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A. Listeria monocytogenes and listeriosis  

Listeria monocytogenes (Lm) is a foodborne pathogen that causes listeriosis, one of the most 

dangerous foodborne bacterial zoonosis. Although rare, listeriosis has a high case fatality rate 

and is of particular concern for pregnant women. Lm is a Gram-positive bacterium that is 

extremely adaptable, capable of transiting from life as a soil-living saprophyte to that of an 

invasive pathogen, adept at survival and proliferation in the host cell. This adaptability 

increases Lm’s foodborne pathogen potential, as the bacterium can resist the high salt and acid 

and low oxygen concentrations and low temperatures used for food conservation. Lm’s 

adaptability has also facilitated this bacterium’s use in the laboratory and has seen Lm emerge 

as an extremely versatile model pathogen over the last half of a century. The analysis of the 

Lm infectious process both in vitro and in vivo has led to numerous breakthroughs in our 

understanding of cell biology, host-pathogen interactions, and innate and cell mediated 

immunology.  

 1.  Discovery  

Lm was first described in 1926 by Murray, Webb and Swann following their meticulous 

investigation into the cause of the sudden and concomitant death of six laboratory rabbits. The 

isolated causative microorganism was named Bacterium monocytogenes: the “indefinite” 

Bacterium because it couldn’t be attributed at the time to a known genus, and monocytogenes 

due to the characteristic production of large mononuclear leukocytosis in infected animals 

(Murray et al., 1926). A year later, Pirie et al., reported the isolation of the same species in the 

liver of wild gerbils (Mitchell et al., 1927). He initially named it Listerella hepatolytica – the 

specific epithet in honour of Lord Joseph Lister, the pioneer of antisepsis, and the generic 

because of the liver lesions observed in infected animals – before withdrawing hepatolytica in 

favour of monocytogenes to acknowledge Murray’s discovery. Pirie subsequently proposed the 

generic name Listeria in 1940 due to Listerella having already been attributed to a mycetozoan 

(Pirie, 1940). It is likely that the first cases of human listeriosis were documented well before 

the first characterisations of the bacteria by Murray et al., with reports of "pseudotuberculosis" 

and "neonatal septicaemia" due to "argentophile rods” as early as 1891. The first confirmed 

report, however, was in 1929 by Nyfeldt et al. (Gray and Killinger, 1966; Seeliger, 1988). 

Human cases remained sporadic, however, and listeriosis was essentially regarded as a rare 

zoonosis, its epidemiology an unresolved mystery. Laboratory interest for the bacterium grew 

from the mid- to late 1950s with the pioneering work of Mackaness et al. in cellular immunity 
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using Lm as a prototypic intracellular parasite (Mackaness, 1962). The first International 

Symposium on Problems of Listeria and Listeriosis (ISOPOL) was held in 1957 and has since 

seen Lm become one of the most well-established models in the study of host-pathogen 

interactions (Cossart, 2011; Lebreton et al., 2016; Lecuit, 2020; Radoshevich and Cossart, 

2017). It wasn’t until the early 1980s, however, that Lm’s importance as a risk to public health 

and food safety was formally recognised (Schlech et al., 1983), and tremendous research efforts 

have since been employed in order to protect consumers from listeriosis.  

 2.  Taxonomy, phylogeny and classification 

The Listeria genus belongs to the Listeriaceae family (along with the Brochothrix genus), the 

Bacillales order (as do the genera Bacillus and Staphylococcus to whom Listeria is closely 

related), the Bacilli class and the Firmicutes phylum. The Listeria genus comprises 26 species, 

20 of which have been discovered since 2009, including five in 2021 (Carlin et al., 2021). 

Listeria species are further subdivided into two clades: “Listeria sensu stricto” (clade I) and 

“Listeria sensu lato” (or clade II). Lm and eight other species (L. ivanovii, L. seeligeri, 

L. welshimeri, L. innocua, L. marthii, L. farberi, L. immobilis, and L. cossartiae) form the 

Listeria sensu strictu clade, a tight monophyletic group within the genus. Members of this clade 

have been found in faeces or the gastrointestinal (GI) tract of animals, as well as in food of 

animal origin, and two – Lm and L. ivanovii – are pathogens, the latter affecting predominantly 

ovine and bovine (Disson et al., 2021; Orsi and Wiedmann, 2016; Schardt et al., 2017). 

Members of the second clade, “Listeria sensu lato”, are believed to be environmental bacteria 

unable to colonise mammalian hosts (Schardt et al., 2017).  

 3.  Lm intraspecies biodiversity 

  3.1.  Serotypes 

Serotyping was the first method employed to investigate the biodiversity of Lm, elaborated by 

Paterson et al. (Paterson, 1940), and extended by Seeliger et al., among others (Seeliger and 

Langer, 1989). Adding an antiserum raised against one of 15 different somatic (O) or one of 

four flagellar (H) Lm surface antigens to a strain displaying the same antigen results in 

agglutination. Thirteen different Lm serotypes (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 

4e, and 7) have been identified based on unique combinations of O and H antigens (Seeliger 

and Langer, 1989). Traditional immunological serotyping has since been replaced by genetic-

based molecular serotyping (or genoserotyping), eliminating the need for antisera (Doumith et 



   15 

al., 2004a; Nightingale et al., 2007). While genoserotyping remains a first step in routine strain 

analysis, it is of poor discriminatory power as the majority of food and clinical isolates belong 

to 1/2a, 1/2b, 1/2c or 4b serotypes (Datta and Burall, 2018; Liu, 2006). 

  3.2.  Lineages 

Other phenotypic (multilocus enzyme electrophoresis (MLEE) (Graves et al., 1994; Piffaretti 

et al., 1989)) and genetic subtyping methods (pulsed-field gel electrophoresis (PFGE) (Brosch 

et al., 1991; 1994), ribotyping (Graves et al., 1994; Wiedmann et al., 1997), partial virulence 

gene sequencing (Rasmussen et al., 1995; Roberts et al., 2006), DNA arrays (Doumith et al., 

2004b), and multilocus genotyping (Ward et al., 2008)) allowed the clustering of Lm serotypes 

into four distinct evolutionary lineages (I, II, III, and IV). The two main lineages I and II, into 

which the majority of Lm isolates cluster, were first identified in 1989 by MLEE (Piffaretti et 

al., 1989), and include serotypes 1/2b, 3b, 7, 4b, 4d et 4e (lineage I), and 1/2a, 1/2c, 3a et 3c 

(lineage II). Although isolates from all four lineages have been associated with human 

listeriosis, lineage I and in particular serotype 4b occurs more frequently among clinical 

isolates, whereas lineage II isolates (chiefly 1/2a and 1/2c) are overrepresented among isolates 

from food and environmental sources (Orsi et al., 2011).  

A third lineage was identified in 1995 (Rasmussen et al., 1995), and further subdivided into 3 

subgroups: IIIA, IIIB, IIIC (Roberts et al., 2006); the evolutionary diverse subgroup IIIB later 

became lineage IV (Ward et al., 2008). Lineage III and IV isolates are rare and are 

predominantly isolated from animal sources (Lee et al., 2018; Orsi et al., 2011). 

  3.3.  Sequence type, clonal complex, cgMLST type, and sublineage 

Our understanding of Lm ecology and evolution advanced greatly with the development and 

world-wide application of multilocus sequence typing (MLST) (Stessl et al., 2014). MLST 

exploits the sequence variation in seven housekeeping genes to class Lm strains into sequence 

types (ST) based on allelic profiles (Ragon et al., 2008; Salcedo et al., 2003). Isolates with the 

same allelic profile are grouped in a single ST, and STs differing by only one gene are grouped 

into a clonal complex (CC) (Ragon et al., 2008). Serotypes were confirmed to be markers of 

Lm biodiversity, with each CC having a unique or dominant serotype. The absence of even one 

common allele among the three lineages confirmed the existence of four distinct evolutionary 

lineages (Ragon et al., 2008) (Figure 1).  
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Figure 1 | Phylogenetic tree of Lm strains constructed using MLST data. 
Minimum spanning tree analysis of 360 Lm strains based on MLST data. Each circle corresponds to a 
ST that is coloured according to the serotype of the individual isolates it contains. CCs are indicted by 
grey zones that regroup STs and are numbered according the dominant ST of the group (enlarged 
numbers). The three major lineages are represented by polygons. The lines between STs indicate 
inferred phylogenetic relationships and are represented as bold, plain, discontinuous and light 
discontinuous depending on the number of allelic mismatches between profiles (1, 2, 3 and 4 or more, 
respectively). As no common alleles exist between the three major lineages, they were arbitrarily linked 
through ST7. (Adapted from Ragon et al., 2008) 

Several medium to large scale MLST analyses have highlighted the clonal nature of Lm (the 

majority of isolates cluster into a small number of CCs) and have identified the most prevalent 

STs and CCs and their ecological distribution (Cabal et al., 2019; Chenal-Francisque et al., 

2011; Filipello et al., 2020; Henri et al., 2016; Jennison et al., 2017; Maury et al., 2019; 2016; 

Painset et al., 2019; Ragon et al., 2008). CC1, CC2, CC4, and CC6 are strongly associated with 

a clinical origin whereas CC121 and CC9 are overrepresented in environmental samples, 

confirming the uneven prevalence of Lm isolates of food versus clinical origin previously 

observed at the lineage and serotype levels (Orsi et al., 2011) (Figure 2). 

With large scale sequencing increasingly accessible and affordable, routine sequencing of 

strains is now standard practice in several countries including the USA (Jackson et al., 2016), 

the UK (McLauchlin et al., 2020), Australia (Kwong et al., 2016a), France (Moura et al., 2017), 

Germany (Halbedel et al., 2020), Austria (Cabal et al., 2019), and Denmark (Jensen et al., 

2016b). Several whole genome sequencing (WGS) approaches have been developed, based 

either on single nucleotide polymorphisms within the whole genome (Jagadeesan et al., 2019), 

or whole genome (wg) (Jackson et al., 2016; Schmid et al., 2014) or core gene (cg) (Chen et 
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al., 2016; Moura et al., 2016; Ruppitsch et al., 2015) allelic profiling similar to MLST in which 

the set of genes is increased from seven to 1701 (Ruppitsch et al., 2015), 1748 (Moura et al., 

2016), 1827 (Chen et al., 2016), 2298 (Schmid et al., 2014), or 4804 (Jackson et al., 2016). 

cgMLST defines cgMLST types and sublineages by allelic distances of 7 and 150 genes 

respectively. cgMLST sublineages largely correspond to CCs, facilitating the matching of data 

from MLST and cgMLST analyses (Moura et al., 2016).  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 | Prevalence and distribution of MLST clones in food and clinical sources.  
The frequencies of clones among food (x axis) and clinical (y axis) isolates are shown by a circle whose 
size is proportional to the number of isolates. (Source: Maury et al., 2016)  

  3.4.  Strain discrimination for epidemiological analysis  

For outbreak detection, surveillance and source-tracking, highly discriminative molecular 

subtyping methods are instrumental (Jensen et al., 2016a). PFGE has long been the current gold 

standard in Lm strain discrimination (Gerner-Smidt et al., 2006; Graves et al., 1994) and has 

been essential for outbreak investigation worldwide (Jackson et al., 2016; Ruppitsch et al., 

2015). WGS-based strain discrimination methods, however, surpass all others in 

discriminatory power and have transformed real-time listeriosis surveillance, increasing 

substantially the number of clinical cases that could be linked to a specific food or to other 

seemingly unrelated clinical cases (Jackson et al., 2016; McLauchlin et al., 2020). As an 

example, WGS data and its immediate publication allowed an isolated case in Australia to be 

linked to a USA outbreak involving stone fruit; the imported fruit was subsequently recalled, 

preventing any further contaminations (Kwong et al., 2016b). This illustrates the utility of 

WGS-based typing methods but also the need for the standardisation of protocols, tools, and 

nomenclature, and the rapid public release of data, an objective yet to be achieved (Barretto et 

al., 2021; Kwong et al., 2016b).  
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 4.  General microbiology  

Lm is a Gram-positive, rod-shaped (~0.5 × 1–2 µm), non-encapsulated, non-sporulating, 

facultative anaerobic bacterium (Thakur et al., 2018). With its 2–6 polar peritrichous flagella, 

it exhibits a characteristic tumbling motility at temperatures of up to 30°C, but motility – at 

least in laboratory strains – is repressed by thermosensitive transcriptional repression of 

flagellar export apparatus genes at 37°C (Lebreton and Cossart, 2017), as visible by 

transmission electron microscopy (TEM) (Figure 3). All Listeria spp. are catalase positive, 

indole and oxidase negative, and can hydrolyse aesculin, but not urea; these common 

biochemical characteristics have been used to determine genus (Liu, 2006). Lm is 

morphologically indistinguishable from the other Listeria species but can be distinguished 

through a set of biochemical tests that determine haemolytic activity (only Lm, L. seeligeri, and 

L. ivanovii are haemolytic), and the ability to produce acid from L-rhamnose, D-xylose, or α-

methyl-D-mannoside (of the 3 haemolytic species, only Lm can ferment L-rhamnose and  

α-methyl-D-mannoside, but not D-xylose) (Allerberger, 2003).  

 

 

 

 

 

 

Figure 3 | TEM images of Lm in liquid culture at 20°C and 36°C.  
Flagellated bacteria are observed at 20°C (left) but not at 36°C (right) (scale bar: 1 μm). (Source: 
Allerberger et al., 2015) 

Lm can multiply at temperatures ranging from 0–45°C, with optimal growth at 30–37°C, at 

which the growth peak is reached in 16–18 h (Gray and Killinger, 1966; McLauchlin et al., 

2014; Membré et al., 2005). Lm can also maintain growth at pH 4.6–9.2, as well as at high 

osmotic pressure (growth at up to 10% NaCl, survival at up to 20–30%), and in microaerobic 

conditions (Rees et al., 2017). This resistance to high salt and acid concentrations, low oxygen 

conditions, and the capacity to multiply at refrigeration temperatures used for food processing 

and preservation, as well as the ability to form antimicrobial-resistant biofilms, renders Lm a 

serious concern for food safety (Colagiorgi et al., 2017; Vázquez-Boland et al., 2001). The 

biological properties and robustness of Lm also contribute to its ubiquitous nature: Lm is widely 
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distributed throughout the environment and is found in soil, vegetation, water, sewage, and in 

the GI tract and faeces of humans and many species of animals, as well as in the food processing 

environment and in a large variety of foods. The natural habitat of Lm is thought to be 

decomposing plant matter, however, in which this species lives as a saprophyte (Abu Mraheil 

et al., 2013; Vázquez-Boland et al., 2001). 

The genome organisation of Listeria spp. is highly conserved. Lm contains one circular 

chromosome of approximately three Mb, with an average G+C content of 38%, containing 

approximately 3000 protein-coding sequences, two-thirds of which are common to all species 

of the genus (Bakker et al., 2010; Buchrieser, 2007, Glaser et al., 2001). 

 5.  Pathology   

  5.1.  The epidemiology of human listeriosis  

   5.1.1. Transmission, clinical manifestations, outcomes, and 

treatment 

Lm’s importance as a risk to public health and food safety was recognized in the early 1980s 

when the investigation of a Canadian outbreak with a high case-fatality rate provided 

conclusive evidence of foodborne transmission (Schlech et al., 1983). Listeriosis is today 

considered to occur almost exclusively through the consumption of contaminated food, with 

the exception of vertical transmission from the mother to the unborn foetus and transmission 

during birth (Rees et al., 2017). Lm is responsible for a quarter of the burden of food-related 

deaths in the USA (Scallan et al., 2011) and in France (Van Cauteren et al., 2017) (Table 1). 

Rare cases of transmission from animals to humans or humans to humans have however been 

documented (Allerberger and Wagner, 2010; Scallan et al., 2011).  

Listeriosis is used to describe both the mild non-invasive form of the disease, as well as the 

severe invasive form. Mild non-invasive listeriosis manifests as a typical febrile gastroenteritis 

and affects immuno-competent adults and children (Allerberger and Wagner, 2010; 

Swaminathan and Gerner-Smidt, 2007) or, rarely, as cutaneous listeriosis (Godshall et al., 

2013). These non-invasive forms of listeriosis are generally self-limiting and resolve without 

antibiotic treatment (Dalton et al., 1997; Godshall et al., 2013; Swaminathan and Gerner-Smidt, 

2007). Invasive listeriosis generally occurs when cell-mediated immunity is impaired, and 

manifests in three forms: bacteraemia, neurolisteriosis, and maternal-neonatal listeriosis, where 

Lm has crossed the intestinal barrier, or the intestinal and blood-brain barriers, or the intestinal 
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and placental barriers, respectively (Charlier et al., 2017; Madjunkov et al., 2017). Diagnosis 

is based on the isolation of Lm or the detection of Lm nucleic acid from a normally sterile site 

(blood, cerebrospinal fluid, or placental sample), or for pregnancy-associated cases also non-

sterile sites such as vaginal swabs (European Food Safety Authority, European Centre for 

Disease Prevention and Control, 2021).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 | Estimated percent of foodborne disease related hospitalisations and deaths attributed to 

Lm compared to other pathogens.  
Around 2% of foodborne disease related hospitalisations and 25% of deaths are attributed to Lm each 
year in France. (Adapted from Van Cauteren et al., 2017) 

Maternal–neonatal listeriosis affects pregnant women, foetuses, or infants up to one month old 

and while the mother presents only a fever and/or flu-like symptoms – or no symptoms at all –

the maternal infection often has severe consequences on the pregnancy outcome or on the new-

born infant (Charlier et al., 2017; Elinav et al., 2014; Jeffs et al., 2020). Spontaneous abortion 

or stillbirth occur in around 25% of cases and of the remaining pregnancies, many are pre-term, 

and up to two-thirds of neonates are infected (Charlier et al., 2017; Elinav et al., 2014; Girard 

et al., 2014; Jeffs et al., 2020; McLauchlin, 1990). Neonatal listeriosis is most commonly of 

early onset (diagnosis in the first two days of life), and presents as pneumonia, sepsis, or 

meningitis with poor prognosis (Charlier et al., 2017; Girard et al., 2014; Mylonakis et al., 

2002). Only 50% of maternal blood cultures of confirmed maternal-listeriosis cases are positive 

for Lm however (Charlier et al., 2017; Mylonakis et al., 2002), and diagnosis of early foetal 

loss may therefore be under-estimated due to the variable, non-specific (or lack of) symptoms 

experienced by the mother, and the absence of microbiological testing of aborted foetal tissue 

that would confirm infection (Lamont and Postlethwaite, 1986). Today, maternal-neonatal 

listeriosis represents 10–20% of all invasive listeriosis cases (Charlier et al., 2017; de 
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Noordhout et al., 2014), a sharp decrease from studies anterior to 1990 where 30–55% of 

listeriosis cases were maternal-neonatal (Cherubin et al., 1991; Gellin et al., 1991; McLauchlin, 

1990).  

Non-pregnancy related invasive listeriosis manifests as septicaemia with or without the 

involvement of the central nervous system (CNS) (meningitis most commonly but also 

meningoencephalitis, encephalitis, and rhombencephalitis) (Schlech, 2019). Endovascular 

infections (endocarditis or aneurysm/prosthetic graft infections) have also been reported, and 

although rare (representing 1% of non-maternal-neonatal listeriosis cases in France), mortality 

in Lm-associated endocarditis is twice as high as that reported for other pathogens (Shoai-

Tehrani et al., 2019).  

Bacteraemia is currently the most common clinical form of listeriosis, observed in around  

60–80% of non-maternal-neonatal listeriosis cases. The remaining 20–40% of cases involve 

the CNS, with or without bacteraemia (Charlier et al., 2017; de Noordhout et al., 2014; Jensen 

et al., 2016a; Scobie et al., 2019). Lm is responsible for approximately 5% of bacterial 

meningitis and 1–4% of infectious encephalitis cases in adults, with, as for endovascular 

infections, poorer prognosis compared to other etiological forms of these diseases (Granerod 

et al., 2010; Mailles et al., 2011; 2009; Putz et al., 2013; Quist-Paulsen et al., 2013; Sunwoo et 

al., 2021; van de Beek et al., 2004). Prognosis for non-pregnancy related listeriosis is poor, 

with case fatality rates of around 20–40% reported for both bacteraemia and neurolisteriosis 

(Charlier et al., 2017; de Noordhout et al., 2014; Mook et al., 2012; Scobie et al., 2019). A high 

proportion (25–50%) of neurolisteriosis survivors suffer neurological sequelae (Büla et al., 

1995; Charlier et al., 2017; Koopmans et al., 2013). The hospitalisation rate (estimated at 92% 

in the European Union (EU) (European Food Safety Authority, European Centre for Disease 

Prevention and Control, 2021) and 94% in the USA (Scallan et al., 2011)) and mortality rate 

of listeriosis are indeed the highest of any zoonotic pathogen in the western world, and 

prognosis has not improved over the last decades (Charlier et al., 2017; European Food Safety 

Authority, European Centre for Disease Prevention and Control, 2021) (Table 2). 

Listeriosis presents an unusually long and highly variable incubation period that depends, at 

least in part, on the clinical form of the disease. While short incubation periods (around 24 h) 

are generally observed for non-invasive listeriosis – similar to those observed for other enteric 

bacteria such as Salmonella – incubation periods exceeding 10 days have been documented 

(Goulet et al., 2013; McIntyre et al., 2015). The asymptomatic incubation period for invasive 
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listeriosis can be much longer, with a median of around 10 days (range 1–70) and incubation 

periods superior to 28 days reported in around 15% of cases, the majority of which are 

maternal-neonatal (Angelo et al., 2016; Goulet et al., 2013).  

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 2 | Reported hospitalisations and case fatalities due to zoonoses in confirmed human cases 

in the EU, 2019. (Source: European Food Safety Authority, European Centre for Disease Prevention 
and Control, 2021) 

Standard treatment for all forms of listeriosis is intravenous administration of β-lactam 

antibiotics (ampicillin or penicillin) – or meropenem or trimethoprim-sulfamethoxazole in the 

case of allergy – and an aminoglycoside such as gentamicin (Schlech, 2019). The 

recommended duration of treatment is at least two weeks for bacteraemia, and three weeks for 

meningitis (Donovan, 2015).  

   5.1.2.  Prevalence  

Reliable epidemiological data is generally only available for developed countries where 

listeriosis is a notifiable disease, and effective laboratory surveillance networks have been put 

in place, such as in the European Economic Area member states (European Food Safety 

Authority,  European Centre for Disease Prevention and Control, 2021), the USA (Scallan et 

al., 2011), Australia (Kirk et al., 2014), and New Zealand (Jeffs et al., 2020). As diagnosis is 

based on the confirmed presence of Lm (as described in section A.5.1.1), only the severe, 

invasive form of the disease is notified (Official Journal of the EU, 06.07.2018, page 28). Non-

invasive listeriosis is thus rarely diagnosed or reported, partly because Lm is not detected by 

routine stool culture, and partly because symptoms are generally non-specific and self-limiting, 

with the illness generally resolving spontaneously without antibiotic treatment within 48 h 

(Dalton et al., 1997; Donovan, 2015; Salamina et al., 1996). Invasive listeriosis has a low 
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incidence rate, with three to six cases per million population (de Noordhout et al., 2014; Fox 

et al., 2012; Jeffs et al., 2020; Kirk et al., 2014; Scallan et al., 2011); the most recent data from 

the European Food Safety Authority (EFSA) documented 4.6 confirmed cases per million in 

2019 in member states (European Food Safety Authority, European Centre for Disease 

Prevention and Control, 2021). Pregnancy-associated listeriosis is today reported to affect  

4–10 per 100 000 pregnant women (Charlier et al., 2020) and has significantly decreased since 

the 1980s in both the USA and the EU, independent of the incidence rate of non-maternal-

neonatal listeriosis (Bertrand et al., 2016; Girard et al., 2014).  

Although outbreaks often make headlines and involve a large number of cases, as the most 

recent large outbreak of 947 cases in South Africa highlighted (Thomas et al., 2020), listeriosis 

is mainly sporadic, with only 13.4% of invasive listeriosis cases in the EU in 2019 attributed 

to outbreaks (European Food Safety Authority, European Centre for Disease Prevention and 

Control, 2021). This proportion is likely to increase however as the global shift to WGS-based 

typing methods in foodborne-pathogen surveillance accelerates the identification of 

epidemically related clusters, as described in section A.3.4. 

   5.1.3.  Risk factors  

Risk factors for invasive listeriosis are multiple and combinatorial and include the risk of 

exposure to contaminated food and the level of contamination, the virulence of the Lm strain, 

as well as host susceptibility to infection (EFSA Panel on Biological Hazards (BIOHAZ) et al., 

2018). Foods at risk include ready-to-eat food products, meat and fish products, and dairy 

products, especially soft and semi-soft cheeses (EFSA Panel on Biological Hazards (BIOHAZ) 

et al., 2018). Specific ethnic or socioeconomic populations have been shown to be more at risk 

of listeriosis because of increased consumption of certain foods (Elinav et al., 2014; Jackson et 

al., 2018; Pohl et al., 2019). The dose-response relationship of Lm, which represents an 

essential component of risk assessment, is still a pivotal question (Allerberger et al., 2015) and 

depends on both the strain and the susceptibility of the host (Pouillot et al., 2015). In an 

identified outbreak of 45 cases of exclusively non-invasive listeriosis in healthy individuals, 

the median dose of Lm may have been as high as 2.9×1011 organisms (Dalton et al., 1997). On 

the other hand, an infectious dose of approximately 103 cells was sufficient to cause invasive 

disease and death in highly susceptible hospitalised patients (Pouillot et al., 2016). Prediction 

models based on outbreak data estimate that both the susceptibility of the host and the virulence 

of the strain can each modify by at least 100-fold the probability of developing invasive 
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listeriosis, with this probability increasing approximately 10-fold for every log increase in the 

ingested dose (Farber et al., 1996; Pouillot et al., 2015; 2016).  

Certain conditions have been identified as risk factors: pregnant women are up to 100 times 

more likely to develop listeriosis than healthy adults with no comorbidities because of impaired 

cell-mediated immunity during pregnancy and Lm’s placental tropism (Charlier et al., 2020) 

(Table 3). For non-pregnancy-related invasive listeriosis: advanced age, non-haematological 

cancer, diabetes, and heart disease concern the most individuals but the highest risk-associated 

comorbidities identified are haematological malignancies in general and chronic lymphocytic 

leukaemia in particular (relative risk of 1488), and liver cancer (relative risk of 748), both of 

which also had a higher risk of mortality (Goulet et al., 2012). The use of gastric acid-

suppressing drugs such as protein pump inhibitors, histamine-2 receptor antagonists and 

antacids has also been associated with an increased risk of listeriosis (Fisher and Fisher, 2017; 

Mook et al., 2012). Less than 10% of invasive listeriosis cases are thus observed in non-

pregnant healthy adults under 65 years of age (Table 3).  

 
Table 3 | Incidence of listeriosis and relative risk of incidence per subgroup of the French 

population with underlying conditions. (Adapted from Goulet et al., 2012; Pouillot et al., 2015) 

CCs have been termed as “infection-associated”, “food-associated” or “intermediate” 

depending on the relative proportion of isolates from clinical cases, food or both (Maury et al., 

2016; 2019) and there is ample in vivo and in vitro evidence that “infection-associated” clones 

are more virulent (Ghosh et al., 2019; Maury et al., 2016; 2019; Stratakos et al., 2020; Vázquez-

Boland et al., 2020). However, the more susceptible the host, the more likely even a 

hypovirulent, food-associated clone of lineage II will cause invasive disease (Figure 4).  

 

Population subgroup 

Number of 

individuals per 

subgroup 

Percent 

of total 

population

Number of 

cases per 

subgroup

Percent 

of total 

cases

Relative risk 

(CI 95%)

Less than 65 years old, no known underlying condition 

(i.e., “healthy adult”) 
48 909 403 76.71% 189 9.65% Reference group

More than 65 years old, no known underlying condition 7 038 068 11.04% 377 19.24% 13.9 (8.6, 23.1) 

Pregnancy 774 000 1.21% 347 17.71% 116 (71, 194.4)

Non-haematological cancer 2 065 000 3.24% 437 22.31% 54.8 (34.2, 90.3) 

Haematological cancer 160 000 0.25% 231 11.79% 373.6 (217.3, 648.9) 

Renal or liver failure (dialysis, cirrhosis) 284 000 0.45% 164 8.37% 149.4 (82, 270.1)

Solid organ transplant 25 300 0.04% 16 0.82% 163.7 (26.3, 551.5) 

Inflammatory diseases (rheumatoid arthritis, ulcerative 

colitis, giant cell arthritis, Crohn's disease) 300 674 0.47% 68 3.47% 58.5 (25.2, 123.4) 

HIV/AIDS 120 000 0.19% 22 1.12% 47.4 (10.5, 140.4)

Diabetes (type I or type II) 2 681 000 4.20% 79 4.03%  7.6 (3.5, 15.6)

Heart diseases 1 400 000 2.20% 29 1.48% 5.4 (1.5, 14.4) 

Total population 63 757 445 100% 1 959 100%
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Figure 4 | The infectious potential of MLST clones.  
The histograms show the distribution of food-associated (food; CC9 and CC121; blue), infection-
associated (clinical; CC1, CC2, CC4 and CC6; red) and intermediate (intermediate; CC8+CC16, CC5, 
CC3, CC37, CC155 and CC18; grey) clones in patient groups with different numbers of 
immunosuppressive comorbidities. (Source: Maury et al., 2016) 

   5.1.4.  Asymptomatic carriage  

As Lm is frequently isolated from the environment, from food, and from the faeces of healthy 

adults and ruminants, and yet invasive listeriosis is so rare, the question of the existence of 

asymptomatic carriage of Lm is naturally raised (Painter and Slutsker, 2007). The unusually 

long asymptomatic incubation period observed in listeriosis compared to other foodborne 

pathogens further suggests the existence of a silent, subclinical phase during Lm host 

colonisation (Vázquez-Boland et al., 2001). This silent phase could either persist long-term to 

be qualified as asymptomatic carriage or develop into invasive listeriosis within a highly 

variable timeframe (as described in section A.5.1.1). Asymptomatic persistence could also 

occur following invasive disease, as suggested in the rare documented cases of recurrent 

listeriosis. Recurrent listeriosis in children and non-pregnant adults in which strains isolated 

from the paired episodes were indistinguishable by genetic subtyping strongly suggests 

incomplete eradication of the original infection, chronic infection or long-term carriage, and 

subsequent recrudescence of infection (Ciceri et al., 2017; Levett et al., 1993; McLauchlin et 

al., 1986; 1991; Sauders et al., 2001). Cases were separated by intervals as short as three weeks, 

but also as long as 2 years. Recurrence of listeriosis within three months was reported in 1% 

of cases in a recent national study (Charlier et al., 2017). A case of delayed bacteraemia was 

observed following the administration to a cancer patient of a highly attenuated Lm strain used 

as a tumour immunotherapy vaccine vector. PFGE and wgMLST confirmed the isolated strain 

as identical to the Lm vaccine vector that had been administered 31 months prior to the 

bacteraemia (Fares et al., 2018). The colonisation of prosthetic material could be implicated in 

some cases of recurrent listeriosis but cannot explain the majority (Ciceri et al., 2017). The 
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possibility of asymptomatic carriage is of particular concern in women, as recurrent foetal loss 

due to Lm has been suggested but unfortunately never explored or rigorously documented 

(Gray and Killinger, 1966; Rocourt et al., 2000). Humans are exposed regularly to Lm: it is 

estimated that adults ingest 107 Lm organisms approximately once a year, and around 105 Lm 

at least four times per year, with smaller doses ingested much more frequently (Hitchins, 1996; 

Notermans et al., 1998). Large scale studies have isolated Lm from the faeces of around 1–5% 

of healthy adults (Grif et al., 2001; Iida et al., 1998; MacGowan et al., 1991; Mascola et al., 

1992; Müller, 1990); an individual was found to excrete Lm 5–9 times per year for up to four 

days, averaging two episodes of faecal carriage per person per year (Grif et al., 2003). It is 

unknown, however, whether Lm disseminates to the liver or spleen during this asymptomatic 

intestinal colonization. The gall bladder and bone marrow could be sites for Lm asymptomatic 

persistence, as suggested by experiments in mice (Hardy et al., 2009; 2004). Oral inoculation 

of guinea pigs with a nonlethal dose of Lm resulted in asymptomatic colonisation of the GI 

tract and the liver suggesting that this could also occur in humans, with further dissemination 

occurring only in the case of a compromised immune system (Melton-Witt et al., 2012).  

  5.2.  Animal listeriosis from a food safety and public health perspective 

Although direct transmission of listeriosis from animals to humans is very rare, human 

listeriosis is considered a zoonotic disease because of the indirect transmission through food, 

milk, or water contaminated by wild or domestic animal carriers (Chlebicz and Śliżewska, 

2018). Lm has been reported to colonise the GI tract of or cause invasive disease in more than 

40 species of animals, both domestic and wild (including monkeys, cattle, sheep, goats, 

buffalos, horses, deer, black bears, wild boars, domestic pigs, camelids, dogs, cats, rodents, 

lagomorphs, domestic fowl, wild birds, fish, and crustaceans) (Allerberger et al., 2015; 

Fredriksson-Ahomaa et al., 2020; Gray and Killinger, 1966; Leclercq, 2021; Parsons et al., 

2020; Yoshida et al., 2000), although disease occurs primarily in farm ruminants (Clune et al., 

2020; Esteban et al., 2009; Oevermann et al., 2010). Listeriosis manifests in ruminants mainly 

as uterine infections (resulting in abortion or neonatal infection) and CNS infections typically 

characterised by rhombencephalitis, and less commonly as gastroenteritis, bacteraemia and 

mastitis (Dreyer et al., 2016). Lm faecal shedding has been shown to be frequent in 

asymptomatic ruminants, swine, and poultry (Castro et al., 2018; Esteban et al., 2009; Hurtado 

et al., 2017; Nightingale et al., 2004), and in particular in cattle where the 4b serotype was 

predominantly isolated (Esteban et al., 2009). Source attribution analysis revealed that 50% of 

human listeriosis cases could be imputed to dairy products, followed by poultry and pork 
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(Filipello et al., 2020). Animal listeriosis is thus of concern not only because of the important 

economic burden on livestock production due to morbidity and mortality in sheep, cattle and 

goats, but also from a food safety and public health perspective as an important reservoir of Lm 

and as a frequent source of food contamination – both direct and indirect through cross 

contamination or the use of manure. As has been observed for human listeriosis (as described 

in section A.3.3), the prevalence of CCs varied strongly between ruminant clinical and 

environmental sources (Dreyer et al., 2016). Ruminants were shown to be exposed to a large 

diversity of Lm strains in their immediate environment, yet lineage I and in particular ST1 

(CC1) and to a lesser extent ST4 (CC4) clones were predominantly isolated from clinical 

infections in cattle (Dreyer et al., 2016; Papić et al., 2019; Rocha et al., 2013), both of which 

are predominant CCs in human listeriosis (Maury et al., 2016). CC1 clones in particular are 

overrepresented in human CNS infections (Maury et al., 2019), have a strong association with 

dairy products (Filipello et al., 2020; Maury 2019, Jennison 2017), and have been linked to 

several high case fatality rate human listeriosis outbreaks involving either unpasteurised dairy 

products (Büla et al., 1995; Linnan et al., 1988), or the use of contaminated ovine manure 

(Cantinelli et al., 2013; Schlech et al., 1983). This illustrates the need to identify the sources of 

Lm especially in primary meat and milk production, in fresh produce from manure-amended 

soils, as well as from cross-contaminations possible along the food chain.  

 6.  The Lm infection process  

  6.1.  The in vivo infection process 

Upon ingestion of contaminated food, Lm encounters and can cross the intestinal barrier to 

disseminate via the lymph and blood to target tissues such as the liver and spleen. Lm can also 

cross the blood-brain barrier and fetoplacental barriers to disseminate to the brain 

(neurolisteriosis) or placental tissue and foetus (maternal-neonatal listeriosis) (Radoshevich 

and Cossart, 2017). Our knowledge of the in vivo Lm infection process derives mainly from 

the murine model of listeriosis, which generally involves the intravenous (IV), or less 

commonly, the intragastric (IG) or intraperitoneal (IP) inoculation of mice. Guinea pigs or 

gerbils infected by the IG route have also been used, especially in the study of maternal-

neonatal listeriosis (Bakardjiev et al., 2005; 2006; Disson et al., 2008; Lecuit et al., 2001; 

Melton-Witt et al., 2012). Contrary to the mouse, both these rodents express a form of  

E-cadherin (E-cad) that interacts with the Lm surface protein internalin A (InlA) to mediate 

cellular entry (as described below and in section A.6.3.1) and are natural hosts for Lm (Disson 
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and Lecuit, 2013; Hoelzer et al., 2012). In this work, unless otherwise specified, in vivo results 

refer to those obtained using the IV murine model of listeriosis.  

Once ingested, Lm passes though the GI tract, encountering the low pH of the stomach and 

duodenum, as well as membrane-disrupting bile acids, bacteriocin-producing commensal 

bacteria, and antimicrobial peptides, against all of which Lm has developed highly efficient 

survival mechanisms enabling it to penetrate the intestinal mucus (Gahan and Hill, 2014; 

Matereke and Okoh, 2020; Maudet et al., 2021). Nonetheless, the vast majority of the initial 

ingested inoculum is killed in the stomach or shed in the faeces within hours and explains, in 

part, why an inoculum at least 1000 times higher is required in the IG compared to the IV 

murine model of infection (Pitts and D'Orazio, 2018); only one bacterium in a million is 

estimated to invade the intestinal villi (Bou Ghanem et al., 2012; Melton-Witt et al., 2012). 

Once invaded, however, extensive intracellular replication and cell-to-cell spread take place 

within enterocytes (Melton-Witt et al., 2012).  

Three different mechanisms by which Lm breaches the intestinal barrier have been identified 

(Figure 5). Receptor-specific entry occurs through the interaction between the Lm surface 

protein InlA and E-cad, the major transmembrane protein required for adherens junction 

formation in epithelial cells (Lecuit et al., 2001; Nikitas et al., 2011). As adherens junctions are 

situated beneath tight junctions that maintain taut cell-to-cell contact between enterocytes, 

forming a hermetic barrier, E-cad is not luminally accessible (Nikitas et al., 2011). E-cad is 

however accessible on goblet cells (specialized mucus secreting cells), around extruding 

enterocytes at the tip and lateral sides of villi, in villus epithelial folds, and in zones of senescent 

epithelial cell extrusion (Gessain et al., 2015; Nikitas et al., 2011; Pentecost et al., 2006). 

Through the interaction of InlA with E-cad, Lm hijacks the Rab11-mediated E-cad recycling 

machinery, and is rapidly transcytosed within its internalization vacuole across the intestinal 

epithelium by dynamin-mediated endocytosis and released at the basolateral pole into the 

lamina propria (Kim et al., 2021; Nikitas et al., 2011).  

Lm can also initiate the cellular redistribution of tight junction proteins claudin-1 and occludin, 

and E-cad, to allow bacterial paracellular translocation (Drolia et al., 2018). The Listeria 

adhesion protein (LAP) increases Lm adhesion to enterocytes through its interaction with the 

cellular surface receptor heat shock protein 60 (Hsp60) (Jagadeesan et al., 2010), which 

activates canonical nuclear factor κB (NF-κB) signalling and pro-inflammatory cytokine 

production, inducing myosin light-chain kinase (MLCK)-mediated opening of the epithelial 
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barrier (Drolia et al., 2018). This dysregulation of cellular junctions also increases the 

accessibility of E-cad, further facilitating Lm invasion.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 | Schematic representation of the different mechanisms employed by Lm to cross the 

intestinal epithelial barrier.  
(A) LAP-mediated Lm translocation involves the interaction of LAP with epithelial Hsp60 for 
redistribution of tight junction proteins (claudin-1 and occludin) and E-cad and subsequent epithelial 
barrier opening. (B) InlA/E-cad-mediated Lm transcytosis, which occurs during epithelial cell extrusion 
or goblet cell mucus exocytosis, providing InlA access to E-cad at the adherens junction. (C) M cell 
mediated Lm translocation occurs in Peyer’s patches. (Adapted from Drolia and Bhunia, 2019) 

Finally, Lm can cross the intestinal barrier in a non-specific manner, through the phagocytic 

activity of M cells to reach the underlying Peyer’s patch (Bou Ghanem et al., 2012; Chiba et 

al., 2011; Jensen et al., 1998; Marco et al., 1997). Lm invasion of Peyer’s patches has been 

shown to trigger the global intestinal host response to infection, which includes the 

modification of the intestinal epithelium by increasing enterocyte proliferation while 

decreasing the maturation of goblet cells and thus reducing E-cad accessibility (Disson et al., 

2018).  

Once in the lamina propria or the Peyer’s patch, Lm is phagocytosed by dendritic cells (DCs) 

or macrophages and trafficked via the lymphatic system to mesenteric lymph nodes (MLNs) 

and eventually the spleen, or via the hepatic portal vein to the liver (Melton-Witt et al., 2012) 

and gall bladder (Hardy et al., 2004; 2006). Important bacterial loads are recovered from all 

these organs at 2–3 days post-infection (p.i.) in mice infected via the IG route (Bergmann et 

al., 2013; Bierne et al., 2002; Bou Ghanem et al., 2012; Chiba et al., 2011; Disson et al., 2008; 

Lecuit et al., 2001; Zhang et al., 2017b). From both the spleen and the liver, bacteria can 
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disseminate to the blood, either intracellularly in leukocytes or extracellularly (Bakardjiev et 

al., 2006; Drevets, 1999; Melton-Witt et al., 2012; Zhang et al., 2017b). Once in the blood, Lm 

can disseminate to the placenta and foetus, or the brain where entry occurs through the blood-

brain or the blood-cerebrospinal fluid barrier, either directly or within an infected phagocyte 

(Banović et al., 2020, Drevets et al., 2008). Invasion of the brain can also occur independently 

of bacteraemia through retrograde axonal transport, either through the cranial nerves or the 

olfactory epithelium (Oevermann et al., 2010). The use of Lm clones differentially marked by 

their susceptibility to antibiotics (Bakardjiev et al., 2006) or genetically tagged (Melton-Witt 

et al., 2012; Zhang et al., 2017b) has allowed the identification of bottlenecks in the process of 

in vivo dissemination: the liver and spleen are seeded by a large number of clones (Bakardjiev 

et al., 2006; Melton-Witt et al., 2012; Zhang et al., 2017b), but few bacteria reach the brain 

(Zhang et al., 2017b) or the placenta and even fewer the foetus (Bakardjiev et al., 2006). The 

gall bladder, in which Lm replication is extracellular, was found to contain only one or very 

few clones that matched those isolated from faecal samples, suggesting that Lm shed in the 

faeces originate from the gall bladder (Zhang et al., 2017b) (Figure 6).  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 | Overview of the Lm in vivo infection process and population dynamics following 

intragastric inoculation of mice.  
In vivo dissemination was mapped by orally infecting BALB/c mice with an inoculum of 3×109 Lm 
organisms from a library containing 200 barcoded clones and enumerating both total bacterial load and 
the frequency of each genetic barcode in different organs at 3 days p.i. to estimate the size of the 
founding population (Nb). Lm replicate in the GI tract and disseminate to the liver and spleen via MLNs 
or directly to the liver via the portal vein. From the liver and spleen only a small percentage of clones 
are found in the systemic circulation and fewer still go on to infect the brain or the placenta and foetus. 
Very few bacteria establish infection in the gall bladder, but the founder(s) ultimately replicate to very 
high numbers and become the principal source of Lm excreted in the faeces. Coloured rods represent 
single Lm clones; mean Nb values are shown in brackets. (Adapted from Zhang et al., 2017) 
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  6.2.  The intracellular infectious cycle of Lm in mammalian cells 

A hallmark of Lm virulence is the bacterium’s ability to invade and proliferate within almost 

all human cell types including intestinal epithelial cells, hepatocytes, fibroblasts, and 

endothelial cells (Cossart and Lebreton, 2014; Kayal et al., 1999) as well as phagocytic 

macrophages and DCs (Aoshi et al., 2009; Arnold-Schrauf et al., 2014). Lm invades non-

phagocytic cells by specific receptor induced endocytosis through a zipper mechanism, as 

opposed to the bacterial secretion system-mediated trigger mechanism exploited by Salmonella 

enterica or Shigella flexneri that results in dramatic membrane ruffling and cytoskeletal 

rearrangements (Cossart and Sansonetti, 2004). Lm escapes from the internalisation vacuole 

through the concerted activity of several secreted virulence factors that disrupt the vacuole 

membrane (detailed in the following section). Another hallmark of Lm virulence is the 

bacterium’s ability to spread from cell-to-cell through the exploitation of the host cell 

microfilament protein actin (Tilney and Portnoy, 1989), an ability that Lm shares with only 

three other unrelated bacterial genera (Weddle and Agaisse, 2018). The expression of actin 

assembly-inducing protein (ActA) on one bacterial pole stimulates the polymerisation of actin 

into “comet tails” that propel Lm into neighbouring cells in membrane protrusions (Tilney and 

Portnoy, 1989). Membrane protrusions are resolved into double membrane secondary vacuoles 

that are disrupted, in turn, and the infectious cycle reinitiated (Pizarro-Cerda et al., 2012) 

(Figure 7).  

 
 
 
 
 
 
 
 
 
 

 
Figure 7 | Lm intracellular infection cycle in epithelial cells. 
Lm induces its own internalisation into non-phagocytic epithelial cells through the specific interaction 
between two surface proteins (InlA and InlB) and their host cell receptors (E-cad and c-Met, 
respectively). Lm then rapidly escapes the internalisation vacuole (through the concerted action of LLO 
and phospholipases PlcA and PlcB) and replicates in the cytosol. Surface expression of ActA confers 
intracellular motility to Lm through host actin polymerisation and allows the bacteria to propel itself 
into neighbouring cells. With support from Mpl, membrane protrusions resolve into secondary vacuoles 
that are disrupted in turn, allowing a new infection cycle to start. (Adapted from Pizarro-Cerda et al., 
2012) 
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  6.3.  Major virulence factors involved in the Lm infection process  

The development of cell culture models and advances in molecular biology techniques in the 

1980s allowed the identification of an important number of virulence factors necessary for the 

intracellular life of Lm (Gaillard et al., 1991; Portnoy, 1992). Comparative genomics between 

Lm and the non-pathogenic L. innocua at the turn of the century (Glaser et al., 2001) led to the 

identification and subsequent characterisation of additional proteins involved in Lm virulence 

(Dussurget et al., 2002; Faralla et al., 2016; Ghosh et al., 2018; Lebreton et al., 2011; Personnic 

et al., 2010), for review (Camejo et al., 2011; Pizarro-Cerda and Cossart, 2018; Radoshevich 

and Cossart, 2017). Of the ever-growing arsenal of Lm virulence factors that have been 

identified, only the major virulence factors essential to Lm intracellular life (Figure 7) are 

presented in this section. These genes are tightly regulated by positive regulatory factor A 

(PrfA), the master transcriptional regulator of Lm virulence genes (Cossart and Lecuit, 1998) 

and make up the core PrfA regulon (las Heras et al., 2011) (Figure 8).   

 

 

 

 

 

 

Figure 8 | The core Lm PrfA regulon.  
The core PrfA regulon comprises LIPI-1 encoding PrfA, LLO (hly gene), ActA, PlcA, PlcB, Mpl and 
OrfX, plus three additional chromosomal loci: the inlAB operon and the inlC and hpt monocistrons. 
PrfA boxes are indicated by black squares, known promoters are indicated by ‘P’. (Adapted from las 
Heras et al., 2011) 

   6.3.1.  The “internalisation” locus inlAB  

The inlAB locus was discovered using transposon mutagenesis to screen for mutants unable to 

enter Caco-2 cells (a human enterocyte-like cell line derived from a colon carcinoma), and the 

region into which the transposon had inserted in non-invasive mutants was termed inl, for 

internalisation (Gaillard et al., 1991). The two gene products from this prfA-regulated operon, 

InlA and InlB, encoded by the inlA and inlB genes respectively (Figure 8), are the two major 



   33 

Lm virulence factors involved in cell invasion through host-cell receptor specific interactions. 

Both are surface proteins characterised by the presence of a N-terminal domain containing a 

peptide signal and adjacent leucine-rich repeats (LRRs) coupled to a region that has an Ig-like 

fold (Bierne et al., 2007; Schubert et al., 2001). Both InlA and InlB are sufficient to promote 

entry into non-phagocytic cells in an LRR domain-dependent manner (Braun et al., 1999; 1998; 

Lecuit et al., 1997). At least 35 distinct genes encoding structurally similar LRR domain 

containing proteins, all but four of which are surface proteins, have since been identified in the 

Lm pan genome and make up the large “internalin” family of Lm proteins (Bierne et al., 2007; 

Popowska et al., 2017). InlA is involved in intestinal barrier crossing (as described in section 

A.6.1), InlB in spleen and liver colonisation (Khelef et al., 2006), and both InlA and InlB are 

involved in an interdependent manner in the crossing of the placental barrier (Charlier et al., 

2020; Disson et al., 2008; Gessain et al., 2015). 

- Internalin A (InlA) 

InlA is an 80 kDa Lm surface protein containing 15 LRR and is the prototypical member of the 

internalin family (Bierne et al., 2007; Gaillard et al., 1991). The InlA receptor is E-cad, a 

surface glycoprotein that forms adherens junctions through homophilic adhesion between 

neighbouring epithelial cells (Mengaud et al., 1996). Adherens junctions (and therefore E-cad), 

along with tight junctions, are essential at the intestinal, blood-brain, and placental barriers, 

where polarized epithelial cells are securely joined to form an impermeable barrier (Doran et 

al., 2013). The InlA/E-cad interaction mediates cell invasion by activating complex signalling 

pathways that lead to cortical actin polymerisation, plasma membrane reorganization, and the 

recruitment of clathrin endocytosis machinery (Pizarro-Cerda et al., 2012).  

The InlA/E-cad interaction is species specific: human, guinea pig, rabbit, and gerbil E-cad 

interact with InlA, but a single amino acid substitution in mouse or rat E-cad precludes InlA 

recognition (Lecuit et al., 1999). The role of InlA in in vivo virulence has therefore been studied 

through the use of human E-cad (Lecuit et al., 2001, Nikitas et al., 2011) or humanised E-cad 

(Disson et al., 2008) expressing mice, in gerbils (Disson et al., 2008), guinea pigs (Lecuit et 

al., 2001), or using a Lm strain modified to express a “murinised” InlA that interacts with 

murine E-cad (Bergmann et al., 2013; Wollert et al., 2007). This modification of InlA has, 

however, been found to artifactually broaden the InlA receptor repertoire (Tsai et al., 2013). 

Epidemiological data also provides evidence that InlA plays a key role in human listeriosis as 

96% of clinical strains (100% in the case of maternal–neonatal listeriosis) express full-length 
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inlA compared to 65% of strains recovered from food products (Charlier et al., 2020; Jacquet 

et al., 2004).  

- Internalin B (InlB)  

The second major Lm internalin to be identified (Dramsi et al., 1995; Gaillard et al., 1991), 

InlB has been found to mediate entry into a number of different cell types in vitro, including 

epithelial cells of various origins, notably murine and human hepatocyte derived cell lines and 

primary human hepatocytes (Braun et al., 1998; Brockstedt et al., 2004; Dramsi et al., 1995; 

Gessain et al., 2015; Pentecost et al., 2010; Quereda et al., 2019), as well as endothelial cells 

(Greiffenberg et al., 1998; Parida et al., 1998). The necessity of high InlB expression levels to 

mediate entry, and thus the physiological importance of InlB, has been questioned, however, 

as most studies have used the Lm EGD strain which displays a PrfA mutation leading to 

constitutive production of InlB (Bécavin et al., 2014; Phelps et al., 2018; Quereda et al., 2019). 

Virulence of InlB-deficient strains has been observed to be attenuated in vivo in a non-

humanised E-cad murine model using both the EGD strain (Khelef et al., 2006) and an 

epidemic strain (Quereda et al., 2019). InlB cell invasion is mediated through the interaction 

of the hepatocyte growth factor (HGF) receptor (c-Met or HGFR) with InlB’s seven N-terminal 

LRRs (Shen et al., 2000). c-Met is a tyrosine kinase receptor ubiquitously expressed at the 

surface of human cells, and its interaction with InlB, which mimics the interaction of c-Met 

with its natural ligand HGF, induces c-Met autophosphorylation and ubiquitination, and the 

subsequent recruitment of the clathrin endocytosis machinery and phosphoinositide 3-kinase 

(PI3K)-, serine/threonine kinase mammalian target of rapamycin (mTOR)-, and protein kinase 

C-α-mediated actin cytoskeleton rearrangements (Pizarro-Cerda and Cossart, 2018). As is the 

case of the InlA/E-cad interaction, the InlB/c-Met interaction is species specific: InlB interacts 

with human, gerbil and mouse c-Met but does not recognise the guinea pig or rabbit homologue 

(Disson and Lecuit, 2013; Khelef et al., 2006). Guinea pigs and rabbits are naturally susceptible 

to Lm infection, however (Hoelzer et al., 2012; Irvin et al., 2008). Common histopathological 

lesions include necrosis of the liver, suggesting that infection of this organ by Lm can occur in 

an InlB-independent manner.  

   6.3.2.  Internalin C (InlC) 

InlC is one of the four secreted members of the Lm internalin family (Bierne et al., 2007) and 

contributes to Lm virulence in vivo (Domann et al., 1997; Engelbrecht et al., 1996; Gouin et 

al., 2010; Leung et al., 2013). InlC is highly expressed and secreted by intracellular Lm and has 
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diverse functions (Gouin et al., 2019). InlC promotes bacterial cell-to-cell spread through its 

interaction with Tuba, a large scaffolding protein that is involved in maintaining epithelial cell 

apical junction tension. By inhibiting the interaction between Tuba and its binding partner 

neural Wiskott-Aldrich syndrome protein (N-WASP), apical cell junctions are slackened, 

thereby enhancing the ability of motile bacteria to deform the plasma membrane into 

protrusions (Leung et al., 2013; Rajabian et al., 2009). This effect of InlC was also found to 

impair chromosome alignment in mitotic cells thus delaying cell division (Costa et al., 2020). 

The role of InlC in the modulation of the host transcriptional response to Lm infection will be 

addressed in section C.4.3.  

   6.3.3.  Virulence factors encoded by Listeria pathogenicity island-1 

The main Lm virulence gene cluster – Listeria pathogenicity island-1 (LIPI-1) – encodes seven 

proteins that are essential to or contribute to Lm pathogenicity. These include listeriolysin O 

(LLO), two phospholipases and a metalloprotease (encoded by hly, plcA, plcB, and mpl, 

respectively) which contribute to vacuolar escape, an actin polymerising protein (ActA), a 

nucleomodulin (OrfX), and the global regulator of virulence gene transcription (PrfA). 

- Listeriolysin O (LLO) 

Listeriolysin O (LLO), encoded by the hly gene, was the first Lm virulence factor identified 

(Gaillard et al., 1986), leading to the discovery of the hly locus, now known as LIPI-1 

(Dussurget, 2008). LLO is essential for Lm pathogenicity, mediating the escape of the 

bacterium from primary and secondary internalisation vacuoles and allowing its replication in 

the cytosol (Dussurget, 2008): LLO-deficient Lm are restricted to the internalisation vacuole 

(Gaillard et al., 1986) and are avirulent in vivo (Gaillard et al., 1986; Kathariou et al., 1987; 

Portnoy et al., 1988). LLO is a member of the cholesterol‐dependent cytolysin (CDC) family 

of pore‐forming toxins (PFTs), which contains more than 50 PFTs produced primarily by 

Gram-positive extracellular pathogens (Nguyen et al., 2019). CDCs require cholesterol for their 

pore-forming activity and are secreted as monomers that bind to cell membranes and 

oligomerise to form large transmembrane pores that can exceed 40 nm in diameter (Ruan et 

al., 2016).  

LLO has structural and regulatory features unique to other CDCs that allow it to function 

intracellularly without causing host plasma membrane permeabilisation and consequent cell 

death. These distinctive features of LLO are essential for Lm pathogenesis: replacement of LLO 
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with other CDCs results in strains that are extremely cytotoxic and 10,000‐fold less virulent in 

vivo (Nguyen et al., 2019; Schnupf and Portnoy, 2007). LLO’s pore-forming activity is pH-

dependent – its activity is optimal at acidic pH (≤5.6). At neutral pH at temperatures >30°C, 

the protein undergoes a rapid and irreversible denaturation of its structure (Ruan et al., 2016; 

Schuerch et al., 2005). The lack of cytotoxicity associated with intracellular LLO owes 

primarily to a unique 26‐amino acid sequence near its N‐terminus, however. This PEST‐like 

sequence (i.e., rich in proline (P), glutamate (E), serine (S), and threonine (T)) limits LLO’s 

activity in the cytosol by physically interacting with the host endocytic machinery to mediate 

the rapid removal of LLO from the plasma membrane by endocytosis (Chen et al., 2018).  

