defined as shot-
noise processes. A shot-noise process (S(t)) associated to a point process P on R
with amplitude &(-) and exponential decay a>0 is a solution of the SDE,

dS(t) = —aS(t)+k(St—))P(db).
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See [GP60] for the corresponding definition. In our case (Z(t)) is a vector of
shot-noise processes associated to NV, and/or Nj x, with amplitude (k;(+)), i=1,
2. See Relation (2.4) below. In this paper, the term “shot-noise process” will refer
to the stochastic process defined in this reference, and not to a specific source of
neuronal noise, as is usually the case in neurosciences.

The influence of these fast plasticity variables is integrated through general func-
tionals z—n, ;(2) >0 with exponential decay into two slow variables §2,. In partic-
ular, the process (£2,(¢)) (resp., (€24(t))) encodes in some way the memory of the
spiking activity leading to potentiation, i.e., increasing the synaptic weight (resp.,
to depression, i.e., decreasing the synaptic weight).

The synaptic weight W is updated thanks to a functional M of both slow plasticity
variables and its current value.

More rigorously, the random variable (X (), Z(t), Q,(t), Qq(t), W(t)) is a Markov pro-
cess, solution of the SDE

([ dAX(1) = -X(t)dt + W(HNa(dt) — g (X (t—)) Npx (dt),
dZ(t) =(—yOZ(t) + ko) dt
+k1 (Z(t=))Na(dt) + kao(Z(t—)) N3 x (di),
dQ,(t) = —a(t) dt+nqo(Z(t)) dt
+141(Z(E=))NA(dE) +n02(Z(t—)) N3 x(dt), ae{p,d},
dW(t) = M (Q,(t),Qa(t), W(t))dt.

(2.4)

\

where (Z(t)) is a nonnegative /-dimensional process, (=1, and the following hold:

veR’, a®b=(a; xb;) if a=(a;) and b=(b;) in R:.

koeR’ is a constant and k; and k, are measurable functions from RY to R’. Fur-
thermore, the (k;) are such that the function (z(¢)) has values in R} whenever
z(0)eR:.

For i=0, 1, 2, n,; is a nonnegative measurable function on ]Rﬂ.

M is a general measurable function.

The firing instants of the output neuron are the jumps of the point process Nj x

on R, and the presynaptic spikes are represented by the Poisson process N,.

See [ ] for more details. Recall the set of assumptions used in this reference.

Assumptions A

a.

b.

FIRING RATE FUNCTION.
( is a nonnegative, continuous function on R, and §(z)=0 for x<—c3<0.

DROP OF POTENTIAL AFTER FIRING.
g is continuous on R and 0<g(z)< max(c,, z) holds for all z€R, for ¢,>0.
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c. DYNAMIC OF PLASTICITY.
There exists an interval Ky R such that, for any cadlag piecewise-continuous
functions h; and hy; on R, the ODE

dut)

=M (I (0), ha(t), w(®) @5

for all points of continuity of h; and h, has a unique continuous solution (w(t))
such that w(t)e Ky for all t=0 when w(0)e Ky .

A scaled model of Markovian plasticity of kernels

To take into account the multiple timescales mentioned in the introduction, a scaling
parameter £>0 is introduced for stochastic processes following (2.4):

a. The exponential decay of (X (¢)), (Z(t)) and the rates A and ((-) are scaled with
the factor 1/e.

b. The functions n,;, ac{p, d}, i€{1, 2}, associated to synaptic updates due to neuronal
spikes are scaled by «.

The initial condition of (U.(t)) is assumed to be fixed:
UE(O) = Uy = ($O>Zo,w0,p7wo,d,wo)- (2.6)

This leads to the definition of a scaled version of the system (2.4), where we denote
(U=(1))=(Xc(1), Ze(2), Qe p(t), Qe alt), We(2)):

AXL(1) = — X)L (Ao (d0) g (X () Al ().
Azt - » (—fy@Z (t)+k0) dt
) 1 (Za(t=)) N (A1) b 7 (1) Ny x, (1), 0
AQoo(t) = —aQeo(t) dt+na0(Z:(t)) dt
e (a1 (Ze(E=) N3y =@+ 10 2( Ze(t=)) Ny x. (A1) ) acip, d,
(AWL(t) = M (Qe (1), Qea(t), Wa(t)) dt.

From Relations (2.7), the dynamics of the processes (2. ,(t)), (©.4(t)) and (W.()) is
slow in the sense that the fluctuations within a bounded time-interval are limited either
because of the deterministic differential element d¢ with a locally bounded coefficient, or
via a driving Poisson process with rate of order 1/ but with jumps of size proportional
to . The processes (X.(t)) and (Z.(t)) are fast, for each of them the fluctuations are
driven either by the deterministic differential element dt/e, or the jumps of Poisson
point processes with rates of the order of 1/e.
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Averaging principles

We are interested in the limiting behavior of the synaptic weight process (W.(¢)) when
the scaling parameter € goes to 0. An intuitive, rough picture of the results that can be
obtained is as follows: for € small enough, on a small time-interval, the slow process
(Q,(t),Qa(t), We(t)) is almost constant, and, due to its fast timescale, the process
(X:(t), Z-(t)) is “almost” at its equilibrium distribution II,, associated to the current
value of (W.(t)). If this statement holds in an appropriate way, we can then write a
deterministic ODE for the time evolution of a possible limit of (€2, .(t), Q4. (%), W(¢)).

We now introduce the framework of our main theorem concerning averaging
principles. If we set the process (W.(t)) to be a constant equal to w, the time evolution
of (X.(t), Z-(t)) in Relation (2.7) has the Markov property. The corresponding process
will be referred to as the fast process. Its infinitesimal generator is defined as follows:
if feC} (R4 xR"), weKy and (z, 2)eRxR, then

BN o+ (@ h, T (0))

FA|farw, 2tk (2) =S (2 2) | + B (@) | Fla=gl@), 2+ ka(2) -1 (,2)| . @8)
We now introduce a set of general assumptions driving the system (2.4).
Assumptions B

a. There exists C3=0 such that

B(z)<Cs(1+]|x|) VzeR. (2.9)
b. All coordinates of the vector +y are positive. There exists C;>0 such that 0<k,<C},
and the functions k;, i=1, 2, in C} (R’ , R’ ), are upper-bounded by C;.>0.

c. There exists a constant C,, such that, for je{0, 1,2}, ae{p, d}, the function n, ; is
assumed to be nonnegative and Borelian such that

Naj(2)<Cn(1+]2])

for zeR’, where ||z|=21+ - - - +2,. Additionally, for any weKyy, the discontinuity
points of

(, 2)=(1a,0(2), a,1(2), B(2)100,2(2))

for ae{p, d} are negligible for the probability distribution II,, of the operator de-
fined by Relation (2.8).

d. M can be decomposed as, M (w,,wq, w)=M,(w,, w)—Mg(wq, w)—pw, where
M, (wq,w) is nonnegative continuous function, nondecreasing on the first co-
ordinate for a fixed weK,,, and,

M, (we, w) < Crr(14w,),

for all we Ky, for ae{p, d}.
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Note that, in the (large) list of STDP models presented in [ ], only the fast
processes of triplet-based and voltage-based models may not verify these assumptions;
in particular, the functions n,; depend on the product of different shot-noises Z(t).
Nevertheless, Assumptions B result mainly from technical arguments, and is in any
way necessary to obtain Theorem 12. An extension using quadratic functions n,;
instead of linear ones may be proved using the stronger analytical estimations in the
proof.

We can now state the main result concerning the scaled model. Its proof is the
main result of the paper by [ I

Theorem 12 (Averaging principle). Under Assumptions A and B and for initial condi-
tions satisfying Relation (2.6), there exists Sye(0,+0], such that the family of processes
(Qpe(t), Qac(t), Wo(t),t<Sy), €€(0,1), of the system (2.7), is tight for the convergence in
distribution.

As € goes to 0, any limiting point (w,(t),w,(t),w(t),t<Sy), satisfies the ODEs, for
a{p, d},

dwgt(t) =—aw,(t) +Jﬂngi[na’0(z) + M6, (2)+B(2) N0, (2)} oo (dz, dz), (2.10)
(h;(fwzi\/[(wp(t), wa(t), w(t)),

where, for weKy, 11,, is the unique invariant distribution 11, on ]Rx]Rﬁ of the Markovian
operator BE defined by Relation (2.8).
If Kw is bounded, then Sy=-00 almost surely.

Remarks
We quickly discuss several aspects of these results.

a. UNIQUENESs.

If Relation (2.10) has a unique solution for a given initial state, the convergence
in distribution of (W.(t)) when ¢ goes to 0 is therefore obtained. Such a unique-
ness result holds if the integrand, with respect to s, of the right-hand side of
Relation (2.10) is locally Lipschitz as a function of w(s). One therefore has to
investigate regularity properties of the invariant distribution II,, as a function of
w. This is a quite technical topic; however, methods based on classical results of
perturbation theory and their generalizations in a stochastic context (see [Has80]),
can be used to prove this type of properties. These problems are investigated for
several important examples in Sections 2.3, 2.4, and 2.5.

b. BLOW-UP PHENOMENON.

The convergence properties are stated on a fixed time interval [0, Sy). The reason
is that, for some of our models the variable Sj is finite. The limit in distribution
of (W.(t)), as € goes to 0, blows up, i.e., hits infinity in finite time. An analog
property holds for some mathematical models of large nonplastic random neural
networks. In this case, the blow-up phenomenon is the result of mutually exciting
dynamics. In our case, the strengthening of the connection may grow without
bounds when the function z—ny(z) exhibits some linear growth with respect to z
and when the activation function 3 also has a linear growth. See [ 1.

I P T o
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Figure 2.1: Applications of Theorem 12 to the simple model of Section 2.1.

Simple model dynamics

To illustrate Theorem 12, we go back to the simple model detailed in Section 2.1.
We present in Figure 2.1 different possible behaviors of the asymptotic dynamics, for
different values of B; and B;. We represent the scaled process for different values of ¢
(in yellow, orange and red), the simulated ODE of the asymptotic dynamics (in black)
and the analytical solution of the same ODE (in grey, dotted line). In all cases, the
scaled processes converge indeed towards the solution of the ODE. We simulated the
different processes starting from two deterministic initial values wy=1.0 and wy=3.0.
In particular, we observe different asymptotic regimes:

(a) The scaled system converges to an ODE that explodes in finite time for all initial
conditions. The time of explosion ¢, .,, depends on the initial condition.

(b) The limiting ODE leads to solutions of w(t) that diverge towards +co but that do
not explode.

(c) Depending on the initial condition (relative to w,), the asymptotic w(t) either
converges to 0 (wp<we,) or explodes in finite time (wy>we,).

(d) The scaled processes converge to an ODE that has a stable fixed point w4, and all
the asymptotic processes w converge to this value.

We have shown with this simple example that the blow-up phenomenon does not
only result from technical arguments but does indeed take place for some systems.

S A N, ¥
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Moreover, we also highlight the fact that depending on the initial conditions, several
behaviors are possible as in Figure 2.1(c).

Several important examples of pair-based and calcium-based models are now
investigated in light of Theorem 12. In order to have simpler expressions, we restrict our
study in the following sections to the linear neuron without reset receiving excitatory
inputs, leading to the following set of assumptions,

Assumptions L (Linear)

a. The initial conditions of Relation (2.6) are such that Uy=(0, 0,, 0,0, 0).

b. The output neuron is without reset; i.e., the function g is null. The SDE associated
to the membrane potential is

AXY(t) = —X"(8) dt + w Ny (dt). (2.11)

c. There are only excitatory inputs, i.e., 0c Ky cR,.
d. M verifies Assumptions A-c and B-d and is L,,-Lipschitz.
e. The activation function is linear, 3(z)=v+fz, =0 for v>0 and >0.

In that case, X stays in R™ and we can have an explicit expression of the stationary
distribution of the important point process N xw.

Proposition 13. Under Assumptions L, if (X} (t), —0o<t<+0o0) is a stationary version of
SDE (2.11), then the point process N xw of Relation (2.3) extended on the real line is stationary,
and if f is a bounded Borelian function with compact support on R, then

—InE [GXP (— fj: f($)Npxy (ds))]
= ur@@—e—f ) ds+A roc(l— exp (—5w£oo(1—e—f (F0)) e dt)) ds. (2.12)

Proof. Setting
t
(X2 (t)% (wf e(ts)NA(ds)>, (2.13)

it is easily seen that this process is almost surely defined and that it satisfies Rela-
tion (2.11). The stationarity property of (X% (¢)) and, consequently of N3 x», comes
from the invariance by translation of the distribution of N,.

The independence of P and N,, and the formula for the Laplace transform of
Poisson point processes (see Proposition 1.5 of [Rob03]) give the relation

B e (- [ Tomana(@)) | = lew (- [ a-e ) sz as) |

If F' is a nonnegative bounded Borelian function with compact support on R, with
Relation (2.13) and Fubini’s theorem, we get

foo F(s)X5(s)ds = foo (w foo F(u+s)e™* ds) Na(du). (2.14)

—0 —0 0

S S N L ¥ PN
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We conclude the proof by using again the formula for the Laplace transform of N,

E [exp (— f@:;(s)f\&(du))] =E [exp (—)\ f:(1—e—9<“>) du)] .

where the function g is defined by
+m
g(u) % BwJ (1—e /) e ds,  u=0.
0

The proposition is proved.

2.3 Pair-based rules

We investigate scaled models of pair-based rules (see [ ) with Assumptions L.
In this setting, we are able to derive a closed form expression of the asymptotic equa-
tion (2.10).

All-to-all model

We recall the Markovian formulation of the all-to-all pair-based model with exponential
functions ®. All pairs of pre- and postsynaptic spikes are taken into account in the
processes (§2,(t)), ae{p,d}. See Section 3.1.3 of [ ]. In our framework, this is
defined as follows.

Assumptions PA

For w=>0, the fast process associated to the operator BZ of Relation (2.8) is expressed as

(Xv(t), Z%(t)), where (X*“(t)) is the solution of Relation (2.11) and
dZP\(t) = —7a1 221 (t) At + Be1 Na(d2), (2.15)
dZy5(t) = —Ya2Zys(t) dt + B, N xw(dt), .

for ae{p, d}, where y=(~,,)>0 and B=(B,;) in R%. For ae{p, d} the process (,(t)) is
such that
dQq(t) = —aQd,(t) dt+Z, 2 (t—)NX(dt)+ Z, 1 (t—)Np x (di).

ie., 14,0=0, ng1(2)=2q2, and ng(z)=z,1 for zeR?%.
We denote ITI'” the invariant distribution of the process (X“(t), Z*(t)). The exis-
tence of II'* is given by Proposition 4 of Section 5 of [ l.

Proposition 14. Under Assumptions L and PA, then for a{p, d},

f (na,0<z)+)‘”a71(z)+5(m>na,2(z))H5A(d$a dz) = LAa,H‘ (Ag1+Ag2) w.
RxRY BA

with 5 5
A1 = BA? (“71+ “’2> and Ag =0\
Ya,1 Ya,2

B,
1+’Ya,l ‘

(2.16)
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Proof. Assume that the initial point of SDE (2.15) is a random variable (X", Z") with
distribution TIPA.

For ae{p,d}, it is easily seen that E[Z¥,]| =AB,1/7,: and E[X"]=Aw. Denote
(Y*(t)=(X"(t)Zy,(t)); then with Relation (2.15), we get

AV (t) = —(1470,) Y (£) At + (w22 ()4 Bo X" (=) +wBqy ) N (d).
By integrating this ODE on [0, ] and taking the expected value, we obtain

(147, E [ XY Z2 | = ME [Z2] + ABo 1 E [X "] + AwB,,

I+,
_ Ul op o AwBay

’Ya,l)

By integrating the second SDE of Relation (2.15) on [0, ¢] and taking the expected
value, we have
—a2E(Zy5) dt + BaoE(B(X™)) = 0,

and, with
E[B(X")] = Bap(v+BE(X")) = Baa2(v+Afw),

the proposition is proved. O
Theorem 15. Under Assumptions L and PA, as ¢ goes to 0, the family of processes

(Qep(t), Qea(t), Wo(t)) of Relation (2.7) converges in distribution to the unique solution
(wp(t),wal(t), w(t)) of the relations

1— —at t
wa(t) = )\VﬁAa’lz + (Aa,1+Aa,2) e—atL easw(s) dS, &E{p, d}7
dw(t
YO 0 (0, ) ().

where A, ;, i€{1, 2}, ac{p, d} are defined by Relation (2.16).
Proof. This is a direct consequence of Theorem 12 and of Proposition 14. O

Note that, for ae{p, d}, the parameter A, ; is proportional to the area under the
two STDP curves @, ;(z)=B,,; exp(—7..i()), i=1, 2. It represents the averaged potenti-
ation/depression rate as if we had considered two neurons without any interactions.
Two important facts results from this property,

— the term in the dynamics for the constant firing rate of the output neuron, v, is
proportional to A, ;, as expected;

— the term A, , reflects the dependence between pre- and postsynaptic spikes.
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Nearest neighbor symmetric model

Similar results can be obtained for the nearest neighbor symmetric scheme of Sec-
tion 3.1.4 of [ ] with general STDP curves ®. For this class of models, whenever
one neuron spikes, the synaptic weight is updated by only taking into account the last
spike of the other neuron. In our framework, this is defined as follows.

Assumptions PNS For w=>0, the fast process associated to the operator B of Rela-
tion (2.8) can be expressed as (X" (t), Z*(t)), where (Z*(t)) is the solution of the SDEs,

{dZ}”(t) = dt—Z (t—) Nx(dt), (2.17)

dZy (t) = dt—Z¥ (t—) N xw (dt).

It it easily seen that for Z}"(t)=t((N,, t) when t is greater than the first point of NV, and,
similarly, Z(t)=to(N3 xw,t) under an analogue condition, with

to(m, t)=t—sup{s : s<t : m({s})#0}, (2.18)

the distance between the first point of m at the left of ¢ and ¢. For ae{p, d}, the process
(Q4(t)) is such that

Q0 (t) = —afa(t) di+Pao(Z2(t=))Na(dt) + a1 (21 (=) N x (di),

ie., n4,0(2)=0, ng1(2)=Py2(22), and n,2(2)=P,1(21) for zeR2.

The functions ®,; and ®,, are quite general nonnegative, nonincreasing, and
differentiable functions, instead of exponential functions, as is usually assumed for
tractable models of many STDP rules.

Proposition 16. For w=0, the Markov process (X" (t), Z*(t)) has a unique invariant distri-
bution IIFS. If f is a bounded Borelian function on R% and a=0, then

fR . fz, 20)IIy (A, dz) = B [f (we™™(149), Ey)]

0

[ (1me (-0 (1m0 ) as),

o0]

J ]l{mza}ﬂis(dx, dz)=exp (—Va—)\J (1— exp (—ﬁw (1_€S—a>)) ds
RxR2

where E and S are independent random variables, E has an exponential distribution with rate
A, and, for €20,

+00 3
E [6_53] = exp (—f)\ J ue et du) .
0
Proof. The first condition of Assumption B-a is clearly not satisfied, the coordinates of
the vector vy being —1. This is not a concern since this condition is only used to construct

a Lyapunov function as in the proof of Proposition 4 of Section 5 of [ ]. We only
show that one can construct such a function for this model. Set, for (z, z)eRxR?,

1
H(z,z) % o + T+21+29,
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for some §>0; then,
1 0
Brp(H) < — ( 0+ ﬁ_l +Aw + 2 —x — Aoy —(v+P1) 22,
x

r+w

Choosing 6<\/4, we set xy = min (21, z2), where

w A 1/6
T =, T2= |0
Pras 1 T \4w+3) )

such that if z<z, then By(H) < —1.
Moreover, if 2>z, we also have BY(H) < —1 for H(x, z)> K, where

)
Ky = <x‘5+)\w+3> /min(1, \, v + Bxg).
0

In particular, H is a Lyapunov function for Bf. Consequently, there exists a unique
invariant distribution.

We denote by (X%, Z, Z¥) a random variable with distribution II'°. It is easily
checked that, for t>0,

o, 250 = (w [ w5905, ) 2 ([N 45, )),

where t(-, -) is defined by Relation (2.18). By letting ¢ go to infinity, we thus get, with
def
0 = to (N)\a )

‘ 0
(X, Zw)dst (wj GSN)\(dS),tO(N)\,O)) = (we‘to <1+J eSHONA(dS)) ,to) :
—© (—00,—to)

The strong Markov property of N, gives the desired relation for the representation of
the law of (X", Z}). Again, with the formula of the Laplace transform of Poisson point
processes, we have

o] )] )]
— exp <—>\f0 <1—e*56““) ds> .

The stationary distribution of (Z5(t)) is the distribution of the distance of the first point
of N x at the left of 0 at equilibrium, and hence, for a=0,

P (Zy>a) =P (N3 xy((—a,0))=0) =P (N3 xx((0,a))=0) .
Relation (2.12) gives, for {0,

_InE [efﬁf\fﬁ,xgg((ova))] =va (1—e™%) —i-)\J (1—exp (—Bw (1—e¢)(1—e*")))ds

0
A [ (1 e (< (1-e79) (10 7%) ) ds.
—o0
By letting ¢ go to infinity, we have obtained the desired expression. The proposition is
proved.
O
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Theorem 17 (Averaging principle). Under Assumptions L and PNS, as ¢ goes to 0,
the family of processes (€2, (t), Qe a(t), W.(t)) of Relation (2.7) converges in distribution to
(wp(t), wa(t), w(t)), the unique solution of the ODE

5
+

wa(t) = J eolt=s) fR (B(2)®a1(21) +APa2(22)) Iy, (A, dz) ds,  ae{p, d},
Q) M (o (1), walt), w(D))

where 1155 is defined in Proposition 16.

Proof. For w=0, let (X3, Z% |, Z% ,) be random variables with distribution I1,,, and, for
ag{p,d}, let

ef. w w w
Wa(w) & E | B(X2)@ar (Z2,) ]| +AE | @42(Z25) |
The ODE can be rewritten as

d?gf) M ( f I, (w(s)) s, f o= () dw(t)) .

0 0

With Theorem 12, all we have to prove is that this ODE has a unique solution. This is
a simple consequence of the Lipschitz property of ¥,. Indeed, first, the distribution of
Zy 1 does not depend on w and f3(-) is an affine function of X given by Relation (2.13).
Finally, the identity

+oo
B[0a(28,)] = - | Bua(wB(ZE,50) du
0
Proposition 16, and simple estimations give that the function ¥, has the Lipschitz
property. The theorem is proved. O

Links with models of physics

In this section, averaging principles for STDP rules of [KGH99] are discussed. We start
by characterizing which type of STDP rules are used, in particular, their model takes
into account all pairing of pre- and postsynaptic spikes that last less than the interval
of the experiment 7. It is supposed that T is really large compared to the neuronal
dynamics. Accordingly, in the limit of large 7', it corresponds to the pair-based all-to-all
model of Assumptions PA.

After adapting notation, the main equation for the asymptotic behavior of the
synaptic weight dynamics (Relation (4) of this reference) is expressed, via a separation
of timescale argument, as

dw 1,1 2.2 O
P (t) + w v (t) + O(s)fi(s,t)ds, (2.19)

where S (resp., 5?) is the process of presynaptic spikes (resp., postsynaptic spikes),

— v(t) = {(S'(t)), the presynaptic spike rate and w' the intensity of synaptic plas-
ticity triggered by presynaptic spikes only;

WM—-—M/AM
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— V2(t) = {S2(t)), the postsynaptic spike rate and w? the intensity of synaptic plas-
ticity triggered by postsynaptic spikes only;

— &)(t) represents the STDP curve;

— Ji(s,t)={S(t+s5)S2(t)), the correlation between the spike trains.

The quantity {- - -) > is defined in terms of temporal and ensemble averages that are
not completely clear from a mathematical point of view, (- - -) is the ensemble average
and -~ is the temporal average over the spike trains. The model of [KGH99] is without
exponential filtering; see Section 2.A.

In our setting, we choose M (T, Ty, w)=Ip—T4, n40(2)=0, n41(2)=Ds1+2,2 and
Na2(2)=Dg42+42,1, Where z,; are defined as in Assumptions PA. Theorem 24 gives the
following equation:

dw

E = (Dp,l_Dd,l)A + (Dp,2_Dd,2) R, ﬁ(x)ﬂg?t)(dx)

T fR O B()e) Wy (4, de1,2), @20

where I1'2 is defined in Proposition 14.
We then have the following equivalence:

[KGH99] Our model
Presynaptic plasticity wt Dy1—Dgq
Presynaptic rate vi(t) A
Postsynaptic plasticity w? Dy,o—Dgo
Postsynaptic rate V3 (t) J B () (d)
+
+o
STDP J ) O(s)pu(s,t)ds JR (Azo+p(z)21) H%A(t) (dz,dz,dz)
- +

The equivalence of the last row can be explained as follows.

We set
(I)a(t) = Ba,l eXp(_’ya,lt)ﬂ{t>0} + Ba,? eXp(fya,2t)ﬂ{t<O}a
and Exn (NA[0, BNs x [, 4B
9 9 +
lim ngr G ]2 pxl ]), for t>0;
(twy={ " K
l’[’ I -
E 0,h t,t+h
gy I (NALO, RJNs x[t, T+ ])7 for <0,
R\0 h?

provided that the limits related to second order properties of the point processes N,
and N x exist.
In Section 2.B, a heuristic argument shows that
+o0
| Qe T e o0, ) = [ (@)=l s, w0 s,
.

—00

leading to the equivalence between both models.

NI NV . P N e,
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2.4 Calcium-based rules

We investigate scaled models of calcium-based rules introduced in Section 3.1.1
of [ ]. In this section, we show that the asymptotic equation (2.10) has a unique
solution. Some regularity properties of the invariant distribution of the operator B,
with respect to the variable w, have to be obtained.

Assumptions C In this case, the vector (Z(t)) is a nonnegative one-dimensional process
(C(t)). For we Ky, the fast process associated to the operator BZ of Relation (2.8) can be
expressed as (X™(t),C"(t)), where, as before, (X*(t)) is the solution of Relation (2.11)
and the SDE for (C"(t)) is

dC" = —yC™(t) dt + CLNA(dt) + CoNj xw(dt), (2.21)
where C and C>>0, v>0. For ae{p, d}, the process (£2,(t)) is such that
dQ,(t) = (—aQ.(t)+h.(C(t))) dt,

ie., ngo(c)=hqe(c), na1(c)=0, and n,2(c)=0 for ceR;. The functions h, and h, are
assumed to be L-Lipschitz. They represent, respectively, the influence of the calcium
concentration C' on potentiation and depression.

Proposition 18. For we Ky, the Markov process (X™(t), C*(t)) has a unique invariant dis-
tribution 11, and its Laplace transform is given by, for a and b=0,

—lnf
R

0
e~ TIC (d, de) = I/J (1—e ") du

o]

0 U
+/\J (1— exp (—awe“—bClew — fw f (1—6_60287@_5)) e’ ds)) du.
—00 0

Proof. The existence and uniqueness of I1€ is a direct consequence of Theorem 12 since
Assumptions B hold in this case and Proposition 4 of Section 5 of | ] can be used.

With Proposition 13 and Lemma 2.1 of [ ], a stationary version (X% (t), C%(t))
of the fast process (X™(t),C"(t)) can be represented as

2
+

t t t
<wf e_(t_s)/\/}\(ds),le e 1IN (ds)+C, f e—ﬂt—swﬂ,xg(dsv. (2.22)

—00
Hence, we have to calculate E [exp(—aX¥(0)—bC%(0))], that is,

0

0
U(a,b) ¥ E lexp (—f (awes+bC’1678)./\/',\(ds)—bCzj

—00

N(s)) |

We proceed as in the proof of Proposition 13. By the independence of P and N,

0 0
E [exp (—ng fe’ysj\f/g,xgg (ds)) ‘N,\] = exp (— J (1—e ") B(X2(s)) ds)
— 0 —0o0
and, with the help of Relation (2.14), we follow the same methods to obtain the desired
result.
O
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Theorem 19. Under Assumptions L and C, if the functions h, and hy are Lipschitz then, as €
goes to 0, the family of processes (§2c ,(t), 2 4(t), W.(t)) converges in distribution to the unique
solution (w,(t),wa(t), w(t)) of the relations

t
f tS)J ha(O)1g (de,de)ds,  ae{p, d},
R

0 (2.23)

dw(t)

2 = M (1), walt), (),

almost surely, where, for we Ky, 11S is the probability distribution defined in Proposition 18.

Proof. The application of Theorem 12 is straightforward. All we have have to prove
now is that ODE (2.23) has a unique solution.

From the representation (2.22), for any 0<w<uw’, the random variables C¥ (0) and
C¥'(0) can be constructed on the same probability space. The Lipschitz property of h,,
with the constant L, gives

dofw,w') [ [a(C2(0))] —E [ha(C (0))]| < LE [|C2(0)-C (0)]

0 0
f eszg’Xoué(dS)—J e”SNB’XO%/(ds)

- cus |

|

with (2.13), we have X% (t)=wX1 (¢) for all ¢ and, therefore,

i) [ fgsp [(B(wXL(s). (/XL (s))] ,ds]]

- stat-wpe | [ ey as| = Lt

Let (w(t)), (w'(t)) be two solutions of ODE (2.23) with the same initial point; then

Aa (t) dif'

t
J o—olt=s) [J ha(c)l'[g(s)(dx,dc)—f ha(c)TIS () (dz, dc)] ds
0 R RY

[ o1 sz < [

0

With Relation (2.23) and the Lipschitz property of M, we get, for t<T,

w—w Ht = sup |w(s)—w'(s)| < LMJ e’”(t’s)(AP(s)—i—Ad(s)) ds

s<t 0

t
< Ly oL J [w—u], ds.
Y Jo

This implies that (|w—w’|;) is identically 0. The theorem is proved.
O

The Lipschitz assumptions for the functions (h,, hq) of Assumptions C do not apply
to the classical threshold functions (5,, S;) from [GB12] defined by

Sa($> = ﬂ{x>9a}, x=0. (224)

L N, V. R A o~
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Additionally, even in the case of Lipschitz functions, the quantities

f ho()TIS (dz, de), ae{p, d},
RxR4

of the ODE (2.23) do not have a closed form expression in general.

Theorem 19 highlights the importance of the calcium concentration on the dynam-
ics of the synaptic weight. Interestingly, calcium has been the subject of a wide array of
experimental studies, and biologists have developed several means to follow its concen-
tration both locally and globally during experiments. In particular, it is now possible
to monitor calcium concentration in dendrites of postsynaptic neurons during stim-
ulations with calcium fluorescence indicators, such as GCaMP for example [NOIO1],
See [HS08]. It may be therefore possible to infer these cumulative functions from
such experiments and study the dynamics of Theorem 19 for those realistic calcium
concentrations.

From the point of view of numerical analysis, it is quite difficult to obtain some
simple numerical results to express solutions of the ODE (2.23). It could be done,
by simulations, to estimate the quantities Epc (h4(C')), ag{p,d} for a large number of
values for w. A recent article (see [GWO16]) has derived some approximations for
specific cases.

For this reason, the next section investigates a class of discrete calcium-based
models for which the invariant distributions have an explicit expression which can be
used in practice.

2.5 Discrete models of calcium-based rules

In this section, we study a simple model of plasticity where the membrane potential X,
the calcium concentration C, and the synaptic weight I are integer-valued variables. It
amounts to representing these three quantities X, C, and W as multiples of a “quantum”
instead of a continuous variable. A general class of such discrete models has been
introduced in Section 4 of [ ].

This amounts to describing the model of plasticity as a chemical reaction network
of interacting chemical species: C (calcium), VW synaptic quanta, X ions. The associated
chemical reactions could be described as

gAwWx+cC, (BW—~@—BW, [x-1g,
x Loy, w A & ¢y

In this setting, the state variable is the vector of the number of copies of the different
chemical species. See [Feil9] for a general introduction to chemical reaction networks
and also Chapter 2 of [AK15]. It should be noted that our model is not strictly speaking
a chemical reaction network since some reactions rates are defined by the processes

(2(2)), ae{p, d}.
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Figure 2.2: Comparison between continuous and discrete calcium-based models.
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For the continuous model, we took M (w,,, wg, w)=w,—wg.

Inset, standard deviations, sd, of V. and w at the end of the simulations.
The expected value of wyc is computed with Monte Carlo estimations of I1{2.
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The expected value of war is computed with estimated HSUQ with the expressions of

Section 2.C.
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The state of the system is associated to the solution of the following SDEs;

( X(t—) X(t-)

dx(t) = Nii(dt) + W (t—)Na(dt) — > Ns(d),

=1
) X(t—)

N,Yz(dt)—l-cl./\/’)\(dt +02 Z ./\/’5 dt)

—~

—_

t

Q..

dc() =

||M

a0 - [ (CO)] . ac(p.d)
W(t—
dw(t) = Nul(dt)+BNQ (dt) = Balfw—y=BNaye-)(dt),

[y

where €, C5eN and, for ae{p,d}, B.eN and h, is a nonnegative function. For £>0,
N (resp., (NVe;)) is a Poisson process on R, with rate £ (resp., an i.i.d. sequence
of such point processes). For ae{p,d}, as before, the notation N, —)(dt) stands for
P[(0,94(t—)), dt], where P is a Poisson process in R? with rate 1. All Poisson processes
are assumed to be independent.

Outside the leaking mechanism, the time evolution of the discrete random variable
(W(t)) is driven by two inhomogeneous Poisson processes, one for potentiation and
the other for depression with respective intensity functions (£2,(¢)) and (€24()).

The scaling is done in an analogous way as in Section 2.2. The corresponding SDEs
are then expressed as

( Xs(t_) Xs(t )
AXc(t) == D Niyea(dt) + Wo(t—)Nye(dt) = > Nyjea(dt),
i=1 i=1
Ce(t-) Xe(t—)
dQo(t) = —afd o(t) dt+ha(Ce(t)) dt,  aelp, d},
We(t-)
dW.(t) Z Ni(dt)+BpNo, o) (dt) = Bal qw. -y Na. 4@ (dt),
\ i=1

Definition 20 (Fast processes). For a fixed W=uw, the fast variables of the SDEs (2.25) are
associated to a Markov process (X (t),C*(t)) on N* whose transition rates are given by, for
(z,c)eN?,

(z4w,c+CY) A, (z,c—1) ~e,
(@¢) = { (r—1,¢) x, —> { (x—1,c+Cy)  pu.

The next result is the equivalent of Theorem 19 in a discrete setting.

Theorem 21 (Averaging principle for discrete calcium-based model). If h, and hq
are functions on N with a finite range of values, as € goes to 0, the family of processes
(Qep(t), Qea(t), W.(t)) defined by Relations (2.25) converges in distribution to the unique
solution (w,(t),wa(t),w(t)) of the relations

t
wq(t) :f e_a(t_s)f ha(c)HSU%)(dx,dc) ds, ae{p,d},

Oy N (2.26)
dw(t) = = > Nui(dt)+ BNy, ) (d) = Bal ()= By Nay(o) (d8),

=1

where 1S9 is the invariant distribution of the Markov process of Definition 20.
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The threshold functions (S,, S;) defined by Relations (2.24) and used in classical
models of calcium-based STDP [GB12] satisfy the conditions of the theorem. For the
proof, see the appendix of | I

The theorem shows that the limiting process (w(t)) is a jump process on N driven
by two nonhomogeneous Poisson processes whose intensity functions (w,(t)), a{p, d}
are continuous.

The explicit expression of the invariant distribution of (C*(t)) is given in Proposi-
tion 4.3 of | ]. Only the distribution of the calcium variable C" is considered due
to its role in the expression of (w,(t)), ae{p, d} in Theorem 21.

Proposition 22 (Equilibrium of fast process). For weN, the Markov process on N* of
Definition 20 has a unique invariant distribution TISQ, and the generating function of C is
given by, for ue(0, 1],

E (u®") = exp (—/\ J v (1-A(u, s, w)) ds) (2.27)

0
with

Co w
A(u, s,w) = <1+(u—1)p1(s)>c <1+ Z(U_l)kp2(5> k))

i=1

p1(s) = e and py(s, k) = ﬂ—l—lﬁ—yk (le) (ekas_ef(ﬁﬂ)s) .

We present in Figure 2.2 simulations for different values of ¢, and 6, of the contin-
uous model (Section 2.4) with step functions 5, (left) and of the discrete model (right).
In particular, we simulate the scaled system for different values of ¢ and we also esti-
mate the solution of (2.23) and (2.26), wmc, using Monte Carlo estimations to compute
[$/CQ(C=40,).

Moreover, for the discrete case, we are able to compute I1$?(C>n) for n=0, 1, 2; see
Section 2.C. Based on these analytical results, we are able to obtain the numerical values
of the parameters of the dynamic of the asymptotic process (war(t)). Simulations of
the expected values of (war(t)) are represented in green in Figure 2.2.

These simulations illustrate Theorems 19 and 21, with the convergence of the scaled
processes W, towards our asymptotic process. For the continuous case, we observe that
even if the step function S, does not verify the conditions of 19, convergence seems to
hold anyway. This is also illustrated by the decrease in standard deviations (inset) as ¢
goes to 0. For the discrete case, we note the same phenomenon for the expected value
and the standard deviation. Recall that the limiting process is stochastic in this context.
Finally, it also shows that, qualitatively, the two classes of models continuous/discrete
behave quite similarly.
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Appendix

2.A  Averaging principles for models without exponential
filtering

In Section SM2 of [ ] more “direct” dynamics for the time evolution of synaptic

weight have been presented. For ae{p,d}, the update at time ¢ depends only on the
instantaneous synaptic plastic processes

La(Na, N x)(dt) = nao(Z(t—)) dt+ne,1(Z(t=))NA(dE) +142(Z(t—))Np x (dt)
at time ¢. The corresponding synaptic weight process (W (t)) satisfies the relation
AW (t) = M (Tp(Na, Ny x), TaNa, Ny x), W (=) (dt),

for some functional M.
Recall that for our model, the dynamic of the synaptic weight (17 (¢)) is defined by,

AW () = M (2, (1), Qu(t), W (1)) dt,
where (Q,4(t)), ae{p, d}, is a filtered /smoothed version of I',(NV, N; %),
dQ,(t) = —af,(t) dt+n,0(Z(t)) dt + (N, Na x)(dE)

It turns out that a stochastic averaging principles also holds for the model without
an exponential filtering. We first introduced the scaled version of this system.

Definition 23 (Scaled dynamical system for instantaneous plasticity). We define the

stochastic process (X (t), W (t)) with initial state (xo,wy), satisfying the evolution equations,
for t>0,

r

AXt) =~ Xt) dt -+ T2 )N — g (K(t-)) N ., (),

dZ.(t) = i (—’y @Z(t)+ko) dt (2.28)

k1 (Ze(t=))Nyje(dt) +k2(Ze(t—)) N . . (dt),
AW, (t) = eM (Tp(Na, Ny x), Ta(Na, N x), W (1)) (di),

\

where T, and T4 are plasticity kernels. The functional M is defined by
M: M (R,)*xR — M, (Ry) (2.29)

(Fp, Fd, w) - M(Fp, Fd, U})

We have to modify Assumptions B-(d) by Assumptions B*-(d), in the following
way, M can be decomposed as, M (T, Iy, w)=M,(w)[',— M 4(w)T'y — pw, where M, (w)
is non-negative continuous function, and,

Ma(w) < CM,

for all weKyy, for ae{p, d}.
An analogue of Theorem 12 in this context is the following result.
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Theorem 24 (Averaging principle for instantaneous plasticity). Under Assumptions A
and B* and for initial conditions satisfying Relation (2.6), there exists Sye(0, +0], such that
the family of processes (W .(t),t<Sy) associated to Relations (2.28) and (2.29), is tight for the
convergence in distribution as e goes to 0. Almost surely, any limiting point (w(t),t<So)

satisfies the relation
dw(t) = f Y ( [(10,0(2)+ M1 (2)+B8(2)10,2(2)) dt] ey ,w(t)) T (dz, dz). (2.30)
RxRY
where, for we Ky, 11, is the invariant measure I1,, of the operator BE of Relation (2.8).

Proof. Due to the specific expression of M, the arguments follow the ones used
in [ ]. The proof is skipped. O

Comparison with Theorem 12

Both theorems show that the dynamics of the synaptic weight w in the decoupled
stochastic system depend on an integral over the stationary distribution of the fast
process. However, in Theorem 12, the averaging property occurs at the level of the
synaptic plasticity processes w,,

dw(;t(t) = —auw,(t) + JRXM [na,o(2)+)\na71(z)—i—ﬁ(x)nm(z)] ATy (, 2),

and, the function M is applied afterwards to have the update of the synaptic weight w,

dw(t)
5 = M(@p(),wa(t), w(t)).

In Theorem 24, with no exponential filtering, the averaging is applied directly at the
level of the synaptic update,

dw(t) = JR by ( [(10.0(2) + A0 (2)+6(@)0,2(2)) A ey ,w(t)) Moo (da, ).

In particular, with a linear function )M, both models are equivalent except for the
exponential filtering of the plasticity kernels.

2.B  Links with models of physics: a heuristic approach

In this section we give a, non-rigorous, derivation of Relation (2.19) of [KGH99] to
establish a connection with our main results in this specific case. For we Ky, from the
definition of ®,, ac{p, d},

0
f ®,(5)Epa (N,a,xh[o, h] NA[S: N h]) N

0 h ,
—00

l/\/g,xh[o, h]

7| as)

—h
]:olf exp(yayls)w ds>

= Ba, 1EHI;}A (]EHI;)A

RN L W R s SN~
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—h Ms,s+h
~ Bosky (5X00) | explaa 1 as)
-
and, if N\=(t,, neZ), with t,<0<t,
tnth
= Ba,l]EH!;A Z J exp Ya, 15
tn<—

~ Ba1Eqra (B(X (0)) )] exp(%,ltn)>

n<0

- Bns (BCX(0)Z0a(0) = | | Bla) 20l (e, 02

by using a representation of Z, (0) similar to that of X?(0) with Relation (2.13). Simi-

larly,
+00
f Bu(5)Eumps (Nﬁ,Xh[O, h] N)\[S;LS-l-h]) ds ~ JRE Ao 1T (dz, d2).

0

Extensions

The interest of Relation (2.19) is that it may be formulated for a general plasticity curve
®,, for all-to-all pair-based models. Recall that the corresponding plasticity kernels are
of class M only for exponential functions. We conjecture that under the conditions, for

ag{p, d},
— f (s)]ds < +o0;

— lim ®,(¢) and lim ®,(¢) exist;
t—0+ t—0—

the convergence of the scaled process to the ODE (2.19) with a convenient zi should

hold. For Markovian plasticity kernels, this is done by using Markov properties of the

fast processes (X.(t), Z-(t)). See [ ]. We do not have this tool in the case of a

general plasticity curve. The proof of such an extension should require an additional

analysis.

2.C Computation of I1¢® for C,=Cy=1

Proposition 25 (Equilibrium of fast process). For C1=Cy=1 and weN, the Markov process
on N? of Definition 20 has a unique invariant distribution I1,,, and if the distribution of (X,,, C\,)
is I1,,, the generating function of C., is given by, for ue|0, 1],

guw(u) = E (u“) = exp <—)\f0+oo (1— (1—e " +ue ) (1—p(s) + up(s))") ds) , (2.31)

with
p(s) = (77— PT0%) [ (B4+1—).
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In particular, knowing that,

1S%(C=0) = 1,

w

we can easily compute,

MEQ(C=1) = 1 - IE}(C=1)

with,
0 = e (-3 [ (1= (1) (gl s
and,
M52(C=2) = 1 — g,(0) — g¢,,(0)
with,

g.,(0) =\ {JM (6_73 (1—p(s))"” + wp(s) (1—@—78) (1—p(s))w_1) ds] 9w (0).