- Phospholipases PlcA and PlcB 

Two bacterial phospholipases C (PLC), a phosphatidylinositol-specific phospholipase C (PlcA) 

(Leimeister-Wächter et al., 1991; Mengaud et al., 1991) and a broad-range phospholipase C 

(PlcB) (Geoffroy et al., 1991; Vázquez-Boland et al., 1992), encoded by plcA and plcB 

respectively, act in synergy with LLO to mediate Lm escape from primary and secondary 

vacuoles. PlcA is secreted in an active state, whereas PlcB is secreted as an inactive proenzyme 

whose activation is mediated by a Lm metalloprotease (Mpl) (Marquis et al., 1997; Poyart et 

al., 1993). The roles of the two PLCs are overlapping: the single deletion of either plcA or plcB 

had little effect on cell to cell spread in vitro or on virulence in vivo but the double deletion 

mutant was severely diminished in its ability to escape from the primary vacuole and was 250- 

to 500-fold less virulent in vivo (Smith et al., 1995).  

- Metalloprotease (Mpl) 

The zinc metalloprotease encoded by the gene mpl (Domann et al., 1991) is, like PC-PLC, 

secreted as a pro-enzyme, with activation through self-cleavage initiated by low vacuolar pH 

(Forster and Marquis, 2012). Mpl is required for the maturation of PlcB (Marquis et al., 1997; 

Poyart et al., 1993) and the resolution of membrane protrusions into secondary vacuoles 

through an undefined mechanism (Alvarez and Agaisse, 2016).  

- Actin-assembly-inducing protein (ActA) 

ActA is the Lm virulence factor necessary and sufficient to trigger actin polymerisation and the 

formation of comet tails, conferring motility to Lm in the host cell cytosol (Domann et al., 

1992; Kocks et al., 1992). Intracellular motility contributes significantly to Lm virulence as a 

means to evade autophagy and to disseminate within tissues. An in-frame actA deletion mutant  
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is around three orders of magnitude less virulent in vivo (Brundage et al., 1993). ActA recruits 

the actin-related proteins-2/3 (Arp2/3) complex through structural, functional and regulatory 

mimicry of the actin nucleation-promoting host cell proteins of the WASP/WASP-family 

verprolin-homologous protein (WAVE) family (Boujemaa-Paterski et al., 2001; Chong et al., 

2009; Welch et al., 1997; 1998). In addition to conferring intracellular motility, this surface 

protein was shown to be involved in autophagy evasion independently of its ability to mediate 

bacterial motility (Yoshikawa et al., 2009), in biofilm formation (Travier et al., 2013), as well 

as entry into epithelial cells and vacuolar escape (Camejo et al., 2011).  

  6.4.  Beyond the paradigm: the intravacuolar lifestyle of Lm 

The intracellular lifecycle of Lm, as depicted above, has been extensively studied, and as such, 

Lm is considered a prototypical “cytosolic bacterium” as opposed to a “vacuolar bacterium”, 

such as Bartonella, Brucella, Chlamydia, Coxiella, Legionella, Mycobacteria and Salmonella 

spp., that construct specific niches in vacuoles (Cossart and Helenius, 2014) (Figure 9). Recent 

studies, however, have highlighted the tenuous nature of this classification by providing 

evidence of intravacuolar stages in the life cycle of Lm in both phagocytic and epithelial cells 

(Bierne et al., 2018).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 | Examples of various vacuolar lifestyles adopted by intracellular bacteria.  
In epithelial cells, the obligate intracellular bacterium Chlamydia trachomatis resides in a vacuole 
closely associated with the Golgi complex. Salmonella enterica enters via a T3SS-mediated trigger 
mechanism and forms a replicative vacuole that acquires endosome and lysosome markers. The 
Brucella abortus endocytic vacuole matures into a replicative ER-derived vacuolar niche. Coxiella 

burnetii has evolved to survive and replicate in a lysosome-derived vacuole. Bartonella henselae can 
invade endothelial cells as a single bacterium or as a group, leading to the formation of an invasome 
which then constitutes an intracellular niche. In macrophages, Legionella pneumophila and 
Mycobacterium tuberculosis survive and replicate intracellularly in vacuolar compartments. (Source: 
Cossart and Helenius, 2014) 
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   6.4.1. Vacuolar compartments derived from primary vacuoles: 

SLAPs and eSLAPs 

- Spacious Listeria-containing phagosomes (SLAPs) 

The first observation of Lm in vacuolar compartments was in mononuclear cells of liver 

granulomas in chronically infected severe combined immunodeficient (SCID) mice (Bhardwaj 

et al., 1998). These mice, deficient in lymphocyte immunity, are unable to clear Lm from the 

liver and spleen, but the majority do not succumb to the infection. At 21 days p.i., Lm were 

observed by electron microscopy to be located in membrane-bound vacuolar structures within 

liver granuloma macrophages, with the majority appearing intact (Bhardwaj et al., 1998). These 

vacuoles were later characterised in two subsequent in vitro studies and named spacious 

Listeria-containing phagosomes (SLAPs) (Birmingham et al., 2008; Lam et al., 2013). The 

primary internalisation vacuole (the phagosome) of the macrophage is thought to give rise to 

the SLAP through the LC3-associated phagocytosis pathway (Lam et al., 2013). Although the 

SLAP is positive for lysosomal-associated membrane protein 1 (LAMP1), it is negative for the 

lysosomal enzyme cathespin D and pH neutral indicating that the compartment does not mature 

into a phagolysosome (Birmingham et al., 2008). Acidification is thought to be prevented by 

LLO-dependent formation of small pores in the SLAP membrane that uncouples the pH 

gradient (Birmingham et al., 2008). They are thus non-degradative and permissive to Lm 

replication, albeit at a reduced rate (approximately 10-fold) compared to cytosolic replication 

(Birmingham et al., 2008). 

- Epithelial SLAPs (eSLAPs) 

As speculated by Brumell and colleagues, LC3-associated phagocytosis is capable of targeting 

Lm in other cell types (Birmingham et al., 2008; Lam et al., 2013). Peron-Cane et al. recently 

highlighted a subpopulation of Lm-associated internalisation vacuoles formed in LoVo 

intestinal epithelial cells, with molecular characteristics highly reminiscent of SLAPs: their 

single membrane is LC3- and LAMP1-positive, they are pH neutral, derive from primary 

internalisation vacuoles, and their formation requires the secretion of LLO (Peron-Cane et al., 

2020). These compartments, named epithelial SLAPs (eSLAPs), however, allow efficient 

replication of Lm and are transient (several hours) (Peron-Cane et al., 2020). This is in contrast 

to SLAPs in which Lm reside as slow-growing forms over days or weeks (Bhardwaj et al., 

1998; Birmingham et al., 2008) and which could serve as a persistent intravacuolar niche for 

Lm in macrophages (Bierne et al., 2018). 
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   6.4.2. Listeria-containing vacuoles (LisCVs): a late-forming 

compartment for Lm persistence in epithelial cells 

LisCVs are another type of single-membrane LAMP1-positive vacuoles that were identified in 

human hepatocytes and trophoblast cells as intracellular compartments in which bacteria enter 

a state of persistence (Kortebi et al., 2017). LisCVs are notably different from SLAPs and 

eSLAPs: they do not derive from primary vacuoles, are acidic, LC3-negative, and lysosomal 

marker cathepsin D-positive, suggesting fusion with lysosomes (Kortebi et al., 2017). They are 

partially degradative, but the majority of bacteria remain intact and enter a slow/non-replicative 

or a viable but non-culturable (VBNC) state within this vacuolar niche (Kortebi et al., 2017). 

Importantly, contrary to SLAPs and eSLAPs that form within the first hours of the intracellular 

infectious process (Birmingham et al., 2008; Peron-Cane et al., 2020), LisCVs are formed late 

(i.e., after 2–3 days), and essentially localise in perinuclear regions (Kortebi et al., 2017). The 

formation of LisCVs is concomitant to the loss of the actin-nucleating protein ActA and the 

arrest of actin polymerisation at the bacterial surface (Figure 10). At 72 h p.i. 60–80% of 

intracellular bacteria are observed in LisCVs. Lm thus switches its lifestyle from an active 

motile phase, to a non-motile quiescent phase in a subset of epithelial cells. 

 
Figure 10 | Lm switches from actin-based motility to a vacuolar phase in human hepatocytes and 

trophoblast cells.  
(A) Micrographs of placental JEG3 cells infected with Lm 10403S for different times and stained for 
Lm (in green) and F-actin (in red) (Bars: 100 µm). Below, higher magnifications of overlay images, at 
6 h or 72 h, highlight the phenotypic switch between motile bacteria associated with filamentous actin 
(at 6 h), to clusters of actin-negative bacteria (at 72 h), as indicated by arrows (Bars: 10 µm). (B) At 
72 h p.i., bacteria (in green) are included in LisCVs (indicated by triangles) marked by LAMP1 (in red), 
at the periphery of the nucleus (DNA, in blue) (Bars: 2 µm). (Adapted from Kortebi et al., 2017) 

A            B 
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By opposition to primary and secondary vacuoles, involved in entry and intercellular 

dissemination, respectively, LisCVs are considered a "tertiary vacuole", corresponding to this 

new intracellular stage in the Lm lifecycle which occurs following cell-to-cell dissemination 

(Figure 11). In vitro data also suggest that Lm in LisCVs have the ability to return to an active 

phase of proliferation and dissemination (Kortebi et al., 2017). LisCVs are thought to be formed 

through a xenophagic process mediated by non-canonical autophagy pathways, as they are 

negative for the autophagy marker LC3. Akin to lysosomes, LisCVs remain intact in mitotic 

cells and are partitioned in daughter cells (Kortebi et al., 2017), evoking the possibility that 

non-replicating Lm could propagate during tissue regeneration following acute infection 

(Bierne et al., 2018).  

 

Figure 11 | The vacuolar stages in the intracellular lifestyle of Lm. 
(A) Model of SLAP formation in murine macrophages. Bacteria are phagocytosed into a primary 
vacuole. In a subpopulation of phagosomes, in which bacteria secrete low amounts of LLO, 
diacylglycerol (DAG) accumulates to stimulate the activation of the CYBB/NOX2 NADPH oxidase 
and the production of reactive oxygen species (ROS). ROS recruits LC3 to the membrane, promoting 
the formation of non-acidic and non-degradative SLAPs, in which Lm replication occurs, but is reduced 
more than 10-fold (represented by black bacteria). (B) Model of LisCV formation in human hepatocytes 
and trophoblast cells. Following the active stage of bacterial motility and cell-to-cell spread, cytosolic 
bacteria arrest ActA expression and are captured through a xenophagy-like process that results in the 
formation of lysosome-like LisCVs. In these acidic compartments, while some bacteria are eliminated 
(white bacteria marked with an asterisk), a subpopulation resists degradation and enters a slow/non-
replicative state (black bacteria). These surviving bacteria can either enter a VBNC state (punctuated 
bacteria) or can initiate a novel infectious cycle. (C) TEM images of Lm in SLAPs (top), or LisCVs 
(bottom), that enclose a mixed population of intact (“L.m”) and damaged bacteria (indicated with a “*”) 
and are localised close to the nucleus. Mito., mitochondria; Nuc., nucleus. (Adapted from Bierne et al., 
2018) 
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Based on this work (Kortebi et al., 2017), and that of Brumell and colleagues (Birmingham et 

al., 2008; Lam et al., 2013), Bierne and colleagues hypothesized that residing as slow- to non-

replicating forms in SLAPs (in macrophages) or LisCVs (in epithelial cells), could be a strategy 

employed by Lm to evade the immune system in the long-term and reside in the host in latent 

forms (Bierne et al., 2018). This property may play an important role in the asymptomatic 

carriage and transmission of this pathogen (Bierne et al., 2018). Indeed, these observations 

raise the question of the role of intravacuolar Lm in asymptomatic carriage, during the silent 

incubation phase of invasive listeriosis, or during asymptomatic listeriosis in healthy carriers, 

particularly animals. In these asymptomatic reservoirs, reactivation to replicative forms of Lm 

could allow for the release of Lm in the environment via the faeces, or lead to recurrent 

listeriosis (Bierne et al., 2018).  
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B. The liver and the hepatic phase of listeriosis  

Decades of research using rodents to model human listeriosis have resulted in a well described 

infection scenario. After crossing the intestinal barrier and reaching systemic circulation, Lm 

is captured by phagocytic cells primarily in the liver in which potent innate immune responses 

take place. At the same time, Lm enters and actively replicates within hepatocytes, the 

parenchymal liver cells, until innate and adaptive immune cells mediate the total clearance of 

Lm from the organism. The liver is the major interface between the digestive system and the 

blood and performs a multitude of diverse functions crucial for maintaining physiological 

metabolic and immune homeostasis, including pivotal roles in both adaptive and innate 

immunity. 

 1.  Structure and cellular composition of the liver  

  1.1.  Structure of the liver 

The liver is the human body’s largest internal organ, with an average mass of 1.5 kg in adults, 

representing approximately 2% of body weight (Bogdanos et al., 2013). Located in the right 

upper quadrant of the abdomen just below the diaphragm, the human liver has four lobes: a 

major left and right lobe, and two smaller inferior lobes (Mescher, 2013). Its anatomical 

structure and unique vasculature allow maximal contact between circulating blood and 

hepatocytes, the main cells of the liver, and provide continuous opportunity for the exchange 

of metabolic and immunological information (Ben-Moshe and Itzkovitz, 2019). The liver has 

a dual blood supply; the portal vein supplies the majority (~80%) of oxygen-poor, nutrient- and 

antigen-rich blood from the GI tract. The remaining 20% of afferent blood is oxygenated blood 

from the systemic circulation entering via the hepatic artery (Mescher, 2013). The liver filters 

1.5 L (~30% of total blood volume) each minute - the total volume of blood in the human body 

thus circulates through the liver approximately 360 times each day (Bogdanos et al., 2013; 

Nemeth et al., 2009). The liver consists of hundreds of thousands of repeating anatomical units 

termed liver lobules (Figure 12A), hexagonal columns approximately 1 mm in diameter 

(Teutsch, 2005). Rows of hepatocytes branch out from the central vein to the exterior portal 

nodes, where a branch of the bile duct, the hepatic portal vein and the hepatic artery form the 

portal triad, along with lymphatic vessels and nerve fibres (Figures 12B and 12C). Mixed 

venous and arterial blood enters the lobules from the portal nodes and flows radially inward 

through sinusoidal blood vessels towards the draining central vein and eventually to the inferior 
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vena cava. Bile secreted from hepatocytes flows outwards, in the opposite direction to blood 

flow, from the central to the portal zone through bile canaliculi that drain into the bile duct 

(Ben-Moshe and Itzkovitz, 2019; Mescher, 2013).  

 

Figure 12 | Structure of the human liver.  
(a) Hepatic lobules are the structural and functional unit of the liver. Each lobule is composed of a 
central vein, to which rows of hepatocytes and hepatic sinusoids converge. (b) The portal triad is 
composed of blood vessels and a branch of the bile duct: venous and arterial blood enter the hepatic 
lobule via branches of the portal vein and hepatic artery and mix in the hepatocyte-lined sinusoids 
through which blood flows, draining into the central vein. Bile is secreted by hepatocytes into bile 
canaliculi that drain into the bile ductule. (c) Micrograph of a hepatic lobule showing the central vein 
(C), plates of hepatocytes (H), and a portal node containing a portal venule (PV), hepatic arteriole (HA), 

a bile ductule (B), and lymphatic vessel (L) (220´ magnification). (Source: Mescher, 2013) 

  1.2.  Cellular composition of the liver 

Hepatocytes are the primary parenchymal cells of the liver and among the most functionally 

diverse cells of the human body (Mescher, 2013). Non-parenchymal liver cells include liver 

sinusoidal endothelial cells (LSECs), cholangiocytes, Kupffer cells (KCs), hepatic stellate cells 

(HSCs), dendritic cells (DCs), and intrahepatic lymphocytes (IHLs) (Chen and Tian, 2021). 

Both hepatocytes and non-parenchymal hepatic cells interact to create an immunological 

micro-milieu that maintains tolerance to food-derived antigens on the one hand but that is also 
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capable of activating potent immune responses to invading pathogens on the other (Horst et al., 

2016) (Figure 13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 | Schematic representation of the cellular composition of a liver sinusoid.  
Hepatocytes (H) form the bulk of the hepatic parenchyma and are separated from the sinusoidal blood 
flow by fenestrated liver sinusoidal endothelial cells (LSECs) that allow hepatocytes to interact directly 
with Kupffer cells (KCs), intrahepatic lymphocytes (IHLs), and dendritic cells (DCs) within the 
sinusoidal lumen. Separating LSECs from hepatocytes is the space of Disse, in which hepatic stellate 
cells (HSCs) reside. (Adapted from Bogdanos et al., 2013; Horst et al., 2016) 

   1.2.1.  Hepatocytes  

Hepatocytes are the primary parenchymal cells of the liver, constituting 80% of liver mass and 

60–80% of its cellular composition (Gao, 2016). As such, they are responsible for performing 

most of the liver’s diverse digestive, metabolic, endocrine, and exocrine functions (detailed 

below), and thus have great metabolic, protein production, and secretory capacity. Hepatocytes 

are large cuboidal or polyhedral epithelial cells, rich in mitochondria and abundant in rough 

and smooth endoplasmic reticulum (ER) where, respectively, plasma protein synthesis and 

enzymatic biotransformation takes place (Mescher, 2013). Like all epithelial cells, hepatocytes 

possess apical (bile canalicular) and basolateral (sinusoidal) plasma membrane domains 

composed of distinct surface proteins, channels, and receptors (Schulze et al., 2019). 

Mammalian hepatocytes are frequently binucleated and/or polyploid (up to 8N), the degree of 

which could play a role in the functional heterogenicity of hepatocytes, as does liver zonation, 

i.e., the position of the hepatocyte relative to the portal zone and thus the local blood oxygen, 

metabolite, and hormone concentration (Ben-Moshe and Itzkovitz, 2019; Donne et al., 2020). 

The presence of an extensive ER and Golgi network visible by TEM (Figure 14A), testifies to 

the role of the hepatocyte as a protein synthesis and secretion factory. It is within the ER and 

Golgi lumina that chaperone-assisted folding and (in the case of most secretory proteins) 

IHLH HSC DC
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glycosylation occur. Proteins are then packaged into Golgi-derived secretory vesicles for 

transport to and exocytosis at the basolateral membrane. The endocytic capacity of the 

hepatocyte is also evident by TEM, with clathrin-coated pits, although small (50 nm), 

occupying 2% of total hepatocyte surface (Schulze et al., 2019) (Figure 14B). Hepatocytes 

possess many irregular microvilli on their apical sides that are in direct contact with blood 

plasma and lymph in the narrow perisinusoidal space known as the space of Disse that separates 

hepatocytes from the hepatic sinusoids (Mescher, 2013). Hepatocyte microvilli can even extend 

through the fenestrated cells that compose the sinusoid walls to interact physically with 

immune cells located within the sinusoidal lumen and bathe directly in sinusoidal blood 

(Bogdanos et al., 2013; Li and Zeng, 2020; Warren et al., 2006) (Figure 14C).  

 
Figure 14 | Electron microscopy images of hepatocytes and LSECs. 
(A) TEM image showing the crowded cytoplasm of the hepatocyte: a hepatocyte nucleus (H) in the 
lower right corner, is surrounded by smooth ER (SER), rough ER (RER), many mitochondria (M), 
Golgi complexes (G), and small electron-dense glycogen granules. Between the hepatocytes and the 
fenestrated LSECs (E) of the sinusoid (S) is the very small perisinusoidal space or space of Disse (PS) 
into which hepatocyte microvilli protrude. A bile canaliculus (BC), sealed by tight junctions (TJ), is 
formed by two adjacent hepatocytes. (B) TEM showing the basolateral hepatocyte membrane with its 
numerous microvilli that occupies much of the perisinusoidal space (Sin) delimited by LSECs (E). 
Arrowheads denote the abundant coated endocytic pits illustrating the endocytic capacity of 
hepatocytes. (C) TEM image of a hepatocyte microvillus which can be seen protruding from an 
endothelial fenestra into the sinusoidal lumen. (D) Scanning electron micrograph showing endothelium 
fenestrae and hepatic microvilli visible under the LSEC layer. (Source: Mescher, 2013 (A), Schulze et 
al., 2019 (B), Warren et al., 2006 (C,D))  

A B

C D



   46 

Hepatocytes express a wide range of both surface and cytosolic pattern recognition receptors 

(PRRs), and are capable sensing and responding to pathogen invasion (Crispe, 2016). 

Constitutive and inducible expression of major histocompatibility complex class I (MHC-I) 

molecules as well as other intercellular adhesion molecules and ligands allow the direct 

targeting of hepatocytes by cytotoxic CD8 T and natural killer T (NKT) cells (Crispe, 2016; 

Gao, 2010; Nemeth et al., 2009). The role of hepatocytes as unconventional antigen presenting 

cells (APCs) and the fate of hepatocyte-activated T cells, however, remains open to debate 

(Bénéchet et al., 2019; Crispe, 2011; Klein and Crispe, 2006; Wong et al., 2015).  

Hepatocyte turnover is slow in a healthy liver – the average life span of an adult hepatocyte is 

200 to 300 days (Duncan et al., 2009) – but these epithelial cells have an unlimited and rapid 

regenerative capacity. After a typical two thirds partial hepatectomy in rodents, most of the 

liver mass is restored within 7–8 days, with complete restoration achieved within three weeks 

(Michalopoulos and Bhushan, 2021).  

   1.2.2.  Cholangiocytes 

Cholangiocytes or biliary epithelial cells are a morphologically and functionally 

heterogeneous, highly dynamic population of cuboidal or columnar epithelial cells that line the 

three-dimensional network of bile ducts known as the biliary tree that extends from the liver to 

the duodenum. Bile is secreted by hepatocytes into bile canaliculi that empty into the bile canals 

of Hering, then into the bile ductules, leaving the liver via the hepatic ducts to finally reach the 

gallbladder where bile is stored (Tabibian et al., 2013).  

   1.2.3.  Liver sinusoidal endothelial cells 

These fenestrated endothelial cells line the sinusoidal capillary channels of the liver and are the 

most abundant non-parenchymal hepatic cell population. LSECs lack a classical basement 

membrane and are fenestrated, increasing porosity and permeability and thus facilitating the 

movement of molecules and cellular mediators to and from the liver parenchyma (Chen and 

Tian, 2021; Mescher, 2013) (Figure 14D). LSECs possess very potent scavenger capabilities 

by virtue of the expression of many scavenger receptors coupled with high endocytic potential. 

Their important innate and adaptive immunological functions, including pathogen recognition 

and uptake, antigen presentation, cytokine secretion (i.e., tumor necrosis factor (TNF-α), 

interleukin (IL)-10), and regulation of leukocyte-recruitment, play a pivotal role in maintaining 

immune homeostasis (Bogdanos et al., 2013; Shetty et al., 2018).  
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   1.2.4.  Hepatic stellate cells 

HSCs are located in the space of Disse, extending long dendritic-like processes that wrap 

around the sinusoids (Chen and Tian, 2021). In the absence of liver damage, they exist in a 

quiescent state and play a central role in vitamin A and lipid storage, storing 80–90% of total 

body vitamin A in intracytoplasmic lipid droplets, and in vasoregulation through their 

interactions with LSECs (Blaner, 2019; Horst et al., 2016). As a result of liver injury or 

infection, they become activated into myofibroblasts secreting extracellular matrix components 

such as collagen, laminin, and proteoglycans that form basement membrane-like structures, 

required for liver regeneration but the overproduction of which leads to liver fibrosis and 

eventually cirrhosis (Gupta et al., 2019). HSCs play a role in hepatic immunity by extensive 

chemokine, pro-inflammatory (i.e., IL-6, TNF-α) and immunoregulatory (i.e., transforming 

growth factor beta (TGF-β)) cytokine, and type I interferon (IFN-I) expression upon activation, 

promoting leukocyte chemotaxis, adherence, and activation (Gupta et al., 2019).  

   1.2.5.  Kupffer cells 

KCs are liver-resident immobile macrophages and represent ∼35% of non-parenchymal liver 

cells and 90% of all tissue macrophages (Nguyen-Lefebvre and Horuzsko, 2015). Localized 

within the lumen of the liver sinusoids in direct contact with afferent blood derived from the 

GI tract, these very large intravascular cells with potent phagocytic capacity are the sentinels 

of innate liver immunity, detecting and clearing the majority of bloodborne bacteria within 

minutes to prevent systemic dissemination (Kubes and Jenne, 2018; Li and Zeng, 2020). KCs 

express an array of toll-like receptors (TLRs), scavenger receptors, complement receptors and 

antibody receptors, that allow the detection, binding and internalisation of pathogens and 

associated molecules. KCs are important APCs, expressing MHC-I, MHC-II, and co-

stimulatory receptors necessary for T-cell activation. Under physiological conditions, however, 

the KC is a poor APC, exhibiting what has been termed a “tolerogenic” phenotype, and like 

LSECs, can actively promote T-cell tolerance (Kubes and Jenne, 2018). This is necessary to 

prevent undesired immune responses from immunoreactive molecules derived from the gut and 

present on dying or dead cells which are removed from circulation by KCs. Under pathological 

conditions, KCs are activated to differentiate into M1-like macrophages secreting pro-

inflammatory mediators or M2-like (alternative) macrophages that secrete immunoregulatory 

cytokines (Nguyen-Lefebvre and Horuzsko, 2015; Tacke and Zimmermann, 2014). Unlike 

circulating macrophages that originate from bone-marrow derived monocyte precursors, KCs 
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have an embryonic origin and are self-renewing throughout adult life (Gomez Perdiguero et 

al., 2015; Schulz et al., 2012).  

   1.2.6.  Hepatic dendritic cells 

Hepatic DCs enter the liver as immature cells via the portal vein, and mature as they transit 

from the portal to the central vein or as they transmigrate through the LSECs to enter the space 

of Disse, eventually accessing the liver lymphatics (Kubes and Jenne, 2018). DCs are 

professional APCs, whose essential function is to internalise antigens derived from blood and 

tissue and to transport these antigens to a regional lymph node or the spleen for presentation to 

naive CD4 and CD8 T cells as well as B cells, inducing their antigen-specific activation and 

proliferation (Liaskou et al., 2012; Lurje et al., 2020). DC–T cell interaction and priming can 

also occur directly in the hepatic sinusoids, making the liver the only organ not traditionally 

considered to be a secondary lymphoid organ in which both CD4 and CD8 T cell priming can 

occur (Bénéchet et al., 2019; Lurje et al., 2020; Tay et al., 2014b). DCs also activate innate 

natural killer (NK) and NKT cells and secrete large amounts of IFN-I and other cytokines in 

response to pathogen-associated molecular pattern (PAMP) detection, thus contributing to both 

the innate and adaptive immune response (Crispe, 2014; Liaskou et al., 2012). Compared to 

their counterparts in non-hepatic tissue, however, liver-derived DCs are less efficient at 

priming T-cells and more likely to induce allogenic T-cell apoptosis (Bogdanos et al., 2013; 

Horst et al., 2016; Robinson et al., 2016; Tokita et al., 2008). As such, hepatic DCs, like KCs 

and LSECs, contribute both to the hepatic bias towards immune tolerance under physiological 

conditions, and to the robust pro-inflammatory responses elicited upon tissue damage or 

infection. 

   1.2.7.  Intrahepatic lymphocytes  

The human liver has an important innate and adaptive lymphocyte population resident in the 

sinusoidal lumen and scattered throughout the parenchyma (Bogdanos et al., 2013). Innate 

lymphocytes in the adult liver include NK cells, NKT cells, mucosal associated invariant T 

(MAIT) cells and γδ T cells. The highest proportion of IHL consists of innate lymphocytes 

NKT and NK cells: in both humans and mice, NKT cells and NK cells make up around half of 

the total IHL population (Chen and Tian, 2021; Mikulak et al., 2019). Liver resident NK cells 

continually scan for and rapidly eliminate cells displaying non-self signals and, upon 

activation, are major producers of type II interferon (IFN-II), like their circulating counterparts 

(detailed in section C.1.2.3) (Mikulak et al., 2019). Adaptive lymphocytes, including CD4 and 
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CD8 T cells as well as B cells represent about one third of total IHL in a healthy human liver 

(Chen and Tian, 2021). Circulating effector cytotoxic CD8 T cells have been shown to crawl 

along the sinusoids, actively patrolling and extending cell processes through the fenestrated 

sinusoidal endothelium to scan and kill any underlying hepatocytes that present cognate 

antigens, without the need to migrate into the liver tissue (Guidotti et al., 2015).  

 2.  Functions of the liver 

As the major interface between the digestive system and the blood, the liver is a metabolic hub, 

and the organ in which all substances of gastrointestinal origin – from nutrients to harmful 

xenobiotics or microbial toxins – are metabolised, processed, and stored before distribution or 

elimination. As residence to the largest population of tissue macrophages in the human body, 

the liver plays a major role, along with the spleen, in the clearance of pathogens from the blood. 

It is also the source of innate immune circulating plasma components known collectively as 

acute phase proteins. 

  2.1. Functions related to digestion, detoxification, and metabolic 

homeostasis  

The main digestive function of the liver is the production of bile, a complex molecular soap 

composed primarily of bile acids, phospholipids, and cholesterol (Boyer, 2013; Mescher, 

2013). Synthesised and secreted by hepatocytes, bile facilitates the emulsification, 

solubilisation and absorption of dietary fats within the intestinal lumen. It is also through bile 

secretion that the liver performs another of its many roles, the elimination of potentially 

harmful metabolic by-products and xenobiotics following their metabolic transformation and 

break down in hepatocytes in which more than 50 different cytochrome P450 enzymes (the 

major enzymes involved in drug metabolism) are embedded in the SER membrane (Boyer, 

2013; Schulze et al., 2019).  

The liver also plays a central role in maintaining carbohydrate and lipid metabolic homeostasis. 

When glucose and insulin levels are high, hepatocytes store glucose as glycogen in cytoplasmic 

granules or use it to synthesise fatty acids. Fatty acids are also absorbed from the blood, 

esterified with glycerol 3-phosphate to generate triglycerides, or with cholesterol to produce 

cholesterol esters, and stored in cytoplasmic lipid droplets – unique fat-storage organelles that 

serve as energy reserves during times of fasting – or packed into very low density lipoprotein 

particles to be shuttled to adipose or other extrahepatic tissue (Rui, 2014). In the fasting state, 
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when glucagon levels are high, the liver provides glucose through both glycogenolysis and 

gluconeogenesis to maintain euglycaemia, accounting for up to 90% of total endogenous 

glucose production after prolonged fasting (Petersen et al., 2017).  

Cholesterol is a necessary component of vertebrate cell-membrane composition and the 

precursor of steroid hormones, but is also detrimental in excess. The liver is the major source 

of endogenous cholesterol de novo biosynthesis, which is esterified and stored in lipid droplets 

or secreted into the blood as constituents of lipoproteins, or converted into bile acids (Luo et 

al., 2019). The liver parenchyma is particulary important in its unique ability to uptake excess 

cholesterol from peripheral tissues and arterial macrophages in a process known as reverse 

cholesterol transport and to eliminate it though conversion into bile acids or through the direct 

excretion of free cholesterol into bile (Cohen, 2008; Nemes et al., 2016). The liver also 

regulates vitamin A homeostasis as the principal site of its uptake and storage (Blaner, 2019), 

as well as systemic iron homeostasis through the tightly regulated production and secretion of 

hepcidin, the peptide hormone that regulates iron absorption from the duodenum and its release 

from macrophages and other cells (Rouault et al., 2020). Other secreted signalling proteins of 

hepatic origin – termed hepatokines – regulate glucose and lipid metabolism and mediate 

crosstalk between organs in an endocrine manner (Jensen-Cody and Potthoff, 2021).  

  2.2.  Immune functions  

The key metabolic functions of the liver have long eclipsed its role in immunity. The concept 

of hepatoimmunology – or the liver as an immunological or lymphoid organ – emerged around 

20 years ago (Mackay, 2002; O'Farrelly and Crispe, 1999). The liver is a key organ in immune 

function both in its role of clearing pathogens from the blood and in a secretory and regulatory 

capacity as the source of circulating immune system plasma components. Despite the major 

metabolic consequences of liver failure, the primary cause of death in patients with terminal 

cirrhosis is infection, and the severity of liver disease correlates with an increased risk of 

bacteraemia (Ashare et al., 2009; Bajaj et al., 2012; Fernández and Gustot, 2012).  

The clearance of pathogens from the blood is carried out almost exclusively by the spleen and 

the liver, two highly vascularised organs, directly positioned within the systemic circulation 

(Benacerraf et al., 1959; Ganesan et al., 2011). The liver is uniquely positioned at the interface 

between the digestive system and the blood to form a vascular “firewall” that captures any 

invading microorganisms that have crossed the intestinal barrier (Balmer et al., 2014). While 

the spleen is particularly important in the capture of encapsulated bacterial pathogens, both 
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directly and through the production of opsonins, as well as an important site for antigen capture 

and lymphocyte priming (Dionne et al., 2017; Sharma et al., 2015), the liver alone clears blood 

of viruses (Ganesan et al., 2011), and the capacity of the liver in bacterial clearance is 

significantly greater than that of the spleen. Both Gram-negative and Gram-positive bacteria 

are eliminated within minutes from the blood of mice or rabbits following IV challenge: 

approximately 80% are recovered from the liver, compared to 20% from the spleen (Conlan, 

1997; Parker and Franke, 1919). KCs, the most abundant resident tissue macrophages in the 

human body, effectuate bacterial clearance (Ebe et al., 1999; Wing and Gregory, 2002), 

whereas LSECs mediate viral clearance (Shetty et al., 2018). Under the right conditions, KCs, 

LSECs, as well as HSC and hepatocytes, can prime naive CD4 and CD8 T cells to differentiate 

into effective, fully functional helper and cytotoxic T cells, respectively, making the liver the 

only non-lymphoid organ in which T cell activation and differentiation can occur 

independently of secondary lymphoid tissues and DC involvement, challenging either the 

dogma that T cell priming occurs exclusively in secondary lymphoid organs, or the traditional 

view of the non-lymphoid nature of the liver (Bénéchet et al., 2019; Böttcher et al., 2013; Klein 

and Crispe, 2006; Tay et al., 2014b; Wuensch et al., 2006). On the other hand, T cell priming 

in the liver takes place in an environment biased towards tolerance and, in the absence of 

sufficient stimulatory signals, T cell activation can lead to long-term CD8 T cell dysfunction, 

apoptosis, and the absence of the development of immune memory (Bénéchet et al., 2019; 

Crispe, 2009; Wong et al., 2015). Tolerance to antigens presented in the liver can subsequently 

lead to systemic immune tolerance, which can be exploited by hepatotropic viruses and 

parasites, as well as malignant cells, leading to persistent infection or rapid cancer progression, 

respectively (Protzer et al., 2012; Zheng and Tian, 2019).  

The liver also contributes to immune function as the major source of circulating plasma 

proteins that are involved in inflammatory responses and in pathogen recognition, opsonisation 

and elimination. Hepatocytes produce and secrete soluble PRRs, complement proteins, 

coagulation and fibrinolytic system components, as well as other crucial molecules of the 

systemic innate immune system (Gao et al., 2008).  
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2.2.1.  The acute phase response and acute phase proteins 

The inflammatory response triggered by infection, injury, ischemia, or intoxication is 

characterised, among other things, by fever, leukocytosis, behavioural changes such as 

anorexia, and an increase in the amount of circulating proteins that function to limit tissue 

injury and participate in host defence (Ehlting et al., 2021; Gabay and Kushner, 1999). These 

proteins were named “acute phase proteins” (APPs) as their increase was first observed in the 

plasma of patients during the acute phase of pneumococcal pneumonia. They can, however, 

accompany both acute and chronic inflammation (Bode et al., 2012; Gabay and Kushner, 

1999). APPs have since been defined as proteins whose plasma concentration increases 

(positive APPs) or decreases (negative APPs) by at least 25% during inflammation (Bode et 

al., 2012; Gabay and Kushner, 1999). Positive APPs include complement proteins (detailed in 

the following section), opsonins (e.g., pentraxins, C reactive protein (CRP), serum amyloid A 

(SAA), serum amyloid P), coagulation and fibrinolytic system components (e.g., plasminogen, 

numerous coagulation factors, urokinase plasminogen activator, tissue plasminogen activator, 

fibrinogen, vitronectin, vitamin K-dependent protein S), protease inhibitors (e.g., α2-

macroglobulin, α2-antiplasmin, α1-antitrypsin, α1-antichymotrypsin), iron and other metal 

transport proteins that scavenge for free haemoglobin and radicals (e.g., haptoglobin (HP), 

hemopexin, ferritin, ceruloplasmin), lipid metabolism- and transport-regulating 

apolipoproteins (e.g., APOA1, APOA4, APOA5, APOE) (Bode et al., 2012; Gabay and 

Kushner, 1999; Zhou et al., 2016) (Figure 15 and Table 4). Given their important physiological 

functions, most APPs are produced constitutively at a basal level by hepatocytes (Asselin and 

Blais, 2011), and upon stimulation, the production of positive APPs increases from about 50% 

in the case of ceruloplasmin and complement components such as complement component 3 

(C3), to around 5-fold for HP, and to as much as 1000-fold in the case of CRP and SAA (Jain 

et al., 2011; Zhou et al., 2016).  

The production of APPs by hepatocytes is induced by a variety of different cytokines that are 

released during inflammation, with IL-1- and IL-6-type cytokines being the major inducers. 

These two families of cytokines result in the production of distinct groups of APPs, which are 

classed as type I or type II depending on their induction by IL-1- or IL-6-type cytokines 

respectively (Baumann and Gauldie, 1994). The list of mediators involved in regulating APP 

production in the liver is extensive, however: IL-1-type cytokines include not only IL-1α and 

IL-1β, but also TNF-α and TNF-β, and the IL-6 cytokine group includes IL-6, leukemia 

inhibitory factor (LIF), IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and 
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cardiotrophin-1 (CT-1) (Baumann and Gauldie, 1994; Bode et al., 2012). Other cytokines 

involved in regulating APP-coding gene expression include C-X-C motif chemokine ligand 8 

(CXCL8), IFN-γ, HGF, and epidermal growth factor (EGF) (Wigmore et al., 1997).  

The hepatic expression of APP-coding genes is regulated primarily at the transcriptional level, 

although post-transcriptional mechanisms have also been reported for some APPs (Bode et al., 

2012). Liver enriched transcription factors (TFs) such as hepatic nuclear factors (HNFs), and 

members of the CCAAT/enhancer-binding protein (C/EBP) family control basal expression 

levels. Transcriptional activation of APP-coding genes involves a variety of different 

transcriptional regulators including signal transducer and activator of transcription (STAT)3 

and NF-κB (Asselin and Blais, 2011; Bode et al., 2012; Zhou et al., 2016) (Figure 15). 

Discordance between the plasma concentrations of different APPs in different inflammatory 

contexts is common and indicates that APPs are not uniformly regulated, with expression 

patterns depending on divergent cytokine environments (Gabay and Kushner, 1999; Slaats et 

al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15 | Acute phase proteins and their role in innate immunity.  
Complement proteins and other APPs important in innate immune function are secreted constitutively 
at a basal level by hepatocytes. Basal expression is controlled by liver-enriched transcription factors 
including HNFs and C/EBPs. In response to bacterial infection, pro-inflammatory cytokines secreted 
by immune cells induce hepatocytes to increase the production of type I and type II APPs through  
NF-κB and STAT3 activation, respectively. APPs have many and diverse antibacterial and 
immunostimulatory functions, some of which are listed on the right. (Adapted from Zhou et al., 2016) 
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Table 4 | Examples of APPs that are produced predominantly by hepatocytes during 

inflammation and a summary of their major biological function(s). (Source: Bode et al., 2012) 
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   2.2.2.  The complement system 

The complement system is an evolutionary ancient and fundamental component of the innate 

immune system required for the detection and removal of invading pathogens (West et al., 

2018). It was the first PRR system to be discovered: Jules Bordet was awarded with the Nobel 

prize in 1919 for his demonstration that there were two factors that conferred bactericidal 

properties to immune serum: heat-labile “alexin” (complement proteins) and heat-stable 

“sensitiser” (antibodies) (Cavaillon et al., 2020). As an integral part of the innate immune 

response, the complement also acts as a bridge between innate and acquired immunity 

(Beltrame et al., 2014; Nesargikar et al., 2012). The complement system is a network of more 

than 50 proteins that include secreted PRRs and effector molecules that circulate in the blood, 

the lymph, and the interstitial fluid, as well as receptors localised at the surface of immune 

cells. Liver-derived soluble complement components, most of which are APPs, constitute more 

than 15% of the globular fraction of plasma and circulate as inactive precursors (zymogens) 

(Dunkelberger and Song, 2010). Upon proteolytic activation, an enzymatic self-sustaining 

cascade is set in motion, producing molecules that can amplify the inflammatory response, 

opsonise targets for phagocytosis either directly or through the formation of immune 

complexes, initiate the formation of the membrane attack complex (MAC) that can directly 

lyse cells, promote B cell activation and differentiation, and tag apoptotic cells for removal 

(Verschoor and Langer, 2013, Beltrame et al., 2014) (Figure 16).  

The complement system can be activated by various PAMPs or danger-associated molecular 

patterns (DAMPs) via the classical, lectin or alternative pathway: the classical pathway is 

activated through complement component 1q (C1q) binding to antigen-antibody complexes, 

and the alternative pathway through soluble PRR (mannose-binding lectin (MBL), ficolin, or 

collectin) detection of carbohydrate PAMPs; alternative pathway activation occurs via the 

spontaneous hydrolysis of C3 to C3(H20) and its subsequent attachment to microbial surfaces 

(Beltrame et al., 2014). All pathways converge to trigger the cleavage of the central component, 

C3, producing the opsonin C3b which associates with C3 convertases to form the C5 

convertase, which processes complement C5 into C5b, leading to the assembly of the MAC 

(Nesargikar et al., 2012) (Figure 17). MAC assembly can occur on different cell surfaces, such 

as those of bacteria, parasites, enveloped viruses, and aberrant host cells and forms a 

multimolecular structure that inserts into the membrane creating a functional pore that leads to 

the lysis of the cell (Dunkelberger and Song, 2010). While the MAC assembles on  

Gram-positive bacteria it is generally accepted that they are protected from MAC-dependent 
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lysis by their thick peptidoglycan layer (Berends et al., 2013). 

  

Figure 16 | Biological functions of the complement system.  
Inflammation: the activation of the complement system generates the anaphylatoxins or complement 
peptides C3a, C4a, and C5a which mediate inflammatory responses by recruiting and inducing effector 
functions in mast cells, neutrophils, and macrophages. Phagocytosis: iC3b, C3b, and C4b bind to 
complement receptors on neutrophils and macrophages promoting phagocytosis. B cell activation and 

differentiation: the recognition of C3-tagged antigen by B cells promotes B cell activation and 
differentiation. Cell lysis: specific antibodies, MBL/ficolins, and spontaneous hydrolysis of C3 activate 
the complement on the surface of infectious microorganisms and lead to the formation of MAC and the 
lysis of the target cell. Immune complex clearance: immune complexes (antigen-antibody complexes) 
activate the complement system, C3b binds to the complexes and to complement receptor 1 (CR1) on 
erythrocytes, resulting in their removal by macrophages. Apoptotic cell removal: MBL, ficolins and 
C1q bind apoptotic cell debris, which is subsequently removed by phagocytic cells via C1q receptor 
(C1qR) and CR1 receptor binding. (Source: Beltrame et al., 2014)  
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C3b mediates the opsonisation and induces the subsequent phagocytosis of pathogens by 

neutrophils and macrophages that express receptors that bind C3 fragments, such as 

complement receptor 1 (CR1, or CD35), CR3 (CD11b-CD18), CR4 (CD11c-CD18), and 

complement receptor of the immunoglobulin superfamily (CRIg) (Helmy et al., 2006; West et 

al., 2018). Activation of C3 and C5 also generates small peptide-like products – C3a and C5a, 

respectively – known as anaphylatoxins, which mediate inflammatory responses by recruiting 

and inducing effector functions in neutrophils, macrophages, and mast cells via the engagement 

of their specific G protein-coupled receptors, C3aR, C5aR1 (CD88), and C5aR2 (Laumonnier 

et al., 2017) (Figures 16 and 17).  

 
Figure 17 | Activation of the complement cascade.  
Complement can be activated by three independent pathways: the classical pathway, the lectin pathway, 
or the alternative pathway. All three pathways converge to trigger the cleavage of C3 into C3a and C3b. 
C5 convertase is generated, C5b and C5a are produced, and surface bound C5b initiates the formation 
and insertion of the MAC into the target pathogen or host cell membrane. The generated anaphylatoxins 
C3a and C5a act as signalling molecules to mediate the inflammatory response. (Adapted from West et 
al., 2018) 

While the innate immune properties of the complement system have long been known and 

studied, the role of complement components in the induction and regulation of the adaptive 

immune response is recent and increasingly appreciated. Complement fragment binding to 

complement and anaphylatoxin receptors on diverse immune cells, including B cells, T cells 

and DCs, provide costimulatory signals to induce proliferation, effector function and/or 

cytokine secretion, thus modulating the adaptive immune response (West et al., 2018). It is 

now also recognised that autocrine complement production in immune-privileged organs such 

as the brain and eye is the prime source of complement and that normal APC and T cell function 

depends on this locally produced and secreted C3 and C5 (West et al., 2018). Investigation into 

the endogenous production of C3 and C5 in T cells led to the discovery that complement 

activation is not confined to the extracellular space, as the dogma dictates, but also occurs 
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intracellularly (Arbore et al., 2016; Liszewski et al., 2013). Active intracellular complement – 

the “complosome” – has since been found to modulate T cell metabolism, driving T cell 

activation, differentiation, and contraction (West et al., 2018). 

 3.  The hepatic phase of listeriosis  

  3.1.  The hepatic phase in the murine listeriosis model 

In the IV murine model of listeriosis, 60–70% of the initial inoculum can be recovered from 

the liver at just 10 minutes p.i. (Conlan, 1997; Gregory et al., 1996; Mackaness, 1962). This 

bacterial uptake is reduced to 15% in mice rendered deficient in KCs, illustrating the 

importance of these tissue macrophages in eliminating Lm from the blood (Ebe et al., 1999; 

Wing and Gregory, 2002). KCs very effectively capture and internalise Lm (Broadley et al., 

2016; Li and Zeng, 2020) but are less microbicidal than their splenic counterparts in vitro 

(Filice, 1988; Lepay et al., 1985a; 1985b). Consistent with their role as sentinels in hepatic 

defence, KCs drive the influx of leukocytes to infection foci in the liver in both a chemokine- 

and adhesion molecule-dependent manner (Ebe et al., 1999; Serbina and Pamer, 2006; Shi et 

al., 2011; 2010). This uptake and elimination of extracellular Lm explains the reduction in 

bacterial load in the liver in the first 6–8 h p.i. (Conlan, 1999; Conlan and North, 1992), and 

correlates with an important influx of neutrophils into the liver which peaks at 2 h p.i. (Ebe et 

al., 1999; Gregory et al., 1996; 2002). Infiltrating neutrophils play an important role in 

controlling Lm infection in the liver by very effectively killing extracellular Lm and mediating 

the lysis and elimination of infected hepatocytes and KCs (Arnett et al., 2014; Rogers et al., 

1996; Witter et al., 2016) (Figure 18A). Neutrophil-depletion prior to infection thus results in 

an important increase in bacterial load in the liver from as early as 6 h p.i. (Conlan and North, 

1994; Gregory et al., 1996). KCs succumb massively and rapidly to necroptosis, however, to 

be replaced by infiltrating bone marrow-derived monocytes that proliferate and differentiate 

into tissue macrophages (Blériot et al., 2015). Indeed, the “monocytosis” (or increase in 

circulating monocytes) observed during listeriosis gave rise to the species name (as described 

in section A.1.1) (Murray et al., 1926).  

Despite the early neutrophil and subsequent monocyte infiltrations into the liver, a surviving 

fraction of Lm establishes a highly productive infection in the liver parenchyma that accounts 

for the exponential increase in the hepatic bacterial burden from 6–8 h p.i., peaking at 

approximately 3 days p.i. (Conlan, 1999; Ebe et al., 1999; Gregory et al., 1992; Mackaness, 

1962). In vivo observations of hepatic infection foci composed of heavily infected hepatocytes 
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(Conlan and North, 1991; 1992; Gaillard et al., 1996; Mandel and Cheers, 1980) (Figures 18B 

and 18C), ex vivo culture of hepatocytes isolated from infected mice (Gregory et al., 1992) 

(Figure 18D), and in vitro infections of hepatocyte cell lines in which Lm efficiently replicate 

and spread from cell to cell (Dramsi et al., 1995; Wood et al., 1993) provided evidence that 

hepatocytes constitute a replicative niche for Lm. Bacterial entry into hepatocytes is proposed 

to occur through either direct internalisation, via the InlA/B mediated pathways, or through 

cell-to-cell spread following initial infection of KCs (Appelberg and Leal, 2000; Dramsi et al., 

1995; Gaillard et al., 1996). At 3–4 days p.i., the Lm burden in the liver plateaus then decreases, 

concomitant to the initiation of the adaptive immune response that peaks at 6–8 days p.i. and 

successfully clears the infection (Pamer, 2004). 

The propensity of Lm to invade and damage the liver was at the origin of the original names 

proposed for this bacterium: Bacillus hepatis (by Hülphers, in 1911) and Listerella hepatolytica 

(by Pirie, in 1927), based on observations of liver necrosis in rabbits and gerbils (Gray and 

Killinger, 1966). In the murine model of listeriosis, isolated microabscesses are observed in the 

liver from as early as 24 h p.i., transforming into small granulomas from day 3 p.i. as 

neutrophils are replaced by macrophages and lymphocytes (Ebe et al., 1999; Gaillard et al., 

1996; Mandel and Cheers, 1980; Rogers et al., 1996). The number and size of infected foci is 

proportional to the inoculum, and lethal doses of Lm are generally required to enable the 

visualisation of hepatic lesions (Gaillard et al., 1996; Rogers et al., 1996). In immunocompetent 

mice, only small increases, if any, in alanine aminotransferase (ALT) serum levels (an 

indication of liver damage) are observed, however, when sublethal doses are administered (Ng 

et al., 2005; Rogers et al., 1996). Once the infection is cleared no lesions remain and normal 

hepatic architecture is completely restored (Blériot et al., 2015). 

In a more physiologically relevant IG inoculation model (murine, guinea pig, or rabbit), the 

extent and timing of liver colonisation is considerably more variable within experimental 

groups (due to the bottlenecks described in section A.6.1) and, in mice, between different 

genetic backgrounds (Hoelzer et al., 2012; Pitts and D'Orazio, 2018). Lm are detected in the 

liver from as early as 4 h to as late as 48 h p.i. in higher numbers and earlier than in the spleen 

(Drolia et al., 2018; Lecuit et al., 2001; Marco et al., 1992; Melton-Witt et al., 2012; Zhang et 

al., 2017b). Dissemination to the liver is thought to occur principally from bacterial 

translocation directly from the intestine via the portal vein, but also through the lymphatic 

system (Melton-Witt et al., 2012; Zhang et al., 2017b). Like in the IV model of murine 

listeriosis, the spleen and liver are the major organs colonised and the infection process and 
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bacterial growth curves in these organs subsequent to their invasion is similar in both IV and 

IG models (Gaillard et al., 1996; Pitts and D'Orazio, 2018). Murray et al. described that IV 

inoculation of rabbits differed from naturally acquired listeriosis uniquely in that focal necrosis, 

especially in the liver, was a constant and more dominant feature (Murray et al., 1926). This 

well-described infection scenario – the product of more than six decades of research since 

Mackaness’ pioneering research in the 1960s – has, however, been constructed using only a 

few plent lineage II laboratory strains (notably EGD, EGDe, 10403S, and LO28) (Bécavin et 

al., 2014). The dogma that full clearance of Lm from the liver and spleen systematically occurs 

within 10 days has been questioned in recent publications following experiments in which 

clinical strains have been isolated from the liver at up to 21 days p.i. (Vázquez-Boland et al., 

2020), and in which bacterial loads in the liver at 4–8 days p.i. exceed by several magnitudes 

that of laboratory strains (Hain et al., 2012; Maury et al., 2016; 2019).  

 

Figure 18 | Liver involvement in murine listeriosis.  
(A) Liver section from a Lm-infected mouse at 24 h p.i. shows an infected hepatocyte undergoing 
dissolution by surrounding neutrophils (scale bar: 10 µm). (B) Gram-stained section of the murine liver 
at 24 h p.i. showing several infection foci (270×). (C) Haematoxylin and eosin-stained liver section 
from a sublethally Lm-infected mouse at 24 h p.i. shows neutrophilic microabscesses containing 
apoptotic cells surrounded by healthy parenchyma. (D) Gram-stained hepatocytes isolated from the 
liver of a mouse at 72 h post administration of a lethal dose of Lm (1000×). (Source: Conlan and North, 
1992 (A), Mandel and Cheers, 1980 (B), Rogers et al., 1996 (C), Gregory et al., 1992 (D)) 

  3.2.  Liver involvement in human listeriosis 

Little is known of the hepatic stage in human listeriosis, however. While transplacental 

transmission of listeriosis is known to cause disseminated abscesses and granulomas in the 

foetal liver (Schlech, 2019), liver involvement in adults is rarely documented. Rare reports 

describe the presence of granulomas, microabscesses, large solitary abscesses, or the clinical 

manifestations of acute hepatitis (Brönnimann et al., 1998; Gebauer et al., 1989; López-Prieto 

et al., 2000; Scholing et al., 2007; Yu et al., 1982). Again, surprisingly, few patients in which 

liver involvement is observed present significantly elevated ALT levels (Braun et al., 1993; 

Brönnimann et al., 1998; Scholing et al., 2007).   

B CA D
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C. Host defences and transcriptional responses to Lm 

infection 

The immune response to Lm depends on host recognition of pathogen-associated molecules 

both in the extracellular environment, the internalisation vacuole, and the cytosol. Immune and 

non-immune cells detect pathogens and respond by activating a transcriptional program that 

assists in combatting the invasion, either by direct antibacterial action or through cytokine and 

IFN secretion. Different cell types activate divergent transcriptional programs that allow the 

host to resolve infection. Lm infection induces a robust innate immune response that restricts 

bacterial growth in the intestine, liver and spleen until the adaptive immune response can be 

mounted to enable total bacterial clearance, as well as enhanced protection against future 

infections. Lm, on the other hand, has evolved specific mechanisms to counter or modulate this 

defence system via the secretion of virulence factors whose effects on the host cell contribute 

directly to the global transcriptional response observed.  

 1.  Innate immune responses to Lm  

Innate immunity is a first-line host defence mechanism that is rapid and non-specific and 

common to all animal species from primitive multicellular organisms to vertebrates (Hoffmann 

and Akira, 2013). The innate immune response depends on the recognition of pathogens and 

damaged or infected cells through the identification of foreign or danger-signalling molecular 

patterns by various receptors expressed by almost all immune and non-immune cells (Newton 

and Dixit, 2012). Depending on the cell type, cells respond by initiating anti-listerial 

mechanisms – including the production of reactive oxygen species (ROS) or reactive nitrogen 

species (RNS), inflammasome activation, the upregulation of autophagy-related pathways and 

activity, the secretion of cytokines and chemokines to signal help, the increased expression of 

receptors and cell adhesion molecules to better detect bacteria and infected cells as well as to 

enable the recruitment of immune cells to infection foci, and/or the setting in motion of either 

cellular survival or apoptotic programs (Lam et al., 2013; McDougal and Sauer, 2018; 

Radoshevich and Cossart, 2017; Stavru et al., 2011). Innate immune responses are rapidly 

triggered following Lm detection and are essential to host survival, as illustrated by the 

deleterious effects of the depletion of innate immune molecules, effector cell types, or innate 

immune cell receptors (Pamer, 2004; Stavru et al., 2011).  
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  1.1.  Innate immune sensing of Lm  

Host recognition of bacterial pathogens is a critical component of the innate immune response, 

and multiple receptors and pathways capable of detecting and responding to extracellular, 

intravacuolar, or cytosolic Lm have been identified (Dussurget et al., 2014; Radoshevich and 

Cossart, 2017) (Figure 19). Upon infection, Lm can be sensed through secreted or bacterial 

surface PAMPs by PRRs on the host cell surface, within endocytic vesicles, or in the host cell 

cytosol (Radoshevich and Cossart, 2017). The principal PRRs involved in the recognition of 

Lm PAMPs include TLRs, retinoic acid-inducible gene I (RIG-I), stimulator of interferon genes 

(STING), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and the 

AIM2 inflammasome receptor (Dussurget et al., 2014; Theisen et al., 2018).  