0
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CHAPTER 3

AVERAGING PRINCIPLES FOR MARKOVIAN MODELS OF
PLASTICITY

— ABSTRACT

In this paper we consider a stochastic system with two connected nodes, whose
unidirectional connection is variable and depends on point processes associated to
each node. The input node is represented by an homogeneous Poisson process,
whereas the output node jumps with an intensity that depends on the jumps of
the input node and the connection intensity. We study a scaling regime when the
rate of both point processes is large compared to the dynamics of the connection.
In neuroscience, this system corresponds to a neural network composed by two
neurons, connected by a single synapse. The strength of this synapse depends on the
past activity of both neurons, the notion of synaptic plasticity refers to the associated
mechanism. A general class of such stochastic models has been introduced in [ ]
to describe most of the models of long-term synaptic plasticity investigated in the
literature. The scaling regime corresponds to a classical assumption in computational
neuroscience that cellular processes evolve much more rapidly than the synaptic
strength.

The central result of the paper is an averaging principle for the time evolution of the
connection intensity. Mathematically, the key variable is the point process, associated
to the output node, whose intensity depends on the past activity of the system. The
proof of the result involves a detailed analysis of several of its unbounded additive
functionals in the slow-fast limit, and technical results on interacting shot-noise
processes.

3.1 Introduction

Neurons exchange electrical and chemical signals at specific spots, called synapses. The
synaptic transmission between neural cells is unidirectional, in the sense that, the signal
goes from the pre-synaptic neuron towards the post-synaptic neuron. This interaction
is modulated over time, and particularly by the concomitant activity of both neurons.
In [ ] we have introduced a general class of mathematical models to represent and
study synaptic plasticity mechanisms.

A basic model to investigate such phenomenon consists of a pre-synaptic neuron
connected through a synapse to a post-synaptic neuron. The associated stochastic
process is described by two random variables (X, W) and the spiking activity of each
neuron is represented by a point process.

a. Point process for pre-synaptic spikes: N,.
This point process is associated to the instants when the pre-synaptic neuron is
spiking, i.e. when it transmits a chemical/electrical signal to the post-synaptic
neuron via the synapse. We assume that N, is an homogeneous Poisson process
with rate \.
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130 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

b. Synaptic weight: W.
It describes the strength of the connection from the pre-synaptic neuron to the
post-synaptic neuron.

c. Post-synaptic membrane potential: X.
This variable is for the current activity of the post-synaptic neuron. At a jump
of NV,, the membrane potential X is incremented by W, where W is the current
synaptic weight.

d. Point process for post-synaptic spikes: N x.
In state X =z, the post-synaptic neuron emits a spike at rate 5(z), where (3 is the
activation function of the neural cell. The point process associated to these instants
is an inhomogeneous Poisson process denoted by N x. This is a key variable of
the stochastic model. See Relation (3.6) for a formal definition.

As explained in [ ], for some synaptic mechanisms, the time evolution of W
may depend, in a complex way, on past spiking times of both adjacent neurons. In our
model it is a functional of the point processes N, and N x. The model relies on two
clearly stated hypotheses: the effect of plasticity only depends on the relative timing of
the activity of both neuronal cells and is seen over the synaptic strength on long timescales.

Accordingly, the purpose of the current paper is to prove limit theorems for a
scaled version of the corresponding stochastic processes (X (t), W (t)).

A simple model

We begin by the description of a simplified model to highlight the role of the different
components in these stochastic models. We consider the following set of Stochastic
Differential Equations (SDEs),

dX(t) =-X(t)dt + W(t—)N,(de),
dZ(t) = —vZ(t)dt+ BN,\(dt) + BoNjg x(dt), (3.1)
AW (t) = Z(t—)Nax(dt),

where h(t—) is the left-limit of the function h at >0 and, for i={1, 2}, B;eR,.

In this model, the time evolution of (W (¢)) is overly simplified, plasticity processes
are modeled by an increase of the synaptic weight IV at each jump of Nz x by the value
of (Z(t)).

The process (Z(t)) encodes the past spiking activity of both neurons through an
additive functional of N, and Nj x with an exponential decay factor v>0. The process
(Z(t)) is associated to a cellular process, in the general model this is a multi-dimensional
process.

The main process of interest is the strength of the synaptic connection (I (¢)). It
has been extensively studied both in experimental neuroscience and in physics, there
are nevertheless few rigorous mathematical results on the dynamical evolution of 1.

From a mathematical perspective, the variables (X(t), Z(t), W(t)), solutions of
SDE (3.1) are central to the model. The point process N3 x is nevertheless the key
component of the system since it drives the time evolution of (Z(t)) and (W (¢)) and,
consequently, of (X (¢)). Most of the mathematical difficulties of our paper are related
to asymptotic estimates of linear functionals of N3 x.
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AVERAGING PRINCIPLES FOR MARKOVIAN MODELS OF PLASTICITY 131

The scaling approach of this paper follows from the fact that the model can be
expressed as a slow-fast system. An important property of this system is that neuronal
processes, associated to the point processes NV, and N x, occur on a timescale which
is much faster than the timescale of the evolution of (W (t)). See Sections 1 and 4.1
of [ ] and the references therein for a discussion on this topic.

Using this scaling for the simple model, SDE (3.1) becomes, for >0,

dX.(t) = —X.(t)dt/e + W.(t—)N,.(dt),
dZ.(t) = —vZ.(t)dt/e + BiN,(dt) + BoNpg). x. (di), (3.2)

dW.(t) = Z.(t—)eNge x. (dt).

Pre-synaptic spikes occur at rate \/e and when the membrane potential of the post-
synaptic cell is z, a post-synaptic spike occurs at rate 5(z)/c. The variables (X.(¢)) and
(Z.(t)) evolve on the timescale t—t/c, with € small, they are fast variables.

Conversely, the increments of the variable W are scaled with the parameter ¢, the
integration of the differential element eN). x.(ds) on a bounded time-interval is O(1).
For this reason, (W, (t)) is described as a slow process.

This is a classical assumption in the corresponding models of statistical physics.
Approximations of (W.(t)) when ¢ is small are discussed and investigated with ad hoc
methods, see [KGH99] for example.

Averaging principles

The main goal of the present paper is to establish a limit result, or averaging principle,
for (W.(t)) when € goes to 0 for a general class of synaptic plasticity models.

We denote by (X", Z") the solution (X (¢), Z(t)) of Relation (3.2) when the process
(W(t)) is constant and equal to w. Under appropriate conditions, it has a unique
equilibrium distribution II,. The averaging principle for the simple model can be
expressed as follows.

There exists Spe(0, +0], such that the processes (W.(t),0<t<S)) is tight for the
convergence in distribution when ¢ goes to 0, and any limiting point (w(t),0<t<Sy)
satisfies the following integral equation,

w(t) = w(O)—FL JRZ 2B(x) ) (de, dz) ds, t€[0,.5). (3.3)

See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and
convergence in distribution.
We discuss now some of the technical difficulty to derive such results for our
model. The integration of SDE (3.2) gives the relation
t
WL(t) = W.(0)+ J Z.(5—)eN e x. (ds).
0

The tightness of the family of processes (W.(t)) is equivalent to the tightness of

(L Z.(8)eNe x. <ds>) (3.4)

W AWJ‘U‘



132 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

A general approach to prove averaging principles is presented in [Kur92] for jump
processes. See Chapter 7 of [FW98] and especially [PSV77] for an introduction to
averaging principles. If we had an expression of the type

([ P znas).

0

where s—F(X.(s), Z.(s)) is a bounded continuous function on R, a direct use of the
results of [Kur92], Lemma 1.3 and 1.5, would give the desired tightness. This is the
case of [Hell8] for the time-elapsed model of plasticity for which this representation
holds, one of the few rigorous results in this domain.

It does not seem to be possible to handle functionals of the form (3.4) in this way.
The process (Z.(s)) is clearly not bounded and neither is the intensity of the point
process N/ x_, since (5(X.(s)) is also not bounded. Remember that fast processes are
on a rapid time scale so visit their state space “quickly”, the values of the integrals
of (3.4) can be large and therefore must be controlled in an appropriate way:.

Two other interesting properties emerge from the stochastic averaging result from
Section 3.4.

a. UNIQUENEss.

If Relation (3.3) has a unique solution for a given initial state, a result for the
convergence in distribution of (W.(¢)) when ¢ goes to 0 is therefore obtained.
Uniqueness holds if the integrand, with respect to s, of the right-hand side of
Relation (3.3) is locally Lipschitz as a function of w(s). Regularity properties of
the invariant distribution II,, as a function of w need to be verified and this is not
a concern in the case of our simple model. We will consider in fact much more
general models for (X", Z"¥), when Z" a multi-dimensional process in particular.
We did not try to state a set of conditions that can ensure the desired regularity
properties of the corresponding I1,,. The proof of the Harris ergodicity of (X", Z")
for a fixed w of Section 3.C of Appendix, though not really difficult, is already
cumbersome.

The proof of Proposition 45 for the simple model gives an example of how this
property can be established. In a general context, this kind of result is generally
proved via the use of a common Lyapounov function for (X", Z*) for all w is in
the neighborhood of some wy>0. See [Has80], for example. Uniqueness results
have already been obtained in Sections 5 and 6 of | | for several important
practical cases. In Section 3.8 we investigate these questions for our simple model.

b. BLow-UP PHENOMENON.

The convergence properties are stated on a fixed time interval [0,S;). For some
models, the variable S, cannot be taken as 40, see the example of Section 3.4
and Proposition 47. More specifically, the limit in distribution of (W.(¢)) as ¢
goes to 0 blows-up, i.e. hits infinity in finite time. An analogue property holds
for some mathematical models of large populations of neural cells with fixed
synaptic strengths. See [CCP11] for example, where the blow-up phenomenon
is the result of mutually exciting dynamics of populations of neural cells. In our
case, the strengthening of the connection may grow without bounds when the
activation function 3 has a linear growth. See Proposition 47 of Section 3.8.
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A brief description of the general model of synaptic plasticity

We shortly describe the general setting of the models investigated in this paper. See
Section 3.2 for a detailed presentation.

a. The process (X (t)).
The output neuron follows leaky-integrate dynamics as in Equation (3.1). In
addition, the influence of a post-synaptic spike N x at time ¢>0 is represented as
a drop —g(X (t—)) of the post-synaptic potential after the spike.

b. The process (Z(t))=(Z;(t))is amulti-dimensional process satisfying the same type
of ODE as in our simple case but with the constants B; and B; being replaced by
functions k; and ky of Z(t). A constant drift term & is also added to the dynamics.
The ith component (Z;(t)) satisfies an SDE of the type

c. Evolution of (W (t)).
The dependence is more sophisticated since it involves two additional processes
(92,,€4). The first one, (€2,(t)) integrates, with an exponential decay « a linear
combination of the processes leading to potentiation, i.e. to increase the synaptic
weight. The process (£2,4(t)) has a similar role for depression, i.e. to decrease the
synaptic weight. They are expressed as, for ae{p, d},

t
Qa(t)zfe_o‘(t_s) [1n0.0(Z(8)) ds+n14(Z(s=))Nx(ds)+ng.(Z(s—)) N x(ds)].
0
The changes of (Z(t)) are thus integrated “smoothly” in the evolution of (W (t))

in agreement with measurements of the biological literature. See Appendix A
of [ ]. Finally, (W (t))e Ky verifies

dW () = M (,(1), Qa(t), W(2)) dt,

where Ky R represents the synaptic weight domain, and the functional M is
such that W (¢) stays in Ky for all 0.

It has been shown in Section 3 of [ ] that these models encompass most clas-
sical STDP models from statistical physics. The multiple coordinates of (Z(¢)) can be
interpreted as the concentrations of chemical components implicated in plasticity, that
are created /suppressed by spiking mechanisms

Links to non-linear Hawkes point processes

The spiking instants of a neuron can also be seen as a self-exciting point process since
its instantaneous jump rate depends on past instants of its jumps. This corresponds to
the class of Hawkes point process M on R associated to a function ¢ and exponential
decay 7. More precisely, it is a non-homogeneous Poisson point process M whose
intensity function (A(¢)) is given by

(@) = (¢ ( [ t e—w—sw(ds))) |

A P M’\/‘J‘U'&




134 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

These processes have received of lot of attention from the mathematical literature, for
some time now. They are mainly used in models of mathematical finance, but also in
neurosciences. See the pioneering works of [[HO74] and [Ker64].

A special case of the first equation of Relation (3.1) is, for w=0,

dX(t) = —X(t) dt—l—w./\/}\(dt)—./\/’@,x (dt),

if X(0)=0, Lemma 30 below gives the representation

t t

0 0

Hence, Nj x can be seen as an extended Hawkes process with activation function 3
and exponential decay 1.

In the system of equations (3.1), (X (¢)) and (Z(t)) can also be represented as a multi-
dimensional Hawkes processes. See [Haw71]. However in our model, an important
feature not present in studies of Hawkes processes has been added: the synaptic weight
process (W (t)) is not constant.

Extensions

The stochastic model with plastic connections presented in this paper may also be used
in other contexts than neuroscience. Auto-exciting processes, Hawkes process, used
in finance [ELL11], genomics [GS05; RS10], sociology [CSO8] suppose, in general, that
the influence of each point process on the others is constant over time. For example
in [CS08], a Hawkes process is defined to describe the cascade of influences that exist
in a social network, taking the example of Youtube videos views. The coefficients that
model interactions between different individuals are constant. One could extend this
model by taking into account the fact that individuals who watch repeatedly videos at
the same time, may develop a stronger interaction. It should be therefore possible to
extend these classes of models by adding a dependence of the connections on the past
activity of the Hawkes process as for our models. Using classical results on stationary
distributions of Hawkes processes with fixed connectivity, a slow-fast analysis similar
to the one developed here should then be possible for these models.

Organization of the paper

In Section 3.2, the main processes and definitions are introduced as well as assumptions
to prove an averaging principle. The scalingis presented in Section 3.3 and the averaging
principle in Section 3.4. In this section the general strategy for the proof of the main
theorem is detailed. Section 3.5 investigates monotonicity properties and a coupling
result, crucial in the proof of tightness, is proved. Section 3.6 is devoted to the proof of
tightness results when the process (W.(t)) is assumed to be bounded. Finally, the proof
of the main theorem is completed in Section 3.7. In Section 3.B of Appendix, several
useful tightness results are proved for interacting shot-noise processes. The ergodicity
properties of fast processes are analyzed in Section 3.C of Appendix. Section 3.D of
the Appendix discusses averaging principles for related discrete models of synaptic
plasticity.

At
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3.2 A stochastic model for plasticity

We define the stochastic model associated to Markovian plasticity kernels introduced
in [ ]. The probabilistic setting of these models along with formal definitions are
detailed in the following section.

Definitions and notations

The space of Borelian subsets of a topological space H, is denoted as B(H). Let
(Q, F, (F:),P) be a filtered probability space. We assume that two independent Poisson
processes, P; and P, on R?, with intensity dzx dy are defined on (2, F, (F;),P). See
[Kin92] for example. For Pe{P;, Py} and A, BeB(R.) and a Borelian function f on R,

PAB) [ Plde,dy), [ F)P(a g j £ (y)P(de, dy).
AxB R4 AxRy

For t>0, the o-field F; of the filtration (F;);>¢ is assumed to contain all events before
time ¢ for both point processes, i.e.

o (731 (Ax(s,]), Py (Ax(s,1]) , AB (R,), s<t> c F. (3.5)

A stochastic process (H (t)) is adapted if, for all t=0, H (t) is F;-measurable. It is a cidlig
process if, almost surely, it is right continuous and has a left limit at every point ¢>0,
H (t—) denotes the left limit of (H(¢)) at t. The Skorohod space of cadlag functions from
[0,T] to S is denoted as D([0,77],.S). See [Bil99] and [EK09]. The mention of adapted
stochastic processes, or of martingale, will be implicitly associated to the filtration
(F)eso.

The set of real continuous bounded functions on the metric space ScR? is denoted
by Co(S). CF(S)=Cy(S) is the set of bounded, k-differentiable functions on S with
respect to each coordinate, with all derivatives bounded and continuous. The multi-
dimensional extensions to S are denoted by Cf(S, S).

INnHOMOGENEOUS PorssoN Process For THE Output Nope. We introduce an important
point process NV, 7, that represents the jumps of a node whose activity processis (H(t)),
with activation function ¢. ¢ is a non-negative cadlag function on R, it is defined by

Fl) NG () | f Py (0, 6(H ()] du) | (36)
Ry Ry
for any Borelian function f on R,.

The plasticity process

In the rest of the paper, we will consider a more generic connected system with plasticity,
inspired from the neuronal example given in the Introduction. An input node will be
represented by an homogeneous Poisson process with intensity A, taking up the role
of the pre-synaptic neuron. This input node will interact with an output node, whose
activity X (i.e. membrane potential) integrates over time the jumps of the input node,
with an amplitude IV and an exponential decay taken with time constant 1. The output

M




136 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

node jumps with an inhomogeneous rate 3(.X) that depends on the output node activity
X. The connection intensity W is plastic and depends on previous interactions between
both nodes, through a Markovian multi-dimensional variable Z, in the same way that
the synaptic weight undergoes synaptic plasticity in the neuronal model.

Definition 26 (Time evolution). The cadlag process
(U#)=(X (1), Z(t), (1), (), W(t)) € RxR, xR x Ky,

is solution of the following Stochastic Differential Equations (SDE), starting from some initial
state U(O)ZU():(.CL’(), 20, Wo,p, Wo,d» wo).

(dX(t) = —X(t) d+W (N (dt)—g (X (t=)) Ns.x (dt),
dZ(t) = (—OZ(t)+ko) dt+ki(Z(t—))Nx(dt)+ko(Z(t—)) N x(dt),
1dQ(t) = —aQ(t) dt+nao(Z(t)) dt (3.7)

101 (Z(t=))NA(dt) +n02(Z(t=)) N3 x(dE), aelp,d},
(AW () = M (Q,(2),Qa(t), W (1)) dt,

with the notation a®b=(ayby,) for the Hadamard product, for a=(ay), b=(by)eR".

Recall that, see Section 3.1, Ky is an interval of R which contains the range of
values for the connection intensity.
We now state the assumptions used for the proof of Theorem 29.

Inputs jumps
The jumps of the input node are given by a Poisson process with rate A>0,

N)\(dt) dif' Pl ((07 )‘]7 dt) ) (38)
where P; is the Poisson point process introduced in Section 3.2.

Output jumps

When the output node activity is z, a jump of the output node occurs at rate 5(z) and
leads to a decrease of output activity z—g(z):

— Itis assumed that § is a non-negative, continuous function on R and that 5(z)=0
for x<—cp<0. Additionally, there exists a constant C'3>0 such that

B(z)<Cps(1+]|x]), VYaxeR. (3.9)

— The function g is continuous on R and 0<g(z)< max(c,, x) holds for all z€R, for
some c,=0.

The jumps of the output node are represented by the point process Nj x. Recall that

N x (dt)=Ps ((o, BX(t-))] ,dt) .

L S e M’\J‘J'U'\J\
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The process (Z(t))

The process (Z(t)) is a multi-dimensional process, with values in R’ it is driven by
the general spiking activity of the system, and therefore, depends only on the point
processes NV, and Nj x. For some models it describes the time evolution of chemical
components within the synapse. (Z(t)) is a cadlag function with values in RY, solution
of the stochastic differential equation

dZ(t) = (—y © Z(t)+ko) At + ki (Z(t=))Na(dt) + ko(Z(t—))Ns.x, (3.10)

where, as before, © is for the Hadamard product, k;oeRﬂ is a constant and k; and k&, are
measurable functions from R to R’. Furthermore, the (k;) are chosen such that (z(t))
has values in RY, whenever z(0)eRY,.

It is assumed that

a. all coordinates of the vector v are positive;

b. the non-negative functions k;, i={0, 1, 2}, are C} (R, R’ ) and bounded by C}>0.

The process (€2,(t), Qq(t))

These variables, in R? encode, with an exponential decay, the total memory of instan-
taneous plasticity processes represented by the process (Z(t)). The process (£2,(t)) is
driving potentiation of the connection, i.e. the derivative of the connection intensity
is an increasing function of this variable. In an analogous way, (£24(¢)) is associated to
depression, i.e. the derivative of the connection intensity is a decreasing function of
this variable. The system of equations for (£2,(¢), {24(¢)) is a set of two one-dimensional
SDEs, for ae{p, d},

dQq(t) = —af,(t) dt+n.o(Z(t)) dt
+ng,1(Z(t=))NA(dt)+n42(Z (t—))Ns x (dt).

We suppose that there exists a constant C,, such that, for je{0, 1, 2}, ae{p, d}, n, ; verifies,

1a,j (2)<Cn (14 2]), (3.11)

where, for zeR%, |z|=z1+ - +2.
For any we Ky and ae{p, d}, the discontinuity points of

(#, 2)=(114,0(2), a,1(2), B(2)10,2(2))

are negligible for the invariant probability distribution II,, of (X (¢), Z(t)) when (W (¢))
is constant equal to w. See Section 3.C.

When (W (t)) is constant, the process (X (t), Z(t)) can be seen as generalized shot-
noise processes, see Section 3.B. It is well-known that the invariant distribution of the
classical, one-dimensional, shot-noise process is absolutely continuous w.r.t Lebesgue’s
measure. See examples of Sections 5 and 6 of [ ] and the reference [BCR19] for
criteria in this domain.

O s M‘/\/‘J‘U‘\J\-




138 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

Dynamics of the connection intensity

The functional M drives the dynamics of the connection intensity, the correspond-
ing equation is given by Relation (3.7). In particular, for any we Ky and any cadlag
piecewise-continuous functions »; and hy on R, the ODE

dw

7 =M (ha (1), ha(t), w(t)) with w(0)=w, (3.12)

for all points of continuity of h; and hy, has a unique continuous solution de-
noted by (S[hi,hs](w,t)) in Ky. We assume that M can be decomposed as
M (wy, wa, w)=M,(w,, w)—My(wq, w) — pw, where M,(w,, w) is non-negative continuous
function, non-decreasing on the first coordinate for a fixed weK,,, and,

M, (we, w) < Cpr(1 + wy),

for all we Ky, for ae{p, d}.

Discrete models of plasticity

A model of plasticity with discrete state space has been introduced in [ ]. The
proof of the associated averaging principles for the continuous case can be adapted to
such systems. Relevant parts of the proof are briefly presented in Section 3.D of the
Appendix.

3.3 The scaled process

The SDEs of Definition 26 are difficult to study without any additional hypothesis.
Existence and uniqueness of solutions to this system are guaranteed by Proposi-
tion 1 of [ ]. It can be seen as an intricate fixed point equation for the processes
(X (t), W(t)) involving functionals of these processes like NV x defined by Relation (3.6).

As explained in Section 4 of [ l, (X(t),Z(t)) are associated to fast dynamics
at the cellular level while the process (W (t)) evolves on a much longer timescale. For
this reason, a scaling parameter £>0 is introduced so that (X (¢), Z(t)) evolves on the
timescale t—t/c. More precisely:

— Fast Processes: (X (t)) and (Z(t)).
The point processes associated to input and output jumps driving the time evolu-
tion of (X (¢)) and (Z(t)) are sped-up by a factor 1/e: Ny—>N, /. and N x—Np/. x.
The deterministic part of the evolution is changed accordingly d¢t— dt/e.

— Slow Processes: (W(t)) and (€2,(t), Qa(t)).
Update of (€2,(t)) and (£24(¢)) due to fast jump processes have a small amplitude,
N)\—>€N,\/E and NB,X_’SN,B/E,X-

Formally, we define the scaled process (U.(t))=(X:(t), Z:(t), Qe (1), Qe a(t), We(2)), the
evolution equations of Definition 26 become

dX.(t) = =X (t) dt/e+ W ()N e (dt)—g (X (t—)) Npje x. (dt), (3.13)
dZE<t) = (_7®Z€(t>+k0> dt/€+kl<ZE<t_))N>\/€(dt) (314)

N e, M’\/‘J‘U'\/M
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+ ka(Ze(t=))Nigje x. (dt),

dQe o(t) = —afd. o () dt+ng0(Z-(t)) dt (3.15)
+ (naJ(Ze(t—))5N>\/€(dt)+na’2(ZE(t—))eN/g/g,Xe (dt)) , a{p,d}
dW& (t) =M (Qs,p(t)v Qs,d(t)v W(t)) dt. (316)

For simplicity, the initial condition of (U.(t)) is assumed to be constant,
UE(O) = UO = ('x07 205 Wp,0, Wd,0, wO)- (317)

Some simplifications of this (heavy) mathematical framework can be expected when
e goes to 0. We first introduce the notion of fast variables which correspond to the
processes (X (t), Z(t)) with the connection intensity process (W (t)) taken as constant.

Fast processes

Definition 27. For weKy, (X“(t), Z“(t)) is the Markov process in RxR defined by the
SDEs
dX¥(t) = —-X"(t)dt+wN\(dt)—g (X" (t—)) N3 xw (dt),
dZ"(t) = (—OZ"(t)+ko)dt
+k1 (Z%(t=))NA(dt) + ko (2% (t—) )N xw (dt).

Let feC}(RxRY ), then, with Equations (3.13) and (3.14), we have that

t

(ME0) = (X0, 200w a) - |

0

BVFVE(s)(f)(Xs(s),zg<s>>ds)

is a local martingale, where, for v=(z, z)eRxR{, and,

BE(f)(v) & —x(z—f(:z:, z)+ <—fy®z + ko, a—f(:c, z)>

ox 0z
£ (Flarw, sk (2)=f () + B) (fla—g(@), =+ ha(=)=f(W)) . (318)

with 5 3
(é'];(xa Z): (;£<$,Z),ie{1, te ’g})

and (z,7’) is the usual scalar product of z and 2’€R’. The operator Bl is called the
infinitesimal generator of the fast processes (X"(t), Z"(t)).

In Proposition 50 of Appendix 3.C, we establish that, under the conditions of
Sections 3.2 and 3.2, the fast process (X" (), Z*(t)) has a unique invariant distribution
IL,,.

Functionals of the occupation measure

We start with a rough, non-rigorous, picture of results that are usually established for
slow-fast systems.

el
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Definition 28 (Occupation measure). The occupation measure is the non-negative measure
v. on [0, T]xRxRY such that

v:(G) def J G(s,x, z)v.(ds,dz,dz) def f G(s, Xc(s), Z-(s)) ds. (3.19)
[0,17] [0,17]

XRXRQ
for any non-negative Borelian function G on [0, T]xRxRY.

The integration of Relation (3.15) gives the identity, for a={p, d}

t t

Qe a(s)ds+ fo Na0(Z:(s))ds

Qeo(t) = wo,a—af
0
t

+J na,l(Zg(s—))e/\/',\/a(ds)—I—J Na2(Z:(s—))eNg)e x. (ds).

0 0
An averaging principle is said to hold when the convergence in distribution

lim (
e—0

f CGXL(s), Z.(5)) ds) _ lim ( JRng Glz, 2)v.(ds, dz, dz))

0 e—0
t
_ ( J J G(x,z)Hw(s)(dx,dz)ds>, (3.20)
0 JRxRY

holds for a sufficiently rich class of Borelian functions . Usually, it is enough to prove
the weak convergence of the occupation measure for bounded Borelian functions G.

In our case, there are important examples where G has a linear growth with respect
to the coordinates = or z=(z;). The all-to-all models of pair-based rules for example,
which are widely used in computational neuroscience lead to unbounded functionals
of the occupation measure. See Section 3.3 of [ ]. Additionally, convergence results
in distribution of the jump processes such as,

lim (Lta(xg(s) (5))eN el ds) _ ( J JMZ (2, )Ly (da, d2) ds) ,
i ([ G0, 29N . (09)) = (f || G dz>d>

are also required. They are not straightforward consequences of Relation (3.20) as it is
usually the case for bounded G. See [Kur92] for example. These technical difficulties
have to be overcome to establish the tightness of the processes (£2.(¢)), and consequently
of (W.(t)). As a result, additional limit results have to be established at this point, see
Section 3.6. Furthermore, as ¢ goes to 0, the process (€2 ,(t), Q.4(t), W-(t)) should
converge to a process (wp(t),wa(t), w(t)) satisfying the relation,

we(t) = Wa,OO‘J ds+J f Na,0(2) L) (Ry, dz) ds
RE

+)\J f Na,1(2) sy (Ry, d2) ds—i—f f T)Nq,2(2) sy (da, dz) ds.
RY RxRE

= M{(w,(t), wa(t), w(t))

N VU N

and

-

A

dt<
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3.4 Averaging principles results

We fix T>0, throughout the paper the convergence in distribution of processes is
considered on the bounded interval [0, T].

Main result

We start by reviewing the assumptions detailed in Section 3.2 on the different parame-
ters of the stochastic model.

Assumptions.

a. Itis assumed that /3 is a non-negative, continuous function on R and that 5(z)=0
for r<—c3<0. Additionally, there exist a constant C3>0 such that

B(x)<Cs(1+]|x|), VzeR.

b. g is continuous function on R and 0<g(z)< max(c,, =) holds for all zeR, for some
cg=0.

c. All coordinates of the vector +y are positive.

d. There exists a constant (>0 such that 0<ky<C), and functions k;, i=1, 2, in
C} (R, RY), are upper-bounded by Cj>0.

e. There exists a constant C,, such that, for je{0, 1,2}, ae{p, d}, n, ; verifies,
Na,j(2)<Cn(1+]2]),

where, for zeR%, |z|=z1+ - +2z. Moreover, for any weKy,, the discontinuity
points of

({E, Z)'_)(na,()(z)) Na,n (Z)7 B(x)na,Q(z»
for ae{p, d}, are negligible for the probability distribution II,, of Section 3.C.

f. M can be decomposed as,
M (wy, wa, w)=M,(wp, w)—Mg(wg, W) — pw,

where M, (w,, w) is non-negative continuous function, non-decreasing on the first
coordinate for a fixed weK,,, and,

My (wa,w) < Cpr(1+4w,),
for all we Ky, for ae{p, d}.

The main result of the paper is the following theorem.
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Theorem 29 (Asymptotic time evolution of plasticity). Under the conditions of Section 3.2
and for initial conditions satisfying Relation (3.17), there exists Sye(0, 0], such that the family
of processes (€2 ,(t), Qe a(t), We(t),t<Sp), €€(0,1), of the system of Section 3.3, is tight for
the convergence in distribution. As e goes to 0, any limiting point (w,(t), wa(t), w(t),t<So),
satisfies the ODEs, for as{p, d},

d;ifa (t) :_awa(t)+J}qu§ﬁ(na70<z>+/\na’l(2)4_6(%)”%2(2)) Iy (dz, dz), 621
W) =Mleplt),walt), w(t),

where, for weKy, 11, is the unique invariant distribution 11, on RxRﬂ of the Markovian
operator BE. If Ky is bounded, then Sy=-+ 00 almost-surely.

CONVERGENCE IN DISTRIBUTION. ~ As already mentioned, most of the efforts in this paper
are devoted to the proof of the tightness property of (€2.,(t), Q. 4(t), W-(t)). We note
that our result identifies the limiting points, but it does not state any weak convergence
results for the scaled processes. Regularity properties are actually required on (II,,) to
have such results. For example, it would be sufficient to have that the mapping,

U, :w— (Na,0(2)+An41(2)+B(x)ne2(2)) I, (dx, dz),
RxRE

locally Lipschitz for w, for ae{p, d}, so that Relation (3.21) has a unique solution.

Due to the generality of our model, we did not try to state a set of conditions
that can ensure the desired regularity properties of the corresponding II,,. Uniqueness
results are obtained in Sections 5 and 6 of | ] for several important cases. The same
properties for the simple model are worked out in Section 3.8. However at this stage, a
case by case analysis seems mandatory.

A BLOW-UP PHENOMENON. As it can be seen, when S;<+0o0 the convergence is only
proved on a bounded time interval. In the proof, the variable S, results from the
domain definition of the solution to a deterministic differential equation. This is not an
artifact of our methods, see Proposition 47 in Section 3.8 for an example.

Steps of the proof
The proof of the theorem is organized as follows. See also Figure 3.1 of Appendix.

a. Section 3.5. A stochastic upper-bound U of the original process is introduced and
a coupling argument is used to control (IW.(¢)). This is an important ingredient
in the proof of tightness results for (€. ,(¢), . 4(t), We(2)).

b. Section 3.6. Under the temporary assumption that the process (IV(¢)) is bounded
by K, we establish tightness results for the truncated process U, when e goes to

0, of variables associated to fast processes (X f(t) : Zf(t)) of the type

(J[O,T] “ (8,75(5)77f(3)> ds)
NN |
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where G is a continuous Borelian function with a linear growth with respect to
the coordinates z€R and z€R% . An averaging principle is shown for this truncated
process.

c. In Theorem 43 of Section 3.7, using monotonicity arguments, we are able to
obtain a deterministic, analytical bound, uniform in K, for the limiting points of
the truncated process. From there, we prove an averaging principle for the
dominating process U (without truncation) in Proposition 44 where the explicit
form of the ODE verified by the limiting points is known. As a direct consequence,
we are able to prove that this limit is unique and that the scaled dominating
process converges to the solution. Using the fact that the process W (t) is bounded
by W (t) and the previous convergence, we establish the desired results for the
process U.(t) of Theorem 29.

Technical results on shot-noise processes

The processes (X (t)) and (Z(t)) are closely related to shot-noise processes and their
generalizations. See for example [Sch18], [Ric44] and [GP60] for an introduction. We
give a quick overview of their use in our proofs. In Appendix 3.B, the results below
and several technical lemmas for these processes are detailed and proved.

The following lemma gives an elementary representation result for general shot-
noise process associated to a positive Radon measure. See Lemma 1 of | I

Lemma 30. If p is a positive Radon measure on R, and >0, the unique cadlag solution of the
ODE
dZ(t) = —vZ(t)+p(dt),

with initial point zyeR . is given by
Z(t) = 20" + f e 79 (ds). (3.22)
(0.t]
In view of SDEs (3.2) it is natural to introduce a scaled version of these processes.

Definition 31 (Scaled shot-noise process). For ¢>0, we define the shot-noise process (SZ(t)),
solution of the SDE
dSZ(t) = —S2(t) dt/e + Nyje(di),

where the initial point is x=0.
Proposition 32. For {eR and x>0, the convergence in distribution of the processes

t
limy ( J (52 du) — (E[¢55@)] 1)

0

holds, and
sup E [eési(t)] <+o00. (3.23)
0<e<1
0<t<T
Proof. See Section 3.B of Appendix. O

MW'U’\NV\
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We now introduce another shot-noise process (R.(t)) associated to the point pro-
cess Ny s. defined by Relation (3.6) where I(z)=z, zeR,. It is in fact a shot-noise
process whose intensity function is (S.(¢)),

AR.(t) = —R(t) dt/e+ N s, (d1), (3.24)

with the initial condition R.(0)=0.
It turns out that tightness properties of three families of linear functionals of such

processes
( L t Re(s) ds) : ( L t Rg(s)eNA/e(ds)) , (Lt Rs(s)g/\/l/ass(ds)) 7

are central to establish Theorem 29. The motivation comes from the three terms in the
expression of (€. ,(t)), ae{p, d} of Relation (3.15) and the fact that, with the condition
of Relation (3.11), for je{0, 1,2}, n;(2)<C%+C,z for zeR,.

The necessary results are stated in Proposition 33 which is used in Section 3.7.

Proposition 33. For H.€{S., R.}, the families of processes

( L t H.(u) du) : Uot H.(u)? du) and (f: R.(u)S-(u) du) , €0, 1),

are tight for the convergence in distribution.

Proof. We first prove the tightness of the second family of processes. With Cauchy-
Schwartz’ Inequality, we have

f H(u)? du < vi—s f " Ho(u)t du.

Moreover, Relation (3.23) gives an estimate of S. moments and Proposition 49 of
Appendix states that

sup  E[R.(t)*] <+
£€(0,1),£20

Gathering up previous estimates, we show that there exists a constant C' indepen-
dent of € and s, t such that

E [(Jt H_(u)? du)2

Kolmogorov—éentsov’s Criterion, see Theorem 2.8 and Problem 4.11 of [K598], implies
that the family of variables
t
(J H_(u)? du)
0
is tight.

By using repeatedly Cauchy-Schwartz’ Inequality, for 0<s<t, we have

E [(f H.(u) du>4] < (t—3)%E [(f H.(u)? du>2] < C(t—s)
PNV N

< C(t—s)*
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< C(t—s)?

(] o) “( [ ar)

Kolmogorov-Centsov’s Criterion can then also be applied to the two other families of
processes of the proposition. The proposition is proved.

O

3.5 A coupling property

In this section a process

(U(0)=(X(2), Z(t), Q(t), W(t))

inD ([0, 7], R} ) isintroduced. Ithas similarities with the process (U (t)) of Definition 26
but fewer coordinates and simpler parameters. More importantly, all its coordinates
are non-negative. We first prove, via a coupling, that the sample paths of the processes
(U(t)) and (U(t)) can be compared in a sense to be made precise. Secondly, we derive
several technical estimates for (U(¢)) which are important to prove the tightness of the

scaled processes ((Q2.(t), W.(t))) defined in Section 3.3.
The process (U(t)) is the solution of the SDEs

dX(t) =-X(t)dt + W(t)N,\(dt),
dZ(t) = ( Y ( ) + Ck) dt + C/g./\/}\(dt)-i-ck./\/’ y( ),
1dQ(t)  =—aQ(t) dt+C, (14+0Z(t)) dt+C, (1+6Z(t—)) Na(dt (3.25)
+C (1+0Z(t-)) N5 x(ds)
(dW(t) = Cy (14Q(t)) dt,

with 3(x)=Cjs(1+r) and with initial condition U(0) given by

(To, Zo, Wo, Wo)=(max(xg,0), I{nax {20}, H%ax {wo.a}, lwol)-

Cj, Cy, C and C); are non-negative constants associated to the conditions of Section 3.2,
and ldéf' min(y; : i=1,...,0).

Throughout this section, for t>0, if (U(t)) is a solution of Relations (3.7), the
inequality U (t)<U (t) will stand for the four relations, X (t)<X(¢),
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A coupling property

We start by proving a monotonicity property of the behavior of both systems “between”
jumps.
Define u(t) = (x(t), z(t), wy(t), wa(t), w(t)) that follows,

dz(t) = —z(t)dt,
d21<t) = (—’)/IZZ(t)-i-ko) dt, ie{l, R ,[},
dw,(t) = —awu(t) dt+ng.(2(t)) dt, ae{p,d},

dw(t) =M (wy(t),wa(t), w(t))dt.

and u(t) = (z(t),z(t),w(t), w(t)) with,
dz(t) = —=z(t)dt,
dz(t) = (—yz(t)+Cy) dt,
dw(t) = —aw(t)dt+C, (1 + ¢z(t))dt,
dw(t) = Cuy (1 +w(t))dt.

Lemma 34. Under the conditions of Sections 3.2, 3.2, and 3.2 and if the initial conditions are
such that u(0)<w(0), then for all t=0, u(t)<u(t).

Proof. The result is clear for the function (x(¢)) and also for the functions (z;(t)). For
(wa(t)), with ae{p, d}, we have

d(0(t)—wa(t)) = —a (@(t)—w,(t))) dt+ (Cn(14+LZ(t) ) —nga(2(t))) dt,
by Condition (3.11), we obtain

Cn(1+02(t))=no,a(2(t)) = Cn(1+]2(t)])—n0,0(2(t))

\%

0.

Lemma 30 gives the relation

e (W(t)—wq(t)) = (@(0)—wa(0)) + L e “Cp (1+02(s)—nopa(2(s))) ds=0.

Finally, again with Lemma 30, Condition 3.2 and the last inequality, we have, for >0,
d@(t) —w(t)) = —p@(s) —w(s)) dt + (Cru(l +@(s)) — My(wp(s), w(s))) dt

This leads to,
w(t) < w(t).

In the same way, we can prove that,

The lemma is proved. O

Proposition 35 (Coupling). Under the conditions of Section 3.2, there exists a coupling of
(U(t)) and (U(t)) such that, almost surely, for all t>0, (U (t))<(U(t)), in particular

W ()] <W(t), Vi=0.

.__../W’\J"U‘L/\—W
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Proof. All we have to prove is that if U(0)<U(0) and if 7 is the first jump of either (U (t))
or (U(t)), then U(t)<U(t) for t<7. Our statement is then easily proved by induction on
the sequence of jumps of both processes.

Since (U(t)) and (U(t)) are governed by the deterministic ODEs of Lemma 34, the
relation U (¢)<U (t) holds for 0<t<7. The processes (W (t)) and (W (¢)) being continuous,
(W) |=[W(r=)[<W(r—)=W().

The instant of jump 7 is the minimum of 7, 7» and 7, with

= inf{t>0: N((0,])#0},
J = inf {t>0 : N3 x ((0,t])= f(o ) P ((0,5(X(s—)] ,ds) 7&0} ,

— inf {t>0 L N5 5((0,])= f(o , Py ( (0, B(X (5-))] ,ds> ;«so} .

Since, for <7, f(z)<3(x)<B(T) is a non-decreasing function and that X <X holds until
the first jump, the inequality 7,<7, holds almost surely.
If T1<Ta, then

X(1)=X (r=)+W (1) <X (1 )+ W (r—)=X (7).
Forie{l,...,/(},
Zu(r)=Zh(r =)+l 2(7-)) < Zlr-) +Ce=Z(7)

Qa(7) = Qa(7=) 4101 (Z(7-)) < Qa(7-)+C, (14 2(7)])
< Q(r=)+C, (14+£Z(7)) = Q7).

Thus we have U(7)<U (7). The same arguments work in a similar way when r=7o<m.
In this case, we have

X(1)=X(r=)=g(X(r—)) < X(r—)=X(7).

The last case 7o < min(m,, 1) is not more difficult, since the components of (U(¢)) do not
experience jumps and those of (U(t)) have positive jumps due to NV; 5. The proposition

is proved. O
The process (U.(t)) is defined by the SDEs,
(dX. (t) =—X.(t)dt/e + W(t)Nye(dt),
Z (t) = (—’}/75(75) + Ck) dt/5+CkN)\/s(dt)+CkNB/5,YE (dt),
JAL(t) = —aQ.(t)dt+C, (1+0Z.(¢)) dt (3.26)

+C (14+0Z.(t)) <6/\/’A/5(dt)+5/\/'3/6y8(dt)>
(dW.(t) =Cun (1+Q.(¢)) dt,
and with U_(0)=U(0)=(T, Zo, W, Wo)-

The infinitesimal generator Ej of Relation (3.18) is given by, for v=(z, z) and
fecl} (RXR+),

BoN) (2D )
42 (f(v+w61+0k62)—f(v)> + Cpla+1) <f(v+0k62)—f(v)> . (327)

where e¢;=(1,0) and e-—/0 1

___/\.__J"‘\-\JN\JJU‘\NN
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3.6 Asymptotic results for the truncated process

In this section we study the scaling properties of fast processes of (U(t)) defined by
Relation (3.26). In this section, we fix K >0 and consider an analogue process for which
the impact of the connection intensity is truncated at K. In Section 3.6 an averaging
principle will be established for this process as a first step in the proof of the main result
of the paper.

Definition of the truncated process

We define (UK(t)) as the solution of the SDEs,
(X (1) = X2 (t)dt/e + KAWL ()N, e(dt),
az5w = (-ﬁK( ) + ck) dt/e+Ck/\/'A/5(dt)+Ck/\/'B e (dh),
10 () = —a0 @) dtrc, (14025 ) (3.28)
+cn( 75 )) (5/\/'A/€(dt)+€/\/g/sxf(dt))
(AW () =Cu (1 ) dt,

and with U~ (0)=U(0)=(Zo, Zo, @0, Wo)-
We begin with a lemma giving a stochastic upper bound of (Yf(t)) in terms of a
standard shot-noise process.