Of the TLRs, TLR1, TLR3, TLR10, and notably TLR2 (expressed at both the cell surface and 

in endosomes) are the most involved in Lm detection (Aubry et al., 2012; Regan et al., 2013; 

Wang et al., 2019). TLR binding to PAMPs such as Lm cell wall components or unmethylated 

CpG motifs in bacterial DNA leads to IκB kinase (IKK)-, serine/threonine-protein kinase 

(TBK1)- and mitogen-activated protein kinase (MAPK)-mediated activation of NF-κB, 

interferon regulatory factor (IRF)3, IRF7, and activator protein 1 (AP1) (Eldridge et al., 2020a). 

The nuclear translocation of these TFs induces the transcription of a large set of NF-κB–

dependent pro-inflammatory cytokines, type I and type III IFNs, as well as a subset of 

interferon stimulated genes (ISGs) whose expression can be induced in an IFN-independent 

manner (Dussurget et al., 2014; Radoshevich and Cossart, 2017). With the exception of TLR3, 

all TLRs signal through the adaptor protein known as myeloid differentiation factor 88 

(MyD88). TLR2 recruits the toll-interleukin 1 receptor (TIR) domain containing adaptor 

protein (TIRAP) adapter in addition to MyD88. TLR3 uses the TIR-domain-containing 

adapter-inducing interferon-β (TRIF)-dependent pathway (Dussurget et al., 2014). 

STING detects cyclic dinucleotides in the form of cyclic di-adenosine monophosphate (c-di-

AMP) secreted by cytosolic Lm or cyclic guanosine monophosphate–adenosine 

monophosphate (cGAMP) produced by host cyclic GMP-AMP synthase (cGAS) from Lm 

DNA following bacterial lysis in the cytosol. Activated STING recruits TBK1, which 

phosphorylates the TFs IRF3 and IRF7, resulting in IFN-I expression and NF-κB activation 

(Archer et al., 2014; Burdette et al., 2011; Woodward et al., 2010). The negative regulation of 

NF-κB signalling by RECON is inhibited by c-di-AMP (McFarland et al., 2017).  
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RIG-I binds double stranded 5′ triphosphate RNA (PPP-RNA) that is passively released upon 

bacterial lysis or actively secreted by intracellular Lm and signals via the mitochondrial 

antiviral signalling protein (MAVS) and STING (Abdullah et al., 2012b; Frantz et al., 2019; 

Hagmann et al., 2013; Pagliuso et al., 2019). 

NLRs are cytosolic PRRs: NOD1 and NOD2 recognise conserved peptidoglycan motifs and 

signal via the adaptor protein RIP2 that recruits TGF-β‐activated kinase 1 (TAK1) to activate 

NF-κB and the MAPK cascade (Mosa et al., 2009; Opitz et al., 2006). Other NLRs are involved 

in inflammasome activation (Regan et al., 2014). Inflammasomes are cytosolic innate immune 

surveillance systems that recognise a variety of PAMPs and DAMPs (Theisen and Sauer, 

2016). Lm can activate a variety of inflammasomes via the detection of LLO, flagellin, or DNA 

secreted or released through bacteriolysis. Inflammasome receptors (NLRP3, NLRC4, or 

AIM2) interact with the adaptor protein apoptosis-associated speck-like protein (ASC) which 

recruits and activates caspase 1 (Theisen and Sauer, 2016). Caspase-1 activation leads to the 

processing and secretion of pro-inflammatory cytokines IL-1β and  

IL-18 as well as triggering the pyroptosis of Lm-infected cells (Eitel et al., 2010).  

The PRRs described above play different roles in different cell types and tissues that have 

evolved divergent pathogen recognition strategies. IFN-I expression is independent of TLR2-

MyD88 signalling in primary murine bone marrow derived macrophages (BMDM) (Leber et 

al., 2008; McCaffrey et al., 2004) and DCs (Feng et al., 2005; Pontiroli et al., 2012). In 

peritoneal macrophages, however, TLR2 and MyD88 are required for IFN-β expression (Aubry 

et al., 2012; Boneca et al., 2007). STING-detection of bacterial DNA appears to be largely 

restricted to immune cells; epithelial cells such as hepatocytes do not express STING and 

depend on RIG-I sensing of cytosolic bacteria (Hagmann et al., 2013; Jin et al., 2013; Luo et 

al., 2018; Thomsen et al., 2016). NOD2 appears to play a predominant role in Lm immune 

sensing in the intestine where TLR expression is low (Kobayashi et al., 2005; Price et al., 2018).  

Intracellular sensors to detect cytosolic PAMPS are generally non-redundant at the level of the 

organism, however (Eldridge et al., 2020a). Deficiency in a single PRR renders mice more 

susceptible to Lm infection: Tlr2 knock-out (KO) mice showed reduced survival to systemic 

infection (Torres et al., 2004), Nod1 KO mice were less resistant to both IP and IV infection 

(Mosa et al., 2009), and Nod2 KO mice showed increased susceptibility when challenged using 

the IG (but not the IV) route of infection (Kobayashi et al., 2005). Mice deficient in the general 

TLR adaptor protein MyD88 were highly susceptible to Lm infection, with completely 
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abrogated cytokine expression and neutrophil recruitment (Edelson and Unanue, 2002; Seki et 

al., 2002; Torres et al., 2004).  

 

Figure 19 | Innate immune sensing of Lm.  
Different PRRs detect extracellular, intra-endosomal, or cytosolic Lm. Membrane bound TLRs, as well 
as cytosolic PRRs such as NLRs (not shown), RIG-I, and STING detect listerial PAMPs including 
lipoteichoic acid, peptidoglycan motifs, and secreted or released nucleic acids in the form of c-di-AMP, 
cGAMP, or PPP-RNA. Detection results in the downstream activation of NF-κB and the nuclear 
translocation of IRF3 and IRF7, and the subsequent transcription of type I and III IFNs and other 
cytokines, as well as the IFN-independent transcription of a subset of ISGs. RECON inhibition of  
NF-κB is reversed in the presence of c-di-AMP. (Source: Radoshevich and Cossart, 2017) 

  1.2.  Innate immune cells  

Regardless of the infection model, macrophages and DCs are the first innate immune cells 

encountered by Lm. In the intestine, once translocated across the intestinal barrier into the 

lamina propria, Lm infects mainly macrophages (Disson et al., 2018). In the liver, KCs, the 

resident macrophages, are the front-line defence (Li and Zeng, 2020), as described in section 

B.3.1. In the spleen, several morphologically distinct macrophages and DCs rapidly internalise 

Lm (Aoshi et al., 2009; Conlan, 1996). Resident DCs, macrophages and mast cells at epithelial 
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barriers excrete inflammatory cytokines and chemokines upon Lm detection to recruit 

monocytes and neutrophils from the bone marrow and the circulation to infection foci 

(D'Orazio, 2019; Dietrich et al., 2010). Blocking CR3-expressing myeloid cell recruitment to 

infection foci using an anti-CR3 monoclonal antibody (mAb) results in a 1000-fold increase in 

bacterial load in the liver and spleen and renders mice susceptible to as few as ten colony 

forming units (CFU) (compared to 107 for untreated mice) (Rosen et al., 1989). Bacterial 

growth during the first few days of infection is controlled by various and diverse innate immune 

cells, including, macrophages, monocytes, neutrophils, NK cells, γδ T cells, and DCs that 

present a first line of defence (Stavru et al., 2011).  

   1.2.1.  Monocytes and macrophages 

Both lymphoid tissue resident CD169+ macrophages and liver resident KCs are essential in the 

initial clearance of Lm (Aoshi et al., 2009; Ebe et al., 1999; Gregory et al., 2002; Perez et al., 

2017), and subsequent infiltrating monocytes are an equally vital component of the early innate 

immune response to Lm (Shi et al., 2010; 2011). Monocytes represent a heterogenous 

population of circulating blood leukocytes of myeloid origin that are pluripotent and can thus, 

upon recruitment to the infection site, differentiate into macrophages or other monocyte-

derived cells such as monocyte-derived DCs (Grabowska et al., 2018). Emigration of 

monocytes from the bone marrow into the circulation during Lm infection is triggered by 

chemokines, while recruitment to infection foci is mediated through adhesion molecules (Shi 

et al., 2010). In the liver, intercellular adhesion molecule 1 (ICAM-1) on the surface of LSECs 

or KCs binds to CR3 on circulating monocytes (Serbina et al., 2012) (Figure 20). IFN-γ 

activated monocytes and macrophages phagocytose and kill Lm by the production of ROS or 

RNS and produce large amounts of inflammatory cytokines such as IL-12 and IL-18 

(Shaughnessy and Swanson, 2007). Monocytes are also thought to act as Trojan horses in 

aiding Lm invasion, however. Monocytes can be infected in the bone marrow (Hardy et al., 

2009), and then migrate to chemokine-expressing but uninfected tissue, transporting Lm to the 

brain or other peripheral tissue (Drevets et al., 2008; 2010).  

   1.2.2.  Neutrophils 

Polymorphonuclear leukocytes, or neutrophils, are the most abundant leukocytes in circulation 

and the first cells recruited to infected or injured tissue (Chaplin, 2010). Unlike monocytes, 

neutrophils are terminally differentiated into pre-programmed antimicrobial phagocytes and 

have a very short life span (Brostjan and Oehler, 2020; Witter et al., 2016). They play an 



   66 

important role in controlling Lm infection in its early stages, especially in the liver (Carr et al., 

2011; Witter et al., 2016). They are recruited in large numbers from the bone marrow in 

response to various chemokines and very efficiently and rapidly eliminate extracellular Lm and 

infected cells though phagocytosis and ROS/RNS production (Kobayashi et al., 2003; Witter 

et al., 2016). LLO is unable to mediate Lm phagosomal escape in these granulocytes, and 

instead enhances neutrophil phagocytic efficiency (Arnett et al., 2014). Another key 

contribution of neutrophils to the innate immune response is their important production of 

TNF-α, a cytokine at the top of the cytokine cascade essential in the innate immune response 

to Lm (Carr et al., 2011; Witter et al., 2016). 

   1.2.3.  Natural killer cells 

NK cells are innate cytotoxic lymphocytes that are able to recognise and kill malignant or 

infected cells by releasing cytolytic mediators such as perforin and granzymes or by expressing 

ligands able to trigger death receptors on target cells (Bernardini et al., 2012). Within the first 

few days of systemic Lm infection, NK cells are also the major source of the crucial pro-

inflammatory cytokine IFN-γ (Clark et al., 2016; Humann et al., 2007; Kang et al., 2008).  

   1.2.4.  Dendritic cells  

DCs are professional APCs, central in the priming of T cells during Lm infection. Various DC 

subsets are important in both the pathogenesis and the host response to Lm. DCs can be divided 

into three major categories: plasmacytoid DCs (pDCs), conventional DCs (cDCs), and 

monocyte-derived DCs (mDCs or “inflammatory DCs”) that arise in response to infection or 

inflammation (Chen et al., 2015; Edelson et al., 2011).  

Splenic CD8α+ cDCs are potent APCs that traffic to T cell lymphoid tissue in the spleen or 

MLNs to prime naive T cells (Aoshi et al., 2008; Edelson, 2012). They also provide a 

replicative niche for Lm, however, and their migratory nature can promote listerial 

dissemination (D'Orazio, 2019; Waite et al., 2011). While macrophages contain and trap Lm in 

the marginal zone of the spleen, Lm survives in CD8α+ cDCs which migrate to the 

periarteriolar lymphoid sheath (the inner portion of the white pulp consisting mainly of T cells) 

where Lm numbers increase exponentially (Aoshi et al., 2009; Edelson et al., 2011; Liu et al., 

2019; Neuenhahn and Busch, 2007). Mice depleted of this cDC subset are more resistant to Lm 

infection and have lower bacterial loads in both the liver and the spleen (Edelson, 2012; Perez 

et al., 2017). Intestinal CD103+ cDCs have also been implicated in the spread of Lm from 
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Peyer’s patches to MLNs following GI invasion in another Trojan horse-like mechanism (Pron 

et al., 2001). 

The prototypical mDC is the TNF- and inducible nitric oxide synthase (iNOS)-producing DC 

(Tip-DC) (Edelson, 2012). Tip-DCs are recruited to infection foci through CCR2 signalling 

and aid in controlling Lm replication through direct NOS-dependent bactericidal activity and 

indirectly by contributing to TNF-α production (Serbina et al., 2003b). Tip-DCs are also critical 

sources of IFN-I during infection (Dresing et al., 2010; Solodova et al., 2011).  

   1.2.5.  Mast cells 

Mast cells are tissue-resident myeloid cells strategically located in mucosal and epithelial 

barriers where antigen-pathogen encounters are frequent (Krystel-Whittemore et al., 2015). 

Mast cells do not internalise Lm but play a role in controlling infection by initiating neutrophil 

recruitment and mediating the inflammatory response through the secretion of pro-

inflammatory cytokines and chemokines. Antibody-mediated depletion of mast cells results in 

increased bacterial burdens and reduced neutrophil infiltration in the IP murine listeriosis 

model (Dietrich et al., 2010; Gekara and Weiss, 2008; Soria-Castro et al., 2021).  

  1.3.  Cytokines  

The innate immune response to Lm critically depends on the rapid production and the non-

redundant activity of a number of cytokines, including chemokines, pro-inflammatory 

cytokines, and IFNs, that, together, mediate the recruitment of circulating immune cells to 

infection foci, the activation of tissue-resident and recruited immune cells, the induction of 

anti-listerial activity and the production and secretion of innate immune effectors from both 

immune and non-immune cells (D'Orazio, 2019) (Figure 20). 

   1.3.1.  Chemokines 

Chemokines are among the first products of a common inflammatory response to infection, 

secreted in response to PRR sensing of PAMPs by both innate and adaptive immune cells, as 

well as epithelial cells such as hepatocytes and colon epithelial cells (Nau et al., 2002; Pontiroli 

et al., 2012; Serbina et al., 2003a; Tchatalbachev et al., 2010). Chemokines trigger the release 

of granulocytes and monocytes from the bone marrow and recruit bone marrow derived and 

circulating neutrophils, monocytes, and NK cells to infection foci (D'Orazio, 2019; Kang et al., 

2008) (Figure 20). 
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- CXCL1, CXCL2, and CXCL8 

C-X-C motif chemokine ligand (CXCL)1, CXCL2, and CXCL8 are neutrophil-attracting 

chemokines produced predominantly in the liver (Barsig et al., 1998; Ebe et al., 1999) that bind 

to C-X-C motif chemokine receptor 2 (CXCR2) expressed on neutrophils (Witter et al., 2016). 

Treatment with anti-CXCL2 and -CXCL8 mAbs severely ablated neutrophil recruitment and 

abscess formation in the liver (Ebe et al., 1999). CXCL8 has also been reported to induce the 

expression APPs in hepatocytes (as described in section B.2.2.1) (Wigmore et al., 1997).  

- CCL2, CCL7, and CCL12  

C-C motif chemokine ligand (CCL)2, CCL7, and CCL12 mediate monocyte recruitment in 

response to Lm infection through C-C chemokine receptor type 2 (CCR2) expression on 

mesenchymal stem cells in the bone marrow, monocytes, and a subset of NK cells (Serbina et 

al., 2012). CCR2 is necessary for the emigration of monocytes from bone marrow (but not to 

infection foci in the spleen or liver), and its deficiency markedly increases the susceptibility of 

mice to Lm infection (Blériot et al., 2015; Jia et al., 2008; Kurihara et al., 1997; Shi et al., 

2010).  

- CCL3, CCL4, and CCL5 

CCL3, CCL4, and CCL5, are members of the monocyte chemotactic protein family and ligands 

of C-C chemokine receptor type 5 (CCR5) (Zhong et al., 2004). CCR5, like CCR2, is thought 

to play a role in NK cell recruitment to inflammatory sites (Bernardini et al., 2012; Kang et al., 

2008).  

   1.3.2.  Pro-inflammatory cytokines 

- IL-6 

IL-6 is a pleiotropic cytokine produced by a variety of cell types during Lm infection including 

KCs (Gregory et al., 1998) and other phagocytes of myeloid origin (Lücke et al., 2018) as well 

as mast cells (Soria-Castro et al., 2021). Mice treated with recombinant IL-6 prior to infection 

show enhanced bacterial clearance (Czuprynski et al., 1992; Liu et al., 1992). Il6 KO mice or 

mice treated with a neutralising anti-IL-6 mAb, on the other hand, fail to control Lm infection 

and succumb to sublethal doses as both the inflammatory acute phase response (APR) and the 

recruitment of neutrophils are impaired (Dalrymple et al., 1995; Hoge et al., 2013; Kopf et al., 

1994).  
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- IL-1α and IL-1β 

IL-1 was first identified as a pyrogen that was subsequently found to be, in fact, two proteins, 

later named IL-1α and IL-1β, encoded by IL1A and IL1B genes, respectively. Both IL-1α and 

IL-1β bind the same cellular receptors (IL-1RI and the decoy receptor IL-1RII) and induce 

similar immunological effects (Fields et al., 2019). IL-1α is already active in its primary 

precursor form but IL-1β requires processing by caspase-1 cleavage before secretion (Fields et 

al., 2019). IL-1 receptor inactivation by mAb neutralisation or Il1r1 gene KO increased 

bacterial loads by up to 1000- and 100-fold in the liver and spleen, respectively, but did not 

affect IL-6 or APP production (Havell et al., 1992; Labow et al., 1997). The combined mAb 

neutralisation of IL-1α, IL-1β, and IL-1RI in SCID mice increased mortality and bacterial load 

and impaired neutrophil migration  and peripheral blood leukocytosis, and reduced MHC-II 

expression in macrophages (Rogers et al., 1992; 1994).  

- IL-12 and IL-18 

IL-12 (a heterodimeric cytokine encoded by IL12A and IL12B genes) and IL-18 (encoded by 

IL18) are produced early in infection mainly by activated macrophages and DCs. Both are 

important mediators in the immune response to Lm, primarily through their induction of  

IFN-γ secretion by NK and CD8 T cells (Berg et al., 2003; Edelson, 2012; Humann and Lenz, 

2010; Kang et al., 2008; Tripp et al., 1994; 1993). While neither mAb neutralisation of IL-12 

(Tripp et al., 1994) nor IL-12 gene deletion (Brombacher et al., 1999; Seki et al., 2002) 

significantly affected bacterial burden or susceptibility of mice to low infectious doses of Lm, 

at higher doses susceptibility was significantly increased. IL-12/IL-18 double KO mice were 

even more susceptible than the single IL-12 KO (Seki et al., 2002). IL-12 mediates the 

differentiation of CD4 T cells into Th1-type effector cells: the neutralisation of this interleukin 

during Lm infection promotes Th2-type CD4 T cell differentiation and the IL-4 production 

associated with the Th2 immune response (Hsieh et al., 1993; Lee et al., 2013). 

- IL-23 and IL-17 

IL-23 is a heterodimeric pro-inflammatory cytokine of the IL-12 family (Vignali and Kuchroo, 

2012) and signals through its interaction with the heterodimeric IL-23 receptor (IL-23R), 

expressed on T cells, macrophages, and DCs (Sieve et al., 2010). IL-23 is secreted by activated 

macrophages and DCs and is involved in the generation and maintenance of IL-17-producing 

T cells and the induction of IL-17 secretion by γδ T cells (Indramohan et al., 2012; Meeks et 
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al., 2009). IL-17 promotes neutrophil and monocyte recruitment by inducing chemokine 

production (Indramohan et al., 2012) and is required for the generation of the Ag-specific CD8 

T cell response to primary Lm infection (Xu et al., 2010). Il23a KO mice displayed decreased 

production of IL-17 that led to impaired monocyte and neutrophil infiltration in the spleen and 

liver, respectively, leading to increased bacterial burdens in both organs and reduced survival 

(Graham et al., 2011; Indramohan et al., 2012; Meeks et al., 2009). In the intestine, Lm invasion 

of Peyer’s patches triggers the expression of IL-23 which in turn induces IL-17, IL-22, and IL-

11 production which is necessary for the intestinal epithelium response to infection that blocks 

intestinal villus invasion by Lm (as described in section A.6.1) (Disson et al., 2018).  

- TNF-α  

Tumor necrosis factor (TNF-α) owes its name to its potent anti-tumour activity (Carswell et 

al., 1975), and is a pleiotropic cytokine critical for cell trafficking, inflammation, maintenance 

of lymphoid organ structure, and host defence against pathogens, including Lm (Grivennikov 

et al., 2005). TNF-α is secreted mainly by monocytes and neutrophils (Carr et al., 2011) and is 

responsible for the initial activation of innate immune cells by triggering the first wave of  

IFN-γ production by NK cells, and mediating the recruitment of DCs and inflammatory cells 

to infection foci through the induction of CCL2 production (Bancroft et al., 1991; Grivennikov 

et al., 2005; Humann and Lenz, 2010; Lee et al., 2013; Tripp et al., 1993). Mice deficient in 

TNF-α production (Tnf KO) (Li et al., 2017), lacking the TNF-α receptor (Tnfr1 or Tnfr2 KO) 

(Erickson et al., 1994; Pfeffer et al., 1993; Rothe et al., 1993), or treated with an anti-TNF-α 

mAb (Bancroft et al., 1991; Havell, 1989; Nakane et al., 1988) are highly susceptible to Lm 

infection and succumb to sublethal IV or IP doses. Increased risk of human listeriosis has also 

been identified in patients treated with anti-TNF-α mAbs (Li et al., 2017).  

   1.3.3.  Anti-inflammatory cytokines 

Anti-inflammatory cytokines inhibit the production of pro-inflammatory cytokines and 

antagonise their antimicrobial effects.  

- IL-4 

IL-4 favours the alternative activation of macrophages and a Th2 type immune response that 

increases susceptibility to Lm (Kaufmann et al., 1997; Lee et al., 2013, Blériot et al., 2015). 

Mice treated with an anti-IL-4 mAb showed increased resistance to Lm infection, decreased 

bacterial burdens and earlier clearance (Haak-Frendscho et al., 1992). IL-4 production by 
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basophils in the liver is necessary, however, for the subsequent return to hepatic homeostasis 

following infection and the induction of monocyte proliferation to replace KCs eliminated 

during infection (Blériot et al., 2015).  

- IL-10 

IL-10 inhibits the production of TNF-α, IL-12, and IFN-γ in murine splenocytes in vitro (Tripp 

et al., 1993) and reduces the listericidal capacity of splenic macrophages by delaying 

phagosome maturation and reducing iNOS production in vivo (Liu et al., 2019). Mice deficient 

in IL-10 are highly resistant to systemic Lm infection and show decreased bacterial burdens, 

earlier clearance and an enhanced pro-inflammatory cytokine response (Carrero et al., 2006; 

Dai et al., 1997; Foulds et al., 2006). IL-10 has also been reported, however, to play a protective 

role in a murine Lm meningoencephalitis model (Deckert et al., 2001) and is implicated in the 

generation of memory and effector CD8 T cells (Foulds et al., 2006). 

 

Figure 20 | A simplified scenario of the role of chemokines and pro-inflammatory cytokines in the 

innate immune response to Lm in the liver. 
Liver resident macrophages – KCs – detect and capture Lm and secrete chemokines to recruit monocytes 
(e.g., CCL2) and neutrophils (e.g., CXCL1) to infection foci. Recruitment is facilitated by the 
interaction of the adhesion molecule ICAM-1 on the KC surface with CR3 expressed by infiltrating 
monocytes and neutrophils. Infiltrating and resident leukocytes secrete, in turn, various cytokines that 
induce the continued infiltration (e.g., IL-1α, IL-6) and activation (e.g., IL-1α, IL-1β) of effector cells, 
promote cytokine production (e.g., TNF-α, IL-12, IL-18 secreted by monocytes, macrophages, and 
neutrophils induce IFN-γ production by NK cells), and stimulate APP production in hepatocytes (e.g., 
IL-1β, IL-6, TNF-α secreted by KCs and monocytes). (Adapted from Cousens and Wing, 2000) 
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   1.3.4.  Interferons 

The term “interferon” was coined by Isaacs & Lindenmann in 1957 to describe a substance 

produced by cells inoculated with inactivated virus that “interferes” with viral infection (Isaacs 

and Lindenmann, 1957). More than two decades later it became clear that IFN is not one, but 

a family of cytokines, grouped today into three types designated as type I, II, or III IFN (Borden 

et al., 2007). IFN-I was the first to be discovered and is the largest IFN group consisting of 13 

or 14 IFN-α subtypes (in humans or mice respectively), IFN-β, -ε, -κ, -ω (humans) and -ζ, 

(mice). IFN-II has only one member: IFN-γ. Type III interferon (IFN-III) includes four IFN-λ 

subtypes: IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and IFN-λ4; in mice IFN-λ1 

and IFN-λ4 are pseudogenes (Lasfar et al., 2006), and polymorphisms in human gene sequence 

have led to the loss of IFN-λ4 expression in several human populations (Hamming et al., 2013; 

Prokunina-Olsson et al., 2013).  

- IFN signalling  

IFN-I and IFN-III are produced by a wide range of immune and non-immune cells upon sensing 

of PAMPs by cellular PRRs (as described in section C.1.1). IFN-γ, on the other hand, is 

produced by certain immune cells primarily in response to other cytokines (as described in 

section C.1.3) (Alphonse et al., 2021). IFNs signal in an autocrine and paracrine manner 

through their respective receptors to activate janus activated kinase/signal transducer and 

activator of transcription (JAK/STAT) signalling cascades, resulting in the expression of 

hundreds of genes, known collectively as ISGs or the “interferome” (Samarajiwa et al., 2008). 

ISGs are best known for their broad-spectrum cell-autonomous anti-viral activity, for which 

IFNs were discovered, but they also play an important role in the immune response to 

intracellular bacteria and parasites, and their immunomodulatory functions continue to be 

elucidated (Hubel et al., 2019; Schneider et al., 2014; Tan et al., 2021). The number and nature 

of ISGs expressed depend on the IFN type and subtype as well as cell-type signalling variations 

(Alphonse et al., 2021; Lee and Ashkar, 2018). IFN receptors each contain two unique receptor 

chains, one with low affinity and one with high affinity for IFN binding (Schneider et al., 2014). 

Although IFN-I and IFN-III signal through unrelated receptors – IFNAR (composed of 

IFNAR1/IFNAR2 subunits) and IFNLR (IFNLR1/IL10R2), respectively, they trigger the same 

signal transduction cascade to initiate the transcription of a similar set of genes whose 

expression is dependent on IFN-stimulated response element (ISRE) promoter sequences 

(Lazear et al., 2019) (Figure 21).  
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IFN-γ signals through the IFN-γ receptor (IFNGR), composed of IFNGR1 and IFNGR2 chains, 

and leads to the transcription of ISGs containing a γ-activation sequence (GAS) in their 

promoter sequence (Dussurget et al., 2014). Each IFN receptor subunit is non-covalently and 

constitutively associated with a kinase of the JAK family: JAK1 in the case of IFNAR2, 

IFNRL1, and IFNGR1; tyrosine kinase 2 (TYK2) for IFNAR1 and IL10R2; JAK2 for IFNGR2 

(Schneider et al., 2014). Upon IFN binding, JAK kinases form a functional complex that 

phosphorylate STATs resulting in STAT homo- (IFN-II) or hetero-dimerisation (IFN-I/III). 

Phosphorylated STAT1 homodimers form the IFN-γ activation factor (GAF) that translocates 

to the nucleus to activate of GAS-dependent gene expression, and STAT1/STAT2 associates 

with IRF9 to yield the IFN-stimulated gene factor 3 (ISGF3) complex that activates the 

transcription of ISRE-dependent genes (Schneider et al., 2014) (Figure 21). The IFN signalling 

cascade described above is referred to as canonical, but non-canonical signalling pathways 

have also been described, and involve non-classical modifiers of STATs which include, among 

others, the MAPK and PI3K/mTOR pathways (Majoros et al., 2017; Mazewski et al., 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21 | Signal transduction by type I, II, and III IFNs.  
Engagement of IFNAR1/IFNAR2 and IFNLR1/IL10R2 receptors by their respective ligands IFN-I and 
IFN-III, triggers the phosphorylation of JAK1/TYK2 kinases that activate STAT1 and STAT2. 
Phosphorylated STAT1/STAT2 heterodimers bind IRF9 to form the ISGF3 complex which translocates 
to the nucleus where it induces the expression of ISGs regulated by ISRE-dependent promoters. IFN-II 
binding to the IFNGR1/IFNGR2 receptor induces phosphorylation of JAK1/JAK2 kinases that activate 
STAT1. Phosphorylated STAT1 homodimers form GAF that translocates to the nucleus to induce the 
expression of ISGs regulated by GAS-dependent promoters. (Source: Schneider et al., 2014) 
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- Type II interferon: IFN-γ 

IFN-γ is perhaps the most critical cytokine for controlling primary Lm infection and is involved 

in both the innate and adaptive phases of the immune response (D'Orazio, 2019; Zenewicz and 

Shen, 2007). Resistance to systemic listeriosis is severely impaired in mice treated with a 

neutralising anti-IFN-γ mAb (Bancroft et al., 1987; Buchmeier and Schreiber, 1985) or in mice 

with targeted disruption of one of the IFNGR-coding genes (Ifngr1 or Ifngr2) (Dai et al., 1997; 

Huang et al., 1993; Lee et al., 2013) or the gene encoding IFN-γ (Ifng) (Harty and Bevan, 1995; 

Seki et al., 2002). In an IG murine listeriosis model using humanised E-cad mice (Disson et 

al., 2008), mAb-mediated neutralisation of IFN-γ and the use of Ifng KO mice illustrated the 

essential role of this cytokine in Lm-induced enterocyte proliferation, in controlling the 

bacterial burden in intestinal tissue and in limiting the dissemination of Lm to MLNs and the 

spleen (Disson et al., 2018; Reynders et al., 2011). IFN-γ activates macrophages and amplifies 

their listericidal activities through increased expression of ROS- and RNS-producing enzymes 

(Dussurget et al., 2014) and is essential for inducing the production of inflammatory cytokines 

by various innate immune cells (Dai et al., 1997; Kiderlen et al., 1984; Lee et al., 2013).  

- Type I interferons  

IFN-α and IFN-β are produced by both immune and non-immune cells in response to Lm 

infection in vitro (Bierne et al., 2012b; O'Riordan et al., 2002; Stockinger et al., 2009), and in 

vivo (Bergmann et al., 2013; Dresing et al., 2010; Solodova et al., 2011; Stockinger et al., 

2009). IFN-β expression is highest in the spleen, peaking at around 24 h, and Tip-DCs are the 

major source (Dresing et al., 2010; Solodova et al., 2011). While type I IFNs are generally 

potent antiviral mediators, their contribution to the outcome of bacterial infection is disparate 

due to their pleiotropic effects in distinct cell environments and at different stages in the 

infectious process (Boxx and Cheng, 2016; Carrero, 2013).  

Numerous studies have shown that IFN-I expression is detrimental to the host during systemic 

Lm infection. Mice deficient in IFN-I signalling, either through IFNAR1, IRF3, IRF7, or IRF9 

KO are more resistant to infection and exhibit bacterial burdens in the liver and spleen several 

orders of magnitude lower than their wild type (WT) counterparts at 3–4 days p.i. (Auerbuch 

et al., 2004; Carrero et al., 2004; Demiroz et al., 2021; O'Connell et al., 2004; Stockinger et al., 

2009). Multiple mechanisms have been proposed to explain the deleterious effect of IFN-I in 

Lm infection. IFN-I signalling enhances Lm infection-induced macrophage apoptosis 

(O'Connell et al., 2004; Stockinger et al., 2002; Zwaferink et al., 2008) as well as splenic 
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lymphocyte apoptosis (Carrero, 2013; Carrero and Unanue, 2006). IFN-I signalling has also 

been linked to the impairment of neutrophil recruitment during Lm infection (Dietrich et al., 

2010), due both to the induction of bone marrow neutrophil apoptosis (Dietrich et al., 2010; 

Navarini et al., 2006) and to IFN-I-mediated negative regulation of IL-17A+ γδ T cell 

expansion and IFN-I (and IL-12) antagonisation of IL-17 production by these cells (Curtis et 

al., 2009; Henry et al., 2010). IFN-I has also been implicated in impeding IFN-γ signalling by 

downregulating IFNGR1 expression at the transcriptional level (Eshleman et al., 2017; 

Kearney et al., 2013; Rayamajhi et al., 2010b), and, more recently, the ISG and negative 

regulator of IFN-I signalling ubiquitin-specific protease 18 (USP18) was shown to promote 

bacterial replication by inhibiting TNF-α signalling and subsequent ROS production in DCs 

(Shaabani et al., 2018). Another ISG, IFN-induced transmembrane protein 3 (IFITM3), was 

found to suppresses the proteolysis of ActA and LLO in macrophages, leading to increased Lm 

cell-to-cell spread (Tan et al., 2021). This is consistent with the results of a previous study by 

the same team in which the authors demonstrated the ability of IFN-I signalling to promote the 

cell-to-cell spread of Lm through enhanced ActA polymerisation (Osborne et al., 2017).  

It is of note, however, that several recent studies have, in contrast, highlighted a beneficial role 

for IFN-I during Lm infection, pointing to the infection route and the timing of IFN-I 

production as determinative factors. When the natural route of infection was employed, using 

Lm strains expressing murinised InlA, IFNAR KO mice showed either decreased or equivalent 

survival, and had similar bacterial loads in the liver and spleen compared to their WT 

littermates (Kernbauer et al., 2013; Pitts et al., 2016). Moreover, administering IFN-β to mice 

shortly after a lethal IV inoculation significantly prolonged their survival, suggesting a 

beneficial effect for the host during the early phase of Lm infection (Pontiroli et al., 2012).  

- Type III interferons: IFN-λ 

As IFN-I and IFN-III induce the same JAK/STAT signalling pathway, early studies suggested 

that IFN-III were functionally redundant with IFN-I, although it is now clear that IFN-I and 

IFN-III have distinct functions (Hemann et al., 2017; Stanifer et al., 2020). This is partly due 

to the differential expression of receptors in different tissues and cell types. IFNAR is 

ubiquitously expressed, albeit at highly variable levels, with binding sites ranging from 200 to 

up to 250,000 depending on the cell type (Zanin et al., 2021). IFNLR expression, on the other 

hand, is restricted to epithelial cells (Ank et al., 2008; Dickensheets et al., 2013; Lin et al., 

2016; Mordstein et al., 2010; Pott et al., 2011; Sommereyns et al., 2008; Zhou et al., 2007) and 
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a subset of immune cells, notably human and mouse neutrophils (Blazek et al., 2015; Broggi 

et al., 2017; Espinosa et al., 2017; Galani et al., 2017), macrophages (de Groen et al., 2015; 

Hou et al., 2009; Liu et al., 2012; Read et al., 2019; Wang et al., 2017), pDCs (Ank et al., 2008; 

Kelly et al., 2016; Yin et al., 2012), and human mDCs (Dolganiuc et al., 2012; Mennechet and 

Uze, 2006; Read et al., 2019). The kinetics and the magnitude of the IFN-I and IFN-III response 

also differ, contributing to producing the distinct physiological responses of these two IFN 

types. Whereas IFN-I induces the rapid and transient expression of ISGs with high amplitude, 

IFN-λ mediates long-lasting expression of ISGs with lower amplitude (Forero et al., 2019; Jilg 

et al., 2014; Marcello et al., 2006; Pervolaraki et al., 2018; Pulverer et al., 2010).  

The use of Ifnlr1 and double Ifnl2/3 KO mice and cell lineage-specific Ifnlr1 deletion has 

contributed greatly to the identification of non-redundant functions for IFN-III in immunity, 

and has highlighted the particular importance of this IFN type at epithelial barriers and mucosal 

surfaces (Lee and Baldridge, 2017; Stanifer et al., 2020; Walker et al., 2021; Ye et al., 2019). 

IFN-III, and specifically IFN-λ1, is, for example, the predominant IFN type produced by 

human hepatocytes in response to hepatitis C virus (HCV) infection and is associated with ISG 

upregulation and the inhibition of viral replication (Marukian et al., 2011; Park et al., 2012; 

Thomas et al., 2012). In response to influenza A virus, respiratory epithelial cells primarily 

produce and respond to IFN-III (Jewell et al., 2010; Mordstein et al., 2010). Intestinal epithelial 

cells express low levels of IFNAR and respond poorly to IFN-I but are potent producers of 

IFN-III in response to enterovirus infection and respond strongly to this IFN (Hernández et al., 

2015; Lin et al., 2016; Mahlakõiv et al., 2015; Su et al., 2020). In murine rotavirus and 

norovirus gastroenteric infection models, IFN-III is the predominant IFN type responsible for 

eliciting ISG expression that mediates viral clearance (Mahlakõiv et al., 2015; Nice et al., 2015; 

Pott et al., 2011).  

IFN-III has been shown to have immunomodulatory properties and to exert similar anti-viral 

activity to IFN-I without the tissue-damaging inflammatory response associated with IFN-I 

signalling (Blazek et al., 2015; Broggi et al., 2017; Davidson et al., 2016; Forero et al., 2019; 

Galani et al., 2017). Recent studies have, however, highlighted IFN-III mediated aggravation 

of lung pathology and inflammation including reduced epithelial barrier integrity during 

respiratory viral infection, resulting in increased susceptibility to bacterial superinfections 

(Broggi et al., 2020a; Major et al., 2020; Read et al., 2021). 
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While the expression of IFN-III genes is known to be induced by multiple bacterial pathogens, 

including Lm, in a variety of human and murine cell types, including epithelial cells, in vitro 

(Bierne et al., 2012b; Lebreton et al., 2011; Odendall et al., 2014; 2017; Peignier et al., 2020), 

few studies have examined the contribution of IFN-λ to bacterial clearance or pathogenesis in 

vivo (Cohen and Parker, 2016; Kotenko et al., 2019). Both Staphylococcus aureus and 

Pseudomonas aeruginosa were found to activate IFN-III signalling in the lungs, and clearance 

of both bacteria was improved in IFNLR KO versus WT mice (Cohen and Prince, 2013; Pires 

and Parker, 2018). IFNLR deficiency also enhanced bacterial clearance from the lungs and 

protected mice from bacteraemia following Klebsiella pneumoniae intranasal inoculation (Ahn 

et al., 2019). Although the role of IFN-III in Lm infection has not been characterised, the 

modulation by a Lm virulence factor of ISG expression downstream of IFN-III signalling in 

intestinal epithelial cells suggests a role for IFN-λ in the host response to infection by this 

pathogen (see section C.5) (Lebreton et al., 2011; 2012).  

 2.  The adaptive immune response to Lm  

Early studies using mice that lack the lymphocytes or the MHC-I molecules necessary for an 

adaptive immune response highlighted the necessity of adaptive immunity in the total clearance 

of Lm (Bhardwaj et al., 1998; Emmerling et al., 1975; Ladel et al., 1994). These mice mount 

an efficient response in the early stages of infection and do not succumb to infection but are 

unable to clear the bacteria within the duration of the studies (up to 60 days). Conventional 

mice, on the other hand, mount an adaptive immune response at around 4 days p.i., and not 

only clear the infection within 7–10 days but become highly resistant to a subsequent lethal 

challenge (Pamer, 2004).  

Sterilising and long-term immunity was later found to rely on cell-mediated rather than 

antibody-mediated immunity, and, in particular, on the expansion and maintenance of antigen-

specific CD8 T cells (Harty et al., 1996; Qiu et al., 2018). CD8 T cells have bactericidal activity 

through direct cytolytic activity on infected host cells and, along with CD4 T cells, participate 

in cytokine production (notably TNF-α and IFN-γ) (Grivennikov et al., 2005; Zenewicz and 

Shen, 2007). The acquisition of Lm-derived antigens by DCs in the spleen is important for the 

priming of CD8 T cells (Broadley et al., 2016; Neuenhahn and Busch, 2007). Most of these 

antigens derive from virulence factors secreted by Lm into the host cell cytosol and are 

presented in the context of MHC-I molecules that tag the infected cell for targeted destruction 

by CD8 T cells (Chávez-Arroyo and Portnoy, 2020; Witte et al., 2012).  
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3.  The transcriptional response to Lm infection 

Regulation of gene expression at the transcriptional level is essential in order for each cell to 

respond to infection upon PRR sensing of PAMPs by activating the signalling pathways 

described in section C.1.1. The transcriptional landscape is reshaped upon infection not only 

through the activity of TFs, but also by epigenetic factors that remodel chromatin (DNA 

packaged histone complexes called nucleosomes) by means of histone modifications to render 

DNA more or less accessible to transcription (Bierne and Hamon, 2020; Eldridge et al., 2020a).  

Since the turn of the century, transcriptional profiling of virus- or bacteria-infected cells or 

tissue using microarrays, and more recently RNA-sequencing (RNA-seq), has been widely 

employed to reveal large-scale changes upon infection to the host genetic program. The effects 

of pathogens on host cell gene expression include a common “core host response” independent 

of cell-type or pathogen as well as cell-type and pathogen specific patterns (Jenner and Young, 

2005; Kidane et al., 2013; Singhania et al., 2019; Tran Van Nhieu and Arbibe, 2009). The 

transcriptomic response to Lm infection has focused mainly on innate immune cells, notably 

primary human or murine macrophages or monocytes (Abdullah et al., 2012a; Herskovits et 

al., 2007; Leber et al., 2008; McCaffrey et al., 2004; Nau et al., 2002; 2003; Perez et al., 2017; 

Rayamajhi et al., 2010a; Tchatalbachev et al., 2010) or macrophage-like cell lines (Carrasco-

Marín et al., 2012; Cohen et al., 2000), primary DCs (Pontiroli et al., 2012; Popov et al., 2006; 

2008), mast cells (Dietrich et al., 2010), or neutrophils (Kobayashi et al., 2003). In regard to 

the transcriptional response in unique cell types, four studies have been published in which the 

transcriptional response to Lm in epithelial cells was examined (Baldwin et al., 2002; Besic et 

al., 2020; Eskandarian et al., 2013; Johnson et al., 2021), two of which were published in the 

last 12 months. One study whose focus was on the host response to Lm infection of the brain 

microvascular endothelial cell line HBMEC has also been published (Wang et al., 2011).  

In addition to analysis in unique cell types, the global transcriptional response to Lm has been 

examined in murine blood (Dieterich et al., 2008; Ng et al., 2005; Pitt et al., 2016; Singhania 

et al., 2019) or tissue, including the small intestine (Archambaud et al., 2012; Lecuit et al., 

2007), the liver (Demiroz et al., 2021; Dieterich et al., 2008; Joseph et al., 2004; Ng et al., 

2005; Pitt et al., 2016), the spleen (Pitt et al., 2016), and the brain (Drevets et al., 2008) (Table 

S14, Descoeudres et al., 2021). While the number of publications is by no means insignificant, 

only a handful of the cited studies have dissected in detail the transcriptional response, for 

example (Cohen et al., 2000; Johnson et al., 2021; Leber et al., 2008; Lecuit et al., 2007), with 
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others providing little more than a short list of marker genes observed at a single timepoint, for 

example (Dieterich et al., 2008; Ng et al., 2005).  

These global transcriptomic analyses have generally revealed vastly reshaped host gene 

expression upon infection, with temporal and cell-type specific signatures. Transcriptomic 

profiling of the infected host cell using both WT and mutant Lm strains and transgenic mice 

has contributed greatly to establishing the roles of the different PRRs involved in Lm sensing 

in different cell types, and their associated signalling pathways, and the transcriptional response 

is largely the consequence of these signalling events. Various studies have also highlighted 

novel aspects of host-pathogen interactions, including the role of nuclear receptors involved in 

lipid metabolism (Abdullah et al., 2012a; Joseph et al., 2004), as well as epigenetic 

modifications (Eskandarian et al., 2013) in shaping the host response to Lm infection. 

  3.1.  Signalling pathways activated in response to Lm infection 

Global transcriptional analyses in different cell types have highlighted a number of signalling 

pathways that are commonly activated in all cell types in response to intracellular invasion by 

Lm, and result in both common and divergent gene expression programs. The host 

transcriptional response to Lm infection in both immune and non-immune cells is dominated 

by rapid NF-κΒ and MAPK pathway activation. Subsequent IRF3/IRF7 dependent gene 

expression profiles are observed involving IFN expression and downstream ISG induction 

upon cytosolic detection of Lm (Leber et al., 2008; O'Riordan et al., 2002) (Figure 23).  

   3.1.1.  Nuclear factor κB (NF-κΒ) signalling pathways  

The host transcriptional response to Lm infection is mediated largely through NF-κΒ–

dependent pathways. NF-κΒ activation occurs very rapidly in macrophages upon infection and 

does not require cytosolic detection (Hauf et al., 1997; 1994; Reimer et al., 2007). 

Transcriptomic studies have almost systematically highlighted the importance of NF-κΒ 

activation in the genetic reprogramming observed during infection (Baldwin et al., 2002; Besic 

et al., 2020; Cohen et al., 2000; Johnson et al., 2021; Leber et al., 2008; Lecuit et al., 2007; 

Nau et al., 2002).  

NF-κΒ is a family of inducible TFs, composed of five structurally related members – p50, p52, 

RELA/p65, RELB and c-REL – which mediate transcription of target genes by binding to a 

specific DNA element – κB enhancer – as various hetero- or homodimers. NF-κB proteins are 

normally sequestered in the cytoplasm by members of the IκB family of inhibitory proteins, 
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the best characterised being IκBα (encoded by the gene NFKBIA). NF-κΒ members p50 and 

p52 are synthetised as large precursors, NF-κB1/p105 (encoded by NFKB1) and NF-κB2/p100 

(NFKB2), respectively, from which the C-terminal region containing ankyrin repeats is post-

translationally cleaved. These C-terminal regions are structurally and functionally analogous 

to IκB inhibitory proteins. The primary mechanism for canonical NF-κB activation is via the 

ubiquitin-dependent degradation of IκBα following its phosphorylation by the trimeric IκB 

kinase (IKK) complex composed of two catalytic subunits (IKKα and IKKβ) and a regulatory 

subunit NF-κB essential modulator (NEMO or IKKγ). Proteasomal degradation of IκBα results 

in rapid and transient nuclear translocation of NF-κB and the transcription of target genes. The 

non-canonical pathway involves the activation of NF-κB inducing kinase (NIK, or MAP3K14), 

which leads to the proteolytic processing of NF-κB2 to p52, and the nuclear translocation of 

the noncanonical NF-κB complex p52/RelB (Sun, 2017; Zhang et al., 2017a) (Figure 22). Non-

canonical NF-κB signalling occurs upon stimulation of a subset of the tumour necrosis factor 

superfamily receptors (TNFRs) and is slower and longer-lasting than canonical signalling that 

is triggered by a large variety and number of signals (Dorrington and Fraser, 2019).  

The importance of NF-κΒ signalling in Lm infection is illustrated by the defective clearance of 

bacteria in mice deficient in the p50 subunit of NF-κΒ, with bacterial loads in the spleen several 

log superior to that of WT mice (Sha et al., 1995). MAP3K14, the gene encoding NIK, was one 

of only six genes (as was MYD88, encoding the TLR signalling adaptor protein) identified in a 

screen of over 350 ISGs found to restrict Lm infection in fibroblasts (Perelman et al., 2016). 

MAP3K14 was observed to be highly upregulated in infected colon epithelial cells (Baldwin et 

al., 2002) and other genes encoding both canonical and non-canonical NF-κΒ family members 

and inhibitory proteins are often upregulated by Lm infection (Baldwin et al., 2002; Johnson et 

al., 2021; Kobayashi et al., 2003; Nau et al., 2002; Tchatalbachev et al., 2010). The 

manipulation of NF-κΒ signalling by Lm (detailed in section C.4) also attests to the importance 

of these TFs.  

Although NF-κB is a fairly simple regulatory system, it responds to a large variety and number 

of signals that are interpreted into different patterns of gene expression in different cell types 

and biological contexts, depending on the NF-κB dimer and the presence of other TFs at 

specific promotor or enhancer sequences (Zhang et al., 2017a). The expression of IFN-β is, for 

example, the result of the cooperation of NF-κB with other TFs: the IFNB1 promoter contains 

NF-κB binding sites as well as two ISREs (Iwanaszko and Kimmel, 2015), thus requiring both 

IRF3 and NF-κB for expression, as observed in vitro (Leber et al., 2008; Reimer et al., 2007).  
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Figure 22 | Canonical and non-canonical NF-κB pathways.  
The canonical NF-κΒ pathway is triggered by signals from a large variety of immune receptors, which 
activate the kinase TAK1. TAK1 then activates the trimeric IKK complex via phosphorylation of IKKβ. 
The activated IKK complex phosphorylates, in turn, members of the IκB family (such as the 
prototypical IκBα and the IκB‐like molecule p105) which sequester NF‐κB members in the cytoplasm. 
Upon phosphorylation by IKK, IκBα and p105 are targeted for ubiquitin (Ub)‐dependent degradation 
in the proteasome, resulting in the nuclear translocation of canonical NF‐κB family members, which 
bind as various dimeric complexes to specific DNA elements, termed κB enhancers, of target genes. 
The non‐canonical NF‐κB signalling pathway, on the other hand, activates the NF‐κB inducing kinase 
(NIK). NIK phosphorylates and activates IKKα, which, in turn, phosphorylates p100, triggering 
selective degradation of its C‐terminal IκB‐like structure and leading to the generation of p52 and the 
nuclear translocation of p52 and RELB. (Source: Sun, 2017) 
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   3.1.2. Mitogen-activated protein kinase (MAPK) signalling 

pathways 

MAPK pathways are activated upon PRR sensing of PAMPs and consist of a series of at least 

three kinases: a MAPK kinase kinase (MAP3K) that activates a MAPK kinase (MAP2K), 

which in turn activates a MAPK. Three major MAPK families exist: the extracellular signal-

regulated kinase (ERK), mitogen-activated protein kinase 14 (p38), and Jun N-terminal kinase 

(JNK) (Arthur and Ley, 2013). The phosphorylation of MAPKs activates the TF activator 

protein 1 (AP-1) (composed of FOS/JUN family hetero- or homodimers) which contributes to 

the host transcriptional response to Lm (Eldridge et al., 2020a) (Figure 23).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 23 | The host transcriptional response to Lm infection common to both immune and  

non-immune cells.  
The host transcriptional response to Lm infection in both immune and non-immune cells is dominated 
by rapid NF-κΒ and MAPK pathway activation upon PRR sensing of extracellular or intracellular 
bacteria, followed by IRF3/7 dependent IFN signalling and downstream ISG expression upon Lm 
detection by intracellular PRRs. (Source: Eldridge et al., 2020a) 

 3.2.  Gene expression signatures in immune, endothelial, and epithelial cells  

The early host transcriptional response to Lm infection is generally dominated by 

transcriptional activation, with gene repression increasing as the infection progresses (Besic et 

al., 2020; Cohen et al., 2000; Drevets et al., 2008; Pontiroli et al., 2012; Wang et al., 2011). 

This early transcriptional activation includes the upregulation of cytokine – especially 

chemokine – as well as adhesion molecule expression, and is common to all immune (Abdullah 
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et al., 2012a; Cohen et al., 2000; Dietrich et al., 2010; Herskovits et al., 2007; Leber et al., 

2008; McCaffrey et al., 2004; Nau et al., 2002; Pontiroli et al., 2012; Tchatalbachev et al., 

2010) and non-immune cells including epithelial (Baldwin et al., 2002; Besic et al., 2020; 

Eskandarian et al., 2013; Johnson et al., 2021) and endothelial cells (Wang et al., 2011). This 

signature is observed in the intestine (Archambaud et al., 2012; Lecuit et al., 2007), the liver 

(Demiroz et al., 2021; Joseph et al., 2004; Pitt et al., 2016), and the brain (Drevets et al., 2008) 

and reflects the importance of cell signalling to induce the chemotaxis of circulating neutrophils 

and monocytes, essential in controlling early infection, and to activate both resident and 

infiltrating immune cells.  

  3.3.  The host transcriptional response to Lm infection in immune cells 

   3.3.1.  Macrophages  

The first transcriptomic data of the host response to Lm infection was obtained in the human 

monocyte cell line THP-1 at 2 h p.i. (Cohen et al., 2000). Higher fold changes that were more 

reproducible in the upregulated gene set resulted in a final tally of 74 upregulated and 23 

downregulated genes. A dramatic upregulation of chemokines, of the pro-inflammatory 

cytokines IL-1 and TNF-α, as well as surface proteins involved in the recruitment and 

activation of immune effector cells was observed. Genes involved in iron sequestration and 

storage, as well as 11 antiapoptotic genes were upregulated (Cohen et al., 2000).  

A subsequent seminal research work using primary murine BMDM to assess the host 

transcriptional response at four different timepoints over 8 h showed Lm to induce two basic 

categories of genes: an "early/persistent" cluster consistent with NF-κB-dependent responses 

downstream of TLRs, and a distinct "late response" cluster largely composed of ISGs and 

including IFN-β gene upregulation (McCaffrey et al., 2004). While the early/persistent cluster 

was strongly enriched for activated genes, approximately one third of the genes in the late 

response cluster were repressed. These included many genes involved in cell cycle regulation 

(including cell proliferation activator MYC proto-oncogene (MYC)), DNA replication, and 

nucleic acid metabolism, consistent with the role of IFNs as physiological growth inhibitors 

that affect the cell cycle. McCaffrey et al. also compared the BMDM response to WT Lm, able 

to access the host cell cytosol, to that of a LLO-deficient strain unable to escape from the 

primary internalisation vacuole (LmΔhly), as well as heat-killed Lm, and found the late 

response cluster to be unique to WT Lm, with LmΔhly and heat-killed Lm inducing only the 

universal early/persistent response. The distinct "late response" was not, however, unique to 
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Lm, as it was also triggered by a strain of LLO-expressing Bacillus subtilis, able to access the 

macrophage cytosol (McCaffrey et al., 2004). A subsequent study by the same group 

demonstrated that IFN-γ activation of BMDMs prior to Lm infection enhanced their 

bactericidal activity, resulting in phagosomal-degraded bacteria that induced IFN-β expression 

characteristic of cytosolic bacteria, even when the vacuole-restricted Δhly strain was employed 

(Herskovits et al., 2007). Leber et al. went a step further and, using both host and pathogen 

mutagenesis in a “genetics-squared” approach (Persson and Vance, 2007), elegantly 

demonstrated that the vacuolar "early/persistent" response was MyD88 dependent, and the 

cytosolic IFN/ISG response was MyD88-independent but IRF3-dependent (Leber et al., 2008). 

While pro-inflammatory cytokines IL-1α, IL-1β, and TNF-α and chemokines such as CXCL1 

and CXCL2 were expressed in response to the Δhly Lm strain in WT BMDM, IFN-β and ISG 

expression was unique to WT Lm in MyD88 KO BMDM (Leber et al., 2008). In subsequent 

studies, both the ligand (c-di-AMP) and the PRR (STING) were identified as being at the origin 

of cytosolic sensing of Lm and subsequent IFN-I expression (Burdette et al., 2011; Woodward 

et al., 2010) (Figure 19).  

The transcriptional response to Lm observed in cultured murine BMDM at 10 h p.i. also 

revealed striking differential expression of genes involved in IFN-γ signalling (Rayamajhi et 

al., 2010b). The genes encoding the TF STAT1 and the kinase JAK2, involved in both  

IFN-I/III and IFN-II signalling were upregulated 10-fold in infected macrophages while Ifngr1, 

specific to IFN-γ signalling, was downregulated almost 7-fold. This transcriptional 

downregulation was confirmed in vivo and corresponded with decreased cell-surface IFNγR in 

splenic myeloid cells and BMDMs. Secreted IFN-α/β was found to regulate the MyD88-

independent downregulation observed, revealing a new facet of the antagonistic crosstalk 

between type I and type II IFNs (Rayamajhi et al., 2010b).  

The gene expression profile of splenic CD169+ macrophages isolated from infected mice was 

compared to those isolated from non-infected mice at 12 h p.i. (Perez et al., 2017). Lm infection 

resulted in CD169+ macrophages displaying an inflammatory macrophage (M1) signature 

characterised by an upregulation of genes related to immune system responses, defence 

responses, inflammatory responses, innate responses, and response to bacterium. A total of 795 

differentially expressed genes (DEGs) were identified in infected CD169+ macrophages 

compared to cells from uninfected mice and included many of the genes previously identified 

by in vitro infection of the human macrophage cell line THP-1 or of primary murine 
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macrophages, including genes encoding pro-inflammatory cytokines as well as accessory 

molecules of inflammatory cytokine receptors (Perez et al., 2017). 