Lemma 36. There exists a constant Cx >0 independent of € such that the relation
XNt < Ox+KS.(t) (3.29)
holds for t=0, where (S:(t)) is the shot-noise process of Definition 31.
For any n>0, there exists a compact subset K of R such that,

sup P ((XE(0), 25 (1)) #K) <

O<e<1
o<st<T

Proof. With Relation (3.22), we have, for ¢>0,

t
X5 = xoet—I-J e~ TWER AW (u—) Ny e (du).
0

Which gives, for s<t<T,

t
XX() < moe e+ K J NG (du) < 2o+ KCS. (1),
0

and therefore p

E|XX(1)| < Cx+KE[S.(t)] < Cx+AKT.
Relation (3.22) gives the inequality

E [Zf(t)] < z0+0kf

0

t

exp(—y(t — s)) <1+A+CB(I+E [75(3)])) ds

which leads to,
sup E [75(25)] < 400.
O<e<l1
o<t<T
We conclude by using Markov’s ineanalitv N

_._.—J\‘.___/‘\\JV\JJU‘\/\*M
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Tightness of the truncated process

The next important lemma is used to prove tightness properties of the processes (€2.(t)).

Lemma 37 (Tightness of linear functionals of the fast processes). The family of processes

(Lt X/ (w) du) : <Lt 7 (u) dU> : (J: X5 (w)Z5 (w) du)  2e(0,1),

are tight for the convergence in distribution. The processes
t
(M2, (1) (J 75 (u=) [eNye(du) = du]>
0

(L5, (1)) ( Jot 75 (o) [5/\/5 < (du) =B (Xf (u)> du])

converge in distribution to 0 as € goes to 0.

Proof. Relation (3.29) gives for 0<s<t,
th t
J X, (u)du < Cx(t—s) + KJ Se(u) du,

The tightness of the three processes results from this relation and Proposition 33.
Indeed, Relation (3.22) shows that, for =0,

t t

Zf(t)—Z() _ Ckf e—y(t—s)/a ds + Ckf e—v(t—s)/eN)\/E(dS)
0 0

' 1+ X
Lc f S/, ((O’Oﬁt(@] ,d8>
0

t
< % + ij 6_7(t_s)/€N)\/5(dS)
Y 0

t
+ Ckf e 1=9Ep, ((o Cs HSX} ,ds)
0

t
+ Ckf e*'y(tfs)/sz])2 ((Cgl—i_fX ’ CB 1+5X +OﬁKS€(S)] ,dS) )

0 £

The first two terms of the right-hand side of last relation are, up to the constants ~y
instead of 1 and C3(1+CYy) instead of A, equal to S.(¢). Similarly, up to the constant
CsK of S.(t) instead of 1, the last term is equal to R.(?).

The two processes (M fl (t)), i={1, 2} are martingales with predictable increasing
processes

(EA L 7K (u)Qdu> and (g L 75 wee, (145 () du) |

For t>0, we have

t

E [Mfl(t)Q] < f E [Zf (u)2] du,

0

_..A__JMJ\'\JJU\J\-aM
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E [Mfz( ) ] —cCy < fo E [Z (u)] du)
<0y (]E [z \/IE [Zf (u)4]\/]E [75 (u)2]> du,

with Cauchy-Schwartz’ inequality.

Using the upper-bounds for (YK( t)) and (Z. ( )) and Relation (3.23) for S. and
Proposition 49 of the Appendix for R., we obtain that the quantity E [M ot )2] con-

verges to 0 as € goes to 0. The last statement of the lemma follows from Doob’s
inequality. O

We now define the associated occupation measure 7 in the same way as in

Section 28. Let G be a non-negative Borelian function on [0,7]xR?2, define X the
non-negative measure on [0, 7] xR? by

J G(s,z,2)75(ds,dr, d?) dngJ‘ G (S,Yf(S),Zf(S)) ds.
[0,1] [0,7]

XR2

Lemma 38. The family of random Radon measures v¥, €(0, 1), is tight for the convergence in
distribution and for any bounded Borelian function on [0, T|xR%, the set of processes

(Io(t)) % ( L e (u X5 ), 2" (u)) du, 0<t<T)

is tight for the convergence in distribution.

Proof. For a>0, e€(0,1), and K a Borelian subset of R?, we have
=K c 1 —K c
P (ye ([0, T]xK )>a) < —E [75([0,T]xK9)]

T — _
<o swp P((XE(0).25 () #K)
4 0<e<l1
0<t<T
Lemma 36 shows the existence of a compact set LcRR? such that the last term of the
right-hand side of this inequality can be made arbitrarily small. Lemma 1.3 of [Kur92]
gives that the family of random measures (75, 0<e<1) is tight.
for the last part of the proposition, we use the criterion of modulus of con-
tinuity, see [Bil99]. This is a simple consequence of the inequality, for 0<s,t<T,
[Ic(t)—1c(9)|<|G|lw|t—s|. The lemma is proved. O
Proposition 39. The family of random variables (s (t), W= (t),7X), e€(0, 1), is tight.
Proof. Tightness properties of (7X) have been proved in Lemma 38. Relation (3.22)
gives the relation, for >0,

t

O (t)—wpe = f

0 e—t=9C, <1+€Zf(s)> (1+>\+Cﬁ(1+Yf(s))) ds
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t
—a(t—s) Ko . G A (K
+ L e Cn(1+€Zg (s )) [5/\/A/E(ds) Nds+eN;, o (ds)—B (XE (s)) ds] . (3.30)
Lemma 37 shows that the family of processes associated to the first term of the right-
hand side of this identity is tight, and that the process of the second term is vanishing

in distribution as ¢ goes to 0. The family of processes (Qf(t)) is therefore tight and the

tightness of (Wf(t)) follows from its representation with (ﬁf(t)) The proposition is
proved. O

Averaging principle for the truncated process (U K(t))

The goal of this section is to prove the following averaging principles for the truncated
process. We start by stating the two following lemmas that are proved in Appendix 3.A
and that are essential to the proof of averaging principle.

We fix a sequence (e,,) such that (7 ) is converging in distribution to 7*. The first
result focus on identifying the limiting linear functional of 7.

Lemma 40. For any continuous bounded Borelian function G and a, b, ceR.., the sequence of
processes

( L t (aXE () 4025 ()42 (975 () € (X5 (). 25 (9)) ds>

converges in distribution to

( L t JR2 (ax+bz+cxz)G(z, 2)7™ (ds, dz, dz)> .

The second lemma shows that 7* can be expressed as the product of the invariant
measure II,, and the Lebesgue measure. This is Lemma (1.4) of [Kur92].

Lemma 41. For any non-negative Borelian function F on R, xR%, almost surely,

T T
J F(s,x,2)7" (ds,dz,dz) = f F(s, 2, 2)y g (5 (dz, d2) ds,
0 0

where, for weR,, 11, is the unique invariant distribution of the Markov process associated to
the infinitesimal generator BE defined by Relation (3.27).

With these two lemmas, Proposition 42 can be established.
Proposition 42. Any limiting point (w™ (t),w™ (t)) of the family of processes QF @), WE @),
when ¢ goes to 0, verifies, almost surely for all t=0, the ODE

r

wk(t) =wi—a Jt W (s)ds

A

?
+ J Cn(1+2)(14+A+Cs(1+2) g (4,  (d2, d2) ds
0, Jr2

EK(t) = Wo + JO Cu (1 + wK(S)) dS,

holds, where 11, is the unique invariant distribution of the Markov process associated to the
infinitesimal generator BL defined by Relation (3.27).
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Proof. Relation (3.30) gives the identity, for >0,

t
(1) = moe " +e M (t) +e o J ¢, (1+0Z.(5)) (1+A+cﬁ(1+yf (s))> ds,
0

(1) 9 J e (1+£7§ (s)) [8N,\/5(d5)—|—5/\/5 L (ds) =+ B(XE (5))) ds] .

Lemma 37 shows that (M f(t)) is converging in distribution to 0 when ¢ goes to 0.
We now use Lemmas 40 and 41 and we get that (w” (¢),w" (t)) satisfies the desired
relation. O

3.7 Proof of an averaging principle

Finally, this section gathers all the results from the previous sections to prove Theo-
rem 29. The proof is done in two steps:

a. Using an analytical result, an averaging principle for (U(t)) is proved.

b. The coupling of Section 3.5 is then used to show that a stochastic averaging result
also holds in the general case.

Averaging principle for the coupled process (U(t))

We now turn to an analytical result by considering the dynamical system of Proposi-
tion 42 when K=+ and by showing an existence and uniqueness results which will
be crucial in the proof of the general theorem.

For w=0, II,, is the invariant distribution of the Markov process (X (t),Z" (t))
satisfying the SDE

dX"(t) = =X"(t) dt + wNy(dt),
dZw(t> = (—’)/Zw(t)—i-ck) dt—l—CkN)\(dt)—i-CkNB,Yw (dt)

Its existence is a consequence of Proposition 50.

Theorem 43. Under conditions of Section 3.2, there exists Sye(0, +-00| and a unique continuous
function (w(t),w(t)) on [0, Sy), solution of the ODE, for 0<t<.S,,

t

w(t) = w()—aLw(s) ds+£fR2 Cr(14+02) (14 A+ Cs(1+2) )l (dz, d2) ds,
. + (3.31)

w(t) = wo + f Cym (1 +@y(s)) ds,

0
with (wo, wo)ERa_

Any limiting point (@' (t), W (t))) of the family of processes (QL (t), W~

. (t)), when
goes to 0 is such that, for all 0<t<JS),

o™ (t) < w(t) and W™ (t) < w(t).
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Proof. The existence of limiting points of the processes (ﬁf(t), Wf(t)) is due to Propo-

sition 42. If (710, Zw) is a random variable with distribution II,,, we have
_ +00
X dist J e "Ny (ds),
0
and, with standard calculations, we obtain the relations
E[X"]=M, E [(7”)2] = ()\2+) w?, (3.32)
and, consequently,
VE[Z"] = Cp (14A+C5 (I+E[X])) = Cr (1+A+Ca(1+Aw)) .
The SDEs for (X “(¢)) and (Z"(t)) give
AX“Z(t) = (~(v+ )X (D) Z° (1) +Cp X " (1)) dt
+HwZ" (t=)+Cp X (t=)+Crw) Ny (dt) +Cr X (t—) N5 5 (dt),

and thus, at equilibrium, we obtain the relation
——w—=w 1 —w W W\ 2
E[X"7"] = Oy (o (14E[Z]) +(1+A+Co)E [X ] +CE [ (X)?])

We have therefore that the function

we— C, | (1+L2)(14+X+Cps(1+x))1L,(dz, dz)

2
RY

is a non-decreasing and locally Lipschitz function. The existence and uniqueness
follows from standard results for ODEs. There exists some S;>0, such that, on the time
interval [0, Sp), the solution (w(t),w(t)) of the ODE is the limit of a Picard’s scheme
(wWn(t),w,(t)) associated to Relation (3.31) with

(@o (), wo(t))=(@" (t), w" (1)),

for all KeR,. See Section 3 of Chapter 8 of [[S74] for example. We now prove by
induction that (@” (¢), w" (t))<(w,(t), w,(t)) holds on [0, Sy) for all n>1. If this is true
for n, then

t

wn+1(t) = woe_o‘t+f

e (t=9) J Cn(14+L2)(14+A+Cps(142))g, (5 (dz,dz) ds
0 R?

t
> Do f e [ O (1402) (1 A+ C (1+2)) Tl e (A, d2) s

0 R?
=" (1),

and the relation w, 1 (¢)>w" (t) follows directly. The proof by induction is completed.
We just have to let n go to infinity to obtain the last statement of our proposition. [
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Proposition 44. Under conditions of Section 3.2, for the convergence in distribution,

ling (.0, T7-(0)), £<50) = ((@(0), w(0)), 1<85),
where (Q.(t),W.(t)) is the process defined by SDEs (3.26) and ((w(t),w(t)),t<Sy) by
ODE (3.31).

Proof. From Proposition 42, let (™ (), w" (t)) be a limiting point, there exists a sequence

(en) such that the sequence of processes (Qg (1), an (t)) is converging to a continuous
process (W’ (t), Wk (t)).

With the same notations as in Proposition 43, for any 7'<S,, by continuity of
(@(t),w(t)) on [0, T], the quantity

Ko 1+ supw(t)
t<T

is finite. Since w* (¢)<w(t) holds for all >0, the uniqueness result of Proposition 43
gives the identity

(@" (), @" (1)), t<T)=((@(t), w(t)), t<T)
for all K>K,. Consequently, for any n>0, there exists ny>0 such that for n>n,,

P (supWio(s) > Ko) <P (supWio(s) > 1+ supw”® (t)) <,

s<T s<T t<T

since the process (w’°(t), w°(t)) is upper-bounded, coordinate by coordinate on the
time interval [0, Sy), by (w(t),w(t)), defined by Relation (3.31). Note that .5 is indepen-
dent of the sequence (¢,,). Hence, for n>n, Relation (3.28) gives

P( Xeo(5)=X17(5). Z,(5)=Z1] (). )
Q.. (5)=0_"(s), W, (s )=W ( ) Vs<T

>P (supW (s)< K()> > 1-n. (3.33)

s<T

This shows that the sequence of processes ((Q., (t), W, (t)),t<T) is converging in
distribution to ((w(t),w(t)),t<T). The proposition is proved. O

Averaging principle for the process (U.(?))

We now conclude this section with the proof of Theorem 29. We fix T'<S).
The coupling property of Proposition 35 and Relation (3.33) give the existence of
Ky and ng such that for n>n,, the inequality

P (sup W, (1) <Ko) S 1y
t<T

holds.
We get that the results of Lemma 37 hold with Yi and Zﬁi replaced by X., and
|Z., |, and 3 by 3. With the same arguments as in the proof of Lemma 38, the family
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of random measures (., ) defined by Relation (3.19) is tight and Lemma 40 holds for

(Xe, (1)) and (]| 2, [ (2)).
With Relations (3.15) and (3.16), we get, for as{p, d} and ¢>0,

t

ua(t) = wout j e, o(Za(s)) ds
0
t

t
+ J e_o‘(t_s)n&l(Zg(s—))eNA/s(ds)+J e_a(t_s)naz(ZE(S—))S./\/@/E,Xg (ds),

0 0

and
W.(t) = Wg(O)JrJ0 M (92 (5), Qe.a(s), W(t)) ds.

Relation (3.11) of the assumptions of Section 3.2 gives that n, ;(2)<C,(1+]||z|) for 2eR¢,
ae{p,d} and je{0,1,2}. Lemma 37 applied to (X.,(t)) and (| Z.,|/(t)) shows that the
family of processes (). ,(t)) is tight, consequently that the same property hold for
(W.(t)) due to the relation satisfied by M of Section 3.2. We have thus obtained the
tightness of the sequence of processes

(Qemp(t)a Qe a (t), We, (1), ve,)-

By taking a subsequence, we can assume it is converging in distribution to some process
(wp(t), wa(t), w(t), v).

We now identify the measure v. Lemma (1.4) of [Kur92] shows that, for any
bounded Borelian function G on R, xRxRY,

T T
f G(s,z, z)v(ds,dx,dz) = J J G(s,x,z)v(s)(dx,dz) ds,
0 0 JRxRE

where (7(s)) is a predictable measure-valued process.
The continuity of the different functions g(-) and k;(-) give that, for feC}(RxR"),
(z, z,w)—BE(f)(z, 2) is continuous, where B/, is the operator defined by Relation (3.18).
Moreover, using

— condition of Section 3.2 for the growth of the function f;
— the boundedness of k;, ie{1, 2} of Condition of Section 3.2,
we have that, for feC}(RxRY), there exists a constant C; such that, for (z, z)eRxR¢,
By ()@, 2)] < Co(L+|zl+2]) (1ot IV £1) -

We apply the equivalent of Lemma 40 to (X, (¢)) and (Z., (t)) to get the relation,
for T>0,

n——+0o0 0

T T

i [ BE () (Xeu(). Zoo(5)) ds = f J BE (/) (. 2)w(ds, dx, dz).
0 JRxR

From the SDEs (3.14) and (3.14) we have

f (Xan(s)a Zan (S)) = f(xo, ZO)+M5fn (t)

/L.__/‘\\J\'\JJU‘\-/\»NW
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1

2 [ Bl (0 (6,60, 2, () ds. (634
0

where (M/ (t)) is the associated martingale.
In the same way as in the proof of Lemma 41, we show that (¢, M/ (¢)) is converging
in distribution to 0 which leads to the identity, almost surely for any ¢<7,

t
[ 8o wtasaaz-o,
0 RXR+

for f in a countable dense subset S of the functions of C} (Rx R’ ) with compact support.
Consequently,

Lt JRXM B (f)(@, 2)7(s)(dz, dz) ds = 0,

which gives that for almost all t€[0, T']
| Bloh@onieds) —o, vres.
L

Proposition 50 of the Appendix gives therefore that, v(t)=II, ), for almost all
te[0, T'] (for Lebesgue’s measure), so that

T T
J G(s,x, z)v(ds,dz,dz) = f J G(s, 2, 2)[Ly s (dz,dz) ds,
0 0 JRxRE

holds almost surely for all bounded continuous functions on R; x RxRY .
To establish the first identity of Relation (3.31), we need the convergence in distri-
bution

lim (
n— -+

This is consequence of the fact that (w(t)) is almost surely continuous and that, with
the conditions of Section 3.2, for any we Ky,

(2, 2)—(no(2), n1(2), B(x)n2(2)),

is II,, almost everywhere continuous.
The theorem is therefore proved.

t no (2)
J emalt=w) J ) ny (2) oy (de, dz) du |.
o gy (2)

x) ngy

3.8 The simple model

In this section we consider the simple model defined in Section 3.1. Recall that the
associated SDEs are

dX(t) = =X (t) dt + W(t—)N,(dt),

dZ(t) = —vZ(t) dt + ByN,\(dt) + BaNj x(dt),
dW(t) = Z(t—)Np x(dt),
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with >0, By, BoeR, and 3 is assumed to be a Lipschitz function on R .

This is not, strictly speaking, a special case of the processes defined by Rela-
tions (3.7), but the tightness results of Section 3.A of Appendix concerning occupation
times of fast processes can obviously be used.

Let, for w=0, (X" (t), Z"(t)) be the fast processes associated to the model of Defi-
nition 27. Proposition 50 shows that (X" (t), Z*(t)) has a unique invariant distribution
IT,,. We denote by (X%, Z¥) a random variable with distribution II,,.

Proposition 45. The function
w e E[Z25(X2)] = j 2B(@)T,(dz, d2)
72

is locally Lipschitz on R..
Proof. Assuming X" (0)=2"(0)=0, Lemma 30 and Definition 3.6 give the relations

XY(t) =w Jot e ING(ds) = wX (1)

Z%(t) = B, J

0

t t

e~ A7, (ds)+ By j 9P, (0, BwX (s ), ds).

0

the random variable (X"(t), Z"(t)) is converging in distribution to (X%, Z¥) as well as
any of its moments. Define

U, (w) ¥ E lg (wX'(t)) L eTTE=IP, (0, BwX ' (s—)), ds)] :

for z,y=>0,
“I’t(ﬂf)_\l’t(y)’

<E [\5 (£X'(1)) B (45X ()] j e IPy((0, B X (5-)), dsﬂ
n ]E [5 (v (1) f eIy ((Ba X (5-)), By X (5-)), ds>” .

We note that (X' (¢)) is a functional of NV, and is therefore independent of the Poisson
process P,. We now take care of the two terms of the right-hand side of the last
expression.

For the first term, if L is the Lipschitz constant of the function 3, we obtain

E [\ﬁ (zX7(1)) = (yXl(t))\fO e IP((0, B X (s)), dS)]

-E [\ﬁ (X' (0) -5 (X (0)] [ e IBx(s) ds]

0

< Lglz—y|E [Xl(t) Lt e V982X (s)) ds] , (3.35)

and, for the second term, if |y—z|<1,

M\JN\/J'U*N-’\»W



158 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

5[5 x°0) [P @), 506X .00

0

<E [@ (X' (1)) f e B2 X 1 (5))—B(yX " (s) ds}

< Lglz—y|E [(B(O)—G—Lﬁ(l“‘x)Xl(t)) f

e =) X1 (s)) ds] . (3.36)
0

Fubini’s Theorem gives the relation,

E [Xl(t) | X (s)) ds] - f e E [X(1)8(2 X (t-5))] ds,

0 0
and the convergence in distribution of the Markov process (X!(¢)) implies the con-
vergence of (E[X'(t)3(zX'(t—s))]) to a finite limit when ¢ goes to infinity. With
Relations (3.35) and (3.36) and the expressions of (X" (¢)) and (Z*(t)), we deduce that
for >0, there exists a constant F,, independent of ¢ such that

[E[Z*(0)5 (X*(0)] -E[2*(1)3 (X ()] < Felz—yl

holds for all >0 and y such that |y—xz|<1. We conclude the proof of the proposition by
letting ¢ go to infinity.
[

The averaging principle for the simple model, announced in Section 3.1 of the
introduction can now be stated.

Theorem 46. If the function [ is Lipschitz, there exists some Sy(wy)>0, such that the
family of processes (W.(t),t<So(wo)) defined by Relation (3.2) converges in distribution to
(w(t),t<So(wy)), the unique solution of the ODE

W) = fR 2By (A, d2)

2
with w(0)=wy.

Proof. For t=0,
t

W.(t) = wo + f Ze(s—)eNge x. (ds),

0

we then proceed as in Section 3.7 by using in particular the analogue of Lemma 37
and 40. O

An explicit representation of the limiting connection intensity process can be ob-
tained when linear activation functions.

Proposition 47. If the activation function (3 is such that ((x)=v+pyx and

A 1 By AB1+2vDBs
No=AB5By | “+=—— ), A= +
2=ABG 2(’7 2(7+1)> 1=An (’Hl v

> s A():"Vy(/\Bl—Fl/Bz),

then if Ay>0, the asymptotic weight process (w(t),0<t<Sy(wo)) of Theorem 46 with initial
point wy=0 can be expressed as:

_ﬂ\w\JJ‘U\/\,W
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a. If A% ‘A2—4M3M>0, then

w(ty = 2 o) g L (w°+82>
(wo+52)—(wo+s1)eVAt VN wo+s, )’
with
s def. AI_\/Z and s def. Al-i-\/g
' 2A2 2 2A2 '
b. If A=0, then
. 2w0A2+A1 Al B 2
S WEC v R TR T v v
c. If A<Q, then
V-A 1 2 1 Ay
w(t) = N, (tan (2\/1 - t+ arctan (zo)) + LT—FQJ 7r) ~oAy
with
2 T def. 2wWoNa+Ay
So(wo):ﬁ (g—arctan (z0)> and zy = VA

It should be noted that under the conditions of this proposition, this model always
exhibits a blow-up phenomenon.

Proof. The SDEs give the relation

dX¥YZ¥(t) = —(v+1) X Z%(t) dt
+ (WZ(t—)+Biw+B1 XY (t—))Na(dt) + Bo X" (t—)Np xw(dt).

If the initial point has the same distribution as (X%, Z%), by integrating and by taking
the expected valued of this SDE, we obtain the identity

(VHDE [X2ZY] = MwBy + (AB1+VB)E [X2] + BoBoE [(X%)?] + \wE[ZY].
With Relations (3.32), we have

B - B[] - (245 ot

and, similarly,
YE[ZY] = AB1+Ba(v+5oE[ X2]) = AB1+Ba(v+ 5o \w).

By using Theorem 46, with these identities, we obtain that (w(t)) satisfies the ODE

dw
E(t) =R [Z% (v+5oX2)] = Agw?+ A w+Ay, (3.37)

on its domain of definition. We conclude the proof with trite calculations. O
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Appendix

Appendix 3.C
Existence and
Unicity I Stochastic process U
System of SDE Eq.(3.7)
Scaled system U. Eq.(3.16)
SAP in Theorem 29 \
Limit (wp, wg, w) in Eq.(3.21)
ection 3.7 Section 3.5
Coupling — Coupling property
We Uniformly in Proposition 35
Bounded Coupled process U [W(@®)|<W(t)
System of SDE Eq.(3.25)
Scaled system U, Eq.(3.26)
SAP + Convergence
in Proposition 44
Section 3.7 Limit (&, @) in Eq.(3.31)
Monotonicity + Section 3.6
Analytical ODE + WK (<K
[Uniqueness of limit
Truncated process T~
\ Scaled system Uf Eq.(3.28) /
Tightness in Proposition 39
SAP in Proposition 42
Section 3.6 .
—> Tightness Appendix 3.B
Section 3.6 + Appendix 3.A Shot-Noise
_, SAP Processes

Figure 3.1: Graphical representation of the steps of the proof of averaging principles.

3.A Proofs of technical results for occupation times

Proof of Lemma 40
Denote, for t=0, a, b, ceR ., and >0,
L.(t) % X () +0Z5 1)+ X0 Z5 (1),

Let G be a continuous bounded Borelian function. From Proposition 37, we can extract
a sub-sequence (¢,,) such that, for the convergence in distribution

lim (f Le, ()G (XL (u), 78 (u)) du) = (L()),

n—+0o0 0

where (L(t)) is a continuous cadlag process.
We will now prove that the process (L(t)) is such that,

(L(t)) = (ﬂ LQ (ax+bz+crz)G(z, 2) v (ds, dz, dz))
..J‘\\‘N"\J‘JU\J\'WM.‘N\»*
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holds almost-surely for te[0, T'].
For A>0, the convergence of (X ) to 7* gives the convergence in distribution,

K

. ( f ANL., (s)G (st(s), zs (s)) ds)
0
_ ( f t f AA(ax—l—bz+c:1:z)G(x,z)uK(ds,dx,dz)). (3.38)
0 Ri

Using again the upper-bound, Relation (3.29), for (Y?(t)) with Relation (3.23), and
Proposition 49 for R., we obtain that

Cp % sup E[L.(s)?] <+ oo,
O<e<l1
o<t<T

hence, for >0,

P (LT(La(s)—A)JF ds>n) < ;LT]E [(L.(s)—A)*]ds
1 (* C.T

b 2
<17A O]E[Lg(s)]dsé e

Since G is bounded, with the elementary relation z=x A A+(z—A)", =0, then, for
n=1,

t
P ( sup J L., (u)G (Yﬁi (u),?ﬁi(u)) du
0<t<T

0

c,T
>n)< 2 |Gl (3.39)
nA

B Lt AnL. ()G <Y§L (u),Zi (U)> du

For any A>0 and n>1, Cauchy-Schwartz’s inequality gives the relation

E UOTAAL%@L)G (X5 (). Z5 () du} < /CLT|C].

With Relation (3.38) and the fact that the left-hand side of (3.38) has a bounded second
moment, by letting n go to infinity, we get the inequality

T
E [J f A/\(ax+bz+cxz)G(x,z)l/K(ds,dx,dz)] <ACLT| G oo
0 Jr2

By letting A go to infinity, the monotone convergence theorem shows that

lim E

A—+w0

T
f J An(az+bz+crz)G(x, 2)7" (ds, dx, dz)]
0 Jr2

T
=E [J J (ax+bz+crz)G(z, Z)VK(ds,d:E,dZ)] <ACLT|Gg. < +00.
0 Jr2
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With Relation (3.39) and the integrability properties proven just above, we obtain that,
for £>0, there exists ny such that if n>n,, then the relation
277> <e€

J L ()G (5 (). Z5 ()

0

P{ sup
0<t<T

T
—J J (ax+bz+crz)G(z, )™ (ds, dz, dz)
0 Jr2

holds. Lemma 40 is proved.

Proof of Lemma 41
Following [PSV77] and [Kur92], we first show that there exists an optional process (ff),
with values in the set of probability distributions on R% such that, almost surely, for

any bounded Borelian function G on R; xR?%,
J G(s,z,2)7"(ds,dr,dz) = J G(s,z, z)fﬁ{(dx, dz) ds. (3.40)
R4 xR2 R4 xR?

Recall that the optional o-algebra is the smallest o-algebra containing adapted cadlag
processes. See Section V1.4 of [RWO00] for example. This is a simple consequence of
Lemma 1.4 of [Kur92] and the fact that, due to Relation (3.19), the measure 7 (ds, R?)
is the Lebesgue measure on [0, 7'].

Let feC;(R2) be a bounded C'-function on R? with bounded partial derivatives,
we have the relation

of (XE0. 25 W) = = (@0, 20)+eML (1)

" f BfiAW&s)(f) <X§(5)77§((8)) ds, (3.41)

0

where, for t>0, if (V7 (s))%(X X (s), Z5 (s)),

3L 2 (1 (V2 (50 (KaWE).0)) =1 (V2 00)) [A a2 s

+ f (F (VEe+0.0) =1 (VEs)) [Nﬁ/&xﬂds)M ds} ,

Proposition 37 shows that the martingale (5M£(t)) is converging in distribution to 0 as
e goes to 0.
Relation (3.41) gives therefore the convergence in distribution

lim <
e—0
The convergence in distribution of (ﬁi (t),Wi (t),7E ), Proposition 40 and Rela-
tion (3.40) give that, for any f in C; (R?), the relation

J B e ) (K56 7209) ds) 0.

0

t
(J f BE, iy (F) (@, 2)T% (dz, dz) ds, o<t<T> (0, 0<t<T). (342
22
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holds with probability 1.

Let (f,) be a dense countable sequence in C}(R%) and & be the event, where
Relation (3.42) holds for all f=f,, n>1. Note that that P (&) =1. On &, there exists a
(random) subset S; of [0, 7] with Lebesgue measure 7" such that

J Bgmx(s)(fn)(:c, z)ff(da:, dz) = 0,VseS; and Vn>1,
R

and, consequently,

J B;;AEK(S)(JC)(.Z', T (dw, dz) = 0, VseS; and VfeCh(R2).
R2

By Proposition 50, for s€S5;, the probability distribution ff is the invariant distribution
Iy .z (5)- Lemma 41 is proved.

3.B  Shot-noise processes

This section presents several technical results on shot-noise processes which are crucial
for the proof of Theorem 29. See [Sch18], [Ric44] and [GP60] for an introduction.

A scaled shot-noise process
Recall that (SZ(t)), with initial point x>0, has been introduced by Definition 31. We
will have the following conventions,

(S(t)) = (S2(1)) , (5"(1)) & (S§ (1)) and (S(1)) = (S}(1)) .-

The process (S(t)) is in fact the standard shot-noise process of Lemma 30 associated
to the Poisson process N,, for t=0,

S(t) = f: e Ny (ds) 2 L t e~*Ny(ds). (3.43)

In particular (S(¢)) is a stochastically non-decreasing process, i.e. for y=0 and s<t,
P(S(s)=y) <P(S(t)=vy). (3.44)

A classical formula for Poisson processes, see Proposition 1.5 of [Rob03] for example,
gives the relation, for {eR,

E [egsu)] = exp (—)\ Lt (1— exp (56’8)) ds) , (3.45)

in particular E [S*(t)] =z exp(—t)+A (1— exp(—t)). It also shows that (S*(¢)) is converg-
ing in distribution to S(0) such that,

E [¢59] = exp (—/\ [ e () ds) <t

0
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It is easily seen that (57 (1)) (57 (¢/2))and thus with Relation (3.22), (SZ(t)) can be
represented as, for t=0,
t

52 (1) xe_t/g—i—f e~ VENG o (ds) = ze Yo+ S.(t). (3.46)
0

We remind here the results of Proposition 32, that will be proved in the following
paragraph. For {eR and 2>0, the convergence in distribution of the processes

t
liy ( f (52w du) — (E[¢55@)] 1)

0

holds, and
sup E [eésﬁ(t)] <+00.

O<e<1
0<t<T

Proof of Proposition 32. Let T} and 75, be two stopping times bounded by N, §>0, and
verifying 0<7,—77<6. Using Relation (3.46) and the strong Markov property of Poisson
processes, we have that

Ty To/e 1
E [J 855 () du] =cE J 57 (W) qy
Ty T1/€ ]

(T=Tfe ] 0/
= ¢k J egsS (T1/s>(u) du < cE egsr(Tl/a)]E f egs(u) du
0 0

< 05 R [V R [e55)] < 6e5°F [esswo)]? ,

holds, by stochastic monotonicity of (S(t)) of Relation (3.44).
Aldous’ Criterion, see Theorem VI1.4.5 of [JS87] gives that the family of processes

t
(J efss(u) du> ,
0

is tight when ¢ goes to 0. For p>1 and a fixed vector (¢;)eR”, the ergodic theorem for
the Markov process (S(t)) gives the almost-sure convergence of

t; tz‘/E
lim(f egsE(u)du,izl,...,p)zlim (6J egs(u)du,izl,...,p>
e—0 0 e—0 0

= (B[] t;,i=1,...,p).

Hence, due to the tightness property, the convergence also holds in distribution for the

processes
lim (
e—0

The last part is a direct consequence of the identity (52(1))2"(5%(t/e)), and of
Relation (3.45), which gives

E [eESE(t)] = exp ()\ Jt/a (1— exp (fe_s)) ds)

t
f (5= () du) _ (E[¢]1).

0

0

< exp (—)\ [ e () ds) .

0
The proposition is proved. O
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Interacting shot-noise processes

Recall that (R.(t)) defined by Relation (3.24) is a shot-noise process with intensity equal
to the shot-noise process (5.(t)).
We start with a simple result on moments of functionals of Poisson processes.

Lemma 48. If Q is a Poisson point process on R with a positive Radon intensity measure [
and f is a Borelian function such that

I(f) f F(w)*p(du) < +o0, 1<k<d,

then ,
E [( J f(u)Q(du)) ] - <I4+6112[2+411[3+3122+If> (f).

Proof. It is enough to prove the inequality for non-negative bounded Borelian functions
f with compact support on R,.

The formula for the Laplace transform of Poisson point processes, see Proposi-
tion 1.5 of [Rob03], gives for £=0,

B e (¢ [ rwotan)| = e ([ (-1 ).

The proof is done in a straightforward way by differentiating the last identity with
respect to £ four times and then set {=0. O

Proposition 49. The inequality

sup  E[R.(t)*] <+
£€(0,1),£0

holds.

Proof. Denote, for t=0,

t
Jeo(t) f evk@uvesiw du,
0

the identity (S.(t))="(S(t /<)) and Relation (3.43) coupled with Fubini’s Theorem give
the relations

t/e 1 t/e
Jie (t)z JO G—Wk(t/e—u)s(u) du= o J (e—(t/e—v)_e—’yk(t/e—v)) N, (dv)

dist. 71 v (@—”_e—vkv) Ny(dv) < 1 J
k=1 J RS k=1t

with .
T, J (e +e7") Ni(dv).

0
Relation (3.22) applied to R.(t) gives

R.(t) = f e V-0/ep, ((o & Et”_)] ,du) .
WJLL\J\-MMA__
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The quantity S.(u) is a functional of the point process P, and is therefore independent
of the Poisson point process P,. Lemma 48 gives therefore that

E[R-(t)* | P ] = Jue (1) 461 ()2 To e (8) 44T, (1) T30 (8) 43T (1) + 1 o (1),
hence,
T4 67,7, AT, 7, 37, 7

E[R.(t)'] <E + + + n
O o e 2 T o i I i Y o T

Again with Proposition 32 we obtain that, for k=1, the variable J; has finite moments
of all orders, therefore by Cauchy-Shwartz’ Inequality, the right-hand side of the last
inequality is finite. The proposition is proved. O

3.C Equilibrium of fast processes
For we Ky, recall that the Markov process (X™(t), Z*(t)) of Definition 27 is such that

dX¥(t) = —=X"(t) dt+wNy\(dt)—g (X (t—)) N xw (dt) (3.47)
dZ"(t) = (—yOZ" (t)+ko) dt+k (Z*(t—))Na(dt)+ho (2 (t—)) N xw(dt).  (3.48)

Proposition 50. Under the conditions of Sections 3.2 and 3.2, the Markov process
(X™(t), Z"(t)) solution of the SDEs (3.47) and (3.48) has a unique invariant distribution
I1,, i.e. the unique probability distribution y on RxRY such that

GuBE(NY = | BE()(@,2)u(de,dz) =0, (3.49)

RxRE
for any feCl(RxRY), where BE is the operator defined by Relation (3.18).

Proof. We denote by (XY, Z") the embedded Markov chain of the Markov process
(X™(t), Z"(t)), i.e. the sequence of states visited by (X" (t), Z*(t)) after each jump, of
either NV, or N x.

The proof of the proposition is done in three steps. We first show that the return
time of (X“(t), Z“(t)) to a compact set of RxRY is integrable. Then we prove that
the Markov chain (XV, ZY) is Harris ergodic, and consequently that it has a unique
invariant measure. For a general introduction on Harris Markov chains, see [NumO04;
MT93]. Finally, the proof of the proposition uses the classical framework of stationary
point processes.

Integrability of return times to a compact subset

Suppose that w>0. The conditions of Section 3.2 on the functions § and g, and Rela-

tion (3.47) show that X" (t)>—c, for all t=>0, if X" (0)>—c,, with ¢y=cg+c,. The state

space of the Markov process (X" (t), Z"(t)) can be taken as Sdg'[—co, +o0) xR,
Define, for (z, z)eS and 0<a<1,

4
H(z,2) % z+a| 2], with 2] = 2,
=1

n_hAhﬁJLkuﬁhwum_Jﬁhfk“wN*~\~*
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we get that

BE(H)(z,2) = —x + (—ai%zi—kkm) + A (w—i—ai k11(2)>

+ B(x) (—g(x)—FaZ kZQZ(Z)>

hence, with the assumptions of Section 3.2 and 3.2 on the function £ and 3, and a < 1,

BE(H)(z,2) < —v—ay|z| + (Cy + Mw+aCy)+C5 (1 + x) LaCy
< (LaCgCr—1)x — ay|z| + ((C+Aw+MCy+LCsC)
< (LaCsCr—1)xz—ay|z||+C,

where 7>0 is the minimum of the coordinates of v and C'is a constant independent of
z, z and a. We fix 0<a<1 sufficiently small so that {aC3C\ <1 and K>, such that

C<yK/2—1and C<(1-aCsCy) K /2—1.

If H(x,z)>K then max(z,alz|)>K/2 and therefore BL(H)(z,z)<—1, H is therefore a
Lyapounov function for Bf. One deduces that the same result holds for the return time
of Markov chain, (X, Z%) in the set Ix = {(z,2) : H(x, 2)<K}.

Harris ergodicity of (X", Z")

Proposition 5.10 of [Num04] is used to show that Ik is a recurrent set. A regeneration
property would be sufficient to conclude. In particular, we can prove that I is a small
set, that is, there exists some positive, non-trivial, Radon measure v on S such that,

Paozo (X7, Z1)€S) = 1(S), (3.50)

for any Borelian subset S of S and all (¢, z9)€/x-.

We denote by s;, resp. t;, the first instant of N, resp. of Nj xw, then, for
(X, Z)= (=0, 20)€l, by using the deterministic differential equations between jumps,
we get

S1

ef. A
Pay,2) (51<t1) =E lexp (— B(xg exp(—s)) ds] > E [exp(—cps1)] - UL
0 +Cg

since /3 is bounded by some constant cj on the interval [—c,, K].

In the following argument, we restrict X to be non-negative, the extension to
[—co, +0] is straightforward. For A=[0, AleB(R,) and B=|0, BleB(R), from Equa-
tions (3.47) and (3.48), we obtain the relation

Pey, o) (X7, Z1)EAXB) = poP ((XV', Z1)eAXB | 51<t )

— P roe *'+weA,
— o (Zo—k’o)QC_%Sl—f—k’o—Fk’l ((ZQ—kQ)QG_%Sl-i-k’Q) eb

W\JJU‘\J\—WWM
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81<t1)

— P $06_§1+W§A,
~ PP H (20— ko)Oe " ko) eB)

_ xoe 'HweA,
- H ((ZO—]C())G)G_%Sl—Fko) eB

where H(z)=z+k;(2), 5:"2 (s]s1<t;). By using the fact that k; is in CL (R, R%) by the
conditions of Section 3.2 and in the same way as Example of Section 4.3.3 page 98
of [MT93], we can prove that the random variable

(:L‘oefgl +w, H ((zo—k:o)@e*%’gl +k0) )

has a density, uniformly bounded below by a positive function 7 on R, xR, so that

Pag o) ((X;”,Z;U)eAxB) > L w2 dr dz, YAeB(R, ), BeB(R.),

for all (xg, 29)€lk). This relation is then extended to all Borelian subsets S of S, so
that Relation (3.50) holds. Proposition 5.10 of [Num04] gives therefore that (X", Z) is
Harris ergodic.

If w<O0, the last two steps can be done in a similar way. In this case, the process
(—X™(t)) satisfies an analogous equation with the difference that the process N xu
does not jump when —X"(t)>cs since §(z)=0 for x<—cg.

Characterization of I,
Let I1,, be the invariant probability distribution of (X, Z). With the above notations,

1
Eg [min(si,t1)] < Eq [s1] =5 <+,

the probability defined by the classical cycle formula,

1
E-
]Eﬁw [min(sl, tl)] M

min(s1,t1)
f £ (), 27 () du |,

0

for any bounded Borelian function on Rx R’ is an invariant distribution for the process
(X*(8), 2°(1)).

Proposition 9.2 of [EK09] shows that any distribution is invariant for (X™(¢), Z*(t))
if and only if it satisfies Relation (3.49). It remains to prove the uniqueness of the
invariant distribution, using the fact that the embedded Markov chain has a unique
invariant distribution.

Although this is a natural result, we have not been able to find a reference in the
literature. Most results are stated for discrete time, the continuous time is usually
treated by looking at the process on a “discrete skeleton”, i.e. at instants multiple of
some positive constant. See Proposition 3.8 of [Asm03] for example. As this technique
is not adapted to our system, we derive a different proof using the Palm measure of the
associated stationary point process.

If /1 is some invariant distribution of the Markov process (X™(t), Z*(t)), we build
a stationary version ((X™(t), Z¥(t)), t€eR) of it on the whole real line. In particular, we

have that (X™(t), 2" (t)) 2" 1, for all teR.
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We denote by (S, n€Z) the non-decreasing sequence of the jumps (due to NV, and
N3 xw), with the convention Sy<0<S; The sequence ((X"(S,), Z*(S,)),n=0) has the
same distribution as the process ((XY, Z),n>0), the Markov chain with initial state
(X" (Sp), Z"(Sp)). Since, for any teR,

<(X“’(s+t), Z9(s41)), se]R) dist. ((Xw(s), 7% (s)), seR) ,

the marked point process T (Sn, (X*(Sn), Z w(Sn)> ,neZ) is a stationary point pro-
cess, 1.e.

((Sn, X®(S,), Z“(Sn), neZ) = ((S,—t, X®(S,), Z°(Sy), n€Z), VteR.

The Palm measure of T is a probability distribution Q such that the sequence
((Sp—=Sn—1,X"(Sn), Z"(Sy),neZ) is stationary. See Chapter 11 of [Rob03] for a quick
presentation of stationary point processes and Palm measures.

Under @, the Markov chain ((X™(S,), Z%(S,)), n=0) is at equilibrium. Using
Harris ergodicity, we have proved in the previous section that the Markov chain
(X, ZY),n=0) has a unique invariant measure. Considering that both sequences
(X¥, Z"¥),n=0) and ((X“(Sn), Z“(Sn)),n=>0) have the same distribution, we have that
Q (RZ, ) is uniquely determined.

Moreover, remembering that,

Q5,020 =g [ex (= [ 5 (" (5,0 ) a5 |

We have that Q is entirely determined by the ergodic distribution of the embedded
Markov chain and consequently that the Palm measure () is unique. By Proposition 11.5

of [Rob03], the distribution of 7 is expressed with @
We have, for every bounded function f,

E, [f(X*(0), 2°(0))] = E7 [f(X*(So)e™, Z*(So)0e™™)] ,

which uniquely determines the invariant distribution .
The proposition is proved. O

3.D Averaging principles for discrete models of plasticity

In this section, we present a general discrete model of plasticity, state the associated
averaging principle theorem and give a sketch of its proof. We will only point out the
differences with the proof of the main result of this paper, Theorem 29.