As is the case in Mycobacterium spp.- or Salmonella-infected macrophages, the nuclear 

receptor peroxisome proliferator-activated receptor γ (PPARγ) was found to be upregulated in 

primary human peripheral blood mononuclear cell (PBMC)-derived CD14+ monocytes within 

1 h p.i. with Lm (Abdullah et al., 2012a). PPARγ is best known as the master regulator of fatty 

acid storage and glucose metabolism in adipose tissue but is increasingly recognised as an 

important regulator of lipid metabolism and immune function in leukocytes (Hernandez-Quiles 

et al., 2021). Transcriptomic analysis of the Lm-infected primary human monocytes at a later 

timepoint (24 h p.i.) revealed that around 15% of deregulated genes are known to be regulated 

by PPARγ. The authors went on to characterise the role of PPARγ in Lm infection in the murine 

listeriosis model and found that myeloid-specific PPARγ deletion increased survival, resulted 

in decreased bacterial loads in the liver and spleen, increased the expression of essential 

inflammatory mediators (i.e., IFN-γ, TNF-α, IL-12), and led to improved monocyte 

recruitment. Increased bactericidal function of PPARγ KO compared to PPARγ WT 

macrophages was also observed in vitro (Abdullah et al., 2012a). PPARγ activation in 

macrophages is known to drive the alternative M2 macrophage phenotype, and can repress 

inflammatory cytokine expression through the transrepression of NF-κB and the stabilisation 

of co-repressor complexes on promoters of pro-inflammatory genes (Hernandez-Quiles et al., 

2021). Interestingly, liver X receptor (LXR), another member of the nuclear receptor family, 

can transrepress NF-κB target genes in the same manner as PPARγ (Schulman, 2017), yet LXR 

ablation renders mice more susceptible to Lm (Joseph et al., 2004) (detailed in section C.3.6.2).  

   3.3.2.  Dendritic cells  

CD8α+ cDC are primary targets of Lm in systemic listeriosis (detailed in section C.1.2), and 

the DC transcriptional response to Lm infection has been examined in both D1 cells, a spleen-

derived murine DC line (Pontiroli et al., 2012), and in primary human immature DCs generated 

from blood-derived monocytes (Popov et al., 2006; 2008). D1 cells were exposed to Lm for  

2–24 h and their gene expression profiles broadly grouped into “early” (2–4 h p.i.), “middle” 

(8–12 h p.i.) and “late” (24 h p.i.) responses as described by Portnoy and colleagues 

(McCaffrey et al., 2004). The highest proportion of upregulated compared to downregulated 

DEGs was observed at the earliest timepoints, with “middle” and “late” DEGs equally up- and 

downregulated. The number of DEGs progressively increased between the early and the late 
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time points. A large number of genes encoding signalling molecules, receptors and adhesion 

molecules, and TFs, as well as genes encoding enzymes and anti-apoptotic molecules and genes 

involved in tissue remodelling were identified as differentially regulated by Lm infection. In 

particular, gene clusters corresponding to the early response were enriched in genes involved 

in the “cytokine-cytokine receptor interaction”, “chemotaxis”, and “locomotion” Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. The late cluster was characterised by 

the presence of IFN-I-coding genes and ISGs. IFN-β and IFN-α transcript upregulation was 

first detected at 4 h and 8 h p.i., respectively, but peak expression was observed at 24 h p.i. 

(Pontiroli et al., 2012). This late upregulation suggests that IFN-I expression requires cytosolic 

detection of Lm in DCs, as has been reported previously for macrophages and other cells (Feng 

et al., 2005; O'Riordan et al., 2002; Stockinger et al., 2002).  

   3.3.3.  Neutrophils  

Kobayashi et al. uncovered a common pathogen-induced transcription profile in 

polymorphonuclear cells (PMNs or neutrophils) following phagocytosis of the Gram-positive 

bacteria Lm, S. aureus, and Streptococcus pyogenes, and the Gram-negative bacteria Borrelia 

hermsii and Burkholderia cepacia (Kobayashi et al., 2003). Neutrophil gene deregulation 

increases with time following phagocytosis. With the exception of S. pyogenes, few pathogen-

specific changes in neutrophil gene expression after phagocytosis were observed. Genes 

upregulated from 90 min p.i. included TNF, consistent with recent studies that highlight the 

importance of neutrophils in the production of this inflammatory cytokine that is key in 

mediating Lm clearance (Carr et al., 2011). Genes encoding proteins involved in the activation 

and recruitment of immune effector cells as well as components of the TLR2, MAPK, and  

NF-κB signal transduction pathways were upregulated. The authors observed that the 

phagocytosis of bacteria initiates an apoptosis differentiation program in human PMNs that 

facilitates neutrophil programmed cell death, with almost 20% of total DEGs classed as 

apoptosis or cell fate related. The phagocytosis of bacteria was indeed found to accelerate PMN 

apoptosis (Kobayashi et al., 2003), as has been confirmed in more recent studies (Brostjan and 

Oehler, 2020; Fox et al., 2010).  

   3.3.4.  Mast cells  

Dietrich et al. compared the transcriptional response to Lm and Salmonella enterica serovar 

Typhimurium (S. Typhimurium) at 6 h p.i. of primary bone marrow derived mast cells 

(BMMCs) to that of BMDM (Dietrich et al., 2010). Lm and S. Typhimurium adhere to mast 
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cells, but they are not internalised, as opposed to the rapid phagocytosis of these bacteria by 

macrophages. A much larger number of genes was upregulated by both the Gram-positive and 

Gram-negative bacteria in macrophages compared to mast cells (1,421 versus 248 genes) 

(Dietrich et al., 2010). Bacterial activation of mast cells by Lm and S. Typhimurium was found 

to result in the upregulation of pro-inflammatory cytokine gene expression (i.e., Tnfa, Il1a, 

Il1b, Il6) but not Ifnb1 or downstream ISG expression, as was observed in macrophages. This 

is consistent with the dogma that cytosolic detection is not required to activate the expression 

of pro-inflammatory cytokines but is required for IFN-I gene and downstream ISG expression 

(Dietrich et al., 2010), as previously described in macrophages (Aubry et al., 2012; Leber et 

al., 2008).  

  3.4.  The host transcriptional response to Lm infection in endothelial cells 

Neurolisteriosis involves the invasion of human brain microvascular endothelial cells 

(HBMEC) that constitute (together with astrocytes and pericytes) the blood-brain barrier and 

the first line of defence against CNS infection (Banović et al., 2020; Ghosh et al., 2018; Wang 

et al., 2011). Cultured HBMEC cells infected for 4 h showed a large-scale reprogramming of 

gene expression, with twice as many activated versus repressed genes (Wang et al., 2011). The 

most highly activated pathway at this early timepoint was the N-formyl-methionyl-leucyl-

phenylalanine (fMLP) pathway. As N-formylated peptides such as fMLP play a key role in 

host defence as potent chemoattractants for phagocytic leukocytes (He and Ye, 2017), the 

upregulation of the fMLP pathway, in addition to the upregulation of chemokines, highlights 

the importance of the recruitment of neutrophils, NK cells, and T cells to the blood brain barrier 

during early Lm infection (Wang et al., 2011). Primary human umbilical vein endothelial cells 

(HUVEC) were also found to respond to Lm infection by producing essentially pro-

inflammatory cytokines and chemokines and by upregulating the expression of adhesion 

molecules such as ICAM-1 and E-selectin, as well as increasing nitric oxide synthesis (Drevets, 

1997; Krüll et al., 1997; Rose et al., 2001; Schmeck et al., 2005; 2006). 

  3.5.  The host transcriptional response to Lm infection in epithelial cells 

The earliest research work employing microarray technology to examine the host response to 

Lm infection in epithelial cells employed the human colon epithelial cell line Caco-2. Baldwin 

et al. infected Caco-2 cells for 30 min to 8 h and examined the transcriptional response at five 

different timepoints to discover a predominantly NF-κB pathway-dominated transcriptomic 

signature (Baldwin et al., 2002). Of the 50 most highly induced genes, 20% encoded proteins 
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that are either involved in NF-κB signal transduction or activated by NF-κB such as the 

chemokines and adhesion molecules IL-6, CXCL1, CXCL2, ICAM-1, as well as MAPK-

activated transcription factors FOS and JUN (AP-1 subunits), MYC, and the PRRs TLR2 and 

CD14. Surprisingly, the same signature was observed in Caco-2 cells infected with LmΔactA 

or ΔprfA, suggesting the absence of a transcriptomic signature specific to the presence of motile 

or cytoplasmic bacteria that was later observed in macrophages (Baldwin et al., 2002; Leber et 

al., 2008; McCaffrey et al., 2004).  

The infection of the human epithelial cervix carcinoma cell line HeLa with either WT Lm or a 

Lm strain that remains vacuolar (LmΔhlyΔplc), however, provided the first evidence that the 

cytosol-specific transcriptomic response observed in macrophages (Leber et al., 2008; 

McCaffrey et al., 2004) also exists in epithelial cells (O'Riordan et al., 2002). The presence of 

Lm in the cytosol was necessary to activate the expression of IFN-β and CXCL8 in HeLa cells 

as in non-activated BMDMs (O'Riordan et al., 2002). On the other hand, the induction of  

IFN-λ expression was only partially reduced upon infection with a vacuole-confined LLO-

deficient Lm strain, compared to the WT strain, in the human epithelial colon carcinoma cell 

line LoVo (Bierne et al., 2012b).  

In LoVo cells, host gene expression in the first 5 h p.i. is dominated by transcriptional 

activation (121 upregulated versus 49 downregulated DEGs) (Besic et al., 2020), as observed 

by Baldwin et al. in the human colorectal adenocarcinoma cell line Caco-2 (Baldwin et al., 

2002). The early transcriptional activation led to a pronounced induction of genes associated 

with pro-inflammatory and IFN-I responses to Lm invasion, with chemokines and other 

cytokines (CXCL1, CXCL2, CXCL8, CCL2, granulocyte-macrophage colony-stimulating 

factor (GM-CSF), lymphotoxin-beta (LTB), TNF-α) upregulated from the earliest timepoint 

examined (2 h p.i.). At 10 h p.i., the up- or downregulation of other pathways emerged, 

including protein catabolic response, chromatin silencing, histone modification, and 

mitochondrial metabolism (Figure 24A). The promoter regions of upregulated genes were 

analysed for the enrichment of TF binding sites. As expected, NF-κB binding sites dominated 

and had high normalised enrichment scores, highlighting the early induction of NF-κB-

dependent signalling during Lm infection of epithelial cells (Besic et al., 2020).  
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Transcriptomic analysis of primary human trophoblasts at 5 h p.i., revealed a transcriptomic 

signature dominated by gene activation with 359 upregulated genes and only 26 genes 

significantly downregulated (Johnson et al., 2021) (Figure 24B). 41 of the upregulated DEGs 

have transcriptional activity and include NF-κB subunits, FOS/JUN family TFs, IRFs, and 

MYC. Genes encoding pro-inflammatory cytokines (TNF-α, IL-1α/β, GM-CSF, IL-23A) and 

anti-inflammatory molecules (IL-10, IL-1RA) were upregulated as well as chemokines CCL2, 

CCL3, CCL4, CCL20, CXCL1, CXCL2, CXCL3, IL-6, CXCL8, and adhesion molecules 

CD40 and ICAM-1 and T cell ligand CD80. All three IFN-λ isoform transcripts (IFNL1, 

IFNL2, IFNL3), but no IFN-I-coding genes, were upregulated. KEGG pathway analysis 

revealed that Lm infection upregulated genes encoding proteins involved in TLR2, NLR, and 

cytosolic DNA sensing pathways, as well as in downstream signalling pathways NF-κB, 

MAPK, PI3K-protein kinase B (Akt), and JAK-STAT. Gene Ontology of Biological Processes 

(GOBPs) enriched in the upregulated gene set include terms related to the inflammatory and 

immune response, transcriptional regulation, cell-cell signalling and signal transduction, and 

the negative regulation of apoptosis and cell proliferation (Johnson et al., 2021). 

 

Figure 24 | The transcriptional response to short term Lm infection in epithelial cells.  
(A) Enrichment analysis of GOBP terms for genes up- or downregulated (relative to non-infected cells) 
at 2, 5, or 10 h p.i. in LoVo cells. (B) DEGS identified at 5 h p.i. in primary human trophoblasts were 
classed based on their known function. These divergent means of analysing and representing RNA-seq 
data obtained from Lm-infected epithelial cells converge to portray the domination of gene activation 
versus gene repression in the early host transcriptional response. Functions related to the immune 
response, signal transduction (notably NF-κB and IFN signalling), and apoptosis are enriched in the 
upregulated gene sets. (Source: Besic et al., 2020 (A); Johnson et al., 2021 (B)) 

Contrary to the predominantly upregulated gene signature observed in other epithelial cell lines 

in the first 8 h of infection (Baldwin et al., 2002; Besic et al., 2020; Johnson et al., 2021), the 

transcriptomic response at 5 h p.i. in the human cervical adenocarcinoma cell line HeLa was 
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dominated by gene repression (Eskandarian et al., 2013), with the repression of 272 genes and 

the activation of 158. With the exception of one gene, all downregulated genes and 128 of the 

upregulated genes were found to be regulated by the histone deacetylase (HDAC) sirtuin 2 

(SIRT2) (Eskandarian et al., 2013). Lm was thus one of the first examples of an invasive 

bacterium reported to modify host gene expression through the induction of histone 

modifications (Dong and Hamon, 2020; Hamon et al., 2007; Schmeck et al., 2005). HDACs 

are generally associated with gene repression, as they remove the acetyl groups from histones 

that maintain chromatin in a more relaxed structure permissive to transcription (Eskandarian et 

al., 2013) (detailed in section C.5.1). Functional annotation of the 271 SIRT2-dependent 

downregulated DEGs revealed an enrichment in genes encoding DNA binding proteins and/or 

implicated in transcriptional regulation (Eskandarian et al., 2013).  

  3.6.  The host response to in vivo infection in the murine listeriosis model 

   3.6.1.  The intestine 

Two studies from the same laboratory investigated the host response to Lm in the intestine, in 

which germ-free transgenic mice expressing either human E-cad (Lecuit et al., 2001) or 

humanised E-cad (Disson et al., 2008) were infected via the IG route (Archambaud et al., 2012; 

Lecuit et al., 2007). Both report an intestinal response characterised by an upregulation of genes 

involved in immune responses and a downregulation of genes involved in lipid, amino acid, 

and energy metabolism.  

In Lecuit et al., the authors report of an intestinal response to Lm infection at 72 h (the timepoint 

that corresponds to peak levels of Lm in intestinal tissue and MLNs) that is dominated by 

transcriptional upregulation, with four times more upregulated than down regulated genes. 

Gene networks created from upregulated genes in the top functional categories revealed the 

activation of, among others, JAK/STAT, TLR, antigen presentation, NF-κB, GM-CSF, 

ERK/MAPK, PI3K-Akt, and apoptotic signalling pathways. Interestingly, this transcriptional 

signature was attenuated but generally maintained in the absence of InlA or of both InlA and 

InlB expression by Lm. An LLO-deficient strain, however, did not produce a similar 

transcriptional signature, and neither disseminated to the spleen nor induced lymphocyte 

recruitment to the lamina propria. This reflects both the necessity of cytosolic detection of Lm 

for the MyD88-dependent expression of certain chemokines and ISGs (Dolowschiak et al., 

2010; Leber et al., 2008; Serbina et al., 2003b) as well as the necessity of LLO in the infection 

process (as described in section A.6.3.3), and the importance of LLO in eliciting the host cell 
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response through the activation of a large number of signalling pathways (Lecuit et al., 2001) 

(as described in section C.4.1).  

In Archambaud et al., the intestinal transcriptional response was examined at an earlier 

timepoint (24 h p.i.) and found Lm infection to significantly affect the transcription of almost 

1,000 genes, with an almost equal number of up- and downregulated DEGs identified. 

Functional annotation of DEGs revealed deregulated pathways involved in immune response, 

intracellular signalling, nuclear receptor signalling, and xenobiotic metabolism as well as 

amino acid, carbohydrate, and lipid metabolism. The most significantly induced genes were 

involved in immune responses and included many ISGs, whereas genes related to host 

metabolism were highly repressed (Archambaud et al., 2012).  

   3.6.2.  The liver 

Research into the host transcriptomic response to Lm infection in the liver has highlighted the 

crosstalk between metabolism and the innate immune response. Increased susceptibility to 

systemic Lm infection and increased hepatic bacterial burden in mice deficient in LXR 

signalling led to the identification of the genes regulated by this lipid-metabolism associated 

nuclear receptor during infection (Joseph et al., 2004). In the liver of WT mice, 2-day Lm 

infection induced the expression of inflammatory cytokines and chemokines, including the 

monocyte chemotactic proteins CCL2, CCL7, and CCL12, as well as IL-5, IL-6, IL-12, and 

IFN-γ. The hepatic transcriptional response to Lm in LXR KO compared to WT mice revealed 

LXRs to be macrophage-specific negative regulators of many NF-κB-dependent inflammatory 

genes such as iNOS, IL-6, and IL-12 yet also direct positive regulators of CD5L (also known 

as SPα), an anti-apoptotic protein highly induced during Lm infection and more recently 

described as a regulator of lipid metabolism and inflammation (Sanchez-Moral et al., 2021). 

This work (Joseph et al., 2004) and associated work by Tontonoz and colleagues (Castrillo et 

al., 2003; Joseph et al., 2003) established a link between lipid metabolism and macrophage 

immune function and the inflammatory response, and is among the pioneering work at the 

origin of the emerging field of immunometabolism (Cardoso and Perucha, 2021; Mathis and 

Shoelson, 2011; Schulman, 2017).  

The crosstalk between metabolism and the innate immune response to Lm infection was further 

highlighted in a very recent publication in which the authors describe the transcriptomic and 

metabolomic signature of liver tissue obtained from mice infected via the IP route (Demiroz et 

al., 2021). 1390 genes were found to be significantly deregulated at 24 h p.i., and, in addition 
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to inflammatory and IFN pathways, gene set enrichment analysis (GSEA) also identified 

numerous metabolic pathways including oxidative phosphorylation (OXPHOS), bile acid and 

fatty acid metabolism, glycolysis, and adipogenesis related pathways. The profound metabolic 

changes suggested by this gene deregulation were investigated by metabolomic analyses that 

indicated increased OXPHOS and fatty acid oxidation and decreased glutaminolysis in the liver 

of infected mice and in infected BMDMs in vitro. Furthermore, this metabolic reprogramming 

was partially mediated by IFN-I signalling activated upon infection, as evidenced by comparing 

the response of Ifnar1 and Irf9 KO mice to that of WT mice (Demiroz et al., 2021). 

   3.6.3.  The brain  

Lethal systemic Lm infection was shown to modify gene expression in the brain even in the 

absence of CNS invasion (Drevets et al., 2008). Gene expression was analysed at daily intervals 

over a four-day infection time course. The number of significant DEGs was highest at 24 h p.i. 

(339 DEGs whose expression was modified at least 2-fold) and decreased progressively during 

the infection time course (37 DEGs at 96 h p.i.). At 24 h p.i. five times more activated than 

repressed genes were identified, whereas from 48 h p.i. the proportion of downregulated DEGs 

increased progressively to compose an almost exclusively downregulated gene signature at 

96 h p.i.  

Serum IFN-γ was found to be a critical trigger of the transcriptional response, although IFN-γ 

expression was not found to be upregulated in brain tissue. Functional annotation of DEGs 

revealed largely unique sets of signalling pathways at each infection timepoint: the only two 

pathways significantly deregulated at more than one timepoint were “NF-κB signaling” and 

“apoptosis signaling”. The activation of the NF-κB pathway was illustrated by the upregulation 

of genes encoding IFN-β1, IL-1α, IL-1β, and TNF-α, and ISGs were among the most highly 

upregulated DEGs. The genes encoding the chemokines CXCL9 and CXCL10, as well as  

E-selection were highly upregulated and are thought to mediate monocyte recruitment to the 

brain (Drevets et al., 2008). The LmΔhly deletion mutant failed to elicit the same response, 

confirming the role of LLO in promoting phagosomal escape to allow cytosol PAMP sensing, 

and in triggering the release of pro-inflammatory cytokines from infected cells (Dewamitta et 

al., 2010; Hamon and Cossart, 2011). It is interesting to note, however, the upregulation of 

IFN-I genes by cells that are not directly infected by Lm.  
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 4.  Lm virulence factors involved in the host transcriptional response 

As described above, the host transcriptional response to Lm infection is triggered by the 

detection of PAMPs, often bacterial structural components or metabolites that are common to 

different pathogens. In a simplified scenario of host-pathogen interactions, the transcriptional 

response is either initiated by the host and in favour of host survival and/or pathogen 

elimination (response to conserved bacterial PAMPs, for example) or instigated by specific 

pathogen virulence factors to subvert host protective responses or to modify host cell 

metabolism to ensure pathogen survival. In reality, however, the distinction is hazy, and the 

line hard to draw between pro-host and pro-pathogen responses. This is illustrated by the 

manipulation of host transcription by Lm virulence factors that often have pleotropic and 

opposing effects, and for which the physiological consequences are difficult to evaluate. 

Detailed here are the major Lm virulence factors described as playing a role in the 

transcriptomic response to Lm infection. Virulence factors can modify host cell transcription 

either through very specific interactions with host cell components (e.g., LntA), or through the 

initiation of a multitude of signalling pathways upon host cell membrane disruption that are 

common to PFTs and membrane damage in general (e.g., LLO).  

  4.1.  Listeriolysin O (LLO)  

LLO, the pore-forming toxin that mediates the escape of Lm from internalisation vacuoles, like 

other PFTs, is a potent regulator of cellular signalling and immunity (Cajnko et al., 2014). 

Extracellular LLO causes an influx of calcium ions and an efflux of potassium, initiating the 

activation of a large number of signalling pathways including the NF-κB pathway and the 

ERK1/2, p38, and JNK MAPK pathways (Gonzalez et al., 2011; Seveau, 2014) that contribute 

largely to the early transcriptional program initiated by Lm infection, as described in section 

C.3.1. In addition, LLO-induced signalling cascades can also result in epigenetic modifications 

– histone deacetylation and dephosphorylation – as observed in HeLa cells, resulting in the 

subsequent downregulation of key inflammatory genes (Hamon and Cossart, 2011; Hamon et 

al., 2007). Histone deacetylation and dephosphorylation is dependent on LLO-induced 

potassium efflux, and this ion efflux is also necessary for the cleavage and secretion of mature 

IL-1α and IL-1β from activated macrophages (Dewamitta et al., 2010; Hamon and Cossart, 

2011; Meixenberger et al., 2010) (Figure 25A). 
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  4.2.  Internalin B (InlB) 

Through its interaction with c-Met, as described in section A.6.3.1, InlB mediates the rapid and 

sustained activation of NF-κB in macrophages through a transient degradation of IκBα and the 

prolonged degradation of IκBβ (Mansell et al., 2001). NF-κB activation correlates with an 

increase in TNF-α and IL-6 production in an InlB dose-dependent manner and occurs via cell 

signalling that requires the small G-protein Ras-dependent activation of PI3K and downstream 

Akt phosphorylation (Mansell et al., 2001; 2000). Akt has been proposed to directly 

phosphorylate IKKα (Ozes et al., 1999), but the mechanism behind the involvement of the 

PI3K-Akt pathway in NF-κB activation remains controversial (Oeckinghaus et al., 2011). HGF 

activation of NF-κB is conversely independent of PI3K-Akt (Müller et al., 2002), consistent 

with the observation that InlB does not bind c-Met with the same affinity nor produce the same 

effects upon stimulation compared to HGF (Copp et al., 2003).  

The InlB-associated signalling pathway also contributes to the host transcriptional response to 

infection, by triggering the translocation of the NAD+ dependent deacetylase enzyme SIRT2 

to the nucleus, and the subsequent loci-specific deacetylation of histone H3 at lysine 18 

(H3K18) (Eskandarian et al., 2013). This process is dependent on host importin 7 (IPO7) for 

nuclear translocation (Eldridge et al., 2020b) and on protein phosphatases 1A/1B 

(PPM1A/PPM1B) which dephosphorylate SIRT2 at serine 25 (S25), allowing its association 

with chromatin (Pereira et al., 2018). SIRT2 activity during Lm infection causes widespread 

transcriptional changes (Eskandarian et al., 2013) (as described in section C.3.5). SIRT2-

mediated deacetylation of H3K18 appears to play an important role during infection, as 

chemical inhibition or siRNA knock-down (KD) of either SIRT2 or PPM1A/PPM1B reduces 

the number of intracellular bacteria in vitro without affecting host cell entry (Eskandarian et 

al., 2013; Pereira et al., 2018). Similarly, SIRT2 KO also restricts Lm survival during in vivo 

infection (Eskandarian et al., 2013). Certain SIRT2-repressed genes, such as lymphoid 

enhancer binding factor 1 (LEF1) and CXCL12, have roles in regulating immune responses. 

The modulation of SIRT2 activity by Lm may thus serve as a strategy to block or downregulate 

the induction of immune and antimicrobial responses at both the cell-intrinsic and systemic 

levels.  

Both InlB and LLO illustrate how signalling cascades induced by Lm virulence factors have a 

broad impact on the host transcriptional program through several mechanisms, including 

histone modifications (Figures 25A and 25B).  
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  4.3.  Internalin C (InlC) 

InlC counteracts the host immune response to Lm infection by inhibiting NF-κΒ activation in 

both macrophages and epithelial cells. InlC binds to IκB kinase α (IKKα), inhibiting IκBα 

degradation and thus the nuclear translocation of NF-κΒ, resulting in decreased pro-

inflammatory cytokine gene expression in macrophages in vitro and reduced chemokine 

expression and neutrophil recruitment to the peritoneal cavity in vivo (Gouin et al., 2010) 

(Figure 25C). At later stages during infection, InlC is post-translationally modified by the host 

cell to increase the inflammatory response in neutrophils. Monoubiquitinated InlC interacts 

with and stabilizes the alarmin S100A9, resulting in increased ROS production by neutrophils, 

restricting infection and promoting host survival (Gouin et al., 2019).  

 

Figure 25 | Lm virulence factor-mediated alteration of host gene expression.  
(A) Lm infection or purified LLO alone induces a global reduction in histone H4 acetylation (H4-ac) 
and histone H3 phosphorylation (H3S10-ph) which correlates with the downregulation of CXCL2 and 
DUSP4 genes. (B) InlB induced c-Met/PI3K-Akt signalling triggers the redistribution of SIRT2 to host 
chromatin, resulting in the deacetylation of H3K18 and gene repression. (C) The virulence factor InlC 
is produced and secreted by cytosolic Lm. InlC binds IKKα and blocks IκB phosphorylation and 
degradation, thereby inhibiting NF-κB nuclear translocation and the transcription of NF-κB-regulated 
genes such as cytokine-coding genes. (Adapted from Eldridge et al., 2020a) 

A     B         C 
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  4.4.  Internalin H (InlH)  

InlH, another member of the Lm internalin family, is, like InlC, involved in dampening the 

immune response by downregulating the production of IL-6 in vivo. Inactivation of inlH led to 

increased IL-6 levels (but not those of other cytokines) in the liver (Personnic et al., 2010), and 

reduced bacterial load in the blood, liver, and spleen of IV-infected mice (Personnic et al., 

2010; Schubert et al., 2001). However, the mechanisms by which InlH impacts IL-6 production 

are not yet elucidated. 

  4.5.  Listeria adherence protein (LAP)  

NF-κB activation can also be induced by LAP, a Lm surface protein that plays a role in Lm’s 

ability to breach the intestinal barrier, as described in section A.6.1. The interaction of LAP 

with Hsp60 on enterocytes activates NF-κB signalling, increasing CXCL8, IFN-γ, and 

especially TNF-α and IL-6 expression at both the transcript and protein levels, which 

contributes to polymorphonuclear and mononuclear cell infiltration of the ileum as well as 

MLCK-mediated opening of the epithelial barrier (Drolia et al., 2018).  

  4.6.  Listeria nuclear targeted protein A (LntA) 

The lntA gene, encoding the Listeria nuclear targeted protein A (LntA), is one of 22 genes 

identified in the genome of Lm strain EGDe that encode proteins with a secretory signal peptide 

and are absent in the genome of the non-pathogenic L. innocua as uncovered by comparative 

genomics in 2001 (Glaser et al., 2001). The characterisation of this secreted effector by Bierne 

and colleagues led to the identification of the first Lm virulence factor to target the host cell 

nucleus thus modulating the transcriptional response of the infected cell by directly 

manipulating epigenetic machinery (Lebreton et al., 2011), as detailed below. 

 5.  Lm manipulation of ISG expression through the targeting of host epigenetic 

machinery: the LntA-BAHD1 paradigm 

A cell microbiology approach to search for Lm secreted proteins targeting intracellular 

organelles identified LntA as a nuclear-targeting bacterial protein (Lebreton et al., 2011). Such 

bacterial effectors exerting their functions in the host cell nucleus have been defined by Bierne 

and Cossart as “nucleomodulins” and have been discovered in several other intracellular 

pathogens (Bierne and Pourpre, 2020; Bierne et al., 2012a). The human protein targeted by 
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LntA in the nucleus has been identified as bromo adjacent homology domain-containing 1 

(BAHD1) (Bierne et al., 2009; Lebreton et al., 2011; 2014). 

  5.1. The epifactor bromo adjacent homology domain-containing 1 

(BAHD1) 

In each human cell two meters of DNA are compacted in the nucleus, wrapped around histone 

proteins to form nucleosomes that are packed into chromatin fibres (Bierne and Hamon, 2020; 

Ou et al., 2017). The state of chromatin compaction plays a major role in regulating gene 

expression by controlling the accessibility of DNA to the transcriptional machinery. The 

regulation of chromatin structure is a dynamic process that involves DNA methylation, and a 

wide variety of histone post-translational modifications (PTMs) such as methylation, 

acetylation, phosphorylation, and ubiquitination, and the remodelling of nucleosomes (Bierne, 

2017; Bierne and Hamon, 2020). These different mechanisms function in concert to regulate 

the formation of chromatin structures that are either loosely packed and transcriptionally active 

(known as euchromatin), or highly condensed and transcriptionally silent (heterochromatin). 

Histone PTMs and DNA methylation patterns control transcription not only by modifying 

chromatin structure, but also by the direct recruitment of DNA-binding TFs (Bierne, 2017; 

Bierne and Hamon, 2020). Chromatin-based transcriptional regulation is mediated by 

macromolecular complexes that are composed of scaffold proteins, epigenetic “readers”, 

“writers”, “erasers”, and remodelers. These proteins have been dubbed “epifactors” 

(Medvedeva et al., 2015) and specifically recognise (“read”), add (“write”), or remove 

(“erase”) histone PTMs or DNA methylation, or have remodelling activities (Bierne, 2017). 

The combinatorial assembly of epifactors with DNA-binding TFs activates or represses 

transcription and affects cell-specific gene expression in response to developmental, 

physiological or environmental stimuli (Bierne, 2017). In turn, cell signalling pathways 

influence the expression levels, localisation and assembly of epifactors into complexes. 

Chromatin-remodelling complexes control key pathways during embryonic development and 

adult life and their deregulation can lead to a wide range of pathological processes, including 

those involved in infectious disease (Bierne, 2017).  

The characterisation of the BAHD1 protein revealed it as a central component of a novel 

HDAC1/2-associated complex. Biochemically, a series of experiments involving yeast two-

hybrid (Y2H), co-immunoprecipitation and colocalization (Bierne et al., 2009), as well as 

tandem-affinity purification of BAHD1-associated proteins (Lakisic et al., 2016; Lebreton et 
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al., 2011) showed that BAHD1 forms a complex with HDAC1/2, histone lysine 

methyltransferases (KMT, e.g., G9a), readers of methylated histone H3 and methylated DNA 

(heterochromatin protein 1 (HP1) and methyl-CpG-binding domain protein 1 (MBD1), 

respectively), as well as other components (e.g., chromodomain Y like (CDYL) and KRAB-

associated protein 1 (KAP1)). Importantly, the major partners of BAHD1 were identified as 

mesoderm induction early response (MIER) proteins (MIER1/2/3), in particular MIER1 and 

MIER3 (Fan et al., 2021; Lakisic et al., 2016; Lebreton et al., 2011).  

Extensive characterisation of MIER1 by Gillespie and colleagues showed that this 

transcriptional and chromatin regulatory protein interacts with HDAC1/2, the KMT G9a, and 

CREB-binding protein (CREBBP) (Blackmore et al., 2008; Ding et al., 2003; Gillespie and 

Paterno, 2012; Wang et al., 2008), and shows structural and functional similarities with 

members of the metastasis-associated protein (MTA) family of the nucleosome remodelling 

and deacetylase (NuRD) complex, due to its EGL-27 and MTA1 homology (ELM2) and 

switching-defective protein 3 (Swi3), adaptor 2 (Ada2), nuclear receptor co-repressor (N-

CoR), transcription factor (TF)IIIB (SANT) domains (Derwish et al., 2017; Ding et al., 2003; 

2004; Paterno et al., 1997). The ELM2 domain of MIER1 is responsible for interaction with 

HDACs (Derwish et al., 2017; Ding et al., 2003). MIER2 and MIER3 show homology to 

MIER1, especially in their ELM-SANT domains (Derwish et al., 2017). MIER2 has been 

shown to recruit HDACs, but less efficiently than MIER1 (Derwish et al., 2017). MIER3 does 

not recruit HDACs (Derwish et al., 2017), but is associated with histone H3 and H4 

deacetylation through histone acetyltransferase (HAT) p300 inhibition (Zhang et al., 2020).  

BAHD1, on the other hand, shares with MTA proteins a bromo adjacent homology (BAH) 

domain (Bierne et al., 2009), which is known to promote protein-protein interactions and 

nucleosome binding (Yang and Xu, 2013) (Figure 26A). Bierne and colleagues have proposed 

the model in which BAHD1 and MIER proteins cooperate to fulfil a scaffolding function 

similar to that of MTA in the NuRD complex (Lakisic et al., 2016) (Figure 26B). The BAHD1-

MIER scaffold bridges histone methylation on lysine 9 (meK9), histone deacetylation and 

DNA methylation, all of which are epigenetic marks that promote gene silencing (Figure 26C). 

The functional study of BAHD1 is consistent with this biochemical characterization. BAHD1 

triggers chromatin compaction into heterochromatin and induces gene silencing (Bierne et al., 

2009). BAHD1 KD alters histone acetylation, histone methylation and DNA methylation 

patterns at target genes (Lakisic et al., 2016) and BAHD1 overexpression remodels the DNA 
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methylome in human cells (Libertini et al., 2015). The genes inhibited by BAHD1 differ 

between cell types and the specific stimuli. Full KO of the Bahd1 gene in mice results in 

phenotypic defects in the placenta and brain (Lakisic et al., 2016; Pourpre et al., 2020) as well 

as metabolic defects, particularly in cholesterol metabolism (Lakisic et al., 2016). BAHD1 has 

been shown to regulate inflammation in the colon during ulcerative colitis (Zhu et al., 2015), 

and during Lm infection, BAHD1 represses the expression of ISGs downstream of IFN-I/III 

signalling in LoVo epithelial cells (Lebreton et al., 2011; 2014).  

 
Figure 26 | The BAHD1-MIER chromatin-repressive complex.  
(A) Schematic representation of BAHD1 and MIER1 (top) and MTA1 (bottom) scaffold proteins. 
Coloured boxes represent domains or motifs (orange: central proline-rich region (cPRR); green: BAH 
domain; purple: ELM2 domain; bleu: SANT domain); brown boxes are nuclear localization sequences. 
(B) Schematic representation of the BAHD1-MIER (left) and NuRD (right) complexes. The similar 
colour codes in the two complexes highlight subunits sharing a common function. (C) Schematic 
representation of the BAHD1-MIER complex: BAHD1 and MIER1/2/3 act as scaffolding proteins; 
KMT mediates the methylation of H3K9 (“meK9”), and HDACs remove acetyl groups (abbreviated 
“ac”) on histones; MBD1, HP1, and BAHD1 are readers of the epigenetic marks 5mC, meK9, and 
H3K27me3 (“meK27”), respectively. (Adapted from Lakisic et al., 2016, Pourpre et al., 2020) 

  5.2.  LntA, a BAHD1 inhibitor that stimulates interferon responses 

When Lm produces LntA, the protein is secreted into the host cell cytosol and then enters the 

nucleus, where it impedes the binding of BAHD1 to the promoters of ISGs. By preventing the 

recruitment of BAHD1 and HDACs to ISG promoters, LntA triggers the acetylation of histones 

rendering chromatin accessible and thus activating ISG expression (Lebreton et al., 2011) 

(Figure 27). 
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Both lntA deletion and overexpression results in decreased bacterial loads in the blood, liver, 

and spleen following IV infection in mice. On the host side, haplo-deficiency for Bahd1 in 

mice similarly impacts the efficiency of Lm infection (Lebreton et al., 2011). This suggests that 

the regulated secretion of LntA by Lm manipulates the activity of BAHD1 during infection to 

fine tune the IFN response for optimal survival and colonisation of the host (Lebreton et al., 

2012). 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 27 | LntA inhibition of BAHD1-mediated repression of ISGs.  
Lm infection drives the BAHD1 complex to repress IFN-I/III activated ISG expression in epithelial 
cells via an unknown mechanism (left); LntA expressed by cytosolic Lm inhibits the BAHD1-mediated 
repression of ISGs (right). (Source: Lebreton et al., 2012) 
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Lm is one of the best characterised intracellular pathogenic bacteria. More than 40 bacterial 

effectors, as well as numerous cellular processes, have been identified as contributing to 

efficient infection in mammalian cells (Lebreton et al., 2016; Radoshevich and Cossart, 2017). 

In addition, several studies have analysed the transcriptional response of host cells to cellular 

invasion by Lm. These studies have employed either cultured cell lines, or the murine listeriosis 

model to examine the host response at the organ level or in primary cells. However, studies of 

the transcriptional response of host cells to Lm infection remain fragmentary, as they are often 

limited to the early stages of the infection process (from the first hour to one day). The long-

term fate of intracellular Lm and the infected host cell reprogramming upon long-term 

infection, has not been studied. Furthermore, research has generally been restricted to a limited 

number of cell types, predominantly phagocytic cells.  

The Epigenetics and Cellular Microbiology team, my host laboratory, was the first to study 

long-term infection of Lm in human epithelial cells. The team identified a new phase of the Lm 

life cycle in human hepatocytes and trophoblast cells. They showed that after the early phases 

of entry and cytosolic replication, bacteria progressively cease to polymerise actin during 

intercellular dissemination and, after 2–3 days of infection, are captured in membrane 

structures forming “Listeria-containing vacuoles” (LisCV) (Kortebi et al., 2017). In this 

vacuolar niche, the bacteria enter a non-replicative life phase, known as the “persistence” 

phase. The team proposed that these persistent Lm could parasitise cells in the long term, in a 

dormant state, which could play a role during the asymptomatic incubation period of listeriosis 

or in asymptomatic carriage (Bierne et al., 2018).  

My thesis project aimed to determine the consequences of this persistent infection on the 

transcriptional program of host cells, in order to identify deregulated processes that could allow 

the bacteria to persist in the long term, without being eliminated by host defence systems. The 

hepatocyte response, in particular, was chosen for several reasons: 

(i) The liver is a major target organ of Lm, both essential for the elimination of bacteria 

during the acute phase of infection and as an important replicative niche for Lm in 

hepatocytes. 

(ii)  The immune responses elicited in the liver during invasive listeriosis have been well 

characterised in the mouse. However, there is no data on the specific response of 

hepatocytes (murine or human) to intracellular infection with Lm. While several studies 

have examined the transcriptional response of the liver in the murine listeriosis model 
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(Demiroz et al., 2021; Dieterich et al., 2008; Joseph et al., 2004; Ng et al., 2005; Pitt et 

al., 2016), none have explored the specific contribution of hepatocytes versus immune 

cells.  

(iii)  Hepatocytes are epithelial cells with a long life span (Duncan et al., 2009). Lm could 

persist long term within these cells with lasting effects on hepatocyte gene expression. 

(iv)  Asymptomatic colonisation of humans or animals could include a hepatic phase. 

(v)  The liver possesses immuno-tolerogenic properties that render hepatocytes propitious as 

a persistent niche for numerous hepatotropic virus and parasites (Protzer et al., 2012), 

and could thus favour Lm persistent infection.  

My first objective was to optimise or to develop new protocols in order to obtain an efficient 

and homogeneous persistent infection in two human hepatocyte cell lines (HepG2 and Huh7 

cells) and in primary murine hepatocytes. 

My second objective was to analyse the transcriptional changes occurring in hepatocytes after 

three days of Lm infection. In particular, after the identification, by RNA-seq, of genes 

differentially regulated between infected and non-infected cells, my goals were (i) to analyse 

the cellular processes disrupted in each model, (ii) to deduce a common signature of persistent 

Lm infection, (iii) to study the “strain effect” and the “time effect” on these transcriptional 

deregulations.  

My third objective was to investigate mechanisms that could explain the effect of persistent 

Lm infection on hepatocyte gene deregulation, focusing on the role of epigenetic regulators. 

Preliminary work had identified three genes (BAHD1, MIER1 and MIER3) encoding subunits 

of the BAHD1-MIER repressive chromatin-remodelling complex (Lakisic et al., 2016; 

Lebreton et al., 2011) as being specifically overexpressed in infected HepG2 cells. BAHD1 has 

a role in repressing the IFN response during Lm infection of intestinal cells (Lebreton et al., 

2011) and in repressing lipid metabolism genes (Lakisic et al., 2016). MIER1 has been 

extensively characterised by Gillespie and collaborators in the context of its role as a tumour 

suppressor in breast carcinoma (Clements et al., 2012; Gillespie and Paterno, 2012; Li et al., 

2013; 2015). My goal was thus to explore the role of the BAHD1-MIER complex during 

persistent Lm infection, in the context of a collaborative project between the laboratories of H. 

Bierne and L. Gillespie.   



  

 

 

 

 

 

RESULTS 

  



   105 

Part 1. An immunomodulatory transcriptional signature 

associated with persistent Lm infection in hepatocytes 

 1.1.  Published results 

These results were published in the journal Frontiers in Cellular and Infection Microbiology 

(Descoeudres et al., 2021) and comprise the majority of the results obtained during my thesis. 

The original research article presents the results that respond to my first two thesis objectives 

– with the exception of the time-dependence of the transcriptomic signature (addressed in 

section 1.2) – notably:  

(i)  The establishment of long-term, LisCV-stage infection models in two human hepatocyte 

cell lines (HepG2 and Huh7 cells) and in primary murine hepatocytes.  

(ii)  An overview of the transcriptional reprogramming that occurs in hepatocytes after three 

days of Lm infection (“long-term infection”) and the identification of a gene expression 

signature associated with intracellular bacterial persistence common to all three models.  

(iii)  The examination of cellular processes disrupted by long-term infection that revealed:  

(a) cholesterol metabolism-associated gene downregulation in long-term infected human 

hepatocytes;  

(b) the reduced expression of hepatic innate immunity genes – or APPs – that translated 

to reduced APP secretion by infected hepatocytes. We further provide evidence that both 

the constitutive and cytokine-driven expression of APPs were repressed by long-term Lm 

infection.  

(iv) The characterisation of a major facet of the epithelial cell response to Lm infection, the 

IFN and ISG response, including the quantification of IFN expression at both the 

transcript and protein levels over the infection time course in all three models.  

(v) The independence of the transcriptomic and proteomic signatures to the strain of Lm 

employed that was evidenced through the acquisition of similar results regardless of the 

laboratory or epidemic strain employed.  
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Listeria monocytogenes causes severe foodborne illness in pregnant women and

immunocompromised individuals. After the intestinal phase of infection, the liver plays a

central role in the clearance of this pathogen through its important functions in immunity.

However, recent evidence suggests that during long-term infection of hepatocytes, a

subpopulation of Listeria may escape eradication by entering a persistence phase in

intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte

defense pathways, which may be instrumental for bacterial persistence. We first optimized

cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and

primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the

persistence phase after three days of infection, while inducing a potent interferon

response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive.

RNA-sequencing analysis identified a common signature of long-term Listeria infection

characterized by the overexpression of a set of genes involved in antiviral immunity and the

under-expression of many acute phase protein (APP) genes, particularly involved in the

complement and coagulation systems. Infection also altered the expression of cholesterol

metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts

was correlated with lower protein abundance in the secretome of infected cells, as shown

by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1b).

Collectively, these results reveal that long-term infection with Listeria profoundly

deregulates the innate immune functions of hepatocytes, which could generate an

environment favorable to the establishment of persistent infection.

Keywords: Listeria monocytogenes, liver, acute phase response, interferon, persistence, innate immunity,

cholesterol, transcriptomics
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INTRODUCTION

The liver has essential roles in metabolism and detoxification. It also

acts as a barrier to systemic infections, by its major role in the

detection, capture and clearance of pathogens present in the blood

(Protzer et al., 2012; Kubes and Jenne, 2018). Certain pathogens,

including viruses (e.g., Hepatitis A, B, C, D, E viruses), parasites (e.g.,

Plasmodium falciparum, Toxoplasma gondii, Entamoeba histolytica)
and bacteria (e.g., Listeria monocytogenes, Salmonella Typhimurium,

Francisella tularensis, Brucella abortus, Streptococcus pneumoniae)

are able to invade hepatocytes, the parenchymal cells of the liver.

Among these pathogens, L. monocytogenes (hereafter referred to as

Listeria) is a bacterial food contaminant capable of reaching and

multiplying in the liver after crossing the intestinal barrier. In the
majority of individuals, invasion of Listeria is successfully cleared,

but if the infection is not controlled by an adequate immune

response, the proliferation of Listeria can lead to the release of

intracellular bacteria into the circulatory system and invasion of

other sites, such as the brain in immunocompromised individuals,

and the placenta and the fetus in pregnant women, leading to sepsis,

meningo-encephalitis, miscarriages and neonatal infections
(Schlech, 2019). These severe clinical manifestations make

listeriosis one of the most lethal foodborne infections (European

Food Safety, 2021).

Most of our knowledge of the liver phase of listeriosis comes

from experimental infections in animal models, mainly mice,

resulting in a very well described infection scenario, although
some differences may arise from the different routes of

inoculation and/or bacterial dose used. After intravenous

inoculation, more than 60% of the bacteria are cleared from

the bloodstream by the liver within 10 minutes. Bacteria are

bound to Kupffer cells (KC, the resident liver macrophages) and

subsequently eliminated through a complex interaction between

KC and neutrophils that migrate rapidly to the liver in response
to infection (Conlan and North, 1991; Gregory et al., 1996;

Gregory et al., 2002; Witter et al., 2016). Six hours (h) after

infection, about 90% of liver bacteria are associated with

hepatocytes, within which bacterial replication takes place for

2-3 days. Thus, Listeria loads in the liver increase exponentially

before reaching a plateau after 3-4 days of infection, and then
decrease with the development of specific immunity (Cousens

andWing, 2000). Bacterial invasion of hepatocytes is proposed to

occur via two routes: direct internalization or cell-to-cell spread

from KC (Dramsi et al., 1995; Gaillard et al., 1996; Appelberg and

Leal, 2000). Histology (Conlan and North, 1991) and electron

microscopy observations (Gaillard et al., 1996) suggest that

bacteria spread in the liver parenchyma using the actin-based
motility process described in cellular models in vitro (Pilgrim

et al., 2003; Kortebi et al., 2017). In line with this, Listeria actA

mutant strains, which do not produce the actin-polymerization

factor actA, are three orders of magnitude less virulent compared

to wild-type strains in murine models (Domann et al., 1992). The

direct passage of bacteria from one hepatocyte to another is
proposed to generate infectious foci in which Listeria

disseminates through the parenchyma, without coming into

contact with the humoral effectors of the immune system.

Following the phase of active growth in hepatocytes, the

bacterial burden strongly decreases in the liver as a result of

potent innate immune responses (Cousens and Wing, 2000).

Several cell types contribute to the defense of the infected liver

against Listeria infection, in particular neutrophils, natural killer

(NK) cells, dendritic cells (DC) (Conlan and North, 1991;
Gregory et al., 1996; Cousens and Wing, 2000; Arnold-Schrauf

et al., 2014; Witter et al., 2016) and KC, whose necroptotic death

triggers the recruitment of infiltrating monocytes, which

proliferate and differentiate into macrophages at the site of

infection (Bleriot et al., 2015). These immune cells work

together via cell to cell contacts and the secretion of cytokines
and chemokines to kill bacteria or inhibit their replication, and to

lyse infected hepatocytes. The hepatocytes themselves actively

participate in the innate immune response by constitutively

producing and secreting a variety of proteins that play an

important role in innate immunity, such as complement

factors and proteins involved in hemostasis (Zhou et al., 2016).
These proteins, whose production increases rapidly and

substantially in response to inflammatory stimuli are known as

acute phase proteins (APPs) (Gabay and Kushner, 1999; Zhou

et al., 2016). Production of pro-inflammatory cytokines by KC,

monocytes and neutrophils, in response to Listeria infection,

stimulates APP production by hepatocytes (Kopf et al., 1994;

Kummer et al., 2016). This first wave of non-specific defenses is
essential to host survival, with inflammation also contributing to

the development of acquired resistance by stimulating the

priming and proliferation of cytotoxic T cells, which mediate

the protective primary and memory responses against Listeria

(Pamer, 2004; Qiu et al., 2018).

The propensity of Listeria to invade and damage the liver has
long been documented in rodents; indeed, among the first names

proposed for this bacterium were Bacillus hepatis (by Hülphers,

in 1911) and Listerella hepatolytica (by Pirie, in 1927), based on

observations of liver necrosis in rabbits and gerbils. In humans,

however, while liver abscesses are described in neonatal

listeriosis, clinical symptoms of liver injury due to Listeria are

rarely reported during invasive listeriosis in adults. Moreover,
there is a lack of knowledge on the fate of bacteria in organs,

including the liver, during the asymptomatic incubation period,

which can be very long in cases associated with pregnancy [up to

seventy days (Goulet et al., 2013)]. In addition, asymptomatic

carriage of Listeria exists in healthy humans (Slutsker and

Schucha, 1999), as well as in many farm or wild mammal
species (Gray and Killinger, 1966; Yoshida et al., 2000; Leclercq

et al., 2014; Hurtado et al., 2017; Parsons et al., 2020), yet our

understanding of this asymptomatic carriage, particularly in its

hepatic stage, is severely lacking.

Recently, the notion has emerged that, in addition to the

well-known phases of active replication and motility in the

cytosol of host cells, Listeria may enter a quiescent phase
in vacuolar compartments, ranging from slow growth to

dormancy, which may play an important role in asymptomatic

infections (Bierne et al., 2018). These vacuolar niches are

particularly formed in liver cells , including hepatic

macrophages (Birmingham et al., 2008) and hepatocytes
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(Kortebi et al., 2017), by distinct mechanisms. In particular, we

have shown that in the human hepatocyte cell line HepG2 and in

primary human hepatocytes, Listeria enters a resting phase in

acidic vacuoles, called “Listeria-containing vacuoles” (LisCVs)

(Kortebi et al., 2017). LisCVs are generated late (i.e., after 2-3

days of infection), when the bacteria cease to express ActA and
polymerize actin, and are partially degradative; therefore, a

subpopulation of bacteria survives in a quiescent state, raising

the possibility of long-term persistence of Listeria in the liver

parenchyma. Stages of persistence in hepatocytes have been

described for other pathogens, such as hepatic viruses and

parasites. For instance, Plasmodium vivax can enter a quiescent
state within a parasitophorous vacuole to go undetected for years

(Prudencio et al., 2006).

The objective of this study was to characterize the

transcriptional response of the hepatocyte to long-term Listeria

infection in order to identify a gene expression signature

associated with intracellular bacterial persistence. We report
the development of three robust cellular models to obtain a

homogeneous population of hepatocytes hosting Listeria in the

late LisCV stage. By comparing the Listeria-induced

transcriptional pattern in these three different models, we

found a common signature associated with Listeria persistence

in the hepatocyte. Our data suggest that down-regulation of key

hepatic innate immunity genes involved in the acute phase
response (APR) may contribute to silent carriage of Listeria in

the liver.

MATERIALS AND METHODS

Bacterial Strains and Human
Hepatocyte Cell Lines
We used Listeria monocytogenes laboratory strains EGDe and

10403S (Becavin et al., 2014) and a clinical isolate of the 4b

serotype, CLIP80459 (Hain et al., 2012). Bacteria were grown on

brain-heart infusion (BHI) medium at 37°C. The human

hepatocellular carcinoma cell lines HepG2 (ATCC HB-8065)

and Huh7 (CLS 300156) were grown in Dulbecco’s Modified
Eagle Medium (DMEM, Gibco) supplemented with 2 mM L-

glutamine (Sigma) and 10% fetal bovine serum (FBS, Sigma) at

37°C in a humidified 5% CO2 atmosphere and placed at 10%

CO2 during infection assays.

Isolation and Culture of Primary
Mouse Hepatocytes
Primary mouse hepatocytes (PMH) were isolated from 8- to 10-

week-old female C57BL/6 mice, by collagenase perfusion of the

liver, as previously described (Fortier et al., 2017). Briefly, mice

were anesthetized, and a midline laparotomy was performed.

The inferior vena cava was perfused with a 0.05% collagenase
solution (collagenase from Clostridium histolyticum, Sigma

C5138). The portal vein was sectioned, and the solution

allowed to flow through the liver. Upon liver digestion, hepatic

cells were removed by mechanical dissociation, filtered through a

sterile 70 mm cell strainer (BD Falcon), washed twice by

centrifugation at 300 x g for 4 min. After a filtration step

through a sterile 40 mm cell strainer (BD Falcon), cells were

resuspended in serum-containing culture medium [DMEM, 10%

FBS, 1% penicillin–streptomycin (Sigma); 100 mg/mL fungizone

antimycotic B (Gibco)]. Cell count and viability were assessed by

trypan blue exclusion. Cells were seeded in 6-well collagen-
coated plates for 6 h at 37°C in a 5% CO2 atmosphere. After

complete adhesion of the hepatocytes and washes to remove the

dead cells, PMH were cultured at 37°C in a 5% CO2 atmosphere

for 4-6 days before infection in serum-free hepatocyte culture

medium [William’s E medium and GlutaMAX™ Supplement

(Gibco); 100 U/ml penicillin/streptomycin, 0.5 mg/ml fungizone
antimycotic B, 4 mg/ml insulin, 0.1% bovine serum albumin

(BSA) and 25 nM dexamethasone (Sigma)] that was

renewed daily.

Antibodies and Reagents
The primary antibodies used in this study were anti-L.

monocytogenes polyclonal rabbit antibody (BD Difco, 223001)

and anti-human LAMP1 monoclonal mouse antibody (BD
Bioscience, 555801). Fluorescent secondary antibodies were

Alexa Fluor 488-conjugated goat ant i-rabbit (Li fe

Technologies) and Alexa Fluor Cy3-conjugated goat anti-

mouse (Jackson ImmunoResearch Laboratories). Alexa fluor

647-conjugated phalloidin (Life Technologies) and Hoechst

(Thermo Fisher Scientific) were used to label F-actin and
nuclei, respectively. All recombinant human proteins were

obtained in lyophilized form from R&D Systems and

reconstituted according to the manufacturer’s instructions: IL-

29/IFN-l1 (1598-IL), IFN-b (8499-IF), interleukin IL-6 (206-IL)

and IL-1b/IL-1F2 (201-LB).

Bacterial Infections and
Cytokine Treatment
HepG2 and Huh7 cells were seeded in 12- or 6-well plates in

order to reach approximately 90% confluency on the day of

infection. HepG2 cells were grown on collagen-coated wells or

coverslips (type I collagen from rat tail, Sigma). Cells were
counted using a hemocytometer (Neubauer-improved, Hausser

Scientific) before infection to determine the multiplicity of

infection (MOI). Inoculums were prepared in serum-free

culture medium using bacteria grown overnight to stationary-

phase and washed twice in PBS. Cells were infected as described

in (Bierne et al., 2021) and subsequently incubated for the
indicated times with culture media containing 25 mg/ml

gentamicin to kill extracellular bacteria. To determine the

number of intracellular bacteria at a given time-point post-

infection (p.i.), cells were washed in serum-free culture

medium and lysed in cold distilled water. Serial dilutions of

cell lysates were plated on BHI agar and the number of

intracellular bacteria was determined by counting colony-
forming units (CFU) after 48 h incubation at 37°C. In parallel,

host cells were enumerated following trypsin detachment and

trypan-blue staining. When HepG2 and Huh7 infected and non-

infected cells were stimulated with recombinant human

cytokines, experiments were performed in 6-well plates and the
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specified concentration was obtained by adding 200 µl of culture

medium containing 25 µg/ml gentamicin and the necessary

volume of either the cytokine solution or a mock solution.

PMH were infected using the same protocol as for the human

cell lines, with the following differences: inoculum was prepared

usingWilliam’s E medium and replaced after 1 h with hepatocyte
culture medium depleted of penicillin/streptomycin and

supplemented with 25 µg/ml gentamicin. Medium was

renewed daily throughout the infection time course. Infected

and non-infected cells were handled identically, all experiments

were performed in triplicate and reproduced at least three times.

Immunofluorescence Microscopy
Observation of intracellular L. monocytogenes by microscopy was

performed as in (Bierne et al., 2021). Briefly, cells grown on

12 mm or 22 mm coverslips were rinsed in 1× phosphate-

buffered saline (PBS) and fixed in 4% paraformaldehyde (PFA)

in PBS for 30 minutes at room temperature. Cells were washed in

PBS, permeabilized in 0.4% Triton X-100 in PBS, washed 3 times

in PBS and incubated in blocking solution (2% bovine serum
albumin (BSA) in PBS), before being processed for

immunofluorescence, successively with the primary antibody

solution, and secondary antibody solution containing Alexa

fluor 647-conjugated phalloidin and Hoechst (in 2% BSA).

Coverslips were mounted on glass slides using Fluoromount-G

mounting medium (Interchim, Montlucon). Samples were
analyzed with a Carl Zeiss AxioObserver.Z1 microscope

equipped with 20× non-oil immersion or 40×, 63× and 100×

oil immersion objectives connected to a CCD camera. Images

were processed using ZEN (Carl Zeiss) or ImageJ.

RNA Extraction, RNA-Sequencing, and
Functional Gene Analysis
HepG2 or Huh7 cells were infected with strain EGDe or remained

non-infected, in independent biological triplicates, and PMH

isolated from the livers of two mice (n=3 per mouse) were
infected with strain 10403S or remained non-infected. All

infection assays were performed in 6-well plates (HepG2 and

Huh7: 3 infected, 3 non-infected; PMH, 6 infected, 6 non-

infected). RNA was extracted using the RNeasy Mini Kit

(Qiagen) and genomic DNA was removed using TURBO DNA-

free™ kit (Ambion), according to the manufacturer’s instructions.

The integrity, purity and concentration of RNA samples was
assessed on an RNA 6000 Nano chip using the Agilent 2100

electrophoresis Bioanalyzer. RNA Integrity Numbers (RIN) for all

samples used for RNA sequencing (RNA-seq) library preparation

was superior to 9.5. RNA-seq and data analysis procedures, as well

functional gene analysis, and information on data repository, are

detailed in the Supplementary Material. Each RNA-seq analysis
was validated by RT-qPCR (see below), with YWHAZ, PPIA, or

Pdk1 used to normalize gene expression in infected relative to

non-infected HepG2, HuH7 and PMH, respectively. Pearson

correlation analysis was applied to the log2 FC of 14

significantly deregulated genes obtained by RNA-seq and RT-

qPCR, as shown in the Supplementary Material, and indicates a

very strong correlation.

Reverse Transcription-Quantitative PCR
RNA was extracted from cultured cells and depleted for DNA, as

described above. RNA concentration and purity were assessed
using a NanoDrop spectrophotometer (Thermo Scientific). One

microgram of total RNA was used for reverse transcription with

the LunaScript™ RT SuperMix Kit (NEB). Quantitative Real-

Time PCR was performed on StepOne Plus Real-Time PCR

Systems (Applied Biosystems) using Luna® Universal qPCR

Master Mix (NEB) as specified by the supplier. Each 20 µl

reaction was performed in triplicate. Target gene expression
levels were normalized to an endogenous control gene whose

expression stability was assessed using RefFinder (http://www.

leonxie.com/referencegene.php) (Xie et al., 2012). PCR

efficiencies were calculated to ensure equivalent amplification

between target genes and endogenous control genes. Relative

expression of target genes was calculated from cycle threshold
(CT) values using the comparative CT (DDCT) method with

untreated or non-infected cells used as calibrator (reference)

samples. Standard deviation of DCT values was determined

according to the Applied Biosystems Guide to Performing

Relative Quantitation of Gene Expression Using Real-Time

Quantitative PCR (available at https://assets.thermofisher.com/

TFS-Assets/LSG/manuals/cms_042380.pdf). A transcript was
considered undetectable at CT ≥ 35; all negative controls in the

absence of cDNA template generated CTs above this threshold.

As IFN gene expression was absent in non-infected cells, this CT

threshold was applied to all non-infected samples in order to

allow the calculation of a relative expression value. Statistical

significance of the difference in mean expression of genes from at
least 3 experimental replicates was evaluated using the two-tailed

paired-sample t test; a p value <0.05 was considered significant.

Sequences of human and mouse gene specific primers are listed

in Supplementary Table S1.

ELISA Assays
Sandwich enzyme-linked immunosorbent assay (ELISA) kits were

used to determine the concentrations of IFN-l1 (Invitrogen, 88-
7296), IFN-b (R&D Systems DIFNB0), and C3 (Abcam, ab108823)

in the supernatants of infected and non-infected HepG2 and Huh7

cells, according to the respective manufacturers’ instructions.

Conditioned media were collected at the indicated time-points

p.i., centrifuged at 300 × g for 5 minutes at 4°C and the collected

supernatants stored at -80°C. 50 ml of each sample supernatant and
all standards were assayed in duplicate. For the C3 ELISA,

conditioned media were diluted 100-fold in the diluent buffer

according to the supplier’s protocol. Signals were detected using a

Tecan Infinite 200 device (Tecan Trading AG, Switzerland) by

reading the absorbance at 450 nm, fromwhich readings at 570 nmwere

subtracted for wavelength correction. Statistical analyses were performed

using Student’s two-tailed T-test on calculated concentrations.

Protein Extraction and LC-MS/MS Analysis
of Culture Supernatants
HepG2 and Huh7 cells in 6-well plates either remained non-

infected or were infected with L. monocytogenes EGDe (MOI~1-
5). After 72 h, cells were rinsed twice in serum-free medium and
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left for an additional 24 h in serum-free medium containing 25 µg/

ml gentamicin. Conditioned media was then collected,

supplemented with protease inhibitors mixture (Complete,

EDTA-free, Roche), centrifuged (1000 × g, 5 min) and the

supernatant concentrated ten times using an Amicon centrifugal

filter unit (3K cut-off, Millipore). Cells were lysed in 500 ul of lysis
buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1% Igepal, 0.1%

SDS, 5% glycerol, supplemented with protease inhibitors cocktail)

and incubated on ice (30 min). The cell lysate was cleared by

centrifugation (14000 × g, 10 min, 4°C) with the supernatant

assayed for protein concentration using the Bradford assay

(Biorad). Protein concentration of cell lysates was used to
normalize the amount of conditioned medium to concentrate

between experimental conditions and replicates. Sample

preparation for proteome analysis, liquid chromatography and

Mass Spectrometry, as well as data analyses are detailed in the

Supplementary Material.

RESULTS

Establishment of Cellular Models of Long-
Term Listeria Infection in Hepatocytes
To study the response of hepatocytes to long-term intracellular
Listeria infection, we took a comparative approach using different

cell models. However, prior to transcriptomic studies, it was

essential to optimize protocols by testing different hepatocyte

types, culture conditions, Listeria strains, and multiplicity of

infection (MOI), in order to obtain populations of homogenously

infected cells at 3 days post-infection (p.i.). We first selected the
human hepatoblastoma cell line HepG2, widely exploited as an in

vitro model of human hepatocytes and previously used to

characterize the Listeria persistence stage (Kortebi et al., 2017).

As these cells grow in clusters, leading to the formation of highly

infected foci among predominantly uninfected islets, we seeded

HepG2 cells on collagen-coated wells to allow the formation of a

cell monolayer. Microscopic observation revealed that, for an
infection at MOI~1-5 with the laboratory Listeria strain EGDe,

collagen treatment was accompanied by a marked increase in

bacterial intercellular spread during the 3-day course of infection

(Supplementary Figure S1A), leading to LisCV formation at 72 h

p.i. (Supplementary Figure S1B), as previously observed in

conventionally grown HepG2 cells (Kortebi et al., 2017), but in a
higher proportion of cells.

We also selected the hepatocellular carcinoma-derived cell line

Huh7, which has been instrumental in exploring the mechanisms

behind chronic hepatic viral infections (Hu et al., 2019; Todt et al.,

2020). As opposed to HepG2, Huh7 naturally grow in monolayers

and are highly permissive to Listeria cell-to-cell dissemination

(Figure 1A). For the same MOI ~1-5 and Listeria strain (EGDe),
the mean number of bacteria per infected cell at 72 h p.i. was on

average ~10-fold higher in Huh7 cells than in HepG2 cells, as

evaluated by Colony-Forming-Unit (CFU) and cell counts.

Importantly, immunofluorescence experiments revealed that

Listeria switched from polymerizing host actin at day 1 to the

actin-free stage at day 3 (Figure 1B) accompanied by engulfment

of bacteria into LAMP1-positive compartments (Figure 1C). Similar

results were obtained with another commonly used laboratory strain,

10403S, as well as an epidemic clinical strain, CLIP80459

(Supplementary Figure S2). These results validate Huh7 as an

additional model to study Listeria persistence in human hepatocytes.

As a third cell model, we chose primary hepatocytes, which
could reveal cellular pathways potentially dysfunctional in

carcinoma-derived cell lines. We previously showed that

Listeria enters the persistence phase in primary human

hepatocytes (PHH) (Kortebi et al., 2017), but we could not

improve the infection protocol to use these cells for

transcriptomic purposes, as they remained weakly infected
with Listeria, regardless of the MOI or strain used. In

particular, we found that thawing commercial PHH generated

a significant viability issue, limiting the formation of intercellular

junctions. We therefore used mouse hepatocytes, as they could

be isolated fresh from animal livers immediately prior to

infection. We found that freshly isolated primary mouse
hepatocytes (PMH) were highly permissive to Listeria infection

with strain 10403S at an MOI of 10 (Figure 1A). Furthermore, in

PMH Listeria also shifted from the actin-dependent intercellular

dissemination phase, at day 1, to the vacuolar persistence phase,

at day 3 (Figures 1B, D). Overall, these results established that

HepG2 and Huh7 cell lines and PMH are suitable models to

study the hepatocyte response to persistent Listeria infection.

Transcriptional Responses of Hepatocytes
After a 3-Day Listeria Infection
In order to identify host gene signatures specific to long-term

Listeria infection in hepatocytes, we performed RNA-seq
analysis on RNA extracted from HepG2, Huh7 or PMH

infected for 72 h with Listeria strain EGDe (HepG2 and Huh7)

or 10403S (PMH) and compared the gene expression profile to

that of non-infected cells. The number of cells and intracellular

bacteria were monitored in parallel to assess cell viability,

revealing little cytotoxicity induced by infection (Figure 2A),

and to compare intracellular bacterial loads between experiments
and models (Figure 2B). Analysis of differentially expressed

protein-coding genes between infected and non-infected cells

(p<0.05 and log2 fold change (FC) >0.5 or <-0.5), herein termed

“DEGs”, identified 1134 DEGs in HepG2 cells (443 upregulated

and 691 downregulated, Supplementary Tables S2, S3), 5981

DEGs in Huh7 cells (3198 upregulated and 2783 downregulated,
Supplementary Tables S4, S5) and 2138 DEGs in PMH (379

upregulated and 1759 downregulated, Supplementary Tables

S6, S7) (Figure 2C). While intracellular bacterial loads were of

the same range in all three models (on the order of 105 CFU per

well) (Figure 2B), we noted that the higher infectivity observed

in Huh7 and PMH cells compared with HepG2 cells (7-fold and

4-fold, respectively) paralleled with a higher number of DEGs (5-
fold and 2-fold respectively).

Functional analysis of upregulated DEGs revealed that

interferon (IFN) responses were strongly activated in HepG2

and PMH cells, but not in Huh7 cells, after a 3-day infection with

Listeria (see below). The 15 most highly upregulated DEGs in

HepG2 cells included the interferon lambda 1 gene (IFNL1), as
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well as Interferon Stimulated Genes (ISGs) (i.e., IFI44, RSAD2,

IFI44L, OASL, IFIT2, OAS2, CH25H, CCL5, EPSTI1, CMPK2,
IFIT1, IFIT3) (Supplementary Table S2), as in PMH (i.e., Ccl5,

Ifit3b, Ifr7, Isg15, Zbp1, Ifi44, Ifit1, Ifit3, Oas3, Apol9b, Oas2l,

Oas1h, Tgtp1, Rsad2) (Supplementary Table S6). Indeed, 166

(37%) and 126 (33%) of the upregulated DEGs in HepG2 and
PMH, respectively, were mapped as ISGs in the interferome

database (Rusinova et al., 2013), of which 56 were common to

A

B

D

C

FIGURE 1 | Optimization of hepatocyte culture systems for modeling persistent Listeria infection. Different cell seeding conditions, MOI and Listeria strains (EGDe or

10403S) were tested to obtain optimal long-term Listeria infection of HepG2 (see Supplementary Figure S1), Huh7 or PMH. Infected cells were examined at day 1

(d1) and at day 3 (d3) by immunofluorescence microscopy: representative examples under optimized conditions are shown. (A) Low magnification micrographs of

Huh7 cells infected with EGDe strain (MOI=1-5) or PMH infected with 10403S strain (MOI=10) for the indicated time. Images are overlays of Listeria (green) and

Hoechst (blue) signals (bars: 50 µm, Huh7, or 200 µm, PMH). (B) High magnification micrographs of infected Huh7 or PMH showing Listeria (green), F-actin (red) and

Hoechst (blue) signals. Bars: 5 µm. Boxed regions enlarged on the right show F-actin (top) or merged signals (bottom), highlighting actin-positive bacteria at d1 and

actin-negative bacteria at d3 (bars: 1 µm). (C) Micrographs of an infected Huh7 cell at d3, showing Listeria (green), LAMP1 (red) and Hoechst (blue) signals. Arrows

indicate 3 examples of LisCVs. (D) Phase contrast image of an infected PMH at d3 (bars: 10 µm). Arrows indicate 2 examples of bacteria within vacuoles, shown at

a higher magnification on the right (bars: 1 µm).
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both HepG2 and PMH datasets (Supplementary Table S8). In

agreement with this, Gene Ontology of Biological Processes

(GO-BP) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis showed that genes

which were upregulated by infection in HepG2 and PMH cells
significantly clustered in functions associated with viral

infections and IFN responses (Supplementary Table S9). In

contrast, upregulated DEGs in Huh7 cells were associated with

entirely different biological processes and pathways, the most

significant being “cell division” (GOBP) and “cell cycle” (KEGG)

processes. This striking difference was also highlighted by the

very limited overlap of upregulated DEGs between the three
systems, with only 17 common genes (Figure 2D). 16 of these 17

genes were nonetheless categorized as ISGs (Table 1 and

Supplementary Table S8).

With respect to downregulated DEGs, only 69 were common to

all three datasets (Figure 2E). However, intersecting DEGs from

only two datasets yielded a significant number of genes commonly

downregulated (i.e., 380 DEGs common to HepG2 and Huh7 and

360 common to Huh7 and PMH). Functional analysis of each

individual or intersecting dataset (Supplementary Table S10)

highlighted the “coagulation and complement cascades” as one of
the top 3 KEGG pathways most significantly perturbed by infection

(Figure 2F). Ingenuity Pathway Analysis (IPA) also identified the

“coagulation system” and “complement system” among the top 15

statistically significant canonical pathways altered by long-term

Listeria infection (Figure 2G). Consistent with the fact that most

complement proteins and several coagulation factors are acute

phase proteins (APPs), the “acute phase response (APR)
signaling” pathway was also significantly deregulated. It should be

noted that in these pathways, the C1S complement component and

SERPINA1 are encoded by a single gene in the human genome and

multiple paralogs in themouse genome.We thus included these two

genes to the overlapping DEG datasets, leading to 71 genes (Huh7-

A B D E

F G

C

FIGURE 2 | Transcriptional responses to long-term Listeria infection in hepatocytes. HepG2, Huh7 and PMH were infected with Listeria for 72 h. (A) Cell counts (log

cells per well, mean ±SD, n=3). (B) Intracellular bacteria load expressed as log CFU per well (mean ±SD, n=3). (C) Number of significant DEGs upregulated (red bars)

or downregulated (blue bars) in infected hepatocytes compared to non-infected hepatocytes (adj p<0.05; |log2 FC| > 0.5). (D, E) Venn diagram showing the

intersection of upregulated (D) and downregulated (E) DEGs between HepG2, Huh7 and PMH datasets. (F) The top 5 most significant KEGG pathways associated

with downregulated DEGs in each of the 4 overlapping DEG datasets. (G) The top 14 most significant IPA canonical pathways associated with the Huh7–HepG2

(left) and the Huh7–PMH (right) overlapping downregulated DEGs.
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HepG2-PMH, Supplementary Table S11A), 380 genes (Huh7-

HepG2, Supplementary Table S11B) and 362 genes (Huh7-PMH,

Table S11C), whose under-expression could be used as markers

associated with Listeria persistent infection in hepatocytes

(Supplementary Table S11).

In summary, the transcriptional signature of long-term Listeria
infection is characterized by the robust activation of interferon

response genes in HepG2 and PMH cells, and the inhibition of APR

genes in all three hepatocyte models, with the downregulation of a

large number of genes involved in the complement and

coagulation cascades.

Different Interferon Responses to Listeria
Infection in HepG2, Huh7, and PMH Cells
The Listeria-induced interferon responses in HepG2 and PMH,

strikingly absent in Huh7, prompted us to further examine the

expression of IFN genes. We first analyzed the RNA-seq data to

have information about the absolute expression levels (fragments

per kilobase of transcript per million mapped reads, FPKM) of
IFN transcripts coding for either type I IFNs (IFN-I: IFN-a

subtypes, IFN-b, -ϵ, -k, -d, -z, -w), type II IFN (IFN-II: IFN-g), or

type III IFNs (IFN-III: IFN-l1, -l2, -l3). A threshold FPKM

value of 0.3 was applied to define detectable expression above

background, as previously described (Ramskold et al., 2009). No

IFN gene transcripts were detected in non-infected samples of

any of the three models, nor in infected Huh7 samples
(Figure 3A). In contrast, 3-day Listeria infection, triggered the

expression of IFNL1 (coding IFN-l1) and, to a lesser extent,

IFNB1 (coding IFN-b) and IFNL2 (coding IFN-l2) transcripts in

HepG2 cells, while low levels of IFNB1 transcripts were detected

in infected PMH.

Reverse transcription-quantitative PCR (RT-qPCR) was then
used to compare IFN gene expression at 72 h p.i. with that of

earlier infection time points, in order to determine the time

course and amplitude of IFN gene expression in infected

hepatocytes. In HepG2 hepatocytes, Listeria infection induced

IFNL1 and IFNB1 expression at 24 h p.i., and more significantly

at 72 h p.i. (10-fold more for IFNL1 and 4-fold more for IFNB1),

but not at 8 h p.i. (Figure 3B). In addition, IFNL1 expression was

approximately 20-fold higher than that of IFNB1. In Huh7 cells,

consistent with FKPM values, Listeria infection did not induce
expression of any of these genes at any time point. ELISA assays

confirmed the major production of IFN-l1 and minor

production of IFN-b proteins in response to Listeria infection

in HepG2, with highest amounts at 72 h p.i., and the absence of

both IFNs in Huh7 (Figure 3C). In PMH, quantification of Ifnb1,

Ifnl2, and Ifnl3 transcript levels [murine Ifnl1 is a pseudogene

(Hermant et al., 2014)] showed that infection elicited the
expression of only Ifnb1, which was 40 times higher at 24 h

than at 72 h p.i. (Figure 3D). The expression profile of MX1, an

ISG known to be induced by both IFN-I and IFN-III, followed

the expression profile of IFN genes in HepG2 and PMH and was

not significantly induced in Huh7-infected cells (Figure 3E). We

conclude that HepG2 and PMH both induce IFN genes when
exposed to Listeria, but exhibit differences, with an early

activation of IFN-I in PMH and a late activation of IFN-I/III

– essentially IFNL1 – in HepG2 cells. We also observed the Huh7

cell line to be defective in the signaling pathway leading to IFN

production in the context of Listeria infection, as previously

noted (Odendall et al., 2014).

However, Huh7 cells are known to have functional IFN
receptors and can thus mount effective interferon secondary

responses (Bolen et al., 2014; Odendall et al., 2014). We

investigated whether the important bacterial burden observed

in Huh7 cells could be the result of their defect in IFN signaling,

by restoring functional responses using recombinant IFNs. Huh7

cells were infected with the EGDe strain for 24 h and treated
daily with either IFN-b (3 ng/ml; ~800 IU/ml) or IFN-l1 (100

ng/ml) for an additional 48 h. IFN treatment activated the

expression of ISGs (IFIT1, IFI6 and MX1), but did not result

TABLE 1 | Seventeen genes are upregulated by long-term Listeria infection in all hepatocyte models.

Gene Symbol Gene Description log2 FC

HepG2 Huh7 PMH

CCL5 C-C motif chemokine ligand 5 8.4 4.0 5.3

CXCL10 C-X-C motif chemokine ligand 10 5.7 1.2 2.1

DDX60 DExD/H-box helicase 60 8.3 1.2 2.6

DHX58 DExH-box helicase 58 1.5 2.3 2.8

IFI44 interferon induced protein 44 10.7 5.4 4.1

IFIT2 interferon induced protein with tetratricopeptide repeats 2 9.1 0.8 0.9

ISG15 ISG15 ubiquitin like modifier 3.7 0.6 4.3

ISG20 interferon stimulated exonuclease gene 20 1.3 0.6 0.7

OAS2 2’-5’-oligoadenylate synthetase 2 8.7 4.2 2.7

OAS3 2’-5’-oligoadenylate synthetase 3 3.2 1.5 3.7

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 2.1 1.6 0.6

RSAD2 radical S-adenosyl methionine domain containing 2 10.5 4.3 3.6

SHLD3 shieldin complex subunit 3 0.7 1.0 0.5

STAT1 signal transducer and activator of transcription 1 2.2 0.8 1.8

TRIM5 tripartite motif containing 5 0.7 0.7 0.8

ZC3HAV1 zinc finger CCCH-type containing, antiviral 1 1.2 0.5 0.7

ZNFX1 zinc finger NFX1-type containing 1 1.2 0.9 0.9

Bolded gene symbols indicate genes that are classified as ISGs. Gray boxes indicate a log2 FC greater than 2 (i.e., 4-fold) in infected cells compared with non-infected cells.
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in a reduction in the number of intracellular bacteria at 72 h p.i.
compared to untreated cells (Supplementary Figure S3).

Taken together, these results indicate that HepG2, Huh7 and

PMH cells differ in their ability to mount interferon responses

upon long-term Listeria infection, but interferon responses do

not seem to affect the Listeria burden within hepatocytes.

Long-Term Listeria Infection in
Hepatocytes Downregulates Genes of the
Complement and Coagulation Cascades
Given the important roles of APP and other effectors of the

complement and coagulation systems in immunity and host

defense against pathogens (Merle et al., 2015; Antoniak, 2018;

Ermert et al., 2019; Reis et al., 2019), dysregulation of these
processes may have a strong impact on the outcome of Listeria

infection. We thus explored further the nature of the

downregulated DEGs associated with these innate immunity

and hemostasis pathways. IPA and KEGG analysis, combined

with a thorough literature search, identified 91, 44, and 43 APP

genes which were downregulated by long-term Listeria infection
in Huh7, HepG2, and PMH cells, respectively (Figure 4A), 19 of

which were common to all three models. RT-qPCR was used to

validate the downregulation of representative genes in HepG2,

Huh7 cells (Figure 4B) and PMH (Figure 4C). The same

downregulation was observed in Huh7 cells infected with
Listeria strain 10403S or epidemic strain CLIP80459, compared

to EGDe, demonstrating that the inhibitory effect was not strain-

dependent (Supplementary Figure S4).

Downregulated APP genes unique to HepG2, Huh7 or PMH,

or common to at least two models, were mapped onto the KEGG

“complement and coagulation cascades” pathway (Figure 5).
These complex cascades of tightly regulated proteolytic events

act in crosstalk (Amara et al., 2008). The complement system can

be activated by either the classical, lectin or the alternative

pathway, which all converge to trigger the cleavage of a central

component, the C3 protein and generate the same effector

molecules. Strikingly, long-term infection with Listeria in

Huh7 cells led to the downregulation of 30 genes, either
involved in the complement cascade or acting as complement

regulators (Figure 4A). Eight of these genes were similarly

inhibited by Listeria infection in PMH: they encode (i) the

activating enzyme C1S of the C1 complex, (ii) the central

component C3, (iii) the membrane-attack proteins C6 and

C8A, and (iv) four complement regulators (C1QTNF6, CFH,
CFHR2, VTN) (Figure 5). Expression of genes encoding

effectors of the blood coagulation and fibrinolysis systems were

also altered by Listeria infection. The coagulation system

includes the coagulation cascade and parallel regulatory

A
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FIGURE 3 | Listeria infection triggers interferon responses in HepG2 and PMH, but not in Huh7 cells. (A) IFN gene expression in non-infected (NI) and infected (Lm

EGDe or 10403S) HepG2, Huh7 and PMH cells at 72 h p.i., assessed by mean FPKM for each type I, II, or III IFN gene. (a) IFNA represents all genes coding for IFN-

a subtypes; (b) Ifnz is present in the mouse but not the human genome; (c) Ifnl1 is a pseudogene in the mouse genome. “n.d.”, non detectable (FPKM < 0.3, the

background level). (B) RT-qPCR analysis of IFNL1 and IFNB1 transcript levels in EGDe-infected HepG2 and Huh7 cells at 8 h, 24 h, and 72 h p.i., relative to NI cells,

and normalized to YWHAZ and PPIA for HepG2 and Huh7, respectively. (C) ELISA quantification of IFN-l1 (left) and IFN-b (right) protein secreted by EGDe-infected

HepG2 or Huh7 cells. Conditioned media from EGDe-infected or NI cells was sampled at 8 h, 24 h, and 72 h p.i. Dotted grey lines: limit of quantification; “n.d.”:

below the limit of detection (LoD). All NI cell conditioned media sampled concurrently with infected samples were below the LoD (not shown). (D) RT-qPCR analysis

of Ifnb, Ifnl2 and Ifnl3 transcript levels in 10403S-infected PMH at 24 h and 72 h p.i., expressed relative to NI cells, and normalized to Pdk3 and Pdk1 for 24 h and

72 h time points, respectively. (E) RT-qPCR analysis of MX1 transcript levels in EGDe-infected HepG2 or Huh7 cells, and Mx1 in 10403S-infected PMH, at 24 h and

72 h p.i., relative to NI cells, and normalized to YWHAZ, PPIA, and Pdk3/Pdk1 for HepG2, Huh7, and PMH respectively. Values represent mean ± SD (n=3).
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FIGURE 4 | Long-term Listeria infection downregulates expression of APP genes in hepatocytes. (A) Heatmap displaying log2 FC of APP genes significantly

deregulated in infected cells compared to non-infected (NI) cells. APPs are classified according to their role in either the complement or coagulation systems or other

functions. Gene symbols are indicated (corresponding gene names can be found in Supplementary Tables S3, S5, S7). Human C1S and SERPINA1 have several

murine orthologues; FC for murine C1s1 and Serpina1a are shown. (B, C) RT-qPCR analysis of representative genes in (B) EGDe-infected HepG2 or Huh7 cells,

and (C) 10403S-infected PMH, relative to NI cells. A non-differentially regulated control gene (HPRT1 for Huh7, B2M for HepG2, and Actb for PMH) is included for

each set. (D) C3 protein concentration in the conditioned media of NI or infected Huh7 cells at 72 h p.i. was measured by ELISA. All values represent mean ± SD

(n=3). Statistical significance, Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 5 | Mapping of APP genes downregulated upon long-term Listeria infection on the “complement and coagulation cascade” KEGG pathway. Colored boxes

and purple stars indicate components of the cascades specifically altered in three, two or one hepatocyte model (as shown by the legend on the right). The

hsa04610 KEGG pathway was adapted to underline different pathways of the coagulation cascade and fibrinolytic system (left) or complement cascade (right). Key

components are highlighted in bold: Thrombin (F2), Fibrinogen (FGA, FGB, FGG), Plasminogen (PLG) and complement C3 (C3).
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systems that lead to a complex interplay of reactions resulting in

the conversion of soluble fibrinogen to insoluble fibrin strands.

The coagulation cascade is traditionally classified into the

intrinsic and extrinsic pathways, both of which converge on

Factor X activation, generation of thrombin, and subsequently

fibrin to form fibrin clots. The fibrinolytic system (or
plasminogen-plasmin system) is required for fibrin degradation

and blood clot dissolution (Figure 5). Genes belonging either to

extrinsic and intrinsic coagulation cascade, kallikrein-kinin

system, fibrinolytic system and regulatory pathways, were

widely downregulated upon long-term Listeria infection in

Huh7 and PMH cells (32 and 19 DEGs, respectively), 16 of
which were common to both hepatocyte models (Figure 4A). In

particular, infection led to the repression of genes coding for

(i) the coagulation factors F12, F10, F5, F13, and thrombin (F2),

the enzyme responsible for the conversion of fibrinogen to fibrin,

(ii) Kallikrein B1 (KLKB1) of the kallikrein-kinin system, a

metabolic cascade resulting in the release of vasoactive kinins,
(iii) plasminogen (PLG) and urokinase plasminogen activator

(PLAU or u-PA) in the fibrinolytic system, (iv) a set of serpin

proteases with regulatory functions (SERPINA1/a1-antitrypsin,

SERPINA3/a1-antichymotrypsin, SERPINA10/Protein Z-

dependent protease inhibitor, SERPINA11, SERPINC1/

antithrombin, SERPIND1/heparin cofactor II, SERPINF2/a2-

antiplasmin) and (v) other regulators (A2M/a2 macroglobulin,
APOH/apolipoprotein H) (Figure 5). APP genes involved in

other various biological processes were also downregulated in

infected hepatocytes. In particular, common to Huh7 and PMH

cells were 10 APPs contributing to the regulation of lipid

metabolism (AHSG/Fetuin-A, APOA1, APOA4, APOA5,

APOE, SPARC and ITIH5) or other functions (ITIH1, ITIH3,
FGL1) (Figure 4A). The downregulation of complement and

coagulation gene expression in infected hepatocytes compared to

the basal level of expression in non-infected cells reflects the

capacity of long-term Listeria infection to modify the hepatic

innate immune landscape.

Long-Term Listeria Infection Reduces the
Amount of Secreted APPs
We next examined whether the decrease in APP mRNA levels

induced by long-term Listeria infection translated into a reduced

abundance of secreted APPs. We first quantified the concentration

of the C3 protein in cellular supernatants by ELISA. In agreement

with mRNA expression data, a significant reduction in total C3
levels was observed in the conditioned media recovered from

infected Huh7 and HepG2 cells, compared to non-infected cells

(Figure 4D). We then performed a label-free MS quantitative

proteomic analysis to explore the composition of the secretome of

infected cells. The quantification of proteins in the conditioned

media of long-term infected HepG2 or Huh7 cells compared to
that of non-infected cells identified a significant decrease in the

abundance of 42 and 153 proteins, respectively. Intersecting the

secretome of each cell line with its corresponding transcriptome

revealed a strong overlap, with 25 and 82 proteins that were

downregulated at both the proteomic and transcriptomic level in

HepG2 and Huh7, respectively (Supplementary Table S12), of

which more than half were APPs (Table 2). These results suggest

that long-term Listeria infection in hepatocytes alters APP

secretion at a transcriptional level.

Long-Term Listeria Infection Impairs the
Cytokine-Driven Expression of APP Genes
Given their important physiological functions, most APPs are

produced at a basal constitutive level by hepatocytes. However,

their amounts rapidly change in response to pro-inflammatory

cytokines released by innate immune cells during the course of

an infection, with interleukin-6 (IL-6) and interleukin-1 (IL-1)-
type cytokines as the leading inducers (Zhou et al., 2016). As

long-term Listeria infection reduced basal levels of APP gene

expression, we sought to evaluate the effect of long-term Listeria

infection on cytokine-induced APP gene expression. Since IL-6

and IL-1b produce selective gene induction, we first applied these

cytokines to non-infected Huh7 cells, for 24 h, to identify
representative IL-6- and IL-1b-specific APPs [also known as

type I and type II APPs, respectively (Baumann and Gauldie,

1994)]. IL-6 induced the expression of C5, C6, C8A, FGA, FGB

and HP genes, while IL-1b induced C3, F11 and HP genes

(Figure 6A). We subsequently examined the effect of Listeria

infection on the cytokine-induced expression of these genes. Our

results showed that upon inflammatory cytokine stimulation, the
mRNA abundance of APPs was strongly reduced in Huh7-

infected cells, when compared to non-infected cells, indicating

that infection inhibits the inflammatory signaling pathway

(Figure 6B). We confirmed this effect in HepG2 cells for the

APPs C6 and FGA, following stimulation with IL-6 (Figure 6C).

These results reveal that long-term Listeria infection not only
represses the constitutive expression of APP genes, but also

counteracts the transcriptional stimulation induced by

inflammatory stimuli.

Long-Term Listeria Infection
Downregulates Genes of LXR-RXR,
FXR-RXR, and Cholesterol Metabolism-
Associated Pathways
IPA analysis of genes which were downregulated after 3-day Listeria

infection, either in both human hepatocyte models, or both human

Huh7 and PMH models, also identified pathways associated with

ligand-dependent nuclear receptors liver X receptor/retinoid X

receptor (LXR/RXR) and farnesoid X receptor/retinoid X receptor

(FXR/RXR) (Figure 2G). LXR and FXR play a critical role in the
regulation of metabolism, particularly cholesterol, fatty acid, bile

acid and carbohydrate metabolism (Ding et al., 2014). Of note,

several genes associated with these pathways encoded APPs (e.g.,

AHSG, APOA1, APOA4, APOC1, APOC3, APOE, APOH and

SERPINF2), in line with the notion that LXR and FXR act in

crosstalk with other transcription factors to control expression of a
set of APP genes (Odom et al., 2004; Wollam and Antebi, 2011; Yin

et al., 2011). This was confirmed at the protein level, as infection

decreased the amount of secreted AHSG and apolipoproteins

APOA1, APOE and APOH, in both HepG2 and Huh7

conditioned media, as well as of APOB, APOC3 and SERPINF2

in Huh7 (Supplementary Table S12). In addition, genes involved
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in bile acid and cholesterol biosynthesis pathways, namely bile acid-
CoA:amino acid N-acyltransferase (BAAT) and 3-hydroxy-3-

methylglutaryl-CoA synthase 2 (HMGCS2), respectively, and

several apolipoprotein genes (APOA1, APOA4, APOC1, APOE,

APOH) were downregulated PMH as in Huh7 cells

(Supplementary Table S11). It was particularly striking that

cholesterol metabolism-related pathways were the most highly
significantly altered pathways in HepG2 and Huh7 transcriptome

datasets, as shown by KEGG (Figure 3G) and IPA enrichment

analysis (Figure 3F). RT-qPCR validated the downregulation of
representative genes (Figure 7A). As for APP genes, this inhibitory

effect was not strain-dependent (Supplementary Figure S4).

In both HepG2 and HuH7 hepatocytes, nearly all the genes of the

cholesterol biosynthesis pathway were downregulated, including the

genes encoding the rate limiting enzymes 3-hydroxy-3-

methylglutaryl coenzyme A reductase (HMGCR), squalene
epoxidase (SQLE), and lanosterol synthase (LSS) (Figures 7B, C).

In Huh7, several genes of the classical bile acid (BA) synthesis

TABLE 2 | Long-term Listeria infection decreases the abundance of APP in the secretome of HepG2 and Huh7 hepatocytes.

Uniprot accession Gene symbol Protein name HepG2 Huh7 (a)

log2 Ratio p-adj log2 Ratio p-adj

Complement

P01024 C3 complement C3 -0.77 3.8E-19 -3.25 8.8E-59

P01031 C5 complement C5 -2.58 1.1E-16

P0C0L4 C4A complement C4A <-4.00 7.7E-15

P0C0L5 C4B complement C4B <-4.00 7.7E-15

P00751 CFB complement factor B -3.29 1.8E-09

P04004 VTN vitronectin -1.32 6.4E-03 -2.03 2.7E-06

P05155 SERPING1 C1-inhibitor -4.09 1.6E-04

P06681 C2 complement C2 <-1.87 3.9E-04

P08603 CFH complement factor H -2.70 7.1E-18

Q03591 CFHR1 complement factor H related 1 <-2.74 1.3E-06

P10909 CLU clusterin -0.98 8.5E-03 -1.37 2.7E-04

P05156 CFI complement factor I -1.00 3.0E-03 <-1.87 3.9E-04

Coagulation

P02751 FN1 fibronectin 1 -1.97 2.4E-28

P01023 A2M alpha-2-macroglobulin -0.90 1.7E-19 -2.08 8.8E-24

P00747 PLG plasminogen -4.55 1.9E-22

P01009 SERPINA1 alpha-1-antitryppsin -0.80 4.1E-07 -2.06 5.2E-17

P01042 KNG1 kininogen 1 -3.91 5.5E-10

P02749 APOH apolipoprotein H -0.75 2.8E-03 -3.58 5.9E-10

P36955 SERPINF1 pigment epithelium-derived factor -0.95 9.2E-06 -2.27 1.2E-07

P08697 SERPINF2 alpha-2-antiplasmin -1.93 2.6E-06

P01008 SERPINC1 antithrombin -1.97 6.2E-06

P05154 SERPINA5 plasminogen activator inhibitor-3 -0.98 9.3E-03 -2.37 8.8E-05

P05546 SERPIND1 heparin cofactor 2 -0.95 9.0E-03 -2.04 9.5E-05

P29622 SERPINA4 kallikrein inhibitor <-1.58 1.5E-03

Q86U17 SERPINA11 serpin family A member 11 -1.23 2.4E-03 <-1.00 8.7E-03

P00748 F12 coagulation factor XII -4.17 8.8E-05

P00734 F2 coagulation factor II, thrombin -1.45 2.9E-04

P12259 F5 coagulation factor V -3.91 5.0E-04

P02675 FGB fibrinogen beta chain -1.58 2.2E-03

Other APPs

P02787 TF transferrin -0.65 7.0E-10 -1.43 1.6E-30

P02768 ALB albumin -1.22 2.4E-25

P02647 APOA1 apolipoprotein A1 -0.98 1.9E-06 -3.50 3.2E-22

P02760 AMBP alpha-1-microglobulin/bikunin precursor -0.89 2.4E-05 -2.12 1.4E-13

P02774 GC GC, vitamin D binding protein -5.09 4.8E-09

P19823 ITIH2 inter-alpha-trypsin inhibitor heavy chain 2 -0.86 4.4E-08 -1.15 1.4E-07

P01019 AGT angiotensinogen -1.76 2.2E-07

P02649 APOE apolipoprotein E -0.67 1.9E-03 -1.20 8.5E-07

P02765 AHSG alpha 2-HS glycoprotein -0.62 2.8E-03 -1.28 1.1E-05

P02753 RBP4 retinol binding protein 4 -1.24 8.0E-05

P00738 HP haptoglobin <-1.42 2.7E-03

P00450 CP ceruloplasmin -3.49 2.9E-11

Q08830 FGL1 fibrinogen like 1 -3.00 1.5E-03

A label-free quantitative proteomic approach was used to identify proteins differentially abundant in the conditioned medium of infected (I) compared to non-infected (NI) hepatocytes in 3

independent experiments. The relative abundance of individual proteins was assessed by significant differences in spectral counts (SC) between the two conditions (p-adj <0.01, see

Supplementary Material). Proteins with significant decreases, expressed as log2 (I/NI) SC ratio, were then selected on the basis of a decrease in RNA level of the corresponding gene in

the transcriptome dataset, resulting in the identification of 25 and 82 proteins in HepG2 and HuH7, respectively (see Supplementary Table S12), of which 17 and 41 were APPs. (a) For

eight proteins with SC=0 in the Huh7 infected condition, an arbitrary value of SC=1 was used to allow the calculation of a log2 ratio (in this case, the value is preceded by "<").
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pathway were also downregulated, including the rate limiting

enzyme cytochrome P450 family 7 subfamily A member 1
(CYP7A1). Together, these results suggest that long-term Listeria

infection disturbs the expression of cholesterogenic-, lipogenic- and

bile acid-associated genes.

Upstream Regulator Analysis of Gene
Networks Perturbed by Long-Term
Listeria Infection
To proposemechanistic hypotheses that could explain the inhibitory

effect of Listeria infection on APP and lipid metabolism gene

expression we used the Ingenuity Upstream Regulator Analysis
(URA) analytical algorithm to predict host transcriptional

regulators targeted by infection. This analysis identified several

transcription factors (TFs), ligand-dependent nuclear receptors, as

well as epigenetic factors, as possible regulators underlying infection-

orchestrated transcriptional modulation (Supplementary Table

S13). URA performed on the network of genes that were either
deregulated by infection in Huh7 and PMH models, or in human

Huh7 and HepG2 models, identified extensive overlap between the

transcriptional regulators coordinating the observed patterns of gene

dysregulation: the hepatocyte nuclear factors HNF1a and HNF4a,

the ligand-dependent nuclear receptors PPARa, LXRb, RXRa and

RORC, and P53. The Huh7 and PMH models also revealed the

possible involvement of CEBPA (CCAAT/enhancer binding protein
alpha), a TF known to regulate APP expression with hepatocyte

nuclear factors, aswell as the epigenetic regulators EZH2, EP300, and

SMARCB1. The sterol regulatory element-related transcription

factors SREBF1 (or SREBP1) and SREBF2 (or SREBP2), on the

other hand, were specific to Huh7 and HepG2 models, consistent

with their function asmaster transcriptional regulators of cholesterol
homeostasis (Shimano and Sato, 2017). Interestingly, the epigenetic

regulator SIRT2, previously associated with Listeria infection

(Eskandarian et al., 2013), was predicted to regulate the expression

of ten infection-dysregulated genes involved in the cholesterol

biosynthetic pathway (ACLY, DHCR7, FDFT1, HMGCR, IDI1,

LSS, MVD, MVK, SC5D, SQLE) (Supplementary Table S13)

(Figure 7B). Together, these analyses provide insights into
transcriptional regulators that may orchestrate gene dysregulation

mediated by long-term Listeria infection of hepatocytes and impact

the intracellular persistence phase.

DISCUSSION

The ability of intracellular bacterial pathogens to hide long-term

in host cells plays a key role in chronic or asymptomatic

infections. However, the molecular mechanisms of this

persistence are less well understood than those of virulence.

Especially for Listeria, the concept of intracellular persistence is

recent (Bierne et al., 2018) and its potential impact on host

defenses remains unknown. Here, we established three cellular
infection systems in human and murine hepatocytes to study

how the host cell transcriptional landscape is remodeled once the

bacteria enter a persistence stage in LisCVs. Convergent results

indicate that this stage coincides with a profound deregulation of

hepatic innate immune response genes, in particular a strong

activation of the IFN response and repression of APR genes. We
speculate that this immune deregulation may be propitious for

asymptomatic Listeria carriage in the host (Figure 8).

Hepatocyte Models to Study Listeria
Persistent Infection
A number of studies have analyzed the response of mammalian cells
infected with Listeria using transcriptomic approaches

(Supplementary Table S14). Some have used cultured cells of

myeloid, endothelial, or epithelial origin, but during a short time

of infection, when the bacteria are in the active phase of replication

and/or dissemination (i.e., 24 h or less). Others have used organ

biopsies after infection in mice, thus revealing a response arising
from different cell types. In particular, in transcriptomic analyses of

Listeria infection in the mouse liver (Supplementary Table S14),

A B C

FIGURE 6 | Long-term Listeria infection reduces cytokine-driven expression of APP genes in human hepatocytes. (A) Huh7 cells were stimulated with IL-6 (50 ng/

mL) or IL-1b (10 ng/mL) for 24 h. Gene expression was analyzed by RT-qPCR and is expressed as fold-induction relative to mock-stimulated cells; IL-6 induced the

expression of C5, C6, C8A, FGA, FGB and HP genes, while IL-1b induced C3, F11 and HP genes. (B, C) Effect of infection on cytokine-induced APP gene

expression in Huh7 (B) and HepG2 cells (C). Cells were infected with strain EGDe (MOI~1-5) for 48 h or remained non infected (NI). IL-6 (50 ng/mL) or IL-1b (10 ng/

mL) (Huh7) or IL-6 (25 ng/mL) (HepG2) was added to infected and NI cells and transcript levels relative to stimulated NI cells were quantified by RT-qPCR 24 h later

(at 72 h p.i., i.e. 24 h post-stimulation). A control gene whose expression was affected neither by infection nor cytokine stimulation is included. (B) In Huh7 cells, the

control gene was YWHAZ and gene expression was normalized to PPIA; (C) In HepG2 cells, the control gene was HMBS and gene expression was normalized to

YWHAZ. All values represent mean ± SD (n=3). Statistical significance, Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001).
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the specific contribution of hepatocytes versus immune cells was not

determined. In addition, while these studies have proven extremely

valuable in defining Listeria virulence and host immune responses

during acute infection, they did not reveal strategies that might

allow this pathogen to maintain long-term infection without

causing symptomatic disease. A major challenge in studying

persistent bacteria is due to the fact that slow-growing bacteria
could be rare within tissues and thus difficult to detect and study in

vivo. It is therefore crucial to develop efficient in vitro culture

systems to model persistent infection. We show here that HepG2,

Huh7 and PMH are good models to achieve this goal, as bacteria

can efficiently replicate, disseminate, and finally be captured inside

LisCVs, without causing major cytotoxicity. This latter observation
is consistent with in vivo studies showing that Listeria can replicate

extensively in hepatocytes without causing major cell death, when

neutrophil recruitment to the sites of infection in the liver is

inhibited (Conlan and North, 1991; Appelberg and Leal, 2000).

We exploited these in vitro models in order to identify, for the first

time, a “meta-signature” associated with long-term Listeria infection

in hepatocytes.

The Intracellular Persistence Stage of
Listeria in Hepatocytes Coincides With
Inhibition of Complement and Coagulation
Gene Expression
Hepatocytes play an important role in fighting bacterial infections,

particularly as they are the primary source of many APPs, which
they constitutively produce and overproduce in response to

A

B C

FIGURE 7 | Long-term Listeria infection downregulates almost all genes of the cholesterol biosynthesis pathway in both human HepG2 and Huh7 cells. (A) RT-

qPCR analysis of transcript levels of representative genes involved in cholesterol metabolism and homeostasis in EGDe-infected HepG2 and Huh7 cells, relative to

non-infected (NI) cells. Expression was normalized to YWHAZ or PPIA for HepG2 and Huh7 cells, respectively, and a non-differentially expressed control gene

(HPRT1 for HepG2, B2M for Huh7) is included. Values represent mean ± SD (n=3). Statistical significance, Student’s t test (*p < 0.05, **p < 0.01). (B) Diagram

illustrating the de novo cholesterol biosynthesis pathway. Enzyme names are in black and their corresponding gene symbols are blue when downregulated in

infected cells, otherwise they are gray. Rate limiting enzymes are preceded by a star. Intermediary molecules are shown in red. Lanosterol can be transformed into

cholesterol via two different routes: the Bloch pathway (left) and the Kandutsch-Russell pathway (right). (C) Heat map showing the log2 FC obtained by RNA-seq in

HepG2 and Huh7 infected versus NI cells, for each of the cholesterol synthesis enzyme coding genes listed in (B).
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infection (Zhou et al., 2016). For example, complement C3 and

fibrinogen (FBN), the central compounds of the complement and

coagulation systems, are APPs constitutively and almost

exclusively produced by hepatocytes, and their serum levels are

significantly increased during the APR (Zhou et al., 2016).

Hepatocytes produce other complement and coagulation
proteins that, like C3 and FBN, contribute to pathogen

clearance, activation of innate immune cells, and enhancement

of the adaptive immune response (Amara et al., 2008; Merle et al.,

2015; Reis et al., 2019). It is therefore not surprising that

pathogenic bacteria have evolved various mechanisms to evade

the complement and coagulation systems (Hovingh et al., 2016;
Antoniak, 2018; Ermert et al., 2019). However, while known

mechanisms primarily involve bacterial protein effectors (e.g.,

capsules, proteases, inhibitors), mechanisms involving

transcriptional repression are essentially undocumented. There

is a plethora of data showing that systemic bacterial infections

induce APP gene expression, and this knowledge has long been
exploited for diagnostic purposes, as serum APP levels can be used

as prognostic markers (Markanday, 2015). In contrast, to our

knowledge, data regarding the impact of persistent bacterial

infections on APP gene expression are scarce. In a recent study

involving Mycobacterium tuberculosis (Mtb), a paradigm for

asymptomatic persistent infections, the blood plasma proteome

of healthy subjects was compared to those with active tuberculosis
(TB) or latent tuberculosis (LTBI). This revealed that the amount

of several APPs decreased in the plasma of LTBI cases compared

to TB cases or even healthy controls (Teklu et al., 2020), suggesting

that in asymptomatic Mtb carriers the expression of some APPs is

not induced or is reduced relative to basal levels, and that APP

levels could be used to predict the risk of TB reactivation.
Interestingly, decreased APP expression has been associated with

recurrent bacterial infections. For example, C3 levels in women

with recurrent urinary tract infections have been shown to be

lower than in healthy women (Syukri et al., 2015). In addition,

mutations that cause complement deficiencies predispose

individuals to recurrent infections (e.g., by Streptococcus

pneumoniae, Neisseria meningitidis and Haemophilus influenzae)
(Ram et al., 2010). Single-nucleotide polymorphisms (SNPs) in

complement genes have also been linked, through genome-wide

association studies (GWAS), to disease susceptibility and outcome

of bacterial infections (van den Broek et al., 2020).

Here we show that long-term Listeria infection in hepatocytes

can have a profound impact on both the constitutive and
cytokine stimulated expression of APP genes. Several studies

have demonstrated the importance of the complement system

(Calame et al., 2016) and the coagulation system (Davies et al.,

1981; Mullarky et al., 2005; Nishanth et al., 2013) in protecting

the host from Listeria. The transcriptional inhibition observed

here could therefore be a previously unappreciated effect induced

by the pathogen to enhance its long-term survival. Among
targeted APPs, the decrease in the amount of C3 protein in the

secretome of Listeria-infected hepatocytes, compared to non-

infected hepatocytes, is particularly striking, given the critical

role of C3 in the response to this bacterial infection (Calame

et al., 2016). For instance, blocking the functional activity of C3

through the use of an anti-CR3 antibody inhibits neutrophil

recruitment to Listeria infection foci and reduces liver tissue

damage (Conlan and North, 1991; Appelberg and Leal, 2000). In

addition, through activation of its receptors CR3 and CRIg, C3

contributes to phagocytosis and elimination of Listeria by

macrophages (Calame et al., 2016). C3 also plays a role in
adaptive immunity, being required for efficient T cell activation

during murine listeriosis (Nakayama et al., 2009; Verschoor

et al., 2011; Tan et al., 2014). Beyond its role on immune cells,

C3 could also counteract bacterial infection within hepatocytes.

Indeed, an intracellular activity of complement proteins [known

as “complosome” (Arbore et al., 2017)] was recently identified
and, interestingly, a study showed that coating Listeria with C3

induces autophagy in epithelial cells (Sorbara et al., 2018). Since

C3 is abundantly produced by hepatocytes, it is possible that the

intracellular C3 form targets Listeria within this cell type.

Blocking C3 gene expression, while sheltering in the LisCV

niche, could be a strategy employed by Listeria to avoid
autophagy and persist in the hepatocyte. Thus, inhibition of

C3 production could promote bacterial persistence by several

means, such as preservation of the hepatocyte niche and

limitation of intracellular bacterial destruction. With respect to

other APPs, it is worth mentioning the impaired innate response

to Listeria infection in ApoE-deficient mice, as another example

of how a decrease in APP expression could impact the host
response to this pathogen (Roselaar and Daugherty, 1998).

Inhibiting a network of APP genes, rather than individual

APPs, is an effective strategy to concomitantly target multiple host

defenses. To our knowledge, this has never been described before

for an intracellular bacterium. Listeria infection represses the

constitutive expression of APP genes in hepatocytes and,
importantly, this repression is maintained under conditions of

inflammation, after stimulation with the pro-inflammatory

cytokines IL-6 and IL-1b. These results suggests that long-term

Listeria infection could impose a transcriptional block,

desensitizing APP gene expression from inflammatory stimuli.

However, it is known that acute infection with Listeria in mice

stimulates the production by immune cells of these pro-
inflammatory cytokines, which in turn stimulate APP expression

in hepatocytes (Kopf et al., 1994). Notably, one study showed that

after intravenous inoculation of mice with a sublethal dose of

Listeria, a homogeneous infection of mouse livers was observed on

day 1, followed by a peak in bacterial loads on day 3 and a highly

significant reduction on day 9 p.i., representing the expected
process of bacterial clearance (Kummer et al., 2016). At the

same time, IL-6 and IL-1b mRNA levels increased in the

infected livers on day 1 and remained elevated on day 3,

followed by a sharp decrease on day 9 p.i. Consecutively to the

induction of pro-inflammatory cytokines, the amount of many

APPs increased on day 1, and especially on day 3, and then

dropped to an nonsignificant level on day 9 p.i. in infected livers
compared with uninfected controls (Kummer et al., 2016). We

propose a model that combines these results with our own

(Figure 8). On the one hand, acute infection triggers a major

defensive inflammatory response in the host, including expression

of APPs, leading to the elimination of the majority of bacteria and
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infected hepatocytes. On the other hand, bacteria infecting

hepatocytes control the expression, and thus the secretion, of

APPs, which could counteract the massive activation of the APR

and limit liver damage, while attenuating the immune response.

We suggest that this process may prevent the complete
elimination of Listeria in the liver, favoring the creation of a

long-term reservoir of a small bacterial subpopulation that has

entered a dormant state in LisCVs. Moreover, inhibition of APP

gene expression could have profound implications for the

development of effective adaptive immunity. Given the fact that

the liver is a naturally immunotolerant organ (Zheng and Tian,
2019), downregulation of APPs could enhance host tolerance to

Listeria persistent forms in asymptomatic carriers.

The mechanisms by which Listeria interferes with APP gene

expression remain to be elucidated, but avenues of research exist

based on the acquired knowledge of how this bacterium

modulates host gene expression, e.g., by interfering with the
signaling pathways that control TFs, impacting their stability or

nuclear localization, or by acting on epigenetic regulators thus

controlling the chromatin structure at target genes (Bierne and

Hamon, 2020; Eldridge et al., 2020). Among possible hypotheses,

Listeria could alter the functions of TFs essential for constitutive

expression of APPs, such as hepatocyte nuclear factors (HNFs)

HNF1a and HNF4a (Zhou et al., 2016). HNFs are particularly
interesting candidates since they play a central role in the liver-

specific transcriptional program. They coordinate the effect of

various signaling pathways to fine-tune the expression of many

liver genes (Odom et al., 2004), including those shown here to be

downregulated by infection and involved in the complement and

coagulation cascades or other facets of the APR (Zhou
et al., 2016).