For this model of plasticity, the membrane potential X, the plasticity processes
Z and the synaptic weight I are integer-valued variables. This system is illustrated
in Section 7 of [ ] for calcium-based models. It amounts to represent these three
quantities X, Z and W as multiple of a “quantum” instead of a continuous variable. The
leaking mechanism in particular, the term corresponding to —7Y'(¢) d¢ in the continuous
model, Ye{X, Z, W} and v>0, in the SDEs, is represented by the fact that each quantum
leaves the system at a fixed rate .

The main advantage of this model is that simple analytical expressions of the
invariant distribution are available.
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Definition 51. The SDEs for the discrete model are

-

dX(t) = —N[,X(dt) + W(t—)N)\ (dt) —Njﬁx(dt),
dZ(t) = —Ni,z(dt) + BiNy(dt) + BoN7gx(dt),
$dQ(t) = —afy(t) dt+n.o(Z(t)) dt (3.51)
+n01(Z(t—=))NA(dt)+142(Z(t—))N1sx(dt), ae{p,d},
L dW(t) = —N[,Mw(dt)-i-ApN[,Qp (dt) — Adﬂ{w(t,)gAd}NLQd (dt),

where 3, , p are non-negative real numbers, By, ByeN¢and, for ae{p, d}, A.eN. The functions
Ng,; are assumed to be bounded by C,,.

For ae{p, d}, the function I of N; ¢ for Ge{X, X ,vZ, uW,Q,, 4}, defined by rela-
tion (3.6), is the identity function I(z)=z, zeR and N, is a Poisson process on R with
rate \. All associated Poisson processes are assumed to be independent.

Definition 52. For a fixed w, the process of the fast variables (X(t), Z*(t)) on NxN* of the
SDEs is the Markov process whose transition rates are given by, for (z, z)eNx N,

(z+w, z+B1) A, (x,2—1) vz,
(@,2) = { (x—1,2) x, - { (x—1,2+Bs) [ux.

Theorem 53 (Averaging Principle for a Discrete Model). If the assumptions of Definition 51
are verified, the family of scaled processes (W.(t)) associated to Relations (3.51) is converging
in distribution, as € goes to 0, to the cadlag integer-valued process (w(t)) satisfying the ODE

dw (t) = _NI,’yw (dt) +Ap./\/’[7wp (dt) _Ad]]-{w(tf)ZAd}NI,wd (dt), (3.52)
and, for ac{p, d},

d(;a (t) = —awn(t)+ foNé (Na,0(2)+Anq,1(2)+B(x)na2(2)) Iy (de, dz),

where 11, is the invariant distribution of the Markov process of Definition 52.

Proof. Again, we have to show that, on a fixed finite interval, the process (W (t)) is
bounded with high probability. A coupled process that stochastically bounds from
above the discrete process is also defined.

Definition 54. The process (X (t), Z(t), Q(t), W (t)) satisfies the following SDEs

dX(t) = =N, x(dt) + W(t—)Na(dt) =N} sx(dt),
dZ(t) = —N; . z(dt) + BINA(dt) + BoN gx(dt), (3.53)
dQ(t) = —af(t) dt+C, dt+CpNy(dt)+Cp N, gx(dt), '

dW(t) = AN, gldD),

where By, BoeN* and, for ag{p,d}, A,eN.
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It is not difficult to prove that this process is indeed a coupling that verifies the
relation W (t)<W (t), for all t=0 and that the process (17 (t)) is non-decreasing.
From the SDEs governing the scaled version of the coupled system, we obtain

t
E [Ws(t)—wo] < APE [J N—Lﬁa dS] <AptE |:SUPQE,p(5>]
0 P

s<t

< AptE lw0+0n Supf e—a(s—u) <du + 6./\/’,\/5(du)+€./\/}ﬁx/a(du)>}

s<t Jo

< Apt <w0+CO:L(1+A)+E Uot ﬁXE(u)} du)

< Ayt <w0+%(1+A)+>\6E Uot W(u) duD < D+D fIE [We(u)] du,

0

for all ¢t<T, for some constant D>0. Gronwall’s Lemma gives a uniform bound, with
respect to ¢,
E lsupwg(t)] =E[W.(T)]) < (D+wp)e"".
t<T
Using Markov inequality, we have then that, for any >0, the existence of K, and n,
such that n>n,, the inequality

P (SupWEn(t)éKo) >1-n

t<T

holds. We can then finish the proof in the same way as in Section 3.7. The tightness
property of the family of cadlag processes (W.(t)), e€(0,1) are proved with Aldous’
criterion, see Theorem VI1.4.5 of [JS87].

We have to prove the uniqueness of the solution of Relation (3.52) and the con-
vergence in distribution of the scaled process to the process w(t). For this, we need to
have some Lipschitz property on the limiting system, and finite first moments for the
invariant distribution of (X" (¢), Z*(t)). This is proved in Section 7 of [ | for the
case where Z is a one-dimensional process, the extension to multi-dimensional Z is
straightforward. O
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CHAPTER 4

ON THE SPONTANEOUS DYNAMICS OF SYNAPTIC WEIGHTS IN
STOCHASTIC MODELS WITH PAIR-BASED STDP

— ABSTRACT

We investigate spike-timing dependent plasticity (STPD) in the case of a synapse
connecting two neuronal cells. We develop a theoretical analysis of several STDP
rules using Markovian theory. In this context there are two different timescales,
fast neuronal activity and slower synaptic weight updates. Exploiting this timescale
separation, we derive the long-time limits of a single synaptic weight subject to STDP.
We show that the pairing model of presynaptic and postsynaptic spikes controls the
synaptic weight dynamics for small external input, on an excitatory synapse. This
result implies in particular that mean-field analysis of plasticity may miss some
important properties of STDP. Anti-Hebbian STDP favors the emergence of a stable
synaptic weight. In the case of an inhibitory synapse the pairing schemes matter
less, and we observe convergence of the synaptic weight to a non-null value only for
Hebbian STDP. We extensively study different asymptotic regimes for STDP rules,
raising interesting questions for future works on adaptative neuronal networks and,
more generally, on adaptative systems.

4.1 Introduction

Neuronal networks, through the dynamics of their connections, are able to store com-
plex patterns over long periods of time, and as such are good candidates for the
establishment of memory. In particular, the intensity W of the connection between two
neurons, the synaptic weight, is seen as an essential building block to explain learning
and memory formation [TDM14].

Synaptic plasticity (processes that can modify the synaptic weight) is a complex
mechanism [CMO08], but general principles have been inferred from experimental data
and used for a long time in computational models. Spike-timing dependent plasticity
(STDP) refers to plasticity processes that depend on the timing of presynaptic and
postsynaptic spiking activity [Fel12].

Experiments show that long-term synaptic plasticity is characterized by the coexis-
tence of two different timescales. Membrane potential and pre/postsynaptic interspike
intervals evolve on the order of several milliseconds, see [GK02b]. Synaptic weights
W change on a slower timescale ranging from seconds to minutes before observing an
effect of STDP protocols on the synaptic weights. The analysis of slow-fast limits for
a general class of STDP models is detailed in [ ; ; ]. Computational
models of synaptic plasticity have also used similar scaling principles, see [KGH99;
Rob99; KHO00; RBT00a].

In pair-based models, the synaptic weight updates depend only on At=t,4s — tpre
for a subset of instants of pre/postsynaptic spikes e/t post-

Hebbian STDP plasticity occurs when
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176 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

— a pre-post pairing, t,.<tpost leads to an increase of the synaptic weight value
(potentiation), which translates into AW >0;

— a post-pre pairing, t,ost<tpre, leads to a smaller synaptic weight (depression), and
therefore AW <0.

Hebbian STDP has been observed at many different synapses [BI98; Fel12] and is
extensively studied in computational models [KGH99; Rob99; KHO0; RBT00a; KGHO1;
RLS01; GK02a; BMG04; RA04; SJT07; GMH11].

Other types of polarity have been observed experimentally, they are often neglected
in theoretical studies of STDP. For example, Anti-Hebbian STDP follows the opposite
principles and has been observed experimentally in the striatum, see [FGV05; RL10].
Different types of STDP rules were analyzed in [Rob00; CF03; RA04; ZD07; RL10;
BK12].

In theoretical works, the system, in general, is reduced to a single neuron receiv-
ing a large number of excitatory inputs subject to STDP, leading to a Fokker-Plank
approach [RBT00a; RLS01; BMGO4].

The pre-/postsynaptic spike correlation function [KGH99; KGHO01; GK02a] is used
to study the influence of STDP with high correlated inputs. However, this method re-
lies on the assumption that all pairs of pre- and postsynaptic spikes impact the synap-
tic weight update. Several studies have questioned this hypothesis [ID03; MADO7;
MDGO08], and its influence on the synaptic weight dynamics has not been discussed in
theoretical works, except in [BMGO04].

Finally, most studies focus on excitatory inputs, whereas inhibitory synapses also
exhibit STDP [HNAO06; Fel12], but few theoretical works exist [L.S14].

Here we develop a theoretical study of a large class of rules, for a system with
two neurons and a single synapse. This simple setting is used to test the influence
of STDP on an excitatory and an inhibitory synapse, for three different classes of
pairing interactions leading to an extensive categorization of the different dynamics. We
question in particular if several interesting properties of the synaptic weight dynamics
are lost when using classical models with numerous excitatory inputs, leading to an
underestimation of the role of STDP in learning systems.

4.2 Theoretical analysis

Spiking neurons and Poisson processes

The spike train of the presynaptic neuron is represented by an homogeneous Poisson
process Ny=(tpren)1<n, Where (tprent1 — tpren)i<n 1S @ sequence of ii.d. exponential
random variables with parameter . The quantity N,(a,b) denotes the number of
(tpre.n) in the interval [a, b], in particular,

P (M(t, t+ dt);ﬁO) =\ dt+o(dt).

We define a stochastic process (X (t)) following leaky-integrate dynamics:
a. It decays exponentially to 0 with a fixed exponential decay, set to 1.

b. It is incremented by the synaptic weight W >0 at each presynaptic spike, i.e. at

each jump of N,.
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The firing mechanism of the postsynaptic neuron is driven by an activation function
B, when X is z, the output neuron fires at rate 3(z). The sequence of instants of
postsynaptic spikes (tpost,n) is @ point process N x on R, such that

P (NM (t,t+ dt);éO’ X(t—)=x> — () dt+o(dt).

The notation f(t—) is the left-limit of f at ¢.

For simplicity, we chose to differentiate between excitatory and inhibitory synapses
at the level of the activation function, instead of allowing for negative W. Indeed, for
an excitatory synapse, the activation function §(z)=v+/z is used, v is the rate of the
external input to the postsynaptic neuron, it models external noise. For inhibitory
synapses, we consider f(x)=max(v—pfz,0). A linear activation function has been
used, mainly to enable explicit analytical computations, and for comparison with other
computational studies with similar hypotheses, see [KGH99].

Pair-based STDP rules

1/m

At = tpost - tpre

Pre

Post
)
>
)
Z
o

Figure 4.1: Synaptic plasticity kernels for pair-based rules.

Example of an exponential plasticity curve as a function of At, with different
parameters (top left). Examples of pre- and postsynaptic pairings for all-to-all (PA,
bottom left), nearest neighbor symmetric (PNS, top right) and nearest neighbor
symmetric reduced (PNR, bottom right) STDPs.

We study an important implementation of STDP referred to as pair-based rules.
For a pair (¢, tpost) Of instants of pre- and postsynaptic spikes, the synaptic weight
update AW depends only on At=t,.—tpre, as illustrated in Figure 4.1.

w
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An important choice for the model is to decide which pairings to take into account
in the plasticity update. A large choice of different schemes have been analyzed in the
literature [MDGO8]. We have chosen to focus on three versions, that are summarized
in Figure 4.1:

— All-to-all pair-based model (PA): all pairs of spikes are taken into account in the
synaptic plasticity rule.

— Nearest neighbor symmetric model (PNS): whenever one neuron spikes, the synaptic
weight is updated by only taking into account the last spike of the other neuron.

— Nearest neighbor symmetric reduced model (PNR): only consecutive pairs of spikes
are used to update the synaptic weight.

The synaptic weight update is therefore composed of the sum over relevant spikes,
of a kernel ®(At) known as the plasticity curve, here we chose an exponential kernel,
given by,

B(AL) = Byexp(1eAt)  At<0,
By exp(—mAt)  At>0.

where By, BoeR represents the amplitude of the STDP and ~,, 7, > 0 the characteristic
time of interaction, see Figure 4.1 (top left).

All-to-all model (PA)

The all-to-all pair-based model supposes that all pairs of spikes are taken into account
in the synaptic plasticity rule. The synaptic weight is updated at each postsynaptic
spike occurring at time ¢, by taking into account all presynaptic spikes before time

tpost:
AVV(tpost> = DB Z e (tpost—timen) — leA<tpost)

tpre,n<tpost
and conversely,
—¥2(tpre—tpost,n) __ PA
AW (tpre) = By Z e 2(tpre—tpost,n) _ M (tore)
tpost,n<tprc

The processes (ZFA(t)), i=1, 2 can be expressed as solutions of the stochastic differential
equations,

AdZYA(t) = =1 Z3 2 () dt + BoNp x(dt),

they are two shot-noise processes, see [GI’60; ].
The synaptic weight updates correspond to the evaluation of (ZF*(t)) at jumps of
the point process N x for postsynaptic activity, and similarly for (Z}(¢)) with A\,

dWPA <t> = 2 ZQPA (tpre:n_>5tprc,n

tpre,ngt

{dzfA(t) = — 7 ZPA () dt + ByN(db),

+ Z leA (tpost,n_>5tpost,na

tposhngt
where §, is the Dirac mass at a. Equivalently,

AWPA(t) = ZVA(t—)Ny(dt) + ZPA(t—) N x (dt).

OO
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Nearest-neighbor symmetric model (PNS)

In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic
weight is updated by only taking into account the last spike of the other neuron, as
can be seen in Figure 4.1 (top right). If the presynaptic neuron fires at time ¢, the
contribution to the plasticity kernel is ®(t,..—tp0st) , Where . is the last postsynaptic
spike before ¢, and similarly for postsynaptic spikes.

The nearest neighbor symmetric rule leads to,

AZPNS(t) = —mZPNS(t) dt
+(B1 — Z7N5(t=))Na(dt),
dZENS(t) = —4ZENS(t) dt

+(By — Zy"5(t=)))Ns x (dt).
At each presynaptic spike, (ZTN5(1)), resp. (ZYN3(t)), is reset to By, resp. Bs.

Nearest-neighbor symmetric reduced model (PNR)

Finally, for the nearest neighbor symmetric reduced scheme, only consecutive pairs of spikes
are used to update the synaptic weight. The synaptic weight is updated at presynaptic
spike time ¢, only if there are no presynaptic spikes since the last postsynaptic spike.
And similarly for postsynaptic spike times. See Figure 4.1 (bottom right).

This rule leads to (ZFN®(t)), i=1, 2, solutions of

(dZPNR(t) = = ZTNR(t) dt
+(B1 — Z{NR(t—))Na(dt)
=27 (t=)) N x (dt),
dZ3NR(t) = —ZyNR(t)dt
+(By — 23N (1)) N x (dt)
—ZyNR (t—)N(dt).

\

A general formulation for pair-based rules with exponential kernels

All these pair-based rules can be represented by a system of the form

(AX(t) = —X(t)dt + W (t—)Ny(dt),
dzi(t) = -—mzi(t)dt
H(By — K112y (t—))Na(dt)
— K127, (t—)Np x(dt),
AZs(t) = —72Zs(t) dt
+(By—Ko27Z5(t—)) N3 x (dt)
— K51 Z5(t—)N,\(dt),
dW(t) = Zi(t—)Ns x(dt) + Zo(t—)Ny(dt)

(4.1)

\

where Y1, ’)/2>0, Bl, BQER, K=<Kw>€{0, ]_}2><2.

wﬁ-
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For the three pair-based STDP rules detailed, we have,

PA_ 0 0 PNS__ 10 PNR__ 11
K_(()O’K_Ol’K_ll'

See Supplemental Material for Figure 4.5 at [URL will be inserted by publisher] for
an example of dynamics for each pairing scheme.

A slow-fast system

We consider that the processes (X (t)) and (Z,(t), Z»(t)) evolve on a fast time scale t—t/c
for some small e>0. The increments of the variable W are scaled with the parameter ¢,
(We(t)) is described as the slow process.

For ¢ small, on a short time interval, the slow process (W.(t)) is almost constant,
and, due to its faster dynamics, the process (X.(t), Z1 .(t), Z2.(t)) is “almost” at its equi-
librium distribution associated to the current value of W (¢)~w. This corresponds to the
equilibrium of the process (X"(t), Z}’(t), Z3'(t)), where W (t)=w is at a constant value.
Classical results on Markov systems imply that there is unique stationary distribution
11X on R, xR?, for simplicity we will denote IIPX=ITX", see [ ]

Using averaging principle arguments, the asymptotic dynamic of (IW.(¢)) is given
by the ordinary differential equation,

d
d—lzj (t) = JRJ, . ()\ZQ—FB(:L')zl)HE(t) (dz,dz)

= B, [A22+B(X) Z1] = f*(w(1)).

(4.2)

A more rigorous development of this result is given in Supplemental Material 4.B
at [URL will be inserted by publisher], as is a comparison with computational mod-
els in Supplemental Material 4.C. Five different asymptotic behaviors for w, solu-
tion of (4.2) are defined using analytical asymptotic properties in Table 4.1. We de-
fine numerical approximates of these possible behaviors, depending on the values of
Pro=P (W.(t)= + ©), po=P (W.(t)=0) and pstable=1—p+0—po, and a fixed parameters
Dif, See Appendix 4.A.

4.3 Results

In the following section, we study the dynamics of the synaptic weight, using analytical
computations and numerical simulations. We investigate the influence of B; and B,
because they represent biologically relevant parameters. Indeed most experimental
studies only focus on the polarity of STDP, i.e the signs of B; and B, in the present
model. In particular, we will focus on four different types of STDP classified as follow,
Hebbian STDP (B,>0, By<0), anti-Hebbian STDP (B,<0, By>0), symmetric LTD (S-
LTD, B;<0, B,<0) and symmetric LTP (S5-LTP, B;>0, B,>0), which have all been
shown to exist experimentally [Fel12]. We also choose to study the relative importance
of the external firing rate v, compared to other rate-related variables )\, 3. Accordingly,
analytical expressions are given for general parameters, while simulations are always
realized with 7, =v,=8=A=1. See Supplemental Material 4.D at [URL will be inserted
by publisher] for proofs and lengthy analytical expressions.

A A
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; — DP+oo < Pbif

LTD (long-term depression) Vv, tEIPOO w(t) =0 p(fo > Dpif
Pstable < Phbif

_ i — P+ = Poif

LTP (long-term potentiation) Vo, tEToo w(t) =+ Ef < pbifl
Dstable < Pbif

UFP bl fixed point FWeq, Vo <Weq; tETww(t) =0 D+oo = Dbif
(unstable fixed poin and Ywo>weq, lim w(t) = 40 Po = Prit
t—-+a0 Dstable < Pbif

i — P+oo < Dbif

SFP (stable fixed point) Heq, V1w, tEIPoo w(t) = weq Ef < pbifl

Dstable = Dbif

MFP (multiple fixed points) Other behaviors Complementary set

Table 4.1: Different behaviors, theoretical definitions and numerical estimations.

In this framework, we study the asymptotic behavior of the dynamical system (4.2)
for the three pair-based rules.

We will show that the synaptic weight w(t¢) usually exhibits one of three different
asymptotic behaviors, which all have a biological interpretation:

— Convergence of w(t) towards 0, which corresponds the disconnection (or pruning)
of the synapse: the presynaptic neuron loses its ability to influence the postsy-
naptic neuron.

— Divergence of w(t) to infinity, leading to a perfect coupling between the pre- and
postsynaptic neurons, through an unstable system which, in a biological system,
will be stopped by saturation mechanisms.

— Convergence to a non null value w,,, resulting in self-sustained activity, i.e., pre-
and postsynaptic activities coupled with STDP are sufficient to have a bounded
stable synaptic weight.

Stability and divergence depends on the polarity of STDP

Starting with the all-to-all scheme for an excitatory synapse, i.e. f(z)=v+fz, we have,

D00y = P ) = AP AP = AP (1—uP)

A P
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(a) Excitatory synapse, PA, v =0

Bifurcation

A (—0.8,1.0)

(b) Excitatory synapse, PA, v =1

Bifurcation
A (—0.8,1.0)

-1 By 1
B LTD W UFP --—- AT =0 £=0.02
N LTP WM MFP  —— APA=0 £=0.01
BN SFP £=0.005

Figure 4.2: All-to-all pair-based STDP for an excitatory synapse.

(a) Dynamics of the synaptic weight as a function of B; and B, for v=0. (left) Classification
based on numerical simulations for different asymptotic dynamics of the synaptic weights (see
different colors). Theoretical boundaries are also drawn (see legend for their expressions).
(right) Two examples of temporal evolutions of the synaptic weights, for different values of .
(b) Same as (a) for v=1.

(r1=r2=B=A=1)

with

B, B
ap o (22,

T2
e B, B B
APA deb 332 (—1+—2+—1) and
7o Al+m)
WA def AgA / Alle'

The signs of A and A determine the asymptotic behavior of w. We study the impact
of By and B, with, or without, external input rate » on the dynamics in Figure 4.2.

If =0, then w™ =0. Without external input v, the synaptic weights cannot converge
to a positive stable solution.

AWW—M‘AJ'L‘M
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— If AT%<0, (w(t)) converges to 0, as shown by the blue region of Figure 4.2 (a), with
some examples of dynamics at point A.

— If AP*>0, (w(t)) diverges to +0, the red region of Figure 4.2 (a) and example B.

If v>0, w™ is anon-null fixed point. This gives two new behaviors in the bifurcation
map, see Figure 4.2 (b).

— If AT <0 and A{*>0, the fixed point is stable (green region) and all simulations
converge to w™ independently of the initial point. See example A.

— If A¥>0and A{* <0, the fixed point is unstable (orange region), example B shows
that in that case, the dynamics depends on the initial value of synaptic weight. It
diverges to +o if starting above w™, and converges to 0 otherwise.

Influence of pairing scheme
Nearest neighbor symmetric STDP

For nearest neighbor symmetric STDP with g(x)=v+fz, the associated dynamical
system is given by,

d e
%(t) _ fPNS(w) def. AENS_’_AIIDNSw_’_ASNShPNS(w)7
with,
= + B,
0 /\—i-”)/l ! V49 2
1+
APNS d;f. )\ B APNS:/\B
and

BN (1) - o, Lh e (1 —exp (—m
) JO " (1 exp (—Bw (1-¢*7))) ds
5\ fo (1= exp (—fuw (1—e7) ) ds)) ar -

[o's) V+72'

The asymptotic behavior of (w(t)) can be analyzed rigorously in this case.
If v=0, let

1+ A
APNS def. PNS"(y_\p( —— "2 p . 7p
3 S (0)=A8 1A, ot b

— If ANS<0 and AINS<(, (w(t)) converges to 0 in finite time (blue).

— If ATNS>0 and ASN®>0, The system diverges to infinity when both parameters are
positive (red).

— If A™NS<( and AENS>0), a stable fixed point w™® exists (green), see example A.

NMM‘M‘AM
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(a) Excitatory synapse, PNS, v =0

Bifurcation

A (—0.8,1.0) B (0.8,—1.0)

(b) Excitatory synapse, PNR, v =0

Bifurcation
A (—0.85,1.0) B (0.85,—1.0)

(c) Excitatory synapse, PNR, v =1

Bifurcation
A (—0.85,1.0) B (0.85, —1.0)

B LTD W UFP —— AN £=0.02
e LTP Bl MEFP o ... Agsto — £=0.01
B SFP £=0.005

Figure 4.3: Different pairing schemes leads to diverse dynamics.

(a) Dynamics of the synaptic weight as a function of By and B, for nearest neighbor symmetric
STDP and v=0. (left) Classification based on numerical simulations for different asymptotic
dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn
(see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic
weights, for different values of e. (b) Same as (a) for nearest neighbor symmetric reduced STDP
and v=0. (c) Same as (a) for nearest neighbor symmetric reduced STDP and v=0.2.
(m=12=B=A=1)

WW'\A—._...MW
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— If A™NS>0 and AEN®<0, an unstable fixed point w™® exists (orange), example B.

We prove the existence of the fixed point w™®, provide a numerical estimation,
and compute an approximation of w"™™* when w~0, Figure 4.3(a) shows a comparison
with numerical experiments.

The picture is similar for the case v>0, with slightly different conditions, where the
same dynamics are verified except that AJN°<0 is replaced by A{N<0 (see Figure 4.6
Supplemental Material at [URL will be inserted by publisher] for a comparison).

Discussion. Nearest neighbor symmetric STDP has significant differences with the
all-to-all scheme. First, a positive stable fixed point may exist in the absence of external
noise. The condition on A5 is a condition on B; only: if B;<0 the system either
converges to 0 or to a positive fixed point. The all-to-all case does not exhibit such a
simple behavior, because A and A both depend on B; and B.

Nearest neighbor symmetric reduced STDP

A theoretical study of (w(t)) solution of (4.2) with §(z)=v+pz is possible, but more
involved than for PA and PNS. Computer simulations were done using this scheme,
and the results are illustrated in Figure 4.3(b) and (c).

For v=0, there exists a (narrow) range of parameters in the Hebbian region (bottom
right) where a stable fixed point occurs, see example B in Figure 4.3(b). Symmetrically,
an unstable fixed point seems to exist in the anti-Hebbian region (top left) and example
A.

For v>0, a second fixed point appears leading to more complex behaviors charac-
terized by the presence of a stable and an unstable fixed point at the same time Fig-
ure 4.3(c). If the stable fixed point is lower than the unstable one, see example A and
(top left) in Figure 4.3(c), the synaptic weight either converges to a non null value or
diverges to infinity. For Hebbian parameters (bottom right), the situation is reversed,
see example B in Figure 4.3(c). The spectrum of values with this complex behavior
narrows when v is increasing. In particular, for large values of v, only a perfect balance
in the parameters may lead to other behaviors than whole depression or potentiation.
See Figure 4.7 in Supplemental Material at [URL will be inserted by publisher] for
examples of the influence of v on the dynamics.

Discussion. There are several differences of interest with the two other STDP pair-based
rules for an excitatory synapse. First, for all-to-all and nearest neighbor symmetric
pairings at an excitatory synapse, the stable fixed point only appears for anti-Hebbian
parameters, whereas an unstable one exists for Hebbian STDP. With nearest neighbor
symmetric reduced STDP, we have numerically shown that a more complex behavior
with several fixed points may occur. Second, the nearest neighbor symmetric reduced
STDP needs an almost exact balance of the parameters to enable convergence of the
system toward a fixed point.

Table 4.2 gathers all results for an excitatory synapse as a function of the different
types of biologically-relevant STDPs.

All-to-all STDP with an inhibitory synapse

We now study the dynamics (4.2) of the synaptic weight for an inhibitory synapse, i.e.
when §(z)=(v—p3z)".

A s h o
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v Symmetric LTD Symmetric LTP Hebbian Anti-Hebbian
LTD if AgA<O LTD if AgA<O
=0 LTD LTP
LTP if AEA>O LTP if AgA>O
PA LTD if AEA<O LTD if A¥A<0
>0 LTD LTP LTP if APA>0 LTP if AF*>0
UFP if not SFP if not
LTP if AgNS>O LTD if AgNS<()
=0 LTD LTP
UFP if not SFP if not
PNS
LTP if AEN5>O LTD if AENS<O
>0 LTD LTP
UFP if not SFP if not
PNR* =0 LTD LTP LTD/LTP/SFP LID/LTP/UFP
>0 LTD LTP LTD/LTP/MFP LTD/LTP/MFP

Table 4.2: Different pairing schemes lead to diverse dynamics for an excitatory
synapse.

(S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and
T="72=B=A=1).

We restrict our study to two cases.
For small w,

D04y~ P () = APA— AP ofw)

dt
= — AP (w+w™) +o(w).

with Agfl defined before.
When w > v/, we have

0= e ()

APAI def. {V])\Jr’yl C()\)BU/
5 (A +7) A+y+1)

with

pear det B (| B2 | (A7) (A + 71+1) Y
v \|B1 Y2 (A+1) ’

PAI def. @ &

Bi| By’

Using arguments on the monotony of the functionals, it should be possible to prove
the stability properties, only using the two extreme cases defined above. In particular,
the two relevant parameters are A} and Bs.

SN, W NN
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(a) Inhibitory synapse, PA, v =1

Bifurcation

A (-1.0,0.5) B (1.0,—0.5)

o /7"
. ﬁ ~

(b) Inhibitory synapse, PNS, v =1

Bifurcation

A (~1.0,0.5) B (1.0, —0.5)

(¢) Inhibitory synapse, PNR, v =1

Bifurcation
A (-1.0,0.5) B (1.0,—0.5)

B 7D e UFP  —— AR =0 £=0.02
BN LTP EEE MFP - By=0 £=0.01
B SFP ———m ANS =0 £=0.005

Figure 4.4: Pair-based STDP for an inhibitory synapse.

(a) Dynamics of the synaptic weight as a function of B, and B for all-to-all STDP and v=1.
(left) Classification based on numerical simulations for different asymptotic dynamics of the
synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for
their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for
different values of €. (b) Same as (a) for nearest neighbor symmetric STDP and v=1. (c) Same
as (a) for nearest neighbor symmetric reduced STDP and v=1.

(Mm="2=F=A=1)
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Symmetric LID Symmetric LTP Hebbian Anti-Hebbian

LTD if A5A<O LTP if AEA>O
SFP if not UFP if not

PA* LTD LTP

PNS/PNR* LTD LTP LTD/SFP LTP/UFP

Table 4.3: Different pairing schemes lead to diverse dynamics for an inhibitory
synapse.

(S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and
="72=B=A=1).

— For B,>0 and A{*>0, the synaptic weight diverges to infinity (in red).
— For By<0 and A{*<0, it converges to 0 in finite time (in blue).
— For By>0 and AJ*<0, there is an unstable fixed point (orange, example A).

— For By<0 and A{*>0, the system exhibits a stable equilibrium (green, example B).

We note here an inversion with the properties observed for the excitatory synapse,
where only anti-Hebbian STDP led to a stable fixed point, compared to the inhibitory
case where only Hebbian STDP elicits this type of behavior.

This analysis is completed with the other schemes in Figure 4.4(b) for PNS and
Figure 4.4(c) for PNR. The dynamics are similar to the all-to-all case for this range of
parameters, only the values of the fixed points seems to change (compare B for the three
cases).

All these behaviors are gathered in Table 4.3.

It is striking that the pairing scheme does not seem to have a decisive impact on
the dynamics for an inhibitory synapse, considering the important impact displayed
for an excitatory synapse.

4.4 Conclusion

We have developed a simple and rigorous analysis of synaptic weight dynamics via a
slow-fast approximation and numerical simulations. For an excitatory synapse, anti-
Hebbian STDP can lead to a stable fixed point, with some slight variations depending
on the pairing scheme used. For an inhibitory synapse, numerical arguments showed
that all schemes were similar, with the existence of a stable fixed point for Hebbian
STDP.

This study investigates rigorously the synaptic weight dynamics for several pairing
schemes, for all polarities of STDP, and for excitatory/inhibitory inputs. As such, it
extends and complete previous results that only focus on all-to-all Hebbian STDP at
excitatory synapses.

The nervous system is characterized by its diversity, and in particular, by the
existence of many types of neurons which display different properties. Several models
in theoretical neuroscience consider neurons that integrate a large quantity of random

oA P
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inputs approximated by a Brownian diffusion and the postsynaptic spikes result mainly
from noise and not from correlated presynaptic inputs [RLS01; RBTOOb]. When the
impact of the presynaptic spikes is lost in the external noise (consistent with a large
number of external uncorrelated inputs), pairing schemes do not influence the type
of dynamics observed see [BMGO04] for example. These assumptions often lead to a
mean-field formulation where the synaptic weight dynamics is essentially driven by
the mean global synaptic weight, see [BMGO04; BA16].

However, neurons, in the striatum [MDCO01; Pid+11] or in the cortex [AG00], need
short bursts of presynaptic concentrated activity for their membrane potential to be
depolarized enough to trigger spikes. In particular, pattern learning tasks, where a set
of highly correlated inputs is repeated and learn to trigger/or not trigger a postsynaptic
spike, are a good example of systems where presynaptic inputs cannot be reduced to a
diffusive process. In this article, we have focused on similar network dynamics, where
the postsynaptic spike train is determined by the presynaptic spike train, and not just
a diffusive process. When considering such dynamics, as we have seen, the different
STDP schemes have an important impact. A potential mean-field approximation in this
context seems therefore to be unlikely.

It is not a surprise that this regime of activity leads to diverse interesting behaviors
for the synaptic weight dynamics, where the asymptotic behavior strongly depends on
the polarity of the STDP curve and the pairing scheme. We have shown, using analytical
and numerical arguments, that several key parameters need to be taken into account
while implementing STDP in networks with correlated dynamics, and in particular in
recurrent networks [BGH07; GBV10; TAG18]. This conclusion should also apply to
more complex pairing schemes such as triplets rules [PG06b; BA16].

Theoretical studies of plasticity in networks are quite scarce. Recently, [Loc17]
studies short-term plasticity in a large network, and [Luc+16] the noise-enhanced cou-
pling of two excitatory neurons subject to STDP, which can be extended to the formation
of multiclusters in adaptive networks [BSY19]. The need for a general theory is great
and this work is a first step in developing a rigorous framework to investigate the role
of STDP in network dynamics
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Appendix

4. A Computer methods

For each set of parameters, we have run several simulations, with different initial
weight values uniformly taken in [0, wmax|. We have tested the dynamics of the synaptic
weight for the different pairing schemes defined before for a wide range of parameters.
Simulations have been done using Python 3.X for the simple network of a presynaptic
and a postsynaptic neuron. We used a discrete Euler scheme for the dynamics of the
membrane potential X and the plasticity variables Z; and Z,. Whenever the synaptic
weight was either 0 or reached the maximal value wp,x the dynamics was stopped, and
the synaptic weight state recorded.

To compare different dynamics, synapses and pairing schemes, we perform, for
each set of parameters, independent simulations and from this array of dynamics we
compute several variables:

— The probability of diverging to infinity, p, =P (W.(t)= + o), approximated by
the proportion of simulations where the synaptic weight goes above wmax.

— The probability of converging to 0, po=P (W.(¢)=0), approximated by the propor-
tion of simulations whose synaptic weight goes below 0.

— The probability to have a stable fixed point defined by the complementary prob-
ablhty Pstable = 1 —P+owo—Po-

While varying B; and B,, we simulated P=500 neuronal networks for each condi-
tion with d¢=0.0005. We also plot the temporal dynamics for specific values of B; and
By, typically used P=50 simulations for each scaling ¢ with d¢=0.0002. The following
parameters are fixed in the simulations v, =7,=#=A=1.

Simulations were run on the INRIA CLEPS cluster and HPC resources
from GENCI-IDRIS (Grant 2022-A0100612385), using GNU parallel (Tange, O.
(2020, May 22). GNU Parallel 20200522 (‘Kraftwerk’). Zenodo. https
://doi.org/10.5281 /zenodo.3841377).

4B Slow-fast approximations, averaging principles

We have the scaled system, for >0,

(AX.(t) = —1/eX.(t)dt + W.(t—)Ny(dt),
AdZ1:(t) = -nZ1e(t) dt/e + (Br — K11 Z16(t=))Nye(dt)
) — K127, (t—)Ngje x.(dt), 43)
dZQ,s(t) = —72Z2,a(t) di/€ + (B2—K2,222,s(t—))Nﬁ/e,X5(dt)
— K512 (t—)Nye(dt),
(AW (t) = Z1o(t—=)eNg/e x (dt) + Zo o (t—)eNy-(di)

where v1,72>0, By, BoeR, K=(K,;, i, je{1, 2})e{0, 1}**2.
Approximations of (W.(t)) when ¢ is small are discussed and investigated with ad
hoc methods. The corresponding scaling results, known as separation of timescales,
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are routinely used in approximations in mathematical models of computational neuro-
science, for example [KGH99].

We first need to define the processes (X™(t), Z}"(t), Z¥'(t)) which follow the fast
processes dynamics with a constant synaptic weight w and prove that a unique invariant
distribution exists for the associated dynamics. This corresponds to the equilibrium of
the process (X" (t), Z}’(t), Z3’(t)) such that

dX¥(t) = —X"(t)dt + wN,(dt),
dZy(t) = —yZpPt)dt + (By — K112} (t—)) N, (dt)
{ — K127 (t—)Ng xo (dt), (4.4)
dzy(t) = —yZ¥t)dt + (By — K22 Z¥ (t—)) N3 xw (dt)
— K51 ZY (t—)N,(de).

This is the purpose of Proposition 55.

Proposition 55 (Equilibrium of fast processes). For K=(K;,1,je{1,2})e{0,1}**2,
Y1, 72>0, By, BoeR, and each w=0, the Markov process (X™(t), Z{"(t), Zy'(t)) solution of (4.4)
has a unique stationary distribution TIX on R, xR?.

Proof. See Proposition 25 of [ I O

Theorem 56 (Averaging principle). There exists Sye(0, +00] such that, when € goes to 0, the
process (W.(t),t<Sy) is converging in distribution to (w(t), t<Sy), solution of the equation

(j;:(t) = By, [N+ B(X) 7], (4.5)

where 11 is defined in Proposition 55.

Proof. See [ ]Jand [ ]. O

4.C Comparison to classical computational models

In this section, we compare averaging principles for STDP rules leading to Relation (4.5)
with the results of [KGH99] in the all-to-all pair-based scheme.

The asymptotic behavior of the synaptic weight dynamics, Relation (4) of [KGH99],
is a consequence of a similar slow-fast argument,

~

To= [ dentsnas (4.6)

—00

where,

~

— ®(s) represents the STDP curve;

— J(s,t)=<S'(t+s)S5%(t)>, the correlation between the spike trains.
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The quantity (- - -) is defined in terms of temporal and ensemble averages, (- - -) is the
ensemble average and -~ the temporal average over the spike trains.
In our setting, Theorem 56 gives the following equation,

dw

1 O = By, DZ+S(X)2,

with o
®(t) = Byexp(—71t)Li=oy + B2 exp(y2t) Liz<o}-

We have, using simple calculus,

0
)\EHPA() [Z5] = f By eXp(%T)/\EHPA() [5(z)] dr
w(t — 0 w(t

We denote by I3, ,(7) the rate of having a post-pre pairing with delay 7 at time ¢. For
the post-pre pairing, we can consider that IT}2,, ,(7) does not depend on 7 and that it is
just equal to the product of both rates, i.e there is no causality, and

Hg‘:u(ﬂ = AEpea [B(2)].

w(t)

We easily conclude that,

0
)\EHPA(> [Z,] = J O(1)I52, ,(7) dr,
w(t —o0 ’

with IT5A, | (1) ~ <S1(t+71)52(t)>.
Similarly, we have

EHZA(” [B(X)Zl] = EHEJA@) [ 2 By eXp(—% (tpost - tpre))B(X)]
tpre<tpost

We denote by I, ,(7) the rate of having a pre-post pairing with delay 7 at time ¢.
For the pre-post pairing, this quantity depends on 7 because spikes of the presynaptic
neuron influence the spiking of the postsynaptic one, so we have, by using the fact that
[T is the invariant distribution,

+00
EHI;A@) Z By eXp(_% (tpost - tpre>)5(X)] = J By eXp(_'YlT)HlfﬁQ,t(ﬂ dr.
tpre <tpost 0

See SM2 of | ], hence

Eges [B(X)Z)] = J +wq>(7)nlfﬁ27t(r) dr,

w(t) 0

with T, (1) ~ <S'(t)S?(t+7)>. This shows the equivalence between [KGH99] and
our result for the all-to-all pair-based STDP rules.

PO W UGN
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4.D Proofs

All-to-all STDP at an excitatory synapse

We prove that,
By, [M2+8(X)Z1] = AP+ A = AP (w—w™) .

where,

B, B B, B B
APA — ) (1+2) AP = gx2 (1+2+ . >
Y1 e Moo A(l+m)

Proof. First, it is easy to show that,

B B, . B
E [ZfA’“’] "L and E [Z;’A’“’] — 2 BN
71 Y2 Y2

Moreover, denoting (Y (t))=(X"(t)Z,~"(t)), we get
AY® () = —(147)Y(t) dt + (waA’w(t—)JrBle(t—) + wBl> Ni(dt),

by integrating this ODE on |0, ¢] and taking the expected value, we obtain

E[X“’ZfA’w] _ME [ZfA’“’] PABE[X"] +AwB, ( X ) .

_|_
L4+m 7o 4

Nearest neighbor symmetric STDP at an excitatory synapse

Estimation of f*N

Eyrss [AZo+5(X)Z1] = AP+ AT w+ ATh™N (w)

with,
A A 1+
ms_ YA p o VA p AN g
A7 v+, 1+ X4+7

By, AANS=\B,,
and,

BN (1) — 7, fR e <1 ~exp <_VT_A [[0-ex (< =) as

0

5\ f (1= exp (B (1—¢ ) ¢*)) ds)> ar——"

0 V+’72'

For the proof, see Section 3.2 [ I
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Dynamics of w

We start with some calculations for A™NS of Section 4.3.

hPNS

Lemma 57. is a convex function, and,

ABye
RENS () — 0, RPNS( o) — 1— v ’ RENS () —
(0) (+0) v+7s (0) (v+72)?

Proof. We compute,

BN (1) — )‘B%J o) UT(leS_T) exp (—pw (1—e*"7)) ds
R4 0

+ f) (1—e ) ¢ exp (B (1) ) ds)

0

exp (—/\ [[1-es (- (1o asa fo (1— exp (— B (1) ) ds) ar.

0 0
We have h/(w) is an increasing function in w, so h(w) is convex. O
The system

dw
dt
has the following dynamics.

(£) = APNS L ATNS w4 ADNSPNS ()

v LTD LTP  STABLE FP UNSTABLE FP

0  ANS<0 APNS>0  APNS<0 AENS>(0
APNS<( APNS-(  APNSS( AMNS<(
>0 ANS<0 ANS>0  APNS<O APNS>()
ANS<Q ANS>  APNS»( AMNS <0

Table 4.4: Bifurcations parameters for the nearest neighbor symmetric scheme.

where . \
+ /
Bi+—=By | = f™N5(0), .
1+)\+’}/1 ! Y2 2) f () 0

AN = A\ <

Proof.
Casev =0
We have fPN5(0) = 0 and lim,,, o, fTN°(w) = sign(AY™N5)xc0. We need to look then

at the sign of f™N%'(0) = AENS,

A e Arnme



STOCHASTIC MODELS WITH PAIR-BASED STDP 195

If AP™NS and AFNS are of the same sign, fI™° has no positive roots. Therefore, if
ANS>( and ANS>0, we have lim,_, ., w(t) = +o0. Reciprocally, if AT™N>0and AIN°<0,
we have lim,;_,, , w(t) = 0.

If ATNS and AI™S are not of the same sign, fI° has a unique positive root w™.
Then, if ATNS<0 and AINS>0, w™ is a stable fixed point and A'™5>0 and AFN®<0), it is
an unstable fixed point.

Casev >0

We have f™5(0) = APNS and lim,,, o, f™N(w) = sign(A™NS)x o0

Similarly as for v=0, if ATN® and A'™® are not of the same sign, f™° has a unique
positive root w™®, following the convexity of fP™°. Then, if AfN>0 and ATNS<(0, ™5
is a stable fixed point and ASN5<0 and APN°>0, it is an unstable fixed point.

It is slightly more complex for the other cases. We will focus on the case, AHN>0
and APN5>(0. We have that fPN5(0) > 0 and that lim,_, .o f7"(w) = +o0. As fPNSis
convex, two cases are possible. Either NS has no positive root, and in that case, it
is easy to see that lim, , ., w(t) = +o0. However, it is also possible that fPN° has two
positive roots and in that case it would lead to more complex dynamics. we just need
to look at fPN'(0) and show that it is positive to prove that this case does not happen.