The Intracellular Persistence Stage
of Listeria in Human Hepatocytes
Coincides With Inhibition of
Cholesterol Metabolism Genes
HNFs regulate hepatic gene expression in concert with other

ligand-dependent nuclear receptors such as LXR, FXR and

PPARA that regulate lipid and bile acid metabolism (Shih

et al., 2001; Odom et al., 2004; Wollam and Antebi, 2011; Yin

et al., 2011). HNF4a and LXR, in turn, regulate the activity of

SREBPs (Shimano and Sato, 2017), and are thus directly

implicated in the regulation of cholesterol homeostasis. In
Huh7 and HepG2 human hepatocytes, the pathway the most

significantly inhibited by infection was the cholesterol

biosynthesis gene network, with almost all genes of the

pathway downregulated in both human hepatocyte models

(Figure 7). The role of cholesterol metabolic reprogramming

in persistent Listeria infection of epithelial cells deserves further
investigation, given the role of cholesterol in the establishment of

FIGURE 8 | Proposed model of Listeria-mediated immune remodeling to promote persistent infection in hepatocytes. Acute infection (left). L. monocytogenes (Lm)

invades hepatocytes (through the InlA/B-mediated entry pathways or through cell-to-cell spread from infected macrophages, not represented). During the active phases

of the infection process, Lm produces virulence factors that enable bacteria to enter into the cytosol and spread from cell-to-cell by the ActA-mediated actin-motility

process. Hepatocytes detect intracellular Lm and secrete type I/III interferons (IFNs) and other cytokines (not represented), stimulating immune cells. In turn, immune cells

secrete pro-inflammatory cytokines, such as IL-6 and IL-1b, which activate the expression of genes encoding acute phase proteins (APP) in hepatocytes. Secreted APPs,

which include complement, coagulation and fibrinolytic factors and a set of apolipoproteins, have antimicrobial and/or immunomodulatory effects that contribute to the

clearance of Listeria infection. Persistent infection (right). Long-term Lm infection exacerbates interferon and anti-viral like responses and imposes a block on APP gene

expression in hepatocytes, by an unknown mechanism possibly involving the inhibition of transcription factors (e.g. hepatocyte nuclear factors (HNFs), LXR, PPARA) and

epigenetic regulators, leading to the decrease in APP secretion and inhibition of the APR. Concomitantly, bacteria stop expressing ActA and are engulfed in membrane

compartments to form Listeria-containing vacuoles (LisCV), where they enter a persistent non-replicative phase. The deregulation of the hepatocyte-specific innate

immune responses prevents the complete elimination of Listeria in the liver, favoring the creation of a long-term reservoir of intracellular persistent bacteria. In addition, it

could modulate adaptive immunity to favor the tolerance of cells harboring dormant pathogens.
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vacuolar niches for intracellular pathogens (Samanta et al., 2017)

and of oxysterols in host immune functions (Cyster et al., 2014;

Abrams et al., 2020). In addition, controlling cholesterol

metabolism plays a key role in Mtb and Helicobacter pylori

persistent infections (Pandey and Sassetti, 2008; Morey and

Meyer, 2019). In PMH, long-term Listeria infection was not
associated with the cholesterol biosynthesis pathway. Growth

conditions, metabolic disparity between primary cell and

carcinoma-derived cell lines and, importantly, species

specificity, could account for the differences in the infection-

associated transcriptional program between human hepatoma

cell lines and PMH. However, it should be noted that some genes
involved in cholesterol metabolism were also inhibited by

infection in PMH, such as Hmgcs2 and several target genes of

LXR and FXR, including the cholesterol transporter gene Abcg1,

the lipoprotein lipase gene Lpl, and several apolipoprotein genes,

like in human hepatocytes.

Interferon and Antiviral-Like Signatures of
Long-Term Listeria Infection in the
Hepatic Transcriptome
IFN-I and/or IFN-III expression is a hallmark of the epithelial

cell response to viral or bacterial invasion, including by Listeria

(Bierne et al., 2012; Dussurget et al., 2014). Here we show that

human HepG2 hepatocytes respond to intracellular Listeria

infection with significant IFN-III production, in agreement

with our previous results (Bierne et al., 2012). PMH cells, on
the other hand, respond with IFN-I expression. These differences

are consistent with the species-specific expression of IFN-I and

IFN-III genes in the liver, as well as of their specific receptors.

Human hepatocytes express high levels of IFN-III and respond

strongly to stimulation by this IFN, whereas murine hepatocytes

do not respond to IFN-III and preferentially express IFN-I

(Nakagawa et al., 2013; Hermant et al., 2014; Broggi et al.,
2020). In addition, we report differential expression dynamics

of IFN-I and IFN-III genes, which may have significance in the

specific roles of the two classes of IFNs. This emphasizes the need

to address the role of IFN-III in human listeriosis. As for Huh7

cells, they do not produce any IFN in response to Listeria, as

previously observed when these cells are challenged with other
IFN-triggering stimuli, such as dsRNA (Lanford et al., 2003),

poly(I-C) (Li et al., 2005) or hepatitis C virus (Israelow et al.,

2014). A possible explanation for this lack of response is that

Huh7 cells have a defective TLR3 signaling pathway (Li et al.,

2005). This deficiency can be useful in identifying IFN-

independent processes. In particular, the downregulation of

cholesterol biosynthesis gene expression in response to Listeria
infection occurs in Huh7 in the absence of IFN. In contrast, IFN

is involved in the downregulation of sterol biosynthesis during

viral infections (Blanc et al., 2011).

Are IFN-I and IFN-III pathways beneficial or detrimental to

persistent Listeria infection? The answer to this question is

complex, since IFNs can have opposing effects on bacterial
pathogens (Boxx and Cheng, 2016; Cohen and Parker, 2016;

Ng et al., 2016; Alphonse et al., 2021). In fact, in mouse models of

listeriosis, IFN-I has been implicated in both the restriction and

promotion of infection (Dussurget et al., 2014; Boxx and Cheng,

2016), likely resulting from the pleiotropic roles of IFN-I in

distinct cell environments and at different stages in the infectious

process. Our data suggest that IFN responses do not result in an

antibacterial effect in hepatocytes. Indeed, restoring a functional

IFN response in Huh7 cells, by exogenous supply of IFN-b or

IFN-l1, does not produce a reduction in bacterial load at 3-day
p.i. However, it is likely that IFN secretion by hepatocytes

modulates infection in vivo by acting on immune cells.

Interestingly, IFN-I promotes some chronic bacterial infections

(Boxx and Cheng, 2016) and can lead to immunosuppression in

chronic viral infections by inhibiting DC and T cell activation

(Ng et al., 2016). In murine listeriosis, the IFN-I response has
inhibitory effects on T cells (Carrero et al., 2004; Archer et al.,

2014). The role of IFN-III in listeriosis has not yet been directly

studied, but it should be noted that this IFN limits inflammation

and leukocyte responses that are detrimental to epithelial barrier

integrity (Broggi et al., 2020). Based on this, we propose the

hypothesis that excessive IFN signaling could promote cellular
conditions that support bacterial persistence by contributing to

immune suppression and tissue tolerance (Figure 8).

Proteins encoded by the genes activated downstream of IFN

(ISGs) are an important family of innate immunity factors

produced in response to microbial infections (Schneider et al.,

2014), including listeriosis (Dussurget et al., 2014). Like APPs,

ISGs have various functions and are activated in a network,
allowing for the simultaneous induction of diverse responses.

The striking result of our study is that long-term infection with

Listeria in human (HepG2) and murine (PMH) hepatocytes

leads to a prominent ISG signature, astonishingly mimetic of

an antiviral response. In addition, we identified 16 ISGs whose

expression is enhanced in all hepatocyte models at 3 days p.i.
(Table 1). Since Listeria infection does not induce IFN

expression in Huh7 cells, these 16 ISGs are, in this context,

activated by alternative pathways to IFN signaling. Indeed,

CCL5, CXCL10, PMAIP1, IFIT2, RSAD2 and ISG15 can be

activated independently of IFNs (Varley et al., 2003; Werts

et al., 2007; Knowlton et al., 2012; Ashley et al., 2019). In

particular, ISG15 expression is known to be induced
independently of IFN-I/III signaling upon Listeria infection

and its product, the ubiquitin-like modifier ISG15, inhibits

Listeria infection in fibroblasts (Radoshevich et al., 2015). The

role of ISG15 in hepatocytes has not yet been directly addressed,

but the study of a mouse model of increased ISGylation suggests

an important role of ISG15 in the liver, including metabolic
processes and autophagy (Zhang et al., 2019). Interestingly,

hyper-ISGylation is associated with larger infection foci in the

liver, suggesting that uncontrolled ISGylation could promote

Listeria survival in this organ.

Concluding Remarks
The inhibition of the APR and exacerbation of interferon

responses in hepatocytes sheds new light on the mechanisms by
which Listeria might escape the host immune system to create a

niche of persistence in the liver. Our results open up new questions

about the cell biology of Listeria infection, for which the cellular

models presented here would prove useful. For example, what is

the role of intracellular activities of complement proteins, ISG
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products, and cholesterol metabolism, on the fate of cytosolic or

vacuolar bacteria? What are the transcriptional and/or epigenetic

mechanisms behind the deregulation of the identified genes? This

study also raises the question of the role of APPs, IFN-I and IFN-

III in vivo, especially in the physiology of the asymptomatic phase

of Listeria infections. However, no relevant animal model to study
a long-lasting silent Listeria infection is yet available. Exploiting

the results of our study might guide the development of such

models, through genetic modifications or the use of drugs

targeting host genes involved in the APR and IFN signaling. In

addition, as SNPs and other mutations in complement and IFN

genes have been linked to immune deregulation and susceptibility
to infection, GWAS in humans or animals with listeriosis would be

valuable in the investigation of the potential roles of APR and IFN

pathway-related genes in the susceptibility to Listeria infections.
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Supplementary Material 

1 Supplementary Materials and Methods 

1.1 Transcriptome analysis 

1.1.1 RNA-sequencing 

Directional RNA-seq libraries of infected and non-infected cell RNA were assembled using 500-1300 
ng total RNA (as determined by Qubit assay (Invitrogen)) using the TruSeq® mRNA Stranded Library 
Prep kit (Illumina) which includes polyA-selection. The RNA-seq libraries were monitored for quality 
on the Bioanalyzer 2100 using an Agilent High Sensitivity DNA Kit. Libraries were pooled in 
equimolar proportions and sequenced in paired-end 50-35 bp runs on an Illumina NextSeq500 
instrument, using NextSeq 500 High Output 75 cycles kits. Demultiplexing was performed (bcl2fastq2 
V2.2.18.12) and adapters were trimmed with Cutadapt (v1.15); only reads longer than 10 bp were kept. 
TopHat (version 2.1.1) was used for alignment on the reference genomes: Ensembl-98 human genome 
(HepG2 and Huh7 samples) or Ensembl-100 GRCm38 mouse genome (PMH samples). Data were 
evaluated through principal component analysis and hierarchical clustering after transformation of the 
count data using RLOG function. Dendograms were built using Euclidian distance function and Ward 
criterion as linkage function. Normalization and differential analysis were carried out using the 
DESeq2 package, with a pre-filter step to remove genes with low counts (sum of all replicates 
counts<10, in all conditions compared). Results were considered statistically significant with adjusted 
p<0.05, with correction according to the Benjamini and Hochberg's procedure.  
 

1.1.2 Functional gene analysis  

Gene pathways analysis was performed on differentially expressed protein-coding genes using DAVID 

(Huang da et al. 2009) version 6.8 (http://david.abcc.ncifcrf.gov), KEGG (Kanehisa et al. 2000) 
(http://www.genome.jp/kegg/pathway.html) and QIAGEN’s Ingenuity Pathway Analysis (IPA®, 

QIAGEN Redwood City). A p value <0.05 was considered to indicate a statistically significant 

difference. Analysis using the interferome database (Rusinova et al. 2013) was performed by selecting 

"hepatocytes" as the cell system, "all species", and a fold change value greater or equal to 2.  

 

1.1.3 RT-qPCR validation 

Each RNA-seq analysis was validated by RT-qPCR with YWHAZ, PPIA, or Pdk1 used to normalize 
gene expression in infected relative to non-infected HepG2, HuH7 and PMH, respectively. Pearson 
correlation analysis was applied to the log2 FC of 14 significantly deregulated genes obtained by RNA-
seq and RT-qPCR. Pearson’s correlation coefficients (R2) of 0.9365, 0.9582, and 0.9728 were obtained 
for HepG2, Huh7 and PMH respectively, indicating very strong correlation and thus the precision of 
both methods in the relative quantification of gene expression. 

 

1.1.4 Data Availability  

The RNA-seq data presented in the study are deposited in the Gene Expression Omnibus (GEO) 
repository (https://www.ncbi.nlm.nih.gov/geo/), accession numbers GSE184697 (Lm EGDe versus 
non-infected HepG2, 72 h), GSE184729 (Lm EGDe versus non-infected Huh7, 72 h) and 
GSE184808 (Lm 10403S versus non-infected PMH, 72 h).  
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1.2 Proteome analysis 

1.2.1 Sample preparation  

For the proteome analysis, 5 µg of protein extract were used for a short migration 1D gel 
electrophoresis (NuPAGE® 4-12 % Bis-Tris Gel, Novex). Proteins were visualized using Coomassie 
G-250 (SimplyBlue™ SafeStain, Invitrogen) and the whole-colored part of each lane was cut into small 
pieces. The gel pieces were destained using Solvent A (10 % v/v acetic acid, 40 % v/v ethanol) and 
Solvent B (50 % v/v 50 mM ammonium bicarbonate, 50 % v/v acetonitrile). The proteins contained in 
the gel were reduced by 10 mM dithiothreitol (Sigma) and alkylated by 55 mM iodoacetamide (Sigma). 
The proteins were digested with 200 ng of trypsin (Promega) and afterwards extracted using a solution 
of 0.5 % v/v trifluoroacetic acid and 50 % v/v acetonitrile. The peptides were dried completely using 
a concentrator (Savant™ SPD121D, Thermo Fisher Scientific) and taken up in 50 µl loading buffer 
(0.08 % v/v trifluoroacetic acid, 2 % v/v acetonitrile) for LC-MS/MS proteome analysis (4 µl = 400 ng 
peptides per injection). 
 

1.2.2 Liquid Chromatography – Mass Spectrometry 

Mass spectrometry was performed on the PAPPSO platform (MICALIS, INRAE, Jouy-en-Josas, 
France; http://pappso.inrae.fr). We used an Orbitrap FusionTM LumosTM TribridTM  (Thermo Fisher 
Scientific) coupled to an UltiMate™ 3000 RSLCnano System (Thermo Fisher Scientific). A 4 μl 
sample was loaded at 20 μl/min on a precolumn (µ-Precolumn, 300 µm i.d x 5 mm, C18 PepMap100, 
5 µm, 100 Å, Thermo Fisher) and washed with loading buffer. After 3 min, the precolumn cartridge 
was connected to the separating column (Acclaim PepMap®, 75 μm x 500 mm, C18, 3 μm, 100 Å, 
Thermo Fisher). Buffer A consisted of 0.1 % formic acid in 2 % acetonitrile and buffer B of 0.1 % 
formic acid in 80 % acetonitrile. The peptide separation analysis was achieved at 300 nl/min with a 
linear gradient from 0 to 30 % buffer B for 50 min and 30 % to 40 % for 5 min. One run took 66 min, 
including the regeneration step at 98 % buffer B. Positive ionization (1.6 kV ionization potential) and 
capillary transfer (270 °C) were performed with a liquid junction and a capillary probe (SilicaTip™ 
Emitter, 10 μm, New Objective). Peptide ions were analyzed using Data Dependent Acquisition (DDA) 
with HCD (Higher-energy Collisional Dissociation) mode and the machine settings were as follows: 
1) full MS scan in Orbitrap (scan range [m/z] = 400–1600), and 2) MS/MS using HCD (30 % collision 
energy) in Orbitrap (AGC target = 5.0 x 104, max. injection time = 150  ms, data type = centroid). 
Analyzed charge states were set to 2-4, the dynamic exclusion to 100 s and the intensity threshold was 
fixed at 2.0 x 104.  
 

1.2.3 Data Analyses 

Identification. The Homo sapiens database (Uniprot, version 2021 taxonomy identifier = 9606, 20 396 
entries) was searched by using X!TandemPipeline version 0.4.24 (Langella et al., 2017). The proteome 
identification was run with a precursor and a fragment mass tolerance of 10 ppm. Enzymatic cleavage 
rules were set to trypsin digestion (“after Arg and Lys, unless Pro follows directly after”) and no semi-
enzymatic cleavage rules were allowed. The fix modification was set to cysteine carbamidomethylation 
and methionine oxidation was considered as a potential modification. In a second pass, N-terminal 
acetylation was added as another potential modification, whereas all other previous settings were 
retained. The identified proteins were filtered as follows: 1) peptide E-value < 0.05 with a minimum 
of 2 peptides per protein and 2) a protein E-value of < 10-4. 
Quantification. Proteins were quantified by the spectral counting (SC) method. MassChroqR (version 
0.5.2), an R package developed by PAPPSO platform (http://pappso.inrae.fr) was used to check the 
quality of data and practice statistical analysis in proteomic. The abundance in number of spectra was 
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modeled using the following generalized mixed model (GLM) with a Poisson distribution, as already 
described (Millan-Oropeza et al., 2017). Filters consist in removing proteins showing low numbers of 
spectra (Filter was at least 3 spectra per protein, for example, if cutoff = 3, all the proteins quantified 
with only 0, 1, 2 spectra in each of the injections will be removed) and the selection criteria is the ratio 
between the minimal and the maximal mean abundance values computed for a factor or a combination 
of factors of interest (here, cutoff =1.5). Protein abundance change were detected by analysis of 
variance (ANOVA) using a Chi-square test. The obtained p-values were adjusted for multiple testing 
by the Benjamini-Hochberg approach. Adjusted p-values obtained from ANOVA for the proteome was 
considered significant below a value of 0.01. For HepG2 samples, 486 proteins (sub groups) were 
detected and quantified. 214 proteins remained after filter application, and statistical analysis (adj p-
value < 0.01) selected 42 proteins as less present in infected samples compared to uninfected samples. 
For Huh7 cells, 502 proteins (sub groups) were detected and quantified. 337 proteins remained after 
filter application and statistical analysis (adj p-value < 0.01), selected 153 proteins as less present in 
infected samples compared to uninfected samples. The data were then crossed with the transcriptome 
data to sort proteins whose corresponding gene was significantly downregulated in infected cells 
compared to uninfected cells. 
 

1.2.4 Data Deposition 

The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 
(Perez-Riverol et al. 2019) repository: https://www.ebi.ac.uk/pride/archive/projects/PXD027154  
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2 Supplementary Figures and Tables 

2.1 Supplementary Figures 

A 

 
B 

 
 
Supplementary Figure 1. Collagen coating increases bacterial spreading during 3-day Listeria 

infection in HepG2 cells. (A) HepG2 cells grown on uncoated or collagen-coated coverslips were 
infected with Listeria strain EGDe (MOI~1-5) and examined by immunofluorescence microscopy. (A) 
Low-magnification micrographs showing infected HepG2 cells at 8 h, 24 h and 72 h p.i., stained with 
Hoechst (to label nuclei, in blue) and Listeria antibodies (to label bacteria, in green). Monolayer growth 
of HepG2 on collagen decreases isolated clusters of cells, resulting in higher bacterial intercellular 
spreading at 8 h and 24 h p.i. and an increased number of infected cells at 72 h p.i. (bars: 200 µm). (B) 

High magnification micrographs showing cells at 72 h p.i. stained with Hoechst to label nuclei (blue), 
AF-647-phalloidin to label F-actin (white), Listeria antibody to label bacteria (green) and LAMP1 
antibody to label LisCVs (red). Bacteria in LisCVs, which are LAMP1-positive, are observed both in 
HepG2 grown on uncoated (top) or collagen-coated coverslips (bottom). 
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Supplementary Figure 2. Formation of LisCVs in Huh7 cells is strain-independent. Huh7 cells 
were infected with laboratory strain 10403S or clinical strain CLIP80459 for 72 h and examined by 
immunofluorescence microscopy. High magnification micrographs show cells stained with Hoechst to 
label nuclei (blue), AF-647-phalloidin to label F-actin (white), Listeria antibody to label bacteria 
(green) and LAMP1 antibody to label LisCVs (red). LAMP1-positive bacteria are observed with both 
strains. Bars: 5 µm. 
 
 
 

 
 
Supplementary Figure 3. Activation of IFN responses with recombinant IFN-b or IFN-l1 does 

not change bacterial loads in Huh7 cells. Huh7 cells were infected with Listeria EGDe (MOI~1-5) 
for 24 h to let bacteria carry out the early phases of infection, and subsequently treated with either 
recombinant IFN-b (3 ng/ml; ~800 IU /ml) or IFN-l1 (100 ng/ml) for an additional 48 h. IFN treatment 
activated the expression of ISGs as evaluated by RT-qPCR analysis of the transcript levels of IFIT1, 

IFI6 and MX1, relative to mock-stimulated cells and normalized to YWHAZ (A), but did not result in 
the reduction of the number of intracellular bacteria at 72 h p.i., compared to untreated cells (B). For 
all experiments, histograms represent means and standard deviations of triplicate experiments. 
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Supplementary Figure 4. Dysregulation of APP and lipid-metabolism gene expression in 

hepatocytes is strain-independent. RT-qPCR analysis of transcript levels of representative APP 
genes (C3, C6, C8A, F11, HP), or lipid metabolism-associated genes (APOA1, CPT1A, HMGCR), in 
Huh7 cells infected with Listeria EGDe, 10403S, or CLIP80459 at 72h p.i., relative to non-infected 
cells (NI) cells. PPIA expression was used to normalize target gene expression and a control gene 
(B2M) whose expression was unaffected by infection, and an upregulated gene (MYC) are included. 
Histograms represent means and standard deviations of triplicate experiments. 
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2.2 Supplementary Tables 

All supplementary Tables are attached as a single Supplementary Excel file, and are as follows: 

 

Table S1. List of RT-qPCR primers. 

Table S2. Protein-coding genes upregulated in HepG2 cells infected with L. monocytogenes EGDe for 

72h, relative to non-infected HepG2 cells.  

Table S3. Protein-coding genes downregulated in HepG2 cells infected with L. monocytogenes EGDe 

for 72h, relative to non-infected HepG2 cells.  

Table S4. Protein-coding genes upregulated in Huh7 cells infected with L. monocytogenes EGDe for 

72h, relative to non-infected Huh7 cells.  

Table S5. Protein-coding genes downregulated in Huh7 cells infected with L. monocytogenes EGDe 

for 72h, relative to non-infected Huh7 cells.  

Table S6. Protein-coding genes upregulated in PMH infected with L. monocytogenes 10403S for 72h, 

relative to non-infected PMH. 

Table S7. Protein-coding genes downregulated in PMH infected with L. monocytogenes 10403S for 

72h, relative to non-infected PMH.  

Table S8. Genes upregulated in both HepG2 cells and PMH infected with L. monocytogenes for 72h. 

Table S9. Gene Ontology of Biological Processes (GO-BP) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analysis of genes upregulated in HepG2, Huh7 or PMH 

infected with L. monocytogenes for 72h. 

Table S10. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 

genes downregulated in HepG2, Huh7 or PMH infected with L. monocytogenes for 72h. 

Table S11. Genes downregulated by 72h L. monocytogenes infection in all HepG2, Huh7 and PMH 

datasets (A) or intersecting Huh7 and HepG2 datasets (B), or Huh7 and PMH datasets (C).  

Table S12. Proteins identified as significantly less abundant in the conditioned medium of 72h infected 

HepG2 (A) or Huh7 (B) cells, compared to non-infected cells. 

Table S13. Ingenuity Upstream Regulator Analysis (URA) on downregulated genes common to both 

human Huh7 and murine PMH models (A) or both human Huh7 and HepG2 models (B). 

Table S14. List of references providing information on host transcriptional responses to 

L. monocytogenes infection in cellular models in vitro (A) or in mouse models in vivo (B). 

Supplementary Tables can be found online at: 
https://www.frontiersin.org/articles/10.3389/fcimb.2021.761945/full#supplementary-material 
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1.2.  Unpublished results 

The results described below are complementary to Descoeudres et al., 2021, and address some 

of the questions raised by this study including:  

(i) The time-dependent inhibition of the cholesterol biosynthesis and APP-coding gene 

downregulation observed during long-term infection.  

(ii)  The capacity of cultured hepatocytes to induce APP expression in an autocrine manner, 

by the secretion of IL-6, the major APR-inducing inflammatory cytokine.  

(iii)  The role of InlC, a Lm virulence factor known to inhibit NF-κB activation, in the 

downregulation of APP gene expression, regulated by NF-κB.  

Transcriptional deregulation increases from 24 h to 72 h in Huh7 cells 

We sought to address the question of whether the inhibitory effect of Lm infection on APP and 

cholesterol biosynthesis gene expression was specific to long-term infection, or whether this 

transcriptional repression could be observed at an earlier time point in infection. To answer this 

question, we employed the Huh7 cell line as the number of deregulated genes and the 

magnitude of gene deregulation was highest in this model (Descoeudres et al., 2021). RNA 

was extracted from infected and non-infected (NI) cells at 24 h p.i. in the same experiments 

from which RNA was obtained at 72 h p.i., providing a two-point infection time course to 

evaluate the evolution of the transcriptional host response. RT-qPCR was used to validate the 

RNA-seq results; a Pearson’s correlation coefficient (R2) of 0.9594 was obtained between fold 

change (FC) values calculated using the two methods, indicating very strong correlation. Huh7 

cell monolayers are heavily and uniformly infected at both 24 h and 72 h, with an equally small 

proportion of NI cells at both timepoints (Figure 28A), leading to the assumption that eventual 

differences in the transcriptional signatures observed at the two time points would not be due 

to a larger proportion of NI cells at the earlier (24 h) timepoint. The number of cells and 

intracellular bacteria were monitored to assess cell viability and to compare intracellular 

bacterial loads over the two time points. There was less cytotoxicity at 24 h than at 72 h (Figure 

28B) and the number of intracellular bacteria assessed by CFU counts was approximately one 

order of magnitude higher at 24 h than at 72 h p.i. (Figure 28C); a decrease of the same order 

was previously observed in HepG2 cells (Kortebi et al., 2017). It has been proposed that the 

degradation of a subpopulation of bacteria, and the entry of another subpopulation into a VBNC 

state, could explain this decrease (Kortebi et al., 2017).  
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Figure 28 | Microscopy and intracellular bacterial quantification of Lm infected Huh7 cells at 24 h 

and 72 h p.i. reveal heavily infected cells at both timepoints.  
(A) Very low (top) and low (bottom) magnification immunofluorescence microscopy images of Lm 
EGDe infected (MOI 1) Huh7 cells at 24 h (left) and 72 h p.i. (right) showing a heavily and uniformly 

infected cell monolayer at both time points; Lm (green), cell nuclei (blue). Top images: 2.5´ 

magnification, scale bar 1 mm; bottom: 20´ magnification, scale bar 100 µm. The squares in the bottom 

left corners of the 2.5´ magnification micrographs represent the proportion of the images visualised at 

20´ magnification. (B) Cells per well (log scale, mean ± SD, n=3). (C) CFU per well (log scale, mean 
± SD, n=3).  

Using the same criteria to define significant differential gene expression between infected and 

NI cells at 72 h p.i. (p<0.05 and |log2(FC)| >0.5) (Descoeudres et al., 2021), we identified 1856 

differentially expressed protein-coding genes (DEGs) in Huh7 cells at 24 h p.i., of which 957 

were upregulated and 899 downregulated (Figure 29A). This represents less than one third of 

the number of DEGs significantly deregulated at 72 h p.i. (i.e., 3198 and 2783 up- and 

downregulated DEGs, respectively (Descoeudres et al., 2021)). Differential expression was 

also somewhat more pronounced at 72 h than at 24 h, with, for upregulated DEGs a median 

log2(FC) of 0.77 at 24 h versus 0.88 at 72 h, and, for downregulated DEGs, -0.78 at 24 h versus 

-1.00 at 72 h (Figure 29B). These results indicate that the effect of infection on host cell 

transcription – both activation and repression – was significantly magnified over time despite 

the decrease in the number of culturable intracellular bacteria quantified at 24 h and 72 h p.i. 
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Time-dependent inhibition of APP and cholesterol gene expression in Huh7 cells 

Most downregulated DEGs at 24 h p.i. (702/899) were also downregulated at 72 h p.i., whereas 

2081 genes were specifically inhibited at 72 h p.i. (Figure 29A). Ingenuity Pathway Analysis 

(IPA) identified similar canonical pathways (CPs) inhibited at both timepoints, including those 

involved in cholesterol biosynthesis, APR signalling, the coagulation and complement systems, 

and FXR/RXR and LXR/RXR activation (Figures 29C and 30).  

 

 
 

Figure 29 | Transcriptional response to Lm infection at 24 h and 72 h p.i. in Huh7 cells.  
(A) Total DEGs upregulated (red) or downregulated (blue) at 24 h and 72 h p.i. timepoints, with DEGs 
common to both timepoints indicated within the bar. (B) Log2(FC) distribution of DEGs at 24 h and 
72 h timepoints; medians and interquartile ranges are indicated by dashed and solid lines respectively.  
(C) IPA analysis was performed on total DEG sets obtained at 24 h and 72 h p.i. The top 12 deregulated 
pathways for each timepoint, ranked according to p-value, are shown. Rank is indicated on the left and 
p-value and activation z-score are indicated by bubble size and colour, respectively. The z-score 
indicates a predicted activation or inhibition of a CP: a negative z-score value connotates an overall 
pathway's inhibition, and a positive z-score value connotates an overall pathway's activation.  
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Figure 30 | Top 15 pathways downregulated at 24 h and 72 h p.i. in Huh7 cells.  
IPA was performed on downregulated DEG sets obtained at 24 h (A) and 72 h p.i. (B) in Huh7 cells. 
Bars represent p-value, connected green circles represent gene ratio for each Canonical Pathway (CP). 
CPs common to both timepoints are indicated in bold.  

We thus examined more closely the differential expression of genes encoding both cholesterol 

biosynthesis enzymes and APPs at 24 h and 72 h p.i. and found the number of downregulated 

genes as well as the magnitude of downregulation to be smaller (Figure 31). This result 

suggests that the repressive effect of intracellular Lm infection on APP and cholesterol 

synthesis gene expression increases during the infection time course. In the case of APP-coding 

genes, this could contribute to the establishment over time of an immunodeficient state in the 

liver that favours bacterial persistence in hepatocytes. 
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Figure 31 | The transcriptional downregulation of genes encoding cholesterol biosynthesis 

enzymes and APPs increases from 24 h to 72 h p.i. in Huh7 cells.  
Heatmap displaying log2(fold change) of DEGs encoding cholesterol biosynthesis enzymes (A) and 
APP-coding genes significantly deregulated in infected compared to NI cells (B). APPs are classed 
according to their role in either the complement or coagulation systems or other functions in (B). DEGs 
encoding rate limiting enzymes are underlined in (A).  

Lm infection does not elicit the expression of the APR-inducer IL-6 in hepatocytes 

IL-6 is an important inducer of APP-coding gene expression during inflammation (Tanaka et 

al., 2014). It is mainly produced and secreted by innate immune cells. We cannot, however, 

exclude the production of IL-6 by hepatocytes in response to bacterial stimuli, as has been 

reported (Norris et al., 2014). To address this question, we examined whether Lm infection 

elicited the expression of this pro-inflammatory cytokine in hepatocytes using four different 

approaches. First, absolute IL6 expression was estimated using the fragments per kilobase of 

transcript per million mapped reads (FPKM) values in the transcriptome datasets (Descoeudres 

et al., 2021). This analysis revealed that in all Huh7 and HepG2 samples IL6 FPKM remained 

below the threshold value of 0.3, applied to define detectable expression above background as 

previously described (Ramsköld et al., 2009). Second, IL6 transcripts in EGDe-infected and NI 

A    B 
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Huh7 and HepG2 cells were quantified by RT-qPCR. Calculation of fold induction was 

possible, as despite low expression levels in infected cells, CT values obtained were below the 

threshold of 35 applied to define an absence of transcripts. While fold-change values suggest 

an induction of IL6 expression in infected cells, they remain modest (Figure 32A). Third, to 

assess whether this low induction of expression translated into protein secretion, we carried out 

ELISA quantification of IL-6 in conditioned media recovered from infected and NI Huh7 and 

HepG2 cells. IL-6 was undetectable in all NI samples and detected in all infected samples but 

at very low levels (at the limit of quantification at around 1 pg/ml) (Figure 32B). Fourth, to 

assess whether these very low levels of secreted IL-6 could nonetheless induce APP gene 

expression, we treated uninfected Huh7 cells with conditioned media recovered from 3-day 

infected Huh7 cells and measured the expression of several representative APP genes at 24 h 

p.i. Conditioned medium from infected cells did not modulate the expression of complement 

C3, C5, C6, or of fibrinogen beta chain (FGB) genes in recipient cells in any way (Figure 32C). 

Taken together, these results strongly suggest that hepatocytes are not a source of IL-6, or other 

APR inducer, during Lm infection. 

 

Figure 32 | Huh7 cells do not produce APR-stimulating cytokines during Lm infection.  
(A) RT-qPCR quantification of IL6 RNA transcript levels in Huh7 and HepG2 cells at 24 h and 72 h 
p.i. As IL6 expression was below the detection level in NI samples, the CT threshold value (35) was 
applied to these samples in order to allow the calculation of a relative expression value. (B) ELISA 
quantification of IL-6 protein concentration in the conditioned media of NI or infected Huh7 or HepG2 
cells at 72 h. Dotted line: limit of detection; nd: not detected. (C) Conditioned media recovered from  
3-day Lm EGDe-infected (“infected conditioned medium”) or non-infected (“NI conditioned medium”) 
Huh7 cells was used to stimulate uninfected Huh7 cells for 24 h. C3, C5, C6, and FGB expression was 
then assessed by RT-qPCR and is expressed as fold-change in cells treated with infected conditioned 
medium relative to expression in cells treated with NI conditioned media. All values represent mean  
± SD (n=3). Statistical significance was determined by Student’s t test (* p<0.05, ** p <0.01, ns: not 
significant). 
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InlC contributes to the downregulation of type I but not type II APP-coding genes 

As described in section C.4.3, the Lm virulence factor InlC interferes with the degradation of 

IκB, inhibiting the activation of NF-κB (Gouin et al., 2010). As NF-κB signalling is involved 

in the transcriptional regulation of APP-coding gene expression (Asselin and Blais, 2011) and 

notably type I APPs induced by IL-1-type cytokines (Bode et al., 2012), we investigated 

whether InlC plays a role in the Lm infection-induced downregulation of APP expression. To 

do this, we compared the transcript levels of representative APPs of both type I (HP, C3) and 

type II (FGB, PLG) in Huh7 cells following infection with EGDe (WT), an isogenic inlC 

mutant strain (ΔinlC) and a complemented strain (ΔinlC+inlC). We first assessed the ability of 

the ΔinlC and the ΔinlC+inlC bacteria to infect Huh7 cells and found intracellular bacterial 

levels to be similar to those observed for the WT strain at three observed timepoints (Figure 

33A). At 72 h p.i., we extracted RNA from Huh7 cells infected by each of these strains and 

quantified APP gene expression levels. We found that in the absence of InlC, the inhibition of 

type I APP expression was less efficient than in the presence of InlC. In contrast, InlC did not 

appear to play a role in the downregulation of type II APPs (Figure 33B). These preliminary 

results suggest that InlC could play a role in repressing even basal levels of type I APP 

expression. Future work is needed to address whether this effect is NF-κB-dependent, however. 

Furthermore, a role for InlC in the context of inflammation remains to be examined. For this, 

a similar experiment will have to be performed in which hepatocytes are stimulated by the pro-

inflammatory cytokines IL-6 or IL-1β concomitant to infection, to mimic physiologic 

conditions in which pro-inflammatory cytokines are secreted by innate immune cells. 

Figure 33 | InlC contributes to the downregulation of type I but not type II APP downregulation.  
(A) Huh7 cells were infected with EGDe (WT), inlC deletion mutant (ΔInlC), and the complemented 
strain (ΔinlC+inlC) for 72 h and intracellular bacterial loads were quantified at 2 h, 24 h and 72 h p.i. 
to verify similar bacterial entry, intracellular spreading and survival between the strains. (B) RT-qPCR 
quantification of two type I APP (HP, C3) and two type II APP (FGB, PLG) transcripts in WT-,  
ΔInlC-, and ΔInlC+InlC-infected Huh7 cells at 72 h p.i., expressed as fold induction relative to NI cells, 
and normalised to PPIA. All values represent mean ± SD (n=3); statistical significance was determined 
by Student’s t test (* p<0.05, ** p <0.01, *** p<0.001, ns; non-significant). 
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Material and Methods 

Bacterial strains and cell lines  

Lm wild type EGDe (Bécavin et al., 2014) and mutant strains EGDe-ΔinlC and EGDe-

ΔinlC+inlC (a kind gift from P. Cossart) were used in this study. EGDe-ΔinlC was generated 

by allelic exchange, as described previously (Arnaud et al., 2004) and used to construct EGDe-

ΔinlC+inlC, as described in (Travier et al., 2013). The resulting in-frame deletion mutant 

lacking the InlC protein-coding region was verified by DNA sequence analysis of the 

chromosomal deletion. Strains and human hepatocellular/hepatoblastoma cell lines Huh7 (CLS 

300156) and HepG2 (ATCC HB-8065) were grown as described in (Descoeudres et al., 2021).  

Bacterial infection 

Huh7 and HepG2 cells were seeded in 12- or 6-well plates in order to reach approximately 90% 

confluency on the day of infection. HepG2 cells were grown on collagen-coated wells or 

coverslips (type I collagen from rat tail, Sigma). Cells were counted using a haemocytometer 

(Neubauer-improved, Hausser Scientific) before infection to determine the inoculum necessary 

to obtain a multiplicity of infection (MOI) of 1. Inoculums were prepared in serum-free culture 

medium using bacteria grown overnight to stationary-phase and washed twice in PBS. Cells 

were infected as described in (Descoeudres et al., 2021).  

RNA extraction, RNA-seq, and RT-qPCR  

RNA extraction, RNA sequencing and RT-qPCR were performed as described in (Descoeudres 

et al., 2021). For RT-qPCR, Pearson correlation analysis was applied to the log2(FC) of 9 

significantly deregulated genes obtained by RNA-seq and RT-qPCR (Figure 34). 

 
 
 
 
 
 
 
 
 
 

 
Figure 34 | RT-qPCR validation of Huh7 24 h p.i. RNA-seq results.  
Pearson correlation analysis was applied to the log2(FC) of 9 DEGs and one non-regulated gene 
obtained by RNA-seq and RT-qPCR. A Pearson’s correlation coefficient (R2) of 0.9594 was obtained, 
indicating very strong correlation and thus the precision of both methods to measure gene expression.  
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A transcript was considered undetectable at CT ≥ 35; all negative controls (no cDNA template 

controls) generated CTs above this threshold. As IL6 gene expression was below the detection 

level as determined by this CT threshold in NI samples, the CT threshold value was applied to 

these samples in order to allow the calculation of a relative expression value. Statistical 

significance was determined using Students paired t test on biological triplicates; a p value 

<0.05 was considered significant. Primer sequences are listed below: 
 

 

IL-6 ELISA assay 

The human IL-6 uncoated enzyme-linked immunosorbent assay (ELISA) (Invitrogen, 88-

7066) was used to determine the concentration of IL-6 in the conditioned media of infected and 

NI Huh7 and HepG2 cells, according to the manufacturers’ instructions with minor 

modifications to increase the sensitivity of the assay (9-point standard curve from 0.4–100 

pg/ml and overnight incubation of samples). Conditioned media was collected at the indicated 

time points, centrifuged at 300 × g for 5 minutes at 4°C and the collected supernatants stored 

at -80°C. 100 μl of each conditioned media sample and all standards were assayed in duplicate. 

The plate was read at 450 nm using a Tecan Infinite 200 device (Tecan Trading AG, 

Switzerland), from which readings at 570 nm were subtracted for wavelength correction. 
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Gene symbol Gene name Forward sequence Reverse sequence

PPIA peptidylprolyl isomerase A AGACAAGGTCCCAAAGACAGC ACCACCCTGACACATAAACCC

IL6 interleukin 6 CCACTCACCTCTTCAGAACG CATCTTTGGAAGGTTCAGGTTG

HP haptoglobin CACAGAAGGAGATGGAGTGTAC TGGGTTTGCCGGATTCTTG

C3 complement C3 AGTCTTTGTACGTGTCTGCC ACTTGGGTGTCTTGGTGAAG

PLG plasminogen GAAGACCCCAGAAAACTACCC TTTCAGGTTGCAGTACTCCC

APOA1 apolipoprotein A1 AGGATGAAAGCTGCGGTG TCTTTGAGCACATCCACGTAC

F11 coagulation factor XI TGGGTGTGCTTCAGTAGACAA CAGTTGCCAAGAGTGCTCAAG

C8A complement C8 alpha chain GCAGCCAGTATGAACCAATTC CCCTCCATTCCCCATTGTATAC

DHCR7 24-dehydrocholesterol reductase CCAAGTTCACCCACGAGTCC GGCCCTCTCGGTTTGTCTTC

SREBF2 sterol regulatory element binding transcription factor 2 TTCCTGTGCCTCTCCTTTAAC TCATCCAGTCAAACCAGCC

B2M beta-2-microglobulin CACCCCCACTGAAAAAGATG ATATTAAAAAGCAAGCAAGCAGAA 

MYC MYC proto-oncogene, bHLH transcription factor CGTCTCCACACATCAGCACAA CACTGTCCAACTTGACCCTCTTG 
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Part 2. The hepatocyte response to Lm infection in mixed 

versus pure populations of infected cells: contribution of 

bystander cells and role of epifactors BAHD1 and MIER1/3  

Presentation 

As described in Part 1 of the Results section, the Lm infection process in classically cultured 

human HepG2 cells is not homogeneous: foci of densely infected cells are observed among 

islets of uninfected cells. Transcriptional effects of long-term infection could therefore be 

masked by the presence of uninfected cells. To acquire the results presented in Part 1, HepG2 

cells were grown on collagen to increase the intercellular spread of bacteria in order to obtain 

a higher proportion of infected cells. In this second part of the Results section, we report the 

use of a different approach: the sorting of infected cells from a mixed population of infected 

and NI cells. Fluorescence-activated cell sorting (FACS) of HepG2 cells infected with GFP-

expressing Lm and microarray profiling were used to obtain the transcriptome of homogeneous 

populations of infected cells that was compared to the transcriptome of sorted NI controls. The 

transcriptome of heterogeneous populations of infected and uninfected cells was evaluated in 

parallel. The data from this microarray profiling were unpublished results obtained by Bierne 

and collaborators before my arrival in the laboratory and were the basis of my thesis project, 

as follows: 

(i)  Functional clustering of genes deregulated by long-term Lm infection indicated a 

downregulation of genes involved in complement activation and cholesterol biosynthesis 

pathways, a phenomenon that we have rigorously confirmed, as described in Part 1 of 

the Results section. 

(ii)  Transcriptomic data obtained from the homogeneously infected cells suggested an 

attenuation of the IFN response when compared to that of the heterogeneous population 

of unsorted infected and uninfected cells.  

(iii)  Microarray profiling indicated that the expression of genes encoding epigenetic factors 

BAHD1 (Bierne et al., 2009) and MIER1 and MIER3 (Derwish et al., 2017; Ding et al., 

2003) were upregulated uniquely in homogeneously infected (sorted) cells. 
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As described in the Introduction (section C.5.1) of this thesis, BAHD1 and MIER proteins are 

hypothesised to be scaffolding proteins of a chromatin-repressive complex containing HDACs, 

histone methyltransferases (KMT), and heterochromatin markers (e.g., HP1, MBD1, CDYL, 

KAP1), and involved in gene silencing via heterochromatin formation (Lakisic et al., 2016). 

BAHD1 has been shown to repress the expression of a subset of ISGs during Lm infection in 

colon epithelial cells and to play a role in the pathogenicity of Lm infection in the murine model 

of listeriosis (Lebreton et al., 2011). In addition, phenotyping results of Bahd1 KO mice 

indicate that BAHD1 plays a role in gene regulation in the placenta and the brain, two organs 

targeted by Lm (Lakisic et al., 2016; Pourpre et al., 2020). Finally, data from Bahd1 KO mice 

also suggest that the BAHD1-MIER complex regulates glucose and cholesterol metabolism 

(Lakisic et al., 2016). Glucose metabolism was specifically affected in the liver as Bahd1 KO 

mice had lower hepatic glycogen levels, while muscle glycogen levels remained similar to WT 

(Bierne and collaborators, unpublished data). Based on this data, we speculated that the 

BAHD1-MIER complex could play a role in the transcriptional response of hepatocytes to 

long-term Lm infection. To explore this hypothesis, my thesis project was constructed around 

a collaboration between my thesis director, H. Bierne, and L. Gillespie, head of a team at the 

Memorial University of Newfoundland, Canada, as part of the France-Canada Recherche Fund 

program. While H. Bierne and collaborators were at the origin of the discovery and 

characterisation of BAHD1 (Bierne et al., 2009; Lakisic et al., 2016; Lebreton et al., 2011; 

2014; Pourpre et al., 2020), L. Gillespie and her team have long been conducting pioneering 

work on MIER proteins, and in particular MIER1, in the framework of their research on cancer 

signalling pathways (Blackmore et al., 2008; Derwish et al., 2017; Ding et al., 2003; 2004; 

McCarthy et al., 2008; Paterno et al., 1997; 1998).  

Results 

FACS procedure to isolate pure populations of long-term Lm infected cells for 

transcriptomic analysis and the comparison to heterogeneously infected cell populations 

To obtain a homogeneous population of infected cells, a GFP-expressing Lm EGDe strain (Lm-

GFP) was used to infect HepG2 cells to enable FACS. Approximately 10–15% of GFP-positive 

cells were isolated by FACS from 72 h-infected cultures, using stringent sorting gates (Figure 

35). Microscopic examination confirmed that GFP-positive sorted cells were a homogeneous 

population of highly infected cells as described previously (Kortebi et al., 2017). The GFP-

negative cell population of the infected cell cultures, however, was a heterogeneous population 
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of uninfected cells or cells containing a small number of bacteria; these cells were not exploited. 

Cultures of NI cells that underwent the same FACS procedure as infected cells were used as 

controls. 

 

 

 

 

 

 

 

 
Figure 35 | FACS sorting of Lm EGDe-GFP infected and non-infected cells. 
At 72 h p.i. Lm-GFP infected cells were selected by gating the GFP/FITC-positive population that was 
absent in NI cells.  

Total RNA was isolated from FACS-purified infected and NI cells ("sorted” cells) in three 

independent biological replicates. In parallel, RNA was also extracted from infected and 

uninfected cells before FACS isolation (“unsorted” cells) (Figure 36A). Transcriptomic 

profiling was performed using Affymetrix Human Genome microarrays. Differentially 

expressed genes (DEGs) in long-term Lm infected cells relative to NI cells were defined as 

protein-coding genes that obtained a Benjamini-Hochberg adjusted p-value <0.05 and |fold-

change| >1.4.  

This analysis revealed 576 DEGs upon long-term infection in the heterogeneous unsorted cell 

population, and a significantly higher number of DEGs (1841) in the sorted cell population 

(i.e., about 3-fold more) (Figure 36B). These results showed that the enrichment of infected 

cells by FACS increases the power of identification of infection associated DEGs. 

Downregulation of genes involved in complement activation and cholesterol biosynthesis 

and upregulation of genes involved in IFN responses upon long-term Lm infection 

Functional annotation of up- or downregulated DEG sets that were common or unique to the 

sorted or unsorted HepG2 transcriptomes using Gene Ontology of Biological Processes 

(GOBP) terms was performed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Huang et al., 2009). With this approach, we aimed to reveal infection-

specific pathways as well as eventual pathways to which uninfected cells in the mixed 

population contributed. 
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Figure 36 | Transcriptional analysis of HepG2 cells infected with Lm for 72 h with or without 

sorting procedures.  
(A) Overview of the experimental procedure employed to obtain pure (“sorted”) or mixed (“unsorted”) 
populations of long-term Lm-infected cells. (B) Histograms represent the number of DEGs that are 
upregulated or downregulated in infected cells compared to NI controls (p-value <0.05 and |fold-change| 
>1.4), in either unsorted or sorted cell populations. The number of DEGs common to both datasets, or 
specific to each dataset, are indicated. 

 

 

Figure 37 | Functional annotation of DEGs identified upon long-term Lm infection in sorted and 

unsorted HepG2 cells.  
The DAVID functional annotation tool was employed to identify enriched GOBPs in up- or 
downregulated gene sets common to sorted and unsorted long-term infected HepG2 cells (A), unique 
to sorted cells (i.e., a pure population of infected cells) (B), or unique to unsorted cells (i.e., a mixed 
population of infected and NI cells) (C). The 5 most significantly enriched biological processes, classed 
according to p-value, are shown. 

Functional gene analysis showed that the responses common to sorted and unsorted infected 

cells included the upregulation of gene networks involved in IFN responses (“defense response 

to virus” and “type I IFN signaling pathway”) and the downregulation of genes involved in 

lipid metabolism (cholesterol and fatty acid-associated metabolism) (Figure 37A). Analysis of 

the specific responses of sorted infected cells revealed an upregulation of RNA metabolism 

pathways and a downregulation of gene networks involved in the “regulation of complement 

activation” (Figure 37B). These results suggested a transcriptional-mediated inhibition of the 

complement system specifically in Lm-infected hepatocytes which we further established in 

additional hepatocyte models, as detailed in Part 1 of the Results section.  
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Finally, the analysis of the pathways specifically deregulated in unsorted infected cells 

highlighted upregulated GOBPs exclusively related to the interferon response and host defence 

responses to viruses (Figure 37C). These later results suggested that in a mixed population of 

infected and uninfected cells, there were responses specific to uninfected “bystander” cells that 

are important to consider, as presented below. 

The contribution of uninfected bystander cells to interferon responses during long-term 

Lm infection of hepatocytes 

With respect to upregulated genes, we noted that the IFN response was a signalling pathway 

significantly enriched in unsorted cells (Figure 37C) compared to sorted cells (Figure 37B). 

We therefore further compared the IFN response in the sorted and unsorted cell population, by 

identifying ISGs common or unique to the transcriptome datasets, using the Interferome 

database (Rusinova et al., 2013). Of the 182 DEGs which were common to sorted and unsorted 

HepG2 datasets, 13 (7%) encoded ISGs, indicating that IFN responses were activated in both 

the sorted pure population of infected cells and the unsorted heterogeneous mixed population 

of infected and uninfected cells. However, the proportion of upregulated ISGs was much higher 

in unsorted cells: ISGs accounted for 13% of the upregulated DEGs in unsorted cells, compared 

to only 1.5% in sorted cells. Moreover, of the 69 DEGs which were specifically induced in the 

unsorted cell population, 29% (20) were ISGs, whereas not a single ISG was identified in the 

705 upregulated DEGs that were specific to sorted cells (Figure 38A). 

In addition, the expression levels of ISGs upregulated in both unsorted and sorted cells were 

higher in unsorted than in sorted cells (Figure 38B, left). The expression levels of the 13 ISGs 

identified through the Interferome database are shown, as well as CCL5, an ISG induced during 

Lm infection, whose expression is regulated by both NF-κB and IRFs (Casola et al., 2001; 

Lebreton et al., 2011). Of note, upregulated ISGs unique to unsorted HepG2 cells include 

IFNL1, encoding the type III interferon IFNλ1, genes encoding proteins involved in IFN-I/III 

signalling (IRF9, STAT1), as well as DDX58 that encodes RIG-I, an important intracellular 

PRR in epithelial cells (Figure 38B, right).  

Overall, these results suggest that in heterogeneous populations of infected and uninfected 

cells, IFN secondary responses, consisting in the induction of ISGs and the IFNL1 gene (which 

is itself an ISG), occur primarily in uninfected bystander cells during long-term Lm infection. 

They also suggest that IFN responses are specifically attenuated by an active mechanism of 

repression in infected cells. 
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Figure 38 | Uninfected bystander cells appear to be the major contributors to the interferon 

response during long-term Lm infection.  
(A) Proportional Venn diagram showing the intersection of upregulated DEGs in unsorted and sorted 
HepG2 cells infected for 72 h with Lm. The number exterior to the circles indicates the percentage of 
ISGs in each DEG set. (B) Heatmap displaying log2(FC) of IFNL1 and ISGs significantly upregulated 
in infected unsorted and sorted HepG2 cells, relative to their corresponding NI controls.  

The BAHD1-MIER complex contributes to the infection-dependent repression of IFNL1 

and ISGs in HepG2 cells 

Interestingly, BAHD1, MIER1, and MIER3 were among the DEGs that were specifically 

upregulated in sorted infected HepG2 cells, suggesting that intracellular Lm infection impacts 

the expression of these genes and that their products may play a role during hepatocyte 

infection. As BAHD1 is known to repress ISGs during Lm infection of LoVo cells (Lebreton 

et al., 2011), we looked for a similar effect in HepG2 cells, and also investigated the 

involvement of MIER1 and MIER3. With this aim, we sought to deplete HepG2 cells of 

components of the BAHD1-MIER complex, by an approach using siRNAs. A pool of siRNAs 

targeting both BAHD1, MIER1, and MIER3, was applied 2 days before infection and during 

the 3-day infection, resulting in a decrease in BAHD1, MIER1, and MIER3 transcript levels by 

approximately 70–85% (Figure 39A). At the same time, we examined the expression of IFNL1 

and seven representative ISGs. Combined siRNA KD of BAHD1-MIER1/3 in long-term 

infected HepG2 cells resulted in an approximately 4-fold increase in IFNL1 expression, as well 

as a 2- to 5-fold increase in the expression of representative ISGs (CCL5, RSAD2, IFIT1, IFI27, 

IFI6, MX1, STAT1, OAS3), relative to infected cells treated with control siRNA (Figure 39B).  
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These results, while requiring confirmation through complementary approaches, provide the 

first evidence for a role of the BAHD1-MIER chromatin-repressive complex in attenuating 

IFN responses in hepatocytes hosting intracellular Lm. 

 
Figure 39 | BAHD1, MIER1 and MIER3 contribute to the repression of ISG expression in HepG2 

cells during long-term Lm infection.  
(A) RT-qPCR validation of BAHD1, MIER1, and MIER3 combined KD in long-term infected HepG2 
cells pre- and post-treated with siRNA targeting BAHD1, MIER1, and MIER3. (B) RT-qPCR 
quantification of IFNL1 transcripts and representative ISGs (CCL5, RSAD2, IFIT1, IFI27, IFI6, MX1, 
STAT1, OAS3) in long-term infected HepG2 cells pre- and post-treated with siRNA targeting BAHD1, 
MIER1, and MIER3. HPRT is included as an unregulated control gene. All values represent mean ± SD 
(n=4). Statistical significance was determined by ratio paired t test (* p<0.05, ** p <0.01, ns: non-
significant). 
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Discussion 

The transcriptomics data obtained by microarray analysis of the response in “unsorted” versus 

“sorted” cells that is presented here is unique in that it provides an insight into the role of 

uninfected “bystander” cells in the host response to long-term Lm infection. In addition, it 

allowed the identification of genes and pathways that are unique to long-term LisCV stage  

Lm-infected cells, such as genes involved in the complement system and genes involved in 

chromatin-remodelling (i.e., BAHD1, MIER1, MIER3). It thus highlighted the need for a 

sufficiently homogeneous population of infected cells in order to accurately profile the specific 

host cell response to infection. This led us to optimise cell seeding and infection protocols in 

order to achieve this objective without the use of FACS, as this procedure could not be 

employed in my host laboratory due to the absence of flow cytometry facilities in level 2 

biosafety conditions.  

Surprisingly, while the number of deregulated genes was about 3-fold higher in homogeneously 

infected “sorted” cells, compared to unsorted cells, only 13 upregulated genes were annotated 

as ISGs in the Interferome database, compared to 33 in unsorted cells. The magnitude of 

induction was also lower in the pure infected cell population. This suggests that the 

transcriptional response in uninfected “bystander” cells during bacterial infection could 

contribute significantly to the global host response. These observations also suggest the 

existence of paracrine or juxtacrine signalling between infected cells and adjacent or 

neighbouring uninfected cells. This form of signalling termed “bystander activation” has been 

observed in both viral and bacterial infections and is a particular form of innate immunity 

adaptation. Bystander activation during Lm infection has been shown to occur through cell-

contact dependent mechanisms in epithelial cells, resulting in chemokine secretion (Kasper et 

al., 2010). More surprisingly, in macrophages, IFN-I expression was induced through paracrine 

signalling in the form of secreted extracellular vesicles containing bacterial DNA (Nandakumar 

et al., 2019). Bystander activation is particularly important when infection represses the 

activation of innate signalling in infected cells, as we observed for IFN expression in 

hepatocytes. Exploring if infected hepatocytes can signal to uninfected hepatocytes to induce 

IFN-III expression or if bystander expression is merely secondary IFN signalling induced from 

a first wave produced by infected cells merits attention.  

The BAHD1-mediated repression of ISGs and IFNL2 in a subset of epithelial cells has 

previously been reported in colon epithelial cells (Lebreton et al., 2011). We have expanded 
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on this result and report the BAHD1-mediated repression of a subset of ISGs and IFNL1 in 

hepatocytes. Moreover, the upregulation of BAHD1-MIER proteins has never before been 

observed upon microbial stimulus, to our knowledge. The specificity of this upregulation to 

the pure infected cell population is testimony to the utility of FACS to obtain homogeneously 

infected cells. The infection-specific transcriptional upregulation of BAHD1-MIER 

components, combined with the infection-specific repression of IFNL1 and ISGs and the role 

of the BAHD1-MIER complex in their repression suggests that BAHD1-MIER complex-

mediated repression is induced uniquely by the intracellular presence of Lm, and cannot be 

induced through paracrine or juxtacrine signalling.  

The mechanism by which Lm infection triggers BAHD1 recruitment to ISGs is not yet 

established and would be an interesting perspective to pursue. Interestingly, the protozoan 

Toxoplasma gondii – an intracellular pathogen that, like Lm, targets the liver and the brain – 

was found to partially abrogate the expression of the majority of IFN-γ induced genes during 

infection through HDAC-mediated repression at IFN-γ-responsive promoters (Lang et al., 

2012). Work by Olias et al. showed that the T. gondii secretory protein “Toxoplasma Inhibitor 

of STAT1-dependent Transcription” (TgIST), translocates to the host cell nucleus where it 

recruits NuRD to STAT1-dependent promoters to block ISG expression in IFN-γ-activated 

macrophages (Olias et al., 2016). As described in the Introduction of this thesis (section C.5.1), 

BAHD1 is a chromatin-remodelling complex that shares structural and functional similarities 

with NuRD. Lm thus shows convergence with T. gondii through the common modulation of 

IFN responses via the targeting of functionally related chromatin-remodelling complexes, 

BAHD1 and NuRD. Lebreton et al. (Lebreton et al., 2012) proposed a model linking the 

BAHD1 complex to STAT1/2, via its components HP1 and KAP1, which are known to interact 

with STAT transcription factors (Lebreton et al., 2011). In the case of Lm, however, the 

virulence factor LntA has been identified and found to alleviate BAHD1-mediated repression 

of ISG expression; it is not known whether a distinct virulence factor acts in a divergent manner 

to activate BAHD1 repression (as in the case of T. gondii-mediated recruitment of NuRD), or 

whether the recruitment of BAHD1 to ISG promotors and subsequent ISG repression is a cell 

autonomous response to Lm infection.  
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Material and Methods  

Bacterial strains and cell lines  

Lm wild type strain EGDe (BUG1600) (Bécavin et al., 2014) and the mutant strain EGDe-GFP 

(BUG2538) (Balestrino et al., 2010) were used in experiments presented in this Results section. 

Strains were grown on brain-heart infusion (BHI)-agar plates or in BHI at 37°C under shaking. 

The human hepatocellular carcinoma cell line HepG2 (ATCC HB-8065) was grown in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 2 mM L-glutamine 

(Sigma) and 10% foetal bovine serum (FBS, Sigma) at 37°C in a humidified 5% CO2  

Bacterial infection 

HepG2 cells were infected as described (Kortebi et al., 2017) at an MOI of 1–5. In order to 

ensure maximum invasion and infection, cells were centrifuged with the inoculum at 300 ´ g 

for 2 minutes and incubated for 1 h, before the addition of gentamicin 100 μg/ml for 10 

minutes, followed by the addition of gentamicin 25 μg/ml for the entire duration of the infection 

to eliminate extracellular bacteria. Intracellular bacterial counts and immunofluorescence were 

performed at 24 h and 72 h p.i. to verify infection progression.  

Cell sorting 

HepG2 cells were grown in T25 cell flasks and infected with EGDe-GFP at an MOI of 1–5 or 

remained NI. At 72 h p.i., a batch of flasks was used to determine bacterial loads by CFU 

counts after cell lysis in water and remaining flasks were processed for RNA extraction 

(unsorted cells) or washed in PBS, trypsinised, resuspended in DMEM and subjected to cell 

sorting using a FACSAria II Cell Sorter (BD Bioscience) (sorted cells). Infected cells were 

selected based on GFP fluorescence; ~ 5´105 pure GFP-positive cells were collected from each 

of 3 independent experiments. Similar numbers of control NI cells from parallel experiments 

were also sorted. Sorted cells were immediately placed in the RNeasy Mini Kit RLT buffer 

(Qiagen) containing 10 μl β-mercaptoethanol to preserve RNA from degradation. A flask of 

infected cells was used for microscopic examination of GFP-positive and GFP-negative cells.  

RNA extraction and microarray analysis 

Following the infection and sorting protocols, total RNA was extracted from cells infected or 

NI, sorted or unsorted, using the RNeasy Mini Kit (Qiagen) and genomic DNA was removed 

using TURBO DNA-freeTM kit (Ambion), according to the manufacturer’s instructions. RNA 
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concentration and purity were assessed using ExperionTM automated electrophoresis system and 

reagents (BioRad). For gene expression analysis, 50 ng total RNA was reverse transcribed and 

amplified using the Ovation Pico WTA System v2 (Nugen Technologies #3302-12), fragmented 

and biotin labelled using the Encore Biotin Module (Nugen Technologies #4200-12) following 

the protocol provided by the manufacturer. Gene expression was determined by hybridization of 

the labelled template to HuGene 1.0 ST microarrays (Affymetrix). Hybridization cocktail and 

post-hybridization processing was performed according to the “Target Preparation for 

Affymetrix GeneChip® Eukaryotic Array Analysis” protocol found in the appendix of the 

Nugen protocol of the fragmentation kit. Arrays were hybridized for 18 hours and washed using 

fluidics protocol FS450_0007 on a GeneChip Fluidic Station 450 (Affymetrix) and scanned with 

an Affymetrix Genechip Scanner 3000, generating CEL files for each array. Quality assessment 

and normalization of the arrays was performed with the tools available in Expression Console 

v1.1 (Affymetrix) and Bioconductor packages in R. Gene-level expression values were derived 

from the CEL file probe-level hybridization intensities using the model-based Robust Multichip 

Average algorithm (RMA) (Bolstad et al., 2003). RMA performs normalization, background 

correction and data summarization. Local-Pooled-Error test (LPE test) was performed to 

statistically evaluate the significance of each gene's differential expression (Jain et al., 2003), 

and differentially expressed genes were selected based on a p-value threshold of p < 0.05. P-

values were corrected for multiple comparisons using Benjamini & Hochberg’s method to 

control the false discovery rate (Benjamini and Hochberg, 1995). The microarray data generated 

can be found in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

under the accession number GSE53285. 

Functional gene analysis and ISG identification 

Over-representation analysis was performed on upregulated or downregulated DEGs common 

or unique to the infected sorted or unsorted HepG2 transcriptomes using DAVID 

(http://david.abcc.ncifcrf.gov, version 6.8) (Huang et al., 2009). ISGs were determined using 

the interferome database (Rusinova et al., 2013), using the following criteria: “liver”, 

“hepatocytes”, and “Homo sapiens” were selected to determine the organ, cell system, and 

species, respectively. The database was probed uniquely for ISGs with a fold change value 

greater or equal to 4.  
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siRNA treatment 

HepG2 cells were seeded on collagen coated plates one day prior to forward siRNA 

transfection using an equimolar mix of Dharmacon ON-TARGET plus siRNAs targeting 

BAHD1 (J-020357-09), MIER1 (J-014201-08), and MIER3 (J-015618-08), or control non-

targeting siRNA (D-001810-10-05) (Thermo Scientific) at a final total concentration of 9 nM. 

Cells were infected 48 h later and forward transfected for a second time 6 h p.i. using the same 

protocol.  

RT-qPCR  

RNA extraction and RT-qPCR were performed as described in Part 1 of the Results section. 

Briefly, RNA was extracted using the RNeasy Mini Kit (Qiagen) and genomic DNA was 

removed using TURBO DNA-freeTM kit (Ambion), according to the manufacturer’s 

instructions. 1 µg of total RNA was used for reverse transcription with the LunaScript™ RT 

SuperMix Kit (NEB). Quantitative Real-Time PCR was performed on StepOne Plus Real-Time 

PCR Systems (Applied Biosystems) using Luna® Universal qPCR Master Mix (NEB) as 

specified by the supplier. Relative expression of target genes was calculated from cycle 

threshold (CT) values using the comparative CT (ΔΔCT) method with untreated or NI cells 

used as calibrator (reference) samples. Target gene expression levels were normalized to B2M. 

Statistical significance was determined using a two-tailed ratio paired t test performed on ΔCT 

values obtained from biological quadruplicate infection experiments; a p value <0.05 was 

considered significant. Primer sequences are as follows:  

 

  

Gene symbol Gene name Forward sequence Reverse sequence

B2M beta-2-microglobulin CACCCCCACTGAAAAAGATG ATATTAAAAAGCAAGCAAGCAGAA 

BAHD1 bromo adjacent homology domain containing 1 AGTGTTGCCCCTGTCTGTTA GAGAGGAAATTCCAACTGGC

CCL5 C-C motif chemokine ligand 5 CCCAGCAGTCGTCTTTGTCA TCCCGAACCCATTTCTTCTCT

HPRT1 hypoxanthine phosphoribosyltransferase 1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

IFI27 interferon alpha inducible protein 27 TCTGCCGTAGTTTTGCCC ATCATCTTGGCTGCTATGGAG

IFI6 interferon alpha inducible protein 6 CCCAAGTAGGATTACAAGCATG GGTTGTTGGGGAGAGTGATAG

IFIT1 interferon induced protein with tetratricopeptide repeats 1 CTTGGGTTCGTCTACAAATTGG AAAGTGGCTGATATCTGGGTG

IFNL1 interferon lambda 1 GAAGCAGTTGCGATTTAGCC GAAGCTCGCTAGCTCCTGTG

MIER1 MIER1 transcriptional regulator CAGTGGCTGTAGTGGGGAAAA GGCATCTTGAGAAGCAACAGA

MIER3 MIER family member 3 CTGCATGGACGGAAGAAGAA ATGCTACACACTCAGCAACT

MX1 MX dynamin like GTPase 1 (interferon-induced GTP-binding protein Mx1) GAAGATAAGTGGAGAGGCAAGG CTCCAGGGTGATTAGCTCATG

OAS3 2'-5'-oligoadenylate synthetase 3 GTGTGGACTTTGATGTGCTG CCCGTTGTAGCTCTGTGAAG

RSAD2 radical S-adenosyl methionine domain containing 2 AGAATACCTGGGCAAGTTGG GTCACAGGAGATAGCGAGAATG

STAT1 signal transducer and activator of transcription 1-alpha/beta ACCGCACCTTCAGTCTTTTC GCAATTTCACCAACAGTCTCAAC
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Lm has been a paradigm for the study of host-pathogen interactions since the early 1980s and 

the use of this model bacterium in cellular microbiology has not only been at the forefront of 

the elucidation of the host response to intracellular infection, but also at the origin of the 

discovery of previously unidentified host factors and novel mechanisms of mammalian 

transcriptional regulation. In addition, significant knowledge concerning the immune response 

has been gained by dissecting the transcriptomic response to Lm in phagocytic cells, notably 

macrophages, during the early and active phase of Lm infection. The response in non-immune 

cells, however, is lacking.  

An intravacuolar persistence phase in the life cycle of Lm upon long-term infection of 

hepatocytes was recently identified that raises many questions concerning the eventual 

reprogramming of host cells to allow the creation and maintenance of this intracellular bacterial 

niche that could allow Lm to persist long term in the hepatic parenchyma in LisCVs. The results 

of this doctoral thesis contribute to a better understanding of how the hepatocyte transcriptional 

landscape is remodelled by Lm once the bacteria enter this persistence stage and how this 

response could contribute to long-term intracellular parasitism through the downregulation of 

the innate immune response. This work is not only unique in addressing the novel question of 

host adaptation to intracellular long-term parasitism by Lm, it is also the first study to address 

the question of the transcriptional response to Lm in hepatocytes. Although the liver is a key 

target organ of Lm during in vivo infection, and hepatocytes the principal hepatic replicative 

niche, little is known of the liver phase of human listeriosis, nor of the role of the liver in 

asymptomatic carriage or during the lengthy incubation periods documented for invasive 

listeriosis. We established three cellular infection systems in human and murine hepatocytes 

that allowed us to establish a common signature of long-term infection that was cell line- and 

species-independent. These long-term infection models lay the foundation for further in vitro 

characterisation of the host response that we suggest could promote long-term asymptomatic 

carriage in the liver. We show that long-term infection coincides with a profound 

reprogramming of hepatic innate immune response genes, with an activation of IFN responses 

and the repression of crucial hepatocyte-specific innate immune proteins that appears to 

increase over the time course of infection, resulting in significantly decreased secretion after 

three days of infection. These results suggest an immune deregulation that could be propitious 

for long term survival of vacuolar Lm in hepatocytes, favouring persistent colonisation of the 

host.  

 



   162 

In vitro models to study Lm persistent infection in hepatocytes 

In this study, we sought to quantify and dissect the global transcriptional responses to persistent 

Lm infection in human adult hepatocytes and as such strove to establish relevant in vitro cellular 

models. As established hepatocyte cell lines do not always accurately portray the metabolic or 

immune responses observed in vivo or in primary hepatocytes (Brownell et al., 2013; Franko 

et al., 2019) we used, in parallel, two hepatocyte cell lines of different origin as well as primary 

mouse hepatocytes (PMH). As we did not choose to employ a single-cell transcriptomics 

approach, the global transcriptional response obtained would be the averaged gene expression 

from a bulk population of cells. It was therefore crucial to obtain sufficiently homogeneous cell 

populations of either viable NI cells or LisCV stage Lm-infected cells. To achieve this 

objective, two strategies were employed: FACS sorting of Lm EGDe-GFP infected HepG2 

cells was used to obtain a population of 100% infected cells, which could be compared to NI 

cells, as well as to an unsorted mixed population. The results of the microarray profiling of 

these cells were part of the preliminary results obtained before my arrival and around which 

my thesis project was constructed. While this first strategy has several advantages, notably the 

reproducible acquisition of purely infected cells and the possibility of evaluating the 

contribution of uninfected bystander cells by comparing sorted and unsorted cell populations, 

it could also induce cellular stress that impacts transcription. Moreover, it is a complex 

procedure that requires a FACS facility under biosafety level 2 conditions, and the lack of such 

facilities in my host laboratory prevented us from employing this strategy.  

The second strategy, and the one I implemented, was the optimisation of infection and cell 

culture protocols to allow sufficient bacterial entry and spreading in order to obtain a 

homogenously infected cellular monolayer. Three models were generated, each with 

advantages and disadvantages (Figure 40). HepG2 cells were grown on collagen to allow the 

formation of a cell monolayer and increased bacterial spreading, although maximal infection 

was not obtained. The second hepatocyte cell line, Huh7, had the advantage of growing 

naturally in a monolayer and being very permissive to infection so that at an MOI of 1, almost 

all cells were infected by 24 h p.i. However, IFN responses were absent in this cell line which 

excluded their use in any investigation related to this important facet of the host response to 

Lm infection. In regard to primary cells, primary human hepatocytes would have been our first 

choice, but infection efficiency is low, and the prohibitive costs of these commercially available 

cryopreserved cells prevented us from optimising the infection protocol to obtain a 
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homogeneous population of infected cells without the use of FACS. In contrast, PMH could be 

obtained fresh, at little cost, and we were able to optimise the cell culture and infection 

protocols to obtain good cellular viability and infection efficiency. On the other hand, using 

murine hepatocytes also added the parameter of possible species-specific effects. In addition, 

it is important to note that although primary cells are more physiologically relevant compared 

to their carcinoma transformed counterparts, residual contamination with non-parenchymal 

cells during the extraction process is inevitable (Brownell et al., 2013; Jilg et al., 2014). Our 

RNA-seq data indicated that the expression of a number of genes known to be expressed 

specifically in innate immune cells was not null in uninfected PMH samples, suggesting that 

the removal of non-parenchymal cells was, indeed, not complete during the PMH isolation 

procedure. The expression of cytokines by residual immune cells in primary hepatocyte 

cultures could also influence hepatocyte gene expression (Crispe, 2016). Finally, the complex 

isolation procedure and the necessity of freshly isolated PMH also makes their use impractical 

in exploratory experiments.  

To overcome the singularities of any one model, we intersected transcriptome data (DEG sets 

and functional pathways), allowing us to model a faithful robust transcriptomic signature in 

LisCV stage Lm-infected hepatocytes. Each of the cell lines found its utility in different 

experimental settings and these models will provide the framework for the continued study of 

the host response to long-term Lm infection. Huh7 cells are unique in the almost pure 

population of infected cells that they yield and provide an interesting background to study IFN-

independent processes. The HepG2 cell line is fundamental to examining the role of IFNs in 

Lm infection, particularly IFN-III, and that of host factors controlling IFN-responses, such as 

BAHD1. Finally, FACS sorting of infected cells gave a first insight into the role of uninfected 

“bystander” cells in the host response to infection.  

The importance of transcriptional regulation in the host response to long-

term Lm infection  

The different cellular models and the strategies employed resulted in a more or less 

homologous population of infected cells from which we were able to obtain a global 

transcriptomic signature (Figure 40A). Infection profoundly modified the transcriptional 

landscape, with the number of DEGs identified roughly correlating to the proportion of infected 

cells (Figure 40B). This is consistent with other transcriptional studies; in liver samples from 
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infected mice, for example, a high correlation (r=0.95) was observed between the bacterial load 

and the number of deregulated genes (Dieterich et al., 2008).  

 

Figure 40 | Overview of the hepatocyte Lm infection models and the number of DEGs identified 

using each cellular model and strategy.  
(A) Overview of the in vitro long-term Lm infection models. Very low magnification (2.5×) 
immunofluorescence microscopy images showing Lm (green) and cell nuclei (blue) allow an estimation 
of the proportion of infected cells (indicated to the right); scale bar: 200 µm. (B) Histograms represent 
the number of upregulated and downregulated DEGs identified in each of the hepatocyte models and 
strategies employed.  

In the Huh7 cell model in which we observed the most effective Lm infection, the number of 

significant DEGs (both up- and downregulated, adj. pV < 0.05, |log2(FC)| >0.5) amounted to 

a total of 5982 genes, representing 30% of the 19,936 protein-coding genes of the current 

Ensembl annotation for Homo sapiens. In line with this profound reprogramming of gene 

expression, an incredibly large proportion (38%) of upregulated genes encode nuclear proteins 

(compared to 13% of downregulated genes), of which 17% are known epigenetic factors, 

suggesting the importance of transcriptional and possibly epigenetic regulation in the 

hepatocyte host response to Lm.  

Most of the studies examining the host response to Lm over an infection time course in vitro 

have identified an increasing number of genes as the infection progresses, although none of 

these studies proceeded beyond the 24 h timepoint (Besic et al., 2020; McCaffrey et al., 2004; 

A          B 
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Pontiroli et al., 2012; Popov et al., 2006). We addressed the kinetics of the transcriptional 

response in the Huh7 cell line by examining the global transcriptional response at an earlier 

timepoint (24 h) and observed both an important increase in the number of deregulated genes 

(3-fold) as well as the magnitude of gene deregulation from day 1 to day 3.  

Inhibition of complement and coagulation components and APP expression 

in long-term infected hepatocytes 

Hepatocytes play a major role in the immune response as the major source of circulating APPs, 

crucial innate immunity molecules of diverse function, including pathogen detection and 

clearance, haemostasis, as well as the regulation of the inflammatory and adaptive immune 

responses during infection (Zhou et al., 2016). Opsonins, complement cascade components, 

fibrinogen and other APPs are expressed constitutively by hepatocytes but their expression is 

also induced by pro-inflammatory cytokine stimulation during listeriosis (Khafaga et al., 2021; 

Kopf et al., 1994; Kummer et al., 2016). Bacteria have developed multiple and highly diverse 

mechanisms to resist complement activation, and inhibit fibrin formation or haemostasis, 

illustrating the importance of the complement and coagulation systems in innate defence 

(Ermert et al., 2019; Figueroa and Densen, 1991; Nelson et al., 2011). The Streptococcus 

pyrogenes virulence factor SpeB, for example, targets for degradation several APP and 

complement factors, including C3, fibrinogen, plasminogen, vitronectin, fibronectin, and 

alpha-2-macroglobulin (Nelson et al., 2011).  

In this work, by intersecting results from all three hepatocyte models, we show that long-term 

Lm infection profoundly impacts both the constitutive and cytokine stimulated expression of 

hepatocyte-specific APP genes at both the transcript and protein levels. This result is novel in 

that the transcriptional downregulation of complement, coagulation or other innate immunity 

related APPs has not, to our knowledge, been previously reported in response to intracellular 

bacterial infection of hepatocytes.  

Pathogen hepatotropism is generally considered the domain of hepatic viruses such as HCV 

and hepatitis B virus (HBV) as well as parasites such as Plasmodium spp. in their sporozoite 

form (Protzer et al., 2012). Hepatocyte cell lines are thus frequently used to study the host 

response to these pathogens. On the other hand, the hepatocyte response to facultative 

intracellular bacterial pathogens with liver stages (i.e., Lm, Salmonella enterica serovar 

Typhimurium, Francisella tularensis, Brucella spp., Burkholderia pseudomallei, Klebsiella 
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pneumoniae) (Conlan and North, 1992; Talwani et al., 2011; Wisplinghoff and Appleton, 2008) 

has not been extensively investigated. The down regulation of complement protein expression 

at the transcriptional level has been observed in HCV-infected hepatocytes and in liver biopsies 

of patients chronically infected with HCV. Transcriptional deregulation results in reduced 

protein levels in the serum and liver biopsy samples of chronically infected patients, indicating 

that infection can negatively affect complement levels even in a physiological context 

involving paracrine or endocrine stimulation of hepatocytes by immune cells (Banerjee et al., 

2011; Mazumdar et al., 2012; Patra et al., 2019).  

The data we found providing information on APP serum or liver levels in listeriosis attest to 

APR activation in murine or ovine listeriosis. Several studies observed increased levels of 

serum amyloid A-1 (SAA1), SAA2, alpha-1-acid glycoprotein 1 (ORM1), ORM2, amyloid P-

component, serum (APCS), and haptoglobin (HP) (Khafaga et al., 2021; Kopf et al., 1994; 

Kummer et al., 2016). With the exception of HP, however, none of these APPs were highly 

downregulated in any of our models (SAA1/2 were not downregulated in any model, and 

ORM1/2 were modestly downregulated uniquely in Huh7). The impact of Lm infection on the 

circulating or hepatic levels of the APPs for which we observed important transcriptional 

downregulation, for example, C3, vitronectin, or various apolipoproteins, remains unclear.  

The physiological consequences of a reduction in both cellular and circulating complement 

components on the outcome of listeriosis in vivo or on intracellular bacterial degradation in 

vitro, for example, could be multiple and deserve further attention. C3, in particular, was 

downregulated in all our hepatocyte models, and is a central component of the complement 

cascade, with pleiotropic functions. A decrease in serum C3 levels could negatively affect the 

adaptive immune response to Lm infection as optimal CD8 and CD4 T cell expansion and 

contraction requires C3 (Nakayama et al., 2009; Tan et al., 2014). While innate clearance and 

killing of Lm is not impaired in the absence of opsonisation – indeed, intravascular Lm is more 

efficiently cleared in the absence of C3 – opsonisation favours Lm uptake by the spleen 

(Broadley et al., 2016; Verschoor et al., 2011). C3 opsonisation is necessary for the formation 

of Lm-platelet complexes that promote bacterial targeting to CD8a+ DCs in the spleen, whereas 

free Lm are cleared by KCs in the liver through scavenger receptor (SR) binding (Figure 41). 

Uptake of Lm by splenic DCs is necessary for efficient T cell priming (van Lookeren Campagne 

and Verschoor, 2018; Verschoor et al., 2016), which is necessary for sterilising immunity to 

Lm (Pamer, 2004). On a cellular level, C3 opsonisation has also recently been shown to favour 
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autophagy of Lm by epithelial cells and to favour listerial clearance in the intestine (Sorbara et 

al., 2018). 

 

Figure 41 | The role of C3 opsonisation in the dual clearance dynamics of intravascular Lm.  
In the absence of C3 opsonisation, Lm uptake is rapidly mediated by KCs in the liver through SR 
binding. C3 opsonisation, on the other hand, results in immune adherence or the formation of Lm-
platelet complexes which favours a slower uptake by DCs in the spleen, promoting efficient T-cell 
priming. (Adapted from van Lookeren Campagne and Verschoor, 2018) 

The deregulation of coagulation cascade proteins could also impact the outcome of listeriosis: 

fibrin, polymerised fibrinogen, serves as a scaffold for the adherence and migration of cells, 

and is particularly important in the liver where it plays a protective role during listeriosis to 

limit bacterial spread (Antoniak, 2018; Mullarky et al., 2005).  

Regarding other APPs, the impaired innate immune response to Lm infection resulting in 

reduced survival of ApoE deficient mice can be cited as another example of how a decrease in 

APP expression could impact the host response to this pathogen (Roselaar and Daugherty, 

1998). In this regard, it is interesting to note that the expression of several apolipoproteins (i.e., 

APOA1, APOA4, APOC1, APOC3, APOE, APOH), whose functions are at the crossroads of 

lipid metabolism and innate immunity, are inhibited by long-term Lm infection of hepatocytes.  

Downregulation of cholesterol metabolism genes in long-term infected 

human hepatocytes 

The association between cholesterol homeostasis and infection or inflammation has long been 

acknowledged: decreased plasma cholesterol levels during infection was first described in 1917 

by W. Denis and correlate with infection severity (Denis, 1917; Feingold et al., 2000; Shimizu 

et al., 2018). Moreover, it has been suggested that low total cholesterol and low HDL (high 
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density lipoprotein) levels increase the chance of developing an infection and that, inversely, 

high cholesterol levels protect against bacterial infections (Feingold and Grunfeld, 2012). 

Hepatocytes are the major source of endogenous cholesterol de novo biosynthesis, which is 

esterified and stored or secreted into the blood as constituents of lipoproteins (Luo et al., 2019). 

In human Huh7 and HepG2 hepatocytes, the cholesterol biosynthesis pathway was the most 

significantly affected pathway identified by functional annotation using both IPA and DAVID. 

Almost all genes of the pathway were downregulated at 72 h in Huh7 and HepG2 (Figure 7, 

Descoeudres et al., 2021), and in Huh7 cells, all but four genes downregulated at 72 h were 

already downregulated at 24 h (Figure 31). As mentioned above, a large number of 

apolipoproteins, the protein fraction of lipoproteins and highly expressed by hepatocytes, were 

downregulated in all three models. In contrast, cholesterol biosynthesis pathway genes were 

not significantly perturbed in PMH on the whole. This difference with human cell lines may 

result from either the metabolic disparity between primary cells and carcinoma-derived cell 

lines or a species-specific response to infection. Indeed, in humans and other primates, 

infection decreases cholesterol serum levels while in non-primates such as rodents, rabbits and 

dogs, endotoxins and pro-inflammatory cytokines increase serum cholesterol (Hardardóttir et 

al., 1995).  

Many pathogens have evolved mechanisms to increase cholesterol metabolism in host cells in 

order to establish infection: in hepatocytes Plasmodium spp. – auxotrophic for certain lipid 

species and metabolites, such as cholesterol – induces increased cellular cholesterol 

biosynthesis (Zuzarte-Luis and Mota, 2020). Leishmania donovani infection activates sterol 

regulatory element-binding protein 2 (SREBP2) – the master regulator of cholesterol and fatty 

acid metabolism (Luo et al., 2019) – to upregulate cholesterol biosynthesis, and modulates 

membrane cholesterol in order to facilitate entry and survival in macrophages (Mukherjee et 

al., 2014). Cholesterol is necessary to support viral replication, and cellular cholesterol uptake 

and synthesis by the host cell is increased during viral infection by members of the Flaviviridae 

family (i.e., Dengue, Zika, Yellow Fever, West Nile viruses (Osuna-Ramos et al., 2018), and 

HCV (Feingold and Grunfeld, 2012)). Host cholesterol trafficking pathways are also 

manipulated by both obligate and facultative intracellular bacteria in order to access nutrient-

rich vesicles or to acquire membrane components for the bacteria or the bacteria-containing 

vacuole (Lai et al., 2013; Samanta et al., 2017). 

The effects of Lm infection-mediated cholesterol metabolism gene reprogramming in 

hepatocytes deserves further investigation given the recently elucidated mechanism of 
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antibacterial defence that involves infected cells limiting plasma membrane cholesterol to 

reduce Lm entry and cell-to-cell spread (Abrams et al., 2020; Zhou et al., 2020), the role of 

cholesterol in inflammasome activation in macrophages (Dang et al., 2017), as well as the 

importance of cholesterol in the establishment of vacuolar niches and persistent infection 

described for a variety of intracellular bacteria (Morey and Meyer, 2019; Pandey and Sassetti, 

2008; Samanta et al., 2017).  

Mechanisms of regulation behind the transcriptional downregulation of APP 

and cholesterol genes 

Implication of host transcription factors 

How Lm infection interferes with the expression of APP-coding genes and cholesterol 

biosynthesis-associated genes, and whether this is a Lm-driven mechanism or a general 

response to cell invasion remains unclear. Ingenuity Upstream Regulator Analysis (URA) of 

the common gene sets revealed multiple TFs that are known to regulate APP and/or cholesterol 

homeostasis related genes (Table S13, Descoeudres et al., 2021). As APP downregulation was 

observed in the absence of cytokine stimulation, and as both cholesterol metabolism and 

constitutive APP production are part of the basal transcription program of hepatocytes, it seems 

reasonable to postulate the disruption of the functions of TFs essential for constitutive gene 

expression in the liver. HNFs are particularly interesting candidates: HNF4α, a nuclear 

receptor, is a constitutively active TF, and one of the most abundant liver-enriched TFs, 

contributing to the regulation of almost half of actively transcribed hepatic genes (Odom et al., 

2004; Soccio, 2020). HNF4α expression is regulated by the lesser expressed HNF1α as well as 

HNF6 (ONECUT1) (Lau et al., 2018). Both HNF4α and HNF1α were predicted by URA 

analysis to be strongly inhibited in long-term Lm infection, and are known to play a central role 

in the transcriptional regulation of all the pathways we observed to be downregulated, including 

those involved with apolipoprotein synthesis, blood coagulation, and complement protein 

synthesis and activation (Pontoglio et al., 2001).  

HNF4α regulates the activity and expression of other nuclear receptors that regulate lipid and 

bile acid metabolism, as well as inflammation, notably LXR and FXR (Lu, 2016; Wollam and 

Antebi, 2011), and PPARA (Soccio, 2020). HNF4α and LXR, in turn, directly regulate 

SREBP2 activity (Shimano and Sato, 2017), thus directly linking the regulation of cholesterol 

biosynthesis genes to HNF4α. The lipid-activated nuclear receptors LXR and PPARα are 
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involved in the regulation of C3 expression in human and rat hepatocytes (Jamali et al., 2010; 

Li et al., 2005a; Mazumdar et al., 2012; Mogilenko et al., 2013) and both were shown to play 

a crucial role in the host response to Lm as transcriptional regulators in myeloid cells (Abdullah 

et al., 2012a; Joseph et al., 2004). We performed experiments in Huh7 cells to examine the role 

of one of these nuclear receptors, PPARα, in APP-coding gene downregulation during Lm 

infection. We found that PPARα activation had no effect on APP gene expression, arguing 

against a role of this nuclear receptor in the mechanism at play (data not shown). 

The mechanisms of APP gene induction, as part of the APR, is better comprehended than that 

of APP constitutive expression or repression (Asselin and Blais, 2011; Volanakis, 1995). It is 

well established that cytokine stimulation activates NF-κB and STAT3, as well as other TFs 

such as AP-1, which, in turn, stimulate APP expression in hepatocytes (Bode et al., 2012; Zhou 

et al., 2016). These TFs are not thought to play a role in constitutive expression, however: mice 

deficient in both STAT3 and RELA/p65 had an almost completely abrogated APR to bacterial 

pneumonia, demonstrating the transcriptional dependence of the APR on these two TFs alone, 

but no effect on gene expression was observed in the NI double KO mice (Quinton et al., 2012).  

Implication of Lm effectors 

As the secreted bacterial factor InlC inhibits the NF-κB pathway (Gouin et al., 2010), we 

searched for a role of this effector in the Lm-mediated inhibition of APP gene expression. We 

observed that the downregulation of type I APP genes was partially alleviated during infection 

with a LmΔinlC mutant, in comparison with the WT strain, suggesting that InlC amplifies the 

Lm-mediated inhibitory effect on some APP genes. However, these experiments were 

performed in the absence of cytokine stimulation. Thus, the role of InlC could be more 

important in an inflammatory context, and this hypothesis deserves to be tested.  

The question of the contribution of other Lm virulence factors in the transcriptional 

deregulation we observed merits further investigation, through the use of mutant Lm strains, as 

Lm could employ mechanisms to actively inhibit APP expression, as observed for HCV. 

Exogenous expression of HCV proteins in vitro is sufficient to reduce both the basal and 

cytokine-induced expression of C3 and C4 in Huh7 cells and immortalised human hepatocytes, 

as well as in vivo (Banerjee et al., 2011; Mazumdar et al., 2012). The proposed model for the 

downregulation of C3 involves the HCV-mediated downregulation of the expression of the 

upstream TF C/EBPβ that binds to the IL-6 response element (Mazumdar et al., 2012). 

Expression levels of these TFs (C/EBPα, C/EBPβ, and C/EBPγ) was observed to increase 
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during the APR (Ramji and Foka, 2002). We observed the genes encoding all three isoforms 

(CEBPA, CEBPB, CEBPG) to be highly expressed in human and murine hepatocytes, and their 

expression was significantly downregulated in Huh7 cells. Both C/EBPs and AP-1 are involved 

in the induction of APP gene expression following cytokine induced MAPK pathway activation 

(Asselin and Blais, 2011). Their role in constitutive APP gene expression, however, is less well 

characterised. The correlation between reduced CEBPB mRNA and phosphorylated C/EBPβ 

levels and the expression levels of C3 in the absence of cytokine stimulation and independently 

of MAPK activation (Mazumdar et al., 2012), suggests a role for this TF in basal C3 expression.  

Implication of host epifactors 

Transcriptional repression of APP-coding genes in the absence of stimulation is known to 

depend on co-repressor complexes, such as nuclear receptor co-repressor (NCoR) 1 and 

silencing mediator for retinoid or thyroid-hormone receptors (SMRT or NCoR2) that are 

involved in chromatin silencing through the recruitment of HDACs and work in cooperation 

with nuclear receptors (Mottis et al., 2013). Our observation of the inhibition of an entire 

network of APP genes in response to Lm infection could suggest the involvement of other 

epigenetic mechanisms and epifactors in the form of chromatin-repressive machineries, 

capable of silencing entire gene networks over large genomic regions, as opposed to specific 

individual gene repression. One potential candidate epifactor is bromodomain containing 4 

(BRD4), a member of the bromodomain and extraterminal (BET) protein family. BRD4’s 

bromodomain binds acetylated lysine residues on histones and its C-terminal domain recruits 

the positive transcription elongation factor (P-TEFb); BRD4 thus directly stimulates RNA 

polymerase II-dependent transcription (Morgado-Pascual et al., 2019). BRD4 also contributes 

to NF-κB activation and regulates the expression of many immunity-associated genes and 

pathways (Wang et al., 2021). BRD4 inhibition in primary human hepatocytes results in a 

transcriptomic signature that greatly resembles the one induced by Lm: pathways involved in 

the APR, complement and coagulation cascades, and cholesterol and fatty-acyl biosynthesis 

are negatively regulated; reduced circulating levels of complement are also observed in patients 

treated with a BRD4 inhibitor (Gilham et al., 2016; Wasiak et al., 2017). The transcriptional 

repression of APR genes mediated by BRD4 inhibition is maintained upon IL-6 or IL-1β 

stimulation (Wasiak et al., 2017; 2020). Interestingly, BRD4 activity is regulated by 

phosphorylation (Wu et al., 2013), and could thus be regulated by infection-induced cell 

signalling pathways, in a similar manner to the epifactor SIRT2, the nuclear location of which 

depends on its infection-induced dephosphorylation (Pereira et al., 2018). The hypothesis of 
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BRD4 involvement in transcriptional regulation during Lm infection could be tested, for 

example, by determining phospho-BRD4 kinetics over the expression time course.  

Both excessive and insufficient APR induction or complement expression and activity is 

detrimental in sepsis and systemic bacterial and viral infection, and in many different 

cardiometabolic diseases such as atherosclerosis, diabetes, and nonalcoholic fatty liver disease 

(Hertle et al., 2014; Ricklin et al., 2016). Deciphering the mechanisms behind the 

transcriptional downregulation of these proteins has far reaching implications that extend 

beyond infectious disease.  

Downregulation of APP-coding and cholesterol synthesis genes is IFN-

independent 

Clinical studies have shown since the 1980s that hypocholesterolaemia is a common side effect 

of IFN treatment (Robertson and Ghazal, 2016). Moreover, viral infection has since been 

shown to downregulate sterol synthesis in an IFN-dependent manner (Blanc et al., 2011). The 

IFN induced expression of the ISG cholesterol 25-hydroxylase (CH25H) has been identified as 

one of the mechanisms behind this metabolic deregulation (Abrams et al., 2020; Blanc et al., 

2013; Dang et al., 2017; Shibata et al., 2013). CH25H catalyses the production of  

25-hydroxycholesterol, an oxysterol that inhibits cholesterol synthesis (Cardoso and Perucha, 

2021). In contrast, our results show with no ambiguity that the transcriptional repression of 

cholesterol metabolism genes observed in response to Lm infection in hepatocytes is not 

associated with the IFN-I/III response nor the expression of CH25H. CH25H was one of the 

top 10 most highly upregulated genes in HepG2 but was not differentially regulated in Huh7 

cells that exhibited no IFN response. Both cell lines downregulated cholesterol synthesis in 

response to long-term infection in a highly similar manner. Furthermore, IFN-λ1 and IFN-β 

treatment of HepG2 and Huh7 cells did not result in the downregulation of representative 

cholesterol synthesis genes (data not shown).  

The IFN and ISG signature of long-term Lm infection 

The expression of IFN-I and/or IFN-III is considered one of the hallmarks of the epithelial cell 

response to Lm (Bierne et al., 2012b; Dussurget et al., 2014). However, this conclusion is 

derived from the quantification of IFN expression almost exclusively at the transcriptional 

level. In this work, we clearly establish that human HepG2 hepatocytes respond to intracellular 

Lm infection with a major, but rather delayed, production of IFN-III (IFN-λ1) and a minor 
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production of IFN-I (IFN-β). This result is important due to the species specificity of the IFN 

response: IFN-λ1 is a pseudogene in mice, and murine hepatocytes predominantly express  

IFN-I and do not respond to IFN-III (Hermant et al., 2014; Nakagawa et al., 2013). This is 

supported by our observation that PMH respond to Lm with early IFN-β but no IFN-III 

expression. The magnitude and kinetics of ISG induction by IFN-I and IFN-III differ: while 

IFN-I induces rapid but transient ISG expression, IFN-III induction of ISG expression is slow 

but sustained (Stanifer et al., 2020). These differences in IFN type and expression kinetics may 

have important physiological impacts and highlight the need to study the role of IFN-III in 

human listeriosis. As for Huh7 cells, they do not produce any IFN in response to Lm, as 

previously observed when these cells are confronted with other IFN-triggering stimuli, such as 

double stranded RNA (dsRNA) (Lanford et al., 2003), poly I-C (a synthetic dsRNA) (Li et al., 

2005b) or HCV (Israelow et al., 2014). A possible explanation for this unresponsiveness is that 

Huh7 cells have a defective TLR3 signalling pathway (Li et al., 2005b). This deficiency 

allowed us to identify the IFN-independence of certain processes, such as the downregulation 

of cholesterol biosynthesis gene expression observed in response to Lm infection, as discussed 

above. 

A remarkable result of our transcriptomic study is the observation of very potent IFN secondary 

responses in Lm-exposed hepatocytes (at least in the models where IFN is produced, i.e., 

HepG2 and PMH). The exceptional number of activated ISGs after long-term infection is 

notably mimetic of an antiviral response. In human HepG2, we observed both IFN and 

downstream ISG expression to be triggered much later than in viral infections, however, with 

maximum expression observed at 3 days p.i. as opposed to < 24 h p.i. in virus-infected human 

epithelial cells, for example (Voigt and Yin, 2015).  

The role of IFN signalling in persistent Lm infection merits further investigation. IFNs can have 

opposing effects and, in the murine listeriosis model, IFN-I has been implicated in both the 

restriction and promotion of infection, likely resulting from the pleiotropic roles of IFN-I in 

distinct cell environments and at different stages in the infectious process (Alphonse et al., 

2021; Peignier and Parker, 2021). The role of IFN-III in listeriosis has not yet been directly 

studied, but it should be noted that this IFN type has immunomodulatory properties and could 

be less detrimental to epithelial barriers than IFN-I (Broggi et al., 2020b). Several recent reports 

have, however, provided evidence that IFN-λ contributes to disease pathology by exacerbating 

the innate immune response during chronic infection or autoimmune disease (Goel et al., 2021; 
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Read et al., 2021), and IFN-III signalling has been observed to be detrimental in murine models 

of bacterial respiratory infections (Kotenko et al., 2019).  

Our data suggest that IFN responses do not result in a cell-autonomous antibacterial effect in 

hepatocytes in the timeframe observed (up to 72 h p.i.) but do not rule out an effect in the 

longer-term. However, it is likely that IFN secretion by hepatocytes modulates infection in vivo 

by acting on immune cells, impacting both innate and adaptive immunity. If prolonged, this 

IFN expression could contribute to innate immune dysfunction, as observed in chronic viral 

infections (Dagenais-Lussier et al., 2017). We propose the hypothesis that excessive IFN 

signalling during long-term Lm infection could promote cellular conditions that support 

bacterial persistence by contributing to immune suppression and tissue tolerance.  

Contribution of bystander cells to the IFN response in hepatocytes 

A key question that our work opens is that of the nature of the cell subpopulations engaged in 

these IFN responses within a tissue. In 1963, in one of the first observations of IFN production 

by cultured cells, Henle described an inverse relationship between the number of virus-infected 

cells and the IFN titers obtained (Henle, 1963). With the advent of single-cell techniques, the 

notion of cytokine production by “bystander” cells has gained attention, and several studies 

have highlighted the contribution to IFN and cytokine expression of uninfected cells within 

virus- or bacteria-infected cell cultures (Holmgren et al., 2017; Recum-Knepper et al., 2015). 

Bystander activation in Lm infection has been shown to occur through both cell-contact 

dependent mechanisms and paracrine signalling in the form of secreted extracellular vehicles 

(Kasper et al., 2010; Nandakumar et al., 2019). Through the use of FACS to select GFP-Lm 

long-term infected HepG2 cells, we could compare the extent of gene deregulation in a 

homogeneous as opposed to a heterogeneous population of infected cells and found that while 

gene deregulation was in general higher in the homogeneously infected cells, IFN and ISG 

expression was amplified in the heterogeneously infected HepG2 cell population.  

Exploring how infected cells signal to uninfected cells is an interesting avenue of research that 

has not been thoroughly explored in Lm infection of epithelial cells. HepG2 cells could provide 

a suitable model as bystander activation is particularly important when infection represses the 

activation of innate signalling in infected cells, as we observed for IFN expression. A recent 

transcriptomic study of the Lm response to infection, for example, reported no difference 
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between cytokine expression levels between Lm-infected and uninfected cells in 

heterogeneously infected primary trophoblast monolayers (Johnson et al., 2021). 

The role of the BAHD1-MIER chromatin-repressive complex in modulating 

gene expression during Lm infection of hepatocytes 

The BAHD1-mediated repression of ISG expression in response to Lm infection was 

previously observed in colon epithelial cells (Lebreton et al., 2011) and we report a similar 

repression in long-term Lm infected hepatocytes. The mechanism by which Lm infection 

triggers BAHD1 recruitment to ISGs is not yet established, however, and is an interesting 

perspective to pursue. It has been proposed that BAHD1 could be recruited to ISG promoters 

through the interaction of STAT1/2 with BAHD1-MIER complex components HDAC1 and/or 

KAP1 (Lebreton et al., 2012) (Figure 42A).  

 
Figure 42 | Intracellular pathogen targeting of epigenetic complexes BAHD1 and NuRD.  
(A) The proposed model for the recruitment of BAHD1 at ISG promoters during Lm infection in 
epithelial cells. The BAHD1-MIER complex could be recruited to ISRE promoter sequences through 
HDAC1-STAT1/2 or KAP1-STAT1 interactions, resulting in heterochromatin formation, through 
histone deacetylation and trimethylation at H3K9, and partially abrogated expression of ISGs (left). 
LntA secreted by Lm interacts with BAHD1 and alleviates BAHD1-mediated ISG repression (right) 
(Source: Lebreton et al., 2012). (B) Schematic representation of NuRD complex recruitment to STAT1 
dependent promoters during T. gondii infection in macrophages (Source: Olias et al., 2016).  

A       B 
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Interestingly, another hepatotropic pathogen, the protozoan Toxoplasma gondii, targets the 

epigenetic complex NuRD through the secretion of a specific virulence factor (Olias et al., 

2016). NuRD is recruited to STAT1 dependent promoters, resulting in the partial abrogation 

of ISG expression in macrophages, in a similar manner to the BAHD1-mediated repression of 

ISGs in epithelial cells. In the case of Lm, however, a virulence factor (LntA) has been 

identified that alleviates BAHD1-mediated repression of ISG expression, and it is not known 

whether a distinct virulence factor acts in a divergent manner to activate BAHD1 repression, 

as is the case in T. gondii-mediated ISG repression (Figure 42). 

The role of BAHD1 in the transcriptional repression of APP-coding genes is also plausible and 

merits examination. As described above and in section B.2.2.1, APP gene expression is 

regulated by NF-κB and STAT3, among other TFs (Asselin and Blais, 2011; Bode et al., 2012). 

The chromatin environment at both NF-κB and STAT3 binding sites is a key regulatory 

mechanism governing gene expression through promotor accessibility. At the same time, both 

STAT3 and NF-κB can interact with epifactors to influence chromatin topology (Bhatt and 

Ghosh, 2014; Wingelhofer et al., 2018; Zhao et al., 2013), including components of the 

BAHD1-MIER complex. STAT3, like STAT1, interacts with KAP1 (Tsuruma et al., 2008) as 

well as with the KMT G9a to form a repressor complex that facilitates H3K9 dimethylation 

(Wingelhofer et al., 2018). The p50 subunit of NF-κB can attract and form complexes with 

HDACs, and RELB interacts with KMTs G9a and SETDB1 (Papoutsopoulou and Campbell, 

2021). The siRNA silencing of BAHD1 in the human colon epithelial cell line Caco-2 led to 

increased activation of NF-κB and increased STAT3 phosphorylation (Zhu et al., 2015), 

suggesting a direct or indirect role for BAHD1 in regulating NF-κB- and STAT3-dependent 

gene expression. Interestingly, MIER1 has also been reported to interact with and inhibit the 

activity of CREBBP (Blackmore et al., 2008), a histone acetyltransferase implicated in the 

positive regulation of STAT3-dependent APP expression (Wang et al., 2005; Wingelhofer et 

al., 2018).  

The role of BAHD1 in cholesterol metabolism and the metabolic defects observed in Bahd1 

KO mice, leads to the question of whether BAHD1 could be implicated in the repression of 

cholesterol metabolic genes in hepatocytes during long-term infection. Full KO of the Bahd1 

gene in mice results in phenotypic defects in the placenta and brain (Lakisic et al., 2016; 

Pourpre et al., 2020) – both secondary Lm target organs – raising the question of BAHD1’s 

role in maternal-neonatal listeriosis and/or neurolisteriosis. The role played by BAHD1 in the 
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liver, brain and placenta, under physiological and pathophysiological conditions merits more 

extensive exploration.  

Hepatocytes as a niche for long-term intracellular Lm persistence 

We revealed an immunomodulatory signature upon long-term infection of hepatocytes with 

Lm, at an infection time point at which Lm enters a slow-growth phase in LisCVs. LisCVs are 

partially degradative, but a subpopulation of bacteria survives in a dormant state, suggesting 

the possibility of long-term, low-level persistence of this pathogen in the liver parenchyma. 

For Lm to persist in hepatocytes, we hypothesized that the modulation of the host 

transcriptional landscape would promote tolerance to this intracellular dormant parasite. This 

tolerance could be perceived as a “trade-off” between the host that avoids excessive 

inflammation and associated tissue damage, and the bacteria, a small population of which could 

survive in a niche protected from detection by the immune system.  

The liver is naturally biased towards immunotolerance, and this tolerance extends to the 

induction of systemic immune tolerance. Not only do liver transplants eschew rejection (the 

outcome for all other organs), the transplanted liver can confer tolerance to another transplant 

from the same donor (Calne et al., 1969; Cunningham et al., 2013). Persisting high-level 

antigen expression by hepatocytes silences CD8 T cell function (Tay et al., 2014a), a 

characteristic that is exploited by hepatotropic viruses and parasites resulting in long term 

chronic infection (Crispe, 2014; Protzer et al., 2012; Zheng and Tian, 2019). Hepatotropic 

viruses HBV and HCV can asymptomatically infect a very large proportion of hepatocytes 

while adaptive immunity and viral clearance are delayed for weeks, months, or even years. The 

immune response is not always sufficient to clear the virus, and chronic infection ensues 

(Bertoletti and Kennedy, 2015; Kennedy et al., 2017; Mondelli et al., 2005). The obligatory 

liver stage of Plasmodium spp. is also asymptomatic with sporozoite multiplication taking 

place within a cytosolic parasitophorous vacuole to evade immune sensing, with some species 

remaining in a quiescent state in hepatocytes for up to several years (Prudêncio et al., 2006; 

Zuzarte-Luis and Mota, 2020). The hypothesis of the liver as a long-term niche for  

LisCV-contained Lm deserves further attention and exploration in an in vivo context.  
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Chapter 16

Microscopy of Intracellular Listeria monocytogenes

in Epithelial Cells

Hélène Bierne, Mounia Kortebi, and Natalie Descoeudres

Abstract

The pathogen Listeria monocytogenes is a facultative intracellular bacterium, which targets a large range of
cell types. Following entry, bacteria disrupt the invasion vacuole and reach the cytoplasm where they
replicate and use the actin cytoskeleton to propel themselves from cell to cell. Mammalian epithelial cells
grown in vitro can be used to study the different steps of the intracellular life of Listeria. However, rapid
multiplication and dissemination of bacteria can induce important cell death and detachment, resulting in
the formation of lytic plaques. Thus, in vitro infections with L. monocytogenes are usually restricted to short
time courses, from a few minutes to one day. Here, we present a method to study long-term L. mono-

cytogenes infections in epithelial cells using epifluorescence microscopy. This protocol enables the observa-
tion of actin-based motility, intercellular dissemination foci, and entrapment of L. monocytogenes within
vacuoles of persistence termed “Listeria-Containing Vacuoles” (LisCVs). We also describe a protocol to
study the recruitment of cytoskeletal proteins at Listeria actin comet tails, as well as a method to assess the
membrane integrity of intracellular bacteria using a LIVE/DEAD viability assay.

Key words Fluorescence microscopy, Intracellular bacteria, Persistence, LIVE/DEAD assays

1 Introduction

Intracellular bacterial pathogens are generally classified into two
groups: those that exploit host membrane trafficking to construct
specific niches in vacuoles (i.e., “vacuolar pathogens”) and those
that escape from vacuoles to target the cytosol, where they prolifer-
ate and often spread to neighboring cells (i.e., “cytosolic patho-
gens”). However, the boundary between these distinct intracellular
phenotypes is tenuous as the duration of infection and the host cell
type can be decisive. Listeria monocytogenes is a paradigm for cyto-
solic pathogens, and the different stages of its intracellular life have
been highly characterized in tissue-cultured cells [1]. Following
phagocytosis (e.g., in macrophages) or receptor-mediated endocy-
tosis dependent on the L. monocytogenes invasion proteins InlA
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and/or InlB (e.g., in epithelial cells), bacteria disrupt the primary
vacuole and enter the cytosol. There, they replicate and use the
force generated by actin polymerization, driven by the actin
assembly-inducing protein ActA, to propel themselves and form
membrane protrusions that project them into neighboring cells
(Fig. 1). The resolution of such protrusions into double-membrane
vacuoles and the subsequent membrane rupture of these secondary
vacuoles allow bacteria to enter the cytosol of the adjacent cells and
start a new cycle of actin polymerization and intercellular
dissemination.

Besides these well-known intracellular stages, there is strong
evidence to suggest that Listeria monocytogenes has also developed
mechanisms to nest in vacuoles. For instance, in intestinal goblet
cells, Listeria is transcytosed in a vacuole allowing rapid transloca-
tion of bacteria across the intestinal barrier [3]. In macrophages,
subpopulations of Listeria remain confined to non-degradative
phagosomes, known as “Spacious Listeria-containing Phago-
somes” (SLAPs), which are thought to provide a niche for persis-
tent L. monocytogenes infection in phagocytic cells [4, 5] (Fig. 1).
Additionally, during long-term infections in a subset of epithelial
cells, such as human hepatocytes and trophoblastic cells,
L. monocytogenes are engulfed in lysosomal vacuoles, termed “Lis-
teria-Containing Vacuoles” (LisCVs) [6]. While SLAPs are coupled
to phagocytosis at the onset of infection and harbor bacteria that
never enter the cytosol, LisCVs are formed later, after the phase of
actin-based motility and intracellular spread and upon capture of
cytosolic bacteria by endomembranes (Fig. 1). In SLAPs, as in
LisCVs, bacteria enter a state of slow replication; in addition, in
LisCVs, subpopulations of L. monocytogenes are degraded while
others appear to reach the dormant state known as Viable But
Non-Culturable (VBNC) [6]. In this chapter, we provide three
protocols to observe the different intracellular stages of
L. monocytogenes in epithelial cells using JEG3 placental cells as a
model system. The first protocol enables the observation of the
switch between the active cytosolic phase and the vacuolar persis-
tence phase of L. monocytogenes: bacteria progressively cease to
polymerize actin, and cytosolic bacteria are engulfed in membrane
structures marked by the late endosome/lysosome marker
LAMP1. The second protocol (adapted from [7]) focuses on imag-
ing the recruitment of host cytoskeletal proteins at the actin-rich
comet tail of Listeria. The third protocol (adapted from
[6]) describes an assay to assess bacterial membrane integrity dur-
ing intracellular infections.
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2 Materials

All experiments with L. monocytogenes must be conducted within a
laminar flow class II Biological Safety Cabinet (BSC). Personal
Protective Equipment (PPE) includes laboratory coat, disposable
sterile gloves, and safety glasses. All work surfaces and materials
must be disinfected both prior to and immediately following all
procedures. Operations involving paraformaldehyde must be car-
ried out in a certified chemical fume hood and waste eliminated in a
container for hazardous waste.

2.1 Long-Term

Infection

Immunofluorescence

Assay

1. L. monocytogenes strain 10403S [8]. Other strains can be used,
including derivative strains expressing fluorescent proteins (see
Note 1). Maintain strains at !80 "C in 20% glycerol.

2. Bacterial growth medium: Brain-Heart Infusion (BHI), as liq-
uid medium or in agar plates.

Fig. 1 Different stages in the intracellular life of L. monocytogenes. (Adapted from Bierne et al. [2]) (1)

Intracellular invasion (1a) and dissemination (1b) of L. monocytogenes in mammalian cells. After bacterial

entry into the host cell and transient residence within a primary vacuole, bacteria escape into the cytoplasm,

multiply, and induce expression of the actin-polymerizing factor ActA. Actin polymerization promotes bacterial

motility and cell-to-cell spread via the generation of membrane protrusions from the primary infected cell to

neighboring cells. After the resolution of these protrusions into double-membrane secondary vacuoles, from

which the bacteria escape, a new cycle of infection is initiated. (2) Model of SLAP formation in murine

macrophages. After bacterial phagocytosis, subpopulations of bacteria expressing low amounts of the

cytolysin LLO remain in phagosomes. A LC3-associated phagocytosis (LAP) process promotes formation of

SLAPs, marked by LAMP1, in which bacteria enter a slow/non-replicative state (bacteria represented in black).

(3) LisCV formation in a subset of epithelial cells. Following the active stage of bacterial cell-to-cell spread,

bacteria stop expressing ActA. ActA-free bacteria multiply in the cytosol and are captured by endomembranes,

forming Listeria-containing vacuoles (LisCV) marked by LAMP1. In these lysosome-like compartments,

subpopulations of bacteria resist stress and degradation and enter a slow/non-replicative state (bacteria

represented in black), while others are sensitive to stress and die (bacteria represented in white with *)
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3. Static incubator at 37 "C.

4. Shaking incubator at 37 "C.

5. Benchtop centrifuge.

6. JEG3 trophoblastic cells (ATCC HTB-36). Maintain frozen
stocks in cell preservation medium in liquid nitrogen.

7. Cell preservation medium: fetal calf serum (FCS), 10% DMSO.

8. Cell culture medium: Minimum Essential Medium Eagle
(MEM), 10% FCS, 1% non-essential amino acids (NEAA),
1 mM sodium pyruvate (NaP), 2 mM L-glutamine.

9. Inoculation and washing cell medium: MEM.

10. Cell incubator with a humidified 10% CO2-containing atmo-
sphere at 37 "C.

11. 6-Well cell culture plates.

12. Centrifuge for 15 mL polystyrene tubes and cell culture plates.

13. 37 "C water bath.

14. 22 mm square glass coverslips sterilized for 2 h at 180 "C in a
dry-heat sterilizer (do not use a steam autoclave).