AFNS>( leads to a first inequality,

A
B> -B, >
VE72
We can then say that,
A3 1+ A3
PNS/ PNS | 4PNS 2 V2
0) =A,""+A = B\ +
f ( ) 1 2 (V—f—’}/g)Q 1 51_{_)\_’_71 2(V+’)/2>2
A
> —B,\3 (>\+'71) 1+1/\+-i\71 _wj% _ _Bz)\ﬂAV+)\2V+’71V+7172 + vy =0
V+2 (v+72)2(1+A+7)
The same arguments are true for the other case. O

Approximation for w small

We have the following expansion for w small,

A 1+ v+ApPw
PNS(1) = U B~ A NGwB) ——— 4 ABy— P ).
S w) =v "Ny pu " A+ % voF v+ A Bw o(w)

Leading to the following differential system,

dw a™Sw ()2 4+ bPNSw(t) + NS
E(t) = (U))(t) _ wPNS( ) + O(w(t))a
approx

where,

WJ\J\W\J
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JNS _ g NBAH(14A) pns B vA?B B /\5(1+/\)(72+V)+BQA,

T Ty D e W W)
NS PA(RtY) v pNs 2tV
C _BIW+32§ andwapprox—— )\6 .
Proof.
1+
PNS
=vB +A\BwB
[y =v Do TR T,
—i—)\BQ—)\vgBQJ exp (—7’ (72+1/+)\6w)> dr+o(w).
Ry

[]

Therefore, if ,
APNS _ pPNS? _ 4 PNS PNS )

PNS

w0/

we have an analytical expression for the fixed points of the dynamics w

s _ DN 4 /= VAP

w0 Q(IPNS

Nearest neighbor symmetric reduced STDP at an excitatory synapse

To study the invariant distribution, we need to use a different formulation of the nearest
reduced symmetric rule.
For w=>0, we can define (X (t), T} N*, T3 N} (1)), the solution of the SDEs,

dX™(t) = —X"(t) dt + wN,(d?),
AT (1) = de=T7 (=) Na(dh), (4.7)
dTQPNR,w (t) _ dt_TQPNR,w (t—) N@Xw (dt) .

and,

dw

7 = (W) = By [Ao+8(X) 21]
= EHZI\(% [1{T1<T2}B15(X) exp(—’lel)

+ ]1{T2<T1}B2>\ exp(—’yng)]

All-to-all STDP at an inhibitory synapse

Definition 58. We define the density of probability Q)(y) of the exponential Shot-Noise process
Y associated to N, according to Gilbert and Pollack (1960). A general expression of Q(y) can
be found in Gilbert and Pollack (1960). In our case, we will use,

Q) =c(MyM! L 0<y <1,
Jm Qy) =0,
with, N
C()\) _ e Ye
I'(A)

where, . Euler constant and I Euler function.
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We have the two following limits, for small w,

i‘ll:(t) = P (w) = AP —Aw = — AT (w + ™).

B
Ah = v <1+B2> and A7 = SA? <BI+BQ+ b ) :
M2 oYz A(l4m)
We can compute, when w>v/f,

dw APAI w t) Y1

() = 1 PAI

ar ) = e ( o leAI] )
where,

APAT _ {7/]“71 c(\) By WwPA — @ (‘32
B (A+71) A+71+1)° v

where,

(A+71) (/\+71+1)> Um
Y2 ()\—l-l) ’

B,

and,
B
By

PAI _ B
By

Proof. For w>=0, we have to calculate,

Il déf. J(V - ﬁx)+z1H5A(d$, dZ), and 12 déf‘ AJZQHI;A(dx7 dZ)

We have,
\B By (o
L =" (v—Ba) IMde,dz) = 2= | (v = Bwy) Qy) dy
2 Y2 Jo

We have two cases, if w«v/f, then,

B
I, = 2By (v—PwA) .

2

And, if w=v/p,

B, (7
B ZF (v — Bwy) y* ' dy
Y2 Jo

_ B, v 1 v 1 _ By v v 1
~e e | (5owen) = 55w |

I, = JmaX(O, v — ﬁx)zlﬂff‘(dx, dz) = Jﬁw (v — Bwy) Biy" Q(y) dy
0

We have two cases again, if w « v/f3, then,

B B
_ 2B (v—PwA) — ABy
" Y1+A+1

_[2 = C()\)

Then,

I

Sw
Again, if w > v/f,

v

I - j max(0, v — )21 TP (de, dz) — c()) f " (v—Buwy) By dy

- (A+§1()A()AB+1§1+1) [;w]“’“
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Input
N
tprc

Output
N, x
tpost

Pre-post
Z1Ng x

[ ]
o—o
—¢

®
o—
o—g

[ ]
o——0
®

Post-pre
ZoNy,

Synaptic
Weight W

Iterations Iterations Iterations
(a) Hebbian all-to-all (b) Hebbian nearest (c) Hebbian nearest
pair-based rules neighbor symmetric neighbor symmetric
pair-based rules reduced

pair-based rules

Figure 4.5: Markovian formulation of pair-based models.

(a) Temporal dynamics of (X, Z;, Z,, W) with a specific pre- and postsynaptic spike
trains for all-to-all STDP. (first line) Pre- and postsynaptic spike trains, with associated
pairings. (second line) Presynaptic plasticity variable Z; (in brown) with value at jumps
of the postsynaptic neuron (in red). (third line) Postsynaptic plasticity variable Z; (in
brown) with value at jumps of the presynaptic neuron (in blue). (fourth line) Resulting
dynamics of the synaptic weight W. (b) Same as (a) for nearest neighbor symmetric
STDP. (c) Same as (a) for nearest neighbor symmetric reduced STDP.
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(a) Excitatory synapse, PNS, v =0

Bifurcation

A (—0.8,1.0) B (0.8,—1.0)

(b) Excitatory synapse, PNS, v =1

Bifurcation
A (—0.8,1.0) B (0.8,—1.0)

3- 3 ,l’ j / ,' E
1} wENS 1
0 WwPNS o e
-1 By 1
B LTD e UFP  —— AP £=0.02
BN LTP WM MFP AENS — ¢ £=0.01
B SFP fees APNS _g £=0.005

Figure 4.6: Nearest neighbor symmetric pair-based STDP for an excitatory synapse.
(a) Dynamics of the synaptic weight as a function of B; and B, for v=0. (left) Classification
based on numerical simulations for different asymptotic dynamics of the synaptic weights (see
different colors). Theoretical boundaries are also drawn (see legend for their expressions).
(right) Two examples of temporal evolutions of the synaptic weights, for different values of ¢.
(b) Same as (a) for v=1.

(n=12=B=A=1)
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(a) Excitatory synapse, PNR, (B, By) = (—0.85, 1.0)

v=0.0 v=0.1 v=0.2

(b) Excitatory synapse, PNR, (B, B2) =

v=0.0 v=0.1 v=0.2

v=0.4 v=0.6 v=1.0

\'§\;§ﬁd§¥x\

£=0.02 — £=0.01 = £=0.005 I

Figure 4.7: Influence of » on dynamics with the pair-based nearest-neighbor reduced

symmetric scheme.

(a) Dynamics of the synaptic weight for different values of € (change of color) and values of
external input v (different plots, increasing from left to right, top to down) for anti-Hebbian

STDP. (b) Same as (a) for Hebbian STDP.
(m=72=B=A=1)
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CHAPTER 5

A MARKOVIAN APPROACH TO HAWKES PROCESSES

— ABSTRACT

In this paper, stationary non-linear Hawkes processes are revisited by formulating
the Hawkes dependence as a Markovian property on the space of non-negative
sequences. A characterization of the associated point process is obtained in terms of
the solution of stochastic differential equations. When the influence of past jumps
decreases exponentially over time, the Palm measure of the associated stationary
point process is expressed with the distribution of the stationary version of a one-
dimensional Harris ergodic Markov chain. Finally a scaling result for some Hawkes
processes exhibiting a blow-up phenomenon is derived.

5.1 Introduction

The references [ ; ; ; ] have introduced a class of general
stochastic models describing the influence synaptic plasticity in stochastic neuronal
networks. In such models, the firing rate of the postsynaptic neuron depends on
the postsynaptic potential membrane, which is driven by the spiking activity of the
presynaptic neuron, NV,, and also by its own spiking activity, Nj x.

An important class of mathematical models, Hawkes processes, has a similar
feature: given the past instants ¢,,, n>1 of a Hawkes process up to time ¢, the rate at which
a new jump occurs in the time interval (¢, ¢+ dt) is given by

iy ( > h(t—tn)> .

nitn <t

The function h, the memory function, expresses the impact at time ¢ of a jump which
has occurred at time s<t with the quantity h(t—s). The function % is assumed to be
non-increasing converging to 0, the influence of a jump in the distant past vanishes.
The activation function ® modulates the global impact of past jumps.

This class of models has been used in various situations such as, mathematical
tinance, [BH09], population dynamics, [Boul6], biology, [RS10], queueing systems,
[DP18], learning theory, [Ete+16], or neurosciences, [GDT17], ...

From a mathematical point of view, these processes have generated, and still
generates, a considerable interest. The pioneering works are:

— [HO74] which shows that when the activation function is linear, these processes
can be represented by an age-dependent branching process, a special class of the
so-called Crump-Mode-Jagers models.

— [Ker64] shows in a more general context, that the functional relation defining sta-
tionary Hawkes processes can be expressed as a fixed point equation which can be
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206 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

solved through a Picard scheme, thereby proving the existence and uniqueness of
such processes. [BM96] has considerably developed this approach in a stochastic
calculus context.

Up to now, these are in fact the two main approaches to investigate Hawkes processes.
Appendix 5.B tries to present some aspects of the overwhelming literature of this
domain.

In this work, we reformulate the Hawkes property using the jumps times of the
point process. For a stationary Hawkes process, this amounts to investigate the prop-
erties of its Palm measure. See Appendix 5.A for a quick introduction and references.
This is a preliminary work to investigate Hawkes processes in a multi-dimensional
framework where the literature is quite scarce due to the fact that the Picard scheme
give only rough conditions for the existence of stationary Hawkes processes.An advan-
tage of this approach is that the Hawkes property can be described in terms of a Markov
chain in an infinite dimensional state space for which some tools are available. In the
following the term stability will refer to the existence and uniqueness of a stationary
Hawkes process.

This paper is organized as follows. Section 5.2 presents some basic definitions,
Section 5.3 introduces the Hawkes property in terms of a stochastic differential equation
and Section 5.4 gives a characterization of the Palm measure of a stationary Hawkes
process as an invariant measure of a Markov chain in the state space of non-negative
sequences. Section 5.5 uses this approach to investigate Hawkes process with an
exponential memory function. A new, weaker, stability condition is derived and a
representation of the Palm measure is obtained in this case. The transient behavior is
also analyzed, i.e. when the Hawkes process starting from the null measure blows-
up in finite time almost surely. A scaling result for the points of the point process is
obtained, it described the accumulation of the points in terms of a Poisson process.
Appendix 5.A presents the main definitions and results concerning point processes
and the stationarity property.

We conclude this section with a formulation of some conditions for the functions
h and @ that will be used in the rest of the paper.

Assumptions A.
A-1. The memory function. The non-negative function h is continuous on R, non-increasing,

converging to 0 at infinity and

+0
o % J h(t) dt < +c0.

0

A-2. The activation function. The non-negative function ® is continuous and such that,

a) ®(0)>0;

b) the quantity
®(y)

15} 4t Jim sup ——
y—+o Y

is finite.

A-3 The constants o« and 3 are such that a<1.
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5.2 Definitions

Probability space

It is assumed that on the probability space (€2, P) is defined a Poisson point process on
R, xR with intensity measure dz® dy and that (F;) is a filtration such that, for teR, F,
is the o-field generated by the random variables P(Ax (s, t]), where A is a Borelian set
of R, and s<t. If A and f are non-negative Borelian functions f on R, we define

| PO S [ f(6) b Pldo.ds).

R R4 xR

Without any indication on the filtration, the martingale properties in the paper are
understood with respect to this filtration.

State space of non-negative sequences

We refer to Appendix 5.A for general definitions concerning point processes. We denote
by S the space of sequences of non-negative real numbers

8 {a=(me® A+ s mpy = toomm=ton, iz} (B)

A functional from S to the space of positive measures with a mass at 0 is introduced as
follows, if x=(zy)€S, the positive measure m, on R_ is defined by

+00 k
Mg =00+ > 0, withty=—) z;, k=1, (5.2)
k=1

i=1

with the convention that §_.,=0.

The measure m, is a positive measure carried by points associated to zeS. It
should be stressed that m, is not necessarily a point measure, i.e it may not have
Radon property, since we do not exclude the fact that the sequence (z;) converges to 0
sufficiently fast so that the measure m, may have a finite accumulation point.

Let x=(xy)r>0 be an element of S. Note that 0 is always a point of m, and that
the coordinates of z are the inter-arrivals times of m,, in particular z; is the distance
to the first point of m, on the left of 0. The point measures with a finite number of
points correspond to sequences (z;) which are constant and equal to +o after some
finite index. In this case, if £ is the first index where x;,= + o, with a slight abuse of
notation we write it as a finite vector x=(x1, xo, ..., Tx,_1, +0).

On S, the distance, for x=(zy), y=(yx)ES,

+00 1
1
with the convention, for ueR,, |u—oo|=|0o—u| = 4+ and |co—w0|=0. It easily checked
that S is a separable Polish space, i.e. a complete separable metric space.
An important subset of S is

Sh def. {$:($k>68 : h(O) + +200 h (Zk: :C,L>

i=1 0

= JJFOO h(u) ﬁlw(du)<+00} ; (5:4)

with Definition (5.30) of 7 of the Appendix, we have z€S,, if he L; ().
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Definition 59. For xS and a>0, we set

n f:@ (h(O) + Y h <s+ix>) ds > a} (5.5)
= inf {Lt ® (fh (s—u) mx(du)> ds > a} :

if veSy, and T (x, )20 if 2S\S,, with the convention h(+o0)=0.
Lemma 60. Under Assumptions A-1 and A-2-a, if x€S,, then

T(z,a) < igf{

Jim_ Ot o Uh (s—u)) m(du) ds = +o.

In particular, for xS}, and a=0, the variable T (x, a) is finite.

Proof. Note that, for any >0, the monotonicity property of h gives the relation

f h(t—u)mg(du) < f h(—u)m,(du) < +oo,
(=0,0)

(70070)

and with Lebesgue’s Theorem we obtain the identity

lim h(t—u)m,(dz) = 0. (5.6)
Jm | wwm(a
Our lemma is proved since ¢ is continuous with ®(0)>0. O

5.3 Hawkes SDEs

We first recall the classical definition of an Hawkes process, see [HO74].

Definition 61. A Hawkes process is a point process N on R such that, for any seR, the

process
(N((s,t])— f o (f(_oom h(u—x)/\/(dw)) du,t>s>

is a local martingale with respect to the filtration (F;,t=s), where, for teR, F, is the o-field
containing the o-field associated to the random variables N ((u, v]), u<v<t.

If V is a Hawkes process, for any seR the dual predictable projection of the process
of (N ((s,t]),t=s) is almost surely,

([o([ omsmian)aniss).

see Theorem VI (21.7) of [RW00] for example. In the terminology of random measures,
see [Jac79], the stochastic intensity of N is

<q> < J( » h(u—x)/\/(dx)) ,ueR) |

We now introduce a dynamical system extending a Radon measure on R_ into a
measure on R exhibiting a Hawkes property on R, . The Markovian approach used in
this paper relies heavily on this construction.
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Proposition 62 (Hawkes SDE). If meM,(R_) verifies heL,(m), then there exists a
unique positive random measure N, on R such that N,,=m on R_, the counting measure
(N ((0,t]),t=0) satisfies the stochastic differential equation

dN%«Qﬂ)=7’(O%@(£_%ﬂh@—ﬂﬂ&x¢w))7ﬁ>, (5.7)
for all t>0.

Under Assumptions A-1 and A-2-(a), the points of N, on R, form a non-decreasing
sequence of stopping times (1,,), such that if

B, % L " i) U(_m) h(s—x)/\/m(dx)) ds

Th+1
and B, < f o <f h(s—x) ./\fm(dx)> ds, n=1, (5.8)
n (—00,s)

then (E,,n>1) is an i.i.d. sequence of exponential random variables with parameter 1 and E
is independent of F and, for n>1, the sequence (Ey, k>n) is independent of Fr,,.

Proof. The proof is done by constructing by induction the sequence of points (7,,) of

T, % inf {t>0 : f( y P <(o @ ( J( o h(s—x)m(dx))) ,ds) #0} :

Two cases are then possible, either 71 =+c0, and, in this case N,,,=m, or T} <+ and we
can go on to the next iteration.
By induction, for n>1, if T} <T5< - - - <T;,<+, it is possible to define

Tn+1d§f' inf {tZTn :

f(w P (cb ( f( Oolfo(]s—x)m(dx)) +k:h (s—Tx) ,ds> ;éo}, (5.9)

Again, if T, 1=+, we have,
n
Nm =m + Z 5Tk’
k=1

if not, we can build 7,,,5. The first part of the proposition is proved, as N, has been
build verifying (5.7) directly proving existence and uniqueness.
For t>0, the independence properties of the Poisson process P give

P(Ti3t | Fo) = exp (— J 5 < J( » h(s—x)m(dx)) ds) | (5.10)

0

From Lemma 60, we obtain

lim P(Ty>t) = 0,

t—+00
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so that the variable 77 is almost surely finite and it clearly has the stopping time property.
Define

Ty
B f J h(s—z)m(dx) ds,
0 (—00,0]

from Relation (5.10), we get

P(E,>t | Fo) = P (LT o ( f( i h(s—m)m(dx)) ds > t) et

hence FE; is exponentially distributed with parameter 1 and independent of F,. Using
Definition (5.5), the random variable 77 has the same distribution as the random variable
T (z, E1) where z is the unique element of S such that m=m,,.

If by induction, for n>1, the n stopping times T} <T5>< - - - <T,, are defined almost
surely, 7,11 as defined by (5.9) is clearly a stopping time, it is almost surely finite with
the same argument as for 77, and, with the strong Markov property of P for the stopping
time 7,

exp (— J n @ (f(_oom h(s—x)m(dx)Jr;h(s—Tk)) ds> :
hence,

Th+1
P(E,1=t | Fr,) =P (J o (J h(sx)/\/m(dx)> ds > t‘ an) =e "
n (—00,0]

proving that F),; is an exponential random variable.
The strong Markov property of the Poisson process P gives that E,,; is indepen-
dent of F7,. The second part of the proposition is proved. O

In the proof we have seen that the condition ¢(0)>0 in Lemma 60 guarantees that
there is almost surely an infinite number of points in R, for SDE (5.7).

Note that it cannot be excluded that this non-decreasing sequence of points may
have a finite limit with positive probability and therefore that JV,, is not necessarily
a point process. As it will be seen, it can blow-up in finite time, i.e. the limit of its
sequence (7),) of points in R, may be finite with positive probability. Proposition 68
gives a condition for which the sequence (7},) converges almost surely to infinity when
m is the null measure. Proposition 77 considers a case when there is such a blow-up
and derives a limiting result for the accumulation of points.

However, when the sequence (7,,) is converging almost surely to infinity, NV,, is a
point process, and it is not difficult to see that the dual predictable projection of the
process of (N, ((0,t]),t=0) is

(J: o ( f( s h(s—x)/\/m(dx)> ds, t>0) .

see Theorem VI (27.1) of [RW00]. Consequently, the stochastic intensity function of \,,

on R, is indeed
(CD ( f( . h(s—:c)]\/m(da:))) |

Proposition 62 extends a point measure m on R_ to a point process on R, it can be
also seen as a dynamjna] cvctam an nnint nracoccoc nn R in thao folloWlng way.
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A dynamical system

If meM,(R_) is such that he L, (mh) and N, defined by Relation (5.7) is a point process,
for t=0, we introduce a (random) dynamical system (7}(m)) in M, (R_) as,

f F(@)T(m)(dx) = f F(@)00N w(da) = j F -t N (d), (5.11)
(—0,0] (—o0,t]

for any non-negative Borelian function on R_, T;(m) is the point process N,, seen from
the point .

A stationary Hawkes point process is in particular associated to a distribution @
on M,(R_) which is invariant distribution for the group of transformations (#;) on
M, (R). See Definition 78 in Section 5.A.

When ©(0)=0, the null measure is clearly a solution of Relation (5.7). The next
proposition shows that, under some mild condition, the null point process is the unique
stationary Hawkes process in such a case.

Proposition 63. Under Assumptions A-1 and
f th(t)dt < +o0,
R4

if for some K>0, the non-negative function ® satisfies the relation ®(x)<Kw, for all =0,
then there does not exist a stationary Hawkes process N which is non-trivial, i.e. such that

P(N#£0)>0.

Under the additional condition that the function ® is Lipschitz with constant K
such that oK <1, this result is given by Theorem 1 of [BM96; BMO01].

Proof. Fix A>0. Since the set of the distributions of stationary Hawkes processes whose
intensity is less than A>0 is a convex and closed subset of the unit ball of P(M,(R)), itis
therefore compact by the Banach-Alaoglu theorem. See [Rud73]. If there is a non-trivial
stationary Hawkes processes, by Choquet’s Theorem, there exists a non-trivial ergodic
distribution with respect to the flow (6;). See Proposition 12.4 and Choquet’s Theorem
of [Phe(01]. The Birkhoff-Khinchin ergodic theorem, see [CFS82], gives the almost sure
convergence

lim N((fﬂ) _ B(((0,1])>0,

t—+00

since N is non-trivial, we obtain therefore that P(NV (R, )=+o0)=1. If T} is the first
positive point of V, the variable 7’ is in particular finite with probability 1.
As in the proof of Proposition 62, we have

P(Ti3t | Fo) = exp (— L ‘o < J( . h(s—x)/\/(dx)) ds)

By Fubini’s Theorem, we have

+00

et d ( J( iy h(s—x)/\f(dx)) ds < Kfoo J( e h(s—z)N(dz) ds

0 0

= KJ OON([—S,O])h(S) ds.

0

A MU
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The stationary property of the point process N shows that there exists some A>0
such that E(NV([—s,0]))=As, for all s=0. The integrability of (th(t)) gives that V' is an
integrable random variable, and therefore, is almost surely finite. As a consequence we
have that, almost surely, P(7;=+00|F;)>0. This is a contradiction. The proposition is
proved. O

5.4 A Markov chain formulation

A different formulation of the stationary Hawkes process

In this section, we give an alternative version of Proposition 62 in terms of a Markovian
dependence on the state space of sequences. We begin by a characterization of the Palm
measure of a stationary Hawkes process.

Proposition 64. If Conditions A-1 and A-2 a) hold and if () is the distribution on M,(R) of

a stationary Hawkes process N'=(t,,, n€Z) associated to ® and h then, the sequence of inter-
arrivals (7, neZ)dg'(tn—tn_l, neZ) is a stationary sequence under its associated Palm measure

Q). Moreover, the sequence of random variables

(F“@ <Z h (s+ Zn: T>) ds, neZ), (5.12)
0 k<n i=k+1

is i.i.d. with a common exponential distribution with parameter 1.
If there exists a stationary sequence (7, n€Z) satisfying Relation (5.12), then there exists
a stationary Hawkes process associated to ® and h.

Proof. From the point of view of Proposition 62 this proposition is quite intuitive, one
has nevertheless to be careful, as always in this setting since Proposition 62 is stated
under the distribution Q.

The stationary property of the sequence (7, neZ) (T, —T,_,) under Q is clear, by

definition of ). To prove the second part of the proposition, we use Proposition 11.8,
page 315 of [Rob03] which gives that

fimEq (/| N([~1.0)40) = Eg(/).

where Ej denotes the expectation with respect to the distribution R on M,,(R) and f is
a bounded Borelian function on M, (R) such that t— f(6,(m)) is Q-almost surely right
continuous at ¢=0.

For neZ and me M, (R), define

tn+1(m)

W, (m) % i) h(s—z)m(dz) | ds,
tn(m) (=0,0]

then, since , Q-almost surely, we have ¢y(m)<0<t;(m) and t,(m)<t,+1(m), for t=0
sufficiently small,

tn+1 (m) —t

U, (0,(m)) — L e ( f( . h(s—x+t)m(dx)> ds.
Ao ML
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By continuity of ® and h, we get that

i W, (61(m)) = W (m),
(-almost surely. Let F' be a continuous bounded Borelian function on R’} then

lim Eq [F (\If W), 1<i<n> | N([~t, 0])#0] - B [F (\If (M), 1<z<n)] .

Since the event {N([—x,0])+0} is Fy-measurable and that for any 1<k<n, the variable

L :k“ o ( J( N (dx)> ds

is independent of F;, , we get with Proposition 62 again, by induction on % for example,
that

lim Eq [F (\11 (V) 1<z’<n) | N ([, 0]);&0] _E [F <E 1<z’<n)] ,

where (F;, 1<i<n) are n independent random variables with a common exponential
distribution with parameter 1. By gathering these results we obtain that

E, [F (\IJ (V) 1<i<n)] _E [F (E 1<z<n)] .

Under the probability distribution @, the random variables V; (), 1<i<n, arei.i.d. with
a common exponential distribution with parameter 1 Relation (5.12) is a consequence
of the relation

U, (N) = f:nﬂ o (Z h (s—tk)> ds = LTnH o (Z h (S+ Zn: Tz)> ds,

by invariance of Q with respect to 9, the sequence (¥, (-)),>1 is stationary under Q and,
therefore, is i.i.d. with a common exponential distribution with parameter 1.

Now we assume that there exists a stationary sequence 7=(7,,n€Z) of integrable
random variables satisfying Relation (5.12). Recall that m, is the point process defined
by Relation (5.2). Using a similar proof as in Proposition 62, we can show that m,
satisfies an Hawkes SDE (5.7) on R. For ueR, the same property clearly holds for
6.(m.), the point process m, translated at «, see Definition (5.32). For K>0, let Ux be an
independent uniform random variable on [— K, K], the point process 6y, (m.) satisfies
the Hawkes property. With the same method used for the proof of Proposition 11.2
of [Rob03], we obtain that, as K goes to infinity, 6, (m,) converges in distribution to a
stationary point process whose Palm measure is given by the distribution 7. It is not
difficult to show that the Hawkes property is preserved in the limit. The proposition is
proved. O

We can now state the main result concerning the relation between the Hawkes SDE
and the Markov transition kernel .

Proposition 65. The Markov chain associated to transition kernel IC of Definition (5.14) has an
invariant distribution with integrable coordinates if and only if there exists a stationary Hawkes
process.

e A M
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Proof. 1f there exists a stationary Hawkes point process (t,,), Proposition 64 shows that
the distribution of (t,.1—t,) under its Palm distribution is an invariant distribution
of the Markov chain (&,). Conversely, if the Markov chain associated to transition
kernel K has an invariant distribution, then one can construct a stationary version of

the Markov chain X%'(x,), in particular X satisfies Relation (5.12). Proposition 64
shows then that there exists a stationary Hawkes point process in this case. O

A Markov chainon S

The previous proposition has highlighted the importance of the Palm space, and there-
fore led us to develop a second formulation of the Hawkes process, conditioned to
jumping at t=0, using Markovian kernels.

Definition 66. The sequence of random variables (X7) with initial point X§=x€S is defined
by induction, for n=0,

X2 = (X1, X0 =(T(XZ, Eoy), ), (5.13)

where (E,) is an i.i.d. sequence of exponentially distributed random variables with parameter 1
and T is defined by Relation (5.5).
The associated Markovian kernel is denoted by K

ff K(z, dy) = Eo(f(X7)), (5.14)

for a non-negative Borelian function f on S.

The element X7, , is obtained by shifting X* and adding X,,,1=T (X*, E,,;1) at the
beginning of the sequence. The sequence (X7) clearly has the Markov property.

Proposition 67 (The Markov chain (X*) and Hawkes SDEs). If Conditions A-1 and A-2
a) hold and meM,(R_) is such that m({0})>0, then the distribution of N,,, the solution of
Relation (5.7) can be expressed as

Nm diZSt' m + Z 5Tn

n=1

with, To=0 and, for n>1, T,,.1—T,,=X,,1 where the sequence (X,,) is defined by induction by

LT_ o (J h(s—u)m(du)+ Zi h (s—Tk)> ds

_ fxncb (J h(Tn_1+s—u)m(du)+§h (s+ ni X)) ds = E,, (5.15)

0 i=k+1

where (E,,) is an i.i.d. sequence of exponentially distributed random variable with parameter
1. The process (XF)=((Xn, ..., X1, X)) is the Markov chain with transition kernel K(-,-) of
Relation (5.14) and initial point

Xy =(Sn41—5n), if m=(s,,n=0), - <5,<8,_1< - - <81<50=0.

Proof. This is a straightforward consequence that Relation (5.15) is a rewriting of Rela-
tion (5.8) of Proposition 62. [

W GNP LN
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The chain starting from the empty state

We now study the Markov chain (X?) with transition kernel K defined by Relation (5.14)
when the initial state empty, i.e. it is the constant sequence equal to +00, i.e. X{=(+0).
This initial state corresponds to the case of an isolated point at time 0 without any point
before that, i.e. on the time interval (—0, 0).
This Markov chain has the same distribution as the sequence (X) defined by, for
n=1,
x)=(Xx2, X?

n—1

X0, X0 X0 o), (5.16)

where the sequence (X?) is defined Relation (5.15). We denote by (7)) is the corre-
sponding non-decreasing sequence of points defined by 7y'=0 and, for n>1,

:im.
k=1

Proposition 68. Under Conditions A-1, A-2 and A-3, there exists v>0 and [y>0 such that,
afo<1 and almost surely for all n>1,

and consequently, the process

400
Aﬂ)%g'&)+'§:(%¥

n=1

is almost surely a point process on R .

This proposition shows in particular that the sequence of points of the solution \V,,
of Relation (5.7) with m=4 is a point process on R, the sequence (7)) converges almost
surely to +c0.

Proof. Conditions A-2 and A-3 gives the existence >0 and /3, such that afy<1 and the
relation ®(z)<v+ fyz holds for all >0. Equation (5.15) gives, for n>1,

J (2 <s+ 2 X°>> ds < VXO—FﬁOJXOHZlh(S—i—ZXO) ds (5.17)

i=k+1

o X9 +X9n=2 n—2
E, —afy < VXg_ﬁoH(X2>+ﬁOJ dih <s + X?) ds.

Xo 4 k=0 i=k+1

with the notation, for >0,
H(x)= f h(s) ds and a=H(0).
By using Inequality (5.17) for the index n—1 and by adding these relations, we get

S Bi-afy < v X0 X0, ]~ [AX)+H(X04 X2 )]

k=n—1
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X0 ,+X0 ,+X9n=3 n—3
0
+50JXO dDihls+ Y X ds.

n—2 k=0 i=k+1

By proceeding by induction, we finally get the relation
> (Er—af) < Z XP—Bo Y H(XJ+X0 4+ + X)),
k=1 k=1 k=1

In particular the sequence (7)) is almost surely converging to infinity. The proposition
shows that when the initial state is the empty state, there is no blow up phenomenon,
the sequence of points does not converge to some finite value.

To prove the second part of the propostion, i.e that AV is indeed a point process,
we need that the sequence (77) is going to infinity almost surely. This is a direct
consequence of Proposition 68 and the law of large numbers. O

5.5 Exponential memory

In this section we assume that the function h associated to the memory of previous
jumps is exponentially decreasing.

h(u)= exp(—u/a),

for some a>0. In this case, the past activity of the Hawkes process can be encoded
by a one-dimensional Markov process. One of the early analyses is [Oak75]. [DLO19]
considers a more general model for which £ is the density of the sum of exponential
random variables with different parameters. The trick is to use the method of the stages
so that a multi-dimensional Markov process can encode the past activity of the Hawkes
process.

In this section, we give a existence and uniqueness result of the stationary Hawkes
chain with a weaker condition than the classical relation aL<1, where L is the Lips-
chitz constant associated to ®. The result is obtained by using the Markov process of
Section 5.4. At the same time an explicit representation of the distribution of the cor-
responding Palm measure in terms of the invariant distribution of a one-dimensional
Markov chain is obtained. We conclude this section with non-Lipschitz activation func-
tions ® for which the solution of the Hawkes SDE blows-up in finite time. A limit result
gives a scaling description of how the accumulation of the points of Hawkes process
occurs.

Proposition 69. Let x€S;, m, defined by Relation (5.2) and N,,,=(T,) of Proposition 62,
then

(Z,) def. (f h(T,, — )Ny, (ds))
(7007Tn]
= J exp (—(T,—u)/a) my(du)+ Zexp (T, —Ty)/ )
(_0070]
is a Markov chain on (1, +o0) such that, for n=0,

Zo—f es/amx(ds), and Z,, 1=1+e Xn+1/e g (5.18)
(=0,0]

A ONUNUNIN NE
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where X,,11=T,+1—1T, is the unique solution of the equation

Xn+1
f ® (e7¥*Z,) ds = By, (5.19)

0
where (E,,) are i.i.d. random variables with an exponential distribution with parameter 1.

Proof.
et = j exp(—(Tyer — 8)/) N, (ds)
( 0 Tn+1]

— 1t exp(—(Tyi—T) ) f( T 0N (05
= 1+ exp(—Xon1/@) Zn,

and Relation (5.15) gives that

o J T P ( J hls—uym(du)+ zn: h(s—Tk)) ds

Tn+1_Tn n
= J P (e—S/a (J h(T,—u)m,(du)+ Z (T,,—Tx) >> ds
0 - k=1

Xn+1
= J ® (e7*/*Z,) ds
0

is an exponentially distributed random variable with parameter 1 and that the sequence
(E,)isiid. O

Proposition 70 (Harris ergodicity). If ® satisfies Condition A-2, and if 5. <1, where

v
Be A im Supf is) ds (5.20)

uU—>+00  Jy—1

then the sequence (Z,,) is a Harris Markov chain on [1, +0).
For a general introduction on Harris Markov chains, see [Num04].

Proof. The proof will be in two steps. We will first prove, via a Lyapunov function, that
the set [1, K] is recurrent, for some K >0. Then, we will show that the subset [1, 2] is
also recurrent and small, see [Num04] for example. Proposition 5.10 of [Num04] gives
then that the Markov chain (Z,,) is Harris ergodic.

We first exhibit a Lyapunov function for this Markov chain. Equation (5.19) can be
rewritten as, if Zy=z,

B = J . ¢ (e7/729) ds = a f ey, afo W g, (5.21)

0 —X1/a u Z1—1 u

zoe

Let, for y>1,
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we thus have - 1
E.,(F(Z))) — E(F(z)) :J ¢

zo—1

hence there exist >0 and K>0 such that if zp>K then

E.,(F(Z))) — E(F(z)) < (ﬁm_;) <0,

The function F is a Lyapunov function for the Markov chain (Z,,). The interval [1, K|
is a recurrent set for the Markov chain. See Theorem 8.6 of [Rob03].
By using Relation (5.21), we obtain, for zp€[1, K],

P, (2, <2)="P (El > ro q)(u)du) = exp (—a ro (I)(u)du)

o U U

K
> exp (—af qDEj”du) > 0,
1

the interval [1, 2] is a recurrent set for the Markov chain (Z7,,).
For 0<t<z, the relation

P(Z,—1<t) = exp (—a fo @ (w) du>

u

gives that the density of Z; is given by, for 2, <K,

0 o ([ 2 0) 502 iy (o [ 20 ).

There is a positive lower bound independent of z)<K. We can now use the same
argument as in example of Section 4.3.3 page 98 of [M'T93] to prove that [1, 2] is a small
set. The proposition is proved. O

Definition 71. For z>1 and y>0, under Assumption A-2, we define G(z,y) by the relation

Gao(2y)
J ) (6_5/0‘2) ds = y. (5.22)
0

Theorem 72. [Invariant distribution of (X,,)] Under Assumption A-2, and if af.<1, then for
any x€Sy,, the Markov chain (X,,) of Definition 66 converges in distribution to the law of

an P
Go an,af Mdu ,n=1
an-f—l_l u

where G is defined by Relation (5.22) and (Z,neZ) is the stationary version of the Harris
Markov chain (Z,,) of Proposition 69.

Proof. For n>1, with the above notation, by definition X,,;1=G4(Z,, E,+1), i-e.

n P
En+1 == Ozf (u) du

Zn+171 u

A A s A A A
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For n=k>1, (X,, X,,—1,..., X,_k+1) are the k-first coordinates of X,,, they can be ex-
pressed as

(GQD(anla En)7 GCID(an% Enfl)v ERC) G@(anlm E’I’L*k‘i’l))

Zn-1 q) Zn—k—l
= (ch (Zn_l,af (u)du),...G¢, (Zn_k_l,af Mdu)) )
Zp—1 U Zpp—1 U

The Harris ergodicity of (Z,,) implies that the random variable (Z,, Z,,_1, ..., Z,_) is
converging in distribution to (Z;, Z*,, ..., Z*;). Due to Assumption A-2, the mapping
(z,y)—Go(z,y) is continuous, the continuous mapping theorem concludes the proof
of our result. O

Theorem 72 shows that in the case of exponential memory, the invariant distribu-
tion of (X,,) can be expressed in terms of a one-dimensional stationary Markov chain.
The following corollary rephrases this result in terms of Hawkes processes. This is a
direct application of Proposition 65.

Corollary 73. If @ is a continuous function such that ®(0)>0 and af. <1, where B, is defined
by Relation (5.20), then there exists a unique stationary Hawkes process.

Note that the condition a3, <1 is weaker than the classical conditions of the litera-
ture: ® Lipschitz with Lipschitz constant 3 such that ag<1.

Transient Hawkes processes

From now on, we assume a polynomial behavior for ¢ so that, for >0,
O(z)=(v+pr)7,

where v, § and + are positive real numbers.
Theorem 72 shows that (&),) is converging in distribution for all o, » and § when
v<1, and, when y=1, the convergence occurs if a/3<1.

Proposition 74. If ®(u)=(v+pu)" and if v>1 with 3, v>0, then the Markov process (Z,,) is
transient.

Proof. From Relation (5.21), we have

20
E1 = Oéf ¢ (U) du,

Zi—1 U

where F; is an exponentially distributed random variable with parameter 1. Let, for

u=0, (Dp(u)dif'(ﬁu)” and, on the event {yE),<af"7z]}, we define the variable Z, , such

that o o X
B, = aJ Ly () 4, @87 (20 —(Zy, 1)),
Zip,—1 U v

then, since ®,<®, we have zy—7; ,+1>2y—2Z;+1>0 and Egdg.’}/El/(Oéﬁ’y), then

E 1/
20—Z1p+1 = 2 (1— (1—;) ) .
0
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The elementary inequality

2
1—(1— )" < =h, 0<h<1/2,

2

gives the relation, for a>1

E., ((20=21+1)") < 2P(2vE =087 %)) + E ((ZO_ZLP+1)a]1{27E1<a,37zg})
af?Y W) 2¢ E(E?)
—Z

27 0 aaﬁa'y Z(t)z('y—l) :

< zj exp (—

Since y>1, we deduce that

lim E. (Z1—z2) =1and supE,, ((Z1—2)%) < +. (5.23)

zo—+00 20=1
Theorem 8.10 of [Rob03] shows that the Markov chain is transient. Strictly speaking
Theorem 8.10 is for a Markov chain with a countable state space, nevertheless a glance
at the proof of this result shows that it is also valid in our setting. The proposition is
proved. O

Relation (5.19) of Proposition 69 gives that the Hawkes Point Process (7},) of Propo-
sition 62 is such that
Tn+1 *Tn

Brz0Z] |

e~/ s = gﬁvzg (1_677(Tn+1*Tn)/a) ’ (5.24)
0 Y

where (E,) is an i.i.d. sequence of exponential random variables with parameter 1.
Under the assumptions of Proposition 74 the sequence (Z,,) is converging in distribution
to infinity and, with the last relation, the relation

lim T, —T, =0

n—-+0o0

holds for the convergence in law. This result suggests that the points (7,,) are closer
and closer asymptotically. We investigate this aspect in the rest of the section.

We now study of the asymptotic behavior of (Z,,) in the transient case. We start
with a technical lemma.

Lemma 75. If v=>2 then, for any 6>0,

sup E,, (e5|Zl_Z°|) < +4o0. (5.25)

zo>1

Proof. From Relation (5.21), we get, for 2p>1 and 1<t<z,

20 @
P, (20—Z1+1>t) = P (E1>af (“)>

u

20—t

< exp (—bzg (1— (1—t>7)) , (5.26)
<0
def.

with b'=a"/v. Note that, by Definition (5.18) of Z;, z—Z;+1>0, hence, for 6>0,

20
E,, (/#7207 —1 =6 f P, (20— Z1+12t) dt
0

Ao M A
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20 t vy
< 5‘[ exp (5t—bzg (1— (1—) )) dt
0 20

1
= 520J exp (duzo—bzg (1— (1—u)")) du.
0

When z is sufficiently large, we split the integral into two terms,
1
zof exp (duzo—bzd (1— (1—u)")) du < zpexp (—dz),
1—(1-26/(bz] "))V

and
1—(1-28/(bz] )M
zof exp (duzo—bzy (1— (1—u)")) du
0

1/
< 2 (1 - (1 - 2()2251) ) exp ((520 (1 —(1- 25/(523_1))1/7» '

0
The lemma is proved. ]

Proposition 76. If v>2, then, almost surely,

Proof. This is a consequence of Relations (5.23) and (5.25). Theorem 8.11 of [Rob03]
shows that, almost surely, the relation

lim inf In =1
n—+0 n
holds. Condition b) of Proposition 8.11 follows from Lemma 75 and Condition c) of
this proposition is replaced in this context by the fact that if zy<Kj, then there exists
no=1 such that P, (Z,,>Ky)>0.
Notice that Z, <n+z, holds for all n>1, we get therefore that almost surely

The proposition is proved. O

For €S}, and m, defined by Relation (5.2), if V,,,, =(7},) the point process of Propo-
sition 62, we know that the sequence (7,,1—1,,) is converging in distribution to 0. The
following proposition gives a much more detailed description of the accumulation of
points:

for n>1, the point process seen from the nth point, i.e. the point process
(T,—Ty, 1<k<n) scaled by the factor n” converges in distribution to a Poisson point
process.

Proposition 77 (Asymptotic behavior of points of a transient Hawkes process). Assume
that ®(u)=(v+pu)?, and that v=2 with 5, v>0, if x€Sy, m, defined by Relation (5.2) and
N, =(T,,) the point process of Proposition 62, then the point process (nY(T,—T}), 1<k<n)
converges in distribution to a Poisson process with rate 3.

Ao A
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Proof. Define P,=(n"(T,,—1}),1<k<n). The representation of (7,) in terms of the
Markov chain (Z,,) of Proposition 69 and Relation (5.19) give

Xn+1 5
Eni1 = f (v+B8Zue*)" ds, (5.27)
0

where (E,,) is ani.i.d. sequence of exponential random variables with parameter 1 and,
as before, X,, . 1=T,,1—T),.
For any >0 and n>1, Relation (5.27) gives the inequality

P(X,.126) <P (iﬁ’* (1—e= /) 77 < E,M) . (5.28)

On the event &, 5,

Relation (5.27) shows that
ﬁveié’Y/aZZXnJrl < En+17

and therefore that the sequence of random variables (Z) X, 1) is therefore tight.
The elementary relation

(1+h)" — 1 < C1h,0<h<1,
with C1=+2""" and Relation (5.27) give the following inequality on the event &, ;.