15. Cell counter and Trypan Blue solution (0.4%).

16. 1# phosphate-buffered saline (PBS).

17. 0.05% trypsin, 0.02% EDTA solution.

18. Gentamicin.

19. Fixation buffer: 4% paraformaldehyde (PFA) in 1# PBS.

20. Permeabilization buffer: 0.4% Triton X-100 in 1# PBS.

21. Blocking buffer: 2% bovine serum albumin (BSA) in 1# PBS.

22. Whatman filter paper.

23. Parafilm.

24. Distilled water.

25. Antibodies against L. monocytogenes [6] (unless using fluores-
cent bacteria, see Note 1).

26. Antibodies against human LAMP1.

27. Fluorescently labeled secondary antibodies (e.g., Alexa Fluor
488-conjugated, Cy3-conjugated or Alexa Fluor
555-conjugated goat antibodies).

28. F-actin stain (e.g., Alexa Fluor 647 Phalloidin Dye).

29. DNA stain: 1 mg/mL DAPI or Hoechst (prepared in water).

30. Finely pointed and curved forceps and a slightly curved needle.

31. Glass slides.

32. Mounting medium.

33. Inverted motorized fluorescence microscope with 10#
(or 20#) and 63# (or 100#) objectives.
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2.2 Immuno-

fluorescence Assay

to Study

the Recruitment

of Cytoskeletal

Proteins During

Infection

1. Same materials as in Subheading 2.1.

2. L. monocytogenes strain EGD-e [9]. Other strains can be used,
including derivative strains expressing fluorescent proteins (see
Note 1). Maintain strains at !80 "C in 20% glycerol.

3. CSK buffer: 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2,
10 mM PIPES (piperazine-N,N0- bis[2-ethanesulfonic acid]),
pH 6.8, 1.2 mM PMSF (phenylmethylsulfonyl fluoride).

4. Permeabilization buffer: 0.4% Triton X-100 in CSK buffer.

5. Antibodies against L. monocytogenes [6] (unless using fluores-
cent bacteria, seeNote 1) and cytoskeletal proteins (e.g., Arp3,
Cofilin [7]).

6. Inverted motorized fluorescence microscope with a 63# or
100# objective.

2.3 LIVE/DEAD

Viability Assay

of Intracellular Listeria

1. Same materials as in Subheading 2.1.

2. L. monocytogenes strain 10403S [8] (see Note 1).

3. MOPS/MgCl2 solution (0.1 M 3-(N-morpholino)propane-
sulfonic acid (MOPS), pH 7.4; 1 mM MgCl2).

4. LIVE/DEAD® BacLight(TM) Bacterial Viability Kit.

5. Triton X-100.

6. LIVE/DEAD staining and permeabilization solution: mix
1.6 μM SYTO9, 20 μM propidium iodide, and 0.1% Triton
X100 in MOPS/MgCl2. Vortex briefly. Keep the solution in
the dark.

7. Fine tip forceps.

8. Glass slides.

9. Clear nail polish.

10. Inverted motorized fluorescence microscope with a 63# or
100# objective.

3 Methods

We present protocols for a 6-well plate format, but they can be
scaled down to 12-well or 24-well plate formats. These protocols
are optimized for monolayers of JEG3 trophoblastic cells, which
are permissive for InlA- and InlB-dependent entry of
L. monocytogenes. The protocols can also be adapted to other cell
types (see Note 2).

3.1 Long-Term

Infection

Immunofluorescence

Assay

1. At least 1 week prior to the day of infection, thaw JEG3 cells by
resuspending a frozen cellular aliquot in 10 mL of cell culture
medium in a 15 mL polystyrene tube. Centrifuge for 5 min at
300 # g at room temperature to harvest the cells. Discard the
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supernatant, and resuspend the cellular pellet in 10 mL of cell
culture medium heated to 37 "C in a water bath. Seed the cells
in a 75 cm2 flask, and transfer to a cell incubator with a
humidified 10% CO2-containing atmosphere at 37 "C. Subcul-
ture cells when they reach 80% confluency.

2. At least 3 days prior to infection, streak L. monocytogenes strain
10403S from a !80 "C glycerol stock onto a BHI agar plate.
Grow bacteria for 48 h at 37 "C (see Note 3).

3. Two to four days prior to infection, trypsinize a flask of JEG3
cells and seed cells (2 mL/well) into 6-well plates containing
sterile coverslips, in order to reach about 90% confluency at the
onset of infection (seeNote 4). The number of plated wells will
vary according to the number of different conditions that will
be analyzed (see Note 5). Prepare a specific plate to count cells
at the time of infection (2 wells), as well as at the end of
infection (2 wells). Transfer the plates to the cell incubator
where cells will attach and spread to become a monolayer.

4. In the evening of the day preceding infection, prepare a liquid
culture of L. monocytogenes by inoculating several isolated bac-
terial colonies from the BHI agar plate into 5 mL of BHI liquid
medium in a 15 mL polystyrene tube. Close the lid firmly, and
allow the culture to grow overnight at 37 "C in a shaking
incubator.

5. The day of infection, wash stationary-phase bacteria in PBS.
For this, take 1 mL of the overnight L. monocytogenes culture,
centrifuge for 5 min at 4000 # g in a tabletop centrifuge,
discard the supernatant, and resuspend the pellet in 1 mL
of PBS.

6. Prepare the inoculum by diluting the washed bacteria in the
appropriate volume of infection medium (MEM). JEG3 cells
are infected with 2 mL of inoculum per well to achieve a
multiplicity of infection (MOI) of approximately 0.01 (see
Note 6). To verify theMOI a posteriori, prepare serial dilutions
of the inoculum in 1 mL PBS, plate 50 μL in duplicate on BHI
agar plates, and allow bacteria to grow for 48 h at 37 "C. In two
noninfected wells, add trypsin to detach and then count the
JEG3 cells in an equal amount of Trypan Blue solution (Note
7).

7. Wash JEG3 cells by aspirating the medium and adding 2 mL of
MEM per well.

8. Aspirate the MEM and add 2 mL of the inoculum to each well.

9. Centrifuge infected cells for 2 min at 300 # g to synchronize
bacterial uptake.

10. Transfer the inoculated plate(s) to the cell incubator, and allow
L. monocytogenes to invade cells for 1 h.
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11. After the cellular infection has been completed for 1 h, gently
wash cells with 2 mL per well of pre-warmed MEM. Be careful
to pipet gently to avoid cell loss (see Note 8).

12. Replace MEM with 2 mL of complete cell culture medium
supplemented with 25 μg/mL gentamicin, and transfer the
6-well plate(s) back to the cell incubator. Incubate the infected
cells for 2, 6, 24, or 72 h.

13. At the chosen time point post infection, gently remove the
medium and wash cells with 1 mL of PBS pre-warmed to
room temperature.

14. Remove the PBS, and fix cells by adding 1 mL of the fixation
buffer to each well. Incubate at room temperature for 30 min
under a chemical fume hood.

15. Remove the fixative, and gently wash cells with 1 mL PBS per
well. Renew the washing.

16. Permeabilize cells by adding 1mL of 0.4% Triton X-100 in PBS
and incubating at room temperature for 4 min.

17. Gently wash the coverslips in wells with 2 mL of PBS, three
times.

18. Keep coverslips in 1 mL of blocking buffer per well for 15 min.

19. Prepare the primary antibody solution by diluting the L. mono-
cytogenes antibodies and LAMP1 antibodies in blocking buffer
(see Note 9). Maintain the antibody solution on ice.

20. Prepare an incubation chamber (Fig. 2): thoroughly wet a
sheet of Whatman paper with distilled water, and firmly stick
a sheet of parafilm onto it (ensure that there are no bubbles
between the paper and the parafilm). Define a separate position
for each coverslip by labeling the parafilm (see Note 10).

21. For each coverslip, dispatch a 40 μL drop of the antibody
solution onto the parafilm (Fig. 2). Use fine tip forceps and a
needle (or similar) to remove the coverslips from the cell
culture plate. Carefully place each coverslip cell side down on
the primary antibody drop. Cover the Whatman paper and
parafilm with an inversed tray to maintain a humid environ-
ment. Incubate for 1 h.

22. Prepare the secondary antibody solution by diluting the fol-
lowing: Alexa Fluor 488-conjugated anti-rabbit antibody
(1:400), Cy3-conjugated (or Alexa Fluor 555-conjugated)
anti-mouse antibody (1:400), DAPI or Hoechst (1:1000),
and Alexa Fluor 647 phalloidin (1:400) in blocking buffer
(see Note 11).

23. Gently detach each coverslip from the parafilm by slowly inject-
ing PBS under it using a pipette. Grip the coverslip using the
fine tip forceps, and wash by dipping in three successive baths
of PBS.
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24. For each coverslip, dispatch a 40 μL drop of the secondary
antibody solution on a fresh sheet of parafilm in the incubation
chamber.

25. Carefully place each coverslip cell side down onto the second-
ary antibody drop, as for the primary antibody solution, and
cover with an inversed tray to maintain a humid environment
and protect the fluorescent probes from the light. Incubate for
30 min at room temperature.

26. Prepare glass slides: wipe them down with a lint-free tissue
moistened with a small amount of ethanol and label them.
Two 22 mm coverslips can be mounted onto one glass slide.

27. After incubation, gently detach each coverslip by using the
pipette to inject PBS under it.

Fig. 2 Material for incubating coverslips with antibody solutions. Assemble a humidified chamber using a wet

Whatman paper, onto which a sheet of parafilm is firmly stuck, making sure there are no bubbles between the

paper and the parafilm. Label the position of each coverslip on the parafilm. Dispatch a drop of primary

antibody solution for each coverslip (I). Carefully remove the coverslips from the cell culture plate using

pointed curved forceps and a slightly curved needle and then upturn the coverslip onto the drop (II). Use a tray

to cover the coverslips during the incubation period; ensure the cells never dry out. After incubation, gently

detach each coverslip from the parafilm by slowly injecting PBS under it using a pipette. Grip the coverslip

using the forceps, and wash by dipping in three successive baths of PBS. Repeat the process for the secondary

antibody solution incubation. Pipette a drop of mounting medium onto a microscope slide (avoid bubbles).

After washing each coverslip in two successive baths of PBS and one of distilled water, place the coverslip cell

side down onto the drop. Incubate the slides at room temperature overnight in the dark. Protect the slides from

light, and store at !20 "C until imaging is performed
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28. Pipette a 10 μL drop of mounting medium onto a glass slide
(one drop per coverslip) (Fig. 2). Ensure that there are no
bubbles in the 10 μL drop.

29. Wash each coverslip in two successive baths of PBS followed by
one bath of distilled water.

30. Remove any excess water by dabbing the edge of the coverslip
on a paper towel before slowly placing the coverslip cell side
down onto the drop of mounting medium on the glass slide
(Fig. 2). It is important to avoid the formation of bubbles.

31. Let the coverslip dry overnight at room temperature, in the
dark to protect the fluorescent probes.

32. Acquire images in the 350 nm (DAPI/Hoechst, to visualize
nuclei and bacterial DNA), 488 nm (L. monocytogenes), 546 nm
(LAMP1), and 647 nm (F-actin) channels on an inverted
motorized fluorescence microscope, equipped with a digital
camera. Use a 10# (or 20#) objective to observe bacterial
spreading in the cell monolayer (Fig. 3a). Bacteria appear as
dots within the cell monolayer stained with fluorescent phal-
loidin that labels F-actin. Use a 63# (or 100#) objective to
observe Listeria associated with F-actin or entrapped in Lis-
teria-Containing Vacuoles (LisCVs) (Fig. 3a). LisCVs appear
as perinuclear LAMP1-positive compartments containing F-
actin-negative bacteria (Fig. 3b).

3.2 Immuno-

fluorescence Assay

to Study

the Recruitment

of Cytoskeletal

Proteins During

Infection

This protocol has been adapted from Bierne et al. [7] to be used for
JEG3 cells infected with strain EGD-e [9]. It is optimized to detect
cytoskeletal proteins recruited by L. monocytogenes during the actin-
based motility process.

1. Follow steps 1–5 as described in Subheading 3.1.

2. Prepare the inoculum by diluting bacteria in the appropriate
volume of infection medium (MEM). JEG3 cells are infected
with 2 mL of inoculum to achieve a multiplicity of infection
(MOI) of 1–5. To verify the MOI a posteriori, prepare serial
dilutions of the inoculum in 1 mL PBS, plate 50 μL in duplicate
on BHI agar plates, and allow bacteria to grow for 48 h at
37 "C. Use two noninfected wells to count the JEG3 cells, after
detachment with trypsin.

3. Follow steps 7–12 as described in Subheading 3.1.

4. After 3, 4, or 6 h of infection (see Note 12), carefully remove
the medium and gently wash cells with 1 mL PBS.

5. Remove PBS with a pipette, and fix cells by adding 1 mL of the
fixation buffer to each well. Immediately renew with fresh
fixation solution, and incubate for 25 min at room temperature
under a chemical fume hood (see Note 13).

6. Gently wash coverslips with 1 mL PBS. Renew the washing.
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Fig. 3 Fluorescence microscopy analysis of a time course infection of L. monocytogenes in JEG3 cells

(Adapted from Kortebi et al. [6]). JEG3 cell monolayers were infected with L. monocytogenes 10403S at

MOI ~ 0.1. At the indicated time point post infection (p.i.), cells were fixed, permeabilized, and incubated with

Listeria and LAMP1 antibodies for 1 h and then with secondary antibodies, fluorescent phalloidin (to stain

F-actin), and DAPI (to stain DNA) for 30 min. (a) Micrographs of cells infected for 2, 6, 24, or 72 h and

visualized with a 10# (top; bar: 100 μm) or 63# (bottom, bar: 10 μm) objective. Images are overlays of

Listeria (green) and F-actin (red) signals. Circles highlight an individual bacterium at 2 h p.i., and an infection

focus at 6 h p.i. Arrows point to examples of actin comet tails associated with Listeria, at 6 h post infection. The

triangle shows a cluster of actin-free Listeria at 72 h post infection. (b) Micrograph of a cell infected for 72 h

and visualized with a 100# objective (bar: 2 μm). Image is an overlay of Listeria (green), LAMP1 (red), and

DAPI signals. Triangles show LAMP1-positive Listeria-containing vacuoles (LisCVs) at 72 h post infection
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7. Permeabilize cells with 1 mL of 0.4% Triton X-100 in CSK
buffer for 4 min (see Note 13).

8. Gently wash the coverslips with 2 mL CSK buffer and then
twice with PBS.

9. Keep coverslips in 1 mL blocking solution (PBS with 2% BSA)
per well for 15 min.

10. Prepare the primary antibody solution by diluting
L. monocytogenes antibodies and antibodies against cytoskeletal
proteins in blocking solution (see Note 9). Maintain the anti-
body solution on ice.

11. Follow steps 20–31 as described in Subheading 3.1.

12. Acquire images on an inverted motorized fluorescence micro-
scope, equipped with a digital camera and a 63# or 100#
objective to observe Listeria associated with F-actin and the
cytoskeletal protein of interest.

3.3 LIVE/DEAD

Viability Assay

of Intracellular Listeria

We adapted the Live/Dead BacLight Bacterial Viability assay from
Kubica et al. [10] and Johnson and Criss [11] to assess whether live
bacteria in LisCVs have intact or damaged membranes. This assay is
based on the discriminative labeling of two fluorescent nucleic acid
stains: the green membrane-permeant dye SYTO9 and the red
membrane-impermeant dye propidium iodide (PI), which only
crosses damaged cell membranes. Both dyes penetrate dead cells,
but SYTO9 fluorescence is reduced in the presence of PI. As such,
intact bacteria appear green, while those with damaged membranes
appear red. To allow the dyes to reach vacuolar Listeria, this stain-
ing protocol is performed in the presence of 0.1% Triton X-100,
which permeabilizes host cell membranes, including vacuoles con-
taining bacteria [10]. The efficiency of permeabilization is assessed
by the bright staining of host cell nuclei with PI as the dye crosses
the double-membraned nuclear envelope. Cells are not fixed to
avoid killing bacteria.

1. Follow steps 1–12 as described in Subheading 3.1. (SeeNote 1
regarding the choice of strains.)

2. At 72 h postinfection (see Note 14), gently wash cells twice
with 1 mL of MOPS/MgCl2 solution (0.1 M 3-(N-morpho-
lino)propanesulfonic acid (MOPS), pH 7.4; 1 mM MgCl2).

3. Gently add 1 mL of the LIVE/DEAD staining and permeabi-
lizing solution (1.6 μM SYTO9, 20 μM propidium iodide,
0.1% Triton X100 in MOPS/MgCl2) to each well.

4. Centrifuge for 10 min at 300 # g at room temperature (this
enables dye staining while preventing cell detachment).

5. Incubate for further 5 min at room temperature in the dark.
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6. Gently wash cells twice with 1 mL of the MOPS/MgCl2 solu-
tion (use a pipette to aspirate the buffer to prevent cell
detachment).

7. Place the coverslips cell side down onto glass slides, and seal
with clear nail polish. Make sure the nail polish only covers a
small portion of the coverslip. Incubate for 2 min at 37 "C in
the cell incubator.

8. Immediately examine the mounted coverslip under the micro-
scope, with a 63# or 100# objective, for a maximum of
10 min. Bacteria appear as tiny green or red filaments (as the
dyes stain the bacterial nucleoid) (Fig. 4) (see Note 15).

4 Notes

1. The protocols have been used with the L. monocytogenes strains
10403S [8], EGD-e [9], EGD-e expressing GFP [12], or
10403S expressing mCherry [13]. The use of fluorescent Lis-
teria eliminates the need for labeling bacteria with primary
antibodies, but the intensity of fluorescence is lower than
when using dye-conjugated secondary antibodies. For the
LIVE/DEAD assay, however, the use of fluorescent Listeria is
not recommended.

Fig. 4 LIVE/DEAD staining assay for intravacuolar Listeria (Adapted from Kortebi et al. [6]). JEG3 cells infected

for 3 days with L. monocytogenes were permeabilized with 0.1% Triton X-100 and double-labeled with

fluorescent nucleic acid stains SYTO9 and PI. This assay is based on the discriminative labeling of membrane-

permeant SYTO9 (green) and membrane-impermeant PI (red), which only crosses damaged cell membranes.

Both dyes penetrate dead cells, but SYTO9 fluorescence is reduced in the presence of PI. As such, live bacteria

appear green, while those with damaged membranes appear red. (a) Overlay of phase contrast (showing

groups of cells), SYTO9, and PI channels. The arrow points to a cluster of bacteria in a LisCV. Bar: 5 μm. (b)

High magnifications of the region indicated by the arrow. Micrographs of the SYTO9 and PI individual channels

and of the overlay of both channels are shown. Bacteria with intact membranes are stained in green, while the

host cell nuclear DNA and damaged bacteria are stained in red. Bar: 1 μm
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2. The protocols have been successfully tested with human BeWo
trophoblast cells (ATCC CCL-98), as well as the hepatocyte
cell lines HuH-7 (Cellosaurus CVCL-0336) and Hep G2
(ATCC HB-8065). To obtain a uniform monolayer of Hep
G2 cells, it is recommended to grow these cells in collagen-
coated wells. Dilute type I collagen from rat tail to 50 μg/mL
in PBS, and add 1 mL to each well of a 6-well plate. Incubate at
room temperature for 1 h before aspirating the solution and
rinsing each well three times with 1 mL of sterile PBS.

3. The BHI plate can be stored at 4 "C for up to 15 days.

4. Cell quantification may vary from one laboratory to another
because of the use of different cell counter systems. Seeding
concentrations must therefore be adapted in order to achieve
approximately 90% confluency at the onset of infection.

5. We typically seed cells in triplicate (three independent wells) for
each condition.

6. The specific MOI of the inoculum needs to be adjusted accord-
ing to the L. monocytogenes strain that is examined in the assay.
With strain 10403S, we classically use a MOI of 0.01 or 0.1.

7. Do not keep cells in Trypan Blue solution for more than
10 min before counting cells (after 10–15 min in Trypan
Blue, cells start dying, thereby rendering the cell count
inaccurate).

8. When using a MOI above 1 (e.g., 1–10), incubate cells for
10 min in 2 mL ofMEM containing 100 μg/mL gentamicin to
rapidly kill extracellular bacteria. This treatment prevents the
lytic action of the LLO toxin, which is secreted by
L. monocytogenes. After this treatment, wash cells with 2 mL
of MEM before adding complete cell culture medium supple-
mented with 25 μg/mL gentamicin.

9. We generally use rabbit polyclonal L. monocytogenes antibodies
and mouse monoclonal human LAMP1 antibodies. If using
GFP- or mCherry-expressing Listeria, either rabbit or mouse
LAMP1 antibodies (or antibodies against another host factor
of interest) can be used.

10. It is imperative that coverslips never dry out. Ensure that the
Whatman paper remains wet throughout the incubation (use
distilled water).

11. Check the excitation and emission filters of the microscope to
avoid spectral overlap; choose the secondary antibodies
accordingly.

12. Determine the time point you would like to study: bacteria
start to polymerize actin after about 2–3 h of infection, and
start to form membrane protrusions after 4–6 h.
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13. Some antibodies work better following fixation inmethanol. In
such cases, instead of using PFA for fixation, immerse cover-
slips or chamber slides in ice-cold methanol:acetone (1:1) and
incubate at !20 "C for 10 min. Permeabilize with cooled
acetone for 1 min at !20 "C (do not use Triton X-100). Air--
dry the coverslips. Rinse them in 1# PBS.

14. This assay can be performed at different time points post
infection.

15. To detect bacteria with SYTO9 and PI, one has to use a high
intensity of light, which can become cytotoxic for bacteria. The
examination of LIVE/DEAD intracellular bacteria must there-
fore be performed within 5–10 min. A field of infected cells
needs to be found rapidly. The success of an experiment thus
depends on the efficiency of infection.
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  1 

Synthèse en français 

Introduction 

Listeria monocytogenes est un agent pathogène d'origine alimentaire qui peut provoquer la 

listériose, l'une des zoonoses bactériennes d'origine alimentaire les plus dangereuses (European 

Food Safety Authority, European Centre for Disease Prevention and Control, 2021). Bien que 

rare, la listériose a un taux de létalité élevé et est particulièrement préoccupante pour les 

personnes immunodéprimées et les femmes enceintes (Radoshevich and Cossart, 2017). 

L. monocytogenes est une bactérie à Gram positif qui fait preuve d’une adaptabilité 

remarquable, étant capable de passer d'une vie de saprophyte vivant dans le sol à celle d'un 

pathogène invasif, très adepte à la survie et à la prolifération dans la cellule hôte (Schlech, 

2019). Cette adaptabilité accroît le potentiel pathogène de L. monocytogenes dans le domaine 

alimentaire, car la bactérie peut résister aux concentrations élevées de sel et d'acide et aux 

faibles concentrations d'oxygène et aux basses températures utilisées pour la conservation des 

aliments (Allerberger et al., 2015). L'adaptabilité de L. monocytogenes a également facilité 

l'utilisation de cette bactérie en laboratoire et a permis à L. monocytogenes de devenir un 

pathogène modèle extrêmement polyvalent au cours des cinquante dernières années (Lecuit, 

2020). L'analyse du processus infectieux de L. monocytogenes, tant in vitro qu'in vivo dans le 

modèle murin, est à l’origine de nombreuses avancées dans notre compréhension de la biologie 

cellulaire, des interactions hôte-pathogène et de l'immunologie innée et l’immunité à médiation 

cellulaire (Cossart, 2011 ; Radoshevich and Cossart, 2017). 

La porte d’entrée principale de L. monocytogenes est le tube digestif, suite à l’ingestion 

d’aliments contaminés (Schlech et al., 1983). Une fois ingéré, L. monocytogenes traverse le 

tube digestif, rencontrant le faible pH de l'estomac et du duodénum, ainsi que des acides 

biliaires perturbateurs de la membrane, des bactéries commensales productrices de 

bactériocines et de peptides antimicrobiens, contre lesquels le pathogène a développé des 

mécanismes de survie très efficaces lui permettant de pénétrer le mucus intestinal (Gahan and 

Hill, 2014 ; Matereke and Okoh, 2020 ; Maudet et al., 2021). Néanmoins, la grande majorité 

de l'inoculum initial ingéré est tuée dans l'estomac ou éliminée dans les fèces en quelques 

heures. Une fois les entérocytes, les cellules de l'épithélium intestinal, envahis, cependant, une 

réplication intracellulaire extensive ainsi qu’une propagation de cellule à cellule ont lieu 

(Melton-Witt et al., 2012). L. monocytogenes peut ensuite traverser la barrière intestinale par 

plusieurs mécanismes, pour atteindre les ganglions lymphatiques puis la circulation sanguine 
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pour se disséminer dans les tissus cibles, notamment le foie et la rate (Radoshevich and Cossart, 

2017) (voir le schéma de l’infection ci-dessous). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Schéma de l'infection par L. monocytogenes chez l’homme. Après l'ingestion d'aliments contaminés, 

L. monocytogenes peut traverser la barrière intestinale pour atteindre la circulation sanguine en passant 

par les ganglions lymphatiques pour se disséminer dans les tissus cibles, notamment le foie et la rate. 

Chez les personnes immunodéprimées, L. monocytogenes peut traverser la barrière hémato-

encéphalique et provoquer une méningite ou une septicémie dont le taux de mortalité est très élevé. 

Chez les femmes enceintes, L. monocytogenes peut traverser la barrière fœtoplacentaire et provoquer 

une naissance prématurée ou l’avortement.  

(D'après Radoshevich and Cossart, 2017)  

Après la phase intestinale de l'infection, le foie joue un rôle central dans l'élimination des 

bactéries. Le foie a des rôles essentiels dans le métabolisme et la détoxification mais agit 

également comme une barrière aux infections systémiques, par son rôle majeur dans la 

détection, la capture et l’élimination des agents pathogènes circulant dans le sang (Kubes and 

Jenne, 2018 ; Protzer et al., 2012). Certains agents pathogènes, notamment les virus (par 

exemple, les virus de l'hépatite A, B, C, D, E), les parasites (par exemple, Plasmodium 

falciparum, Toxoplasma gondii, Entamoeba histolytica) et les bactéries (par exemple, Listeria 

monocytogenes, Salmonella Typhimurium, Francisella tularensis, Brucella spp., 

Streptococcus pneumoniae) sont capables d'envahir les hépatocytes, les cellules 

parenchymateuses du foie (Conlan and North, 1992; Protzer et al., 2012; Talwani et al., 2011; 

Wisplinghoff and Appleton, 2008). Parmi ces pathogènes, L. monocytogenes est un 

contaminant alimentaire bactérien capable d'atteindre et de se multiplier dans le foie après avoir 
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traversé la barrière intestinale. Chez la majorité des individus, l'invasion de L. monocytogenes 

est éliminée avec succès, mais si l'infection n'est pas contrôlée par une réponse immunitaire 

adéquate, la prolifération de L. monocytogenes peut conduire à la libération de bactéries 

intracellulaires dans le système circulatoire et à l'invasion d'autres sites, tels que le cerveau 

chez les personnes immunodéprimées, et le placenta et le fœtus chez les femmes enceintes, 

entraînant des septicémies, des méningo-encéphalites, des fausses couches et des infections 

néonatales (Schlech, 2019). Ces manifestations cliniques sévères font de la listériose l'une des 

infections d'origine alimentaire les plus mortelles (European Food Safety Authority, European 

Centre for Disease Prevention and Control, 2021).  

La plupart de nos connaissances sur la phase hépatique de la listériose proviennent d'infections 

expérimentales sur des modèles animaux, principalement la souris, ce qui a produit un scénario 

d'infection très bien décrit, bien que certaines différences puissent provenir des différentes 

voies d'inoculation et/ou de la dose bactérienne utilisée (Pitts and D'Orazio, 2018). Après une 

inoculation intraveineuse, plus de 60% des bactéries sont éliminées de la circulation sanguine 

par le foie dans l’espace de 10 minutes. Les bactéries se fixent sur les cellules de Kupffer (les 

macrophages hépatiques résidents) et sont ensuite éliminées par une interaction complexe entre 

les cellules de Kupffer et les neutrophiles qui migrent rapidement vers le foie en réponse à 

l'infection (Conlan and North, 1991 ; Gregory et al., 1996 ; Gregory et al., 2002 ; Witter et al., 

2016). Six heures post-infection, environ 90% des bactéries hépatiques sont associées aux 

hépatocytes, au sein desquels la réplication bactérienne a lieu pendant deux à trois jours. Ainsi, 

les charges de L. monocytogenes dans le foie augmentent de manière exponentielle avant 

d'atteindre un plateau après trois à quatre jours d'infection, puis diminuent avec le 

développement d'une immunité spécifique (Cousens and Wing, 2000). Il a été proposé que 

l'invasion bactérienne des hépatocytes peut avoir lieu par deux voies : l'internalisation directe 

ou la propagation de cellule à cellule à partir des cellules de Kupffer (Appelberg and Leal, 

2000 ; Dramsi et al., 1995 ; Gaillard et al., 1996). Des observations en histologie (Conlan and 

North, 1991 ; 1992) et en microscopie électronique (Gaillard et al., 1996) suggèrent que les 

bactéries se propagent dans le parenchyme hépatique grâce au processus de motilité basé sur 

l'actine décrit dans des modèles cellulaires in vitro (Domann et al., 1992 ; Kocks et al., 1992 ; 

Welch et al., 1997 ; 1998). En accord avec cela, les souches mutantes de L. monocytogenes 

déficientes dans la production de la protéine ActA, qui induit la polymérisation des filaments 

d’actine nécessaire aux déplacements intra- et inter-cellulaires des L. monocytogenes 

cytosoliques (Tilney and Portnoy, 1989), sont de trois ordres de grandeur moins virulentes par 
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rapport à la souche sauvage dans le modèle de listériose murin (Domann et al., 1992). Le 

passage direct des bactéries d'un hépatocyte à un autre est proposé pour générer des foyers 

d’infection dans lesquels L. monocytogenes se dissémine à travers le parenchyme, évitant ainsi 

le contact avec les effecteurs humoraux du système immunitaire (Gaillard et al., 1996 ; Wood 

et al., 1993).  

Après la phase de croissance active dans les hépatocytes, la charge bactérienne diminue 

fortement dans le foie grâce à de puissantes réponses immunitaires innées (Cousens et Wing, 

2000). Plusieurs types de cellules contribuent à la défense du foie contre l'infection par 

L. monocytogenes, en particulier les neutrophiles, les cellules tueuses naturelles, les cellules 

dendritiques (Arnold-Schrauf et al, 2014 ; Conlan and North, 1991 ; Cousens and Wing, 2000 ; 

Gregory et al., 1996 ; Witter et al., 2016) et les cellules de Kupffer, dont la mort par nécroptose 

déclenche le recrutement de monocytes infiltrants, qui prolifèrent et se différencient en 

macrophages au site de l'infection (Bleriot et al., 2015). Ces cellules immunitaires collaborent 

via des contacts intercellulaires et la sécrétion de cytokines et de chimiokines pour tuer les 

bactéries ou inhiber leur réplication, et pour lyser les hépatocytes infectés. Les hépatocytes 

eux-mêmes participent activement à la réponse immunitaire innée en produisant et en sécrétant 

de manière constitutive une variété de protéines qui jouent un rôle important dans l'immunité 

innée, comme les facteurs du complément et les protéines impliquées dans l'hémostase (Zhou 

et al., 2016). Ces protéines, dont la production augmente rapidement et de manière substantielle 

en réponse à des stimuli inflammatoires sont connues sous le nom de protéines de la phase 

aiguë (Gabay and Kushner, 1999 ; Zhou et al., 2016). La production de cytokines pro-

inflammatoires par les cellules de Kupffer, les monocytes et les neutrophiles, en réponse à une 

infection par L. monocytogenes, stimule la production des protéines de la phase aiguë par les 

hépatocytes (Kopf et al., 1994 ; Kummer et al., 2016). Cette première vague de défenses non 

spécifiques est essentielle à la survie de l'hôte ; l'inflammation contribue également au 

développement de la résistance acquise en stimulant l'amorçage et la prolifération des 

lymphocytes T cytotoxiques qui génèrent les réponses primaires et mémoires protectrices 

contre L. monocytogenes (Pamer, 2004 ; Qiu et al., 2018).  

La capacité de L. monocytogenes à envahir et à endommager le foie est documentée depuis 

longtemps chez les rongeurs et les lagomorphes ; en effet, parmi les premiers noms proposés 

pour cette bactérie figuraient Bacillus hepatis (par Hülphers, en 1911) et Listerella hepatolytica 

(par Pirie, en 1927), sur la base d'observations de nécrose hépatique chez des lapins et des 

gerbilles (Gray and Killinger, 1966 ; Mitchell et al., 1927). Chez l'homme, cependant, alors 
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que des abcès hépatiques sont décrits dans les cas de listériose néonatale, les symptômes 

cliniques de lésions hépatiques dues à L. monocytogenes sont rarement rapportés au cours de 

listérioses invasives chez l'adulte. De plus, il existe un manque de connaissances sur le devenir 

des bactéries dans les organes, dont le foie, pendant la période d'incubation asymptomatique, 

qui peut être très longue dans les cas associés à la grossesse – jusqu'à soixante-dix jours (Goulet 

et al., 2013). En outre, le portage asymptomatique de L. monocytogenes existe chez l'homme 

en bonne santé (Painter and Slutsker, 2007), ainsi que chez de très nombreuses espèces de 

mammifères d'élevage ou sauvages (Allerberger et al., 2015 ; Gray and Killinger, 1966 ; 

Hurtado et al., 2017 ; Leclercq, 2021 ; Parsons et al., 2020 ; Yoshida et al., 2000), mais notre 

compréhension de ce portage asymptomatique, en particulier en ce qui concerne son stade 

hépatique, fait cruellement défaut.  

Récemment, la notion a émergé que, en plus des phases bien connues de réplication active et 

de motilité dans le cytosol des cellules hôtes, L. monocytogenes peut entrer dans une phase 

quiescente dans les compartiments vacuolaires, allant d'une croissance lente à une dormance, 

qui pourrait jouer un rôle important dans les infections asymptomatiques (Bierne et al., 2018). 

Ces niches vacuolaires sont en particulier formées dans les cellules du foie, notamment les 

macrophages hépatiques (Birmingham et al., 2008) et les hépatocytes (Kortebi et al., 2017), 

par des mécanismes distincts. Plus spécifiquement, il a été montré que dans la lignée cellulaire 

d'hépatocytes humains HepG2 et dans les hépatocytes humains primaires, L. monocytogenes 

entre dans une phase de repos dans des vacuoles acides, appelées « Listeria-containing 

vacuoles » (LisCVs ; « vacuoles contenant Listeria ») (Kortebi et al., 2017). Les LisCV sont 

générées tardivement (c'est-à-dire après deux à trois jours d'infection), lorsque les bactéries 

cessent d'exprimer ActA et de polymériser l'actine, et sont des compartiments partiellement 

dégradatifs (Kortebi et al., 2017). Par conséquent, une sous-population de bactéries survit dans 

un état quiescent, ce qui soulève la possibilité d'une persistance à long terme de 

L. monocytogenes dans le parenchyme hépatique. Des stades de persistance dans les 

hépatocytes ont été décrits pour d'autres agents pathogènes, tels que les virus et les parasites 

hépatiques (Protzer et al., 2012). Plasmodium vivax, par exemple, peut entrer dans un état 

quiescent à l'intérieur d'une vacuole parasitophore et passer inaperçu pendant des années 

(Prudêncio et al., 2006).  
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Objectifs et résultats de la thèse : 1) Une signature transcriptionnelle 

immunomodulatrice associée à une infection persistante par L. monocytogenes dans les 

hépatocytes  

Le premier axe de ma thèse consistait en la caractérisation de la réponse transcriptionnelle de 

l'hépatocyte à une infection à long terme par L. monocytogenes afin d'identifier une signature 

d'expression génique associée à la persistance bactérienne intracellulaire. Nous rapportons le 

développement de trois modèles cellulaires robustes d'infection persistante dans des lignées 

cellulaires d'hépatocytes humains HepG2 et Huh7 et dans des hépatocytes primaires de souris. 

Ces trois modèles ont permis l’obtention des populations homogènes d'hépatocytes hébergeant 

L. monocytogenes dans des LisCV. L'analyse transcriptomique par le séquençage de l'ARN 

(RNA-seq, de l’anglais « RNA sequencing ») dans les hépatocytes après trois jours d'infection 

par L. monocytogenes a permis d'identifier un paysage transcriptionnel profondément modifié, 

d'où émerge une signature commune de l'infection « à long terme » par L. monocytogenes, 

caractérisée par :  

(i)  l'augmentation de l'expression d'un ensemble de gènes impliqués dans l'immunité 

antivirale connu sous le nom de « gènes stimulés par les interférons » (« interferon 

stimulated genes »). La caractérisation de cette facette majeure de la réponse des cellules 

épithéliales à l'infection par L. monocytogenes a mis en évidence une divergence entre 

les hépatocytes humain et murins soulignant la nécessité des modèles animaux alternatifs 

pour mieux refléter la listériose humaine. Nous avons observé une réponse précoce chez 

la souris qui est caractérisée par l’expression de l’interféron de type I (IFN-β), et une 

réponse tardive concomitante à l’expression majoritairement de l’interféron de type III 

(IFN-λ1, IFN-λ2) dans les hépatocytes humains. 

(ii)  la diminution de l'expression de nombreux gènes codant pour des protéines de phase 

aiguë, en particulier celles impliquées dans les systèmes du complément et de la 

coagulation. Ce blocage transcriptionnel des gènes codant pour les protéines de la phase 

aiguë a été maintenu en présence d'une stimulation par des cytokines pro-inflammatoires. 

L'analyse protéomique quantitative du sécrétome des hépatocytes a révélé une 

diminution de l'abondance des protéines de phase aiguë dans le milieu extracellulaire, en 

accord avec les données transcriptomiques.  

(iii) la régulation négative des gènes associés au métabolisme du cholestérol dans les 

hépatocytes humains infectés à long terme, indépendamment de la réponse à l'interféron.  
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Les signatures transcriptomiques et protéomiques observées se sont avérées indépendantes de 

la souche de L. monocytogenes utilisée. L’utilisation d’une souche de L. monocytogenes 

déficiente dans l’expression du facteur de virulence l’internaline C (InlC), un inhibiteur de  

NF-κB (Gouin et al., 2010), suggère un rôle pour cette protéine secrétée bactérienne dans 

l’inhibition de l’expression des gènes codant pour un sous-ensemble des protéines de phase 

aiguë. L'analyse transcriptomique par RNA-seq dans les hépatocytes Huh7 à la fois à 24 heures 

et à 72 heures post-infection suggère que l’inhibition de l’expression des gènes codant pour des 

protéines de phase aiguë, ainsi que la diminution de l’expression des gènes associés à la 

synthèse du cholestérol, augmente au cours de l’infection.  

L’ensemble de ces résultats suggèrent une modification importante du programme 

transcriptionnelle de l’hépatocyte au cours de l’infection à long terme par L. monocytogenes. 

Le rôle de l’induction de la réponse interféron dans l’infection bactérienne en générale, et lors 

de l’infection par L. monocytogenes en particulier, reste sujet à controverse, mais pourrait 

participer à la persistance de L. monocytogenes dans les hépatocytes. L’inhibition de 

l’expression de gènes clés de l'immunité innée hépatique impliqués dans la réponse à la phase 

aiguë, notamment des gènes codant pour des composants du complément et de la coagulation, 

serait impliquée dans la diminution de la réponse immunitaire, et pourrait favoriser la survie 

de L. monocytogenes et le portage silencieux de L. monocytogenes dans le foie. 

Objectifs et résultats de la thèse : 2) La réponse des hépatocytes à l'infection par 

L. monocytogenes dans des populations mixtes ou pures de cellules infectées : contribution 

des cellules « bystander » non-infectées et le rôle du complexe BAHD1-MIER. 

Le deuxième axe de ma thèse consistait en l'étude des mécanismes susceptibles d'expliquer 

l'effet de l'infection persistante par L. monocytogenes sur la dérégulation des gènes 

hépatocytaires, en se focalisant sur le rôle des régulateurs épigénétiques BAHD1 et MIER.  

Dans chaque cellule humaine, deux mètres d'ADN sont compactés dans le noyau, enroulés 

autour de protéines histones pour former des nucléosomes qui sont emballés dans des fibres de 

chromatine (Bierne and Hamon, 2020 ; Ou et al., 2017). L'état de compaction de la chromatine 

joue un rôle majeur dans la régulation de l'expression des gènes en contrôlant l'accessibilité de 

l'ADN à la machinerie transcriptionnelle. La régulation de la structure de la chromatine est un 

processus dynamique qui implique la méthylation de l'ADN, et une grande variété de 

modifications post-traductionnelles des histones telles que la méthylation, l'acétylation, la 

phosphorylation et l'ubiquitination, ainsi que le remodelage des nucléosomes (Bierne, 2017 ; 
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Bierne and Hamon, 2020). Ces différents mécanismes fonctionnent de concert pour coordonner 

la formation de structures chromatiniennes, qui sont soit peu compactes et actives, soit 

fortement condensées et silencieuses sur le plan transcriptionnel. La régulation 

transcriptionnelle basée sur l’état de la chromatine est contrôlée par des complexes 

macromoléculaires composés de protéines qui ont été baptisées « épifacteurs » (Medvedeva et 

al., 2015) et qui reconnaissent, ajoutent ou suppriment spécifiquement les modifications post-

traductionnelles des histones ou la méthylation de l'ADN, ou qui ont des activités de 

remodelage de la chromatine (Bierne, 2017). L'assemblage combinatoire d'épifacteurs avec des 

facteurs de transcription active ou réprime la transcription ainsi modifiant l'expression génique 

en réponse aux stimuli développementaux, physiologiques ou environnementaux (Bierne, 

2017). À leur tour, les voies de signalisation cellulaire influencent les niveaux d'expression, la 

localisation et l'assemblage des épifacteurs en complexes. Comme les complexes de 

remodelage de la chromatine ont un rôle crucial dans la régulation de la transcription, y compris 

pendant l’infection, ils peuvent faire de bonnes cibles des pathogènes, comme 

L. monocytogenes (Bierne, 2017 ; Dong and Hamon, 2020).  

Une approche de microbiologie cellulaire visant à rechercher des protéines sécrétées par 

L. monocytogenes ciblant des organelles intracellulaires a permis d'identifier LntA (« Listeria 

nuclear targeted protein A ») comme une protéine bactérienne ciblant le noyau (Lebreton et al., 

2011). De tels effecteurs bactériens exerçant leurs fonctions dans le noyau de la cellule hôte 

ont été définis par Bierne et Cossart comme des "nucléomodulines" et ont été identifiés chez 

plusieurs autres pathogènes intracellulaires (Bierne and Pourpre, 2020 ; Bierne et al., 2012a). 

La protéine humaine ciblée par LntA dans le noyau a été identifiée comme étant BAHD1 

(« bromo adjacent homology domain-containing 1 ») (Bierne et al., 2009 ; Lebreton et al., 2011 

; 2014). 

La caractérisation de la protéine BAHD1 a révélé qu'elle était un composant central d'un 

nouveau complexe associé aux histone désacétylases (HDACs). Sur le plan biochimique, une 

série d'expériences impliquant la technique de double hybride, la co-immunoprécipitation et la 

colocalisation (Bierne et al., 2009), ainsi que la purification par affinité en tandem des protéines 

associées à BAHD1 (Lakisic et al., 2016 ; Lebreton et al., 2011) ont montré que BAHD1 forme 

un complexe avec HDAC1/2, les histone-lysine méthyltransférases (par exemple G9a), les 

lecteurs de histone H3 triméthylée sur la lysine 9 (H3K9me3) et les lecteurs de l’ADN methylé 

(respectivement, HP1 « heterochromatin protein 1 », et MBD1 « methyl-CpG-binding domain 

protein 1 », ainsi que d'autres composants (par exemple, CDYL « chromodomain Y like », et 
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KAP1 « KRAB-associated protein 1 »). Parmi les principaux partenaires de BAHD1, les 

protéines MIER « mesoderm induction early response » ont été identifiés, en particulier 

MIER1 et MIER3 (Fan et al., 2021 ; Lakisic et al., 2016 ; Lebreton et al., 2011). 

Une caractérisation approfondie de MIER1 par Gillespie et ses collègues a montré que cette 

protéine de régulation de la transcription et de la chromatine interagit avec HDAC1/2, le 

histone-lysine méthyltransférase G9a, et CREBBP (« CREB binding protein ») (Blackmore et 

al., 2008 ; Ding et al., 2003 ; Gillespie and Paterno, 2012 ; Wang et al, 2008), et présente des 

similitudes structurelles et fonctionnelles avec les membres de la famille des protéines MTA 

(« metastasis-associated protein ») du complexe de remodelage de la chromatine NuRD 

(« nucleosome remodelling and deacetylase »), en raison de ses domaines ELM2 et SANT 

(Derwish et al, 2017 ; Ding et al., 2003 ; 2004 ; Paterno et al., 1997). Le domaine ELM2 de 

MIER1 est responsable de l'interaction avec les HDACs (Derwish et al., 2017 ; Ding et al., 

2003). MIER2 et MIER3 présentent une homologie avec MIER1, notamment dans leurs 

domaines ELM-SANT (Derwish et al., 2017). Il a été démontré que MIER2 recrute les HDACs, 

mais moins efficacement que MIER1 (Derwish et al., 2017). MIER3 ne recrute pas les HDACs 

(Derwish et al., 2017), mais est associée à la désacétylation des histones H3 et H4 par 

l'inhibition de l'histone acétyltransférase p300 (Zhang et al., 2020). 

BAHD1, d'autre part, partage avec les protéines MTA un domaine BAH (« bromo adjacent 

homology ») (Bierne et al., 2009), qui est connu pour favoriser les interactions protéine-

protéine et la liaison aux nucléosomes (Yang and Xu, 2013). Bierne et ses collègues ont 

proposé le modèle dans lequel les protéines BAHD1 et MIER coopèrent pour remplir une 

fonction d'échafaudage similaire à celle de MTA dans le complexe NuRD (Lakisic et al., 2016). 

L'échafaudage BAHD1-MIER établit un pont entre la méthylation de l'histone sur la lysine 9, 

la désacétylation de l'histone et la méthylation de l'ADN, qui sont toutes des marques 

épigénétiques favorisant l'extinction des gènes.  

L'étude fonctionnelle de BAHD1 est cohérente avec cette caractérisation biochimique. BAHD1 

déclenche la compaction de la chromatine en hétérochromatine et induit l'extinction des gènes 

(Bierne et al., 2009). L’inactivation du gène BAHD1 modifie l'acétylation et la méthylation des 

histones et la méthylation de l'ADN au niveau des gènes cibles (Lakisic et al., 2016) et la 

surexpression de BAHD1 remodèle le méthylome dans les cellules humaines (Libertini et al., 

2015). Les gènes inhibés par BAHD1 diffèrent selon les types de cellules et les stimuli 

spécifiques. L’extinction complète du gène Bahd1 chez la souris entraîne des défauts 
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phénotypiques dans le placenta et le cerveau (Lakisic et al., 2016 ; Pourpre et al., 2020) ainsi 

que des défauts métaboliques, notamment dans le métabolisme du cholestérol (Lakisic et al., 

2016). Il a été démontré que BAHD1 régule l'inflammation dans le côlon au cours de la colite 

ulcéreuse (Zhu et al., 2015), et au cours de l'infection par L. monocytogenes, BAHD1 réprime 

l'expression des gènes stimulés par les interférons en aval de la signalisation des interférons de 

type I et de type III dans les cellules épithéliales de côlon LoVo (Lebreton et al., 2011 ; 2014). 

Des travaux préliminaires par l’équipe ont identifié trois gènes (BAHD1, MIER1 et MIER3) 

codant pour des sous-unités du complexe répressif de remodelage de la chromatine  

BAHD1-MIER comme étant spécifiquement surexprimés dans la lignée de cellules hépatiques 

HepG2 infectées. BAHD1 joue un rôle dans la répression de la réponse interféron pendant 

l'infection des cellules intestinales par L. monocytogenes (Lebreton et al., 2011) et dans la 

répression des gènes du métabolisme des lipides (Lakisic et al., 2016). Mon objectif était donc 

d'explorer le rôle du complexe BAHD1-MIER lors d'une infection persistante par 

L. monocytogenes, dans le cadre d'un projet de collaboration entre les laboratoires de H. Bierne 

et L. Gillespie. 

Nous avons observé une augmentation de l’expression du gène IFNL1, codant pour l’interféron 

de type III IFN-λ1, ainsi que l’expression d’un groupe de gènes stimulés par les interférons 

dans des hépatocytes dont l’expression des gènes codant pour BAHD1, MIER1 et MIER3 a été 

inactivée par des petits ARN interférents (siRNA). Les résultats de ce présent travail élargissent 

donc les résultats publiés précédemment (Lebreton et al., 2011 ; 2014), en fournissant des 

données nouvelles sur l'inhibition de gènes stimulés par l'interféron par le complexe  

BAHD1-MIER dans les hépatocytes humains infectés. Les résultats suggèrent également que, 

dans une population mixte d'hépatocytes infectés et non infectés, les cellules voisines aux 

cellules infectées mais elles-mêmes non infectées (« bystander cells ») sont les principaux 

producteurs d'interférons et des protéines produites en réponse aux interférons, après trois jours 

d'infection. Ce phénomène d'activation secondaire est particulièrement important lorsque 

l'infection réprime la signalisation innée dans les cellules infectées, comme nous l'avons 

observé pour l’inhibition par le complexe BAHD1 de l'expression des gènes stimulés par les 

interférons dans les hépatocytes. Ces résultats, bien que nécessitant une confirmation par des 

approches complémentaires, fournissent la première preuve d'un rôle du complexe chromatino-

répressif BAHD1-MIER dans l'atténuation des réponses interféron dans les hépatocytes 

hébergeant des L. monocytogenes intracellulaires, et suggèrent un rôle important de l’activation 

secondaire dans la réponse de l’hépatocyte à l’invasion par L. monocytogenes.  
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Résumé : Listeria monocytogenes (Lm) est un pathogène intracellulaire facultatif 

provoquant de graves maladies d'origine alimentaire chez les femmes enceintes 

et les personnes immunodéprimées. Après la phase intestinale de l'infection, le 

foie joue un rôle central dans l'élimination des bactéries. C'est aussi un organe 

cible primaire de Lm, dans lequel les bactéries se multiplient efficacement dans 

les hépatocytes, les cellules parenchymateuses. Des données récentes suggèrent 

que, lors d'une infection à long terme des hépatocytes, une sous-population 

bactérienne peut échapper à l'éradication, en entrant dans une phase de 

persistance dans des vacuoles intracellulaires appelées LisCVs.  

 

Le premier axe de ma thèse consistait à examiner la réponse de l'hôte à cette 

infection à long terme dans les hépatocytes, avec l'objectif d'identifier une 

signature transcriptomique commune à plusieurs modèles d'hépatocytes. Des 

modèles cellulaires d'infection persistante ont été établis dans des lignées 

cellulaires d'hépatocytes humains HepG2 et Huh7 et dans des hépatocytes 

primaires de souris. Les bactéries Lm sont systématiquement entrées dans la 

phase de persistance après trois jours d'infection dans ces cellules, tout en 

induisant une puissante réponse à l'interféron, de type I dans les hépatocytes 

primaires de souris, et de type III dans les HepG2, tandis que les cellules Huh7 

sont restées sans réponse. L'analyse transcriptomique par RNA-seq a permis 

d'identifier un paysage transcriptionnel profondément modifié, d'où émerge une 

signature commune de l'infection à long terme par Lm, caractérisée par (i) 

l'augmentation de l'expression d'un ensemble de gènes impliqués dans 

l'immunité antivirale et (ii) la diminution de l'expression de nombreux gènes 

codant pour des protéines de phase aiguë, en particulier celles impliquées dans 

les systèmes du complément et de la coagulation. Ce blocage transcriptionnel 

des gènes codant pour les protéines de la phase aiguë a été maintenu en 

présence d'une stimulation par des cytokines pro-inflammatoires. L'analyse 

protéomique quantitative du sécrétome des hépatocytes a révélé une diminution 

de l'abondance des protéines de phase aiguë, en accord avec les données 

transcriptomique. L'infection a également modifié l'expression de nombreux 

gènes associés au métabolisme du cholestérol dans les hépatocytes humains, 

indépendamment de la réponse à l'interféron. 

 

Le deuxième axe de ma thèse consistait en l'étude du rôle des facteurs 

épigénétiques BAHD1 et MIER dans l'infection à long terme par Lm dans les 

hépatocytes. L'association BAHD1-MIER forme l'échafaudage d'un complexe 

répressif chromatinien récemment décrit, appartenant à la famille des 

complexes histone désacétylase (HDAC). Il avait été montré précédemment 

que BAHD1 réprimait la réponse interféron lors de l'infection de cellules 

épithéliales de colon par Lm. Le présent travail élargit ces résultats, en 

fournissant des données nouvelles sur l'inhibition de gènes stimulés par 

l'interféron par BAHD1-MIER dans les hépatocytes. Les résultats suggèrent 

également que, dans une population mixte d'hépatocytes infectés et non 

infectés, les cellules auxiliaires non infectées sont les principaux producteurs 

d'interférons et des protéines produites en réponse aux interférons, après trois 

jours d'infection.  

 

Ces travaux suggèrent fortement que l'infection à long terme par Lm dérégule 

profondément les fonctions sécrétoires et métaboliques des hépatocytes, ce 

qui pourrait générer un environnement favorable à l'établissement d'une 

infection persistante en réduisant l’abondance de protéines clés d’immunité 

innée d’origine hépatocytaire. En même temps, cela ouvre de multiples 

perspectives pour explorer les mécanismes de régulation transcriptionnelle de 

l'hôte pendant une infection persistante et le rôle des cellules auxiliaires non 

infectées dans la subversion de la répression transcriptionnelle médiée par 

l'infection. 
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Abstract: Listeria monocytogenes (Lm) is a facultative intracellular pathogen that 

causes severe foodborne illness in pregnant women and immunocompromised 

individuals. After the intestinal phase of infection, the liver plays a central role in 

the clearance of bacteria. It is also a primary target organ, in which Lm replicates 

extensively in hepatocytes, the parenchymal liver cells. Recent data suggest that 

during long-term infection of hepatocytes, a bacterial subpopulation can escape 

eradication by entering a persistence phase in intracellular vacuoles called LisCVs. 

 

The first axis of my thesis was to examine the host response to this long-term 

infection in hepatocytes with the objective of identifying a common 

transcriptomic signature in several hepatocyte models. Cellular models of 

persistent infection were established in HepG2 and Huh7 human hepatocyte cell 

lines and primary mouse hepatocytes. Lm consistently entered the persistence 

phase after three days of infection in these cells, while inducing a potent 

interferon response, of type I in primary mouse hepatocytes and type III in 

HepG2, while Huh7 cells remained unresponsive. RNA-sequencing analysis 

identified a profoundly altered transcriptional landscape from which a common 

signature of long-term Lm infection emerged, characterized by (i) the 

upregulation of a set of genes involved in antiviral immunity and (ii) the 

downregulation of many genes encoding acute phase proteins, particularly those 

involved in the complement and coagulation systems. This transcriptional block 

on acute phase protein coding gene expression was maintained in the presence 

of pro-inflammatory cytokine stimulation. Quantitative proteomics analysis of the 

hepatocyte secretome revealed reduced protein abundance that correlated with 

transcriptomic downregulation. Infection also altered the expression of 

cholesterol metabolism-associated genes in human hepatocytes that was 

independent of the interferon response. 

 

The second axis of my thesis involved investigating the role of the epigenetic 

factors BAHD1 and MIER in long term Lm infection in hepatocytes. The BAHD1-

MIER association forms the scaffold of a recently described chromatin-

repressive complex, belonging to the histone deacetylase (HDAC) family. 

BAHD1 was previously shown to repress the interferon response upon Lm 

infection of colon epithelial cells. This work expands on these results, by 

providing novel data on the inhibition of interferon-stimulated genes by 

BAHD1-MIER in hepatocytes. The results also suggest that, in a mixed 

population of infected and uninfected hepatocytes, uninfected bystander cells 

are the major producers of interferon and interferon stimulated gene products 

in response to interferon after three days of infection. 

 

This work strongly suggests that long-term infection with Lm profoundly 

deregulates the secretory and metabolic functions of hepatocytes, which could 

generate an environment favourable to the establishment of persistent 

infection through the reduced abundance of crucial hepatocyte specific innate 

immune proteins. At the same time, it opens up multiple avenues to explore 

the mechanisms of host transcriptional regulation during persistent infection 

and the role of uninfected bystander cells in subverting infection-mediated 

transcriptional repression. 
 

 