Xn+1
0< Ens1 — BVZ;ZJ e ds
0
Xn+1

< Civ (5Zn)7—1J el ds < Cvf T X, 20
0

Using the fact that (Z)X,,41) is tight and the almost sure convergence of (Z,/n) to 1
of Proposition 76 shows that the random variables (X,,,1Z) ') is converging in distri-
bution to 0. For a sufficiently large n, Relation (5.28) shows that the probability of the
event &, 5 is arbitrarily close to 1, we obtain that the sequence of random variables

Xn+1
(¥,) & (Mg f e ds)
0

is converging in law to an exponential distribution with parameter 1.
On the event &, s we have

Yn < B’YZT’ZXTLJA < 667/&Yn7

hence, for >0,
BB 2) X 2 7) < P (57°Y, 2 2) +P (€5,5).

hence

limsup P (87 Z) Xpi1 = x) < exp (—ze ),
n—-+0
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and, by letting ¢ go to 0, we obtain
limsupP (5727 X, =) <e ™.

n—+00
An analogue lower bound holds for the liminf, hence (572X, 1) is converging in
distribution to an exponential distribution with parameter 1. By using the almost sure
convergence of (Z,,/n) to 1, the same property holds for (87n7X,,11).

For p>1, the same argument may be used to prove that the sequence of random
variables (8"n"X,_j, 0<k<p—1) is converging in distribution to the product of p ex-
ponential distributions with parameter 1. The key argument is again the almost sure
convergence of (Z,/n) to 1.

Final step. Let f be a continuous function on R, with compact support included
in [0, K| for some K,>0. The relations Z,<n+z, and (5.27) give the inequality, for all
nx=1,

Eni1 < (v+8(n+20))” Xpg1 < Co(n+1) X414,

for some constant Cy independent of n.
For p<n, we thus have

n 1 D
P(n"(T,,—T,—p) < Ko) <P ( Z X < K0> <P <C Z B, < K0> )
0 k=1

k=n—p+1
We denote N+ a Poisson process with rate 57, with associated exponential random
variables (EZ").
The last inequality gives that P, is stochastically dominated by N, s, a Poisson
process with rate Cy+ 37, in the sense that
P(Pu((0, Ko]) = p) < PNy ((0, Ko]) = p), for p<n. (5.29)

Clearly N3~ is also stochastically dominated by N, 7.
For p>1 and n>p,

(oo (- [rma)) 2 o (- )
(o0 (- [rmiw)) = (e (- 5 o))

(o0 8 )] w5 rem))
E <exp (— k_éﬂ f (mg@”))) ~E (exp <—J f(u)/\/m(u)» :

The first and third terms of the right hand side of the last inequality are respectively

bounded by the quantity P(P,((0, Ky])=p) and P(N3+((0, Ko])=p). With Relation (5.29)

we can fix p (not depending on n) sufficiently large such that it is arbitrarily small. The

second term can also be made arbitrarily small for n sufficiently large in a similar way.
We have thus proved that

Jim B (exp (= [ f0P.00) ) = (exp ([ s 0) )

holds for all continuous function with compact support. We can use Theorem 3.2.6
of [Daw93] to finish the proof of the proposition. O
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Appendix

5.A  General results and definitions on point processes

Point Processes

We recall the notations on point measures and the associated random variables, the
point processes used throughout this paper. See [Nev77], Chapter 1 and 11 of [Rob03],
and [Daw93] for a general introduction on random measures.

If He{R,R_}, we denote by C.(H) the space of continuous functions on H with
compact support and M, (H), the set of Radon point measures on H, that is positive
Radon measures carried by points, for me M,,(H) then

mzZéz,

where ¢, is the Dirac measure at z€ { and S is a countable subset of I with no limiting
points in H. We may also represent N as the sequence (z, z€S) of its points. If Ais a
subset of H, we denote by

m(A) = J m(dz) = ) Tjeay.
A zeS

the number of points of m in A. A point measure m is simple if m({z})e{0, 1}, for all
xeH. The space M, (H) is endowed with the topology of weak convergence.
If meM,(R_), the point process 7 on R, defined by

Lm flx)m(dz) = J_OOO f(=a)m(dz), (5.30)

for any non-negative function f on R..

Stationary point processes

If m is a simple point measure on R, the points of m are enumerated by an increasing
sequence (t;(m), k€Z), numbered so that the relations

hold, with the convention that ¢;(m)=+co if there are less than £>1 points of m in R,
and similarly on R_. The flow of translation operators (¢;) on M,(R) is defined by, for
teR and me M, (R),

ij<s>et<m><ds> et fRﬂs—t)m(ds), (5.32)

for any non-negative Borelian function f on R.
A distribution on M, (H), an element of the set P(M,(H)), is defined as a point
process on H.

Definition 78 (Stationarity). A point process N on R is stationary with intensity A>0,
if the random variable N ([0, 1]) is integrable and E(N ([0, 1]))=\, and if its distribution is

invariant by translation, i.e. for teR, 0,(N VN, where 0, is the translation operator defined

by Relation (5.32).
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Palm space of point processes

The set MJ)(RR_) is a subset of elements m of M,(R_) such that m(0)+0. If me M)(R_)
then m can be represented either by the non-decreasing sequence (¢, k=0) of its points,
or by the sequence x=(xj)=(t_r—t_x_1, k=0) of increments between them.

An operator § on MO (R) is defined by,

a(m)déf'etl(m) (M) Lit, (m)<+o0}» (5.33)

for meMJ(R), where t;(m) and (#;) by defined respectively by Relations (5.31)
and (5.32). A simple point process of M) (R) can be identified to its sequence of
inter-arrival times and it is easily seen that the relation

((tk+1_tk)(é\(m))vkez> = ((tk+2—tk+1)(m),keZ> ;

holds.
The mapping § is the classical shift operator on sequences. If m=(t,,neZ) is

in MY(R) and z=(z,)=(tn—tn—1,n€Z), then m=m, and §(m)=mz, with T=(z,1) if
m(R_)=m(R,)=+o0.

Equivalence between stationary point processes and Palm measure

We now recall some classical results on stationary point processes on R. A stationary
simple point process with intensity A>0 can be equivalently defined by either by

a. a distribution ) on M,,(R) which is invariant for the continuous flow of transla-
tions (6,);

b. a distribution Q on MO (R) called the Palm measure of  which is invariant for the
operator 6.

When a) is given, a distribution Q on MJ(R) is constructed via Mecke’s Formula so
that property b) holds. See Chapter II of [Nev77] or Proposition 11.6 of [Rob03].

If b) holds, i.e. if @ is given, then the construction of () is done with a fundamental

construction of ergodic theory, it is the special flow associated to the operator f and the
function m—t;(m) on /\/lg. See Chapter 11 of [CFS82], and Chapter 10 of [Rob03]. The
distribution () is expressed as

tl(m) =R
| Pema@m = [ [ F@.m) dsQlam), (5.34)
Mp(R) MY(R) Jo

for any non-negative Borelian function on M,(R). The probability distribution Q is
simply determined by a distribution of the sequence of inter-arrival times which is

invariant by the shift operator. The space (M) (R), 0, @) can be seen as a probability
space whose elements are positive sequences. It is sometimes called the Palm space of

0.
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5.B Hawkes processes: a quick review

Hawkes processes have been introduced by Hawkes in 1974 in [Haw71] as a class of
inhomogeneous Poisson processes N, whose stochastic intensity (A(¢)) depends on
previous jumps, i.e through,

(1)) = (@ ( J( . h(t — s)/v(ds))) .

The first Hawkes processes investigated were restricted to affine activation function ¢
of the form,
O(z) = v + P,

which have a nice representation in terms of age-dependent branching processes, see
[Lew64; Ver70; DV03]. The condition of existence and uniqueness of stationary Hawkes
process in this case is

o] foﬂo h(s)ds < 1,

see [HO74].
The special case where v=0 was investigated in [BMO01], where a particular interest
was dedicated to the critical Hawkes process,

g LJrOO h(s)ds = 1.

The same critical Hawkes process, with general immigration rate v is investigated
in [Kirl7]. A more precise study of the cumulant statistics of stationary Hawkes
processes is developed in [Jov15] using a Poisson cluster process representation. The
addition of an external jump process to the linearized Hawkes process, in view of
applications in neuroscience example, has been considered in [Bou16].

Hawkes processes with exponential functions h(z)=exp(—z/«) have attracted a
particular interest because the associated counting process has the Markovian property,
see [Oak75].

Having a linear activation function ® is very helpful because of the corresponding
branching process representation, However, when studying auto-inhibiting point pro-
cesses, non-linear activation functions ® are natural candidates to use. In this setting
the investigation of sufficient conditions for the existence of stationary versions is more
delicate. Most proofs in this domain are based on the functional relation defining
stationary Hawkes processes that can be expressed as a fixed point equation which can
be solved through a Picard scheme, see [Ker64] for one of the pioneering papers on this
subject. . [BM96] has developed this approach when & is supposed to be -Lipschitz,
with the following condition,

ﬁ£w|h(s)|ds< 1.

Thinning techniques have been applied to the case of a bounded Lipschitz function ®
in the same reference, where the condition

+o0
f slh(s)|ds < 400
0

NN N N
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Branching Processes

References [Lew64; Ver70; DV03]

Assumptions 1

a. ®(z) = v+ fz with v > 0 and
3 =0. [Oak75; EGG10]

b. h(z) = exp(—z/a).

Assumptions 2

a. ®(x) = v + fr with v > 0 and
5 =0. [Haw71; HO74; BMO01; Jov15; Boul6; Kirl7]

b. hIR+—>R+.

Analytical Methods
References [Ker64]
Assumptions 3
a. P:R - R;. [BM96; Che+17]
b. h:Ry - R.
Markovian Processes
References [Lin02; Num04; Hail0]

Assumptions 3

a. P:R—>Ry. [BM96; Kar12; Hod16; RDL20; Gral9; Raal9;
Cos+20]
b. h:Ry - R.

Assumptions 4

a. :R—-Ry. [DLO19]

b. h(z) = exp(—z/a).

Table 5.1: Overview of works on the existence of stationary Hawkes processes.

is sufficient to prove the existence and uniqueness of the stationary version of the
Hawkes process.

Proofs based on contraction arguments are problematic when looking at inhibitory
connections. Other techniques have been developed to circumvent these problems, but
always need some additional (sometimes strong) assumptions.

In [BM96], renewal theory is used to investigate Hawkes processes, with finite
memory. This approach has been extended in [Gral9; Raal9; Cos+20]. It is also
possible to limit the influence of intensity rate to the last jump of the Hawkes process
as done in [HL17].A recent study [RDL20] has added a refractory effect to prevent
explosion in the study of non-linear Hawkes processes.

To go further, it is interesting to see Hawkes processes, as Markov process in
general state spaces, either using counting processes [DLO19] or Markov theory in

M..n-./\.f\h.fl“J‘UL\J‘L/\.__._.
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the state of cadlag functions [Kar12]. Coupling methods [Lin02] and general Markov
theory [Num04; Hail0O] are natural tools in this setting.
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CHAPTER 1

A SYNAPTIC THEORY FOR SEQUENCE LEARNING IN THE
STRIATUM

— ABSTRACT

Spatio-temporal patterns have been observed in a variety of brain areas in response
to stimuli, prior or during action, or even in spontaneous activity. However, the
biological mechanisms endowing neurons with the ability to distinguish between
different sequences remain largely unknown. In fact, learning sequences of spikes
raises multiple challenges, such as maintaining in memory spike history and dis-
criminating partially overlapping sequences. Medium spiny neurons (MSN) in the
striatum, expressing intense plasticity with cortex, have been reported to play a
critical role in integrating context elements and develop sensorimotor associations.
We theoretically explore the capacity of anti-Hebbian spike-timing dependent plas-
ticity (STDP), observed at cortico-striatal synapses of MSNSs, to drive the learning
of sequences. To this purpose, we design a spiking model of the MSN receiving
spike patterns defined as sequential input from a fixed set of cortical cells. We use
a simple three-factor synaptic plasticity rule that combines anti-Hebbian STDP and
non-associative potentiation associated to a subset of the presented patterns called
rewarded patterns. We study, in various situations, the ability of the MSN to discrim-
inate rewarded from non-rewarded patterns by firing only after presentation of a
rewarded pattern. In particular, we show that two well-known biological properties
of striatal networks, spiking latency and collateral inhibition, contribute to a signifi-
cant increase in accuracy, by allowing a better discrimination of partially overlapping
sequences. Altogether, these results argue that the anti-Hebbian STDP observed at
cortico-striatal synapses may serve as a biological substrate for learning sequences
of spikes.

1.1 Introduction

Nerve cells generate spatio-temporal patterns of action potentials, generally construed
to convey information in the central nervous system. While spiking sequences have
indeed been observed on a variety of timescales and in vastly distinct brain areas, the bi-
ological mechanisms employed to encode, store a sequence or distinguish between dif-
ferent sequences are still largely unknown. Atbehavioral timescales (seconds), episodic
experiences are by nature a sequence of events [Xie+22]. In brain, these result in the
generation of spatio-temporal spike sequences, as for instance with hippocampal place
cells activating following the animal’s movement [MKMO8], parietal cortex sequences
emerging in a virtual navigation-decision tasks [FHCT12]. Generating dynamical out-
put also require the formation of sequential cortical activity, as observed for instance in
bird’s ability to repeat spatio-temporal sequences over tens of seconds and with tempo-
ral structure maintaining millisecond accuracy within synfire chains [Ike+04], or more
generally the generation of sequential activation of neural assemblies [Buz10]. Shorter
timescale cortical spike sequences lasting tens of milliseconds were also reported in the
relative timing of spikes between sequences in oscillating neural assemblies [WL96],
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or in sequential activation after an up state transition [Luc+07], in response to a single
spike [Hem+19], or even in spontaneous patterns of activity [LBH09]. Theoretically,
Hebbian plasticity was reported to naturally generate sequential activity (see e.g. [PB20]
for a recent work in an unsupervised learning setting).

The ubiquity of sequences in brain activity suggests that the nervous system shall
have developed the ability to identify and distinguish sequences and spike in response
to a given set of sequences (and remain silent for other types of input). Theoretically,
this is a complex task. Firstly, identifying a sequence requires the ability to integrate
signals on a timescale of several spikes. Moreover, difficulties arise for sequences that
share a significant amount of input, overlap except for their last spikes, or even could be
seen as incompatible. Interestingly, despite ample work in computational neuroscience
and machine learning related to the learning of temporal sequences [Giit14], we did
not identify any work dealing with the specific task of identifying specific sequences
by firing or not depending on the full pattern of input (and differentially learn sub- or
super-patterns)

An ample part of the literature related to learning sequences found solutions
to the problem of replicating a target output spike train; algorithms based on error
backpropagation [BKL02], high-threshold projection [Mem+14], Remote Supervision
Methods (ReSuMe) [PK10], or the Chronotron [Flo12] which uses a modification of the
Victor & Purpura distance for spike trains to compute error terms, were shown to be
successful in performing those tasks. Closer to the problem at hand, some algorithms
were designed to decode statistical information from spike trains, or even to simply
spike in response to particular sequences of input spikes. Those techniques, that
include the Tempotron [GS06; US09], and its extensions [Giit+13; Giit14], differ from
the problem at hand in that the neuron is not required to take a decision at the end
of the task but may fire at any point during the presentation of the stimulus. In the
context of motor decision making for instance, this would be problematic in that it may
trigger movement in response to a part of a stimulus that should, when completed, not
give rise to a spike.

Here, we explore whether biological learning rules observed in the striatum allow
the acquisition of the ability to discriminate between different sequences. The dorsal
striatum, a subcortical nucleus and the main input structure of the basal ganglia, has
indeed been shown to play a major role for action selection [YKO06; GG15; JC15] and a
prominent site for memory formation and procedural learning [PV19; Ath+18; Pet+21].
In this variety of tasks, one may expect that the striatum needs to use information
from sequences of evidences to take a decision. In contrast with associative recurrent
cortices that are efficient to recollect missing information when presented with partial
patterns, the striatum is a largely feedforward network, that combines a variety of
cortical input to produce an output. Corticostriatal synapses were shown to be highly
plastic. They display anti-Hebbian Spike Timing Dependent Plasticity (STDP) [FGV05;
Fin+10; 1, whereby a cortical spike followed by a striatal medium spiny neuron
(MSN) spike leads to a depression of the associated synaptic weight. While many
computational studies have investigated the impact of Hebbian STDP, only a few studies
have investigated anti-Hebbian STDP. Those concentrated on the question of stability of
synaptic weights [Rob00; CF03; BK12], compensation of dendritic attenuation [RA04],
cancellation of correlated signals and novelty detection [ZD07; RL10], in particular in
the electrosensory system of the mormyrid electric fish.

As shown in all these works, when presented with correlated activity, anti-Hebbian
STDP will generally lead to devression of the associated svnapses ; this mechanism
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could naturally endow the system with the patience necessary to listen to full sequences
and identify specific ones. We will show here that the combination of anti-Hebbian
STDP with a simple, non-associative LTP is sufficient for a single MSN neuron to learn
and distinguish sequences. We will note that while the simplest model of neuron
with instantaneous firing will be able to learn sequences, they will however have a
tendency to spike too early, in situations where partial sequences and longer sequences
are presented. Going back to biology, we will observe that incorporating two key
biological observations from the striatal network, spike latency and collateral inhibition,
participate to the remarkable ability to identify and learn sequences of spikes.

1.2 Results

Sequence learning in the striatum

Given a spatio-temporal sequence of cortical spikes, we will say that a MSN has learnt
a specific subset of sequences if it acquires the ability to spike in response to a specific
subset of sequences, after the end of the correlated activity and not to spike in response
to the others.

While basic, this notion of sequence learning is quite distinct from the literature.
Indeed, as precisely reviewed in [Glit14], sequence learning has been classically divided
into two different types of tasks: (i) reproducing a target spike train or (ii) classify a
pattern by spiking, at any time, during the presentation of specific input sequences. The
second task relates to the role of the striatal neurons which integrate cortical correlated
patterns and then spike to trigger further downstream pathways leading to motor
processing and eventually, an action. As such, it is similar to the task we set out to
study here.

Since the latter task is not designed to wait until the end of a pattern to fire, when
the network classifies a spike pattern B and fires during its presentation (at the end
of subpattern A), it will also fire for any pattern that starts by (or just contains) A,
and thus the specificity of pattern B and the extra information it contains compared to
A is never taken into account. Assuming that the striatum needs to distinguish such
patterns in some situations and to possibly respond differently to each of them, we have
developed a new task where the striatal network, represented by one or two MSNSs,
integrates sequences of cortical spikes and naturally learns to spike at the end of the
patterns.

This task, is different from the two previously defined in the sense that (i) a target
spike train is not defined and used in the learning rule, and (ii) because the MSN needs
to spike at the end of the pattern presentation and not earlier to produce a correct
classification.

This novel tasks raises two main challenges: (i) the neuron shall keep the memory
of past spikes for the whole duration of the pattern before firing, and (ii) some com-
binations of sequences may be harder to learn, for instance when the tasks include a
rewarded pattern A that is a sub-pattern of another rewarded or non-rewarded patterns
B o A, since in both cases the neuron will have a tendency to fire in response to the
subpattern.
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Simple models of striatal dynamics

Our scientific approach will consist in exploring the ability of striatal networks to
achieve this task using simple, yet increasingly realistic, mathematical models. The
striatum is a complex nucleus, composed primarily of MSNs that are the only cells that
project outside of the striatum to other structures. These neurons integrate numerous
cortical and thalamic inputs, and have been often described as coincidence detectors,
since their high threshold requires the concomitant arrival of many spikes to induce a
spike, which are often fired after a period of latency. Those neurons have been described
in depth, both biologically and computationally, and several mathematical models were
proposed to describe their behavior [[zh07; Hum+09; HWG09; YAKT1; GHR15]. Within
the striatum, MSNs have been also described to produce sparse inhibitory collateral
connections among themselves, which reportedly plays a major role in the regulation
of MSN firings or their overall activity [WAS07].

Our approach will consist in starting from the most simple setting of a single
MSN receiving many cortical input and expressing the type of cortico-striatal plasticity
observed experimentally, and build our way towards more complex models of two-
neuron networks with non-linearities and adaptation, and assess in each case the
performance of the system.

MSNes as linear leaky-integrate-and-fire neurons

Leaky-integrate-and-fire dynamics. We started by modeling the MSN as a linear
leaky integrate-and-fire neuron [YAK11; Bur06; Ger+14], where the MSN integrates
cortical and external inputs and fires when hitting a threshold. In detail, between two
spikes, the membrane potential V' of the neuron satisfies a linear differential equation:

T(Z‘; _ _(V(t) — ‘/;q) + RI(t) + \/;‘/noise(t)

Spikes are emitted when the voltage exceeds a threshold V};,, at which time the neu-
ron’s voltage is instantaneously reset to V; and resumes input integration after a delay
Trefractory =10 MS. Vioise(t) represents Gaussian white noise, with a standard deviation of
Mnoise=0.5mV .

Inference of the parameters from experimental data. In order to fit the model, we
used electrophysiological data from MSNs recordings in the mouse dorsolateral stria-
tum in response to steps of input current with increasing amplitude. An example of
electrophysiological data is depicted in Figure 1.1al. These protocols are standard to
characterize the neuron spiking properties and are helpful to characterize the neuron
type.

In particular, it is possible to extract from these protocols the resting membrane
Veq, the threshold Vi, and the reset V; potentials. Moreover, the R-I curve of the
neuron is presented in Figure 1.1a2 (in blue). It represents the change in membrane
potential as a function of input current intensity, and is used to compute R after fitting
a linear curve to the experimental data (Figure 1.1a2, in green). 7 can then be fitted
directly on the electrophysiological traces. Once all these parameters are fixed, the
model is completely constrained, and we can reproduce the action potential protocol
using simulations (Figure 1.1a3). The model simulations reproduce relatively well
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Figure 1.1: MSNs as integrated-and-fire neurons with two types of synaptic plasticity
at corticostriatal synapses.
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Figure 1.1: MSNs as integrated-and-fire neurons with two types of synaptic plasticity
at corticostriatal synapses.

(a) Integrate-and-fire model (M1) for the MISN. (al) Electrophysiological data (unpublished)
from a MSN, recorded during an AP protocol (presentation of current steps with in-
creasing intensity). Membrane potential in mV, first spiking event (in black). (a2) R-I
curve from the same MSN, mean membrane potential value as a function of current
intensity (in blue). Linear regression to determine R (in green). (a3) Response of an
integrate-and-fire model, using values fitted on experimental data, to an AP protocol
(presentation of current steps with increasing intensity). Membrane potential in mV,
first spiking event (in black). (a4) Firing rates as a function of current intensity, ex-
perimental data (in blue), simulations with an integrate-and-fire neuron (green circle),
exact FI curve for the integrate-and-fire model (green line).

(b) Integrate-and-fire parameters, from experiments and previous models. Values for the
integrate-and-fire model parameters, fitted to each electrophysiological experiment
(black crosses). Mean values over all experiments (green circles, M1). Values from
the integrate-and-fire parameters from [YAK11] (red triangles) and from Izhikevich
models [Izh07] (brown triangles, M2).

(c) STDP applied at corticostriatal synapses. Synaptic weight update AW as a function
of At, using an exponential function, parametrized by A, .s—pre, for the change after
a post-pre pairing (in orange) and A,._post for pre-post pairings (in purple), with ex-
ponential decay 7,. Two examples of STDP are presented, asymmetric Hebbian STDP
(dashed line) and anti-Hebbian STDP (solid line).

(d) Non-associative potentiation to represent reward signals. Simple example of synaptic
updates resulting from spike train from two input neurons (top, neuron 1 in green,
neuron 2 in blue) and one output neuron (second line, in brown). Synaptic update
resulting from asymmetric anti-Hebbian STDP only (third line) or with non-associative
reward-LTP (in red, bottom line).

electrophysiological data, considering the restricted numbers of parameters in the
model. However, this type of model does not scale properly for high input currents, as
can be seen when looking at the F-I curve (firing rate as a function of input intensity,
Figure 1.1a4, blue data and green simulations).

Using experimental data from several MSNs, we fitted V¢, Vin, Vi, R and 7 for each
neuron and also computed C'=7/R. All these parameters are represented in Figure 1.1b,
along with their averaged value (green circles) and values from previous studies (red
triangles for [YAK11] and brown triangles for a non-linear version by [Izh07]). In
particular, we notice that the values inferred from experimental data are consistent
with canonical models, except for the reset potential V; which is sometimes taken as
equal to the rest potential V,,, notably in [Izh07]. We have chosen to use a different
value when modeling the MSN, because MSNs reset to values close to their threshold
potential leading to a greater excitability immediately after a spike compared to when
they are at their resting potential. In the following sections, MSNs will be modeled
either using the linear integrate-and-fire model (M1) with parameters inferred using
experimental data (the averages over all experiments, green circles), or the non-linear
model (M2) from [Izh07]. Parameters are provided in Table 1.1.
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Cortical inputs. In the cortical input received by the MSN (term /(¢) in equation 1.2),
we explicitly distinguish the spikes received from P cortical neurons, noted Igim (%)
(and with which plasticity will be modeled, see below) and an additional input .. (¢)
modeled as a Poisson process with rate Aey:

I(t) = Lyim(t) + Texs (2).

Each spike induces instantaneous jumps in the MSN membrane potential, with a
constant amplitude W =1nA (high enough to be able to evoke spiking activity in the
MSN) for external spikes and synaptic weights W (t) = (W;(t))1<i<p for each of the P
cortical neuron considered, that vary through plasticity mechanisms.

Istim(t) =T Z Z M/z(tf_)é(t - tf)? Iext(ﬂ = 7_‘/Vext Z 5(t - t];xt)>

! k k
1<i<P ti <t textgt

where we noted, for a function f being potentially discontinuous at time ¢, f(t—) the
value reached immediately before the jump, (F)x=0 is the sequence of spikes of neuron
iand (¥ ,)1>0 the sequence of external spike times, that have exponentially distributed
inter-spike intervals. The factor 7 allows appropriate scaling of weights for direct
comparison with experimentally measured EPSCs (excitory post-synaptic currents).

Synaptic plasticity at cortico-striatal synapses

Spike-timing dependent plasticity. Synaptic weights from the P cortical neurons to
the MSN are subject to pair-based STDP, which is modeled as synaptic weight updates
arising after each spike according to the spike timing relative to all previous spikes of
the other neuron (all-to-all implementation in the parlance of [MDGO08]). In detail:

— If the MSN spikes at time s (postsynaptic spike), then all weights are updated.
Noting t,; the previous spikes of cortical neuron i, the synaptic weight V; is
updated according to:

M/i(tpost) = I/Vi(tpost_) +€ Z (I)(tpost - tpre,i)

tpre,i <tpost
where ¢ denotes the plasticity rate, chosen in our simulations as ¢=0.02.

— If presynaptic cortical neuron i € {1,--- , P} spikes at time #,re;, noting t,os the
times of the MSN spikes, then the synaptic weight W is updated as:

I/I/vi(tpre,i) = I/Vi(tpre,i_) + € Z (I)(tpost - tpre,i)-

tpost <tpre,i

Denoting At=t,qs — tpre the timing between the presynaptic (cortical) spike and
the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDGOS]:

Apost-pre €XP f—:) if At <0

O(AL) =
(A1) Abpre-post €XP —f—:) if At >0

with 7,=20 ms.
An example of this STDP curve and of the impact of each parameter is given

in Figure 1.1c.
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Non-associative reward-LTP. Anti-Hebbian plasticity and the prominence of depres-
sion associated was often combined with non-associative LTP to prevent neurons from
becoming silent altogether [RBOO; WRLO3; RA04]. Indeed, synaptic weights involved in
the firing of a postsynaptic neuron are reduced by anti-Hebbian STDP, leading to their
decrease, a process that may persist until no postsynaptic spike is produced; in other
words, in the absence of an additional LTP, the synaptic weights subject to anti-Hebbian
learning decrease until the network becomes silent.

We chose to use non-associative LTP to model rewards signals, leading to the
following synaptic update rule, where at each presynaptic spike of cortical neuron i,
the associated synaptic weight IW; was updated by,

AVVz =£ Areward‘

where A,ewara 1S either null (corresponding to the absence of any LIP) or positive
(corresponding to non-associative potentiation of active presynaptic neurons).

This model offers an approximation of more detailed models proposed in the
literature, in particular three-factor learning rules [KIT17; Fon+18; Ger+18], by just
considering a simple reward signal consisting in the potentiation of the synaptic weight
at each presynaptic spike.

Eventually, synaptic weights are clipped within a realist range
[Winin, Wmaz|=[0.,2.]nA.  An example of simple synaptic weight dynamics with
P=2 cortical neurons, with and without reward is presented in Figure 1.1d.

Pattern recognition in the striatum

Patterns of correlated cortical activity. Learning at the level of the striatum is based
on the detection of correlated sequences of cortical inputs. We emulated learning
through a simple task, where NN, patterns of cortical activity are presented to the MSN,
whose spiking models the output of the network. A pattern represents a sequence
of cortical activity with duration fquation=050ms, and is composed by two different
processes (i) correlated activity from a subset of cortical neurons (always present at
each presentation of the pattern) (ii) random spiking activity from all cortical neurons.

In Figure 1.2a, a simple learning task is detailed with two patterns: pattern A
which corresponds to a spike from cortical neuron 4 happening at time ¢g.t; pattern B
where cortical neuron 1 spikes at ¢,g5.¢, followed after a delay ¢g4e1ay by a spike of cortical
neuron 3, see Figure 1.2a (top right).

During learning, the network is presented with patterns, chosen randomly from
the set of N, patterns. Among the patterns, a fixed subset was chosen to be rewarded
with a probability 1/2. Accordingly, the rest of the patterns were defined as non-
rewarded patterns. In the example of Figure 1.2a, pattern A was chosen to not be
rewarded (—) and pattern B rewarded (+). During training, rewarded patterns are
subject to a positive potentiation signal (A,eyara>0) while non-rewarded patterns do not
(Arewara=0). For all patterns, STDP rules are also applied at the synaptic weight matrix
W depending on pre- and postsynaptic spikes.

Accuracy, a measure of the network performance in the classification task. A re-
warded pattern was deemed learnt if the MSN fired after the presentation of the whole
sequence of correlated cortical activity, while non-rewarded patterns should not elicit
any spike. For example, in Figure 1.2a, both patterns were tested, before and after
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learning. Before learning, patterns A and B did not trigger any spikes of the MSN,
leading to a correct classification for A (as a non-rewarded pattern) and a misclassifica-
tion for B. After learning, pattern A still did not elicit any spike while the MSN emited
a spike after the presentation of all cortical spikes of pattern B, leading to a correct
classification.

The accuracy of the learning process was estimated through the averaged numbers
of correct responses:

Accuracy = ]\1[ Z reok + (1 — 7)) (1 — vg), (1.1)

P 1<k<Ny

where r,=1 if k is a rewarded pattern and 0 otherwise, o,=1 if the MSN spiked after
the correlated cortical activity and 0 otherwise, and v,=1 if the neuron spikes, and 0
otherwise.

We stress here that to correctly classify a rewarded pattern, the MSN cannot spike
during the cortical pattern, the spike has to be elicited at the end of the sequence. We
made this choice to model the capacity of the striatum to take decision based on whole
sequences of cortical activity, and not only on the first spikes.

The accuracy (and other network properties) is computed on a frozen network,
where all sources of noise have been shut-off. All patterns are presented, and evaluated
on this test network, with the MSN membrane potential reset to its resting value between
each pattern.

Impact of STDP and reward-LTP on two simple tasks

In order to test whether simple models of cortico-striatal learning perform in learning
sequences, we designed two simple tasks. We compared the evolution of different
properties as a function of pattern iterations (Figure 1.2b and c), using four different
types of STDP:

— Symmetric LTD: A, st pre=Apre—post=—1, which represents STDP where correlated
spiking only leads to depression of the synaptic weight.

— Asymmetric Hebbian STDP: Apoq—pre=—1 and Ape_post=1, which emulates the
classical Hebbian STDP rules where pre-post pairings lead to potentiation, while
post-pre pairings lead to depression.

— Asymmetric anti-Hebbian STDP: A,y —pre=1 and Apre_post=—1, which is the re-
verse of the asymmetric Hebbian STDP.

— Symmetric LTP: A ost—pre=Apre—post =1, Which represents STDP where correlated
spiking only lead to potentiation of the synaptic weight.

We distinguish Hebbian learning rules (asymmetric Hebbian STDP and symmetric
LTP), characterized by A, e—post=1, from anti-Hebbian learning rules (asymmetric anti-
Hebbian STDP and symmetric LTD) with A,,._,.ss=—1. Finally, we also tested the tasks
with or without reward LTP (right or left respectively), and either starting from low or
high synaptic weights (solid or dashed lines).
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Task A, random inputs. In the first task, we presented the MSN with random activity
from the cortical neurons (100 H z for each cortical neuron) and studied the norm of the
synaptic weight matrix W (Figure 1.2b). We observe in Figure 1.2b (left) that without
reward-LTP, symmetric LTD leads to a decrease of the synaptic weight norms (blue
line), regardless of the initial values. Conversely, symmetric LTP (red lines) leads to the
general potentiation of the synaptic weight, again for both low and high initial synaptic
weights. The picture is more complex for asymmetric Hebbian and anti-Hebbian
STDP, whose dynamics change depending on the initial values. Asymmetric Hebbian
STDP (in green) converges to a stable regime, while asymmetric anti-Hebbian STDP
(in brown) either leads to complete depression when starting too low, or to complete
potentiation when starting too high.

When adding reward-LTP Figure 1.2b (right), all rules lead to the potentiation of
the synaptic weights, except symmetric LTD where depression still dominates.

Task B, learning to respond to one pattern. We next turned to investigate the dy-
namics of the system in response to a single pattern, obtained as a Poisson process
with intensity A,oisson=1%kH 2 on a time interval of duration ¢;isson=5 ms, conditioned
with having at least two spikes. We computed the probability that the MSN remains
silent (top), the relative timing of the first spike of the MSN (middle) and the resulting
accuracy (bottom), for both a non-rewarded pattern (left) and a rewarded one (right).

Starting with the non-rewarded patterns, the simulations show several important
features. First, when starting from low synaptic weights (not sufficient to trigger
spiking), and in the absence of non-associative reward-LTP, the synaptic weights are not
updated (indeed the postsynaptic neuron never spikes), and therefore the probability
to remain silent is equal to 1 throughout learning, leading to an accuracy of 1 for each
type of STDP. The picture is more complex when the network starts with initial synaptic
weights high enough to trigger spikes of the postsynaptic neurons (dashed lines). In
that case, symmetric LTD is able to reduce the synaptic weight enough to silent them,
which translates in an increase in accuracy during learning, reaching maximal accuracy
quickly. Asymmetric anti-Hebbian STDP is also able to reduce synaptic weights, also
leading to an increase of accuracy. However, this is not as efficient as symmetric LTD,
mainly because the network is unstable if the synaptic weights are too high initially, as
was observed in Task A. Conversely, when the postsynaptic neuron spikes, symmetric
LTP and asymmetric Hebbian STDP only lead to an increase of the synaptic weights
involved in spiking, making it impossible for these Hebbian rules to silence the neuron
when presented with a non-rewarded pattern. In particular, the accuracy stays equal
to zero during all the task, as the MSN always spikes in response to the pattern.

We now present results for Task B with a rewarded pattern, in Figure 1.2¢ (right).
When the network starts with small synaptic weights, the pattern does not trigger any
MSN spike, as seen previously for the unrewarded pattern. However, thanks to the
reward-LTP mechanism, the presence of presynaptic spikes results in the potentiation
of the associated synaptic weight, and therefore leads to the triggering of MSN spikes.
When looking at Hebbian rules, numerical experiments show that the MSN starts to
spike after a short training (see the decrease in the probability to remain silent, top
panel), and once the MSN spikes, the synaptic weights are still potentiated (even more,
due to the fact that A,._,0st>0), forcing the first postsynaptic spike to be triggered at
the beginning of the pattern (the relative timing of the first spike goes to 0, middle
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Figure 1.2: Learning sequences in the striatum, using anti-Hebbian rules and non-
associative reward-LTP.

(a) Classification task using the striatal network. Schematic representation of the striatal
network (right) with P=4 cortical neurons (in green), a random input neuron with rate
Aext (in yellow) and one MSN, represented by its membrane potential V' (in brown).
Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic
weight W (in blue): STDP (in purple) and LTP related to the reward signal (reward-
LTP) (in red). Example of the learning task (left), with test sessions and the training
protocol (middle). N,=2 patterns A and B are presented to the network, with A being
non-rewarded (—) and B rewarded (+). Each pattern represent sequential activity (top
right), A with a single cortical spike and B with two spikes separated by a delay Zgejay-
All pattern have a duration of ¢gyation, and correlated cortical spikes are presented at
tofiset- SPpiking activity of the cortical neurons (in green for pattern spikes and grey for
random spikes) and the random input neuron (in yellow) are represented along with the
membrane potential V' of the output neuron (MSN, M1, in brown). In the test sessions,
below the MSN potential, are represented accuracy results (correct classification in
green, wrong classification in red).

(b) Dynamics of learning with random noise (Task A). Evolution of the norm of the synaptic
weights, during the presentation of cortical random spikes, with P=10 cortical neurons,
without (left) or with (right) non-associative reward-LTD, for different types of STDP
rules (color) and different values of initial synaptic weights (low in solid lines, high in
dashed lines).

(c) Dynamics of learning with a Poisson sequence (Task B). Different learning properties,
during the presentation of a Poisson sequence, with P=10 cortical neurons, without
(left) or with (right) non-associative reward-LTDP, for different types of STDP rules (color)
and different values of initial synaptic weights (low in solid lines, high in dashed
lines). (top) Probability to observe no spike during pattern presentation, (middle)
relative timing of the first postsynaptic spike, (bottom) accuracy. (Note: the traces from
symmetric LTP and asymmetric Hebbian STDP are superimposed.)

Low synaptic weights =[0.,0.05]nA / high synaptic weights =[0.05,0.5]nA /
Arewara=0.5 / N=500 independent networks / Membrane potential X and plasticity
reset between each pattern.

panel). In particular, this response (spiking before the end of the pattern) is not the
correct behavior, and leads to an accuracy of 0 (bottom panel).

For anti-Hebbian rules, another type of dynamics emerges. At first, only A,ewara
acts on the synaptic weight, leading to the potentiation of . Once a spike is elicited
at the MSN, the associated synaptic weight undergo a combination of potentiation
(from A,ewara) and depression (from Apre—post <0), With Areward +Apre—post <0. After each
postsynaptic spike, synaptic weights are therefore decreased. Several iterations are
needed for this resulting depression to decrease the synaptic weight enough to stop
triggering spikes at the postsynaptic neuron. When this event arrives, the synaptic
weights are again only subject to potentiation, which leads to spiking of the postsynaptic
neuron in the following presentation. The MSN therefore alternates between answering
correctly to the pattern (by spiking) or not (by remaining silent). Anti-Hebbian rules
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lead to an equilibrium where the MSN oscillates between those two states. This can
be seen by the fact, that the probability to remain silent converges to 0.5 in both cases,
resulting in an accuracy of 0.5. Asymmetric anti-Hebbian STDP is particularly stable
in this regime, while symmetric LTD loses efficacy after extended training.

When starting from higher synaptic weights, symmetric LTD and asymmetric anti-
Hebbian STDP are able to displace the postsynaptic spikes to the end of sequence of
cortical activity (see blue dotted lines, in middle panel), resulting in a non-zero accuracy.

As a conclusion, only symmetric LTD and asymmetric anti-Hebbian STDP correctly
learn to classify both types (rewarded and non-rewarded) of patterns, whereas Hebbian
rules perform poorly. Itis particularly interesting to notice that anti-Hebbian rules have
been shown to be present at corticostriatal synapses [FGV05], and therefore enable the
correct classification of patterns of sequential cortical activity. This conclusion results
of course from our definition of accuracy, where rewarded patterns are only classified
correctly when they spike after the pattern.

These simple experiments have however pointed out that the anti-Hebbian rules,
coupled with non-associative reward-LTP lead to an equilibrium where the neuron
oscillates between sub- and supra-threshold states. In particular, the accuracy, mea-
sured as defined above, suffers from this dynamics and does not render the fact that
the network has indeed learned the correct combination of weights to elicit a spike at
the end of the pattern. In order to compare with systems where a stable equilibrium is
reached, we define a new metric that we call MaxAccuracy as,

MaxAccuracy(t) = [thIlli)le] {Accuracy(t)}

where Accuracy(t) represents the value of accuracy computed at time ¢, following
Eq. 1.1, and [t—T7,t+T}] represents an interval of pattern iterations (77 will be taken
as 10 test iterations in the rest of the paper). In particular, when using this measure,
the oscillatory behavior described before is “hidden” thanks to the max, which will be
useful when comparing with more stable learning rules. We stress that this equilibrium
results from the simple hypotheses of the model, in particular the absence of reward-
prediction errors, and other mechanisms that would lead to the convergence of the
synaptic weights to stable values.

Sequence learning using anti-Hebbian rules with a single output cell

Now that the setting has been detailed, and after testing the direct influence of both
STDP rules and reward signaling, we aim at testing the previous conclusions on more
complex tasks.

Task 1, learning sequences of cortical associations

We now focus our attention on the ability of the network to learn to discriminate NV,
patterns composed of sequences of cortical spikes.
More practically, the N, are chosen as follows:

a. Each pattern is assigned to a number n of cortical spikes uniformly (between 1
and N, inputs).
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Figure 1.3: Anti-Hebbian rules and non-associative LTP enable learning with a single
linear integrate-and-fire MSN (M1).
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Parameters M1) (M2)[Izh07] [YAK11]

Vo (mV) 7672 80 80

Vi (mV)  -39.51 20 45

V. (mV) -41.70 55 80

R(MQ) 11850 100 80

7 (ms) 11.85 16

C (nF) 0.098 0.05 0.2
a(ms™1) 0.01
b(nFms1) -0.02
d(nFmstmV) 0.15

Table 1.1: Parameters of different models for MSNs.

b. The pattern is associated to a different ordered subset of n neurons from {1, P}.

c. The temporal sequence is defined with the first spike at time ¢,g5.¢, and the fol-
lowing ones presented with a fixed delay tgejay=1ms.

d. Finally, each pattern is chosen to be rewarded or not, with probability 1/2.

Patterns A and B from Figure 1.2a where build following this method. For pattern
A, we have n=1 spikes of cortical neuron (4) at time (o). For pattern B, we have
n=2 spikes of cortical neuron (1, 3) at time (fofset, tofset +tdelay)-

During the task, we measure at test protocols (frozen network), the accuracy and
MaxAccuracy as defined before. Moreover, for each set of parameters we realize the
simulations either with,

— Aiewara=0.9 for rewarded patterns, and A,eyara=0 for non-rewarded ones, to emu-
late supervised learning using the rewarding signal;

— A,ewara=0 for all patterns, as a control task, where no supervision is given to the
network.

In order to compare with more classical algorithms, we have defined an equivalent
optimization problem, where the correct classification is learned using logistic regres-
sion, implemented with the Imfit package. We trained the network taking as inputs a
binary version of the P x N,, matrix (1, ,,), with m,, ,,=1 if cortical neurons n was spiking
during pattern p, and m,,=0 if neuron n does not spike during pattern p. The linear
matrix in the logistic regression W is constrained to only have positive coefficients, as
would happen for excitatory synapses.

A A A
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Figure 1.3: Anti-Hebbian rules and non-associative LTP enable efficient learning
with a single linear integrate-and-fire MSN (M1).

(a) Only anti-Hebbian rules lead to learning when presenting patterns composed by sequences
of cortical inputs [Task 1] (left) Accuracy (dashed lines) and MaxAccuracy (solid lines)
as a function of learning iterations, for different STDP rules, for N,=5 patterns. (right)
MaxAccuracy as a function of the number of presented patterns N, for different STDP
rules.

(b) Anti-Hebbian rules lead to a specific equilibrium where smaller subsets of rewarded patterns
do not lead to spike of the MSN. (left) [Task 1] Accuracy (dashed lines) and MaxAccuracy
(solid lines) as a function of learning iterations, for different STDP rules, when testing
subpattern of N,=5 learned patterns. (right) MaxAccuracy when testing subpattern of
N, learned patterns, for different STDP rules.

(c-e) Influence of different types of noise on learning and performance [Task 1] MaxAccuracy
as a function of noise in cortical inputs Ay, (), of external noise injected directed in
the MSN potential )\, (d) and jitter in spike times during pattern presentation 7patern
(e), for different STDP rules.

Training done for 500 patterns iterations, with test sessions every N, iterations. Mean
results computed over N =250 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
(below) (HO): networks without supervision (A,ewara=0), compared with networks with
supervision (Aewara=0.9).

(above) (HO): networks with asymmetric Hebbian STDP, compared to other STDP rules.

Anti-Hebbian rules enable learning of cortical sequences with fixed delay

The results for Task 1, with P=10, N,,=5 and Ny, =3 are presented in Figure 1.3a (left).
The temporal evolution of the accuracy (dashed lines) and MaxAccuracy (solid lines)
are represented for the four different types of STDP presented before. We observe that
both anti-Hebbian rules learn to classify correctly the patterns. As explained in the
previous section, the synaptic weights converge to an equilibrium, and then alternate
a few correct responses with one wrong response that initializes a new sequence of
correct responses. Using the MaxAccuracy quantification, we observe higher levels
of performance and more truthfully represent the fact that the network discriminate
patterns correctly. Hebbian rules do not perform well in this task, leading to low
accuracies. [t is interesting to note that MaxAccuracy and accuracy converge to the
same values for Hebbian rules, highlighting the fact that MaxAccuracy does not always
improve the accuracy value.

Similar results are obtained for various numbers of patterns N, Figure 1.3a (right).
In particular, for all the different tasks presented here, only anti-Hebbian rules perform
significantly better than the control without supervision (comparison with black solid
lines, significativity at the bottom of each bar plot). More interestingly, Hebbian rules
perform significantly worse than without supervision. When comparing with results
from the logistic regression, we see that anti-Hebbian rules perform slightly worse than
the classical machine learning algorithm. As a conclusion, anti-Hebbian rules enable
efficient learning in Task A, while Hebbian rules perform worse than a non-supervised

network.
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To further investigate the equilibrium reached by anti-Hebbian rules while learning
Task A, we have tested the response of the network to randomly selected “subpatterns”
of the rewarded patterns. For example, if during the task, the pattern (1, 3) was
rewarded, we tested the response of the MSN to the patterns (1, @), (&, 3), where &
means that no spike were presented. We computed the accuracy on these subpatterns,
a correct classification was defined when the subpattern did not elicit any MSN spike.
The results are gathered in Figure 1.3b, and show that anti-Hebbian rules perform
significantly better than Hebbian ones, in a task where classical logistic regression
produce fewer correct classifications.

To appreciate the robustness of these findings, we changed the number of neu-
rons P, of stimulations by pattern N, and found similar results (see Figure 1.7a-b),
except for asymmetric anti-Hebbian STDP which performs worse for higher number
of stimulations, again due to its unstable behavior. Moreover, we have also tested if
changes in Aps—pre Values leads to different dynamics in Figure 1.7c. We showed that
learning really depends on A,._,ost (Hebbian or anti-Hebbian rules) while Ao pre
influence is less notable. Finally, we tried different values for A,cya..q in Figure 1.7d, two
main conclusions can be drawn from these experiments. In order to elicit learning, we
need to have A,cyard + Apre—post <0, which is verified when A,e_post= — 1, for Aepara<l.
Moreover, maximal learning is achieved when A, cyara + Apre—post 18 small compared to
Asewara. With this observation in mind, we will choose in the sequel A,¢yara=0.9 which
verifies both of these properties.

Anti-Hebbian rules do not only learn to correctly classify rewarded patterns, but
they also converge to an equilibrium where subpatterns of cortical activity are not
sufficient to trigger spiking at the MSN. In conclusion, MSNs subject to anti-Hebbian
STDP, learn to spike only if the whole pattern is presented.

Robustness to different types of noise

In order to test the robustness of learning to spontaneous activity, we introduced three
types of noise in the neuronal network dynamics,

a. random cortical spikes at rate of Aim;

b. random MSN spikes at rate Ay, implemented thanks to .y spikes defined in
Section 1.2;

c. random jitter in the spike timings during pattern presentation, with standard
deviation Tpattern-

MaxAccuracy for P=10, N,=5 and Ng;,=3, with different noise values are pre-
sented in Figure 1.3c-e. In all three cases, we start without noise, and test with increasing
values of the noise parameter. It is quite interesting to see that learning is robust in
the presence of random cortical spikes (Figure 1.3c), up to 1 Hz, and that symmetric
LTD performs well even with higher noise values. Again this confirms the fact that
asymmetric anti-Hebbian STDP leads to more unstable dynamics, and start failing for
lower noise intensities than symmetric LTD. We emphasize here that the random presy-
naptic spikes also leads to potentiation of the associated synaptic weights, through the
non-associative reward LTP. The same conclusions can be drawn with random MSN
spikes (Figure 1.3d). In both cases, adding noise with higher frequency (100 H z) quite
expectedly makes the network unable to learn. Finally, adding jitter in the timings
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Figure 1.4: Latency in MSNs enhance the network performance.

(a) Response of a non-linear I1zhikevich model (M2) to an AP protocol (presentation of
current steps with increasing intensity) (al) or presentation of a pulse of current (a2).
Membrane potential in mV, first spiking event (in black).

(b) [Task 1] Accuracy (dashed lines) and MaxAccuracy (solid lines) as a function of
learning iterations, for different STDP rules, for IV,=5 patterns for non-linear Izhikevich
(M2) model. (right) MaxAccuracy as a function of the number of presented patterns
N,, for different STDP rules.

(c) [Task 1] MaxAccuracy as a function of the number of presented patterns NN, for
asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-
linear Izhikevich (M2) models.

Training done for 500 patterns iterations, with test sessions every N, iterations. Mean
results computed over N=250 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
(below) (HO): networks without supervision (A,ewara=0), compared with networks with
supervision (A;ewara=0.9).

(b, above) (HO): networks with asymmetric Hebbian STDP, compared to other STDP
rules. (c, above) (HO): (M1) compared to (M2) neurons models, for asymmetric Hebbian
STDP (green) and asymmetric anti-Hebbian STDP (brown).

of cortical spikes in the pattern presentation does not stop anti-Hebbian rules from
reaching high accuracy. Jitter leads to more realistic patterns of cortical activity, with a
random timing between each cortical stimulation (but with fixed average). As shown
in this section, the network is robust to noise, and accordingly in the following experi-
ments, we will suppress all noise processes, to concentrate on the higher bounds of th
network’s capacity.

Spiking latency enhances the network’s performance

Using the previous network, anti-Hebbian rules were able to approach classical machine
learning accuracy, but they did not perform as well.

Heuristically, integrate-and-fire models have the drawback to fire instantaneously
after the depolarization of the membrane potential. This implies that when presented
with overlapping patterns, e.g. patterns A=(1) and pattern B=(1, 2), the neuron will
not be able to learn to spike after the end of both patterns, because it will either be able
to spike in response to pattern A only, and therefore fire before the end of pattern B, or
it will spike after pattern B, and thus not spike after pattern A. This ‘impatience” of the
MSN described by integrate-and-fire models is in fact an artifact of the simplicity of the
integrate-and-fire model. In reality, biological MSNss have been shown to display spike
latency: once a spike is triggered, the neuron spikes only after a delay.

In order to test whether the spike latency property in MSN neurons improves their
ability to learn sequences, we modified our neuron model to include a nonlinearity and
adaptation, following [Izh07]. This neuron model (noted M2) was shown to display
spike latency akin to electrophysiological measurements. The equation of the voltage

MMM



254 INFLUENCE OF STDP IN COMPUTATIONAL MODELS OF THE STRIATUM

V and adaptation U are given by:

O = k(V(t) = VO)(V(1) = Vea) = U®) + 1(2)
@ = alb(V () = Veo) = U(1)).
with spike emitted when the voltage exceeds a threshold V;;, at which time the neu-
ron’s voltage is instantaneously reset to V;. In these models, spike emission is due to
a runaway build up of cell membrane potential (or, mathematically, a blow-up of the
solutions [Tou08; TB09]) associated with the quadratic nonlinearity in the voltage equa-
tion. At the time of a spike, the adaptation variable is updated to U(t—) — U(t—) + d.
These models are known to be very versatile depending on the parameter set [Tou08;
Rub+17], and we use here the parameters provided in [Izh07] (see Table 1.1). The
parameters are compared to the integrate-and-fire model (M1) ones in Figure 1.1b. In
order to appropriately scale the input, currents I, and I, defined above are scaled
by RC, with R a scaling factor set as R=100 M

We present in Figure 1.4a, the MSN membrane potential using the non-linear
model (M2), either for step (al) or pulse (a2) currents. Nonlinear dynamics, and spike
latency lead to dynamics of the membrane potentials closer to electrophysiological data
(compare Figure 1.1al and Figure 1.4al). The latency property is more clearly visible in
the neuron’s response to cortical pulses (Figure 1.4a2), where it can be seen that when
the current pulse is just sufficient to trigger a spike (black line), initiation of a spike
takes several milliseconds.

In Figure 1.4b, we present the resulting MaxAccuracy for Task 1, using neuron
model (M2). We show that asymmetric anti-Hebbian STDP performs as well as the
logistic regression, which confirms the fact that the lack of latency was responsible for
the gap observed with (M1). We more precisely compare both models in Figure 1.4c,
and show that with asymmetric anti-Hebbian STDP, (M2) always reaches significantly
higher accuracies than (M1).

We have showed in this section, that anti-Hebbian STDP rules coupled with a
latency mechanism for spiking make a simple striatal network as efficient as logistic
regression to learn a classification task using biological learning rules.

Inhibition in striatal networks improves learning

While taking into account non-linearities and adaptation produce latencies that may
allow the appropriate learning of nested rewarded patterns, the excitatory nature of
the cortico-striatal input prevents the system from learning rewarded pattern A and a
non-rewarded pattern 5 that contains A (Figure 1.5a). Indeed, either the MSN spikes
for pattern A, and it has to spike for pattern B (case of Figure 1.5a, 3rd line), or it
does not spike for any of them. We note that a similar issue arises with the logistic
regression when we constrain the weights W to be positive. Biologically, as exposed
above, the striatum is a complex network made of a large number of MSNs, sharing part
of their input, receiving distinct neuromodulation, and interacting together through
collateral inhibition. Heuristically, this collateral inhibition could, in nature, provide a
mechanism to learn such nested patterns. We explore this hypothesis here in a simple
model.
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Figure 1.5: Lateral inhibition facilitates learning of complex pattern sequences.

(a) Lateral inhibition in the striatal network. Schematic representation of the striatal
network (right) with P=2 cortical neurons (in green), and three different models for
MSN activity: (i) one striatal neuron (MSN) modeled as a non-linear IAF neuron (M2,
in brown), (ii) two striatal neurons (MSN; in brown, and MSN; in purple) without
collateral inhibition, (iii) two striatal neurons with collateral inhibition from MSN, to
MSN;.

Two mechanisms of synaptic plasticity are considered in the dynamics of the synap-
tic weight W (in blue): the STDP (in purple) and LTP related to the reward signal
(reward-LTP) (in red). Reward-LIP is presented for rewarded patterns at MSN; and
for non-rewarded patterns at MSN,. Example of the learning task (left), with test
sessions and the training protocol (middle). N,=2 patterns A and B are presented
to the network, with A being rewarded (+) and B non-rewarded (—) (for MSN;). In
the test sessions, below the MSN potential, are represented accuracy results (correct
classification in green, wrong classification in red). Spiking activity of the cortical neu-
rons (in green) are represented along with the membrane potential V' of for the output
neuron(s) (MSN).

(b) Advantages of lateral inhibition in learning all possible patterns for a small number of
neurons. [Task 2] MaxAccuracy when learning all possible sequences for P neurons,
for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-
linear Izhikevich (M2) models, in the absence (J=0) or presence (J=-—0.5) of lateral
inhibition.

(c) Consequence of lateral inhibition when learning sequences of cortical inputs [Task 1] MaxAc-
curacy as a function of the number of presented patterns N,, for asymmetric Hebbian
and anti-Hebbian STDP, comparing linear IAF (M1) and non-linear Izhikevich (M2)
models, in the absence (J=0) or presence (J=—0.5) of lateral inhibition.

[Task 2] Training done for 2000 patterns iterations, with test sessions every 5 iterations.
[Task 1] Training done for 500 patterns iterations, with test sessions every N, iterations.
Mean results computed over N =250 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
(below) (HO): networks without supervision (A,ewara=0), compared with networks with
supervision (A;ewara=0.9).

(above) (HO): (M2) neurons without collateral inhibition (/=0) for asymmetric Hebbian
STDP (green) and asymmetric anti-Hebbian STDP (brown).

A striatal network with two MSNs, connected through collateral inhibition

We considered a simple two-neuron network model (neurons labeled MSN; and MSN»),
where each MSN is a non-linear integrate-and-fire neuron (model M2 of section 1.2),
which integrates the same cortical activity through two different weight matrices W,
and W, (Figure 1.5a), and MSN; may be inhibited by MSN, through an additional
current:

Lt) = RCJ Y 5t —ths,),

k
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where (tf gy, ) are the spike times of MSN,, and J= — 0.5 nA. The absence of inhibition
corresponds to J = 0. MSN; and MSN; also differ in their rewards. Here, we assumed
for simplicity that MSN; and MSN, learn opposite tasks (i.e., MSNj, is rewarded for
non-rewarded patterns of MSN;, see Figure 1.5a (right)), and the accuracy is read out
on MSN; only. Figure 1.5a illustrates the fact that, in the absence of collateral inhibition
(fourth line), MSN; learns to respond to pattern A, and as a consequence also spike
for pattern B o A, while MSN, spikes after pattern B. Therefore, inhibition from
MSN; (fifth line) can now induce a strong enough depolarization of MSN; potential to
prevent it from spiking, leading to the correct classification of both patterns. Beyond this
specific case, we investigated in detail how, statistically, collateral inhibition impacted
accuracies.

Collateral inhibition enhance the network perfomance above logistic regression

In order to study more extensively this new network property, we consider a second
task, Task 2, where patterns are forced to be nested one into another, leading to the
misclassifications detailed in the previous section.

In particular, we test for P neurons, how the network is able to correctly discrimi-
nate the following P patterns, (1), (1, 2), ..., (1, 2, ..., P), when considering all possible
combinations of rewarded /non-rewarded patterns. We have tested on all these com-
binations (so 2 situations) how the network performs in the discrimination task. For
example, for P=2, the network is tested on 4 different sets of 2 patterns, (1) and (1, 2),
with each pattern being either rewarded (+) or non-rewarded (—). For this task only,
we have chosen a delay between spikes of t4e1ay=0.5ms. The results are presented
in Figure 1.5b, for several values of P. As could be expected from the example of Fig-
ure 1.5a, the network with collateral inhibition is able to correctly classify all sequences
of patterns for P=2, and stay close to the optimal performance for higher values of P. In
particular, this network completely outperforms either the network without inhibition,
or logistic regression.

It is interesting to question our choice of rewards for MSN,, who rewards patterns
that are not rewarded by MSN;, and conversely, do not reward patterns that are re-
warded by MSN;. Considering the fact that the collateral inhibition is unilateral from
MSN, to MSNj, two rewards strategies were possible for MSN,, either it rewarded as
MSN; (‘same’ rewards) or did the reverse (‘differential’ reward, the one used here). We
checked using Task 2, both strategies in Figure 1.8, and found that only the “differential’
strategy led to significant changes when adding collateral inhibition. Asa consequence,
the ‘differential’ reward strategy was used in the rest of the paper.

We also tested this network on Task 1 in Figure 1.5c. Collateral inhibition leads to
a significantly higher performance for all parameters tested. These results have been
confirmed for different sets of P neurons (Figure 1.9a), various Ny, (Figure 1.9b) or
different values of collateral inhibition (Figure 1.9¢).

Overall, it is quite notable to observe that in all cases, asymmetric Hebbian STDP
(in green), for Task 1 or 2, still leads to poor performances, while asymmetric anti-
Hebbian STDP reaches high accuracy. The two biologically relevant properties that
have been added, spiking latency and collateral inhibition, both lead to a significant
increase in accuracy.
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Classification of more complex patterns

We have finally tested our different neuronal networks against more complex inputs,
with two different tasks. First, we define Task 3, where we consider Task 1 patterns, with
jittered spikes (the cortical spike times are chosen from uniforms distributions around
the delay t4e1ay, kept constant during the whole simulations). Then, we also consider
Task 4 where patterns of cortical activity were defined through Poisson processes of
intensity Apoisson=1kHz, on a duration ?ess0n=2ms, conditioned to have at least 2
spikes.

We present below the classification results for Task 3 (Figure 1.6a) and Task 4
(Figure 1.6b), for different values of patterns N,. Global performances are consistent
with what was observed for Task 1, in particular with collateral inhibition leading to
higher accuracies than logistic regression.

1.3 Discussion

A simple striatal neuronal network, composed of one or two MSNs, integrating spikes
from a population of cortical neurons, is presented and trained in a task, specifically
defined to emulate the striatum role in procedural learning. The MSNs learn to correctly
classify patterns, built on precisely timed sequences of cortical spikes, by spiking at the
end of the pattern. We show that this simple striatal network endowed with two types
of synaptic plasticity, anti-Hebbian learning rules (either symmetric LTD or asymmetric
anti-Hebbian STDP) and non-associative reward-LTP, performs well in this task. When
adding spike latency, a prominent characteristic of MSNs, we found that the network
was able to achieve similar performance as logistic regression. A second MSN, that
learns the reverse associations of patterns, and that inhibits the first MSN through
lateral inhibition is incorporated in the striatal network, to model collateral inhibition
between MSNs. We show that thanks to this addition, the striatal network outperforms
classical algorithms. We prove that several key properties exhibited by MSNs, (anti-
Hebbian STDP, latency and collateral inhibition) enable the classification of precisely
timed sequences of cortical activity, and more importantly that thanks to the present
learning rules, the MSN learns to take into account the complete cortical pattern before
taking a decision.

The reward signaling used in the present model was restricted to simple su-
pervision through the potentiation of synaptic weights associated to presynaptic
spikes during rewarded patterns. Detailed models, in particular three-factor learn-
ing rules [KIT17; Fon+18; Ger+18], can also been used in this context, and in particular
by detailing how the reward can be implemented using dopaminergic signaling. A
framework for corticostriatal plasticity was developed along with the use of dopamine-
dependent STDP curves [GHR15]. It only focused on Hebbian STDP, while here we
show that anti-Hebbian STDP plays a significant role during learning. It would be
interesting to model the fact that dopaminergic neurons are not only modulated by
the value of rewards (or of the reward-prediction error). Indeed, dopaminergic neu-
rons of the SNc (substantia nigra pars-compacta), which are responsible for dopamine
in the striatum, are known to be also directly stimulated by MSNs originating from
striosomes. The integration of the dopaminergic circuit could therefore lead to more
realistic study of the influence of reward on learning in the striatum.

w
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We have considered here that MSNss activity was the relevant quantity to study
the impact of striatal dynamics on procedural learning. This restrictive vue can be ex-
panded by integrating downstream pathways, and the rest of the basal ganglia nuclei.
In particular, direct and indirect-pathway neurons have different electrophysiological
properties, and also exhibit different types of STDP | ]. Building a general model
of the striatum, with both pathways, can lead to a better understanding of the striatum
participation in learning. Incorporating these two pathways can also be interesting
when considering the influence of striatal plasticity in the process of action selection,
that heavily rely on the distinctive dynamics specific to each pathway [Dun+19]. A sim-
ilar dichotomy exists when comparing the dorsomedial (DMS) and dorsolateral (DLS)
parts of the striatum. Both regions are involved in different types of learning, specifi-
cally goal-directed behavior and habits. Differences in corticostriatal STDP have been
shown to exist experimentally, and a similar striatal network is developed in [ |
to study the influence of the different types of anti-Hebbian STDP on the flexibility and
maintenance of learning.



260 INFLUENCE OF STDP IN COMPUTATIONAL MODELS OF THE STRIATUM
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Figure 1.6: Striatal learning also perform well on more realistic patterns.
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Figure 1.6: Striatal learning also performs well on more realistic patterns.

(a) Learning patterns with jiterred inputs [Task 3] MaxAccuracy as a function of the
number of presented patterns NN, for asymmetric Hebbian and anti-Hebbian STDP,
comparing linear IAF (M1) and non-linear Izhikevich (M2) models, in the absence
(J=0) or presence (J=—0.5) of lateral inhibition. (b) Learning patterns of Poisson spike
trains [Task 4] MaxAccuracy as a function of the number of presented patterns NV,
for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-
linear Izhikevich (M2) models, in the absence (J=0) or presence (J=—0.5) of lateral
inhibition.

Training done for 500 patterns iterations, with test sessions every N, iterations. Mean
results computed over N =250 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
(below) (HO): networks without supervision (A,ewara=0), compared with networks with
supervision (A;ewara=0.9).

(above) (HO): (M2) neurons without collateral inhibition (/=0) for asymmetric Hebbian
STDP (green) and asymmetric anti-Hebbian STDP (brown).
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a Task 1 (sequences of cortical spikes):
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Figure 1.7: Influence of parameters on learning with linear IAF model (M1).

[Task 1] (a) MaxAccuracy for different number of cortical neurons P, with N,=P.
Training done for [500, 1000, 2000, 2000] patterns iterations for P=[10, 20, 40, 50|, with
test sessions every N, =P iterations. (b) MaxAccuracy for different number of cortical
stimulations Ngm. () MaxAccuracy for different values of post-pre amplitude A o5t pre-
(d) MaxAccuracy for different values of reward-LTP A, cyarq. (Same as in Figure 1.3)
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Task 2 (all possibles ordered sequences) with P = N,

MaxAccuracy

Number of patterns NN,

—— A. Hebbian - No inhibition —— A. anti-Hebbian - No inhibition @ MSN (M2) - same reward
A. Hebbian - Inhibition 2 — 1 A. anti-Hebbian - Inhibition 2 — 1 A MSN (M2) - differential reward

Figure 1.8: Influence of the strategy of reward with collateral inhibition.
[Task 2] MaxAccuracy for different number of cortical neurons P, with N,=P for
different types of learning stategies and connectivity. (same as in Figure 1.5)
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a Task 1 (sequences of cortical spikes):
Nstim =3, non-linear IAF (M2)
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Figure 1.9: Influence of parameters on learning with non-linear IAF model (M2) and
lateral inhibition.

[Task 1] (a) MaxAccuracy for different number of cortical neurons P, with N,=P.
Training done for [500, 1000, 2000, 2000] patterns iterations for P=[10, 20, 40, 50|, with
test sessions every N,=P iterations. (b) MaxAccuracy for different number of cortical
stimulations Ngim. (c) MaxAccuracy for different values of lateral inhibition J for
asymmetric anti-Hebbian STDP. (same as in Figure 1.5).
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CHAPTER 2

REGION-SPECIFIC ANTI-HEBBIAN PLASTICITY SUBTEND
DISTINCT LEARNING STRATEGIES IN THE STRIATUM

— ABSTRACT

The striatum mediates two learning modalities: goal-directed behavior in dorso-
medial (DMS) and habits in dorsolateral (DLS) striatum. The synaptic bases of these
learnings are still elusive. Indeed, while ample research has described DLS plasticity,
little is known about DMS plasticity and its involvement in procedural learning.

Experimental results, only summarized in this section, but developed in the corre-
sponding article [ ], show that symmetric and asymmetric anti-Hebbian spike-
timing-dependent plasticity (STDP) exist in DMS and DLS respectively, with opposite
plasticity dominance upon increasing corticostriatal activity. Moreover, behavioral
experiments coupled with STDP occlusion protocols show that during motor skill
learning, plasticity was engaged in DMS and striatonigral DLS neurons only dur-
ing early learning stages, whereas striatopallidal DLS neurons were mobilized only
during late phases.

In the following report, we developed a mathematical model to study the compu-
tational properties of these rules in learning; we found that symmetric anti-Hebbian
STDP favored memory flexibility by allowing a rapid forgetting of patterns, while
asymmetric anti-Hebbian STDP contributed to memory maintenance, consistent with
memory processes at play in procedural learning.

2.1 Introduction

The dorsal striatum is critical for action selection and initiation [ YK06; GG15; JC15] and
represents a major site for memory formation encoding for procedural learning [PV 19].
The dorsal striatum is composed of two main anatomico-functional regions, the dorso-
lateral striatum (DLS) and dorsomedial striatum (DMS) based on topographic cortical
glutamatergic afferents. DLS mainly receives cortical inputs from the premotor and sen-
sorimotor cortices, whereas DMS receives cortical afferents from prefrontal and asso-
ciative cortices [Hun+16]. Moreover, DLS and DMS appear to engage at different learn-
ing phases: the classical view posits that during reward-guided instrumental learning
DMS supports goal-directed behavior, while DLS is gradually involved in later learning
phases associated with habit formation and performance [YKO06; BO10; CJ10; Tho+10;
GC13; BNR15; Van+19; CCNO4]. Similarly, during motor skill learning DMS appears to
play a crucial role during initial phases of fast improvements, while DLS is determinant
for slower learning phases as experience accumulates [GG15; JC15; CCN04; Yin+09;
X7Z715]. Nevertheless, there is evidence that DLS does not only activate at late learning
phases, but is engaged, together with DMS, from early training phases [Tho+10; GC13;
Kim+09; Sta+10; Kup+17; Ber+18]. Acquisition and maintenance of motor skills and
habits involve corticostriatal long-term synaptic efficacy changes [PV19]. Indeed, in
vivo proxies for plasticity, such as changes in firing activity [CCN04; Yin+09; TG14;
Bar+11; Kor+12; OHa+16; Ath+18; Pet+21] or in evoked-LFP [XZZ15], were detected
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in the corticostriatal pathway throughout procedural learning. Conversely, trigger-
ing corticostriatal synaptic plasticity was shown to modify habitual behavior [XZZ15;
Ma+18]. Although these findings clearly highlight a causal and/or correlative link be-
tween corticostriatal plasticity and procedural learning, the nature and contribution of
DLS and DMS long-term plasticity remain to be fully determined. To investigate plas-
ticity properties at corticostriatal synapses and their potential implication in memory
storage and relearning in DMS and DLS, we characterized the spike-timing-dependent
plasticity (STDP) [Fel12], in both dorsal striatal compartments, in order to characterize
the experience-dependent changes in neuronal networks they subtend. Using brain
slice preparations preserving afferents from the somatosensory or the cingulate cortex
and the corresponding striatal projection domains [Fin+18], we investigated the DMS
and DLS corticostriatal STDP in striatal medium-sized spiny neurons (MSNs).

We observed that similar STDP paradigms trigger anti-Hebbian STDP in both DMS
and DLS, but the specific profiles of STDP are vastly distinct: symmetric anti-Hebbian
STDP arises in DMS (yielding LTD only), contrasting with asymmetric anti-Hebbian
STDP in DLS (yielding LTD or LTP depending on spike timings). Moreover, when corti-
costriatal activity was scaled up, we found that a long-term depression (LTD) prevailed
in DMS, while long-term potentiation (LTP) prevailed in DLS. In fact, we further found
that MSNs from the DMS exhibited opposite plasticity, in a specific activity regime,
depending on whether they belonged to the direct and indirect pathway. During motor
skill learning (Rotarod task), we found that during early learning phases, plasticity was
engaged for all recorded MSNs in DMS, both belonging to the direct and indirect path-
way, and only direct pathway MSNss in DLS. In contrast, during late learning phases, we
found that only the indirect pathway MSNs in DLS were mobilized. To appreciate how
these distinct plasticity rules may support the different phases of procedural learning,
we developed a mathematical model to quantify the capacity of those plasticity rules for
memory formation and storage. Our model predicted that asymmetric anti-Hebbian
STDP facilitated the maintenance of memory, whereas symmetric LTD allowed reward-
dependent learning with a swift turnover of memories, potentially enhancing memory
flexibility. These findings therefore reveal how distinct corticostriatal plasticity maps
in DLS and DMS, having opposite polarities, could endow the striatum with comple-
mentary capacities for procedural learning allowing flexibility in memory acquisition
and stabilization of memories potentially allowing the development of habits.

2.2 Summary of experimental results

I reproduce in this section parts of the experimental conclusions from [ I In
particular, I focus on the results pertinent to the computational study that I have
devised and studied.

Distinct anti-Hebbian STDP profiles in sensorimotor and associative
striatum

We investigated STDP rules at corticostriatal synapses in MSNs located either in DLS or
DMS. For this purpose, we used two brain slice preparations that preserved connections
between the sensorimotor cortex (52) and DLS, or between the associative cortex (CG2)
and DMS, and allowed to stimulate within cortical layer 5 while recording MSNs (Fig-
ure 2.1) [Fin+18]. Atboth synapses, we first applied the same STDP protocol consisting
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Figure 2.1: Distinct anti-Hebbian STDP profiles in DLS and DMS
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Figure 2.1: Distinct anti-Hebbian STDP profiles in DLS and DMS.

(a) STDP pairings: a single spike evoked in the recorded MSN was paired with a single
cortical stimulation. Pairings were repeated 100 times at 1 Hz. Atgrpp indicates the time
between pre- and postsynaptic stimulations. Atgrpp<0 and Atgrpp>0 refer to the post-
pre (al) and pre-post (a2) pairings, respectively. Pre- and postsynaptic stimulations
were applied either in the sensorimotor (S2) (b) or the associative (CG2) (c) cortical and
striatal areas. (b1 and c1) Experimental setup showing the location of the stimulation
and recording electrodes in cortical and striatal sensorimotor (b1) and associative (c1)
areas.

(b) DLS-STDP displays an asymmetric anti-Hebbian polarity in rats. (b1) Experimental
setup. (b2 and b3) Averaged time-courses of (b2) LTP induced by 100 post-pre pairings
(n=16) and (b3) LTD induced by 100 pre-post pairings (n=14).

(c) DMS-STDP displays symmetric anti-Hebbian polarity. (c1) Experimental setup. (c2
and c3) Averaged time-courses of LTD induced by (c2) 100 post-pre pairings (n=11)
and (c3) 100 pre-post pairings (n=16). Bar graphs represent the average of all STDP
experiments and each point represents the percentage of change in EPSC amplitude at
50-60 min after STDP pairings in a single STDP experiment. Insets correspond to the
average EPSC amplitude at baseline and at 50-60 min after STDP pairings. Error bars
represent the SEM. ***: p<(.0001 by one sample t-test.

(d) Summary graphs of STDP in relation with Atsrpp showed at 1 Hz, (d1) an asym-
metric anti-Hebbian STDP in a restricted time window (—30<Atsrpp<30ms), (d2) sym-
metric anti-Hebbian STDP in a broad time window (—100<Atsrpp<100 m.s).

(e) Summary graphs of STDP in relation with Atsrpp showed at 2.5 Hz, (el) a widening
of the temporal window of STDP expression and in particular of LTP being also induced
for short pre-post pairings, (e2) mainly LTD except for narrow (—30<Atsrpp<0 m.s) post-
pre pairings for which half of the MSNs exhibited LTD while the other half displayed
LTP (n=59).

of 100 pairings at 1 Hz of pre- and postsynaptic stimulations with prescribed timing
At=-15 or +15ms. At<0 indicates that postsynaptic stimulation preceded presynap-
tic stimulation (post-pre pairings) (Figure 2.1al) and A¢>0 indicates that presynaptic
stimulation preceded postsynaptic stimulation (pre-post pairings) (Figure 2.1a2).

We investigated corticostriatal STDP in the DLS (Figure 2.1b) and observed asym-
metric (i.e distinct plasticity polarity on both sides of At=0) anti-Hebbian STDP: spike-
timing-dependent long-term potentiation (LTP) for post-pre pairings (Figure 2.1b2) and
depression (LTD) for pre-post pairings (Figure 2.1b3). Anti-Hebbian qualifies STDP
with pre-post LTD, as defined in [Fel12]. Post-pre pairings induced tLTP (p<0.0001,
n=16), whereas pre-post pairings induced LTD (p<0.0001, n=14). This is in line
with DLS-STDP displaying anti-Hebbian polarity in native conditions [FGV05; Fin+10;

]. Striatal DLS-STDP with a Hebbian polarity has also been reported [PKO0S;
She+08], caused by the use of GABAA receptor antagonists. Indeed, GABAergic sig-
naling governs STDP polarity and operates as a Hebbian/anti-Hebbian switch in the
DLS [Pai+13; Val+17].

In DMS (Figure 2.1c), post-pre and pre-post pairings induced a symmetric (i.e
similar plasticity polarity, here LTD, on both sides of At=0) anti-Hebbian STDP (Fig-
ure 2.1c2 and c3). Indeed, spike-timing-dependent long-term depression (LTD) was
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observed following post-pre pairings (p<0.0001, n=11) as well as following pre-post
pairings (p<0.0001, n=16).

In conclusion, corticostriatal STDP in DMS and DLS displayed both anti-Hebbian
plasticity, and differed significantly in that they displayed symmetric or asymmetric
profiles in DMS and DLS respectively.

We also characterized in the associated paper, which pathways were involved in
the different STDP rules observed. In particular, after blocking the different pathways
specifically, it was shown that post-pre DLS-LTP and DMS-LTD are NMDAR-mediated,
whereas pre-post DLS- and DMS-LTD are CB1R-mediated.

Dominance of opposite forms of plasticity in DMS and DLS with
increasing corticostriatal activity

Expression map of STDP is not only shaped by spike timing (At) but also by the
frequency at which pairings are presented (Fpairings) [Fel12; Mar+97; STNO1]. We further
characterized the induction rules of corticostriatal STDP in DLS ( Nyyta1=130 DLS-MSNSs)
and DMS (Niyta1=125 DMS-MSNSs) by varying together At (—100<A¢< + 100ms) and
F pairings (1<F pairingsgg) H Z)

When Fiairings=1 Hz, DLS-MSNs elicit asymmetric anti-Hebbian STDP, as ex-
plained in the previous section, characterized by LTD for pre-post pairings (At>0,
Figure 2.1d1), and LTP for post-pre pairings (At<0, Figure 2.1d1). Conversely, DMS-
MSNs develop symmetric anti-Hebbian STDP, defined by the dominance of LTD, for
both pre-post and post-pre pairings (Figure 2.1d2).

When raising the frequency Fpairings to 2.5 Hz, the STDP profiles changed for both
type of neurons. First, DLS-MSNs still exhibit asymmetric anti-Hebbian STDP, but
the temporal window of STDP has widened up to +100ms (Figure 2.1el). Second,
pre-post pairings in DMS-MSNSs are still characterized by LTD at their corticostriatal
synapse (Figure 2.1e2) but their behavior for post-pre pairing is less clear with neurons
exhibiting LTP or LTD.

In the associated article, a more systematic study is developped on the influence
of Fpairings, Which lead to the following conclusions,

a. the STDP expression domain (At) is narrower in DLS than in DMS for low Fpairings
and is widening with increasing firing activity;

b. the existence of an opposite dominance of LTP and LTD in DLS and DMS, respec-
tively.

The diversity of behaviors observed in DMS-MSNss for post-pre pairings justified
turther studies on this particular protocol. We analyzed more finely which types
of neurons were recorded and postulated that appartenance of the MSN to different
pathways could be a possible explanation to the different types of STDP observed.

Two populations of MSNs exist in both DMS and DLS, and are characterized by
the structure they are projecting to. On the one hand, dMSNs that project to the GPi
(internal globus pallidus) and the SNr (substantia nigra pars reticulata) are part of the
direct pathway of the cortico-basal-ganglia network. On the other hand, iMSNs that
project to the GPe (external globus pallidus) are part of the indirect pathway. Both types
of neurons have been shown to act differently on the processus of action selection and



274 INFLUENCE OF STDP IN COMPUTATIONAL MODELS OF THE STRIATUM

motor control, and they also respond differently to dopamine. The two MSN subtypes
express different dopaminergic receptors, D1R- and D2R-like for the direct and indirect
pathways, respectively [Cal+14; Bon+19].

We proved that the observed dichotomy regarding LTP/LTD expression in DMS-
MSNs for Frairings=2.5 Hz overlapped that of MSNs belonging in the same proportion
to the direct (striatonigral) and the indirect (striatopallidal) pathways using transgenic
mice. Indeed, DMS-dMSNs exhibit LTD for post-pre pairings, while DMS-iMSNs
display LTP.

Region-specific involvement of STDP during procedural learning

We next investigated the engagement of LTP and LTD in DLS and DMS during motor
skill learning, using behavioral experiments (rotarod task).

In order to see if these STDP rules were implicated in learning, we used ex vivo
saturation/occlusion experiments: STDP protocols in ex vivo brain slices were realized,
at different stages of learning. It is expected that if STDP related process is active during
a certain stage of learning, the associated pathways tend to be saturated. When an STDP
protocol is subsequently applied in an ex-vivo experiment, it should lead to changes
in observed STDP. In particular, synaptic processes active in learning should lead to an
absence of plasticity in response to subsequent STDP protocols.

This paradigm was used to test the pathways associated to post-pre pairings for
Fpairings=2.5 Hz. DLS-MSNs belonging to the direct or indirect pathways are selectively
engaged, in terms of STDP, depending on the stages of motor skill learning: only
DLS-dMSN s are involved at early stages, and during the late stages only DLS-iMSNs
are engaged. DMS-MSN plasticity is mobilized in both MSN populations during
early stages and then showed a disengagement during late stages. Interestingly, DLS-
dMSNs show the same plasticity profiles, and occlusion, as DMS-iMSNs. All results
and methods can be found in the full paper [ I

2.3 Results

Reduced mathematical model of the striatal network.

The observation that corticostriatal synapses to the DMS are subject to symmetric anti-
Hebbian STDP distinct from the asymmetric anti-Hebbian STDP at the DLS synapse (at
1 Hz, see Figure 2.1) raises the question of the respective contribution of DMS and DLS
plasticity in striatal learning. To investigate whether these two STDP modalities subtend
different learning properties, we considered a simplified model of the corticostriatal
system, composed of one MSN and a fixed number of cortical neurons. We quantified
the capacity of this system to retain memory as a function of the form of corticostriatal
STDP, all parameters equal otherwise.

We considered the response of one MSN (Figure 2.2, with MSN activity illustrated
in brown), modeled as an integrate-and-fire neuron, receiving inputs from P cortical
neurons (Figure 2.2, with their activities in green) and an additional Poisson process
modeling input from other cells than the P cortical neurons (Figure 2.2, with its spiking
activity in yellow).
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Figure 2.2: A pattern recognition task to test learning, maintenance and relearning

in a computational model of the striatal network.

Schematic representation of the striatal network (right) with P=4 cortical neurons
(in green), a random input neuron with rate ), (in yellow) and one striatal neuron

(MSN), represented by its membrane potential V' (in brown).

Two mechanisms of

synaptic plasticity are considered in the dynamics of the synaptic weight W (in blue):
anti-Hebbian STDP (in purple) and LTP related to the reward signal (reward-LTP)
(in red). Anti-Hebbian STDP is modeled using exponential kernels (inset on the top
right), with different values for Apgstpre and Aprepost=—1. Example of the learning task
(left), separated in four phases with four iterations in each phase. Each learning phase
has specific parameters (see Table 2.1). N,=2 patterns A and B are presented to the
network, with A being non-rewarded (—) and B rewarded (+). An iteration with no
pattern presentation is represented by @. Spiking activity of the cortical neurons (in
green for pattern spikes and grey for random spikes) and the random input neuron
(in yellow) are represented along with the membrane potential V' of the output neuron

(MSN).

The synaptic weight between cortical neuron i € {1,---

, P} and the MSN, noted

W;, is subject to plasticity. We used an all-to-all pair-based learning rule corresponding
to an instantaneous update of the synaptic weight IV; by an amount AW; given by

Apre-pOSt thrc,i <tpost ex

Apost-pre thost <tpreq X

With At=t yos —tpre-

_T) for a pre-post pairing,

for a post-pre pairing.
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By convention, we fixed Apre-post=—1, and varied the parameter Apqst-pre; Apost-pre <0
corresponds to symmetric anti-Hebbian STDP, while Apust.pre>0 corresponds to asym-
metric anti-Hebbian learning rules (Figure 2.2, top right panel).

The MSN was presented with patterns of cortical activity, built on two different
components: (i) a combination of spikes from selected cortical patterns (a set of Ngim
neurons), which were always triggered synchronously at each pattern iteration accord-
ing to a normal distribution with standard deviation 7, (ii) random spikes from all
cortical neurons with rate \,/P. Examples of such patterns are presented in Figure 2.2:
pattern A, whereby cortical neurons 1, 3 and 4 fired and pattern B corresponding to
the coordinated spiking of cortical neurons 2, 3 and 4 (spikes in green), with superim-
posed random spikes (in grey). N, patterns were built according to these principles
and separated into two classes, rewarded and non-rewarded ones, with equal chances
(in Figure 2.2, A is a non-reward pattern (—) and B is a rewarded pattern (+)).

Because of the prominent role of depression in anti-Hebbian learning, particularly
in the symmetric case, potentiation mechanisms are needed in order for the system to
maintain some spiking activity [RBO0]. We modeled potentiation through a reward
signal representing neuromodulation (including, but not limited to, dopaminergic sig-
naling) see [KIT17; Fon+18; Ger+18; BMP19] and Methods for a discussion. Reward-
LTP was delivered during rewarded cortical activity patterns (Figure 2.2), and affected
the weights corresponding to all presynaptic cells that spiked during the pattern pre-
sentation (even if they were noise), (see red region in Figure 2.2).

At each iteration, the system was presented with a prescribed probability n by a
pattern composed of synchronous cortical activity and random noise, or with proba-
bility 1—7 only with random cortical spikes (see iterations labeled @ in Figure 2.2). We
considered that a rewarded cortical pattern is learnt when the MSN spiked in response
to the synchronous cortical activity. Conversely, a non-rewarded pattern was learnt if
the MSN did not fire during pattern presentation. The accuracy of striatal learning was
estimated during test protocols conducted throughout the task on a network devoid
of any plasticity and noise, with a metric combining the fraction of rewarded patterns
correctly eliciting spikes from the MSN and of non-rewarded ones that did not trigger
any spike.

To avoid transient effects associated with the initialization of synaptic variables, we
simulated an initial phase of spontaneous activity of the cortical network, defined by the
presentation of patterns with probability n=n,, in the absence of reward-LTP. During
the learning phase, patterns are presented at each iteration and rewards were provided
for rewarded patterns. It emulates learning, as the output neuron learns to discriminate
patterns by spiking in response to rewarded patterns and not spiking in response to
non-reward patterns, in the presence of cortical random activity. The capacity of the
network to keep patterns in memory was then estimated during a maintenance phase
where stimuli were presented again with probability 7=n,, in the absence of reward-
LTP (same setup as the initial phase). Finally, the capacity to relearn previously learned
patterns was then tested in a protocol where stimuli and reward-LTP were presented
just like in the learning phase (see Table 2.1 for detailed parameters for each phase, and
Table 2.2 for model parameters).

Random input activity was parametrized by A,, which was set up to Avsn=5 H 2
for the learning and relearning phases (similar to MSN firing rate in non-anesthetized
animals [Mah+06]). It was chosen to be higher, A\,=4\ysy=20 Hz in the initial and
maintenance, for technical reasons (see Methods) that do not influence our results.
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Asymmetric anti-Hebbian STDP favors memory maintenance,
whereas symmetric LTD allows accrued flexibility.

Numerical experiments showed significant differences between the learning capability
with symmetric or asymmetric anti-Hebbian STDP, particularly during the maintenance
and relearning phases (Figure 2.3a).

In Figure 2.3a, learning accuracy is plotted as a function of iterations during the
four different phases. We present the results for different values of Aposipre (s0lid lines),
and some controls with Aprepost=0 (dotted lines). We observe that accuracy essentially
remains at random levels during the initial phase, as could be expected in the absence of
reward. Assoon as rewards are provided during the learning phase, we observe a rapid
increase and stabilization of learning accuracy. When rewards are no more provided
in the maintenance phase, the accuracy drops, with different dynamics depending
on Apost.pre, s quantified in the next section. Finally, during the relearning phase, the
system learns again previously memorized patterns when reward-LTP is applied anew.
The kinetics of this relearning are analyzed below. In Figure 2.3b, accuracies at the end
of each phase as a function of Ap.pre are presented.

Initial phase

In the initial phase, the network is not able to detect patterns, as could be expected from
the fact that it does not receive any supervision, and the computed accuracy remains
around chance levels (accuracy of 0.5).

Learning phase

The learning phase led, in all cases, to a rapid rise of the accuracy, highlighting the
ability of all tested networks to store patterns. We have previously shown [ ] that
the combination of anti-Hebbian STDP and reward-LTP allowed a striatal network to
correctly classifies rewarded and non-rewarded sequential patterns of cortical inputs.
Heuristically, potentiation of the synaptic weights through the reward-LTP causes the
MSN to spike in response to the associated pattern. This effect is counterbalanced by
the presence of pre-post LTD, which leads to depression of the synaptic weights, and
therefore favors an equilibrium where the synaptic weights are high enough to trigger
the spike, but still remain bounded. Similarly, if the MSN spikes for non-rewarded
patterns, the pre-post LTD in the absence of reward induces a decrease in synaptic
weights that results in an absence of MSN firing. The combined action of both types
of plasticity, i.e., anti-Hebbian STDP and reward-LTP, enables learning of the rewarded
pattern in the learning phase (Figure 2.3a, plain lines). Learning with reward signals
relied on the pre-post LTD, since no learning occurred when Apre.post=0 (Figure 2.3a,
dotted lines). In fact, the absence of the pre-post LTD leads to a continual growth of
the synaptic weights, which results in the MSN spiking for non-rewarded patterns,
therefore reducing the accuracy.

Moreover, we note that the final accuracy at the end of the learning phase depends
on Apospre- This is a consequence of the fact that as the system learns a rewarded
pattern, we do not reach a fixed equilibrium but a stationary regime: synaptic weights
associated with the pattern decrease progressively for each accurate answer (due to
the combination of reward LTP and pre-post LTD) until the MSN stops firing, leading
to a jump in synaptic weights (only reward LTP). Larger potentiations will thus allow
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Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on
learning, maintenance and relearning of patterns in a striatal neuronal network.
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Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on
learning, maintenance and relearning of patterns in a striatal neuronal network.

(a) Learning dynamics for P=10 input neurons, Ny, =3 stimulations by pattern, N,=15
patterns and the proportion of pattern presentation in the initial/maintenance phases
nm=0. Time-evolution of the learning accuracy through an initialization, learning,
maintenance and relearning phases, for different anti-Hebbian plasticities (blue: sym-
metric, brown: no post-pre learning, orange: asymmetric). Averaged simulations
results are presented (plain lines) and controls with Apre.post=0 (dotted lines). (b) Ac-
curacy at the end of each phase as a function of the type of plasticity (wWhere Apost-pre
parametrizes the plasticity). (c1) Examples of fits obtained from a set of 20 simulations
for the accuracy during the maintenance phase. Averaged simulations (for 20 simu-
lations, open circles), associated fit (plain lines), tangent at origin (dashed) and fitted
final accuracy (dotted). We represented below the sets of values for T},aintenance Obtained
with this method for Apestpre=0. (c2) Characteristic time of maintenance Ti,aintenance S
a function of Apesepre- (€3) Weight similarity measures dy(1V) and sp(WW) as a function
of Apostpre- (c4) Characteristic time of relearning 7.cicarning as a function of Apgsipre- (d)
Dependency of characteristic time of maintenance T,,aintenance (d1), accuracy at the end
of the maintenance phase (d2) and characteristic time of relearning 7}ejearning (d3) on the
type of plasticity Apos.pre and stimulus presentation frequency 7,,.

(a) Mean results computed over 200 simulations. (b-d) Mean of results over 10 sets of
20 simulations with errors bars representing +SD/2. Statistical t-test from scipy.stats
Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.

for a larger number of accurate responses, in turn increasing accuracy. On the other
side, having too much potentiation leads to unstable synaptic weights that diverge,
also reducing accuracy. Accordingly, their exist a value of Apost.pre Where the accuracy
is maximal after learning (in Figure 2.3b, Apostpre~0.5), but all values lead to higher
accuracy than in the initial phase.

In conclusion, pre-post LTD and reward LTP enable discrimination of rewarded
and non-rewarded patterns, for all values of Apst.pre.

Maintenance phase

The drop in accuracy during the maintenance phase was found to be faster for symmet-
ric anti-Hebbian learning than for asymmetric anti-Hebbian learning, with a significant
impact of the value of Apspre ON the accuracy at the end of the maintenance phase
(Figure 2.3b). To quantify this difference, we computed the characteristic decay time
Tinaintenance Of accuracy (see Figure 2.3c1). Figure 2.3c2 shows that asymmetric STDP
allows for a longer and more precise maintenance of learning even in the absence of
rewards. Phenomenologically, symmetric LTD tends to induce a global depression
of all synaptic weights in response to random stimuli, which therefore can lead the
MSN to stop firing to the patterns rapidly, while the presence of LTP in asymmetric
anti-Hebbian STDP limits this phenomenon, allowing for a more durable conservation
of the relative magnitudes of the synaptic weight V. In order to show the correlations
with synaptic weight dynamics, we computed the deviation from the synaptic weight
values at the end of the learning phase in terms of amplitude and change in orientation
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(Methods, Figure 2.3c3). These measures show that positive Apestpre leads to a smaller
deviation of the synaptic weights than for negative values.

Relearning phase

We next compared the relearning capacity associated with each of the learning modal-
ities. First, after the relearning phase, the system reaches the same accuracies that were
obtained at the end of the first learning paradigm. The network is therefore able to
learn again patterns that were previously learned. We evaluated the speed at which
the network recalled such previously learned association through the characteristic
time of relearning T}cicarning (See Methods for its definition, Figure 2.3c4). As could
be expected, Tielearning is smaller for positive Apost.pre, meaning that relearning is faster
for asymmetric anti-Hebbian STDP. These findings are only logical consequence of the
fact that asymmetric anti-Hebbian STDP keeps in memory learned patterns for longer
times. If Apostpre 1S increased too much, this property disappears because the network
becomes unstable with too much potentiation.

Influence of the pattern presentation rate

If learnt patterns are presented during the maintenance phase in the absence of reward
(when 7,,>0), we expect to unlearn those patterns in the long run, i.e., both symmetric
and asymmetric anti-Hebbian STDP will be associated to a drop in learning accuracy
due the absence of reward-LTP. This decay is expected to be faster with larger values of
7m- This phenomenon was confirmed in our numerical experiments, showing a drop in
accuracy in the maintenance phase (Figure 2.3d1), and the characteristic time 7 },aintenance
(Figure 2.3d2), found generally more dramatic for symmetric anti-Hebbian STDP, and
occurring faster for larger 7,,. The presentation rate 7,, of learnt patterns during the
maintenance phase was also found to play a significant role in the relearning phase,
with higher rates of presentations leading to a slower relearning, potentially indicating
a more dramatic deviation of the synaptic weights W from their after-learning values,
see Figure 2.3d3. However, we noticed that relearning is still effective, even for higher
rate of presentation 7,,, when comparing asymmetric and symmetric anti-Hebbian
STDP: even if the network loses its capacity to recall correctly the patterns, it stays
close (in the synaptic weight parameter space) to the optimal matrix, and therefore
relearning is efficient.

Influence of noise

Noise is an important parameter in the model presented here, in particular for its
role in the maintenance phase. We have seen that learning occurs in the presence of
noise. However, we do expect a strong dependence of final accuracies and learning
efficiency on noise levels. To test the influence of noise during the learning phase, we
systematically varied the noise frequency Aysy and replicated our analysis for each
value tested (see Figure 2.5). In the absence of noise A\ysy=0, the system reaches high
accuracies in the learning phase, and the maximal value does not depend on Apgst-pre-
Moreover, we observe that the network conserves similar levels of accuracy throughout
the maintenance phase when assuming a complete absence of noise. Increasing noise
levels impair learning ability, and for high values of noise A\ysn>10 Hz, the network
shows poor learning and maintenance abilities. Realistic noise levels on the same order
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as typical MSN firing rate is between these two regimes and allow both learning and
maintenance, with different capacities for symmetric and asymmetric anti-Hebbian
STDP as discussed above.

Beyond noise levels, we further confirmed that all observations reported were
robust to variations in the number of cortical neurons, patterns presented and number of
stimulations (Figure 2.4), with (P, N, Naim) equals to (10, 10, 3), (10, 15, 5) and (20, 30, 3).

Conclusions of the model on the impact of different STDP in DMS
and DLS.

Our experimental results show the existence of different types of plasticity as a function
of the region and pairing frequency, see Figure 2.1. The model therefore suggests that
at low frequency, the asymmetric anti-Hebbian STDP observed in DLS at 1 Hz could
allow maintaining stimulus associations for longer durations and relearning almost
immediately previously learned associations. In contrast, the symmetric LTD observed
in DMS at that frequency leads to a faster erasure of associations, making the system
available to learn new patterns. At higher frequency, experiments done at 2.5 Hz
showed that STDP elicited at iMSN neurons in the DMS switched from a symmetric
LTD to an asymmetric anti-Hebbian STDP. We could postulate from our model that in
a regime with more frequent stimulations, iMSN neurons adapt their behavior so as to
store patterns for longer times than dMSN neurons.

Overall, when presenting patterns at a slow rate, DMS with symmetric LTD, is able
to forget quickly, whereas asymmetric anti-Hebbian STDP maintains memory in DLS.
This observation on a vastly simplified model agrees with DMS and DLS differential
involvement in motor skill learning reported in the literature [YKO06; GG15; JC15; BO10;
BNR15]: both learn the task during the first trials, and then DMS disengages when
habit learning mediated by the DLS takes over initial phases of motor training or
goal-directed learning.

2.4 Discussion

To explore how the striatum is able to achieve distinct learning modalities, from goal-
directed learning to maintaining habits, we explored long-term plasticity using similar
STDP paradigm in both DMS and DLS. DLS had been the focus of most of the plasticity
characterization, and in light of the distinct roles of dorsal striatal compartments in
procedural learning [YK06; GG15; JC15; BO10; BNR15], we characterized here the STDP
atboth DMS- and DLS-MSN corticostriatal synapses using specific brain slices [Fin+18]
allowing to stimulate in the somatosensory or CG2 layer 5 cortical area. In DMS and
DLS, we found distinct anti-Hebbian STDP: symmetric in DMS and asymmetric in DLS.
Hebbian and anti-Hebbian STDP have been reported in the dorsal striatum depending
on whether GABAergic transmission inhibitor [Pai+13; Val+17] were applied (Hebbian
STDP [PKO08; She+08]) or not (anti-Hebbian STDP [FGV05; Fin+10; 1). These
studies targeted DLS-MSNSs, except [She+08] where MSNs were recorded indifferently
in DLS and DMS. In vivo recordings in adult rats confirmed the anti-Hebbian polarity
of striatal STDP [SRR10; Fis+17; ]. Interestingly, we found that with increasing
cortical activity, plasticity followed opposite polarity in DMS and DLS, with LTD and
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LTP dominance, respectively. Another difference between DMS- and DLS-STDP upon
increasing the frequency of stimulus presentations Fpirings, i that plasticity expression
domain (At) remained wide in DMS whereas it was broadened in DLS.

We designed a simplified model in order to investigate the potential impact of the
different forms of STDP rules on maintenance and relearning in a basic classification
task. To specifically analyze the role of learning rules, we have chosen to keep all model
parameters identical otherwise. The significant differences found between therefore
establish the role of STDP form in learning abilities. Our experiments show that
different types of plasticities are expressed in different regions of the striatum and may
depend on the connectivity pathway they belong to, where MSNs are known to display
distinct electrophysiological properties [Wil+19; Ale+21]. The specific properties of
dMSNs and iMSNs or of MSNs in DMS and DLS may also contribute to the variety
of learning abilities. Future work will be needed to finely characterize and integrate
such differences in models and study how the network combines direct and indirect
pathways endowed with distinct plasticity rules for global procedural learning in the
striatum.

Anti-Hebbian STDP has been the focus of several experimental and a few compu-
tational studies mostly in cerebellum-like structures in fish or mammals [RS11] or other
central areas [Fel12]. Different possible roles of anti-Hebbian STDP in adaptive sensory
processing have been hypothesized taking the mormyrid electric fish electrosensory
system as a central example [RL10]. According to models, Purkinje-like cells in the fish
electrosensory lobe can store and retrieve a temporally structured negative image of
prior sensory stimuli, through STDP mechanisms [RBOO]. Our results possibly shed
new light on those findings. Indeed, in [RB00], the ability of the neuronal network to
store patterns of cortical activity was tested for different pair-based rules of STDP (see
their Figure 7), along with its capacity to forget the negative image after some time
without stimulus. The authors conclude that the anti-Hebbian STDP with no plasticity
for post-pre pairings, established in vitro in the fish Purkinje-like cells [Bel+97], leads
to an efficient cancellation of the stimulus, with rapid adaptation when the pattern is
not presented anymore (see Figure 8 [RB00]). The anti-Hebbian symmetric learning
rule performs similarly, whereas the asymmetric anti-Hebbian STDP does not perform
as well [RBOO]. The authors explain the drop in performance of the asymmetric anti-
Hebbian STDP because of oscillations in the dynamics, produced by the alternation
between potentiation and depression (see their Figure 9 [RBO0]). In particular, the au-
thors state that “the system with [asymmetric anti-Hebbian STDP] does not converge
onto an accurate negative image”. It is however interesting to note that with asym-
metric anti-Hebbian STDDP, the system is still able to clone partially the stimulus. More
importantly, they show that the cloned image is kept in memory for a longer time than
with symmetric LTD (compare curves A/B and C in their Figure 8 [RBOO]). In our
study, the model allows a precise analysis of the role of symmetric versus asymmetric
anti-Hebbian STDP in the maintenance of learned patterns. We show that asymmetric
anti-Hebbian STDP leads to the maintenance of learned patterns, whereas symmet-
ric LTD causes a rapid decrease in memory performance in the absence of reward.
Similar to [RBOO], we show that the alternation of potentiation and depression in the
asymmetric anti-Hebbian STDP, if correctly tuned, forces the synaptic weights to retain
some information on previously learned patterns. On the contrary, with symmetric
anti-Hebbian LTD, the synaptic weights indistinctly converge to zero because they are
only subject to depression, leaving the system fresh to construct new associations and
identify novel stimuli.
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Our present experimental work shows that DLS-MSNs exhibit asymmetric anti-
Hebbian STDP, consistent with DLS role in habit behavior, where rewards are no longer
presented. Conversely, we could hypothesize that thanks to symmetric anti-Hebbian
STDP in DMS-MSNs, DMS should be able to adapt quickly between different action-
outcome associations and therefore forget rapidly previous information. Our model
shows that this role is consistent with anti-Hebbian symmetric STDP. This is in line with
the role of DMS which is essential for behavioral flexibility such as strategy-shifting or
reversal learning [Bon+19; Rag+02; Rag(07].

2.5 Mathematical models

Neuronal network model

To simulate the impact of plasticity on learning, we built a simple neuronal network
model that includes P cortical neurons serving as input neurons to one output MSN.
The MSN integrated cortical and external input (see section below) and fired when
hitting a threshold, according to the classical leaky integrate-and-fire model [Bur06;
Ger+14]. In detail, between two spikes, the membrane potential V' of the neuron
satisfies a linear differential equation:

v
= =(V(t) = Vo) + RI(2).

Spikes were emitted when the voltage exceeded a threshold V;;,, at which time the
neuron’s voltage was instantaneously reset to V., and resumed input integration. We
set =16 ms, Voq= — 80mV and R=80MQ, V= — 45mV, and the reset potential was
chosen equal to the resting potential V, [YAK11]. In equation 2.5, I(¢) represents the
synaptic input, which was generated as described below.

Connectivity and input to the MSN

The input /() received by the MSN is the superposition of the input received from P
cortical neurons, noted Iy (¢), and an external (to the network) input /. (t) modeled
as a Poisson process with rate \,:

I(t) = Lsim(t) + Texs(2).

Spikes from cortical neurons and the external source induce instantaneous jumps in
the MSN membrane potential. Jumps associated with cortical sources have amplitudes
that vary through plasticity mechanisms described in the next section. These ampli-
tudes are modeled through the collection of synaptic weights W (t) = (W;(t))1<i<p-
Denoting ¥ the k-th spike time of input neuron i and § the Dirac mass, we have

Lim(t) =7 D, Y Wilti=)d(t — t})

1<i<P tfét

where we noted, for a function f being potentially discontinuous at time ¢, f(t—) the
value reached immediately before the jump.

Contrasting with the network input described above whose synaptic weights are
allowed to vary in time according to plasticity rules described in the next section, the
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external input is assumed to induce jumps of fixed amplitude We,;=1nA (high enough
to evoke spiking activity in the MSN):

Toxt (t) = TWexs Z ot — tlgxt)7
th <t

ext

where (¥ ,);>0 denotes the sequence of external spike times, which have exponentially
distributed inter-spike intervals.

The factor 7 needs to be added in both currents expressions because we chose to use
a simple model of synaptic inputs, where spikes induce a Dirac of activity. Therefore,
in order to relate synaptic weight I to EPSC amplitudes measured in experiments, we
need this scaling. In particular, the membrane potential has the following expression,
between spikes of the postsynaptic neuron,

V() =Veg+ R Y Y Wilth—)e 70/ 4 Rl Y] e o)/,

I<isP kgt tk <t

ext ™

Cortico-striatal plasticity

We implemented a pair-based model of STDP, where synaptic weights W were updated
after each spike (all-to-all implementation [MDGO8]), according to the spike timing
relative to all previous spikes of the other neuron. In detail:

— If the MSN spikes at time s (postsynaptic spike), then all weights are updated.
Noting t,; the previous spikes of cortical neuron i, the synaptic weight W; is
updated according to:

M/i(tpost) = I/Vi(tpost_) + € Z (I)(tpost - tpre,i)
tpre,i gtpost

where ¢ denotes the plasticity rate, chosen in our simulations as =0.02.

— If presynaptic cortical neuron i € {1, -- , P} spikes at time tore,i, NOHING tpost the
times of the MSN spikes, then the synaptic weight W is updated as:

I/Vi(tpre,i) = I/I/;'(tpre,i_) +e Z q)(tpost - tpre,i)-

tpost Stpre,i

Denoting At=t,os — tpre the timing between the presynaptic (cortical) spike and
the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDGOS]:
Apost-pre €XP %) if At <0
Apre-post €XP —%) if At >0

S

D(AL) =

with 7,=20 ms.
Consistent with the anti-Hebbian form of the corticostriatal STDP [FGVO05;
], we consider Apepost= — 1 (see e.g. [Fell2]), corresponding to synaptic de-
pression subsequent to a pre-post paired stimulation. The observation of corticostriatal
Hebbian and anti-Hebbian STDP results mainly from the use of GABAergic transmis-
sion inhibitors [She+08] or not [FGV05; ], as demonstrated thereafter [Pai+13;
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Val+17]. The sign of Apust.pre allows distinguishing between symmetric anti-Hebbian
STDP (Apostpre<0) reported at DMS corticostriatal synapses from asymmetric anti-
Hebbian STDP (Apest-pre=0) reported at DLS corticostriatal synapses. Here, we focused
on the influence of Ayust.pre ON learning and relearning.

During a learning task (see next section), the system is presented with a succession
of cortical patterns. Each pattern corresponds to a temporal window of a fixed duration
(100 ms), where a subset of Ny, cortical neurons spike at time #,s.t =50 ms. Two types
of noise are modeled at the level of a single cortical neuron. First, each neuron involved
in the pattern spikes at a time normally distributed with mean t,4; and standard
deviation 7,=0.2 ms, modeling variability of the spike times. Second, cortical spikes
unrelated to the pattern are added through Poisson spikes with rate ),/ P, representing
the random firing of the cortical neuron. Moreover, the influence of external inputs is
modeled at the level of the postsynaptic neuron, directly with the spikes of the random
input presented above.

In the model presented here, a pattern can either be rewarded or not through a
simple additive mechanism. If a pattern is rewarded, then each time a presynaptic
neuron ¢ fires during the pattern (even if it is noise), its associated synaptic weight gets
potentiated, following,

AWl = gAreward > 0.

If the pattern is not rewarded, the synaptic weight is not modified.

Detailed models, in particular three-factor learning rules [KIT17; Fon+18; Ger+18],
are thus approximated here by the presence of a simple reward signal consisting in the
potentiation of the synaptic weight of all presynaptic neurons that spiked during the
pattern (both those involved in the pattern and those associated with noisy inputs).

A framework for corticostriatal plasticity was developed along with the use of
dopamine-dependent STDP curves [GHR15], but only focused on Hebbian STDP. Fol-
lowing the same principles about the role of dopamine in the reward system, we chose
to fix the STDP curves and modeled the reward influence through an additive potenti-
ation as used in most existing models of anti-Hebbian STDP [RBO0; WRL03; RA04].

Eventually, synaptic weights are clipped within a realist range [wWmin, Wmax| =
[0.,2.]nA. The initial synaptic weights are drawn from a uniform distribution on
[0.,0.05] nA.

Learning with anti-Hebbian STDP rules

To characterize the capacity of learning associated with each STDP forms, we defined
a fixed set of N, cortical patterns. The system was presented either with a randomly
chosen pattern of correlated cortical activity (from the set IV, patterns) with probability
n, or with probability 1—7 only with noise. Among the set of N, patterns, a fixed
subset was chosen to be rewarded (rewarded patterns were randomly chosen among
all patterns, each pattern having a probability 1/2 to be rewarded). A rewarded pattern
was deemed learnt if the MSN fired in response to the presentation of the pattern.
Moreover, non-rewarded patterns should not elicit any spike.

The accuracy of the learning process was estimated through the averaged numbers
of correct responses:

1
Accuracy = N 2 reor + (1 — 1) (1 — o), (2.1)

P 1<k<N,

WMMM
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where ;=1 if k is a rewarded pattern and 0 otherwise, o, =1 if the MSN spiked and 0
otherwise.

Each simulation emulated learning throughout four phases (see parameters in
Table 2.1), all of which including STDP and differing in the frequency of pattern pre-
sentation and presence of rewards:

a. The initial phase of spontaneous activity, where patterns are presented randomly
(n=ny,) and in the presence of noise. This phase is useful to avoid transient effects
due to the initialization by reaching a realistic synaptic weight regime based on
the plasticity rule. Noise was set to A\, =4 \sn=20 H z.

b. The learning phase during which neurons display spontaneous random activity
with pattern presented at each iteration (7=1), and Poisson noise with intensity
Ar=Amsn=5 H z consistent with firing of the MSNs in the rat striatum [Mah-+06].
The reward signal was present and potentiated all synapses of presynaptic neu-
rons active during a rewarded pattern. This phase emulates learning, as the
output neuron learns to discriminate patterns by spiking in response to rewarded
patterns and not spiking in response to non-rewarded patterns.

c. The maintenance phase models spontaneous activity with A\, =4\sny=20 Hz and
random presentations of patterns (n=n,,) in the absence of rewards, allowing to
evaluate the system’s ability to sustain a discrimination between learnt patterns.
We chose to take A\, =4\ysy in order to shorten our simulations and speed up the
decrease of memory. All results are still true for \,=Aysn, except that memory is
maintained for longer times than our simulations permitted.

d. The relearning phase, with the same parameters as the learning phase (a), is used
to measure the system ability to learn again patterns, after a period of spontaneous

activity.
Phase Initial Learning  Maintenance Relearning
Reward No Yes No Yes
Random Noise )\r 4)\MSN:2O Hz >\MSN25 Hz 4/\MSN:2O Hz /\MSN:5 Hz
Rate of Pattern Presentation 7 Nim 1 Nim 1

Table 2.1: Parameters for the different phases of the learning task used in the math-
ematical model.
Anti-Hebbian STDP is present in all phases and each phase lasts for 500 iterations.

Model simulations

Simulations were performed on Python 3.X, using the Anaconda suite (Anaconda
Software Distribution, Computer software Version 2-2.4.0. Anaconda, Nov. 2016.
Web. https ://anaconda.com.). The Python libraries of numeric calculus numpy
and plotting matplotlib were used. Our custom code is freely accessible on
https:/ /github.com/gvignoud/striatalLearning. Simulations were run on the INRIA
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CLEPS cluster and HPC resources from GENCI-IDRIS (Grant 2022-A0100612385), using
GNU parallel (Tange, O. (2020, May 22). GNU Parallel 20200522 (‘Kraftwerk’). Zenodo.
https ://doi.org/10.5281/zenodo0.3841377). We used a Euler scheme to simulate our
network and Poisson processes, with dt=0.2 ms.

In order to study the evolution of the network during the different phases and
compute learning accuracy, we evaluated some properties of the network every 50
pattern iterations (except at the beginning of each phase, where we recorded every
5 pattern iterations). During these test sessions, we froze the network structure by
considering that

— both types of plasticity are turned off;
— the three noise components described above were suppressed (\.=0, 7, = 0);

— all patterns were successively presented to the network, and the accuracy was
computed using the responses of the MSN, as described in Eq. (2.1);

— between each pattern, the MSN potential was reset to its equilibrium value, in
order to avoid influence of one pattern to another.

For each set of parameters, we ran 200 different simulations. Statistics were com-
puted on a random split of the simulations into 10 sets of 20 simulations, in order to
compare statistics of performance of the network across multiple conditions. We use
statistical t-test from scipy.stats Python library (* p<0.05, ** p<0.005, *** p<0.0005).

We started by collecting the mean accuracy at the end of each phase A; for
j=1,2,3,4.

To characterize the kinetics of learning in the maintenance phase, we fitted a
sigmoidal function to the curve of accuracy as a function of time. This generic sigmoid
with 5 parameters, was given by:

—d
A — t tini
S[ init) tinita Aenda d7 g] (t) - Aend + (Ajnjt — Aend) X (1 + (gt>)

where Ajni is the initial value of the sigmoid, ¢;,;; the starting time of the second
phase (in terms of pattern iterations), Aeng is the final value, g is a timescale parameter,
while d is a shape parameter of the sigmoid. Fitting the sigmoid allows comparing
the dynamics in the maintenance phase for various conditions, and in particular the
performance of symmetric and asymmetric anti-Hebbian STDP. The initial value was
set at Ainit=A2 and the ending value at A.,q=A; The fits were realized by estimating the
best values of d and ¢ to reproduce the accuracy dynamics and were performed using
the scipy.optimize.curvefit function of the scipy Python library.

We compared maintenance of the learning task through the characteristic time of
decay to represent the speed of decrease,

Tinaintenance = Min (maX (O, %) ) 1000> .

Finally, in order to measure the relearning characteristic time, i.e., the time neces-
sary for the system to relearn patterns after the maintenance phase, we define T ¢learning
as follows. Remembering that A, (resp., A,) is the accuracy after the initial phase (resp.,
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learning phase), we define Ticlcarning as the time needed in the relearning phase to learn
again at least 60% of the previously learned accuracy,

Trelearning = inf {t > 0|Accuracy(t)—A; > 0.6x (A,—A;)}.

We investigated how synaptic weight during the maintenance phase deviate from
those at the end of the learning phase. To this end, we defined W, the synaptic weights
at the end of the learning phase, and used various metrics to analyze the divergence of
the weights from this value during maintenance:

— The divergence of the L? norm,

1
> (W Wref i)?

V Z ref i

which is equal to 1 when W = W, and decays to 0 as the Euclidean distance
between the two weight vectors increases. A large d»(W) (i.e., close to 1) means
that weights remained similar to the reference, and a decay of that quantity
estimates how quickly the weight vector deviates from reference.

dr (W) =
1+

— One may consider that relative values of weights, rather than their absolute am-
plitude, contain a particularly important information in learning. In that sense,
W,er provides a direction in the space of weights, and we estimated the alignment
of the weight vector at a given time with W,.; through the cosine similarity of the
centered synaptic weight:

S (Wi = 2) X (Waets — Woer)
\/ZW W2/ S (Wt — W2

where 7 for z € R” denotes the average of the vector’s component.
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Figure 2.4: Learning task using various setups (P, NyimandN,) (related to Figure 2.3).
Influence of 7,, on the learning parameters for (a) P=10 input neurons, Ny;,,,=3 stim-
ulations by pattern, N,=10 patterns, (b) P=10 input neurons, N;n=>5 stimulations by
pattern, N,=15 patterns and (c) P=20 input neurons, N, =3 stimulations by pattern,
N,=30 patterns.
(x) Dependance of characteristic time of maintenance T}aintenance (X1), accuracy at the
end of the maintenance phase (x2) and characteristic time of relearning 7;cicarning (X3)
on the type of plasticity Apos—pre and stimulus presentation frequency 7,,.

Mean of results over 10 sets of 20 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
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Parameters Values
P (10,20)
T 16 ms
Vea = Vi —80mV
R 80 MK
V:ch —45mV
N, (10, 15) for P = 10 and (30) for P = 20
Nytim (3,5)
Apost-pre (—1.5,—1.0,—0.5,0.,0.5,1.0,1.5,2.)
Apre-post (—1.0,0.)
Ts 20ms
Areward (0, 095)
€ 0.02
Tp 0.2ms
>\MSN 5Hz
T (0.,0.01,0.02,0.1,0.2, 1.0)
dt 0.2

Table 2.2: Parameters of the mathematical model to study learning features in DMS

and DLS.

Set-up: P=10 input neurons, N,

stim

=3 stimulations by pattern and N, =15 number of patterns

Initial
reward OFF, n=0.0

reward ON, n=1

Maintenance

Learning
reward OFF, n=0.0

Relearning
reward ON, n=1

1.0 1

0.5 1 ==

A A A

post - pre post - pre post - pre post - pre

—— Mysn=0.0Hz Ay =1.0Hz Ay =5.0Hz — —— Ayey=10.0Hz My =50.0Hz  —— Aygy=100.0Hz

Figure 2.5: Learning task with different noise values \ysx.

Accuracy at the end of each phase as a function of the type of plasticity (Where A ost—pre
parameterizes the plasticity). Several values of noise Aygy are tested (see different
colors).

Mean of results over 10 sets of 20 simulations with errors bars representing +SD/2.
Statistical t-test from scipy.stats Python library; *: p<0.05, **: p<0.005, ***: p<0.0005.
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Discussion

Sagittal section of a mouse brain. A retrograde AAV-GFP was injected in the striatum,
revealing mesencephalic projections known as the MFB (medial forebrain bundle), as

well as deep-layer cortical pyramidal neurons. GFP in green; Tyrosine Hydroxylase in
red [S. Valverde].
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We discuss three possible directions for future works, based on the present report.

Beyond spike-timing dependent plasticity

STDP is a synaptic plasticity rule based on the relative pre- and postsynaptic spike
timings. As developed in the Introduction, numerous experimental works have shown
that STDP can be elicited at different types of synapses. STDP has also been investigated
from a computational point of view, in different types of models, and implemented in
complex neuronal networks. Considering its simplicity, STDP has also attracted some
criticisms almost since its discovery.

Questioning the importance of STDP

Most experimental data on STDP have been obtained using in vitro protocols, where
pairs of spikes from the pre- and postsynaptic neurons are triggered using electric
stimulations. Several authors have pointed out that these protocols do not reproduce
realistic conditions of neuronal activity, and have therefore questioned the general
definition of STDP [LS10; Suv19]. At first, STDP is defined as a process where local
depolarizations of the membrane potential, caused by a backpropagating action po-
tential, could interact with EPSPs (excitatory post-synaptic potentials) resulting from
presynaptic spikes, and induce changes in synaptic transmission.

A first crucial issue about in vitro experimental protocols concerns the mechanisms
used to trigger a postsynaptic spike. Indeed, in most studies, a brief depolarizing
current is presented to the postsynaptic neuron soma, which leads to the triggering
of a spike. In particular, the spike is not induced through natural processes, resulting
from the integration of dendritic currents. This raises the question of which particular
mechanism induces the local depolarization needed for plasticity induction, is it Na*
spikes, calcium Ca?" spikes? Is it possible to have STDP, without having a postsynaptic
spike, but simply thanks to local depolarizations?

A second recurrent concern stresses that STDP protocols are not “realistic” when
looking at brain activity. In vivo recordings do not support the idea that two single
neurons repeatedly fire one after the other, with the same delay, at a fixed frequency.
For example, bursts of spiking activity, up and down states, oscillations are more
characteristic of brain dynamics than protocols of STDP. Even if some studies have

succeeded in eliciting STDP in in vivo recordings [ ], the results are less clear
and more often stress that other paradigms than STDP are needed to fully understand
synaptic plasticity.

A third issue, that is already extensively addressed in the current report, is that
Hebbian STDP, has been considered, for a long time, as the only version of STDP,
while several experiments have since then shown that a great diversity of plasticity
curves exists, such as anti-Hebbian STDP at corticostriatal synapses [FGV05; Fell2].
Moreover, with in vitro protocols, networks effects are modified, if not deleted, while
the influence of local neuromodulators depends highly on the brain slices preparation.
In more realistic situations, the synaptic weights are maybe affected as much by those
processes, than by STDP, questioning its actual relevance.
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Towards biologically-plausible synaptic plasticity

Even if early STDP protocols were not realistic in term of naturalistic activity-pattern
at central synapses, experimentalists have been prone to develop more biologically-
plausible schemes to trigger synaptic plasticity. As stated in the previous section, the
main critics about STDP refer to the induction of the postsynaptic spike directly by
an electrical stimulation at the level of the soma. Several studies have tried using
presynaptic inputs to trigger the postsynaptic spikes, leading to more realistic spike
triggering. These experiments are gathered under the acronym ITDP, for input-timing
dependent plasticity (ITDP) [Cho+12; Ler+17].

The necessity of having a postsynaptic action potential to induce synaptic plas-
ticity was also recurrently questioned and has been proven false since then. Indeed,
in [FDV09], it is shown that brief subthreshold events can act as causal signals for long-
term plasticity. Even if the observed plasticity is not as "acute" as the one observed
using STDP protocols, subthreshold events are sufficient to trigger long-term synaptic
changes. The influence of the postsynaptic membrane potential, and not only of spike
trains, has also been considered in a class of computational models of STDP [CG10].

More recently, it was shown in place fields in hippocampal area CA [Bit+17]
that it was possible to induce synaptic potentiation different from STDP, considering
that its temporal window was wider than in STDP experiments (seconds instead of
milliseconds), that a “plateau” of postsynaptic activity replaced the postsynaptic spike,
and that the order of the association did not change the polarity of the observed synaptic
plasticity. This synaptic learning rule evolves on behavioral timescales, and may be a
good surrogate of STDP when looking at in vivo activity.

Do we really need STDP to be biologically-plausible?

STDP has been used in a wide range of computational models, and several theoretical
studies have used its simple and elegant formulation to investigate the role of synaptic
plasticity in learning. Considering the fact that STDP is currently questioned as a rele-
vant mechanism for learning in experimental studies, it seems logical to also interrogate
its use in computational models.

First, STDP can be seen as a “building block” of synaptic plasticity, and as such I
think that its use is justified when looking at complex models. Indeed, STDP protocols
results from pre- and postsynaptic pairings, and gives a real insight on the dynamics
of a single synapse, as a function of the pre- and postsynaptic spiking activity. When
building complex neuronal networks, where neurons are only represented by their
spike trains, neuroscientists need simple learning rules like STDP, and they have been
using them for long times. Prior to STDP, many computational models used “Hebbian”
synaptic plasticity in their models, where synaptic weight changes depend on the pre-
and postsynaptic firing rates, that also has its limits from a biological point of view.
This does not mean that all conclusions from computational models with rate-based
plasticity, or STDD, are useless just because the synaptic learning rules did not fulfill
a never ending (and always growing) list of biological properties. It just needs to be
considered when drawing conclusions on large scales systems and learning in general.
It is particularly interesting to notice that STDP was first formulated in computational
studies [Ger+96] and not from experiments.

Second, I also would like to stress that STDP, even if not fully biologically-based,
is still a powerful rule when learning, and as such justifies the amount of theoretical
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works that have been published on its properties. For example, it has been recently
used in deep learning [Ben+15; Ben+17] in spiking neural networks (SNN), and it could
have tremendous applications for the implementations of machine learning algorithms
in neuromorphic processors.

Finally, more complex synaptic plasticity rules related to STDP have been devel-
oped over the years, and still need theoretical studies to investigate their impact on
neuronal networks dynamics. It would be a shame to limit efforts in this direction
because STDP may not be the principal synaptic plasticity mechanisms in the brain. I
think that computational and theoretical models can be a mean to understand the inter-
actions between the various synaptic plasticity observed in experiments, starting with
STDP but also integrating more biological and naturalistic synaptic plasticity rules.

Stochastic neuronal networks with STDP

Theoretical models developed in this report are limited to a simple system, with one
presynaptic neuron and one postsynaptic neuron, connected by a single synapse. This
framework was useful when studying the direct effects of pre- and postsynaptic spikes
on the synaptic weights, and such elementary results are necessary when considering
to study larger neuronal networks with synaptic plasticity. In future works, we aim at
extending our formalism to recurrent neuronal networks, and prove similar theorems
for multidimensional systems.

Nonlinear Hawkes processes

When studying STDP in the slow-fast approximation, we have proven that the invariant
distribution of the neuronal dynamics with fixed weights were crucial in determining
the system’s dynamics. Following this idea, we have developed a new formalism for
Hawkes processes, which represent a good model for neuronal activity. However,
we restricted ourselves to auto-exciting processes, while neurons are more likely to
be auto-inhibiting processes. Indeed, a postsynaptic spike leads to a decrease of the
membrane potential value, and consequently, to a decrease of the firing rate.

To reproduce this behavior using Hawkes process, the stochastic intensity Apawkes
needs to depend on negative functionals of previous jumps, i.e

Mi(t) = ( joo (t - s)NHawkes<ds>) |

where h is a negative function, and 3 the activation function. Nevertheless, the stochas-
tic intensity needs, by definition, to be non-negative, and it would not be possible to
use linear Hawkes process where 3(x)=v+/5z. Alarge literature on linear Hawkes pro-
cesses exists, usually in the framework of cluster branching processes [Haw?71; HO74].
When looking at nonlinear activation functions 3, other proofs need to be developed
to study the existence of stationary Hawkes processes. Several articles have been ded-
icated to nonlinear Hawkes processes, usually using Picard iterations and analysis to
prove the existence and unicity of a stationary solution [Ker64; BM96]. Recent works
have also discussed the possible role of inhibition in Hawkes processes, but focus on
simpler kernels h with finite memory in order to use renewal theory [Cos+20]. A global
theory of general Hawkes processes, with negative function h is still lacking even if
it would be of great interests for neuroscience, epidemiology or population dynamics
theory.
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Adaptative neuronal networks

Multidimensional Hawkes processes are interesting models to study neuronal dynam-
ics, they can be used to infer the connectivity matrix from the spike trains and as such
are of particular interest for neuroscientists [Rey+14]. It is indeed possible to formulate
the dynamics of spiking neuronal network as a multidimensional Hawkes process,
verifying,

)\Hawkes,l(t> = 61 <sz\io St_oo hl,i (t - S)NHaWkeS,i<dS))

)\Hawkes,N (t) = 5N (Zf\io St_oo hN7i (t - S)NHaWkes,i(dS)>

where, the function H=(t—h; j(t))i<; j<n represents the connectivity matrix of the neu-
ronal network. Multidimensional Hawkes processes have been studied, with fixed
connectivity H, in the linear case [[Haw?71] or the nonlinear case [BM96]. Again, as
explained in the previous section, most studies do not consider any inhibitory mecha-
nism, and it could be expected that adding inhibition leads to less restrictive conditions
for the existence of a stationary solution: it has a stabilizing effect on the point processes
dynamics. The importance of the excitation/inhibition balance has been known to be
central when studying neuronal dynamics for a long time [Bru00].

In the present report, we have studied the influence of STDP on neuronal dynamics.
We claim that an even more general class of Hawkes, where the connectivity matrix
H depend on time, through some plasticity mechanisms, can be defined. This would
open the door for theoretical studies of adaptative Hawkes processes, which modify
their interactions as a function of previous activity. Adaptative cluster processes have
recently been introduced, when considering phase-dependent plasticity and are linked
to this idea [BSY19].

The influence of STDP on recurrent neuronal networks has been the focus of nu-
merous studies [GBV10], mainly in computational neuroscience. Their approach would
benefit from the development of a theoretical framework for adaptative multidimen-
sional processes.

Mean-field analysis of STDP in neuronal networks

When looking at large neuronal networks, it is always tempting to take the limit when
the number of neurons goes to infinity, and usually end up with mean-field dynamics.
This limit has been largely studied for neuronal networks with fixed connectivity [RT16],
and leads to interesting analytical results on the network dynamics. A similar approxi-
mation can be envisioned while looking at adaptative neuronal networks with synaptic
plasticity. For short-term synaptic plasticity, a recent study looks at the mean-field
approximations of the associated dynamics [L6c17].

What would happen when examining long-term synaptic plasticity? Is it possible
to couple the mean-field analysis with slow-fast arguments? If yes, in which order
should we take the limits? And is this order determinant for the limit’s dynamics? All of
these questions are still pending, and future works on such processes will be important,
not only for neuroscience, but to other adaptative systems, with applications in finance,
epidemiology or evolution. A recent article [AR]20] uses both approximations, but
does not consider all the possible problems that can emerge from taking this double
limit.
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Goal-directed behavior versus habits in the striatum

Computational models developed in the present report have highlighted the crucial role
of STDP when learning to recognize patterns of correlated cortical activity. However,
as pointed out in this discussion, STDP should not be considered as the only synaptic
plasticity mechanism at play when looking at complex tasks, and more importantly
network dynamics should also be taken into account. Future works could be devoted
to a more realistic model of the striatum, integrating direct- and indirect pathways
neurons for example, or inhibitory interneurons. Several striatal models already study
those influences separately, without considering anti-Hebbian STDP. A global model of
the striatum would be a terrific tool to study the differential influence of each of these
processes, and to more clearly understand its role in procedural learning.

DMS and DLS, more differences than just STDP

DMS and DLS differential role in procedural learning could be investigated using such
a general striatal system. In the present reports, we only considered disparity in STDP
at corticostriatal synapses [ ], however the difference between those two regions
are not limited to synaptic plasticity. The following properties should be inserted in
any striatal network, aiming at studying why DMS and DLS subtend specific types of
learning and behaviors, respectively goal-directed behavior and habits:

— Bothregions receive inputs from different cortical regions (somato-sensory versus
associative areas), and some correlated activity patters may be specific to DMS or
DLS.

— MSNSs exhibit different electrophysiological properties when located in either of
those regions.

— Feedforward inhibition, through the action of fast-spiking or low-threshold spik-
ing interneurons also depends on DMS or DLS [Fin+18].

— STDP at corticostriatal synapses is specific to these regions, as was shown
in [ ].

Moreover, the dopaminergic signaling pathways should also be modeled, as it is
critical in goal-directed behavior [SDM97]. Similarly, in order to model the whole action
selection process, MSNs belonging to direct- or indirect pathways, and the subsequent
circuits, should be investigated following previous studies [Dun-+19].

A global model of the basal ganglia, incorporating those properties, will be needed
to directly relate to behavioral experiments, and to predict animal behavior in proce-
dural learning.

Switch between goal-directed behavior and habits

Even if this global model is able to reproduce goal-directed and habitual behavior,
thanks to different properties present either in the DMS or the DLS, it may not explain
how both regions influence each other. Indeed, the striatum is differentially involved
during procedural learning, and studying how the switch between goal-directed behav-
ior and habits occur will be a great advance in our comprehension of the establishment

[ N NN N 0 VU ot " e NV W\ NN PN



303

of procedural memory. A recent article has shown that this question is of interest, both
for neuroscientists and experimentalists [PB19]. How is this switch implemented, why
and when? are several questions that need to be answered. Computational models are
of great help in the study of such topics, because they can emulate dynamics not easily
tested in experiments.
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